1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "logging/logStream.hpp"
  37 #include "memory/allocation.inline.hpp"
  38 #include "memory/filemap.hpp"
  39 #include "memory/universe.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "os_share_solaris.hpp"
  42 #include "os_solaris.inline.hpp"
  43 #include "prims/jniFastGetField.hpp"
  44 #include "prims/jvm_misc.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/atomic.hpp"
  47 #include "runtime/extendedPC.hpp"
  48 #include "runtime/globals.hpp"
  49 #include "runtime/interfaceSupport.inline.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "runtime/vm_version.hpp"
  64 #include "semaphore_posix.hpp"
  65 #include "services/attachListener.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/align.hpp"
  69 #include "utilities/decoder.hpp"
  70 #include "utilities/defaultStream.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/growableArray.hpp"
  73 #include "utilities/macros.hpp"
  74 #include "utilities/vmError.hpp"
  75 
  76 // put OS-includes here
  77 # include <dlfcn.h>
  78 # include <errno.h>
  79 # include <exception>
  80 # include <link.h>
  81 # include <poll.h>
  82 # include <pthread.h>
  83 # include <setjmp.h>
  84 # include <signal.h>
  85 # include <stdio.h>
  86 # include <alloca.h>
  87 # include <sys/filio.h>
  88 # include <sys/ipc.h>
  89 # include <sys/lwp.h>
  90 # include <sys/machelf.h>     // for elf Sym structure used by dladdr1
  91 # include <sys/mman.h>
  92 # include <sys/processor.h>
  93 # include <sys/procset.h>
  94 # include <sys/pset.h>
  95 # include <sys/resource.h>
  96 # include <sys/shm.h>
  97 # include <sys/socket.h>
  98 # include <sys/stat.h>
  99 # include <sys/systeminfo.h>
 100 # include <sys/time.h>
 101 # include <sys/times.h>
 102 # include <sys/types.h>
 103 # include <sys/wait.h>
 104 # include <sys/utsname.h>
 105 # include <thread.h>
 106 # include <unistd.h>
 107 # include <sys/priocntl.h>
 108 # include <sys/rtpriocntl.h>
 109 # include <sys/tspriocntl.h>
 110 # include <sys/iapriocntl.h>
 111 # include <sys/fxpriocntl.h>
 112 # include <sys/loadavg.h>
 113 # include <string.h>
 114 # include <stdio.h>
 115 
 116 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
 117 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
 118 
 119 #define MAX_PATH (2 * K)
 120 
 121 // for timer info max values which include all bits
 122 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 123 
 124 
 125 // Here are some liblgrp types from sys/lgrp_user.h to be able to
 126 // compile on older systems without this header file.
 127 
 128 #ifndef MADV_ACCESS_LWP
 129   #define  MADV_ACCESS_LWP   7       /* next LWP to access heavily */
 130 #endif
 131 #ifndef MADV_ACCESS_MANY
 132   #define  MADV_ACCESS_MANY  8       /* many processes to access heavily */
 133 #endif
 134 
 135 #ifndef LGRP_RSRC_CPU
 136   #define LGRP_RSRC_CPU      0       /* CPU resources */
 137 #endif
 138 #ifndef LGRP_RSRC_MEM
 139   #define LGRP_RSRC_MEM      1       /* memory resources */
 140 #endif
 141 
 142 // Values for ThreadPriorityPolicy == 1
 143 int prio_policy1[CriticalPriority+1] = {
 144   -99999,  0, 16,  32,  48,  64,
 145           80, 96, 112, 124, 127, 127 };
 146 
 147 // System parameters used internally
 148 static clock_t clock_tics_per_sec = 100;
 149 
 150 // Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
 151 static bool enabled_extended_FILE_stdio = false;
 152 
 153 // For diagnostics to print a message once. see run_periodic_checks
 154 static bool check_addr0_done = false;
 155 static sigset_t check_signal_done;
 156 static bool check_signals = true;
 157 
 158 address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
 159 address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
 160 
 161 address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
 162 
 163 os::Solaris::pthread_setname_np_func_t os::Solaris::_pthread_setname_np = NULL;
 164 
 165 // "default" initializers for missing libc APIs
 166 extern "C" {
 167   static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 168   static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
 169 
 170   static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 171   static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
 172 }
 173 
 174 // "default" initializers for pthread-based synchronization
 175 extern "C" {
 176   static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 177   static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 178 }
 179 
 180 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 181 
 182 static inline size_t adjust_stack_size(address base, size_t size) {
 183   if ((ssize_t)size < 0) {
 184     // 4759953: Compensate for ridiculous stack size.
 185     size = max_intx;
 186   }
 187   if (size > (size_t)base) {
 188     // 4812466: Make sure size doesn't allow the stack to wrap the address space.
 189     size = (size_t)base;
 190   }
 191   return size;
 192 }
 193 
 194 static inline stack_t get_stack_info() {
 195   stack_t st;
 196   int retval = thr_stksegment(&st);
 197   st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
 198   assert(retval == 0, "incorrect return value from thr_stksegment");
 199   assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
 200   assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
 201   return st;
 202 }
 203 
 204 static void _handle_uncaught_cxx_exception() {
 205   VMError::report_and_die("An uncaught C++ exception");
 206 }
 207 
 208 bool os::is_primordial_thread(void) {
 209   int r = thr_main();
 210   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
 211   return r == 1;
 212 }
 213 
 214 address os::current_stack_base() {
 215   bool _is_primordial_thread = is_primordial_thread();
 216 
 217   // Workaround 4352906, avoid calls to thr_stksegment by
 218   // thr_main after the first one (it looks like we trash
 219   // some data, causing the value for ss_sp to be incorrect).
 220   if (!_is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
 221     stack_t st = get_stack_info();
 222     if (_is_primordial_thread) {
 223       // cache initial value of stack base
 224       os::Solaris::_main_stack_base = (address)st.ss_sp;
 225     }
 226     return (address)st.ss_sp;
 227   } else {
 228     guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
 229     return os::Solaris::_main_stack_base;
 230   }
 231 }
 232 
 233 size_t os::current_stack_size() {
 234   size_t size;
 235 
 236   if (!is_primordial_thread()) {
 237     size = get_stack_info().ss_size;
 238   } else {
 239     struct rlimit limits;
 240     getrlimit(RLIMIT_STACK, &limits);
 241     size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
 242   }
 243   // base may not be page aligned
 244   address base = current_stack_base();
 245   address bottom = align_up(base - size, os::vm_page_size());;
 246   return (size_t)(base - bottom);
 247 }
 248 
 249 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
 250   return localtime_r(clock, res);
 251 }
 252 
 253 void os::Solaris::try_enable_extended_io() {
 254   typedef int (*enable_extended_FILE_stdio_t)(int, int);
 255 
 256   if (!UseExtendedFileIO) {
 257     return;
 258   }
 259 
 260   enable_extended_FILE_stdio_t enabler =
 261     (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
 262                                          "enable_extended_FILE_stdio");
 263   if (enabler) {
 264     enabler(-1, -1);
 265   }
 266 }
 267 
 268 jint os::Solaris::_os_thread_limit = 0;
 269 volatile jint os::Solaris::_os_thread_count = 0;
 270 
 271 julong os::available_memory() {
 272   return Solaris::available_memory();
 273 }
 274 
 275 julong os::Solaris::available_memory() {
 276   return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
 277 }
 278 
 279 julong os::Solaris::_physical_memory = 0;
 280 
 281 julong os::physical_memory() {
 282   return Solaris::physical_memory();
 283 }
 284 
 285 static hrtime_t first_hrtime = 0;
 286 static const hrtime_t hrtime_hz = 1000*1000*1000;
 287 static volatile hrtime_t max_hrtime = 0;
 288 
 289 
 290 void os::Solaris::initialize_system_info() {
 291   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 292   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) *
 293                                      (julong)sysconf(_SC_PAGESIZE);
 294 }
 295 
 296 uint os::processor_id() {
 297   const processorid_t id = ::getcpuid();
 298   assert(id >= 0 && id < _processor_count, "Invalid processor id");
 299   return (uint)id;
 300 }
 301 
 302 int os::active_processor_count() {
 303   // User has overridden the number of active processors
 304   if (ActiveProcessorCount > 0) {
 305     log_trace(os)("active_processor_count: "
 306                   "active processor count set by user : %d",
 307                   ActiveProcessorCount);
 308     return ActiveProcessorCount;
 309   }
 310 
 311   int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
 312   pid_t pid = getpid();
 313   psetid_t pset = PS_NONE;
 314   // Are we running in a processor set or is there any processor set around?
 315   if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
 316     uint_t pset_cpus;
 317     // Query the number of cpus available to us.
 318     if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
 319       assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
 320       return pset_cpus;
 321     }
 322   }
 323   // Otherwise return number of online cpus
 324   return online_cpus;
 325 }
 326 
 327 void os::set_native_thread_name(const char *name) {
 328   if (Solaris::_pthread_setname_np != NULL) {
 329     // Only the first 31 bytes of 'name' are processed by pthread_setname_np
 330     // but we explicitly copy into a size-limited buffer to avoid any
 331     // possible overflow.
 332     char buf[32];
 333     snprintf(buf, sizeof(buf), "%s", name);
 334     buf[sizeof(buf) - 1] = '\0';
 335     Solaris::_pthread_setname_np(pthread_self(), buf);
 336   }
 337 }
 338 
 339 bool os::bind_to_processor(uint processor_id) {
 340   // We assume that a processorid_t can be stored in a uint.
 341   assert(sizeof(uint) == sizeof(processorid_t),
 342          "can't convert uint to processorid_t");
 343   int bind_result =
 344     processor_bind(P_LWPID,                       // bind LWP.
 345                    P_MYID,                        // bind current LWP.
 346                    (processorid_t) processor_id,  // id.
 347                    NULL);                         // don't return old binding.
 348   return (bind_result == 0);
 349 }
 350 
 351 // Return true if user is running as root.
 352 
 353 bool os::have_special_privileges() {
 354   static bool init = false;
 355   static bool privileges = false;
 356   if (!init) {
 357     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 358     init = true;
 359   }
 360   return privileges;
 361 }
 362 
 363 
 364 void os::init_system_properties_values() {
 365   // The next steps are taken in the product version:
 366   //
 367   // Obtain the JAVA_HOME value from the location of libjvm.so.
 368   // This library should be located at:
 369   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 370   //
 371   // If "/jre/lib/" appears at the right place in the path, then we
 372   // assume libjvm.so is installed in a JDK and we use this path.
 373   //
 374   // Otherwise exit with message: "Could not create the Java virtual machine."
 375   //
 376   // The following extra steps are taken in the debugging version:
 377   //
 378   // If "/jre/lib/" does NOT appear at the right place in the path
 379   // instead of exit check for $JAVA_HOME environment variable.
 380   //
 381   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 382   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 383   // it looks like libjvm.so is installed there
 384   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 385   //
 386   // Otherwise exit.
 387   //
 388   // Important note: if the location of libjvm.so changes this
 389   // code needs to be changed accordingly.
 390 
 391 // Base path of extensions installed on the system.
 392 #define SYS_EXT_DIR     "/usr/jdk/packages"
 393 #define EXTENSIONS_DIR  "/lib/ext"
 394 
 395   // Buffer that fits several sprintfs.
 396   // Note that the space for the colon and the trailing null are provided
 397   // by the nulls included by the sizeof operator.
 398   const size_t bufsize =
 399     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 400          sizeof(SYS_EXT_DIR) + sizeof("/lib/"), // invariant ld_library_path
 401          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 402   char *buf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 403 
 404   // sysclasspath, java_home, dll_dir
 405   {
 406     char *pslash;
 407     os::jvm_path(buf, bufsize);
 408 
 409     // Found the full path to libjvm.so.
 410     // Now cut the path to <java_home>/jre if we can.
 411     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 412     pslash = strrchr(buf, '/');
 413     if (pslash != NULL) {
 414       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 415     }
 416     Arguments::set_dll_dir(buf);
 417 
 418     if (pslash != NULL) {
 419       pslash = strrchr(buf, '/');
 420       if (pslash != NULL) {
 421         *pslash = '\0';        // Get rid of /lib.
 422       }
 423     }
 424     Arguments::set_java_home(buf);
 425     if (!set_boot_path('/', ':')) {
 426       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 427     }
 428   }
 429 
 430   // Where to look for native libraries.
 431   {
 432     // Use dlinfo() to determine the correct java.library.path.
 433     //
 434     // If we're launched by the Java launcher, and the user
 435     // does not set java.library.path explicitly on the commandline,
 436     // the Java launcher sets LD_LIBRARY_PATH for us and unsets
 437     // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
 438     // dlinfo returns LD_LIBRARY_PATH + crle settings (including
 439     // /usr/lib), which is exactly what we want.
 440     //
 441     // If the user does set java.library.path, it completely
 442     // overwrites this setting, and always has.
 443     //
 444     // If we're not launched by the Java launcher, we may
 445     // get here with any/all of the LD_LIBRARY_PATH[_32|64]
 446     // settings.  Again, dlinfo does exactly what we want.
 447 
 448     Dl_serinfo     info_sz, *info = &info_sz;
 449     Dl_serpath     *path;
 450     char           *library_path;
 451     char           *common_path = buf;
 452 
 453     // Determine search path count and required buffer size.
 454     if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
 455       FREE_C_HEAP_ARRAY(char, buf);
 456       vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
 457     }
 458 
 459     // Allocate new buffer and initialize.
 460     info = (Dl_serinfo*)NEW_C_HEAP_ARRAY(char, info_sz.dls_size, mtInternal);
 461     info->dls_size = info_sz.dls_size;
 462     info->dls_cnt = info_sz.dls_cnt;
 463 
 464     // Obtain search path information.
 465     if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
 466       FREE_C_HEAP_ARRAY(char, buf);
 467       FREE_C_HEAP_ARRAY(char, info);
 468       vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
 469     }
 470 
 471     path = &info->dls_serpath[0];
 472 
 473     // Note: Due to a legacy implementation, most of the library path
 474     // is set in the launcher. This was to accomodate linking restrictions
 475     // on legacy Solaris implementations (which are no longer supported).
 476     // Eventually, all the library path setting will be done here.
 477     //
 478     // However, to prevent the proliferation of improperly built native
 479     // libraries, the new path component /usr/jdk/packages is added here.
 480 
 481     // Construct the invariant part of ld_library_path.
 482     sprintf(common_path, SYS_EXT_DIR "/lib");
 483 
 484     // Struct size is more than sufficient for the path components obtained
 485     // through the dlinfo() call, so only add additional space for the path
 486     // components explicitly added here.
 487     size_t library_path_size = info->dls_size + strlen(common_path);
 488     library_path = NEW_C_HEAP_ARRAY(char, library_path_size, mtInternal);
 489     library_path[0] = '\0';
 490 
 491     // Construct the desired Java library path from the linker's library
 492     // search path.
 493     //
 494     // For compatibility, it is optimal that we insert the additional path
 495     // components specific to the Java VM after those components specified
 496     // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
 497     // infrastructure.
 498     if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it.
 499       strcpy(library_path, common_path);
 500     } else {
 501       int inserted = 0;
 502       int i;
 503       for (i = 0; i < info->dls_cnt; i++, path++) {
 504         uint_t flags = path->dls_flags & LA_SER_MASK;
 505         if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
 506           strcat(library_path, common_path);
 507           strcat(library_path, os::path_separator());
 508           inserted = 1;
 509         }
 510         strcat(library_path, path->dls_name);
 511         strcat(library_path, os::path_separator());
 512       }
 513       // Eliminate trailing path separator.
 514       library_path[strlen(library_path)-1] = '\0';
 515     }
 516 
 517     // happens before argument parsing - can't use a trace flag
 518     // tty->print_raw("init_system_properties_values: native lib path: ");
 519     // tty->print_raw_cr(library_path);
 520 
 521     // Callee copies into its own buffer.
 522     Arguments::set_library_path(library_path);
 523 
 524     FREE_C_HEAP_ARRAY(char, library_path);
 525     FREE_C_HEAP_ARRAY(char, info);
 526   }
 527 
 528   // Extensions directories.
 529   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 530   Arguments::set_ext_dirs(buf);
 531 
 532   FREE_C_HEAP_ARRAY(char, buf);
 533 
 534 #undef SYS_EXT_DIR
 535 #undef EXTENSIONS_DIR
 536 }
 537 
 538 void os::breakpoint() {
 539   BREAKPOINT;
 540 }
 541 
 542 extern "C" void breakpoint() {
 543   // use debugger to set breakpoint here
 544 }
 545 
 546 static thread_t main_thread;
 547 
 548 // Thread start routine for all newly created threads
 549 extern "C" void* thread_native_entry(void* thread_addr) {
 550 
 551   Thread* thread = (Thread*)thread_addr;
 552 
 553   thread->record_stack_base_and_size();
 554 
 555   // Try to randomize the cache line index of hot stack frames.
 556   // This helps when threads of the same stack traces evict each other's
 557   // cache lines. The threads can be either from the same JVM instance, or
 558   // from different JVM instances. The benefit is especially true for
 559   // processors with hyperthreading technology.
 560   static int counter = 0;
 561   int pid = os::current_process_id();
 562   alloca(((pid ^ counter++) & 7) * 128);
 563 
 564   int prio;
 565 
 566   thread->initialize_thread_current();
 567 
 568   OSThread* osthr = thread->osthread();
 569 
 570   osthr->set_lwp_id(_lwp_self());  // Store lwp in case we are bound
 571 
 572   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").",
 573     os::current_thread_id());
 574 
 575   if (UseNUMA) {
 576     int lgrp_id = os::numa_get_group_id();
 577     if (lgrp_id != -1) {
 578       thread->set_lgrp_id(lgrp_id);
 579     }
 580   }
 581 
 582   // Our priority was set when we were created, and stored in the
 583   // osthread, but couldn't be passed through to our LWP until now.
 584   // So read back the priority and set it again.
 585 
 586   if (osthr->thread_id() != -1) {
 587     if (UseThreadPriorities) {
 588       int prio = osthr->native_priority();
 589       if (ThreadPriorityVerbose) {
 590         tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
 591                       INTPTR_FORMAT ", setting priority: %d\n",
 592                       osthr->thread_id(), osthr->lwp_id(), prio);
 593       }
 594       os::set_native_priority(thread, prio);
 595     }
 596   } else if (ThreadPriorityVerbose) {
 597     warning("Can't set priority in _start routine, thread id hasn't been set\n");
 598   }
 599 
 600   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 601 
 602   // initialize signal mask for this thread
 603   os::Solaris::hotspot_sigmask(thread);
 604 
 605   os::Solaris::init_thread_fpu_state();
 606   std::set_terminate(_handle_uncaught_cxx_exception);
 607 
 608   thread->call_run();
 609 
 610   // Note: at this point the thread object may already have deleted itself.
 611   // Do not dereference it from here on out.
 612 
 613   // One less thread is executing
 614   // When the VMThread gets here, the main thread may have already exited
 615   // which frees the CodeHeap containing the Atomic::dec code
 616   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 617     Atomic::dec(&os::Solaris::_os_thread_count);
 618   }
 619 
 620   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
 621 
 622   if (UseDetachedThreads) {
 623     thr_exit(NULL);
 624     ShouldNotReachHere();
 625   }
 626   return NULL;
 627 }
 628 
 629 static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
 630   // Allocate the OSThread object
 631   OSThread* osthread = new OSThread(NULL, NULL);
 632   if (osthread == NULL) return NULL;
 633 
 634   // Store info on the Solaris thread into the OSThread
 635   osthread->set_thread_id(thread_id);
 636   osthread->set_lwp_id(_lwp_self());
 637 
 638   if (UseNUMA) {
 639     int lgrp_id = os::numa_get_group_id();
 640     if (lgrp_id != -1) {
 641       thread->set_lgrp_id(lgrp_id);
 642     }
 643   }
 644 
 645   if (ThreadPriorityVerbose) {
 646     tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
 647                   osthread->thread_id(), osthread->lwp_id());
 648   }
 649 
 650   // Initial thread state is INITIALIZED, not SUSPENDED
 651   osthread->set_state(INITIALIZED);
 652 
 653   return osthread;
 654 }
 655 
 656 void os::Solaris::hotspot_sigmask(Thread* thread) {
 657   //Save caller's signal mask
 658   sigset_t sigmask;
 659   pthread_sigmask(SIG_SETMASK, NULL, &sigmask);
 660   OSThread *osthread = thread->osthread();
 661   osthread->set_caller_sigmask(sigmask);
 662 
 663   pthread_sigmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
 664   if (!ReduceSignalUsage) {
 665     if (thread->is_VM_thread()) {
 666       // Only the VM thread handles BREAK_SIGNAL ...
 667       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 668     } else {
 669       // ... all other threads block BREAK_SIGNAL
 670       assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
 671       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 672     }
 673   }
 674 }
 675 
 676 bool os::create_attached_thread(JavaThread* thread) {
 677 #ifdef ASSERT
 678   thread->verify_not_published();
 679 #endif
 680   OSThread* osthread = create_os_thread(thread, thr_self());
 681   if (osthread == NULL) {
 682     return false;
 683   }
 684 
 685   // Initial thread state is RUNNABLE
 686   osthread->set_state(RUNNABLE);
 687   thread->set_osthread(osthread);
 688 
 689   // initialize signal mask for this thread
 690   // and save the caller's signal mask
 691   os::Solaris::hotspot_sigmask(thread);
 692 
 693   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
 694     os::current_thread_id());
 695 
 696   return true;
 697 }
 698 
 699 bool os::create_main_thread(JavaThread* thread) {
 700 #ifdef ASSERT
 701   thread->verify_not_published();
 702 #endif
 703   if (_starting_thread == NULL) {
 704     _starting_thread = create_os_thread(thread, main_thread);
 705     if (_starting_thread == NULL) {
 706       return false;
 707     }
 708   }
 709 
 710   // The primodial thread is runnable from the start
 711   _starting_thread->set_state(RUNNABLE);
 712 
 713   thread->set_osthread(_starting_thread);
 714 
 715   // initialize signal mask for this thread
 716   // and save the caller's signal mask
 717   os::Solaris::hotspot_sigmask(thread);
 718 
 719   return true;
 720 }
 721 
 722 // Helper function to trace thread attributes, similar to os::Posix::describe_pthread_attr()
 723 static char* describe_thr_create_attributes(char* buf, size_t buflen,
 724                                             size_t stacksize, long flags) {
 725   stringStream ss(buf, buflen);
 726   ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
 727   ss.print("flags: ");
 728   #define PRINT_FLAG(f) if (flags & f) ss.print( #f " ");
 729   #define ALL(X) \
 730     X(THR_SUSPENDED) \
 731     X(THR_DETACHED) \
 732     X(THR_BOUND) \
 733     X(THR_NEW_LWP) \
 734     X(THR_DAEMON)
 735   ALL(PRINT_FLAG)
 736   #undef ALL
 737   #undef PRINT_FLAG
 738   return buf;
 739 }
 740 
 741 // return default stack size for thr_type
 742 size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
 743   // default stack size when not specified by caller is 1M (2M for LP64)
 744   size_t s = (BytesPerWord >> 2) * K * K;
 745   return s;
 746 }
 747 
 748 bool os::create_thread(Thread* thread, ThreadType thr_type,
 749                        size_t req_stack_size) {
 750   // Allocate the OSThread object
 751   OSThread* osthread = new OSThread(NULL, NULL);
 752   if (osthread == NULL) {
 753     return false;
 754   }
 755 
 756   if (ThreadPriorityVerbose) {
 757     char *thrtyp;
 758     switch (thr_type) {
 759     case vm_thread:
 760       thrtyp = (char *)"vm";
 761       break;
 762     case cgc_thread:
 763       thrtyp = (char *)"cgc";
 764       break;
 765     case pgc_thread:
 766       thrtyp = (char *)"pgc";
 767       break;
 768     case java_thread:
 769       thrtyp = (char *)"java";
 770       break;
 771     case compiler_thread:
 772       thrtyp = (char *)"compiler";
 773       break;
 774     case watcher_thread:
 775       thrtyp = (char *)"watcher";
 776       break;
 777     default:
 778       thrtyp = (char *)"unknown";
 779       break;
 780     }
 781     tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
 782   }
 783 
 784   // calculate stack size if it's not specified by caller
 785   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 786 
 787   // Initial state is ALLOCATED but not INITIALIZED
 788   osthread->set_state(ALLOCATED);
 789 
 790   if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
 791     // We got lots of threads. Check if we still have some address space left.
 792     // Need to be at least 5Mb of unreserved address space. We do check by
 793     // trying to reserve some.
 794     const size_t VirtualMemoryBangSize = 20*K*K;
 795     char* mem = os::reserve_memory(VirtualMemoryBangSize);
 796     if (mem == NULL) {
 797       delete osthread;
 798       return false;
 799     } else {
 800       // Release the memory again
 801       os::release_memory(mem, VirtualMemoryBangSize);
 802     }
 803   }
 804 
 805   // Setup osthread because the child thread may need it.
 806   thread->set_osthread(osthread);
 807 
 808   // Create the Solaris thread
 809   thread_t tid = 0;
 810   long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED;
 811   int      status;
 812 
 813   // Mark that we don't have an lwp or thread id yet.
 814   // In case we attempt to set the priority before the thread starts.
 815   osthread->set_lwp_id(-1);
 816   osthread->set_thread_id(-1);
 817 
 818   status = thr_create(NULL, stack_size, thread_native_entry, thread, flags, &tid);
 819 
 820   char buf[64];
 821   if (status == 0) {
 822     log_info(os, thread)("Thread started (tid: " UINTX_FORMAT ", attributes: %s). ",
 823       (uintx) tid, describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
 824   } else {
 825     log_warning(os, thread)("Failed to start thread - thr_create failed (%s) for attributes: %s.",
 826       os::errno_name(status), describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
 827     // Log some OS information which might explain why creating the thread failed.
 828     log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
 829     LogStream st(Log(os, thread)::info());
 830     os::Posix::print_rlimit_info(&st);
 831     os::print_memory_info(&st);
 832   }
 833 
 834   if (status != 0) {
 835     thread->set_osthread(NULL);
 836     // Need to clean up stuff we've allocated so far
 837     delete osthread;
 838     return false;
 839   }
 840 
 841   Atomic::inc(&os::Solaris::_os_thread_count);
 842 
 843   // Store info on the Solaris thread into the OSThread
 844   osthread->set_thread_id(tid);
 845 
 846   // Remember that we created this thread so we can set priority on it
 847   osthread->set_vm_created();
 848 
 849   // Most thread types will set an explicit priority before starting the thread,
 850   // but for those that don't we need a valid value to read back in thread_native_entry.
 851   osthread->set_native_priority(NormPriority);
 852 
 853   // Initial thread state is INITIALIZED, not SUSPENDED
 854   osthread->set_state(INITIALIZED);
 855 
 856   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 857   return true;
 858 }
 859 
 860 debug_only(static bool signal_sets_initialized = false);
 861 static sigset_t unblocked_sigs, vm_sigs;
 862 
 863 void os::Solaris::signal_sets_init() {
 864   // Should also have an assertion stating we are still single-threaded.
 865   assert(!signal_sets_initialized, "Already initialized");
 866   // Fill in signals that are necessarily unblocked for all threads in
 867   // the VM. Currently, we unblock the following signals:
 868   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 869   //                         by -Xrs (=ReduceSignalUsage));
 870   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 871   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 872   // the dispositions or masks wrt these signals.
 873   // Programs embedding the VM that want to use the above signals for their
 874   // own purposes must, at this time, use the "-Xrs" option to prevent
 875   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 876   // (See bug 4345157, and other related bugs).
 877   // In reality, though, unblocking these signals is really a nop, since
 878   // these signals are not blocked by default.
 879   sigemptyset(&unblocked_sigs);
 880   sigaddset(&unblocked_sigs, SIGILL);
 881   sigaddset(&unblocked_sigs, SIGSEGV);
 882   sigaddset(&unblocked_sigs, SIGBUS);
 883   sigaddset(&unblocked_sigs, SIGFPE);
 884   sigaddset(&unblocked_sigs, ASYNC_SIGNAL);
 885 
 886   if (!ReduceSignalUsage) {
 887     if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 888       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 889     }
 890     if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 891       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 892     }
 893     if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 894       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 895     }
 896   }
 897   // Fill in signals that are blocked by all but the VM thread.
 898   sigemptyset(&vm_sigs);
 899   if (!ReduceSignalUsage) {
 900     sigaddset(&vm_sigs, BREAK_SIGNAL);
 901   }
 902   debug_only(signal_sets_initialized = true);
 903 
 904   // For diagnostics only used in run_periodic_checks
 905   sigemptyset(&check_signal_done);
 906 }
 907 
 908 // These are signals that are unblocked while a thread is running Java.
 909 // (For some reason, they get blocked by default.)
 910 sigset_t* os::Solaris::unblocked_signals() {
 911   assert(signal_sets_initialized, "Not initialized");
 912   return &unblocked_sigs;
 913 }
 914 
 915 // These are the signals that are blocked while a (non-VM) thread is
 916 // running Java. Only the VM thread handles these signals.
 917 sigset_t* os::Solaris::vm_signals() {
 918   assert(signal_sets_initialized, "Not initialized");
 919   return &vm_sigs;
 920 }
 921 
 922 // CR 7190089: on Solaris, primordial thread's stack needs adjusting.
 923 // Without the adjustment, stack size is incorrect if stack is set to unlimited (ulimit -s unlimited).
 924 void os::Solaris::correct_stack_boundaries_for_primordial_thread(Thread* thr) {
 925   assert(is_primordial_thread(), "Call only for primordial thread");
 926 
 927   JavaThread* jt = (JavaThread *)thr;
 928   assert(jt != NULL, "Sanity check");
 929   size_t stack_size;
 930   address base = jt->stack_base();
 931   if (Arguments::created_by_java_launcher()) {
 932     // Use 2MB to allow for Solaris 7 64 bit mode.
 933     stack_size = JavaThread::stack_size_at_create() == 0
 934       ? 2048*K : JavaThread::stack_size_at_create();
 935 
 936     // There are rare cases when we may have already used more than
 937     // the basic stack size allotment before this method is invoked.
 938     // Attempt to allow for a normally sized java_stack.
 939     size_t current_stack_offset = (size_t)(base - (address)&stack_size);
 940     stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
 941   } else {
 942     // 6269555: If we were not created by a Java launcher, i.e. if we are
 943     // running embedded in a native application, treat the primordial thread
 944     // as much like a native attached thread as possible.  This means using
 945     // the current stack size from thr_stksegment(), unless it is too large
 946     // to reliably setup guard pages.  A reasonable max size is 8MB.
 947     size_t current_size = os::current_stack_size();
 948     // This should never happen, but just in case....
 949     if (current_size == 0) current_size = 2 * K * K;
 950     stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
 951   }
 952   address bottom = align_up(base - stack_size, os::vm_page_size());;
 953   stack_size = (size_t)(base - bottom);
 954 
 955   assert(stack_size > 0, "Stack size calculation problem");
 956 
 957   if (stack_size > jt->stack_size()) {
 958 #ifndef PRODUCT
 959     struct rlimit limits;
 960     getrlimit(RLIMIT_STACK, &limits);
 961     size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
 962     assert(size >= jt->stack_size(), "Stack size problem in main thread");
 963 #endif
 964     tty->print_cr("Stack size of %d Kb exceeds current limit of %d Kb.\n"
 965                   "(Stack sizes are rounded up to a multiple of the system page size.)\n"
 966                   "See limit(1) to increase the stack size limit.",
 967                   stack_size / K, jt->stack_size() / K);
 968     vm_exit(1);
 969   }
 970   assert(jt->stack_size() >= stack_size,
 971          "Attempt to map more stack than was allocated");
 972   jt->set_stack_size(stack_size);
 973 
 974 }
 975 
 976 
 977 
 978 // Free Solaris resources related to the OSThread
 979 void os::free_thread(OSThread* osthread) {
 980   assert(osthread != NULL, "os::free_thread but osthread not set");
 981 
 982   // We are told to free resources of the argument thread,
 983   // but we can only really operate on the current thread.
 984   assert(Thread::current()->osthread() == osthread,
 985          "os::free_thread but not current thread");
 986 
 987   // Restore caller's signal mask
 988   sigset_t sigmask = osthread->caller_sigmask();
 989   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 990 
 991   delete osthread;
 992 }
 993 
 994 void os::pd_start_thread(Thread* thread) {
 995   int status = thr_continue(thread->osthread()->thread_id());
 996   assert_status(status == 0, status, "thr_continue failed");
 997 }
 998 
 999 
1000 intx os::current_thread_id() {
1001   return (intx)thr_self();
1002 }
1003 
1004 static pid_t _initial_pid = 0;
1005 
1006 int os::current_process_id() {
1007   return (int)(_initial_pid ? _initial_pid : getpid());
1008 }
1009 
1010 // gethrtime() should be monotonic according to the documentation,
1011 // but some virtualized platforms are known to break this guarantee.
1012 // getTimeNanos() must be guaranteed not to move backwards, so we
1013 // are forced to add a check here.
1014 inline hrtime_t getTimeNanos() {
1015   const hrtime_t now = gethrtime();
1016   const hrtime_t prev = max_hrtime;
1017   if (now <= prev) {
1018     return prev;   // same or retrograde time;
1019   }
1020   const hrtime_t obsv = Atomic::cmpxchg(&max_hrtime, prev, now);
1021   assert(obsv >= prev, "invariant");   // Monotonicity
1022   // If the CAS succeeded then we're done and return "now".
1023   // If the CAS failed and the observed value "obsv" is >= now then
1024   // we should return "obsv".  If the CAS failed and now > obsv > prv then
1025   // some other thread raced this thread and installed a new value, in which case
1026   // we could either (a) retry the entire operation, (b) retry trying to install now
1027   // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1028   // we might discard a higher "now" value in deference to a slightly lower but freshly
1029   // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1030   // to (a) or (b) -- and greatly reduces coherence traffic.
1031   // We might also condition (c) on the magnitude of the delta between obsv and now.
1032   // Avoiding excessive CAS operations to hot RW locations is critical.
1033   // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1034   return (prev == obsv) ? now : obsv;
1035 }
1036 
1037 // Time since start-up in seconds to a fine granularity.
1038 // Used by VMSelfDestructTimer and the MemProfiler.
1039 double os::elapsedTime() {
1040   return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1041 }
1042 
1043 jlong os::elapsed_counter() {
1044   return (jlong)(getTimeNanos() - first_hrtime);
1045 }
1046 
1047 jlong os::elapsed_frequency() {
1048   return hrtime_hz;
1049 }
1050 
1051 // Return the real, user, and system times in seconds from an
1052 // arbitrary fixed point in the past.
1053 bool os::getTimesSecs(double* process_real_time,
1054                       double* process_user_time,
1055                       double* process_system_time) {
1056   struct tms ticks;
1057   clock_t real_ticks = times(&ticks);
1058 
1059   if (real_ticks == (clock_t) (-1)) {
1060     return false;
1061   } else {
1062     double ticks_per_second = (double) clock_tics_per_sec;
1063     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1064     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1065     // For consistency return the real time from getTimeNanos()
1066     // converted to seconds.
1067     *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1068 
1069     return true;
1070   }
1071 }
1072 
1073 bool os::supports_vtime() { return true; }
1074 
1075 double os::elapsedVTime() {
1076   return (double)gethrvtime() / (double)hrtime_hz;
1077 }
1078 
1079 // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1080 jlong os::javaTimeMillis() {
1081   timeval t;
1082   if (gettimeofday(&t, NULL) == -1) {
1083     fatal("os::javaTimeMillis: gettimeofday (%s)", os::strerror(errno));
1084   }
1085   return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1086 }
1087 
1088 // Must return seconds+nanos since Jan 1 1970. This must use the same
1089 // time source as javaTimeMillis and can't use get_nsec_fromepoch as
1090 // we need better than 1ms accuracy
1091 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1092   timeval t;
1093   if (gettimeofday(&t, NULL) == -1) {
1094     fatal("os::javaTimeSystemUTC: gettimeofday (%s)", os::strerror(errno));
1095   }
1096   seconds = jlong(t.tv_sec);
1097   nanos = jlong(t.tv_usec) * 1000;
1098 }
1099 
1100 
1101 jlong os::javaTimeNanos() {
1102   return (jlong)getTimeNanos();
1103 }
1104 
1105 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1106   info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1107   info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1108   info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1109   info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1110 }
1111 
1112 char * os::local_time_string(char *buf, size_t buflen) {
1113   struct tm t;
1114   time_t long_time;
1115   time(&long_time);
1116   localtime_r(&long_time, &t);
1117   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1118                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1119                t.tm_hour, t.tm_min, t.tm_sec);
1120   return buf;
1121 }
1122 
1123 // Note: os::shutdown() might be called very early during initialization, or
1124 // called from signal handler. Before adding something to os::shutdown(), make
1125 // sure it is async-safe and can handle partially initialized VM.
1126 void os::shutdown() {
1127 
1128   // allow PerfMemory to attempt cleanup of any persistent resources
1129   perfMemory_exit();
1130 
1131   // needs to remove object in file system
1132   AttachListener::abort();
1133 
1134   // flush buffered output, finish log files
1135   ostream_abort();
1136 
1137   // Check for abort hook
1138   abort_hook_t abort_hook = Arguments::abort_hook();
1139   if (abort_hook != NULL) {
1140     abort_hook();
1141   }
1142 }
1143 
1144 // Note: os::abort() might be called very early during initialization, or
1145 // called from signal handler. Before adding something to os::abort(), make
1146 // sure it is async-safe and can handle partially initialized VM.
1147 void os::abort(bool dump_core, void* siginfo, const void* context) {
1148   os::shutdown();
1149   if (dump_core) {
1150     ::abort(); // dump core (for debugging)
1151   }
1152 
1153   ::exit(1);
1154 }
1155 
1156 // Die immediately, no exit hook, no abort hook, no cleanup.
1157 // Dump a core file, if possible, for debugging.
1158 void os::die() {
1159   if (TestUnresponsiveErrorHandler && !CreateCoredumpOnCrash) {
1160     // For TimeoutInErrorHandlingTest.java, we just kill the VM
1161     // and don't take the time to generate a core file.
1162     os::signal_raise(SIGKILL);
1163   } else {
1164     ::abort();
1165   }
1166 }
1167 
1168 // DLL functions
1169 
1170 const char* os::dll_file_extension() { return ".so"; }
1171 
1172 // This must be hard coded because it's the system's temporary
1173 // directory not the java application's temp directory, ala java.io.tmpdir.
1174 const char* os::get_temp_directory() { return "/tmp"; }
1175 
1176 // check if addr is inside libjvm.so
1177 bool os::address_is_in_vm(address addr) {
1178   static address libjvm_base_addr;
1179   Dl_info dlinfo;
1180 
1181   if (libjvm_base_addr == NULL) {
1182     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1183       libjvm_base_addr = (address)dlinfo.dli_fbase;
1184     }
1185     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1186   }
1187 
1188   if (dladdr((void *)addr, &dlinfo) != 0) {
1189     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1190   }
1191 
1192   return false;
1193 }
1194 
1195 typedef int (*dladdr1_func_type)(void *, Dl_info *, void **, int);
1196 static dladdr1_func_type dladdr1_func = NULL;
1197 
1198 bool os::dll_address_to_function_name(address addr, char *buf,
1199                                       int buflen, int * offset,
1200                                       bool demangle) {
1201   // buf is not optional, but offset is optional
1202   assert(buf != NULL, "sanity check");
1203 
1204   Dl_info dlinfo;
1205 
1206   // dladdr1_func was initialized in os::init()
1207   if (dladdr1_func != NULL) {
1208     // yes, we have dladdr1
1209 
1210     // Support for dladdr1 is checked at runtime; it may be
1211     // available even if the vm is built on a machine that does
1212     // not have dladdr1 support.  Make sure there is a value for
1213     // RTLD_DL_SYMENT.
1214 #ifndef RTLD_DL_SYMENT
1215   #define RTLD_DL_SYMENT 1
1216 #endif
1217 #ifdef _LP64
1218     Elf64_Sym * info;
1219 #else
1220     Elf32_Sym * info;
1221 #endif
1222     if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1223                      RTLD_DL_SYMENT) != 0) {
1224       // see if we have a matching symbol that covers our address
1225       if (dlinfo.dli_saddr != NULL &&
1226           (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1227         if (dlinfo.dli_sname != NULL) {
1228           if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1229             jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1230           }
1231           if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1232           return true;
1233         }
1234       }
1235       // no matching symbol so try for just file info
1236       if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1237         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1238                             buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1239           return true;
1240         }
1241       }
1242     }
1243     buf[0] = '\0';
1244     if (offset != NULL) *offset  = -1;
1245     return false;
1246   }
1247 
1248   // no, only dladdr is available
1249   if (dladdr((void *)addr, &dlinfo) != 0) {
1250     // see if we have a matching symbol
1251     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1252       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1253         jio_snprintf(buf, buflen, dlinfo.dli_sname);
1254       }
1255       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1256       return true;
1257     }
1258     // no matching symbol so try for just file info
1259     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1260       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1261                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1262         return true;
1263       }
1264     }
1265   }
1266   buf[0] = '\0';
1267   if (offset != NULL) *offset  = -1;
1268   return false;
1269 }
1270 
1271 bool os::dll_address_to_library_name(address addr, char* buf,
1272                                      int buflen, int* offset) {
1273   // buf is not optional, but offset is optional
1274   assert(buf != NULL, "sanity check");
1275 
1276   Dl_info dlinfo;
1277 
1278   if (dladdr((void*)addr, &dlinfo) != 0) {
1279     if (dlinfo.dli_fname != NULL) {
1280       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1281     }
1282     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1283       *offset = addr - (address)dlinfo.dli_fbase;
1284     }
1285     return true;
1286   }
1287 
1288   buf[0] = '\0';
1289   if (offset) *offset = -1;
1290   return false;
1291 }
1292 
1293 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1294   Dl_info dli;
1295   // Sanity check?
1296   if (dladdr(CAST_FROM_FN_PTR(void *, os::get_loaded_modules_info), &dli) == 0 ||
1297       dli.dli_fname == NULL) {
1298     return 1;
1299   }
1300 
1301   void * handle = dlopen(dli.dli_fname, RTLD_LAZY);
1302   if (handle == NULL) {
1303     return 1;
1304   }
1305 
1306   Link_map *map;
1307   dlinfo(handle, RTLD_DI_LINKMAP, &map);
1308   if (map == NULL) {
1309     dlclose(handle);
1310     return 1;
1311   }
1312 
1313   while (map->l_prev != NULL) {
1314     map = map->l_prev;
1315   }
1316 
1317   while (map != NULL) {
1318     // Iterate through all map entries and call callback with fields of interest
1319     if(callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1320       dlclose(handle);
1321       return 1;
1322     }
1323     map = map->l_next;
1324   }
1325 
1326   dlclose(handle);
1327   return 0;
1328 }
1329 
1330 int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1331   outputStream * out = (outputStream *) param;
1332   out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1333   return 0;
1334 }
1335 
1336 void os::print_dll_info(outputStream * st) {
1337   st->print_cr("Dynamic libraries:"); st->flush();
1338   if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1339     st->print_cr("Error: Cannot print dynamic libraries.");
1340   }
1341 }
1342 
1343 static void change_endianness(Elf32_Half& val) {
1344   unsigned char *ptr = (unsigned char *)&val;
1345   unsigned char swp = ptr[0];
1346   ptr[0] = ptr[1];
1347   ptr[1] = swp;
1348 }
1349 
1350 // Loads .dll/.so and
1351 // in case of error it checks if .dll/.so was built for the
1352 // same architecture as Hotspot is running on
1353 
1354 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1355   log_info(os)("attempting shared library load of %s", filename);
1356 
1357   void * result= ::dlopen(filename, RTLD_LAZY);
1358   if (result != NULL) {
1359     // Successful loading
1360     Events::log(NULL, "Loaded shared library %s", filename);
1361     log_info(os)("shared library load of %s was successful", filename);
1362     return result;
1363   }
1364 
1365   Elf32_Ehdr elf_head;
1366   const char* error_report = ::dlerror();
1367   if (error_report == NULL) {
1368     error_report = "dlerror returned no error description";
1369   }
1370   if (ebuf != NULL && ebuflen > 0) {
1371     ::strncpy(ebuf, error_report, ebuflen-1);
1372     ebuf[ebuflen-1]='\0';
1373   }
1374 
1375   Events::log(NULL, "Loading shared library %s failed, %s", filename, error_report);
1376   log_info(os)("shared library load of %s failed, %s", filename, error_report);
1377 
1378   int diag_msg_max_length=ebuflen-strlen(ebuf);
1379   char* diag_msg_buf=ebuf+strlen(ebuf);
1380 
1381   if (diag_msg_max_length==0) {
1382     // No more space in ebuf for additional diagnostics message
1383     return NULL;
1384   }
1385 
1386 
1387   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1388 
1389   if (file_descriptor < 0) {
1390     // Can't open library, report dlerror() message
1391     return NULL;
1392   }
1393 
1394   bool failed_to_read_elf_head=
1395     (sizeof(elf_head)!=
1396      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1397 
1398   ::close(file_descriptor);
1399   if (failed_to_read_elf_head) {
1400     // file i/o error - report dlerror() msg
1401     return NULL;
1402   }
1403 
1404   if (elf_head.e_ident[EI_DATA] != LITTLE_ENDIAN_ONLY(ELFDATA2LSB) BIG_ENDIAN_ONLY(ELFDATA2MSB)) {
1405     // handle invalid/out of range endianness values
1406     if (elf_head.e_ident[EI_DATA] == 0 || elf_head.e_ident[EI_DATA] > 2) {
1407       return NULL;
1408     }
1409     change_endianness(elf_head.e_machine);
1410   }
1411 
1412   typedef struct {
1413     Elf32_Half    code;         // Actual value as defined in elf.h
1414     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1415     unsigned char elf_class;    // 32 or 64 bit
1416     unsigned char endianess;    // MSB or LSB
1417     char*         name;         // String representation
1418   } arch_t;
1419 
1420 #ifndef EM_AARCH64
1421   #define EM_AARCH64    183               /* ARM AARCH64 */
1422 #endif
1423 
1424   static const arch_t arch_array[]={
1425     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1426     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1427     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1428     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1429     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1430     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1431     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1432     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1433     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1434     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM"},
1435     // we only support 64 bit z architecture
1436     {EM_S390,        EM_S390,    ELFCLASS64, ELFDATA2MSB, (char*)"IBM System/390"},
1437     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"}
1438   };
1439 
1440 #if  (defined IA32)
1441   static  Elf32_Half running_arch_code=EM_386;
1442 #elif   (defined AMD64)
1443   static  Elf32_Half running_arch_code=EM_X86_64;
1444 #elif  (defined IA64)
1445   static  Elf32_Half running_arch_code=EM_IA_64;
1446 #elif  (defined __sparc) && (defined _LP64)
1447   static  Elf32_Half running_arch_code=EM_SPARCV9;
1448 #elif  (defined __sparc) && (!defined _LP64)
1449   static  Elf32_Half running_arch_code=EM_SPARC;
1450 #elif  (defined __powerpc64__)
1451   static  Elf32_Half running_arch_code=EM_PPC64;
1452 #elif  (defined __powerpc__)
1453   static  Elf32_Half running_arch_code=EM_PPC;
1454 #elif (defined ARM)
1455   static  Elf32_Half running_arch_code=EM_ARM;
1456 #else
1457   #error Method os::dll_load requires that one of following is defined:\
1458        IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
1459 #endif
1460 
1461   // Identify compatibility class for VM's architecture and library's architecture
1462   // Obtain string descriptions for architectures
1463 
1464   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1465   int running_arch_index=-1;
1466 
1467   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1468     if (running_arch_code == arch_array[i].code) {
1469       running_arch_index    = i;
1470     }
1471     if (lib_arch.code == arch_array[i].code) {
1472       lib_arch.compat_class = arch_array[i].compat_class;
1473       lib_arch.name         = arch_array[i].name;
1474     }
1475   }
1476 
1477   assert(running_arch_index != -1,
1478          "Didn't find running architecture code (running_arch_code) in arch_array");
1479   if (running_arch_index == -1) {
1480     // Even though running architecture detection failed
1481     // we may still continue with reporting dlerror() message
1482     return NULL;
1483   }
1484 
1485   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1486     if (lib_arch.name != NULL) {
1487       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1488                  " (Possible cause: can't load %s .so on a %s platform)",
1489                  lib_arch.name, arch_array[running_arch_index].name);
1490     } else {
1491       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1492                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s platform)",
1493                  lib_arch.code, arch_array[running_arch_index].name);
1494     }
1495     return NULL;
1496   }
1497 
1498   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1499     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1500     return NULL;
1501   }
1502 
1503   // ELF file class/capacity : 0 - invalid, 1 - 32bit, 2 - 64bit
1504   if (lib_arch.elf_class > 2 || lib_arch.elf_class < 1) {
1505     ::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: invalid ELF file class)");
1506     return NULL;
1507   }
1508 
1509   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1510     ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1511                " (Possible cause: architecture word width mismatch, can't load %d-bit .so on a %d-bit platform)",
1512                (int) lib_arch.elf_class * 32, arch_array[running_arch_index].elf_class * 32);
1513     return NULL;
1514   }
1515 
1516   return NULL;
1517 }
1518 
1519 void* os::dll_lookup(void* handle, const char* name) {
1520   return dlsym(handle, name);
1521 }
1522 
1523 void* os::get_default_process_handle() {
1524   return (void*)::dlopen(NULL, RTLD_LAZY);
1525 }
1526 
1527 static inline time_t get_mtime(const char* filename) {
1528   struct stat st;
1529   int ret = os::stat(filename, &st);
1530   assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
1531   return st.st_mtime;
1532 }
1533 
1534 int os::compare_file_modified_times(const char* file1, const char* file2) {
1535   time_t t1 = get_mtime(file1);
1536   time_t t2 = get_mtime(file2);
1537   return t1 - t2;
1538 }
1539 
1540 static bool _print_ascii_file(const char* filename, outputStream* st) {
1541   int fd = ::open(filename, O_RDONLY);
1542   if (fd == -1) {
1543     return false;
1544   }
1545 
1546   char buf[32];
1547   int bytes;
1548   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1549     st->print_raw(buf, bytes);
1550   }
1551 
1552   ::close(fd);
1553 
1554   return true;
1555 }
1556 
1557 void os::print_os_info_brief(outputStream* st) {
1558   os::Solaris::print_distro_info(st);
1559 
1560   os::Posix::print_uname_info(st);
1561 
1562   os::Solaris::print_libversion_info(st);
1563 }
1564 
1565 void os::print_os_info(outputStream* st) {
1566   st->print("OS:");
1567 
1568   os::Solaris::print_distro_info(st);
1569 
1570   os::Posix::print_uname_info(st);
1571 
1572   os::Posix::print_uptime_info(st);
1573 
1574   os::Solaris::print_libversion_info(st);
1575 
1576   os::Posix::print_rlimit_info(st);
1577 
1578   os::Posix::print_load_average(st);
1579 }
1580 
1581 void os::Solaris::print_distro_info(outputStream* st) {
1582   if (!_print_ascii_file("/etc/release", st)) {
1583     st->print("Solaris");
1584   }
1585   st->cr();
1586 }
1587 
1588 void os::get_summary_os_info(char* buf, size_t buflen) {
1589   strncpy(buf, "Solaris", buflen);  // default to plain solaris
1590   FILE* fp = fopen("/etc/release", "r");
1591   if (fp != NULL) {
1592     char tmp[256];
1593     // Only get the first line and chop out everything but the os name.
1594     if (fgets(tmp, sizeof(tmp), fp)) {
1595       char* ptr = tmp;
1596       // skip past whitespace characters
1597       while (*ptr != '\0' && (*ptr == ' ' || *ptr == '\t' || *ptr == '\n')) ptr++;
1598       if (*ptr != '\0') {
1599         char* nl = strchr(ptr, '\n');
1600         if (nl != NULL) *nl = '\0';
1601         strncpy(buf, ptr, buflen);
1602       }
1603     }
1604     fclose(fp);
1605   }
1606 }
1607 
1608 void os::Solaris::print_libversion_info(outputStream* st) {
1609   st->print("  (T2 libthread)");
1610   st->cr();
1611 }
1612 
1613 static bool check_addr0(outputStream* st) {
1614   jboolean status = false;
1615   const int read_chunk = 200;
1616   int ret = 0;
1617   int nmap = 0;
1618   int fd = ::open("/proc/self/map",O_RDONLY);
1619   if (fd >= 0) {
1620     prmap_t *p = NULL;
1621     char *mbuff = (char *) calloc(read_chunk, sizeof(prmap_t));
1622     if (NULL == mbuff) {
1623       ::close(fd);
1624       return status;
1625     }
1626     while ((ret = ::read(fd, mbuff, read_chunk*sizeof(prmap_t))) > 0) {
1627       //check if read() has not read partial data
1628       if( 0 != ret % sizeof(prmap_t)){
1629         break;
1630       }
1631       nmap = ret / sizeof(prmap_t);
1632       p = (prmap_t *)mbuff;
1633       for(int i = 0; i < nmap; i++){
1634         if (p->pr_vaddr == 0x0) {
1635           st->print("Warning: Address: " PTR_FORMAT ", Size: " SIZE_FORMAT "K, ",p->pr_vaddr, p->pr_size/1024);
1636           st->print("Mapped file: %s, ", p->pr_mapname[0] == '\0' ? "None" : p->pr_mapname);
1637           st->print("Access: ");
1638           st->print("%s",(p->pr_mflags & MA_READ)  ? "r" : "-");
1639           st->print("%s",(p->pr_mflags & MA_WRITE) ? "w" : "-");
1640           st->print("%s",(p->pr_mflags & MA_EXEC)  ? "x" : "-");
1641           st->cr();
1642           status = true;
1643         }
1644         p++;
1645       }
1646     }
1647     free(mbuff);
1648     ::close(fd);
1649   }
1650   return status;
1651 }
1652 
1653 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1654   // Get MHz with system call. We don't seem to already have this.
1655   processor_info_t stats;
1656   processorid_t id = getcpuid();
1657   int clock = 0;
1658   if (processor_info(id, &stats) != -1) {
1659     clock = stats.pi_clock;  // pi_processor_type isn't more informative than below
1660   }
1661 #ifdef AMD64
1662   snprintf(buf, buflen, "x86 64 bit %d MHz", clock);
1663 #else
1664   // must be sparc
1665   snprintf(buf, buflen, "Sparcv9 64 bit %d MHz", clock);
1666 #endif
1667 }
1668 
1669 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1670   // Nothing to do for now.
1671 }
1672 
1673 void os::print_memory_info(outputStream* st) {
1674   st->print("Memory:");
1675   st->print(" %dk page", os::vm_page_size()>>10);
1676   st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
1677   st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
1678   st->cr();
1679   (void) check_addr0(st);
1680 }
1681 
1682 // Moved from whole group, because we need them here for diagnostic
1683 // prints.
1684 static int Maxsignum = 0;
1685 static int *ourSigFlags = NULL;
1686 
1687 int os::Solaris::get_our_sigflags(int sig) {
1688   assert(ourSigFlags!=NULL, "signal data structure not initialized");
1689   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1690   return ourSigFlags[sig];
1691 }
1692 
1693 void os::Solaris::set_our_sigflags(int sig, int flags) {
1694   assert(ourSigFlags!=NULL, "signal data structure not initialized");
1695   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1696   ourSigFlags[sig] = flags;
1697 }
1698 
1699 
1700 static const char* get_signal_handler_name(address handler,
1701                                            char* buf, int buflen) {
1702   int offset;
1703   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
1704   if (found) {
1705     // skip directory names
1706     const char *p1, *p2;
1707     p1 = buf;
1708     size_t len = strlen(os::file_separator());
1709     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
1710     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
1711   } else {
1712     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
1713   }
1714   return buf;
1715 }
1716 
1717 static void print_signal_handler(outputStream* st, int sig,
1718                                  char* buf, size_t buflen) {
1719   struct sigaction sa;
1720 
1721   sigaction(sig, NULL, &sa);
1722 
1723   st->print("%s: ", os::exception_name(sig, buf, buflen));
1724 
1725   address handler = (sa.sa_flags & SA_SIGINFO)
1726                   ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
1727                   : CAST_FROM_FN_PTR(address, sa.sa_handler);
1728 
1729   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
1730     st->print("SIG_DFL");
1731   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
1732     st->print("SIG_IGN");
1733   } else {
1734     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
1735   }
1736 
1737   st->print(", sa_mask[0]=");
1738   os::Posix::print_signal_set_short(st, &sa.sa_mask);
1739 
1740   address rh = VMError::get_resetted_sighandler(sig);
1741   // May be, handler was resetted by VMError?
1742   if (rh != NULL) {
1743     handler = rh;
1744     sa.sa_flags = VMError::get_resetted_sigflags(sig);
1745   }
1746 
1747   st->print(", sa_flags=");
1748   os::Posix::print_sa_flags(st, sa.sa_flags);
1749 
1750   // Check: is it our handler?
1751   if (handler == CAST_FROM_FN_PTR(address, signalHandler)) {
1752     // It is our signal handler
1753     // check for flags
1754     if (sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
1755       st->print(
1756                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
1757                 os::Solaris::get_our_sigflags(sig));
1758     }
1759   }
1760   st->cr();
1761 }
1762 
1763 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1764   st->print_cr("Signal Handlers:");
1765   print_signal_handler(st, SIGSEGV, buf, buflen);
1766   print_signal_handler(st, SIGBUS , buf, buflen);
1767   print_signal_handler(st, SIGFPE , buf, buflen);
1768   print_signal_handler(st, SIGPIPE, buf, buflen);
1769   print_signal_handler(st, SIGXFSZ, buf, buflen);
1770   print_signal_handler(st, SIGILL , buf, buflen);
1771   print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
1772   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1773   print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
1774   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1775   print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
1776 }
1777 
1778 static char saved_jvm_path[MAXPATHLEN] = { 0 };
1779 
1780 // Find the full path to the current module, libjvm.so
1781 void os::jvm_path(char *buf, jint buflen) {
1782   // Error checking.
1783   if (buflen < MAXPATHLEN) {
1784     assert(false, "must use a large-enough buffer");
1785     buf[0] = '\0';
1786     return;
1787   }
1788   // Lazy resolve the path to current module.
1789   if (saved_jvm_path[0] != 0) {
1790     strcpy(buf, saved_jvm_path);
1791     return;
1792   }
1793 
1794   Dl_info dlinfo;
1795   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
1796   assert(ret != 0, "cannot locate libjvm");
1797   if (ret != 0 && dlinfo.dli_fname != NULL) {
1798     if (os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen) == NULL) {
1799       return;
1800     }
1801   } else {
1802     buf[0] = '\0';
1803     return;
1804   }
1805 
1806   if (Arguments::sun_java_launcher_is_altjvm()) {
1807     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1808     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
1809     // If "/jre/lib/" appears at the right place in the string, then
1810     // assume we are installed in a JDK and we're done.  Otherwise, check
1811     // for a JAVA_HOME environment variable and fix up the path so it
1812     // looks like libjvm.so is installed there (append a fake suffix
1813     // hotspot/libjvm.so).
1814     const char *p = buf + strlen(buf) - 1;
1815     for (int count = 0; p > buf && count < 5; ++count) {
1816       for (--p; p > buf && *p != '/'; --p)
1817         /* empty */ ;
1818     }
1819 
1820     if (strncmp(p, "/jre/lib/", 9) != 0) {
1821       // Look for JAVA_HOME in the environment.
1822       char* java_home_var = ::getenv("JAVA_HOME");
1823       if (java_home_var != NULL && java_home_var[0] != 0) {
1824         char* jrelib_p;
1825         int   len;
1826 
1827         // Check the current module name "libjvm.so".
1828         p = strrchr(buf, '/');
1829         assert(strstr(p, "/libjvm") == p, "invalid library name");
1830 
1831         if (os::Posix::realpath(java_home_var, buf, buflen) == NULL) {
1832           return;
1833         }
1834         // determine if this is a legacy image or modules image
1835         // modules image doesn't have "jre" subdirectory
1836         len = strlen(buf);
1837         assert(len < buflen, "Ran out of buffer space");
1838         jrelib_p = buf + len;
1839         snprintf(jrelib_p, buflen-len, "/jre/lib");
1840         if (0 != access(buf, F_OK)) {
1841           snprintf(jrelib_p, buflen-len, "/lib");
1842         }
1843 
1844         if (0 == access(buf, F_OK)) {
1845           // Use current module name "libjvm.so"
1846           len = strlen(buf);
1847           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
1848         } else {
1849           // Go back to path of .so
1850           if (os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen) == NULL) {
1851             return;
1852           }
1853         }
1854       }
1855     }
1856   }
1857 
1858   strncpy(saved_jvm_path, buf, MAXPATHLEN);
1859   saved_jvm_path[MAXPATHLEN - 1] = '\0';
1860 }
1861 
1862 
1863 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1864   // no prefix required, not even "_"
1865 }
1866 
1867 
1868 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1869   // no suffix required
1870 }
1871 
1872 // sun.misc.Signal
1873 
1874 extern "C" {
1875   static void UserHandler(int sig, void *siginfo, void *context) {
1876     // Ctrl-C is pressed during error reporting, likely because the error
1877     // handler fails to abort. Let VM die immediately.
1878     if (sig == SIGINT && VMError::is_error_reported()) {
1879       os::die();
1880     }
1881 
1882     os::signal_notify(sig);
1883     // We do not need to reinstate the signal handler each time...
1884   }
1885 }
1886 
1887 void* os::user_handler() {
1888   return CAST_FROM_FN_PTR(void*, UserHandler);
1889 }
1890 
1891 extern "C" {
1892   typedef void (*sa_handler_t)(int);
1893   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1894 }
1895 
1896 void* os::signal(int signal_number, void* handler) {
1897   struct sigaction sigAct, oldSigAct;
1898   sigfillset(&(sigAct.sa_mask));
1899   sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
1900   sigAct.sa_flags |= SA_SIGINFO;
1901   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1902 
1903   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1904     // -1 means registration failed
1905     return (void *)-1;
1906   }
1907 
1908   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1909 }
1910 
1911 void os::signal_raise(int signal_number) {
1912   raise(signal_number);
1913 }
1914 
1915 // The following code is moved from os.cpp for making this
1916 // code platform specific, which it is by its very nature.
1917 
1918 // a counter for each possible signal value
1919 static int Sigexit = 0;
1920 static jint *pending_signals = NULL;
1921 static int *preinstalled_sigs = NULL;
1922 static struct sigaction *chainedsigactions = NULL;
1923 static Semaphore* sig_sem = NULL;
1924 
1925 int os::sigexitnum_pd() {
1926   assert(Sigexit > 0, "signal memory not yet initialized");
1927   return Sigexit;
1928 }
1929 
1930 void os::Solaris::init_signal_mem() {
1931   // Initialize signal structures
1932   Maxsignum = SIGRTMAX;
1933   Sigexit = Maxsignum+1;
1934   assert(Maxsignum >0, "Unable to obtain max signal number");
1935 
1936   // Initialize signal structures
1937   // pending_signals has one int per signal
1938   // The additional signal is for SIGEXIT - exit signal to signal_thread
1939   pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
1940   memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
1941 
1942   if (UseSignalChaining) {
1943     chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
1944                                                    * (Maxsignum + 1), mtInternal);
1945     memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
1946     preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
1947     memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
1948   }
1949   ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
1950   memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
1951 }
1952 
1953 static void jdk_misc_signal_init() {
1954   // Initialize signal semaphore
1955   sig_sem = new Semaphore();
1956 }
1957 
1958 void os::signal_notify(int sig) {
1959   if (sig_sem != NULL) {
1960     Atomic::inc(&pending_signals[sig]);
1961     sig_sem->signal();
1962   } else {
1963     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
1964     // initialization isn't called.
1965     assert(ReduceSignalUsage, "signal semaphore should be created");
1966   }
1967 }
1968 
1969 static int check_pending_signals() {
1970   int ret;
1971   while (true) {
1972     for (int i = 0; i < Sigexit + 1; i++) {
1973       jint n = pending_signals[i];
1974       if (n > 0 && n == Atomic::cmpxchg(&pending_signals[i], n, n - 1)) {
1975         return i;
1976       }
1977     }
1978     JavaThread *thread = JavaThread::current();
1979     ThreadBlockInVM tbivm(thread);
1980 
1981     bool threadIsSuspended;
1982     do {
1983       thread->set_suspend_equivalent();
1984       sig_sem->wait();
1985 
1986       // were we externally suspended while we were waiting?
1987       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1988       if (threadIsSuspended) {
1989         // The semaphore has been incremented, but while we were waiting
1990         // another thread suspended us. We don't want to continue running
1991         // while suspended because that would surprise the thread that
1992         // suspended us.
1993         sig_sem->signal();
1994 
1995         thread->java_suspend_self();
1996       }
1997     } while (threadIsSuspended);
1998   }
1999 }
2000 
2001 int os::signal_wait() {
2002   return check_pending_signals();
2003 }
2004 
2005 ////////////////////////////////////////////////////////////////////////////////
2006 // Virtual Memory
2007 
2008 static int page_size = -1;
2009 
2010 int os::vm_page_size() {
2011   assert(page_size != -1, "must call os::init");
2012   return page_size;
2013 }
2014 
2015 // Solaris allocates memory by pages.
2016 int os::vm_allocation_granularity() {
2017   assert(page_size != -1, "must call os::init");
2018   return page_size;
2019 }
2020 
2021 static bool recoverable_mmap_error(int err) {
2022   // See if the error is one we can let the caller handle. This
2023   // list of errno values comes from the Solaris mmap(2) man page.
2024   switch (err) {
2025   case EBADF:
2026   case EINVAL:
2027   case ENOTSUP:
2028     // let the caller deal with these errors
2029     return true;
2030 
2031   default:
2032     // Any remaining errors on this OS can cause our reserved mapping
2033     // to be lost. That can cause confusion where different data
2034     // structures think they have the same memory mapped. The worst
2035     // scenario is if both the VM and a library think they have the
2036     // same memory mapped.
2037     return false;
2038   }
2039 }
2040 
2041 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
2042                                     int err) {
2043   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2044           ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
2045           os::strerror(err), err);
2046 }
2047 
2048 static void warn_fail_commit_memory(char* addr, size_t bytes,
2049                                     size_t alignment_hint, bool exec,
2050                                     int err) {
2051   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2052           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
2053           alignment_hint, exec, os::strerror(err), err);
2054 }
2055 
2056 int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
2057   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2058   size_t size = bytes;
2059   char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2060   if (res != NULL) {
2061     if (UseNUMAInterleaving) {
2062         numa_make_global(addr, bytes);
2063     }
2064     return 0;
2065   }
2066 
2067   int err = errno;  // save errno from mmap() call in mmap_chunk()
2068 
2069   if (!recoverable_mmap_error(err)) {
2070     warn_fail_commit_memory(addr, bytes, exec, err);
2071     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
2072   }
2073 
2074   return err;
2075 }
2076 
2077 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2078   return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
2079 }
2080 
2081 void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
2082                                   const char* mesg) {
2083   assert(mesg != NULL, "mesg must be specified");
2084   int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
2085   if (err != 0) {
2086     // the caller wants all commit errors to exit with the specified mesg:
2087     warn_fail_commit_memory(addr, bytes, exec, err);
2088     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2089   }
2090 }
2091 
2092 size_t os::Solaris::page_size_for_alignment(size_t alignment) {
2093   assert(is_aligned(alignment, (size_t) vm_page_size()),
2094          SIZE_FORMAT " is not aligned to " SIZE_FORMAT,
2095          alignment, (size_t) vm_page_size());
2096 
2097   for (int i = 0; _page_sizes[i] != 0; i++) {
2098     if (is_aligned(alignment, _page_sizes[i])) {
2099       return _page_sizes[i];
2100     }
2101   }
2102 
2103   return (size_t) vm_page_size();
2104 }
2105 
2106 int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
2107                                     size_t alignment_hint, bool exec) {
2108   int err = Solaris::commit_memory_impl(addr, bytes, exec);
2109   if (err == 0 && UseLargePages && alignment_hint > 0) {
2110     assert(is_aligned(bytes, alignment_hint),
2111            SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, alignment_hint);
2112 
2113     // The syscall memcntl requires an exact page size (see man memcntl for details).
2114     size_t page_size = page_size_for_alignment(alignment_hint);
2115     if (page_size > (size_t) vm_page_size()) {
2116       (void)Solaris::setup_large_pages(addr, bytes, page_size);
2117     }
2118   }
2119   return err;
2120 }
2121 
2122 bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2123                           bool exec) {
2124   return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
2125 }
2126 
2127 void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
2128                                   size_t alignment_hint, bool exec,
2129                                   const char* mesg) {
2130   assert(mesg != NULL, "mesg must be specified");
2131   int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
2132   if (err != 0) {
2133     // the caller wants all commit errors to exit with the specified mesg:
2134     warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
2135     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2136   }
2137 }
2138 
2139 // Uncommit the pages in a specified region.
2140 void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2141   if (madvise(addr, bytes, MADV_FREE) < 0) {
2142     debug_only(warning("MADV_FREE failed."));
2143     return;
2144   }
2145 }
2146 
2147 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2148   return os::commit_memory(addr, size, !ExecMem);
2149 }
2150 
2151 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2152   return os::uncommit_memory(addr, size);
2153 }
2154 
2155 // Change the page size in a given range.
2156 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2157   assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2158   assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2159   if (UseLargePages) {
2160     size_t page_size = Solaris::page_size_for_alignment(alignment_hint);
2161     if (page_size > (size_t) vm_page_size()) {
2162       Solaris::setup_large_pages(addr, bytes, page_size);
2163     }
2164   }
2165 }
2166 
2167 // Tell the OS to make the range local to the first-touching LWP
2168 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2169   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2170   if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2171     debug_only(warning("MADV_ACCESS_LWP failed."));
2172   }
2173 }
2174 
2175 // Tell the OS that this range would be accessed from different LWPs.
2176 void os::numa_make_global(char *addr, size_t bytes) {
2177   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2178   if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2179     debug_only(warning("MADV_ACCESS_MANY failed."));
2180   }
2181 }
2182 
2183 // Get the number of the locality groups.
2184 size_t os::numa_get_groups_num() {
2185   size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2186   return n != -1 ? n : 1;
2187 }
2188 
2189 // Get a list of leaf locality groups. A leaf lgroup is group that
2190 // doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2191 // board. An LWP is assigned to one of these groups upon creation.
2192 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2193   if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2194     ids[0] = 0;
2195     return 1;
2196   }
2197   int result_size = 0, top = 1, bottom = 0, cur = 0;
2198   for (int k = 0; k < size; k++) {
2199     int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2200                                    (Solaris::lgrp_id_t*)&ids[top], size - top);
2201     if (r == -1) {
2202       ids[0] = 0;
2203       return 1;
2204     }
2205     if (!r) {
2206       // That's a leaf node.
2207       assert(bottom <= cur, "Sanity check");
2208       // Check if the node has memory
2209       if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2210                                   NULL, 0, LGRP_RSRC_MEM) > 0) {
2211         ids[bottom++] = ids[cur];
2212       }
2213     }
2214     top += r;
2215     cur++;
2216   }
2217   if (bottom == 0) {
2218     // Handle a situation, when the OS reports no memory available.
2219     // Assume UMA architecture.
2220     ids[0] = 0;
2221     return 1;
2222   }
2223   return bottom;
2224 }
2225 
2226 // Detect the topology change. Typically happens during CPU plugging-unplugging.
2227 bool os::numa_topology_changed() {
2228   int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2229   if (is_stale != -1 && is_stale) {
2230     Solaris::lgrp_fini(Solaris::lgrp_cookie());
2231     Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2232     assert(c != 0, "Failure to initialize LGRP API");
2233     Solaris::set_lgrp_cookie(c);
2234     return true;
2235   }
2236   return false;
2237 }
2238 
2239 // Get the group id of the current LWP.
2240 int os::numa_get_group_id() {
2241   int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2242   if (lgrp_id == -1) {
2243     return 0;
2244   }
2245   const int size = os::numa_get_groups_num();
2246   int *ids = (int*)alloca(size * sizeof(int));
2247 
2248   // Get the ids of all lgroups with memory; r is the count.
2249   int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2250                                   (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2251   if (r <= 0) {
2252     return 0;
2253   }
2254   return ids[os::random() % r];
2255 }
2256 
2257 int os::numa_get_group_id_for_address(const void* address) {
2258   return 0;
2259 }
2260 
2261 // Request information about the page.
2262 bool os::get_page_info(char *start, page_info* info) {
2263   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2264   uint64_t addr = (uintptr_t)start;
2265   uint64_t outdata[2];
2266   uint_t validity = 0;
2267 
2268   if (meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2269     return false;
2270   }
2271 
2272   info->size = 0;
2273   info->lgrp_id = -1;
2274 
2275   if ((validity & 1) != 0) {
2276     if ((validity & 2) != 0) {
2277       info->lgrp_id = outdata[0];
2278     }
2279     if ((validity & 4) != 0) {
2280       info->size = outdata[1];
2281     }
2282     return true;
2283   }
2284   return false;
2285 }
2286 
2287 // Scan the pages from start to end until a page different than
2288 // the one described in the info parameter is encountered.
2289 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2290                      page_info* page_found) {
2291   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2292   const size_t types = sizeof(info_types) / sizeof(info_types[0]);
2293   uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT + 1];
2294   uint_t validity[MAX_MEMINFO_CNT];
2295 
2296   size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
2297   uint64_t p = (uint64_t)start;
2298   while (p < (uint64_t)end) {
2299     addrs[0] = p;
2300     size_t addrs_count = 1;
2301     while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
2302       addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
2303       addrs_count++;
2304     }
2305 
2306     if (meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
2307       return NULL;
2308     }
2309 
2310     size_t i = 0;
2311     for (; i < addrs_count; i++) {
2312       if ((validity[i] & 1) != 0) {
2313         if ((validity[i] & 4) != 0) {
2314           if (outdata[types * i + 1] != page_expected->size) {
2315             break;
2316           }
2317         } else if (page_expected->size != 0) {
2318           break;
2319         }
2320 
2321         if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
2322           if (outdata[types * i] != page_expected->lgrp_id) {
2323             break;
2324           }
2325         }
2326       } else {
2327         return NULL;
2328       }
2329     }
2330 
2331     if (i < addrs_count) {
2332       if ((validity[i] & 2) != 0) {
2333         page_found->lgrp_id = outdata[types * i];
2334       } else {
2335         page_found->lgrp_id = -1;
2336       }
2337       if ((validity[i] & 4) != 0) {
2338         page_found->size = outdata[types * i + 1];
2339       } else {
2340         page_found->size = 0;
2341       }
2342       return (char*)addrs[i];
2343     }
2344 
2345     p = addrs[addrs_count - 1] + page_size;
2346   }
2347   return end;
2348 }
2349 
2350 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
2351   size_t size = bytes;
2352   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2353   // uncommitted page. Otherwise, the read/write might succeed if we
2354   // have enough swap space to back the physical page.
2355   return
2356     NULL != Solaris::mmap_chunk(addr, size,
2357                                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
2358                                 PROT_NONE);
2359 }
2360 
2361 char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
2362   char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
2363 
2364   if (b == MAP_FAILED) {
2365     return NULL;
2366   }
2367   return b;
2368 }
2369 
2370 char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes,
2371                              size_t alignment_hint, bool fixed) {
2372   char* addr = requested_addr;
2373   int flags = MAP_PRIVATE | MAP_NORESERVE;
2374 
2375   assert(!(fixed && (alignment_hint > 0)),
2376          "alignment hint meaningless with fixed mmap");
2377 
2378   if (fixed) {
2379     flags |= MAP_FIXED;
2380   } else if (alignment_hint > (size_t) vm_page_size()) {
2381     flags |= MAP_ALIGN;
2382     addr = (char*) alignment_hint;
2383   }
2384 
2385   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2386   // uncommitted page. Otherwise, the read/write might succeed if we
2387   // have enough swap space to back the physical page.
2388   return mmap_chunk(addr, bytes, flags, PROT_NONE);
2389 }
2390 
2391 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2392                             size_t alignment_hint) {
2393   char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint,
2394                                   (requested_addr != NULL));
2395 
2396   guarantee(requested_addr == NULL || requested_addr == addr,
2397             "OS failed to return requested mmap address.");
2398   return addr;
2399 }
2400 
2401 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
2402   assert(file_desc >= 0, "file_desc is not valid");
2403   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
2404   if (result != NULL) {
2405     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
2406       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
2407     }
2408   }
2409   return result;
2410 }
2411 
2412 // Reserve memory at an arbitrary address, only if that area is
2413 // available (and not reserved for something else).
2414 
2415 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2416   // Assert only that the size is a multiple of the page size, since
2417   // that's all that mmap requires, and since that's all we really know
2418   // about at this low abstraction level.  If we need higher alignment,
2419   // we can either pass an alignment to this method or verify alignment
2420   // in one of the methods further up the call chain.  See bug 5044738.
2421   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2422 
2423   // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
2424   char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
2425 
2426   volatile int err = errno;
2427   if (addr == requested_addr) {
2428     return addr;
2429   }
2430 
2431   if (addr != NULL) {
2432     pd_unmap_memory(addr, bytes);
2433   }
2434 
2435   return NULL;
2436 }
2437 
2438 bool os::pd_release_memory(char* addr, size_t bytes) {
2439   size_t size = bytes;
2440   return munmap(addr, size) == 0;
2441 }
2442 
2443 static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
2444   assert(addr == (char*)align_down((uintptr_t)addr, os::vm_page_size()),
2445          "addr must be page aligned");
2446   Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x", p2i(addr), p2i(addr+bytes), prot);
2447   int retVal = mprotect(addr, bytes, prot);
2448   return retVal == 0;
2449 }
2450 
2451 // Protect memory (Used to pass readonly pages through
2452 // JNI GetArray<type>Elements with empty arrays.)
2453 // Also, used for serialization page and for compressed oops null pointer
2454 // checking.
2455 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2456                         bool is_committed) {
2457   unsigned int p = 0;
2458   switch (prot) {
2459   case MEM_PROT_NONE: p = PROT_NONE; break;
2460   case MEM_PROT_READ: p = PROT_READ; break;
2461   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2462   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2463   default:
2464     ShouldNotReachHere();
2465   }
2466   // is_committed is unused.
2467   return solaris_mprotect(addr, bytes, p);
2468 }
2469 
2470 // guard_memory and unguard_memory only happens within stack guard pages.
2471 // Since ISM pertains only to the heap, guard and unguard memory should not
2472 /// happen with an ISM region.
2473 bool os::guard_memory(char* addr, size_t bytes) {
2474   return solaris_mprotect(addr, bytes, PROT_NONE);
2475 }
2476 
2477 bool os::unguard_memory(char* addr, size_t bytes) {
2478   return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
2479 }
2480 
2481 // Large page support
2482 static size_t _large_page_size = 0;
2483 
2484 // Insertion sort for small arrays (descending order).
2485 static void insertion_sort_descending(size_t* array, int len) {
2486   for (int i = 0; i < len; i++) {
2487     size_t val = array[i];
2488     for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
2489       size_t tmp = array[key];
2490       array[key] = array[key - 1];
2491       array[key - 1] = tmp;
2492     }
2493   }
2494 }
2495 
2496 bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
2497   const unsigned int usable_count = VM_Version::page_size_count();
2498   if (usable_count == 1) {
2499     return false;
2500   }
2501 
2502   // Find the right getpagesizes interface.  When solaris 11 is the minimum
2503   // build platform, getpagesizes() (without the '2') can be called directly.
2504   typedef int (*gps_t)(size_t[], int);
2505   gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
2506   if (gps_func == NULL) {
2507     gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
2508     if (gps_func == NULL) {
2509       if (warn) {
2510         warning("MPSS is not supported by the operating system.");
2511       }
2512       return false;
2513     }
2514   }
2515 
2516   // Fill the array of page sizes.
2517   int n = (*gps_func)(_page_sizes, page_sizes_max);
2518   assert(n > 0, "Solaris bug?");
2519 
2520   if (n == page_sizes_max) {
2521     // Add a sentinel value (necessary only if the array was completely filled
2522     // since it is static (zeroed at initialization)).
2523     _page_sizes[--n] = 0;
2524     DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
2525   }
2526   assert(_page_sizes[n] == 0, "missing sentinel");
2527   trace_page_sizes("available page sizes", _page_sizes, n);
2528 
2529   if (n == 1) return false;     // Only one page size available.
2530 
2531   // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
2532   // select up to usable_count elements.  First sort the array, find the first
2533   // acceptable value, then copy the usable sizes to the top of the array and
2534   // trim the rest.  Make sure to include the default page size :-).
2535   //
2536   // A better policy could get rid of the 4M limit by taking the sizes of the
2537   // important VM memory regions (java heap and possibly the code cache) into
2538   // account.
2539   insertion_sort_descending(_page_sizes, n);
2540   const size_t size_limit =
2541     FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
2542   int beg;
2543   for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */;
2544   const int end = MIN2((int)usable_count, n) - 1;
2545   for (int cur = 0; cur < end; ++cur, ++beg) {
2546     _page_sizes[cur] = _page_sizes[beg];
2547   }
2548   _page_sizes[end] = vm_page_size();
2549   _page_sizes[end + 1] = 0;
2550 
2551   if (_page_sizes[end] > _page_sizes[end - 1]) {
2552     // Default page size is not the smallest; sort again.
2553     insertion_sort_descending(_page_sizes, end + 1);
2554   }
2555   *page_size = _page_sizes[0];
2556 
2557   trace_page_sizes("usable page sizes", _page_sizes, end + 1);
2558   return true;
2559 }
2560 
2561 void os::large_page_init() {
2562   if (UseLargePages) {
2563     // print a warning if any large page related flag is specified on command line
2564     bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
2565                            !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2566 
2567     UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
2568   }
2569 }
2570 
2571 bool os::Solaris::is_valid_page_size(size_t bytes) {
2572   for (int i = 0; _page_sizes[i] != 0; i++) {
2573     if (_page_sizes[i] == bytes) {
2574       return true;
2575     }
2576   }
2577   return false;
2578 }
2579 
2580 bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
2581   assert(is_valid_page_size(align), SIZE_FORMAT " is not a valid page size", align);
2582   assert(is_aligned((void*) start, align),
2583          PTR_FORMAT " is not aligned to " SIZE_FORMAT, p2i((void*) start), align);
2584   assert(is_aligned(bytes, align),
2585          SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, align);
2586 
2587   // Signal to OS that we want large pages for addresses
2588   // from addr, addr + bytes
2589   struct memcntl_mha mpss_struct;
2590   mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
2591   mpss_struct.mha_pagesize = align;
2592   mpss_struct.mha_flags = 0;
2593   // Upon successful completion, memcntl() returns 0
2594   if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
2595     debug_only(warning("Attempt to use MPSS failed."));
2596     return false;
2597   }
2598   return true;
2599 }
2600 
2601 char* os::pd_reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
2602   fatal("os::reserve_memory_special should not be called on Solaris.");
2603   return NULL;
2604 }
2605 
2606 bool os::pd_release_memory_special(char* base, size_t bytes) {
2607   fatal("os::release_memory_special should not be called on Solaris.");
2608   return false;
2609 }
2610 
2611 size_t os::large_page_size() {
2612   return _large_page_size;
2613 }
2614 
2615 // MPSS allows application to commit large page memory on demand; with ISM
2616 // the entire memory region must be allocated as shared memory.
2617 bool os::can_commit_large_page_memory() {
2618   return true;
2619 }
2620 
2621 bool os::can_execute_large_page_memory() {
2622   return true;
2623 }
2624 
2625 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2626 void os::infinite_sleep() {
2627   while (true) {    // sleep forever ...
2628     ::sleep(100);   // ... 100 seconds at a time
2629   }
2630 }
2631 
2632 // Used to convert frequent JVM_Yield() to nops
2633 bool os::dont_yield() {
2634   if (DontYieldALot) {
2635     static hrtime_t last_time = 0;
2636     hrtime_t diff = getTimeNanos() - last_time;
2637 
2638     if (diff < DontYieldALotInterval * 1000000) {
2639       return true;
2640     }
2641 
2642     last_time += diff;
2643 
2644     return false;
2645   } else {
2646     return false;
2647   }
2648 }
2649 
2650 // Note that yield semantics are defined by the scheduling class to which
2651 // the thread currently belongs.  Typically, yield will _not yield to
2652 // other equal or higher priority threads that reside on the dispatch queues
2653 // of other CPUs.
2654 
2655 void os::naked_yield() {
2656   thr_yield();
2657 }
2658 
2659 // Interface for setting lwp priorities.  We are using T2 libthread,
2660 // which forces the use of bound threads, so all of our threads will
2661 // be assigned to real lwp's.  Using the thr_setprio function is
2662 // meaningless in this mode so we must adjust the real lwp's priority.
2663 // The routines below implement the getting and setting of lwp priorities.
2664 //
2665 // Note: There are three priority scales used on Solaris.  Java priotities
2666 //       which range from 1 to 10, libthread "thr_setprio" scale which range
2667 //       from 0 to 127, and the current scheduling class of the process we
2668 //       are running in.  This is typically from -60 to +60.
2669 //       The setting of the lwp priorities in done after a call to thr_setprio
2670 //       so Java priorities are mapped to libthread priorities and we map from
2671 //       the latter to lwp priorities.  We don't keep priorities stored in
2672 //       Java priorities since some of our worker threads want to set priorities
2673 //       higher than all Java threads.
2674 //
2675 // For related information:
2676 // (1)  man -s 2 priocntl
2677 // (2)  man -s 4 priocntl
2678 // (3)  man dispadmin
2679 // =    librt.so
2680 // =    libthread/common/rtsched.c - thrp_setlwpprio().
2681 // =    ps -cL <pid> ... to validate priority.
2682 // =    sched_get_priority_min and _max
2683 //              pthread_create
2684 //              sched_setparam
2685 //              pthread_setschedparam
2686 //
2687 // Assumptions:
2688 // +    We assume that all threads in the process belong to the same
2689 //              scheduling class.   IE. an homogenous process.
2690 // +    Must be root or in IA group to change change "interactive" attribute.
2691 //              Priocntl() will fail silently.  The only indication of failure is when
2692 //              we read-back the value and notice that it hasn't changed.
2693 // +    Interactive threads enter the runq at the head, non-interactive at the tail.
2694 // +    For RT, change timeslice as well.  Invariant:
2695 //              constant "priority integral"
2696 //              Konst == TimeSlice * (60-Priority)
2697 //              Given a priority, compute appropriate timeslice.
2698 // +    Higher numerical values have higher priority.
2699 
2700 // sched class attributes
2701 typedef struct {
2702   int   schedPolicy;              // classID
2703   int   maxPrio;
2704   int   minPrio;
2705 } SchedInfo;
2706 
2707 
2708 static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
2709 
2710 #ifdef ASSERT
2711 static int  ReadBackValidate = 1;
2712 #endif
2713 static int  myClass     = 0;
2714 static int  myMin       = 0;
2715 static int  myMax       = 0;
2716 static int  myCur       = 0;
2717 static bool priocntl_enable = false;
2718 
2719 static const int criticalPrio = FXCriticalPriority;
2720 static int java_MaxPriority_to_os_priority = 0; // Saved mapping
2721 
2722 
2723 // lwp_priocntl_init
2724 //
2725 // Try to determine the priority scale for our process.
2726 //
2727 // Return errno or 0 if OK.
2728 //
2729 static int lwp_priocntl_init() {
2730   int rslt;
2731   pcinfo_t ClassInfo;
2732   pcparms_t ParmInfo;
2733   int i;
2734 
2735   if (!UseThreadPriorities) return 0;
2736 
2737   // If ThreadPriorityPolicy is 1, switch tables
2738   if (ThreadPriorityPolicy == 1) {
2739     for (i = 0; i < CriticalPriority+1; i++)
2740       os::java_to_os_priority[i] = prio_policy1[i];
2741   }
2742   if (UseCriticalJavaThreadPriority) {
2743     // MaxPriority always maps to the FX scheduling class and criticalPrio.
2744     // See set_native_priority() and set_lwp_class_and_priority().
2745     // Save original MaxPriority mapping in case attempt to
2746     // use critical priority fails.
2747     java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
2748     // Set negative to distinguish from other priorities
2749     os::java_to_os_priority[MaxPriority] = -criticalPrio;
2750   }
2751 
2752   // Get IDs for a set of well-known scheduling classes.
2753   // TODO-FIXME: GETCLINFO returns the current # of classes in the
2754   // the system.  We should have a loop that iterates over the
2755   // classID values, which are known to be "small" integers.
2756 
2757   strcpy(ClassInfo.pc_clname, "TS");
2758   ClassInfo.pc_cid = -1;
2759   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
2760   if (rslt < 0) return errno;
2761   assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
2762   tsLimits.schedPolicy = ClassInfo.pc_cid;
2763   tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
2764   tsLimits.minPrio = -tsLimits.maxPrio;
2765 
2766   strcpy(ClassInfo.pc_clname, "IA");
2767   ClassInfo.pc_cid = -1;
2768   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
2769   if (rslt < 0) return errno;
2770   assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
2771   iaLimits.schedPolicy = ClassInfo.pc_cid;
2772   iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
2773   iaLimits.minPrio = -iaLimits.maxPrio;
2774 
2775   strcpy(ClassInfo.pc_clname, "RT");
2776   ClassInfo.pc_cid = -1;
2777   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
2778   if (rslt < 0) return errno;
2779   assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
2780   rtLimits.schedPolicy = ClassInfo.pc_cid;
2781   rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
2782   rtLimits.minPrio = 0;
2783 
2784   strcpy(ClassInfo.pc_clname, "FX");
2785   ClassInfo.pc_cid = -1;
2786   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
2787   if (rslt < 0) return errno;
2788   assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
2789   fxLimits.schedPolicy = ClassInfo.pc_cid;
2790   fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
2791   fxLimits.minPrio = 0;
2792 
2793   // Query our "current" scheduling class.
2794   // This will normally be IA, TS or, rarely, FX or RT.
2795   memset(&ParmInfo, 0, sizeof(ParmInfo));
2796   ParmInfo.pc_cid = PC_CLNULL;
2797   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
2798   if (rslt < 0) return errno;
2799   myClass = ParmInfo.pc_cid;
2800 
2801   // We now know our scheduling classId, get specific information
2802   // about the class.
2803   ClassInfo.pc_cid = myClass;
2804   ClassInfo.pc_clname[0] = 0;
2805   rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
2806   if (rslt < 0) return errno;
2807 
2808   if (ThreadPriorityVerbose) {
2809     tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
2810   }
2811 
2812   memset(&ParmInfo, 0, sizeof(pcparms_t));
2813   ParmInfo.pc_cid = PC_CLNULL;
2814   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
2815   if (rslt < 0) return errno;
2816 
2817   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
2818     myMin = rtLimits.minPrio;
2819     myMax = rtLimits.maxPrio;
2820   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
2821     iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
2822     myMin = iaLimits.minPrio;
2823     myMax = iaLimits.maxPrio;
2824     myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
2825   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
2826     tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
2827     myMin = tsLimits.minPrio;
2828     myMax = tsLimits.maxPrio;
2829     myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
2830   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
2831     fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
2832     myMin = fxLimits.minPrio;
2833     myMax = fxLimits.maxPrio;
2834     myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
2835   } else {
2836     // No clue - punt
2837     if (ThreadPriorityVerbose) {
2838       tty->print_cr("Unknown scheduling class: %s ... \n",
2839                     ClassInfo.pc_clname);
2840     }
2841     return EINVAL;      // no clue, punt
2842   }
2843 
2844   if (ThreadPriorityVerbose) {
2845     tty->print_cr("Thread priority Range: [%d..%d]\n", myMin, myMax);
2846   }
2847 
2848   priocntl_enable = true;  // Enable changing priorities
2849   return 0;
2850 }
2851 
2852 #define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
2853 #define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
2854 #define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
2855 #define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
2856 
2857 
2858 // scale_to_lwp_priority
2859 //
2860 // Convert from the libthread "thr_setprio" scale to our current
2861 // lwp scheduling class scale.
2862 //
2863 static int scale_to_lwp_priority(int rMin, int rMax, int x) {
2864   int v;
2865 
2866   if (x == 127) return rMax;            // avoid round-down
2867   v = (((x*(rMax-rMin)))/128)+rMin;
2868   return v;
2869 }
2870 
2871 
2872 // set_lwp_class_and_priority
2873 int set_lwp_class_and_priority(int ThreadID, int lwpid,
2874                                int newPrio, int new_class, bool scale) {
2875   int rslt;
2876   int Actual, Expected, prv;
2877   pcparms_t ParmInfo;                   // for GET-SET
2878 #ifdef ASSERT
2879   pcparms_t ReadBack;                   // for readback
2880 #endif
2881 
2882   // Set priority via PC_GETPARMS, update, PC_SETPARMS
2883   // Query current values.
2884   // TODO: accelerate this by eliminating the PC_GETPARMS call.
2885   // Cache "pcparms_t" in global ParmCache.
2886   // TODO: elide set-to-same-value
2887 
2888   // If something went wrong on init, don't change priorities.
2889   if (!priocntl_enable) {
2890     if (ThreadPriorityVerbose) {
2891       tty->print_cr("Trying to set priority but init failed, ignoring");
2892     }
2893     return EINVAL;
2894   }
2895 
2896   // If lwp hasn't started yet, just return
2897   // the _start routine will call us again.
2898   if (lwpid <= 0) {
2899     if (ThreadPriorityVerbose) {
2900       tty->print_cr("deferring the set_lwp_class_and_priority of thread "
2901                     INTPTR_FORMAT " to %d, lwpid not set",
2902                     ThreadID, newPrio);
2903     }
2904     return 0;
2905   }
2906 
2907   if (ThreadPriorityVerbose) {
2908     tty->print_cr ("set_lwp_class_and_priority("
2909                    INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
2910                    ThreadID, lwpid, newPrio);
2911   }
2912 
2913   memset(&ParmInfo, 0, sizeof(pcparms_t));
2914   ParmInfo.pc_cid = PC_CLNULL;
2915   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
2916   if (rslt < 0) return errno;
2917 
2918   int cur_class = ParmInfo.pc_cid;
2919   ParmInfo.pc_cid = (id_t)new_class;
2920 
2921   if (new_class == rtLimits.schedPolicy) {
2922     rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
2923     rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
2924                                                        rtLimits.maxPrio, newPrio)
2925                                : newPrio;
2926     rtInfo->rt_tqsecs  = RT_NOCHANGE;
2927     rtInfo->rt_tqnsecs = RT_NOCHANGE;
2928     if (ThreadPriorityVerbose) {
2929       tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
2930     }
2931   } else if (new_class == iaLimits.schedPolicy) {
2932     iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
2933     int maxClamped     = MIN2(iaLimits.maxPrio,
2934                               cur_class == new_class
2935                               ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
2936     iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
2937                                                        maxClamped, newPrio)
2938                                : newPrio;
2939     iaInfo->ia_uprilim = cur_class == new_class
2940                            ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
2941     iaInfo->ia_mode    = IA_NOCHANGE;
2942     if (ThreadPriorityVerbose) {
2943       tty->print_cr("IA: [%d...%d] %d->%d\n",
2944                     iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
2945     }
2946   } else if (new_class == tsLimits.schedPolicy) {
2947     tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
2948     int maxClamped     = MIN2(tsLimits.maxPrio,
2949                               cur_class == new_class
2950                               ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
2951     tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
2952                                                        maxClamped, newPrio)
2953                                : newPrio;
2954     tsInfo->ts_uprilim = cur_class == new_class
2955                            ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
2956     if (ThreadPriorityVerbose) {
2957       tty->print_cr("TS: [%d...%d] %d->%d\n",
2958                     tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
2959     }
2960   } else if (new_class == fxLimits.schedPolicy) {
2961     fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
2962     int maxClamped     = MIN2(fxLimits.maxPrio,
2963                               cur_class == new_class
2964                               ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
2965     fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
2966                                                        maxClamped, newPrio)
2967                                : newPrio;
2968     fxInfo->fx_uprilim = cur_class == new_class
2969                            ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
2970     fxInfo->fx_tqsecs  = FX_NOCHANGE;
2971     fxInfo->fx_tqnsecs = FX_NOCHANGE;
2972     if (ThreadPriorityVerbose) {
2973       tty->print_cr("FX: [%d...%d] %d->%d\n",
2974                     fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
2975     }
2976   } else {
2977     if (ThreadPriorityVerbose) {
2978       tty->print_cr("Unknown new scheduling class %d\n", new_class);
2979     }
2980     return EINVAL;    // no clue, punt
2981   }
2982 
2983   rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
2984   if (ThreadPriorityVerbose && rslt) {
2985     tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
2986   }
2987   if (rslt < 0) return errno;
2988 
2989 #ifdef ASSERT
2990   // Sanity check: read back what we just attempted to set.
2991   // In theory it could have changed in the interim ...
2992   //
2993   // The priocntl system call is tricky.
2994   // Sometimes it'll validate the priority value argument and
2995   // return EINVAL if unhappy.  At other times it fails silently.
2996   // Readbacks are prudent.
2997 
2998   if (!ReadBackValidate) return 0;
2999 
3000   memset(&ReadBack, 0, sizeof(pcparms_t));
3001   ReadBack.pc_cid = PC_CLNULL;
3002   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
3003   assert(rslt >= 0, "priocntl failed");
3004   Actual = Expected = 0xBAD;
3005   assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
3006   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3007     Actual   = RTPRI(ReadBack)->rt_pri;
3008     Expected = RTPRI(ParmInfo)->rt_pri;
3009   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3010     Actual   = IAPRI(ReadBack)->ia_upri;
3011     Expected = IAPRI(ParmInfo)->ia_upri;
3012   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3013     Actual   = TSPRI(ReadBack)->ts_upri;
3014     Expected = TSPRI(ParmInfo)->ts_upri;
3015   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3016     Actual   = FXPRI(ReadBack)->fx_upri;
3017     Expected = FXPRI(ParmInfo)->fx_upri;
3018   } else {
3019     if (ThreadPriorityVerbose) {
3020       tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
3021                     ParmInfo.pc_cid);
3022     }
3023   }
3024 
3025   if (Actual != Expected) {
3026     if (ThreadPriorityVerbose) {
3027       tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
3028                      lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
3029     }
3030   }
3031 #endif
3032 
3033   return 0;
3034 }
3035 
3036 // Solaris only gives access to 128 real priorities at a time,
3037 // so we expand Java's ten to fill this range.  This would be better
3038 // if we dynamically adjusted relative priorities.
3039 //
3040 // The ThreadPriorityPolicy option allows us to select 2 different
3041 // priority scales.
3042 //
3043 // ThreadPriorityPolicy=0
3044 // Since the Solaris' default priority is MaximumPriority, we do not
3045 // set a priority lower than Max unless a priority lower than
3046 // NormPriority is requested.
3047 //
3048 // ThreadPriorityPolicy=1
3049 // This mode causes the priority table to get filled with
3050 // linear values.  NormPriority get's mapped to 50% of the
3051 // Maximum priority an so on.  This will cause VM threads
3052 // to get unfair treatment against other Solaris processes
3053 // which do not explicitly alter their thread priorities.
3054 
3055 int os::java_to_os_priority[CriticalPriority + 1] = {
3056   -99999,         // 0 Entry should never be used
3057 
3058   0,              // 1 MinPriority
3059   32,             // 2
3060   64,             // 3
3061 
3062   96,             // 4
3063   127,            // 5 NormPriority
3064   127,            // 6
3065 
3066   127,            // 7
3067   127,            // 8
3068   127,            // 9 NearMaxPriority
3069 
3070   127,            // 10 MaxPriority
3071 
3072   -criticalPrio   // 11 CriticalPriority
3073 };
3074 
3075 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3076   OSThread* osthread = thread->osthread();
3077 
3078   // Save requested priority in case the thread hasn't been started
3079   osthread->set_native_priority(newpri);
3080 
3081   // Check for critical priority request
3082   bool fxcritical = false;
3083   if (newpri == -criticalPrio) {
3084     fxcritical = true;
3085     newpri = criticalPrio;
3086   }
3087 
3088   assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
3089   if (!UseThreadPriorities) return OS_OK;
3090 
3091   int status = 0;
3092 
3093   if (!fxcritical) {
3094     // Use thr_setprio only if we have a priority that thr_setprio understands
3095     status = thr_setprio(thread->osthread()->thread_id(), newpri);
3096   }
3097 
3098   int lwp_status =
3099           set_lwp_class_and_priority(osthread->thread_id(),
3100                                      osthread->lwp_id(),
3101                                      newpri,
3102                                      fxcritical ? fxLimits.schedPolicy : myClass,
3103                                      !fxcritical);
3104   if (lwp_status != 0 && fxcritical) {
3105     // Try again, this time without changing the scheduling class
3106     newpri = java_MaxPriority_to_os_priority;
3107     lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
3108                                             osthread->lwp_id(),
3109                                             newpri, myClass, false);
3110   }
3111   status |= lwp_status;
3112   return (status == 0) ? OS_OK : OS_ERR;
3113 }
3114 
3115 
3116 OSReturn os::get_native_priority(const Thread* const thread,
3117                                  int *priority_ptr) {
3118   int p;
3119   if (!UseThreadPriorities) {
3120     *priority_ptr = NormalPriority;
3121     return OS_OK;
3122   }
3123   int status = thr_getprio(thread->osthread()->thread_id(), &p);
3124   if (status != 0) {
3125     return OS_ERR;
3126   }
3127   *priority_ptr = p;
3128   return OS_OK;
3129 }
3130 
3131 ////////////////////////////////////////////////////////////////////////////////
3132 // suspend/resume support
3133 
3134 //  The low-level signal-based suspend/resume support is a remnant from the
3135 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3136 //  within hotspot. Currently used by JFR's OSThreadSampler
3137 //
3138 //  The remaining code is greatly simplified from the more general suspension
3139 //  code that used to be used.
3140 //
3141 //  The protocol is quite simple:
3142 //  - suspend:
3143 //      - sends a signal to the target thread
3144 //      - polls the suspend state of the osthread using a yield loop
3145 //      - target thread signal handler (SR_handler) sets suspend state
3146 //        and blocks in sigsuspend until continued
3147 //  - resume:
3148 //      - sets target osthread state to continue
3149 //      - sends signal to end the sigsuspend loop in the SR_handler
3150 //
3151 //  Note that the SR_lock plays no role in this suspend/resume protocol,
3152 //  but is checked for NULL in SR_handler as a thread termination indicator.
3153 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
3154 //
3155 //  Note that resume_clear_context() and suspend_save_context() are needed
3156 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
3157 //  which in part is used by:
3158 //    - Forte Analyzer: AsyncGetCallTrace()
3159 //    - StackBanging: get_frame_at_stack_banging_point()
3160 //    - JFR: get_topframe()-->....-->get_valid_uc_in_signal_handler()
3161 
3162 static void resume_clear_context(OSThread *osthread) {
3163   osthread->set_ucontext(NULL);
3164 }
3165 
3166 static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
3167   osthread->set_ucontext(context);
3168 }
3169 
3170 static PosixSemaphore sr_semaphore;
3171 
3172 void os::Solaris::SR_handler(Thread* thread, ucontext_t* context) {
3173   // Save and restore errno to avoid confusing native code with EINTR
3174   // after sigsuspend.
3175   int old_errno = errno;
3176 
3177   OSThread* osthread = thread->osthread();
3178   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3179 
3180   os::SuspendResume::State current = osthread->sr.state();
3181   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3182     suspend_save_context(osthread, context);
3183 
3184     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3185     os::SuspendResume::State state = osthread->sr.suspended();
3186     if (state == os::SuspendResume::SR_SUSPENDED) {
3187       sigset_t suspend_set;  // signals for sigsuspend()
3188 
3189       // get current set of blocked signals and unblock resume signal
3190       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3191       sigdelset(&suspend_set, ASYNC_SIGNAL);
3192 
3193       sr_semaphore.signal();
3194       // wait here until we are resumed
3195       while (1) {
3196         sigsuspend(&suspend_set);
3197 
3198         os::SuspendResume::State result = osthread->sr.running();
3199         if (result == os::SuspendResume::SR_RUNNING) {
3200           sr_semaphore.signal();
3201           break;
3202         }
3203       }
3204 
3205     } else if (state == os::SuspendResume::SR_RUNNING) {
3206       // request was cancelled, continue
3207     } else {
3208       ShouldNotReachHere();
3209     }
3210 
3211     resume_clear_context(osthread);
3212   } else if (current == os::SuspendResume::SR_RUNNING) {
3213     // request was cancelled, continue
3214   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3215     // ignore
3216   } else {
3217     // ignore
3218   }
3219 
3220   errno = old_errno;
3221 }
3222 
3223 void os::print_statistics() {
3224 }
3225 
3226 bool os::message_box(const char* title, const char* message) {
3227   int i;
3228   fdStream err(defaultStream::error_fd());
3229   for (i = 0; i < 78; i++) err.print_raw("=");
3230   err.cr();
3231   err.print_raw_cr(title);
3232   for (i = 0; i < 78; i++) err.print_raw("-");
3233   err.cr();
3234   err.print_raw_cr(message);
3235   for (i = 0; i < 78; i++) err.print_raw("=");
3236   err.cr();
3237 
3238   char buf[16];
3239   // Prevent process from exiting upon "read error" without consuming all CPU
3240   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3241 
3242   return buf[0] == 'y' || buf[0] == 'Y';
3243 }
3244 
3245 static int sr_notify(OSThread* osthread) {
3246   int status = thr_kill(osthread->thread_id(), ASYNC_SIGNAL);
3247   assert_status(status == 0, status, "thr_kill");
3248   return status;
3249 }
3250 
3251 // "Randomly" selected value for how long we want to spin
3252 // before bailing out on suspending a thread, also how often
3253 // we send a signal to a thread we want to resume
3254 static const int RANDOMLY_LARGE_INTEGER = 1000000;
3255 static const int RANDOMLY_LARGE_INTEGER2 = 100;
3256 
3257 static bool do_suspend(OSThread* osthread) {
3258   assert(osthread->sr.is_running(), "thread should be running");
3259   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3260 
3261   // mark as suspended and send signal
3262   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3263     // failed to switch, state wasn't running?
3264     ShouldNotReachHere();
3265     return false;
3266   }
3267 
3268   if (sr_notify(osthread) != 0) {
3269     ShouldNotReachHere();
3270   }
3271 
3272   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3273   while (true) {
3274     if (sr_semaphore.timedwait(2000)) {
3275       break;
3276     } else {
3277       // timeout
3278       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3279       if (cancelled == os::SuspendResume::SR_RUNNING) {
3280         return false;
3281       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3282         // make sure that we consume the signal on the semaphore as well
3283         sr_semaphore.wait();
3284         break;
3285       } else {
3286         ShouldNotReachHere();
3287         return false;
3288       }
3289     }
3290   }
3291 
3292   guarantee(osthread->sr.is_suspended(), "Must be suspended");
3293   return true;
3294 }
3295 
3296 static void do_resume(OSThread* osthread) {
3297   assert(osthread->sr.is_suspended(), "thread should be suspended");
3298   assert(!sr_semaphore.trywait(), "invalid semaphore state");
3299 
3300   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3301     // failed to switch to WAKEUP_REQUEST
3302     ShouldNotReachHere();
3303     return;
3304   }
3305 
3306   while (true) {
3307     if (sr_notify(osthread) == 0) {
3308       if (sr_semaphore.timedwait(2)) {
3309         if (osthread->sr.is_running()) {
3310           return;
3311         }
3312       }
3313     } else {
3314       ShouldNotReachHere();
3315     }
3316   }
3317 
3318   guarantee(osthread->sr.is_running(), "Must be running!");
3319 }
3320 
3321 void os::SuspendedThreadTask::internal_do_task() {
3322   if (do_suspend(_thread->osthread())) {
3323     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3324     do_task(context);
3325     do_resume(_thread->osthread());
3326   }
3327 }
3328 
3329 // This does not do anything on Solaris. This is basically a hook for being
3330 // able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
3331 void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3332                               const methodHandle& method, JavaCallArguments* args,
3333                               Thread* thread) {
3334   f(value, method, args, thread);
3335 }
3336 
3337 // This routine may be used by user applications as a "hook" to catch signals.
3338 // The user-defined signal handler must pass unrecognized signals to this
3339 // routine, and if it returns true (non-zero), then the signal handler must
3340 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3341 // routine will never retun false (zero), but instead will execute a VM panic
3342 // routine kill the process.
3343 //
3344 // If this routine returns false, it is OK to call it again.  This allows
3345 // the user-defined signal handler to perform checks either before or after
3346 // the VM performs its own checks.  Naturally, the user code would be making
3347 // a serious error if it tried to handle an exception (such as a null check
3348 // or breakpoint) that the VM was generating for its own correct operation.
3349 //
3350 // This routine may recognize any of the following kinds of signals:
3351 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
3352 // ASYNC_SIGNAL.
3353 // It should be consulted by handlers for any of those signals.
3354 //
3355 // The caller of this routine must pass in the three arguments supplied
3356 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3357 // field of the structure passed to sigaction().  This routine assumes that
3358 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3359 //
3360 // Note that the VM will print warnings if it detects conflicting signal
3361 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3362 //
3363 extern "C" JNIEXPORT int JVM_handle_solaris_signal(int signo,
3364                                                    siginfo_t* siginfo,
3365                                                    void* ucontext,
3366                                                    int abort_if_unrecognized);
3367 
3368 
3369 void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
3370   int orig_errno = errno;  // Preserve errno value over signal handler.
3371   JVM_handle_solaris_signal(sig, info, ucVoid, true);
3372   errno = orig_errno;
3373 }
3374 
3375 // This boolean allows users to forward their own non-matching signals
3376 // to JVM_handle_solaris_signal, harmlessly.
3377 bool os::Solaris::signal_handlers_are_installed = false;
3378 
3379 // For signal-chaining
3380 bool os::Solaris::libjsig_is_loaded = false;
3381 typedef struct sigaction *(*get_signal_t)(int);
3382 get_signal_t os::Solaris::get_signal_action = NULL;
3383 
3384 struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
3385   struct sigaction *actp = NULL;
3386 
3387   if ((libjsig_is_loaded)  && (sig <= Maxsignum)) {
3388     // Retrieve the old signal handler from libjsig
3389     actp = (*get_signal_action)(sig);
3390   }
3391   if (actp == NULL) {
3392     // Retrieve the preinstalled signal handler from jvm
3393     actp = get_preinstalled_handler(sig);
3394   }
3395 
3396   return actp;
3397 }
3398 
3399 static bool call_chained_handler(struct sigaction *actp, int sig,
3400                                  siginfo_t *siginfo, void *context) {
3401   // Call the old signal handler
3402   if (actp->sa_handler == SIG_DFL) {
3403     // It's more reasonable to let jvm treat it as an unexpected exception
3404     // instead of taking the default action.
3405     return false;
3406   } else if (actp->sa_handler != SIG_IGN) {
3407     if ((actp->sa_flags & SA_NODEFER) == 0) {
3408       // automaticlly block the signal
3409       sigaddset(&(actp->sa_mask), sig);
3410     }
3411 
3412     sa_handler_t hand;
3413     sa_sigaction_t sa;
3414     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3415     // retrieve the chained handler
3416     if (siginfo_flag_set) {
3417       sa = actp->sa_sigaction;
3418     } else {
3419       hand = actp->sa_handler;
3420     }
3421 
3422     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3423       actp->sa_handler = SIG_DFL;
3424     }
3425 
3426     // try to honor the signal mask
3427     sigset_t oset;
3428     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3429 
3430     // call into the chained handler
3431     if (siginfo_flag_set) {
3432       (*sa)(sig, siginfo, context);
3433     } else {
3434       (*hand)(sig);
3435     }
3436 
3437     // restore the signal mask
3438     pthread_sigmask(SIG_SETMASK, &oset, 0);
3439   }
3440   // Tell jvm's signal handler the signal is taken care of.
3441   return true;
3442 }
3443 
3444 bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3445   bool chained = false;
3446   // signal-chaining
3447   if (UseSignalChaining) {
3448     struct sigaction *actp = get_chained_signal_action(sig);
3449     if (actp != NULL) {
3450       chained = call_chained_handler(actp, sig, siginfo, context);
3451     }
3452   }
3453   return chained;
3454 }
3455 
3456 struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
3457   assert((chainedsigactions != (struct sigaction *)NULL) &&
3458          (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3459   if (preinstalled_sigs[sig] != 0) {
3460     return &chainedsigactions[sig];
3461   }
3462   return NULL;
3463 }
3464 
3465 void os::Solaris::save_preinstalled_handler(int sig,
3466                                             struct sigaction& oldAct) {
3467   assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
3468   assert((chainedsigactions != (struct sigaction *)NULL) &&
3469          (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3470   chainedsigactions[sig] = oldAct;
3471   preinstalled_sigs[sig] = 1;
3472 }
3473 
3474 void os::Solaris::set_signal_handler(int sig, bool set_installed,
3475                                      bool oktochain) {
3476   // Check for overwrite.
3477   struct sigaction oldAct;
3478   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3479   void* oldhand =
3480       oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3481                           : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3482   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3483       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3484       oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
3485     if (AllowUserSignalHandlers || !set_installed) {
3486       // Do not overwrite; user takes responsibility to forward to us.
3487       return;
3488     } else if (UseSignalChaining) {
3489       if (oktochain) {
3490         // save the old handler in jvm
3491         save_preinstalled_handler(sig, oldAct);
3492       } else {
3493         vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal.");
3494       }
3495       // libjsig also interposes the sigaction() call below and saves the
3496       // old sigaction on it own.
3497     } else {
3498       fatal("Encountered unexpected pre-existing sigaction handler "
3499             "%#lx for signal %d.", (long)oldhand, sig);
3500     }
3501   }
3502 
3503   struct sigaction sigAct;
3504   sigfillset(&(sigAct.sa_mask));
3505   sigAct.sa_handler = SIG_DFL;
3506 
3507   sigAct.sa_sigaction = signalHandler;
3508   // Handle SIGSEGV on alternate signal stack if
3509   // not using stack banging
3510   if (!UseStackBanging && sig == SIGSEGV) {
3511     sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
3512   } else {
3513     sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
3514   }
3515   os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
3516 
3517   sigaction(sig, &sigAct, &oldAct);
3518 
3519   void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3520                                        : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3521   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3522 }
3523 
3524 
3525 #define DO_SIGNAL_CHECK(sig)                      \
3526   do {                                            \
3527     if (!sigismember(&check_signal_done, sig)) {  \
3528       os::Solaris::check_signal_handler(sig);     \
3529     }                                             \
3530   } while (0)
3531 
3532 // This method is a periodic task to check for misbehaving JNI applications
3533 // under CheckJNI, we can add any periodic checks here
3534 
3535 void os::run_periodic_checks() {
3536   // A big source of grief is hijacking virt. addr 0x0 on Solaris,
3537   // thereby preventing a NULL checks.
3538   if (!check_addr0_done) check_addr0_done = check_addr0(tty);
3539 
3540   if (check_signals == false) return;
3541 
3542   // SEGV and BUS if overridden could potentially prevent
3543   // generation of hs*.log in the event of a crash, debugging
3544   // such a case can be very challenging, so we absolutely
3545   // check for the following for a good measure:
3546   DO_SIGNAL_CHECK(SIGSEGV);
3547   DO_SIGNAL_CHECK(SIGILL);
3548   DO_SIGNAL_CHECK(SIGFPE);
3549   DO_SIGNAL_CHECK(SIGBUS);
3550   DO_SIGNAL_CHECK(SIGPIPE);
3551   DO_SIGNAL_CHECK(SIGXFSZ);
3552   DO_SIGNAL_CHECK(ASYNC_SIGNAL);
3553 
3554   // ReduceSignalUsage allows the user to override these handlers
3555   // see comments at the very top and jvm_solaris.h
3556   if (!ReduceSignalUsage) {
3557     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3558     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3559     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3560     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3561   }
3562 }
3563 
3564 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3565 
3566 static os_sigaction_t os_sigaction = NULL;
3567 
3568 void os::Solaris::check_signal_handler(int sig) {
3569   char buf[O_BUFLEN];
3570   address jvmHandler = NULL;
3571 
3572   struct sigaction act;
3573   if (os_sigaction == NULL) {
3574     // only trust the default sigaction, in case it has been interposed
3575     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3576     if (os_sigaction == NULL) return;
3577   }
3578 
3579   os_sigaction(sig, (struct sigaction*)NULL, &act);
3580 
3581   address thisHandler = (act.sa_flags & SA_SIGINFO)
3582     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3583     : CAST_FROM_FN_PTR(address, act.sa_handler);
3584 
3585 
3586   switch (sig) {
3587   case SIGSEGV:
3588   case SIGBUS:
3589   case SIGFPE:
3590   case SIGPIPE:
3591   case SIGXFSZ:
3592   case SIGILL:
3593   case ASYNC_SIGNAL:
3594     jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
3595     break;
3596 
3597   case SHUTDOWN1_SIGNAL:
3598   case SHUTDOWN2_SIGNAL:
3599   case SHUTDOWN3_SIGNAL:
3600   case BREAK_SIGNAL:
3601     jvmHandler = (address)user_handler();
3602     break;
3603 
3604   default:
3605       return;
3606   }
3607 
3608   if (thisHandler != jvmHandler) {
3609     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3610     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3611     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3612     // No need to check this sig any longer
3613     sigaddset(&check_signal_done, sig);
3614     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3615     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3616       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3617                     exception_name(sig, buf, O_BUFLEN));
3618     }
3619   } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
3620     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3621     tty->print("expected:");
3622     os::Posix::print_sa_flags(tty, os::Solaris::get_our_sigflags(sig));
3623     tty->cr();
3624     tty->print("  found:");
3625     os::Posix::print_sa_flags(tty, act.sa_flags);
3626     tty->cr();
3627     // No need to check this sig any longer
3628     sigaddset(&check_signal_done, sig);
3629   }
3630 
3631   // Print all the signal handler state
3632   if (sigismember(&check_signal_done, sig)) {
3633     print_signal_handlers(tty, buf, O_BUFLEN);
3634   }
3635 
3636 }
3637 
3638 void os::Solaris::install_signal_handlers() {
3639   signal_handlers_are_installed = true;
3640 
3641   // signal-chaining
3642   typedef void (*signal_setting_t)();
3643   signal_setting_t begin_signal_setting = NULL;
3644   signal_setting_t end_signal_setting = NULL;
3645   begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3646                                         dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3647   if (begin_signal_setting != NULL) {
3648     end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3649                                         dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3650     get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3651                                        dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3652     libjsig_is_loaded = true;
3653     assert(UseSignalChaining, "should enable signal-chaining");
3654   }
3655   if (libjsig_is_loaded) {
3656     // Tell libjsig jvm is setting signal handlers
3657     (*begin_signal_setting)();
3658   }
3659 
3660   set_signal_handler(SIGSEGV, true, true);
3661   set_signal_handler(SIGPIPE, true, true);
3662   set_signal_handler(SIGXFSZ, true, true);
3663   set_signal_handler(SIGBUS, true, true);
3664   set_signal_handler(SIGILL, true, true);
3665   set_signal_handler(SIGFPE, true, true);
3666   set_signal_handler(ASYNC_SIGNAL, true, true);
3667 
3668   if (libjsig_is_loaded) {
3669     // Tell libjsig jvm finishes setting signal handlers
3670     (*end_signal_setting)();
3671   }
3672 
3673   // We don't activate signal checker if libjsig is in place, we trust ourselves
3674   // and if UserSignalHandler is installed all bets are off.
3675   // Log that signal checking is off only if -verbose:jni is specified.
3676   if (CheckJNICalls) {
3677     if (libjsig_is_loaded) {
3678       log_debug(jni, resolve)("Info: libjsig is activated, all active signal checking is disabled");
3679       check_signals = false;
3680     }
3681     if (AllowUserSignalHandlers) {
3682       log_debug(jni, resolve)("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3683       check_signals = false;
3684     }
3685   }
3686 }
3687 
3688 
3689 void report_error(const char* file_name, int line_no, const char* title,
3690                   const char* format, ...);
3691 
3692 // (Static) wrappers for the liblgrp API
3693 os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
3694 os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
3695 os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
3696 os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
3697 os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
3698 os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
3699 os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
3700 os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
3701 os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
3702 
3703 static address resolve_symbol_lazy(const char* name) {
3704   address addr = (address) dlsym(RTLD_DEFAULT, name);
3705   if (addr == NULL) {
3706     // RTLD_DEFAULT was not defined on some early versions of 2.5.1
3707     addr = (address) dlsym(RTLD_NEXT, name);
3708   }
3709   return addr;
3710 }
3711 
3712 static address resolve_symbol(const char* name) {
3713   address addr = resolve_symbol_lazy(name);
3714   if (addr == NULL) {
3715     fatal(dlerror());
3716   }
3717   return addr;
3718 }
3719 
3720 void os::Solaris::libthread_init() {
3721   address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
3722 
3723   lwp_priocntl_init();
3724 
3725   // RTLD_DEFAULT was not defined on some early versions of 5.5.1
3726   if (func == NULL) {
3727     func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
3728     // Guarantee that this VM is running on an new enough OS (5.6 or
3729     // later) that it will have a new enough libthread.so.
3730     guarantee(func != NULL, "libthread.so is too old.");
3731   }
3732 
3733   int size;
3734   void (*handler_info_func)(address *, int *);
3735   handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
3736   handler_info_func(&handler_start, &size);
3737   handler_end = handler_start + size;
3738 }
3739 
3740 
3741 int_fnP_mutex_tP os::Solaris::_mutex_lock;
3742 int_fnP_mutex_tP os::Solaris::_mutex_trylock;
3743 int_fnP_mutex_tP os::Solaris::_mutex_unlock;
3744 int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
3745 int_fnP_mutex_tP os::Solaris::_mutex_destroy;
3746 int os::Solaris::_mutex_scope = USYNC_THREAD;
3747 
3748 int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
3749 int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
3750 int_fnP_cond_tP os::Solaris::_cond_signal;
3751 int_fnP_cond_tP os::Solaris::_cond_broadcast;
3752 int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
3753 int_fnP_cond_tP os::Solaris::_cond_destroy;
3754 int os::Solaris::_cond_scope = USYNC_THREAD;
3755 bool os::Solaris::_synchronization_initialized;
3756 
3757 void os::Solaris::synchronization_init() {
3758   if (UseLWPSynchronization) {
3759     os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
3760     os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
3761     os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
3762     os::Solaris::set_mutex_init(lwp_mutex_init);
3763     os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
3764     os::Solaris::set_mutex_scope(USYNC_THREAD);
3765 
3766     os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
3767     os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
3768     os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
3769     os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
3770     os::Solaris::set_cond_init(lwp_cond_init);
3771     os::Solaris::set_cond_destroy(lwp_cond_destroy);
3772     os::Solaris::set_cond_scope(USYNC_THREAD);
3773   } else {
3774     os::Solaris::set_mutex_scope(USYNC_THREAD);
3775     os::Solaris::set_cond_scope(USYNC_THREAD);
3776 
3777     if (UsePthreads) {
3778       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
3779       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
3780       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
3781       os::Solaris::set_mutex_init(pthread_mutex_default_init);
3782       os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
3783 
3784       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
3785       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
3786       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
3787       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
3788       os::Solaris::set_cond_init(pthread_cond_default_init);
3789       os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
3790     } else {
3791       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
3792       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
3793       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
3794       os::Solaris::set_mutex_init(::mutex_init);
3795       os::Solaris::set_mutex_destroy(::mutex_destroy);
3796 
3797       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
3798       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
3799       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
3800       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
3801       os::Solaris::set_cond_init(::cond_init);
3802       os::Solaris::set_cond_destroy(::cond_destroy);
3803     }
3804   }
3805   _synchronization_initialized = true;
3806 }
3807 
3808 bool os::Solaris::liblgrp_init() {
3809   void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
3810   if (handle != NULL) {
3811     os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
3812     os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
3813     os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
3814     os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
3815     os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
3816     os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
3817     os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
3818     os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
3819                                                       dlsym(handle, "lgrp_cookie_stale")));
3820 
3821     lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
3822     set_lgrp_cookie(c);
3823     return true;
3824   }
3825   return false;
3826 }
3827 
3828 // int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
3829 typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
3830 static pset_getloadavg_type pset_getloadavg_ptr = NULL;
3831 
3832 void init_pset_getloadavg_ptr(void) {
3833   pset_getloadavg_ptr =
3834     (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
3835   if (pset_getloadavg_ptr == NULL) {
3836     log_warning(os)("pset_getloadavg function not found");
3837   }
3838 }
3839 
3840 int os::Solaris::_dev_zero_fd = -1;
3841 
3842 // this is called _before_ the global arguments have been parsed
3843 void os::init(void) {
3844   _initial_pid = getpid();
3845 
3846   max_hrtime = first_hrtime = gethrtime();
3847 
3848   init_random(1234567);
3849 
3850   page_size = sysconf(_SC_PAGESIZE);
3851   if (page_size == -1) {
3852     fatal("os_solaris.cpp: os::init: sysconf failed (%s)", os::strerror(errno));
3853   }
3854   init_page_sizes((size_t) page_size);
3855 
3856   Solaris::initialize_system_info();
3857 
3858   int fd = ::open("/dev/zero", O_RDWR);
3859   if (fd < 0) {
3860     fatal("os::init: cannot open /dev/zero (%s)", os::strerror(errno));
3861   } else {
3862     Solaris::set_dev_zero_fd(fd);
3863 
3864     // Close on exec, child won't inherit.
3865     fcntl(fd, F_SETFD, FD_CLOEXEC);
3866   }
3867 
3868   clock_tics_per_sec = CLK_TCK;
3869 
3870   // check if dladdr1() exists; dladdr1 can provide more information than
3871   // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
3872   // and is available on linker patches for 5.7 and 5.8.
3873   // libdl.so must have been loaded, this call is just an entry lookup
3874   void * hdl = dlopen("libdl.so", RTLD_NOW);
3875   if (hdl) {
3876     dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
3877   }
3878 
3879   // main_thread points to the thread that created/loaded the JVM.
3880   main_thread = thr_self();
3881 
3882   // dynamic lookup of functions that may not be available in our lowest
3883   // supported Solaris release
3884   void * handle = dlopen("libc.so.1", RTLD_LAZY);
3885   if (handle != NULL) {
3886     Solaris::_pthread_setname_np =  // from 11.3
3887         (Solaris::pthread_setname_np_func_t)dlsym(handle, "pthread_setname_np");
3888   }
3889 
3890   // Shared Posix initialization
3891   os::Posix::init();
3892 }
3893 
3894 // To install functions for atexit system call
3895 extern "C" {
3896   static void perfMemory_exit_helper() {
3897     perfMemory_exit();
3898   }
3899 }
3900 
3901 // this is called _after_ the global arguments have been parsed
3902 jint os::init_2(void) {
3903   // try to enable extended file IO ASAP, see 6431278
3904   os::Solaris::try_enable_extended_io();
3905 
3906   // Check and sets minimum stack sizes against command line options
3907   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
3908     return JNI_ERR;
3909   }
3910 
3911   Solaris::libthread_init();
3912 
3913   if (UseNUMA) {
3914     if (!Solaris::liblgrp_init()) {
3915       UseNUMA = false;
3916     } else {
3917       size_t lgrp_limit = os::numa_get_groups_num();
3918       int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
3919       size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
3920       FREE_C_HEAP_ARRAY(int, lgrp_ids);
3921       if (lgrp_num < 2) {
3922         // There's only one locality group, disable NUMA unless
3923         // user explicilty forces NUMA optimizations on single-node/UMA systems
3924         UseNUMA = ForceNUMA;
3925       }
3926     }
3927   }
3928 
3929   Solaris::signal_sets_init();
3930   Solaris::init_signal_mem();
3931   Solaris::install_signal_handlers();
3932   // Initialize data for jdk.internal.misc.Signal
3933   if (!ReduceSignalUsage) {
3934     jdk_misc_signal_init();
3935   }
3936 
3937   // initialize synchronization primitives to use either thread or
3938   // lwp synchronization (controlled by UseLWPSynchronization)
3939   Solaris::synchronization_init();
3940   DEBUG_ONLY(os::set_mutex_init_done();)
3941 
3942   if (MaxFDLimit) {
3943     // set the number of file descriptors to max. print out error
3944     // if getrlimit/setrlimit fails but continue regardless.
3945     struct rlimit nbr_files;
3946     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3947     if (status != 0) {
3948       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
3949     } else {
3950       nbr_files.rlim_cur = nbr_files.rlim_max;
3951       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3952       if (status != 0) {
3953         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
3954       }
3955     }
3956   }
3957 
3958   // Calculate theoretical max. size of Threads to guard gainst
3959   // artifical out-of-memory situations, where all available address-
3960   // space has been reserved by thread stacks. Default stack size is 1Mb.
3961   size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
3962     JavaThread::stack_size_at_create() : (1*K*K);
3963   assert(pre_thread_stack_size != 0, "Must have a stack");
3964   // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
3965   // we should start doing Virtual Memory banging. Currently when the threads will
3966   // have used all but 200Mb of space.
3967   size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
3968   Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
3969 
3970   // at-exit methods are called in the reverse order of their registration.
3971   // In Solaris 7 and earlier, atexit functions are called on return from
3972   // main or as a result of a call to exit(3C). There can be only 32 of
3973   // these functions registered and atexit() does not set errno. In Solaris
3974   // 8 and later, there is no limit to the number of functions registered
3975   // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
3976   // functions are called upon dlclose(3DL) in addition to return from main
3977   // and exit(3C).
3978 
3979   if (PerfAllowAtExitRegistration) {
3980     // only register atexit functions if PerfAllowAtExitRegistration is set.
3981     // atexit functions can be delayed until process exit time, which
3982     // can be problematic for embedded VM situations. Embedded VMs should
3983     // call DestroyJavaVM() to assure that VM resources are released.
3984 
3985     // note: perfMemory_exit_helper atexit function may be removed in
3986     // the future if the appropriate cleanup code can be added to the
3987     // VM_Exit VMOperation's doit method.
3988     if (atexit(perfMemory_exit_helper) != 0) {
3989       warning("os::init2 atexit(perfMemory_exit_helper) failed");
3990     }
3991   }
3992 
3993   // Init pset_loadavg function pointer
3994   init_pset_getloadavg_ptr();
3995 
3996   // Shared Posix initialization
3997   os::Posix::init_2();
3998 
3999   return JNI_OK;
4000 }
4001 
4002 // Is a (classpath) directory empty?
4003 bool os::dir_is_empty(const char* path) {
4004   DIR *dir = NULL;
4005   struct dirent *ptr;
4006 
4007   dir = opendir(path);
4008   if (dir == NULL) return true;
4009 
4010   // Scan the directory
4011   bool result = true;
4012   while (result && (ptr = readdir(dir)) != NULL) {
4013     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4014       result = false;
4015     }
4016   }
4017   closedir(dir);
4018   return result;
4019 }
4020 
4021 // This code originates from JDK's sysOpen and open64_w
4022 // from src/solaris/hpi/src/system_md.c
4023 
4024 int os::open(const char *path, int oflag, int mode) {
4025   if (strlen(path) > MAX_PATH - 1) {
4026     errno = ENAMETOOLONG;
4027     return -1;
4028   }
4029   int fd;
4030 
4031   fd = ::open64(path, oflag, mode);
4032   if (fd == -1) return -1;
4033 
4034   // If the open succeeded, the file might still be a directory
4035   {
4036     struct stat64 buf64;
4037     int ret = ::fstat64(fd, &buf64);
4038     int st_mode = buf64.st_mode;
4039 
4040     if (ret != -1) {
4041       if ((st_mode & S_IFMT) == S_IFDIR) {
4042         errno = EISDIR;
4043         ::close(fd);
4044         return -1;
4045       }
4046     } else {
4047       ::close(fd);
4048       return -1;
4049     }
4050   }
4051 
4052   // 32-bit Solaris systems suffer from:
4053   //
4054   // - an historical default soft limit of 256 per-process file
4055   //   descriptors that is too low for many Java programs.
4056   //
4057   // - a design flaw where file descriptors created using stdio
4058   //   fopen must be less than 256, _even_ when the first limit above
4059   //   has been raised.  This can cause calls to fopen (but not calls to
4060   //   open, for example) to fail mysteriously, perhaps in 3rd party
4061   //   native code (although the JDK itself uses fopen).  One can hardly
4062   //   criticize them for using this most standard of all functions.
4063   //
4064   // We attempt to make everything work anyways by:
4065   //
4066   // - raising the soft limit on per-process file descriptors beyond
4067   //   256
4068   //
4069   // - As of Solaris 10u4, we can request that Solaris raise the 256
4070   //   stdio fopen limit by calling function enable_extended_FILE_stdio.
4071   //   This is done in init_2 and recorded in enabled_extended_FILE_stdio
4072   //
4073   // - If we are stuck on an old (pre 10u4) Solaris system, we can
4074   //   workaround the bug by remapping non-stdio file descriptors below
4075   //   256 to ones beyond 256, which is done below.
4076   //
4077   // See:
4078   // 1085341: 32-bit stdio routines should support file descriptors >255
4079   // 6533291: Work around 32-bit Solaris stdio limit of 256 open files
4080   // 6431278: Netbeans crash on 32 bit Solaris: need to call
4081   //          enable_extended_FILE_stdio() in VM initialisation
4082   // Giri Mandalika's blog
4083   // http://technopark02.blogspot.com/2005_05_01_archive.html
4084   //
4085 #ifndef  _LP64
4086   if ((!enabled_extended_FILE_stdio) && fd < 256) {
4087     int newfd = ::fcntl(fd, F_DUPFD, 256);
4088     if (newfd != -1) {
4089       ::close(fd);
4090       fd = newfd;
4091     }
4092   }
4093 #endif // 32-bit Solaris
4094 
4095   // All file descriptors that are opened in the JVM and not
4096   // specifically destined for a subprocess should have the
4097   // close-on-exec flag set.  If we don't set it, then careless 3rd
4098   // party native code might fork and exec without closing all
4099   // appropriate file descriptors (e.g. as we do in closeDescriptors in
4100   // UNIXProcess.c), and this in turn might:
4101   //
4102   // - cause end-of-file to fail to be detected on some file
4103   //   descriptors, resulting in mysterious hangs, or
4104   //
4105   // - might cause an fopen in the subprocess to fail on a system
4106   //   suffering from bug 1085341.
4107   //
4108   // (Yes, the default setting of the close-on-exec flag is a Unix
4109   // design flaw)
4110   //
4111   // See:
4112   // 1085341: 32-bit stdio routines should support file descriptors >255
4113   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4114   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4115   //
4116 #ifdef FD_CLOEXEC
4117   {
4118     int flags = ::fcntl(fd, F_GETFD);
4119     if (flags != -1) {
4120       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4121     }
4122   }
4123 #endif
4124 
4125   return fd;
4126 }
4127 
4128 // create binary file, rewriting existing file if required
4129 int os::create_binary_file(const char* path, bool rewrite_existing) {
4130   int oflags = O_WRONLY | O_CREAT;
4131   if (!rewrite_existing) {
4132     oflags |= O_EXCL;
4133   }
4134   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4135 }
4136 
4137 // return current position of file pointer
4138 jlong os::current_file_offset(int fd) {
4139   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4140 }
4141 
4142 // move file pointer to the specified offset
4143 jlong os::seek_to_file_offset(int fd, jlong offset) {
4144   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4145 }
4146 
4147 jlong os::lseek(int fd, jlong offset, int whence) {
4148   return (jlong) ::lseek64(fd, offset, whence);
4149 }
4150 
4151 int os::ftruncate(int fd, jlong length) {
4152   return ::ftruncate64(fd, length);
4153 }
4154 
4155 int os::fsync(int fd)  {
4156   RESTARTABLE_RETURN_INT(::fsync(fd));
4157 }
4158 
4159 int os::available(int fd, jlong *bytes) {
4160   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
4161          "Assumed _thread_in_native");
4162   jlong cur, end;
4163   int mode;
4164   struct stat64 buf64;
4165 
4166   if (::fstat64(fd, &buf64) >= 0) {
4167     mode = buf64.st_mode;
4168     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4169       int n,ioctl_return;
4170 
4171       RESTARTABLE(::ioctl(fd, FIONREAD, &n), ioctl_return);
4172       if (ioctl_return>= 0) {
4173         *bytes = n;
4174         return 1;
4175       }
4176     }
4177   }
4178   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4179     return 0;
4180   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4181     return 0;
4182   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4183     return 0;
4184   }
4185   *bytes = end - cur;
4186   return 1;
4187 }
4188 
4189 // Map a block of memory.
4190 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4191                         char *addr, size_t bytes, bool read_only,
4192                         bool allow_exec) {
4193   int prot;
4194   int flags;
4195 
4196   if (read_only) {
4197     prot = PROT_READ;
4198     flags = MAP_SHARED;
4199   } else {
4200     prot = PROT_READ | PROT_WRITE;
4201     flags = MAP_PRIVATE;
4202   }
4203 
4204   if (allow_exec) {
4205     prot |= PROT_EXEC;
4206   }
4207 
4208   if (addr != NULL) {
4209     flags |= MAP_FIXED;
4210   }
4211 
4212   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4213                                      fd, file_offset);
4214   if (mapped_address == MAP_FAILED) {
4215     return NULL;
4216   }
4217   return mapped_address;
4218 }
4219 
4220 
4221 // Remap a block of memory.
4222 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4223                           char *addr, size_t bytes, bool read_only,
4224                           bool allow_exec) {
4225   // same as map_memory() on this OS
4226   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4227                         allow_exec);
4228 }
4229 
4230 
4231 // Unmap a block of memory.
4232 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4233   return munmap(addr, bytes) == 0;
4234 }
4235 
4236 void os::pause() {
4237   char filename[MAX_PATH];
4238   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4239     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
4240   } else {
4241     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4242   }
4243 
4244   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4245   if (fd != -1) {
4246     struct stat buf;
4247     ::close(fd);
4248     while (::stat(filename, &buf) == 0) {
4249       (void)::poll(NULL, 0, 100);
4250     }
4251   } else {
4252     jio_fprintf(stderr,
4253                 "Could not open pause file '%s', continuing immediately.\n", filename);
4254   }
4255 }
4256 
4257 #ifndef PRODUCT
4258 #ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4259 // Turn this on if you need to trace synch operations.
4260 // Set RECORD_SYNCH_LIMIT to a large-enough value,
4261 // and call record_synch_enable and record_synch_disable
4262 // around the computation of interest.
4263 
4264 void record_synch(char* name, bool returning);  // defined below
4265 
4266 class RecordSynch {
4267   char* _name;
4268  public:
4269   RecordSynch(char* name) :_name(name) { record_synch(_name, false); }
4270   ~RecordSynch()                       { record_synch(_name, true); }
4271 };
4272 
4273 #define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
4274 extern "C" ret name params {                                    \
4275   typedef ret name##_t params;                                  \
4276   static name##_t* implem = NULL;                               \
4277   static int callcount = 0;                                     \
4278   if (implem == NULL) {                                         \
4279     implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
4280     if (implem == NULL)  fatal(dlerror());                      \
4281   }                                                             \
4282   ++callcount;                                                  \
4283   RecordSynch _rs(#name);                                       \
4284   inner;                                                        \
4285   return implem args;                                           \
4286 }
4287 // in dbx, examine callcounts this way:
4288 // for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
4289 
4290 #define CHECK_POINTER_OK(p) \
4291   (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
4292 #define CHECK_MU \
4293   if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
4294 #define CHECK_CV \
4295   if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
4296 #define CHECK_P(p) \
4297   if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
4298 
4299 #define CHECK_MUTEX(mutex_op) \
4300   CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
4301 
4302 CHECK_MUTEX(   mutex_lock)
4303 CHECK_MUTEX(  _mutex_lock)
4304 CHECK_MUTEX( mutex_unlock)
4305 CHECK_MUTEX(_mutex_unlock)
4306 CHECK_MUTEX( mutex_trylock)
4307 CHECK_MUTEX(_mutex_trylock)
4308 
4309 #define CHECK_COND(cond_op) \
4310   CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU; CHECK_CV);
4311 
4312 CHECK_COND( cond_wait);
4313 CHECK_COND(_cond_wait);
4314 CHECK_COND(_cond_wait_cancel);
4315 
4316 #define CHECK_COND2(cond_op) \
4317   CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU; CHECK_CV);
4318 
4319 CHECK_COND2( cond_timedwait);
4320 CHECK_COND2(_cond_timedwait);
4321 CHECK_COND2(_cond_timedwait_cancel);
4322 
4323 // do the _lwp_* versions too
4324 #define mutex_t lwp_mutex_t
4325 #define cond_t  lwp_cond_t
4326 CHECK_MUTEX(  _lwp_mutex_lock)
4327 CHECK_MUTEX(  _lwp_mutex_unlock)
4328 CHECK_MUTEX(  _lwp_mutex_trylock)
4329 CHECK_MUTEX( __lwp_mutex_lock)
4330 CHECK_MUTEX( __lwp_mutex_unlock)
4331 CHECK_MUTEX( __lwp_mutex_trylock)
4332 CHECK_MUTEX(___lwp_mutex_lock)
4333 CHECK_MUTEX(___lwp_mutex_unlock)
4334 
4335 CHECK_COND(  _lwp_cond_wait);
4336 CHECK_COND( __lwp_cond_wait);
4337 CHECK_COND(___lwp_cond_wait);
4338 
4339 CHECK_COND2(  _lwp_cond_timedwait);
4340 CHECK_COND2( __lwp_cond_timedwait);
4341 #undef mutex_t
4342 #undef cond_t
4343 
4344 CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4345 CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4346 CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4347 CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4348 CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4349 CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4350 CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4351 CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4352 
4353 
4354 // recording machinery:
4355 
4356 enum { RECORD_SYNCH_LIMIT = 200 };
4357 char* record_synch_name[RECORD_SYNCH_LIMIT];
4358 void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
4359 bool record_synch_returning[RECORD_SYNCH_LIMIT];
4360 thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
4361 int record_synch_count = 0;
4362 bool record_synch_enabled = false;
4363 
4364 // in dbx, examine recorded data this way:
4365 // for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
4366 
4367 void record_synch(char* name, bool returning) {
4368   if (record_synch_enabled) {
4369     if (record_synch_count < RECORD_SYNCH_LIMIT) {
4370       record_synch_name[record_synch_count] = name;
4371       record_synch_returning[record_synch_count] = returning;
4372       record_synch_thread[record_synch_count] = thr_self();
4373       record_synch_arg0ptr[record_synch_count] = &name;
4374       record_synch_count++;
4375     }
4376     // put more checking code here:
4377     // ...
4378   }
4379 }
4380 
4381 void record_synch_enable() {
4382   // start collecting trace data, if not already doing so
4383   if (!record_synch_enabled)  record_synch_count = 0;
4384   record_synch_enabled = true;
4385 }
4386 
4387 void record_synch_disable() {
4388   // stop collecting trace data
4389   record_synch_enabled = false;
4390 }
4391 
4392 #endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4393 #endif // PRODUCT
4394 
4395 const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4396 const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
4397                                (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4398 
4399 
4400 // JVMTI & JVM monitoring and management support
4401 // The thread_cpu_time() and current_thread_cpu_time() are only
4402 // supported if is_thread_cpu_time_supported() returns true.
4403 // They are not supported on Solaris T1.
4404 
4405 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4406 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4407 // of a thread.
4408 //
4409 // current_thread_cpu_time() and thread_cpu_time(Thread *)
4410 // returns the fast estimate available on the platform.
4411 
4412 // hrtime_t gethrvtime() return value includes
4413 // user time but does not include system time
4414 jlong os::current_thread_cpu_time() {
4415   return (jlong) gethrvtime();
4416 }
4417 
4418 jlong os::thread_cpu_time(Thread *thread) {
4419   // return user level CPU time only to be consistent with
4420   // what current_thread_cpu_time returns.
4421   // thread_cpu_time_info() must be changed if this changes
4422   return os::thread_cpu_time(thread, false /* user time only */);
4423 }
4424 
4425 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4426   if (user_sys_cpu_time) {
4427     return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4428   } else {
4429     return os::current_thread_cpu_time();
4430   }
4431 }
4432 
4433 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4434   char proc_name[64];
4435   int count;
4436   prusage_t prusage;
4437   jlong lwp_time;
4438   int fd;
4439 
4440   sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
4441           getpid(),
4442           thread->osthread()->lwp_id());
4443   fd = ::open(proc_name, O_RDONLY);
4444   if (fd == -1) return -1;
4445 
4446   do {
4447     count = ::pread(fd,
4448                     (void *)&prusage.pr_utime,
4449                     thr_time_size,
4450                     thr_time_off);
4451   } while (count < 0 && errno == EINTR);
4452   ::close(fd);
4453   if (count < 0) return -1;
4454 
4455   if (user_sys_cpu_time) {
4456     // user + system CPU time
4457     lwp_time = (((jlong)prusage.pr_stime.tv_sec +
4458                  (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
4459                  (jlong)prusage.pr_stime.tv_nsec +
4460                  (jlong)prusage.pr_utime.tv_nsec;
4461   } else {
4462     // user level CPU time only
4463     lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
4464                 (jlong)prusage.pr_utime.tv_nsec;
4465   }
4466 
4467   return (lwp_time);
4468 }
4469 
4470 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4471   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
4472   info_ptr->may_skip_backward = false;    // elapsed time not wall time
4473   info_ptr->may_skip_forward = false;     // elapsed time not wall time
4474   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
4475 }
4476 
4477 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4478   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
4479   info_ptr->may_skip_backward = false;    // elapsed time not wall time
4480   info_ptr->may_skip_forward = false;     // elapsed time not wall time
4481   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
4482 }
4483 
4484 bool os::is_thread_cpu_time_supported() {
4485   return true;
4486 }
4487 
4488 // System loadavg support.  Returns -1 if load average cannot be obtained.
4489 // Return the load average for our processor set if the primitive exists
4490 // (Solaris 9 and later).  Otherwise just return system wide loadavg.
4491 int os::loadavg(double loadavg[], int nelem) {
4492   if (pset_getloadavg_ptr != NULL) {
4493     return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
4494   } else {
4495     return ::getloadavg(loadavg, nelem);
4496   }
4497 }
4498 
4499 //---------------------------------------------------------------------------------
4500 
4501 bool os::find(address addr, outputStream* st) {
4502   Dl_info dlinfo;
4503   memset(&dlinfo, 0, sizeof(dlinfo));
4504   if (dladdr(addr, &dlinfo) != 0) {
4505     st->print(PTR_FORMAT ": ", addr);
4506     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4507       st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
4508     } else if (dlinfo.dli_fbase != NULL) {
4509       st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
4510     } else {
4511       st->print("<absolute address>");
4512     }
4513     if (dlinfo.dli_fname != NULL) {
4514       st->print(" in %s", dlinfo.dli_fname);
4515     }
4516     if (dlinfo.dli_fbase != NULL) {
4517       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4518     }
4519     st->cr();
4520 
4521     if (Verbose) {
4522       // decode some bytes around the PC
4523       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4524       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4525       address       lowest = (address) dlinfo.dli_sname;
4526       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4527       if (begin < lowest)  begin = lowest;
4528       Dl_info dlinfo2;
4529       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4530           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4531         end = (address) dlinfo2.dli_saddr;
4532       }
4533       Disassembler::decode(begin, end, st);
4534     }
4535     return true;
4536   }
4537   return false;
4538 }
4539 
4540 // Following function has been added to support HotSparc's libjvm.so running
4541 // under Solaris production JDK 1.2.2 / 1.3.0.  These came from
4542 // src/solaris/hpi/native_threads in the EVM codebase.
4543 //
4544 // NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
4545 // libraries and should thus be removed. We will leave it behind for a while
4546 // until we no longer want to able to run on top of 1.3.0 Solaris production
4547 // JDK. See 4341971.
4548 
4549 #define STACK_SLACK 0x800
4550 
4551 extern "C" {
4552   intptr_t sysThreadAvailableStackWithSlack() {
4553     stack_t st;
4554     intptr_t retval, stack_top;
4555     retval = thr_stksegment(&st);
4556     assert(retval == 0, "incorrect return value from thr_stksegment");
4557     assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
4558     assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
4559     stack_top=(intptr_t)st.ss_sp-st.ss_size;
4560     return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
4561   }
4562 }
4563 
4564 // ObjectMonitor park-unpark infrastructure ...
4565 //
4566 // We implement Solaris and Linux PlatformEvents with the
4567 // obvious condvar-mutex-flag triple.
4568 // Another alternative that works quite well is pipes:
4569 // Each PlatformEvent consists of a pipe-pair.
4570 // The thread associated with the PlatformEvent
4571 // calls park(), which reads from the input end of the pipe.
4572 // Unpark() writes into the other end of the pipe.
4573 // The write-side of the pipe must be set NDELAY.
4574 // Unfortunately pipes consume a large # of handles.
4575 // Native solaris lwp_park() and lwp_unpark() work nicely, too.
4576 // Using pipes for the 1st few threads might be workable, however.
4577 //
4578 // park() is permitted to return spuriously.
4579 // Callers of park() should wrap the call to park() in
4580 // an appropriate loop.  A litmus test for the correct
4581 // usage of park is the following: if park() were modified
4582 // to immediately return 0 your code should still work,
4583 // albeit degenerating to a spin loop.
4584 //
4585 // In a sense, park()-unpark() just provides more polite spinning
4586 // and polling with the key difference over naive spinning being
4587 // that a parked thread needs to be explicitly unparked() in order
4588 // to wake up and to poll the underlying condition.
4589 //
4590 // Assumption:
4591 //    Only one parker can exist on an event, which is why we allocate
4592 //    them per-thread. Multiple unparkers can coexist.
4593 //
4594 // _Event transitions in park()
4595 //   -1 => -1 : illegal
4596 //    1 =>  0 : pass - return immediately
4597 //    0 => -1 : block; then set _Event to 0 before returning
4598 //
4599 // _Event transitions in unpark()
4600 //    0 => 1 : just return
4601 //    1 => 1 : just return
4602 //   -1 => either 0 or 1; must signal target thread
4603 //         That is, we can safely transition _Event from -1 to either
4604 //         0 or 1.
4605 //
4606 // _Event serves as a restricted-range semaphore.
4607 //   -1 : thread is blocked, i.e. there is a waiter
4608 //    0 : neutral: thread is running or ready,
4609 //        could have been signaled after a wait started
4610 //    1 : signaled - thread is running or ready
4611 //
4612 // Another possible encoding of _Event would be with
4613 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
4614 //
4615 // TODO-FIXME: add DTRACE probes for:
4616 // 1.   Tx parks
4617 // 2.   Ty unparks Tx
4618 // 3.   Tx resumes from park
4619 
4620 
4621 // value determined through experimentation
4622 #define ROUNDINGFIX 11
4623 
4624 // utility to compute the abstime argument to timedwait.
4625 // TODO-FIXME: switch from compute_abstime() to unpackTime().
4626 
4627 static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
4628   // millis is the relative timeout time
4629   // abstime will be the absolute timeout time
4630   if (millis < 0)  millis = 0;
4631   struct timeval now;
4632   int status = gettimeofday(&now, NULL);
4633   assert(status == 0, "gettimeofday");
4634   jlong seconds = millis / 1000;
4635   jlong max_wait_period;
4636 
4637   if (UseLWPSynchronization) {
4638     // forward port of fix for 4275818 (not sleeping long enough)
4639     // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
4640     // _lwp_cond_timedwait() used a round_down algorithm rather
4641     // than a round_up. For millis less than our roundfactor
4642     // it rounded down to 0 which doesn't meet the spec.
4643     // For millis > roundfactor we may return a bit sooner, but
4644     // since we can not accurately identify the patch level and
4645     // this has already been fixed in Solaris 9 and 8 we will
4646     // leave it alone rather than always rounding down.
4647 
4648     if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
4649     // It appears that when we go directly through Solaris _lwp_cond_timedwait()
4650     // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
4651     max_wait_period = 21000000;
4652   } else {
4653     max_wait_period = 50000000;
4654   }
4655   millis %= 1000;
4656   if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
4657     seconds = max_wait_period;
4658   }
4659   abstime->tv_sec = now.tv_sec  + seconds;
4660   long       usec = now.tv_usec + millis * 1000;
4661   if (usec >= 1000000) {
4662     abstime->tv_sec += 1;
4663     usec -= 1000000;
4664   }
4665   abstime->tv_nsec = usec * 1000;
4666   return abstime;
4667 }
4668 
4669 void os::PlatformEvent::park() {           // AKA: down()
4670   // Transitions for _Event:
4671   //   -1 => -1 : illegal
4672   //    1 =>  0 : pass - return immediately
4673   //    0 => -1 : block; then set _Event to 0 before returning
4674 
4675   // Invariant: Only the thread associated with the Event/PlatformEvent
4676   // may call park().
4677   assert(_nParked == 0, "invariant");
4678 
4679   int v;
4680   for (;;) {
4681     v = _Event;
4682     if (Atomic::cmpxchg(&_Event, v, v-1) == v) break;
4683   }
4684   guarantee(v >= 0, "invariant");
4685   if (v == 0) {
4686     // Do this the hard way by blocking ...
4687     // See http://monaco.sfbay/detail.jsf?cr=5094058.
4688     int status = os::Solaris::mutex_lock(_mutex);
4689     assert_status(status == 0, status, "mutex_lock");
4690     guarantee(_nParked == 0, "invariant");
4691     ++_nParked;
4692     while (_Event < 0) {
4693       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4694       // Treat this the same as if the wait was interrupted
4695       // With usr/lib/lwp going to kernel, always handle ETIME
4696       status = os::Solaris::cond_wait(_cond, _mutex);
4697       if (status == ETIME) status = EINTR;
4698       assert_status(status == 0 || status == EINTR, status, "cond_wait");
4699     }
4700     --_nParked;
4701     _Event = 0;
4702     status = os::Solaris::mutex_unlock(_mutex);
4703     assert_status(status == 0, status, "mutex_unlock");
4704     // Paranoia to ensure our locked and lock-free paths interact
4705     // correctly with each other.
4706     OrderAccess::fence();
4707   }
4708 }
4709 
4710 int os::PlatformEvent::park(jlong millis) {
4711   // Transitions for _Event:
4712   //   -1 => -1 : illegal
4713   //    1 =>  0 : pass - return immediately
4714   //    0 => -1 : block; then set _Event to 0 before returning
4715 
4716   guarantee(_nParked == 0, "invariant");
4717   int v;
4718   for (;;) {
4719     v = _Event;
4720     if (Atomic::cmpxchg(&_Event, v, v-1) == v) break;
4721   }
4722   guarantee(v >= 0, "invariant");
4723   if (v != 0) return OS_OK;
4724 
4725   int ret = OS_TIMEOUT;
4726   timestruc_t abst;
4727   compute_abstime(&abst, millis);
4728 
4729   // See http://monaco.sfbay/detail.jsf?cr=5094058.
4730   int status = os::Solaris::mutex_lock(_mutex);
4731   assert_status(status == 0, status, "mutex_lock");
4732   guarantee(_nParked == 0, "invariant");
4733   ++_nParked;
4734   while (_Event < 0) {
4735     int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
4736     assert_status(status == 0 || status == EINTR ||
4737                   status == ETIME || status == ETIMEDOUT,
4738                   status, "cond_timedwait");
4739     if (!FilterSpuriousWakeups) break;                // previous semantics
4740     if (status == ETIME || status == ETIMEDOUT) break;
4741     // We consume and ignore EINTR and spurious wakeups.
4742   }
4743   --_nParked;
4744   if (_Event >= 0) ret = OS_OK;
4745   _Event = 0;
4746   status = os::Solaris::mutex_unlock(_mutex);
4747   assert_status(status == 0, status, "mutex_unlock");
4748   // Paranoia to ensure our locked and lock-free paths interact
4749   // correctly with each other.
4750   OrderAccess::fence();
4751   return ret;
4752 }
4753 
4754 void os::PlatformEvent::unpark() {
4755   // Transitions for _Event:
4756   //    0 => 1 : just return
4757   //    1 => 1 : just return
4758   //   -1 => either 0 or 1; must signal target thread
4759   //         That is, we can safely transition _Event from -1 to either
4760   //         0 or 1.
4761   // See also: "Semaphores in Plan 9" by Mullender & Cox
4762   //
4763   // Note: Forcing a transition from "-1" to "1" on an unpark() means
4764   // that it will take two back-to-back park() calls for the owning
4765   // thread to block. This has the benefit of forcing a spurious return
4766   // from the first park() call after an unpark() call which will help
4767   // shake out uses of park() and unpark() without condition variables.
4768 
4769   if (Atomic::xchg(&_Event, 1) >= 0) return;
4770 
4771   // If the thread associated with the event was parked, wake it.
4772   // Wait for the thread assoc with the PlatformEvent to vacate.
4773   int status = os::Solaris::mutex_lock(_mutex);
4774   assert_status(status == 0, status, "mutex_lock");
4775   int AnyWaiters = _nParked;
4776   status = os::Solaris::mutex_unlock(_mutex);
4777   assert_status(status == 0, status, "mutex_unlock");
4778   guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4779   if (AnyWaiters != 0) {
4780     // Note that we signal() *after* dropping the lock for "immortal" Events.
4781     // This is safe and avoids a common class of  futile wakeups.  In rare
4782     // circumstances this can cause a thread to return prematurely from
4783     // cond_{timed}wait() but the spurious wakeup is benign and the victim
4784     // will simply re-test the condition and re-park itself.
4785     // This provides particular benefit if the underlying platform does not
4786     // provide wait morphing.
4787     status = os::Solaris::cond_signal(_cond);
4788     assert_status(status == 0, status, "cond_signal");
4789   }
4790 }
4791 
4792 // JSR166
4793 // -------------------------------------------------------
4794 
4795 // The solaris and linux implementations of park/unpark are fairly
4796 // conservative for now, but can be improved. They currently use a
4797 // mutex/condvar pair, plus _counter.
4798 // Park decrements _counter if > 0, else does a condvar wait.  Unpark
4799 // sets count to 1 and signals condvar.  Only one thread ever waits
4800 // on the condvar. Contention seen when trying to park implies that someone
4801 // is unparking you, so don't wait. And spurious returns are fine, so there
4802 // is no need to track notifications.
4803 
4804 #define MAX_SECS 100000000
4805 
4806 // This code is common to linux and solaris and will be moved to a
4807 // common place in dolphin.
4808 //
4809 // The passed in time value is either a relative time in nanoseconds
4810 // or an absolute time in milliseconds. Either way it has to be unpacked
4811 // into suitable seconds and nanoseconds components and stored in the
4812 // given timespec structure.
4813 // Given time is a 64-bit value and the time_t used in the timespec is only
4814 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
4815 // overflow if times way in the future are given. Further on Solaris versions
4816 // prior to 10 there is a restriction (see cond_timedwait) that the specified
4817 // number of seconds, in abstime, is less than current_time  + 100,000,000.
4818 // As it will be 28 years before "now + 100000000" will overflow we can
4819 // ignore overflow and just impose a hard-limit on seconds using the value
4820 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
4821 // years from "now".
4822 //
4823 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
4824   assert(time > 0, "convertTime");
4825 
4826   struct timeval now;
4827   int status = gettimeofday(&now, NULL);
4828   assert(status == 0, "gettimeofday");
4829 
4830   time_t max_secs = now.tv_sec + MAX_SECS;
4831 
4832   if (isAbsolute) {
4833     jlong secs = time / 1000;
4834     if (secs > max_secs) {
4835       absTime->tv_sec = max_secs;
4836     } else {
4837       absTime->tv_sec = secs;
4838     }
4839     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4840   } else {
4841     jlong secs = time / NANOSECS_PER_SEC;
4842     if (secs >= MAX_SECS) {
4843       absTime->tv_sec = max_secs;
4844       absTime->tv_nsec = 0;
4845     } else {
4846       absTime->tv_sec = now.tv_sec + secs;
4847       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4848       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4849         absTime->tv_nsec -= NANOSECS_PER_SEC;
4850         ++absTime->tv_sec; // note: this must be <= max_secs
4851       }
4852     }
4853   }
4854   assert(absTime->tv_sec >= 0, "tv_sec < 0");
4855   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4856   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4857   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4858 }
4859 
4860 void Parker::park(bool isAbsolute, jlong time) {
4861   // Ideally we'd do something useful while spinning, such
4862   // as calling unpackTime().
4863 
4864   // Optional fast-path check:
4865   // Return immediately if a permit is available.
4866   // We depend on Atomic::xchg() having full barrier semantics
4867   // since we are doing a lock-free update to _counter.
4868   if (Atomic::xchg(&_counter, 0) > 0) return;
4869 
4870   // Optional fast-exit: Check interrupt before trying to wait
4871   Thread* thread = Thread::current();
4872   assert(thread->is_Java_thread(), "Must be JavaThread");
4873   JavaThread *jt = (JavaThread *)thread;
4874   if (jt->is_interrupted(false)) {
4875     return;
4876   }
4877 
4878   // First, demultiplex/decode time arguments
4879   timespec absTime;
4880   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4881     return;
4882   }
4883   if (time > 0) {
4884     // Warning: this code might be exposed to the old Solaris time
4885     // round-down bugs.  Grep "roundingFix" for details.
4886     unpackTime(&absTime, isAbsolute, time);
4887   }
4888 
4889   // Enter safepoint region
4890   // Beware of deadlocks such as 6317397.
4891   // The per-thread Parker:: _mutex is a classic leaf-lock.
4892   // In particular a thread must never block on the Threads_lock while
4893   // holding the Parker:: mutex.  If safepoints are pending both the
4894   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4895   ThreadBlockInVM tbivm(jt);
4896 
4897   // Can't access interrupt state now that we are _thread_blocked. If we've
4898   // been interrupted since we checked above then _counter will be > 0.
4899 
4900   // Don't wait if cannot get lock since interference arises from
4901   // unblocking.
4902   if (os::Solaris::mutex_trylock(_mutex) != 0) {
4903     return;
4904   }
4905 
4906   int status;
4907 
4908   if (_counter > 0)  { // no wait needed
4909     _counter = 0;
4910     status = os::Solaris::mutex_unlock(_mutex);
4911     assert(status == 0, "invariant");
4912     // Paranoia to ensure our locked and lock-free paths interact
4913     // correctly with each other and Java-level accesses.
4914     OrderAccess::fence();
4915     return;
4916   }
4917 
4918   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4919   jt->set_suspend_equivalent();
4920   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4921 
4922   // Do this the hard way by blocking ...
4923   // See http://monaco.sfbay/detail.jsf?cr=5094058.
4924   if (time == 0) {
4925     status = os::Solaris::cond_wait(_cond, _mutex);
4926   } else {
4927     status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
4928   }
4929   // Note that an untimed cond_wait() can sometimes return ETIME on older
4930   // versions of the Solaris.
4931   assert_status(status == 0 || status == EINTR ||
4932                 status == ETIME || status == ETIMEDOUT,
4933                 status, "cond_timedwait");
4934 
4935   _counter = 0;
4936   status = os::Solaris::mutex_unlock(_mutex);
4937   assert_status(status == 0, status, "mutex_unlock");
4938   // Paranoia to ensure our locked and lock-free paths interact
4939   // correctly with each other and Java-level accesses.
4940   OrderAccess::fence();
4941 
4942   // If externally suspended while waiting, re-suspend
4943   if (jt->handle_special_suspend_equivalent_condition()) {
4944     jt->java_suspend_self();
4945   }
4946 }
4947 
4948 void Parker::unpark() {
4949   int status = os::Solaris::mutex_lock(_mutex);
4950   assert(status == 0, "invariant");
4951   const int s = _counter;
4952   _counter = 1;
4953   status = os::Solaris::mutex_unlock(_mutex);
4954   assert(status == 0, "invariant");
4955 
4956   if (s < 1) {
4957     status = os::Solaris::cond_signal(_cond);
4958     assert(status == 0, "invariant");
4959   }
4960 }
4961 
4962 // Platform Mutex/Monitor implementations
4963 
4964 os::PlatformMutex::PlatformMutex() {
4965   int status = os::Solaris::mutex_init(&_mutex);
4966   assert_status(status == 0, status, "mutex_init");
4967 }
4968 
4969 os::PlatformMutex::~PlatformMutex() {
4970   int status = os::Solaris::mutex_destroy(&_mutex);
4971   assert_status(status == 0, status, "mutex_destroy");
4972 }
4973 
4974 void os::PlatformMutex::lock() {
4975   int status = os::Solaris::mutex_lock(&_mutex);
4976   assert_status(status == 0, status, "mutex_lock");
4977 }
4978 
4979 void os::PlatformMutex::unlock() {
4980   int status = os::Solaris::mutex_unlock(&_mutex);
4981   assert_status(status == 0, status, "mutex_unlock");
4982 }
4983 
4984 bool os::PlatformMutex::try_lock() {
4985   int status = os::Solaris::mutex_trylock(&_mutex);
4986   assert_status(status == 0 || status == EBUSY, status, "mutex_trylock");
4987   return status == 0;
4988 }
4989 
4990 os::PlatformMonitor::PlatformMonitor() {
4991   int status = os::Solaris::cond_init(&_cond);
4992   assert_status(status == 0, status, "cond_init");
4993 }
4994 
4995 os::PlatformMonitor::~PlatformMonitor() {
4996   int status = os::Solaris::cond_destroy(&_cond);
4997   assert_status(status == 0, status, "cond_destroy");
4998 }
4999 
5000 // Must already be locked
5001 int os::PlatformMonitor::wait(jlong millis) {
5002   assert(millis >= 0, "negative timeout");
5003   if (millis > 0) {
5004     timestruc_t abst;
5005     int ret = OS_TIMEOUT;
5006     compute_abstime(&abst, millis);
5007     int status = os::Solaris::cond_timedwait(&_cond, &_mutex, &abst);
5008     assert_status(status == 0 || status == EINTR ||
5009                   status == ETIME || status == ETIMEDOUT,
5010                   status, "cond_timedwait");
5011     // EINTR acts as spurious wakeup - which is permitted anyway
5012     if (status == 0 || status == EINTR) {
5013       ret = OS_OK;
5014     }
5015     return ret;
5016   } else {
5017     int status = os::Solaris::cond_wait(&_cond, &_mutex);
5018     assert_status(status == 0 || status == EINTR,
5019                   status, "cond_wait");
5020     return OS_OK;
5021   }
5022 }
5023 
5024 void os::PlatformMonitor::notify() {
5025   int status = os::Solaris::cond_signal(&_cond);
5026   assert_status(status == 0, status, "cond_signal");
5027 }
5028 
5029 void os::PlatformMonitor::notify_all() {
5030   int status = os::Solaris::cond_broadcast(&_cond);
5031   assert_status(status == 0, status, "cond_broadcast");
5032 }
5033 
5034 extern char** environ;
5035 
5036 // Run the specified command in a separate process. Return its exit value,
5037 // or -1 on failure (e.g. can't fork a new process).
5038 // Unlike system(), this function can be called from signal handler. It
5039 // doesn't block SIGINT et al.
5040 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5041   char * argv[4];
5042   argv[0] = (char *)"sh";
5043   argv[1] = (char *)"-c";
5044   argv[2] = cmd;
5045   argv[3] = NULL;
5046 
5047   // fork is async-safe, fork1 is not so can't use in signal handler
5048   pid_t pid;
5049   Thread* t = Thread::current_or_null_safe();
5050   if (t != NULL && t->is_inside_signal_handler()) {
5051     pid = fork();
5052   } else {
5053     pid = fork1();
5054   }
5055 
5056   if (pid < 0) {
5057     // fork failed
5058     warning("fork failed: %s", os::strerror(errno));
5059     return -1;
5060 
5061   } else if (pid == 0) {
5062     // child process
5063 
5064     // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
5065     execve("/usr/bin/sh", argv, environ);
5066 
5067     // execve failed
5068     _exit(-1);
5069 
5070   } else  {
5071     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5072     // care about the actual exit code, for now.
5073 
5074     int status;
5075 
5076     // Wait for the child process to exit.  This returns immediately if
5077     // the child has already exited. */
5078     while (waitpid(pid, &status, 0) < 0) {
5079       switch (errno) {
5080       case ECHILD: return 0;
5081       case EINTR: break;
5082       default: return -1;
5083       }
5084     }
5085 
5086     if (WIFEXITED(status)) {
5087       // The child exited normally; get its exit code.
5088       return WEXITSTATUS(status);
5089     } else if (WIFSIGNALED(status)) {
5090       // The child exited because of a signal
5091       // The best value to return is 0x80 + signal number,
5092       // because that is what all Unix shells do, and because
5093       // it allows callers to distinguish between process exit and
5094       // process death by signal.
5095       return 0x80 + WTERMSIG(status);
5096     } else {
5097       // Unknown exit code; pass it through
5098       return status;
5099     }
5100   }
5101 }
5102 
5103 size_t os::write(int fd, const void *buf, unsigned int nBytes) {
5104   size_t res;
5105   RESTARTABLE((size_t) ::write(fd, buf, (size_t) nBytes), res);
5106   return res;
5107 }
5108 
5109 int os::close(int fd) {
5110   return ::close(fd);
5111 }
5112 
5113 int os::socket_close(int fd) {
5114   return ::close(fd);
5115 }
5116 
5117 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5118   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5119          "Assumed _thread_in_native");
5120   RESTARTABLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags));
5121 }
5122 
5123 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5124   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5125          "Assumed _thread_in_native");
5126   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5127 }
5128 
5129 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5130   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5131 }
5132 
5133 // As both poll and select can be interrupted by signals, we have to be
5134 // prepared to restart the system call after updating the timeout, unless
5135 // a poll() is done with timeout == -1, in which case we repeat with this
5136 // "wait forever" value.
5137 
5138 int os::connect(int fd, struct sockaddr *him, socklen_t len) {
5139   int _result;
5140   _result = ::connect(fd, him, len);
5141 
5142   // On Solaris, when a connect() call is interrupted, the connection
5143   // can be established asynchronously (see 6343810). Subsequent calls
5144   // to connect() must check the errno value which has the semantic
5145   // described below (copied from the connect() man page). Handling
5146   // of asynchronously established connections is required for both
5147   // blocking and non-blocking sockets.
5148   //     EINTR            The  connection  attempt  was   interrupted
5149   //                      before  any data arrived by the delivery of
5150   //                      a signal. The connection, however, will  be
5151   //                      established asynchronously.
5152   //
5153   //     EINPROGRESS      The socket is non-blocking, and the connec-
5154   //                      tion  cannot  be completed immediately.
5155   //
5156   //     EALREADY         The socket is non-blocking,  and a previous
5157   //                      connection  attempt  has  not yet been com-
5158   //                      pleted.
5159   //
5160   //     EISCONN          The socket is already connected.
5161   if (_result == OS_ERR && errno == EINTR) {
5162     // restarting a connect() changes its errno semantics
5163     RESTARTABLE(::connect(fd, him, len), _result);
5164     // undo these changes
5165     if (_result == OS_ERR) {
5166       if (errno == EALREADY) {
5167         errno = EINPROGRESS; // fall through
5168       } else if (errno == EISCONN) {
5169         errno = 0;
5170         return OS_OK;
5171       }
5172     }
5173   }
5174   return _result;
5175 }
5176 
5177 // Get the default path to the core file
5178 // Returns the length of the string
5179 int os::get_core_path(char* buffer, size_t bufferSize) {
5180   const char* p = get_current_directory(buffer, bufferSize);
5181 
5182   if (p == NULL) {
5183     assert(p != NULL, "failed to get current directory");
5184     return 0;
5185   }
5186 
5187   jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
5188                                               p, current_process_id());
5189 
5190   return strlen(buffer);
5191 }
5192 
5193 bool os::supports_map_sync() {
5194   return false;
5195 }
5196 
5197 #ifndef PRODUCT
5198 void TestReserveMemorySpecial_test() {
5199   // No tests available for this platform
5200 }
5201 #endif
5202 
5203 bool os::start_debugging(char *buf, int buflen) {
5204   int len = (int)strlen(buf);
5205   char *p = &buf[len];
5206 
5207   jio_snprintf(p, buflen-len,
5208                "\n\n"
5209                "Do you want to debug the problem?\n\n"
5210                "To debug, run 'dbx - %d'; then switch to thread " INTX_FORMAT "\n"
5211                "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
5212                "Otherwise, press RETURN to abort...",
5213                os::current_process_id(), os::current_thread_id());
5214 
5215   bool yes = os::message_box("Unexpected Error", buf);
5216 
5217   if (yes) {
5218     // yes, user asked VM to launch debugger
5219     jio_snprintf(buf, sizeof(buf), "dbx - %d", os::current_process_id());
5220 
5221     os::fork_and_exec(buf);
5222     yes = false;
5223   }
5224   return yes;
5225 }