/* * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package jdk.nashorn.internal.runtime.linker; import static jdk.nashorn.internal.codegen.CompilerConstants.staticCallNoLookup; import static jdk.nashorn.internal.runtime.ECMAErrors.typeError; import java.lang.invoke.CallSite; import java.lang.invoke.ConstantCallSite; import java.lang.invoke.MethodHandle; import java.lang.invoke.MethodHandles; import java.lang.invoke.MethodHandles.Lookup; import java.lang.invoke.MethodType; import jdk.internal.dynalink.CallSiteDescriptor; import jdk.internal.dynalink.DynamicLinker; import jdk.internal.dynalink.DynamicLinkerFactory; import jdk.internal.dynalink.GuardedInvocationFilter; import jdk.internal.dynalink.beans.BeansLinker; import jdk.internal.dynalink.beans.StaticClass; import jdk.internal.dynalink.linker.GuardedInvocation; import jdk.internal.dynalink.linker.LinkRequest; import jdk.internal.dynalink.linker.LinkerServices; import jdk.internal.dynalink.linker.MethodTypeConversionStrategy; import jdk.internal.dynalink.support.TypeUtilities; import jdk.nashorn.api.scripting.JSObject; import jdk.nashorn.internal.codegen.CompilerConstants.Call; import jdk.nashorn.internal.codegen.ObjectClassGenerator; import jdk.nashorn.internal.lookup.MethodHandleFactory; import jdk.nashorn.internal.lookup.MethodHandleFunctionality; import jdk.nashorn.internal.runtime.ECMAException; import jdk.nashorn.internal.runtime.JSType; import jdk.nashorn.internal.runtime.OptimisticReturnFilters; import jdk.nashorn.internal.runtime.ScriptFunction; import jdk.nashorn.internal.runtime.ScriptRuntime; import jdk.nashorn.internal.runtime.options.Options; /** * This class houses bootstrap method for invokedynamic instructions generated by compiler. */ public final class Bootstrap { /** Reference to the seed boostrap function */ public static final Call BOOTSTRAP = staticCallNoLookup(Bootstrap.class, "bootstrap", CallSite.class, Lookup.class, String.class, MethodType.class, int.class); private static final MethodHandleFunctionality MH = MethodHandleFactory.getFunctionality(); private static final MethodHandle VOID_TO_OBJECT = MH.constant(Object.class, ScriptRuntime.UNDEFINED); /** * The default dynalink relink threshold for megamorphism is 8. In the case * of object fields only, it is fine. However, with dual fields, in order to get * performance on benchmarks with a lot of object instantiation and then field * reassignment, it can take slightly more relinks to become stable with type * changes swapping out an entire property map and making a map guard fail. * Since we need to set this value statically it must work with possibly changing * optimistic types and dual fields settings. A higher value does not seem to have * any other negative performance implication when running with object-only fields, * so we choose a higher value here. * * See for example octane.gbemu, run with --log=fields:warning to study * megamorphic behavior */ private static final int NASHORN_DEFAULT_UNSTABLE_RELINK_THRESHOLD = 16; // do not create me!! private Bootstrap() { } private static final DynamicLinker dynamicLinker; static { final DynamicLinkerFactory factory = new DynamicLinkerFactory(); final NashornBeansLinker nashornBeansLinker = new NashornBeansLinker(); factory.setPrioritizedLinkers( new NashornLinker(), new NashornPrimitiveLinker(), new NashornStaticClassLinker(), new BoundCallableLinker(), new JavaSuperAdapterLinker(), new JSObjectLinker(nashornBeansLinker), new BrowserJSObjectLinker(nashornBeansLinker), new ReflectionCheckLinker()); factory.setFallbackLinkers(nashornBeansLinker, new NashornBottomLinker()); factory.setSyncOnRelink(true); factory.setPrelinkFilter(new GuardedInvocationFilter() { @Override public GuardedInvocation filter(final GuardedInvocation inv, final LinkRequest request, final LinkerServices linkerServices) { final CallSiteDescriptor desc = request.getCallSiteDescriptor(); return OptimisticReturnFilters.filterOptimisticReturnValue(inv, desc).asType(linkerServices, desc.getMethodType()); } }); factory.setAutoConversionStrategy(new MethodTypeConversionStrategy() { @Override public MethodHandle asType(final MethodHandle target, final MethodType newType) { return unboxReturnType(target, newType); } }); factory.setInternalObjectsFilter(NashornBeansLinker.createHiddenObjectFilter()); final int relinkThreshold = Options.getIntProperty("nashorn.unstable.relink.threshold", NASHORN_DEFAULT_UNSTABLE_RELINK_THRESHOLD); if (relinkThreshold > -1) { factory.setUnstableRelinkThreshold(relinkThreshold); } // Linkers for any additional language runtimes deployed alongside Nashorn will be picked up by the factory. factory.setClassLoader(Bootstrap.class.getClassLoader()); dynamicLinker = factory.createLinker(); } /** * Returns if the given object is a "callable" * @param obj object to be checked for callability * @return true if the obj is callable */ public static boolean isCallable(final Object obj) { if (obj == ScriptRuntime.UNDEFINED || obj == null) { return false; } return obj instanceof ScriptFunction || isJSObjectFunction(obj) || BeansLinker.isDynamicMethod(obj) || obj instanceof BoundCallable || isFunctionalInterfaceObject(obj) || obj instanceof StaticClass; } /** * Returns true if the given object is a strict callable * @param callable the callable object to be checked for strictness * @return true if the obj is a strict callable, false if it is a non-strict callable. * @throws ECMAException with {@code TypeError} if the object is not a callable. */ public static boolean isStrictCallable(final Object callable) { if (callable instanceof ScriptFunction) { return ((ScriptFunction)callable).isStrict(); } else if (isJSObjectFunction(callable)) { return ((JSObject)callable).isStrictFunction(); } else if (callable instanceof BoundCallable) { return isStrictCallable(((BoundCallable)callable).getCallable()); } else if (BeansLinker.isDynamicMethod(callable) || callable instanceof StaticClass) { return false; } throw notFunction(callable); } private static ECMAException notFunction(final Object obj) { return typeError("not.a.function", ScriptRuntime.safeToString(obj)); } private static boolean isJSObjectFunction(final Object obj) { return obj instanceof JSObject && ((JSObject)obj).isFunction(); } /** * Returns if the given object is a dynalink Dynamic method * @param obj object to be checked * @return true if the obj is a dynamic method */ public static boolean isDynamicMethod(final Object obj) { return BeansLinker.isDynamicMethod(obj instanceof BoundCallable ? ((BoundCallable)obj).getCallable() : obj); } /** * Returns if the given object is an instance of an interface annotated with * java.lang.FunctionalInterface * @param obj object to be checked * @return true if the obj is an instance of @FunctionalInterface interface */ public static boolean isFunctionalInterfaceObject(final Object obj) { return !JSType.isPrimitive(obj) && (NashornBeansLinker.getFunctionalInterfaceMethodName(obj.getClass()) != null); } /** * Create a call site and link it for Nashorn. This version of the method conforms to the invokedynamic bootstrap * method expected signature and is referenced from Nashorn generated bytecode as the bootstrap method for all * invokedynamic instructions. * @param lookup MethodHandle lookup. Ignored as Nashorn only uses public lookup. * @param opDesc Dynalink dynamic operation descriptor. * @param type Method type. * @param flags flags for call type, trace/profile etc. * @return CallSite with MethodHandle to appropriate method or null if not found. */ public static CallSite bootstrap(final Lookup lookup, final String opDesc, final MethodType type, final int flags) { return dynamicLinker.link(LinkerCallSite.newLinkerCallSite(lookup, opDesc, type, flags)); } /** * Boostrapper for math calls that may overflow * @param lookup lookup * @param name name of operation * @param type method type * @param programPoint program point to bind to callsite * * @return callsite for a math intrinsic node */ public static CallSite mathBootstrap(final Lookup lookup, final String name, final MethodType type, final int programPoint) { final MethodHandle mh; switch (name) { case "iadd": mh = JSType.ADD_EXACT.methodHandle(); break; case "isub": mh = JSType.SUB_EXACT.methodHandle(); break; case "imul": mh = JSType.MUL_EXACT.methodHandle(); break; case "idiv": mh = JSType.DIV_EXACT.methodHandle(); break; case "irem": mh = JSType.REM_EXACT.methodHandle(); break; case "ineg": mh = JSType.NEGATE_EXACT.methodHandle(); break; default: throw new AssertionError("unsupported math intrinsic"); } return new ConstantCallSite(MH.insertArguments(mh, mh.type().parameterCount() - 1, programPoint)); } /** * Returns a dynamic invoker for a specified dynamic operation using the public lookup. You can use this method to * create a method handle that when invoked acts completely as if it were a Nashorn-linked call site. An overview of * available dynamic operations can be found in the * Dynalink User Guide, but we'll show few * examples here: * * Few additional remarks: * * @param opDesc Dynalink dynamic operation descriptor. * @param rtype the return type for the operation * @param ptypes the parameter types for the operation * @return MethodHandle for invoking the operation. */ public static MethodHandle createDynamicInvoker(final String opDesc, final Class rtype, final Class... ptypes) { return createDynamicInvoker(opDesc, MethodType.methodType(rtype, ptypes)); } /** * Returns a dynamic invoker for a specified dynamic operation using the public lookup. Similar to * {@link #createDynamicInvoker(String, Class, Class...)} but with an additional parameter to * set the call site flags of the dynamic invoker. * @param opDesc Dynalink dynamic operation descriptor. * @param flags the call site flags for the operation * @param rtype the return type for the operation * @param ptypes the parameter types for the operation * @return MethodHandle for invoking the operation. */ public static MethodHandle createDynamicInvoker(final String opDesc, final int flags, final Class rtype, final Class... ptypes) { return bootstrap(MethodHandles.publicLookup(), opDesc, MethodType.methodType(rtype, ptypes), flags).dynamicInvoker(); } /** * Returns a dynamic invoker for a specified dynamic operation using the public lookup. Similar to * {@link #createDynamicInvoker(String, Class, Class...)} but with return and parameter types composed into a * method type in the signature. See the discussion of that method for details. * @param opDesc Dynalink dynamic operation descriptor. * @param type the method type for the operation * @return MethodHandle for invoking the operation. */ public static MethodHandle createDynamicInvoker(final String opDesc, final MethodType type) { return bootstrap(MethodHandles.publicLookup(), opDesc, type, 0).dynamicInvoker(); } /** * Binds any object Nashorn can use as a [[Callable]] to a receiver and optionally arguments. * @param callable the callable to bind * @param boundThis the bound "this" value. * @param boundArgs the bound arguments. Can be either null or empty array to signify no arguments are bound. * @return a bound callable. * @throws ECMAException with {@code TypeError} if the object is not a callable. */ public static Object bindCallable(final Object callable, final Object boundThis, final Object[] boundArgs) { if (callable instanceof ScriptFunction) { return ((ScriptFunction)callable).createBound(boundThis, boundArgs); } else if (callable instanceof BoundCallable) { return ((BoundCallable)callable).bind(boundArgs); } else if (isCallable(callable)) { return new BoundCallable(callable, boundThis, boundArgs); } throw notFunction(callable); } /** * Creates a super-adapter for an adapter, that is, an adapter to the adapter that allows invocation of superclass * methods on it. * @param adapter the original adapter * @return a new adapter that can be used to invoke super methods on the original adapter. */ public static Object createSuperAdapter(final Object adapter) { return new JavaSuperAdapter(adapter); } /** * If the given class is a reflection-specific class (anything in {@code java.lang.reflect} and * {@code java.lang.invoke} package, as well a {@link Class} and any subclass of {@link ClassLoader}) and there is * a security manager in the system, then it checks the {@code nashorn.JavaReflection} {@code RuntimePermission}. * @param clazz the class being tested * @param isStatic is access checked for static members (or instance members) */ public static void checkReflectionAccess(final Class clazz, final boolean isStatic) { ReflectionCheckLinker.checkReflectionAccess(clazz, isStatic); } /** * Returns the Nashorn's internally used dynamic linker's services object. Note that in code that is processing a * linking request, you will normally use the {@code LinkerServices} object passed by whatever top-level linker * invoked the linking (if the call site is in Nashorn-generated code, you'll get this object anyway). You should * only resort to retrieving a linker services object using this method when you need some linker services (e.g. * type converter method handles) outside of a code path that is linking a call site. * @return Nashorn's internal dynamic linker's services object. */ public static LinkerServices getLinkerServices() { return dynamicLinker.getLinkerServices(); } /** * Takes a guarded invocation, and ensures its method and guard conform to the type of the call descriptor, using * all type conversions allowed by the linker's services. This method is used by Nashorn's linkers as a last step * before returning guarded invocations. Most of the code used to produce the guarded invocations does not make an * effort to coordinate types of the methods, and so a final type adjustment before a guarded invocation is returned * to the aggregating linker is the responsibility of the linkers themselves. * @param inv the guarded invocation that needs to be type-converted. Can be null. * @param linkerServices the linker services object providing the type conversions. * @param desc the call site descriptor to whose method type the invocation needs to conform. * @return the type-converted guarded invocation. If input is null, null is returned. If the input invocation * already conforms to the requested type, it is returned unchanged. */ static GuardedInvocation asTypeSafeReturn(final GuardedInvocation inv, final LinkerServices linkerServices, final CallSiteDescriptor desc) { return inv == null ? null : inv.asTypeSafeReturn(linkerServices, desc.getMethodType()); } /** * Adapts the return type of the method handle with {@code explicitCastArguments} when it is an unboxing * conversion. This will ensure that nulls are unwrapped to false or 0. * @param target the target method handle * @param newType the desired new type. Note that this method does not adapt the method handle completely to the * new type, it only adapts the return type; this is allowed as per * {@link DynamicLinkerFactory#setAutoConversionStrategy(MethodTypeConversionStrategy)}, which is what this method * is used for. * @return the method handle with adapted return type, if it required an unboxing conversion. */ private static MethodHandle unboxReturnType(final MethodHandle target, final MethodType newType) { final MethodType targetType = target.type(); final Class oldReturnType = targetType.returnType(); final Class newReturnType = newType.returnType(); if (TypeUtilities.isWrapperType(oldReturnType)) { if (newReturnType.isPrimitive()) { // The contract of setAutoConversionStrategy is such that the difference between newType and targetType // can only be JLS method invocation conversions. assert TypeUtilities.isMethodInvocationConvertible(oldReturnType, newReturnType); return MethodHandles.explicitCastArguments(target, targetType.changeReturnType(newReturnType)); } } else if (oldReturnType == void.class && newReturnType == Object.class) { return MethodHandles.filterReturnValue(target, VOID_TO_OBJECT); } return target; } }