1 /*
   2  * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package jdk.nashorn.internal.runtime.linker;
  27 
  28 import static jdk.nashorn.internal.codegen.CompilerConstants.staticCallNoLookup;
  29 import static jdk.nashorn.internal.runtime.ECMAErrors.typeError;
  30 
  31 import java.lang.invoke.CallSite;
  32 import java.lang.invoke.ConstantCallSite;
  33 import java.lang.invoke.MethodHandle;
  34 import java.lang.invoke.MethodHandles;
  35 import java.lang.invoke.MethodHandles.Lookup;
  36 import java.lang.invoke.MethodType;
  37 import jdk.internal.dynalink.CallSiteDescriptor;
  38 import jdk.internal.dynalink.DynamicLinker;
  39 import jdk.internal.dynalink.DynamicLinkerFactory;
  40 import jdk.internal.dynalink.GuardedInvocationFilter;
  41 import jdk.internal.dynalink.beans.BeansLinker;
  42 import jdk.internal.dynalink.beans.StaticClass;
  43 import jdk.internal.dynalink.linker.GuardedInvocation;
  44 import jdk.internal.dynalink.linker.LinkRequest;
  45 import jdk.internal.dynalink.linker.LinkerServices;
  46 import jdk.internal.dynalink.linker.MethodTypeConversionStrategy;
  47 import jdk.internal.dynalink.support.TypeUtilities;
  48 import jdk.nashorn.api.scripting.JSObject;
  49 import jdk.nashorn.internal.codegen.CompilerConstants.Call;
  50 import jdk.nashorn.internal.codegen.ObjectClassGenerator;
  51 import jdk.nashorn.internal.lookup.MethodHandleFactory;
  52 import jdk.nashorn.internal.lookup.MethodHandleFunctionality;
  53 import jdk.nashorn.internal.runtime.ECMAException;
  54 import jdk.nashorn.internal.runtime.JSType;
  55 import jdk.nashorn.internal.runtime.OptimisticReturnFilters;
  56 import jdk.nashorn.internal.runtime.ScriptFunction;
  57 import jdk.nashorn.internal.runtime.ScriptRuntime;
  58 import jdk.nashorn.internal.runtime.options.Options;
  59 
  60 /**
  61  * This class houses bootstrap method for invokedynamic instructions generated by compiler.
  62  */
  63 public final class Bootstrap {
  64     /** Reference to the seed boostrap function */
  65     public static final Call BOOTSTRAP = staticCallNoLookup(Bootstrap.class, "bootstrap", CallSite.class, Lookup.class, String.class, MethodType.class, int.class);
  66 
  67     private static final MethodHandleFunctionality MH = MethodHandleFactory.getFunctionality();
  68 
  69     private static final MethodHandle VOID_TO_OBJECT = MH.constant(Object.class, ScriptRuntime.UNDEFINED);
  70 
  71     /**
  72      * The default dynalink relink threshold for megamorphism is 8. In the case
  73      * of object fields only, it is fine. However, with dual fields, in order to get
  74      * performance on benchmarks with a lot of object instantiation and then field
  75      * reassignment, it can take slightly more relinks to become stable with type
  76      * changes swapping out an entire property map and making a map guard fail.
  77      * Since we need to set this value statically it must work with possibly changing
  78      * optimistic types and dual fields settings. A higher value does not seem to have
  79      * any other negative performance implication when running with object-only fields,
  80      * so we choose a higher value here.
  81      *
  82      * See for example octane.gbemu, run with --log=fields:warning to study
  83      * megamorphic behavior
  84      */
  85     private static final int NASHORN_DEFAULT_UNSTABLE_RELINK_THRESHOLD = 16;
  86 
  87     // do not create me!!
  88     private Bootstrap() {
  89     }
  90 
  91     private static final DynamicLinker dynamicLinker;
  92     static {
  93         final DynamicLinkerFactory factory = new DynamicLinkerFactory();
  94         final NashornBeansLinker nashornBeansLinker = new NashornBeansLinker();
  95         factory.setPrioritizedLinkers(
  96             new NashornLinker(),
  97             new NashornPrimitiveLinker(),
  98             new NashornStaticClassLinker(),
  99             new BoundCallableLinker(),
 100             new JavaSuperAdapterLinker(),
 101             new JSObjectLinker(nashornBeansLinker),
 102             new BrowserJSObjectLinker(nashornBeansLinker),
 103             new ReflectionCheckLinker());
 104         factory.setFallbackLinkers(nashornBeansLinker, new NashornBottomLinker());
 105         factory.setSyncOnRelink(true);
 106         factory.setPrelinkFilter(new GuardedInvocationFilter() {
 107             @Override
 108             public GuardedInvocation filter(final GuardedInvocation inv, final LinkRequest request, final LinkerServices linkerServices) {
 109                 final CallSiteDescriptor desc = request.getCallSiteDescriptor();
 110                 return OptimisticReturnFilters.filterOptimisticReturnValue(inv, desc).asType(linkerServices, desc.getMethodType());
 111             }
 112         });
 113         factory.setAutoConversionStrategy(new MethodTypeConversionStrategy() {
 114             @Override
 115             public MethodHandle asType(final MethodHandle target, final MethodType newType) {
 116                 return unboxReturnType(target, newType);
 117             }
 118         });
 119         factory.setInternalObjectsFilter(NashornBeansLinker.createHiddenObjectFilter());
 120         final int relinkThreshold = Options.getIntProperty("nashorn.unstable.relink.threshold", NASHORN_DEFAULT_UNSTABLE_RELINK_THRESHOLD);
 121         if (relinkThreshold > -1) {
 122             factory.setUnstableRelinkThreshold(relinkThreshold);
 123         }
 124 
 125         // Linkers for any additional language runtimes deployed alongside Nashorn will be picked up by the factory.
 126         factory.setClassLoader(Bootstrap.class.getClassLoader());
 127 
 128         dynamicLinker = factory.createLinker();
 129     }
 130 
 131     /**
 132      * Returns if the given object is a "callable"
 133      * @param obj object to be checked for callability
 134      * @return true if the obj is callable
 135      */
 136     public static boolean isCallable(final Object obj) {
 137         if (obj == ScriptRuntime.UNDEFINED || obj == null) {
 138             return false;
 139         }
 140 
 141         return obj instanceof ScriptFunction ||
 142             isJSObjectFunction(obj) ||
 143             BeansLinker.isDynamicMethod(obj) ||
 144             obj instanceof BoundCallable ||
 145             isFunctionalInterfaceObject(obj) ||
 146             obj instanceof StaticClass;
 147     }
 148 
 149     /**
 150      * Returns true if the given object is a strict callable
 151      * @param callable the callable object to be checked for strictness
 152      * @return true if the obj is a strict callable, false if it is a non-strict callable.
 153      * @throws ECMAException with {@code TypeError} if the object is not a callable.
 154      */
 155     public static boolean isStrictCallable(final Object callable) {
 156         if (callable instanceof ScriptFunction) {
 157             return ((ScriptFunction)callable).isStrict();
 158         } else if (isJSObjectFunction(callable)) {
 159             return ((JSObject)callable).isStrictFunction();
 160         } else if (callable instanceof BoundCallable) {
 161             return isStrictCallable(((BoundCallable)callable).getCallable());
 162         } else if (BeansLinker.isDynamicMethod(callable) || callable instanceof StaticClass) {
 163             return false;
 164         }
 165         throw notFunction(callable);
 166     }
 167 
 168     private static ECMAException notFunction(final Object obj) {
 169         return typeError("not.a.function", ScriptRuntime.safeToString(obj));
 170     }
 171 
 172     private static boolean isJSObjectFunction(final Object obj) {
 173         return obj instanceof JSObject && ((JSObject)obj).isFunction();
 174     }
 175 
 176     /**
 177      * Returns if the given object is a dynalink Dynamic method
 178      * @param obj object to be checked
 179      * @return true if the obj is a dynamic method
 180      */
 181     public static boolean isDynamicMethod(final Object obj) {
 182         return BeansLinker.isDynamicMethod(obj instanceof BoundCallable ? ((BoundCallable)obj).getCallable() : obj);
 183     }
 184 
 185     /**
 186      * Returns if the given object is an instance of an interface annotated with
 187      * java.lang.FunctionalInterface
 188      * @param obj object to be checked
 189      * @return true if the obj is an instance of @FunctionalInterface interface
 190      */
 191     public static boolean isFunctionalInterfaceObject(final Object obj) {
 192         return !JSType.isPrimitive(obj) && (NashornBeansLinker.getFunctionalInterfaceMethodName(obj.getClass()) != null);
 193     }
 194 
 195     /**
 196      * Create a call site and link it for Nashorn. This version of the method conforms to the invokedynamic bootstrap
 197      * method expected signature and is referenced from Nashorn generated bytecode as the bootstrap method for all
 198      * invokedynamic instructions.
 199      * @param lookup MethodHandle lookup. Ignored as Nashorn only uses public lookup.
 200      * @param opDesc Dynalink dynamic operation descriptor.
 201      * @param type   Method type.
 202      * @param flags  flags for call type, trace/profile etc.
 203      * @return CallSite with MethodHandle to appropriate method or null if not found.
 204      */
 205     public static CallSite bootstrap(final Lookup lookup, final String opDesc, final MethodType type, final int flags) {
 206         return dynamicLinker.link(LinkerCallSite.newLinkerCallSite(lookup, opDesc, type, flags));
 207     }
 208 
 209     /**
 210      * Boostrapper for math calls that may overflow
 211      * @param lookup         lookup
 212      * @param name           name of operation
 213      * @param type           method type
 214      * @param programPoint   program point to bind to callsite
 215      *
 216      * @return callsite for a math intrinsic node
 217      */
 218     public static CallSite mathBootstrap(final MethodHandles.Lookup lookup, final String name, final MethodType type, final int programPoint) {
 219         final MethodHandle mh;
 220         switch (name) {
 221         case "iadd":
 222             mh = JSType.ADD_EXACT.methodHandle();
 223             break;
 224         case "isub":
 225             mh = JSType.SUB_EXACT.methodHandle();
 226             break;
 227         case "imul":
 228             mh = JSType.MUL_EXACT.methodHandle();
 229             break;
 230         case "idiv":
 231             mh = JSType.DIV_EXACT.methodHandle();
 232             break;
 233         case "irem":
 234             mh = JSType.REM_EXACT.methodHandle();
 235             break;
 236         case "ineg":
 237             mh = JSType.NEGATE_EXACT.methodHandle();
 238             break;
 239         case "ladd":
 240             mh = JSType.ADD_EXACT_LONG.methodHandle();
 241             break;
 242         case "lsub":
 243             mh = JSType.SUB_EXACT_LONG.methodHandle();
 244             break;
 245         case "lmul":
 246             mh = JSType.MUL_EXACT_LONG.methodHandle();
 247             break;
 248         case "ldiv":
 249             mh = JSType.DIV_EXACT_LONG.methodHandle();
 250             break;
 251         case "lrem":
 252             mh = JSType.REM_EXACT_LONG.methodHandle();
 253             break;
 254         case "lneg":
 255             mh = JSType.NEGATE_EXACT_LONG.methodHandle();
 256             break;
 257         default:
 258             throw new AssertionError("unsupported math intrinsic");
 259         }
 260         return new ConstantCallSite(MH.insertArguments(mh, mh.type().parameterCount() - 1, programPoint));
 261     }
 262 
 263     /**
 264      * Returns a dynamic invoker for a specified dynamic operation using the public lookup. You can use this method to
 265      * create a method handle that when invoked acts completely as if it were a Nashorn-linked call site. An overview of
 266      * available dynamic operations can be found in the
 267      * <a href="https://github.com/szegedi/dynalink/wiki/User-Guide-0.6">Dynalink User Guide</a>, but we'll show few
 268      * examples here:
 269      * <ul>
 270      *   <li>Get a named property with fixed name:
 271      *     <pre>
 272      * MethodHandle getColor = Boostrap.createDynamicInvoker("dyn:getProp:color", Object.class, Object.class);
 273      * Object obj = ...; // somehow obtain the object
 274      * Object color = getColor.invokeExact(obj);
 275      *     </pre>
 276      *   </li>
 277      *   <li>Get a named property with variable name:
 278      *     <pre>
 279      * MethodHandle getProperty = Boostrap.createDynamicInvoker("dyn:getElem", Object.class, Object.class, String.class);
 280      * Object obj = ...; // somehow obtain the object
 281      * Object color = getProperty.invokeExact(obj, "color");
 282      * Object shape = getProperty.invokeExact(obj, "shape");
 283      * MethodHandle getNumProperty = Boostrap.createDynamicInvoker("dyn:getElem", Object.class, Object.class, int.class);
 284      * Object elem42 = getNumProperty.invokeExact(obj, 42);
 285      *     </pre>
 286      *   </li>
 287      *   <li>Set a named property with fixed name:
 288      *     <pre>
 289      * MethodHandle setColor = Boostrap.createDynamicInvoker("dyn:setProp:color", void.class, Object.class, Object.class);
 290      * Object obj = ...; // somehow obtain the object
 291      * setColor.invokeExact(obj, Color.BLUE);
 292      *     </pre>
 293      *   </li>
 294      *   <li>Set a property with variable name:
 295      *     <pre>
 296      * MethodHandle setProperty = Boostrap.createDynamicInvoker("dyn:setElem", void.class, Object.class, String.class, Object.class);
 297      * Object obj = ...; // somehow obtain the object
 298      * setProperty.invokeExact(obj, "color", Color.BLUE);
 299      * setProperty.invokeExact(obj, "shape", Shape.CIRCLE);
 300      *     </pre>
 301      *   </li>
 302      *   <li>Call a function on an object; two-step variant. This is the actual variant used by Nashorn-generated code:
 303      *     <pre>
 304      * MethodHandle findFooFunction = Boostrap.createDynamicInvoker("dyn:getMethod:foo", Object.class, Object.class);
 305      * Object obj = ...; // somehow obtain the object
 306      * Object foo_fn = findFooFunction.invokeExact(obj);
 307      * MethodHandle callFunctionWithTwoArgs = Boostrap.createDynamicInvoker("dyn:call", Object.class, Object.class, Object.class, Object.class, Object.class);
 308      * // Note: "call" operation takes a function, then a "this" value, then the arguments:
 309      * Object foo_retval = callFunctionWithTwoArgs.invokeExact(foo_fn, obj, arg1, arg2);
 310      *     </pre>
 311      *   </li>
 312      *   <li>Call a function on an object; single-step variant. Although Nashorn doesn't use this variant and never
 313      *   emits any INVOKEDYNAMIC instructions with {@code dyn:getMethod}, it still supports this standard Dynalink
 314      *   operation:
 315      *     <pre>
 316      * MethodHandle callFunctionFooWithTwoArgs = Boostrap.createDynamicInvoker("dyn:callMethod:foo", Object.class, Object.class, Object.class, Object.class);
 317      * Object obj = ...; // somehow obtain the object
 318      * Object foo_retval = callFunctionFooWithTwoArgs.invokeExact(obj, arg1, arg2);
 319      *     </pre>
 320      *   </li>
 321      * </ul>
 322      * Few additional remarks:
 323      * <ul>
 324      * <li>Just as Nashorn works with any Java object, the invokers returned from this method can also be applied to
 325      * arbitrary Java objects in addition to Nashorn JavaScript objects.</li>
 326      * <li>For invoking a named function on an object, you can also use the {@link InvokeByName} convenience class.</li>
 327      * <li>For Nashorn objects {@code getElem}, {@code getProp}, and {@code getMethod} are handled almost identically,
 328      * since JavaScript doesn't distinguish between different kinds of properties on an object. Either can be used with
 329      * fixed property name or a variable property name. The only significant difference is handling of missing
 330      * properties: {@code getMethod} for a missing member will link to a potential invocation of
 331      * {@code __noSuchMethod__} on the object, {@code getProp} for a missing member will link to a potential invocation
 332      * of {@code __noSuchProperty__}, while {@code getElem} for a missing member will link to an empty getter.</li>
 333      * <li>In similar vein, {@code setElem} and {@code setProp} are handled identically on Nashorn objects.</li>
 334      * <li>There's no rule that the variable property identifier has to be a {@code String} for {@code getProp/setProp}
 335      * and {@code int} for {@code getElem/setElem}. You can declare their type to be {@code int}, {@code double},
 336      * {@code Object}, and so on regardless of the kind of the operation.</li>
 337      * <li>You can be as specific in parameter types as you want. E.g. if you know that the receiver of the operation
 338      * will always be {@code ScriptObject}, you can pass {@code ScriptObject.class} as its parameter type. If you happen
 339      * to link to a method that expects different types, (you can use these invokers on POJOs too, after all, and end up
 340      * linking with their methods that have strongly-typed signatures), all necessary conversions allowed by either Java
 341      * or JavaScript will be applied: if invoked methods specify either primitive or wrapped Java numeric types, or
 342      * {@code String} or {@code boolean/Boolean}, then the parameters might be subjected to standard ECMAScript
 343      * {@code ToNumber}, {@code ToString}, and {@code ToBoolean} conversion, respectively. Less obviously, if the
 344      * expected parameter type is a SAM type, and you pass a JavaScript function, a proxy object implementing the SAM
 345      * type and delegating to the function will be passed. Linkage can often be optimized when linkers have more
 346      * specific type information than "everything can be an object".</li>
 347      * <li>You can also be as specific in return types as you want. For return types any necessary type conversion
 348      * available in either Java or JavaScript will be automatically applied, similar to the process described for
 349      * parameters, only in reverse direction:  if you specify any either primitive or wrapped Java numeric type, or
 350      * {@code String} or {@code boolean/Boolean}, then the return values will be subjected to standard ECMAScript
 351      * {@code ToNumber}, {@code ToString}, and {@code ToBoolean} conversion, respectively. Less obviously, if the return
 352      * type is a SAM type, and the return value is a JavaScript function, a proxy object implementing the SAM type and
 353      * delegating to the function will be returned.</li>
 354      * </ul>
 355      * @param opDesc Dynalink dynamic operation descriptor.
 356      * @param rtype the return type for the operation
 357      * @param ptypes the parameter types for the operation
 358      * @return MethodHandle for invoking the operation.
 359      */
 360     public static MethodHandle createDynamicInvoker(final String opDesc, final Class<?> rtype, final Class<?>... ptypes) {
 361         return createDynamicInvoker(opDesc, MethodType.methodType(rtype, ptypes));
 362     }
 363 
 364     /**
 365      * Returns a dynamic invoker for a specified dynamic operation using the public lookup. Similar to
 366      * {@link #createDynamicInvoker(String, Class, Class...)} but with an additional parameter to
 367      * set the call site flags of the dynamic invoker.
 368      * @param opDesc Dynalink dynamic operation descriptor.
 369      * @param flags the call site flags for the operation
 370      * @param rtype the return type for the operation
 371      * @param ptypes the parameter types for the operation
 372      * @return MethodHandle for invoking the operation.
 373      */
 374     public static MethodHandle createDynamicInvoker(final String opDesc, final int flags, final Class<?> rtype, final Class<?>... ptypes) {
 375         return bootstrap(MethodHandles.publicLookup(), opDesc, MethodType.methodType(rtype, ptypes), flags).dynamicInvoker();
 376     }
 377 
 378     /**
 379      * Returns a dynamic invoker for a specified dynamic operation using the public lookup. Similar to
 380      * {@link #createDynamicInvoker(String, Class, Class...)} but with return and parameter types composed into a
 381      * method type in the signature. See the discussion of that method for details.
 382      * @param opDesc Dynalink dynamic operation descriptor.
 383      * @param type the method type for the operation
 384      * @return MethodHandle for invoking the operation.
 385      */
 386     public static MethodHandle createDynamicInvoker(final String opDesc, final MethodType type) {
 387         return bootstrap(MethodHandles.publicLookup(), opDesc, type, 0).dynamicInvoker();
 388     }
 389 
 390     /**
 391      * Binds any object Nashorn can use as a [[Callable]] to a receiver and optionally arguments.
 392      * @param callable the callable to bind
 393      * @param boundThis the bound "this" value.
 394      * @param boundArgs the bound arguments. Can be either null or empty array to signify no arguments are bound.
 395      * @return a bound callable.
 396      * @throws ECMAException with {@code TypeError} if the object is not a callable.
 397      */
 398     public static Object bindCallable(final Object callable, final Object boundThis, final Object[] boundArgs) {
 399         if (callable instanceof ScriptFunction) {
 400             return ((ScriptFunction)callable).createBound(boundThis, boundArgs);
 401         } else if (callable instanceof BoundCallable) {
 402             return ((BoundCallable)callable).bind(boundArgs);
 403         } else if (isCallable(callable)) {
 404             return new BoundCallable(callable, boundThis, boundArgs);
 405         }
 406         throw notFunction(callable);
 407     }
 408 
 409     /**
 410      * Creates a super-adapter for an adapter, that is, an adapter to the adapter that allows invocation of superclass
 411      * methods on it.
 412      * @param adapter the original adapter
 413      * @return a new adapter that can be used to invoke super methods on the original adapter.
 414      */
 415     public static Object createSuperAdapter(final Object adapter) {
 416         return new JavaSuperAdapter(adapter);
 417     }
 418 
 419     /**
 420      * If the given class is a reflection-specific class (anything in {@code java.lang.reflect} and
 421      * {@code java.lang.invoke} package, as well a {@link Class} and any subclass of {@link ClassLoader}) and there is
 422      * a security manager in the system, then it checks the {@code nashorn.JavaReflection} {@code RuntimePermission}.
 423      * @param clazz the class being tested
 424      * @param isStatic is access checked for static members (or instance members)
 425      */
 426     public static void checkReflectionAccess(final Class<?> clazz, final boolean isStatic) {
 427         ReflectionCheckLinker.checkReflectionAccess(clazz, isStatic);
 428     }
 429 
 430     /**
 431      * Returns the Nashorn's internally used dynamic linker's services object. Note that in code that is processing a
 432      * linking request, you will normally use the {@code LinkerServices} object passed by whatever top-level linker
 433      * invoked the linking (if the call site is in Nashorn-generated code, you'll get this object anyway). You should
 434      * only resort to retrieving a linker services object using this method when you need some linker services (e.g.
 435      * type converter method handles) outside of a code path that is linking a call site.
 436      * @return Nashorn's internal dynamic linker's services object.
 437      */
 438     public static LinkerServices getLinkerServices() {
 439         return dynamicLinker.getLinkerServices();
 440     }
 441 
 442     /**
 443      * Takes a guarded invocation, and ensures its method and guard conform to the type of the call descriptor, using
 444      * all type conversions allowed by the linker's services. This method is used by Nashorn's linkers as a last step
 445      * before returning guarded invocations. Most of the code used to produce the guarded invocations does not make an
 446      * effort to coordinate types of the methods, and so a final type adjustment before a guarded invocation is returned
 447      * to the aggregating linker is the responsibility of the linkers themselves.
 448      * @param inv the guarded invocation that needs to be type-converted. Can be null.
 449      * @param linkerServices the linker services object providing the type conversions.
 450      * @param desc the call site descriptor to whose method type the invocation needs to conform.
 451      * @return the type-converted guarded invocation. If input is null, null is returned. If the input invocation
 452      * already conforms to the requested type, it is returned unchanged.
 453      */
 454     static GuardedInvocation asTypeSafeReturn(final GuardedInvocation inv, final LinkerServices linkerServices, final CallSiteDescriptor desc) {
 455         return inv == null ? null : inv.asTypeSafeReturn(linkerServices, desc.getMethodType());
 456     }
 457 
 458     /**
 459      * Adapts the return type of the method handle with {@code explicitCastArguments} when it is an unboxing
 460      * conversion. This will ensure that nulls are unwrapped to false or 0.
 461      * @param target the target method handle
 462      * @param newType the desired new type. Note that this method does not adapt the method handle completely to the
 463      * new type, it only adapts the return type; this is allowed as per
 464      * {@link DynamicLinkerFactory#setAutoConversionStrategy(MethodTypeConversionStrategy)}, which is what this method
 465      * is used for.
 466      * @return the method handle with adapted return type, if it required an unboxing conversion.
 467      */
 468     private static MethodHandle unboxReturnType(final MethodHandle target, final MethodType newType) {
 469         final MethodType targetType = target.type();
 470         final Class<?> oldReturnType = targetType.returnType();
 471         final Class<?> newReturnType = newType.returnType();
 472         if (TypeUtilities.isWrapperType(oldReturnType)) {
 473             if (newReturnType.isPrimitive()) {
 474                 // The contract of setAutoConversionStrategy is such that the difference between newType and targetType
 475                 // can only be JLS method invocation conversions.
 476                 assert TypeUtilities.isMethodInvocationConvertible(oldReturnType, newReturnType);
 477                 return MethodHandles.explicitCastArguments(target, targetType.changeReturnType(newReturnType));
 478             }
 479         } else if (oldReturnType == void.class && newReturnType == Object.class) {
 480             return MethodHandles.filterReturnValue(target, VOID_TO_OBJECT);
 481         }
 482         return target;
 483     }
 484 }