1 /*
   2  * Copyright (c) 2010, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package jdk.nashorn.internal.codegen;
  27 
  28 import static jdk.nashorn.internal.codegen.ClassEmitter.Flag.PRIVATE;
  29 import static jdk.nashorn.internal.codegen.ClassEmitter.Flag.STATIC;
  30 import static jdk.nashorn.internal.codegen.CompilerConstants.ARGUMENTS;
  31 import static jdk.nashorn.internal.codegen.CompilerConstants.CALLEE;
  32 import static jdk.nashorn.internal.codegen.CompilerConstants.CREATE_PROGRAM_FUNCTION;
  33 import static jdk.nashorn.internal.codegen.CompilerConstants.GET_MAP;
  34 import static jdk.nashorn.internal.codegen.CompilerConstants.GET_STRING;
  35 import static jdk.nashorn.internal.codegen.CompilerConstants.QUICK_PREFIX;
  36 import static jdk.nashorn.internal.codegen.CompilerConstants.REGEX_PREFIX;
  37 import static jdk.nashorn.internal.codegen.CompilerConstants.SCOPE;
  38 import static jdk.nashorn.internal.codegen.CompilerConstants.SPLIT_PREFIX;
  39 import static jdk.nashorn.internal.codegen.CompilerConstants.THIS;
  40 import static jdk.nashorn.internal.codegen.CompilerConstants.VARARGS;
  41 import static jdk.nashorn.internal.codegen.CompilerConstants.interfaceCallNoLookup;
  42 import static jdk.nashorn.internal.codegen.CompilerConstants.methodDescriptor;
  43 import static jdk.nashorn.internal.codegen.CompilerConstants.staticCallNoLookup;
  44 import static jdk.nashorn.internal.codegen.CompilerConstants.typeDescriptor;
  45 import static jdk.nashorn.internal.codegen.CompilerConstants.virtualCallNoLookup;
  46 import static jdk.nashorn.internal.ir.Symbol.HAS_SLOT;
  47 import static jdk.nashorn.internal.ir.Symbol.IS_INTERNAL;
  48 import static jdk.nashorn.internal.runtime.UnwarrantedOptimismException.INVALID_PROGRAM_POINT;
  49 import static jdk.nashorn.internal.runtime.UnwarrantedOptimismException.isValid;
  50 import static jdk.nashorn.internal.runtime.linker.NashornCallSiteDescriptor.CALLSITE_APPLY_TO_CALL;
  51 import static jdk.nashorn.internal.runtime.linker.NashornCallSiteDescriptor.CALLSITE_DECLARE;
  52 import static jdk.nashorn.internal.runtime.linker.NashornCallSiteDescriptor.CALLSITE_FAST_SCOPE;
  53 import static jdk.nashorn.internal.runtime.linker.NashornCallSiteDescriptor.CALLSITE_OPTIMISTIC;
  54 import static jdk.nashorn.internal.runtime.linker.NashornCallSiteDescriptor.CALLSITE_PROGRAM_POINT_SHIFT;
  55 import static jdk.nashorn.internal.runtime.linker.NashornCallSiteDescriptor.CALLSITE_SCOPE;
  56 
  57 import java.io.PrintWriter;
  58 import java.util.ArrayDeque;
  59 import java.util.ArrayList;
  60 import java.util.Arrays;
  61 import java.util.BitSet;
  62 import java.util.Collection;
  63 import java.util.Collections;
  64 import java.util.Deque;
  65 import java.util.EnumSet;
  66 import java.util.HashMap;
  67 import java.util.HashSet;
  68 import java.util.Iterator;
  69 import java.util.LinkedList;
  70 import java.util.List;
  71 import java.util.Map;
  72 import java.util.Set;
  73 import java.util.TreeMap;
  74 import java.util.function.Supplier;
  75 import jdk.nashorn.internal.AssertsEnabled;
  76 import jdk.nashorn.internal.IntDeque;
  77 import jdk.nashorn.internal.codegen.ClassEmitter.Flag;
  78 import jdk.nashorn.internal.codegen.CompilerConstants.Call;
  79 import jdk.nashorn.internal.codegen.types.ArrayType;
  80 import jdk.nashorn.internal.codegen.types.Type;
  81 import jdk.nashorn.internal.ir.AccessNode;
  82 import jdk.nashorn.internal.ir.BaseNode;
  83 import jdk.nashorn.internal.ir.BinaryNode;
  84 import jdk.nashorn.internal.ir.Block;
  85 import jdk.nashorn.internal.ir.BlockStatement;
  86 import jdk.nashorn.internal.ir.BreakNode;
  87 import jdk.nashorn.internal.ir.CallNode;
  88 import jdk.nashorn.internal.ir.CaseNode;
  89 import jdk.nashorn.internal.ir.CatchNode;
  90 import jdk.nashorn.internal.ir.ContinueNode;
  91 import jdk.nashorn.internal.ir.EmptyNode;
  92 import jdk.nashorn.internal.ir.Expression;
  93 import jdk.nashorn.internal.ir.ExpressionStatement;
  94 import jdk.nashorn.internal.ir.ForNode;
  95 import jdk.nashorn.internal.ir.FunctionNode;
  96 import jdk.nashorn.internal.ir.GetSplitState;
  97 import jdk.nashorn.internal.ir.IdentNode;
  98 import jdk.nashorn.internal.ir.IfNode;
  99 import jdk.nashorn.internal.ir.IndexNode;
 100 import jdk.nashorn.internal.ir.JoinPredecessorExpression;
 101 import jdk.nashorn.internal.ir.JumpStatement;
 102 import jdk.nashorn.internal.ir.JumpToInlinedFinally;
 103 import jdk.nashorn.internal.ir.LabelNode;
 104 import jdk.nashorn.internal.ir.LexicalContext;
 105 import jdk.nashorn.internal.ir.LexicalContextNode;
 106 import jdk.nashorn.internal.ir.LiteralNode;
 107 import jdk.nashorn.internal.ir.LiteralNode.ArrayLiteralNode;
 108 import jdk.nashorn.internal.ir.LiteralNode.PrimitiveLiteralNode;
 109 import jdk.nashorn.internal.ir.LocalVariableConversion;
 110 import jdk.nashorn.internal.ir.LoopNode;
 111 import jdk.nashorn.internal.ir.Node;
 112 import jdk.nashorn.internal.ir.ObjectNode;
 113 import jdk.nashorn.internal.ir.Optimistic;
 114 import jdk.nashorn.internal.ir.PropertyNode;
 115 import jdk.nashorn.internal.ir.ReturnNode;
 116 import jdk.nashorn.internal.ir.RuntimeNode;
 117 import jdk.nashorn.internal.ir.RuntimeNode.Request;
 118 import jdk.nashorn.internal.ir.SetSplitState;
 119 import jdk.nashorn.internal.ir.SplitReturn;
 120 import jdk.nashorn.internal.ir.Splittable;
 121 import jdk.nashorn.internal.ir.Statement;
 122 import jdk.nashorn.internal.ir.SwitchNode;
 123 import jdk.nashorn.internal.ir.Symbol;
 124 import jdk.nashorn.internal.ir.TernaryNode;
 125 import jdk.nashorn.internal.ir.ThrowNode;
 126 import jdk.nashorn.internal.ir.TryNode;
 127 import jdk.nashorn.internal.ir.UnaryNode;
 128 import jdk.nashorn.internal.ir.VarNode;
 129 import jdk.nashorn.internal.ir.WhileNode;
 130 import jdk.nashorn.internal.ir.WithNode;
 131 import jdk.nashorn.internal.ir.visitor.NodeOperatorVisitor;
 132 import jdk.nashorn.internal.ir.visitor.SimpleNodeVisitor;
 133 import jdk.nashorn.internal.objects.Global;
 134 import jdk.nashorn.internal.parser.Lexer.RegexToken;
 135 import jdk.nashorn.internal.parser.TokenType;
 136 import jdk.nashorn.internal.runtime.Context;
 137 import jdk.nashorn.internal.runtime.Debug;
 138 import jdk.nashorn.internal.runtime.ECMAException;
 139 import jdk.nashorn.internal.runtime.JSType;
 140 import jdk.nashorn.internal.runtime.OptimisticReturnFilters;
 141 import jdk.nashorn.internal.runtime.PropertyMap;
 142 import jdk.nashorn.internal.runtime.RecompilableScriptFunctionData;
 143 import jdk.nashorn.internal.runtime.RewriteException;
 144 import jdk.nashorn.internal.runtime.Scope;
 145 import jdk.nashorn.internal.runtime.ScriptEnvironment;
 146 import jdk.nashorn.internal.runtime.ScriptFunction;
 147 import jdk.nashorn.internal.runtime.ScriptObject;
 148 import jdk.nashorn.internal.runtime.ScriptRuntime;
 149 import jdk.nashorn.internal.runtime.Source;
 150 import jdk.nashorn.internal.runtime.Undefined;
 151 import jdk.nashorn.internal.runtime.UnwarrantedOptimismException;
 152 import jdk.nashorn.internal.runtime.arrays.ArrayData;
 153 import jdk.nashorn.internal.runtime.linker.LinkerCallSite;
 154 import jdk.nashorn.internal.runtime.logging.DebugLogger;
 155 import jdk.nashorn.internal.runtime.logging.Loggable;
 156 import jdk.nashorn.internal.runtime.logging.Logger;
 157 import jdk.nashorn.internal.runtime.options.Options;
 158 
 159 /**
 160  * This is the lowest tier of the code generator. It takes lowered ASTs emitted
 161  * from Lower and emits Java byte code. The byte code emission logic is broken
 162  * out into MethodEmitter. MethodEmitter works internally with a type stack, and
 163  * keeps track of the contents of the byte code stack. This way we avoid a large
 164  * number of special cases on the form
 165  * <pre>
 166  * if (type == INT) {
 167  *     visitInsn(ILOAD, slot);
 168  * } else if (type == DOUBLE) {
 169  *     visitInsn(DOUBLE, slot);
 170  * }
 171  * </pre>
 172  * This quickly became apparent when the code generator was generalized to work
 173  * with all types, and not just numbers or objects.
 174  * <p>
 175  * The CodeGenerator visits nodes only once and emits bytecode for them.
 176  */
 177 @Logger(name="codegen")
 178 final class CodeGenerator extends NodeOperatorVisitor<CodeGeneratorLexicalContext> implements Loggable {
 179 
 180     private static final Type SCOPE_TYPE = Type.typeFor(ScriptObject.class);
 181 
 182     private static final String GLOBAL_OBJECT = Type.getInternalName(Global.class);
 183 
 184     private static final Call CREATE_REWRITE_EXCEPTION = CompilerConstants.staticCallNoLookup(RewriteException.class,
 185             "create", RewriteException.class, UnwarrantedOptimismException.class, Object[].class, String[].class);
 186     private static final Call CREATE_REWRITE_EXCEPTION_REST_OF = CompilerConstants.staticCallNoLookup(RewriteException.class,
 187             "create", RewriteException.class, UnwarrantedOptimismException.class, Object[].class, String[].class, int[].class);
 188 
 189     private static final Call ENSURE_INT = CompilerConstants.staticCallNoLookup(OptimisticReturnFilters.class,
 190             "ensureInt", int.class, Object.class, int.class);
 191     private static final Call ENSURE_NUMBER = CompilerConstants.staticCallNoLookup(OptimisticReturnFilters.class,
 192             "ensureNumber", double.class, Object.class, int.class);
 193 
 194     private static final Call CREATE_FUNCTION_OBJECT = CompilerConstants.staticCallNoLookup(ScriptFunction.class,
 195             "create", ScriptFunction.class, Object[].class, int.class, ScriptObject.class);
 196     private static final Call CREATE_FUNCTION_OBJECT_NO_SCOPE = CompilerConstants.staticCallNoLookup(ScriptFunction.class,
 197             "create", ScriptFunction.class, Object[].class, int.class);
 198 
 199     private static final Call TO_NUMBER_FOR_EQ = CompilerConstants.staticCallNoLookup(JSType.class,
 200             "toNumberForEq", double.class, Object.class);
 201     private static final Call TO_NUMBER_FOR_STRICT_EQ = CompilerConstants.staticCallNoLookup(JSType.class,
 202             "toNumberForStrictEq", double.class, Object.class);
 203 
 204 
 205     private static final Class<?> ITERATOR_CLASS = Iterator.class;
 206     static {
 207         assert ITERATOR_CLASS == CompilerConstants.ITERATOR_PREFIX.type();
 208     }
 209     private static final Type ITERATOR_TYPE = Type.typeFor(ITERATOR_CLASS);
 210     private static final Type EXCEPTION_TYPE = Type.typeFor(CompilerConstants.EXCEPTION_PREFIX.type());
 211 
 212     private static final Integer INT_ZERO = 0;
 213 
 214     /** Constant data & installation. The only reason the compiler keeps this is because it is assigned
 215      *  by reflection in class installation */
 216     private final Compiler compiler;
 217 
 218     /** Is the current code submitted by 'eval' call? */
 219     private final boolean evalCode;
 220 
 221     /** Call site flags given to the code generator to be used for all generated call sites */
 222     private final int callSiteFlags;
 223 
 224     /** How many regexp fields have been emitted */
 225     private int regexFieldCount;
 226 
 227     /** Line number for last statement. If we encounter a new line number, line number bytecode information
 228      *  needs to be generated */
 229     private int lastLineNumber = -1;
 230 
 231     /** When should we stop caching regexp expressions in fields to limit bytecode size? */
 232     private static final int MAX_REGEX_FIELDS = 2 * 1024;
 233 
 234     /** Current method emitter */
 235     private MethodEmitter method;
 236 
 237     /** Current compile unit */
 238     private CompileUnit unit;
 239 
 240     private final DebugLogger log;
 241 
 242     /** From what size should we use spill instead of fields for JavaScript objects? */
 243     static final int OBJECT_SPILL_THRESHOLD = Options.getIntProperty("nashorn.spill.threshold", 256);
 244 
 245     private final Set<String> emittedMethods = new HashSet<>();
 246 
 247     // Function Id -> ContinuationInfo. Used by compilation of rest-of function only.
 248     private ContinuationInfo continuationInfo;
 249 
 250     private final Deque<Label> scopeEntryLabels = new ArrayDeque<>();
 251 
 252     private static final Label METHOD_BOUNDARY = new Label("");
 253     private final Deque<Label> catchLabels = new ArrayDeque<>();
 254     // Number of live locals on entry to (and thus also break from) labeled blocks.
 255     private final IntDeque labeledBlockBreakLiveLocals = new IntDeque();
 256 
 257     //is this a rest of compilation
 258     private final int[] continuationEntryPoints;
 259 
 260     // Scope object creators needed for for-of and for-in loops
 261     private Deque<FieldObjectCreator<?>> scopeObjectCreators = new ArrayDeque<>();
 262 
 263     /**
 264      * Constructor.
 265      *
 266      * @param compiler
 267      */
 268     CodeGenerator(final Compiler compiler, final int[] continuationEntryPoints) {
 269         super(new CodeGeneratorLexicalContext());
 270         this.compiler                = compiler;
 271         this.evalCode                = compiler.getSource().isEvalCode();
 272         this.continuationEntryPoints = continuationEntryPoints;
 273         this.callSiteFlags           = compiler.getScriptEnvironment()._callsite_flags;
 274         this.log                     = initLogger(compiler.getContext());
 275     }
 276 
 277     @Override
 278     public DebugLogger getLogger() {
 279         return log;
 280     }
 281 
 282     @Override
 283     public DebugLogger initLogger(final Context context) {
 284         return context.getLogger(this.getClass());
 285     }
 286 
 287     /**
 288      * Gets the call site flags, adding the strict flag if the current function
 289      * being generated is in strict mode
 290      *
 291      * @return the correct flags for a call site in the current function
 292      */
 293     int getCallSiteFlags() {
 294         return lc.getCurrentFunction().getCallSiteFlags() | callSiteFlags;
 295     }
 296 
 297     /**
 298      * Gets the flags for a scope call site.
 299      * @param symbol a scope symbol
 300      * @return the correct flags for the scope call site
 301      */
 302     private int getScopeCallSiteFlags(final Symbol symbol) {
 303         assert symbol.isScope();
 304         final int flags = getCallSiteFlags() | CALLSITE_SCOPE;
 305         if (isEvalCode() && symbol.isGlobal()) {
 306             return flags; // Don't set fast-scope flag on non-declared globals in eval code - see JDK-8077955.
 307         }
 308         return isFastScope(symbol) ? flags | CALLSITE_FAST_SCOPE : flags;
 309     }
 310 
 311     /**
 312      * Are we generating code for 'eval' code?
 313      * @return true if currently compiled code is 'eval' code.
 314      */
 315     boolean isEvalCode() {
 316         return evalCode;
 317     }
 318 
 319     /**
 320      * Are we using dual primitive/object field representation?
 321      * @return true if using dual field representation, false for object-only fields
 322      */
 323     boolean useDualFields() {
 324         return compiler.getContext().useDualFields();
 325     }
 326 
 327     /**
 328      * Load an identity node
 329      *
 330      * @param identNode an identity node to load
 331      * @return the method generator used
 332      */
 333     private MethodEmitter loadIdent(final IdentNode identNode, final TypeBounds resultBounds) {
 334         checkTemporalDeadZone(identNode);
 335         final Symbol symbol = identNode.getSymbol();
 336 
 337         if (!symbol.isScope()) {
 338             final Type type = identNode.getType();
 339             if(type == Type.UNDEFINED) {
 340                 return method.loadUndefined(resultBounds.widest);
 341             }
 342 
 343             assert symbol.hasSlot() || symbol.isParam();
 344             return method.load(identNode);
 345         }
 346 
 347         assert identNode.getSymbol().isScope() : identNode + " is not in scope!";
 348         final int flags = getScopeCallSiteFlags(symbol);
 349         if (isFastScope(symbol)) {
 350             // Only generate shared scope getter for fast-scope symbols so we know we can dial in correct scope.
 351             if (symbol.getUseCount() > SharedScopeCall.FAST_SCOPE_GET_THRESHOLD && !identNode.isOptimistic()) {
 352                 // As shared scope vars are only used with non-optimistic identifiers, we switch from using TypeBounds to
 353                 // just a single definitive type, resultBounds.widest.
 354                 new OptimisticOperation(identNode, TypeBounds.OBJECT) {
 355                     @Override
 356                     void loadStack() {
 357                         method.loadCompilerConstant(SCOPE);
 358                     }
 359 
 360                     @Override
 361                     void consumeStack() {
 362                         loadSharedScopeVar(resultBounds.widest, symbol, flags);
 363                     }
 364                 }.emit();
 365             } else {
 366                 new LoadFastScopeVar(identNode, resultBounds, flags).emit();
 367             }
 368         } else {
 369             //slow scope load, we have no proto depth
 370             new LoadScopeVar(identNode, resultBounds, flags).emit();
 371         }
 372 
 373         return method;
 374     }
 375 
 376     // Any access to LET and CONST variables before their declaration must throw ReferenceError.
 377     // This is called the temporal dead zone (TDZ). See https://gist.github.com/rwaldron/f0807a758aa03bcdd58a
 378     private void checkTemporalDeadZone(final IdentNode identNode) {
 379         if (identNode.isDead()) {
 380             method.load(identNode.getSymbol().getName()).invoke(ScriptRuntime.THROW_REFERENCE_ERROR);
 381         }
 382     }
 383 
 384     // Runtime check for assignment to ES6 const
 385     private void checkAssignTarget(final Expression expression) {
 386         if (expression instanceof IdentNode && ((IdentNode)expression).getSymbol().isConst()) {
 387             method.load(((IdentNode)expression).getSymbol().getName()).invoke(ScriptRuntime.THROW_CONST_TYPE_ERROR);
 388         }
 389     }
 390 
 391     private boolean isRestOf() {
 392         return continuationEntryPoints != null;
 393     }
 394 
 395     private boolean isCurrentContinuationEntryPoint(final int programPoint) {
 396         return isRestOf() && getCurrentContinuationEntryPoint() == programPoint;
 397     }
 398 
 399     private int[] getContinuationEntryPoints() {
 400         return isRestOf() ? continuationEntryPoints : null;
 401     }
 402 
 403     private int getCurrentContinuationEntryPoint() {
 404         return isRestOf() ? continuationEntryPoints[0] : INVALID_PROGRAM_POINT;
 405     }
 406 
 407     private boolean isContinuationEntryPoint(final int programPoint) {
 408         if (isRestOf()) {
 409             assert continuationEntryPoints != null;
 410             for (final int cep : continuationEntryPoints) {
 411                 if (cep == programPoint) {
 412                     return true;
 413                 }
 414             }
 415         }
 416         return false;
 417     }
 418 
 419     /**
 420      * Check if this symbol can be accessed directly with a putfield or getfield or dynamic load
 421      *
 422      * @param symbol symbol to check for fast scope
 423      * @return true if fast scope
 424      */
 425     private boolean isFastScope(final Symbol symbol) {
 426         if (!symbol.isScope()) {
 427             return false;
 428         }
 429 
 430         if (!lc.inDynamicScope()) {
 431             // If there's no with or eval in context, and the symbol is marked as scoped, it is fast scoped. Such a
 432             // symbol must either be global, or its defining block must need scope.
 433             assert symbol.isGlobal() || lc.getDefiningBlock(symbol).needsScope() : symbol.getName();
 434             return true;
 435         }
 436 
 437         if (symbol.isGlobal()) {
 438             // Shortcut: if there's a with or eval in context, globals can't be fast scoped
 439             return false;
 440         }
 441 
 442         // Otherwise, check if there's a dynamic scope between use of the symbol and its definition
 443         final String name = symbol.getName();
 444         boolean previousWasBlock = false;
 445         for (final Iterator<LexicalContextNode> it = lc.getAllNodes(); it.hasNext();) {
 446             final LexicalContextNode node = it.next();
 447             if (node instanceof Block) {
 448                 // If this block defines the symbol, then we can fast scope the symbol.
 449                 final Block block = (Block)node;
 450                 if (block.getExistingSymbol(name) == symbol) {
 451                     assert block.needsScope();
 452                     return true;
 453                 }
 454                 previousWasBlock = true;
 455             } else {
 456                 if (node instanceof WithNode && previousWasBlock || node instanceof FunctionNode && ((FunctionNode)node).needsDynamicScope()) {
 457                     // If we hit a scope that can have symbols introduced into it at run time before finding the defining
 458                     // block, the symbol can't be fast scoped. A WithNode only counts if we've immediately seen a block
 459                     // before - its block. Otherwise, we are currently processing the WithNode's expression, and that's
 460                     // obviously not subjected to introducing new symbols.
 461                     return false;
 462                 }
 463                 previousWasBlock = false;
 464             }
 465         }
 466         // Should've found the symbol defined in a block
 467         throw new AssertionError();
 468     }
 469 
 470     private MethodEmitter loadSharedScopeVar(final Type valueType, final Symbol symbol, final int flags) {
 471         assert isFastScope(symbol);
 472         method.load(getScopeProtoDepth(lc.getCurrentBlock(), symbol));
 473         return lc.getScopeGet(unit, symbol, valueType, flags).generateInvoke(method);
 474     }
 475 
 476     private class LoadScopeVar extends OptimisticOperation {
 477         final IdentNode identNode;
 478         private final int flags;
 479 
 480         LoadScopeVar(final IdentNode identNode, final TypeBounds resultBounds, final int flags) {
 481             super(identNode, resultBounds);
 482             this.identNode = identNode;
 483             this.flags = flags;
 484         }
 485 
 486         @Override
 487         void loadStack() {
 488             method.loadCompilerConstant(SCOPE);
 489             getProto();
 490         }
 491 
 492         void getProto() {
 493             //empty
 494         }
 495 
 496         @Override
 497         void consumeStack() {
 498             // If this is either __FILE__, __DIR__, or __LINE__ then load the property initially as Object as we'd convert
 499             // it anyway for replaceLocationPropertyPlaceholder.
 500             if(identNode.isCompileTimePropertyName()) {
 501                 method.dynamicGet(Type.OBJECT, identNode.getSymbol().getName(), flags, identNode.isFunction(), false);
 502                 replaceCompileTimeProperty();
 503             } else {
 504                 dynamicGet(identNode.getSymbol().getName(), flags, identNode.isFunction(), false);
 505             }
 506         }
 507     }
 508 
 509     private class LoadFastScopeVar extends LoadScopeVar {
 510         LoadFastScopeVar(final IdentNode identNode, final TypeBounds resultBounds, final int flags) {
 511             super(identNode, resultBounds, flags);
 512         }
 513 
 514         @Override
 515         void getProto() {
 516             loadFastScopeProto(identNode.getSymbol(), false);
 517         }
 518     }
 519 
 520     private MethodEmitter storeFastScopeVar(final Symbol symbol, final int flags) {
 521         loadFastScopeProto(symbol, true);
 522         method.dynamicSet(symbol.getName(), flags, false);
 523         return method;
 524     }
 525 
 526     private int getScopeProtoDepth(final Block startingBlock, final Symbol symbol) {
 527         //walk up the chain from starting block and when we bump into the current function boundary, add the external
 528         //information.
 529         final FunctionNode fn   = lc.getCurrentFunction();
 530         final int externalDepth = compiler.getScriptFunctionData(fn.getId()).getExternalSymbolDepth(symbol.getName());
 531 
 532         //count the number of scopes from this place to the start of the function
 533 
 534         final int internalDepth = FindScopeDepths.findInternalDepth(lc, fn, startingBlock, symbol);
 535         final int scopesToStart = FindScopeDepths.findScopesToStart(lc, fn, startingBlock);
 536         int depth = 0;
 537         if (internalDepth == -1) {
 538             depth = scopesToStart + externalDepth;
 539         } else {
 540             assert internalDepth <= scopesToStart;
 541             depth = internalDepth;
 542         }
 543 
 544         return depth;
 545     }
 546 
 547     private void loadFastScopeProto(final Symbol symbol, final boolean swap) {
 548         final int depth = getScopeProtoDepth(lc.getCurrentBlock(), symbol);
 549         assert depth != -1 : "Couldn't find scope depth for symbol " + symbol.getName() + " in " + lc.getCurrentFunction();
 550         if (depth > 0) {
 551             if (swap) {
 552                 method.swap();
 553             }
 554             if (depth > 1) {
 555                 method.load(depth);
 556                 method.invoke(ScriptObject.GET_PROTO_DEPTH);
 557             } else {
 558                 method.invoke(ScriptObject.GET_PROTO);
 559             }
 560             if (swap) {
 561                 method.swap();
 562             }
 563         }
 564     }
 565 
 566     /**
 567      * Generate code that loads this node to the stack, not constraining its type
 568      *
 569      * @param expr node to load
 570      *
 571      * @return the method emitter used
 572      */
 573     private MethodEmitter loadExpressionUnbounded(final Expression expr) {
 574         return loadExpression(expr, TypeBounds.UNBOUNDED);
 575     }
 576 
 577     private MethodEmitter loadExpressionAsObject(final Expression expr) {
 578         return loadExpression(expr, TypeBounds.OBJECT);
 579     }
 580 
 581     MethodEmitter loadExpressionAsBoolean(final Expression expr) {
 582         return loadExpression(expr, TypeBounds.BOOLEAN);
 583     }
 584 
 585     // Test whether conversion from source to target involves a call of ES 9.1 ToPrimitive
 586     // with possible side effects from calling an object's toString or valueOf methods.
 587     private static boolean noToPrimitiveConversion(final Type source, final Type target) {
 588         // Object to boolean conversion does not cause ToPrimitive call
 589         return source.isJSPrimitive() || !target.isJSPrimitive() || target.isBoolean();
 590     }
 591 
 592     MethodEmitter loadBinaryOperands(final BinaryNode binaryNode) {
 593         return loadBinaryOperands(binaryNode.lhs(), binaryNode.rhs(), TypeBounds.UNBOUNDED.notWiderThan(binaryNode.getWidestOperandType()), false, false);
 594     }
 595 
 596     private MethodEmitter loadBinaryOperands(final Expression lhs, final Expression rhs, final TypeBounds explicitOperandBounds, final boolean baseAlreadyOnStack, final boolean forceConversionSeparation) {
 597         // ECMAScript 5.1 specification (sections 11.5-11.11 and 11.13) prescribes that when evaluating a binary
 598         // expression "LEFT op RIGHT", the order of operations must be: LOAD LEFT, LOAD RIGHT, CONVERT LEFT, CONVERT
 599         // RIGHT, EXECUTE OP. Unfortunately, doing it in this order defeats potential optimizations that arise when we
 600         // can combine a LOAD with a CONVERT operation (e.g. use a dynamic getter with the conversion target type as its
 601         // return value). What we do here is reorder LOAD RIGHT and CONVERT LEFT when possible; it is possible only when
 602         // we can prove that executing CONVERT LEFT can't have a side effect that changes the value of LOAD RIGHT.
 603         // Basically, if we know that either LEFT already is a primitive value, or does not have to be converted to
 604         // a primitive value, or RIGHT is an expression that loads without side effects, then we can do the
 605         // reordering and collapse LOAD/CONVERT into a single operation; otherwise we need to do the more costly
 606         // separate operations to preserve specification semantics.
 607 
 608         // Operands' load type should not be narrower than the narrowest of the individual operand types, nor narrower
 609         // than the lower explicit bound, but it should also not be wider than
 610         final Type lhsType = undefinedToNumber(lhs.getType());
 611         final Type rhsType = undefinedToNumber(rhs.getType());
 612         final Type narrowestOperandType = Type.narrowest(Type.widest(lhsType, rhsType), explicitOperandBounds.widest);
 613         final TypeBounds operandBounds = explicitOperandBounds.notNarrowerThan(narrowestOperandType);
 614         if (noToPrimitiveConversion(lhsType, explicitOperandBounds.widest) || rhs.isLocal()) {
 615             // Can reorder. We might still need to separate conversion, but at least we can do it with reordering
 616             if (forceConversionSeparation) {
 617                 // Can reorder, but can't move conversion into the operand as the operation depends on operands
 618                 // exact types for its overflow guarantees. E.g. with {L}{%I}expr1 {L}* {L}{%I}expr2 we are not allowed
 619                 // to merge {L}{%I} into {%L}, as that can cause subsequent overflows; test for JDK-8058610 contains
 620                 // concrete cases where this could happen.
 621                 final TypeBounds safeConvertBounds = TypeBounds.UNBOUNDED.notNarrowerThan(narrowestOperandType);
 622                 loadExpression(lhs, safeConvertBounds, baseAlreadyOnStack);
 623                 method.convert(operandBounds.within(method.peekType()));
 624                 loadExpression(rhs, safeConvertBounds, false);
 625                 method.convert(operandBounds.within(method.peekType()));
 626             } else {
 627                 // Can reorder and move conversion into the operand. Combine load and convert into single operations.
 628                 loadExpression(lhs, operandBounds, baseAlreadyOnStack);
 629                 loadExpression(rhs, operandBounds, false);
 630             }
 631         } else {
 632             // Can't reorder. Load and convert separately.
 633             final TypeBounds safeConvertBounds = TypeBounds.UNBOUNDED.notNarrowerThan(narrowestOperandType);
 634             loadExpression(lhs, safeConvertBounds, baseAlreadyOnStack);
 635             final Type lhsLoadedType = method.peekType();
 636             loadExpression(rhs, safeConvertBounds, false);
 637             final Type convertedLhsType = operandBounds.within(method.peekType());
 638             if (convertedLhsType != lhsLoadedType) {
 639                 // Do it conditionally, so that if conversion is a no-op we don't introduce a SWAP, SWAP.
 640                 method.swap().convert(convertedLhsType).swap();
 641             }
 642             method.convert(operandBounds.within(method.peekType()));
 643         }
 644         assert Type.generic(method.peekType()) == operandBounds.narrowest;
 645         assert Type.generic(method.peekType(1)) == operandBounds.narrowest;
 646 
 647         return method;
 648     }
 649 
 650     /**
 651      * Similar to {@link #loadBinaryOperands(BinaryNode)} but used specifically for loading operands of
 652      * relational and equality comparison operators where at least one argument is non-object. (When both
 653      * arguments are objects, we use {@link ScriptRuntime#EQ(Object, Object)}, {@link ScriptRuntime#LT(Object, Object)}
 654      * etc. methods instead. Additionally, {@code ScriptRuntime} methods are used for strict (in)equality comparison
 655      * of a boolean to anything that isn't a boolean.) This method handles the special case where one argument
 656      * is an object and another is a primitive. Naively, these could also be delegated to {@code ScriptRuntime} methods
 657      * by boxing the primitive. However, in all such cases the comparison is performed on numeric values, so it is
 658      * possible to strength-reduce the operation by taking the number value of the object argument instead and
 659      * comparing that to the primitive value ("primitive" will always be int, long, double, or boolean, and booleans
 660      * compare as ints in these cases, so they're essentially numbers too). This method will emit code for loading
 661      * arguments for such strength-reduced comparison. When both arguments are primitives, it just delegates to
 662      * {@link #loadBinaryOperands(BinaryNode)}.
 663      *
 664      * @param cmp the comparison operation for which the operands need to be loaded on stack.
 665      * @return the current method emitter.
 666      */
 667     MethodEmitter loadComparisonOperands(final BinaryNode cmp) {
 668         final Expression lhs = cmp.lhs();
 669         final Expression rhs = cmp.rhs();
 670         final Type lhsType = lhs.getType();
 671         final Type rhsType = rhs.getType();
 672 
 673         // Only used when not both are object, for that we have ScriptRuntime.LT etc.
 674         assert !(lhsType.isObject() && rhsType.isObject());
 675 
 676         if (lhsType.isObject() || rhsType.isObject()) {
 677             // We can reorder CONVERT LEFT and LOAD RIGHT only if either the left is a primitive, or the right
 678             // is a local. This is more strict than loadBinaryNode reorder criteria, as it can allow JS primitive
 679             // types too (notably: String is a JS primitive, but not a JVM primitive). We disallow String otherwise
 680             // we would prematurely convert it to number when comparing to an optimistic expression, e.g. in
 681             // "Hello" === String("Hello") the RHS starts out as an optimistic-int function call. If we allowed
 682             // reordering, we'd end up with ToNumber("Hello") === {I%}String("Hello") that is obviously incorrect.
 683             final boolean canReorder = lhsType.isPrimitive() || rhs.isLocal();
 684             // If reordering is allowed, and we're using a relational operator (that is, <, <=, >, >=) and not an
 685             // (in)equality operator, then we encourage combining of LOAD and CONVERT into a single operation.
 686             // This is because relational operators' semantics prescribes vanilla ToNumber() conversion, while
 687             // (in)equality operators need the specialized JSType.toNumberFor[Strict]Equals. E.g. in the code snippet
 688             // "i < obj.size" (where i is primitive and obj.size is statically an object), ".size" will thus be allowed
 689             // to compile as:
 690             //   invokedynamic GET_PROPERTY:size(Object;)D
 691             // instead of the more costly:
 692             //   invokedynamic GET_PROPERTY:size(Object;)Object
 693             //   invokestatic JSType.toNumber(Object)D
 694             // Note also that even if this is allowed, we're only using it on operands that are non-optimistic, as
 695             // otherwise the logic for determining effective optimistic-ness would turn an optimistic double return
 696             // into a freely coercible one, which would be wrong.
 697             final boolean canCombineLoadAndConvert = canReorder && cmp.isRelational();
 698 
 699             // LOAD LEFT
 700             loadExpression(lhs, canCombineLoadAndConvert && !lhs.isOptimistic() ? TypeBounds.NUMBER : TypeBounds.UNBOUNDED);
 701 
 702             final Type lhsLoadedType = method.peekType();
 703             final TokenType tt = cmp.tokenType();
 704             if (canReorder) {
 705                 // Can reorder CONVERT LEFT and LOAD RIGHT
 706                 emitObjectToNumberComparisonConversion(method, tt);
 707                 loadExpression(rhs, canCombineLoadAndConvert && !rhs.isOptimistic() ? TypeBounds.NUMBER : TypeBounds.UNBOUNDED);
 708             } else {
 709                 // Can't reorder CONVERT LEFT and LOAD RIGHT
 710                 loadExpression(rhs, TypeBounds.UNBOUNDED);
 711                 if (lhsLoadedType != Type.NUMBER) {
 712                     method.swap();
 713                     emitObjectToNumberComparisonConversion(method, tt);
 714                     method.swap();
 715                 }
 716             }
 717 
 718             // CONVERT RIGHT
 719             emitObjectToNumberComparisonConversion(method, tt);
 720             return method;
 721         }
 722         // For primitive operands, just don't do anything special.
 723         return loadBinaryOperands(cmp);
 724     }
 725 
 726     private static void emitObjectToNumberComparisonConversion(final MethodEmitter method, final TokenType tt) {
 727         switch(tt) {
 728         case EQ:
 729         case NE:
 730             if (method.peekType().isObject()) {
 731                 TO_NUMBER_FOR_EQ.invoke(method);
 732                 return;
 733             }
 734             break;
 735         case EQ_STRICT:
 736         case NE_STRICT:
 737             if (method.peekType().isObject()) {
 738                 TO_NUMBER_FOR_STRICT_EQ.invoke(method);
 739                 return;
 740             }
 741             break;
 742         default:
 743             break;
 744         }
 745         method.convert(Type.NUMBER);
 746     }
 747 
 748     private static Type undefinedToNumber(final Type type) {
 749         return type == Type.UNDEFINED ? Type.NUMBER : type;
 750     }
 751 
 752     private static final class TypeBounds {
 753         final Type narrowest;
 754         final Type widest;
 755 
 756         static final TypeBounds UNBOUNDED = new TypeBounds(Type.UNKNOWN, Type.OBJECT);
 757         static final TypeBounds INT = exact(Type.INT);
 758         static final TypeBounds NUMBER = exact(Type.NUMBER);
 759         static final TypeBounds OBJECT = exact(Type.OBJECT);
 760         static final TypeBounds BOOLEAN = exact(Type.BOOLEAN);
 761 
 762         static TypeBounds exact(final Type type) {
 763             return new TypeBounds(type, type);
 764         }
 765 
 766         TypeBounds(final Type narrowest, final Type widest) {
 767             assert widest    != null && widest    != Type.UNDEFINED && widest != Type.UNKNOWN : widest;
 768             assert narrowest != null && narrowest != Type.UNDEFINED : narrowest;
 769             assert !narrowest.widerThan(widest) : narrowest + " wider than " + widest;
 770             assert !widest.narrowerThan(narrowest);
 771             this.narrowest = Type.generic(narrowest);
 772             this.widest = Type.generic(widest);
 773         }
 774 
 775         TypeBounds notNarrowerThan(final Type type) {
 776             return maybeNew(Type.narrowest(Type.widest(narrowest, type), widest), widest);
 777         }
 778 
 779         TypeBounds notWiderThan(final Type type) {
 780             return maybeNew(Type.narrowest(narrowest, type), Type.narrowest(widest, type));
 781         }
 782 
 783         boolean canBeNarrowerThan(final Type type) {
 784             return narrowest.narrowerThan(type);
 785         }
 786 
 787         TypeBounds maybeNew(final Type newNarrowest, final Type newWidest) {
 788             if(newNarrowest == narrowest && newWidest == widest) {
 789                 return this;
 790             }
 791             return new TypeBounds(newNarrowest, newWidest);
 792         }
 793 
 794         TypeBounds booleanToInt() {
 795             return maybeNew(CodeGenerator.booleanToInt(narrowest), CodeGenerator.booleanToInt(widest));
 796         }
 797 
 798         TypeBounds objectToNumber() {
 799             return maybeNew(CodeGenerator.objectToNumber(narrowest), CodeGenerator.objectToNumber(widest));
 800         }
 801 
 802         Type within(final Type type) {
 803             if(type.narrowerThan(narrowest)) {
 804                 return narrowest;
 805             }
 806             if(type.widerThan(widest)) {
 807                 return widest;
 808             }
 809             return type;
 810         }
 811 
 812         @Override
 813         public String toString() {
 814             return "[" + narrowest + ", " + widest + "]";
 815         }
 816     }
 817 
 818     private static Type booleanToInt(final Type t) {
 819         return t == Type.BOOLEAN ? Type.INT : t;
 820     }
 821 
 822     private static Type objectToNumber(final Type t) {
 823         return t.isObject() ? Type.NUMBER : t;
 824     }
 825 
 826     MethodEmitter loadExpressionAsType(final Expression expr, final Type type) {
 827         if(type == Type.BOOLEAN) {
 828             return loadExpressionAsBoolean(expr);
 829         } else if(type == Type.UNDEFINED) {
 830             assert expr.getType() == Type.UNDEFINED;
 831             return loadExpressionAsObject(expr);
 832         }
 833         // having no upper bound preserves semantics of optimistic operations in the expression (by not having them
 834         // converted early) and then applies explicit conversion afterwards.
 835         return loadExpression(expr, TypeBounds.UNBOUNDED.notNarrowerThan(type)).convert(type);
 836     }
 837 
 838     private MethodEmitter loadExpression(final Expression expr, final TypeBounds resultBounds) {
 839         return loadExpression(expr, resultBounds, false);
 840     }
 841 
 842     /**
 843      * Emits code for evaluating an expression and leaving its value on top of the stack, narrowing or widening it if
 844      * necessary.
 845      * @param expr the expression to load
 846      * @param resultBounds the incoming type bounds. The value on the top of the stack is guaranteed to not be of narrower
 847      * type than the narrowest bound, or wider type than the widest bound after it is loaded.
 848      * @param baseAlreadyOnStack true if the base of an access or index node is already on the stack. Used to avoid
 849      * double evaluation of bases in self-assignment expressions to access and index nodes. {@code Type.OBJECT} is used
 850      * to indicate the widest possible type.
 851      * @return the method emitter
 852      */
 853     private MethodEmitter loadExpression(final Expression expr, final TypeBounds resultBounds, final boolean baseAlreadyOnStack) {
 854 
 855         /*
 856          * The load may be of type IdentNode, e.g. "x", AccessNode, e.g. "x.y"
 857          * or IndexNode e.g. "x[y]". Both AccessNodes and IndexNodes are
 858          * BaseNodes and the logic for loading the base object is reused
 859          */
 860         final CodeGenerator codegen = this;
 861 
 862         final boolean isCurrentDiscard = codegen.lc.isCurrentDiscard(expr);
 863         expr.accept(new NodeOperatorVisitor<LexicalContext>(new LexicalContext()) {
 864             @Override
 865             public boolean enterIdentNode(final IdentNode identNode) {
 866                 loadIdent(identNode, resultBounds);
 867                 return false;
 868             }
 869 
 870             @Override
 871             public boolean enterAccessNode(final AccessNode accessNode) {
 872                 new OptimisticOperation(accessNode, resultBounds) {
 873                     @Override
 874                     void loadStack() {
 875                         if (!baseAlreadyOnStack) {
 876                             loadExpressionAsObject(accessNode.getBase());
 877                         }
 878                         assert method.peekType().isObject();
 879                     }
 880                     @Override
 881                     void consumeStack() {
 882                         final int flags = getCallSiteFlags();
 883                         dynamicGet(accessNode.getProperty(), flags, accessNode.isFunction(), accessNode.isIndex());
 884                     }
 885                 }.emit(baseAlreadyOnStack ? 1 : 0);
 886                 return false;
 887             }
 888 
 889             @Override
 890             public boolean enterIndexNode(final IndexNode indexNode) {
 891                 new OptimisticOperation(indexNode, resultBounds) {
 892                     @Override
 893                     void loadStack() {
 894                         if (!baseAlreadyOnStack) {
 895                             loadExpressionAsObject(indexNode.getBase());
 896                             loadExpressionUnbounded(indexNode.getIndex());
 897                         }
 898                     }
 899                     @Override
 900                     void consumeStack() {
 901                         final int flags = getCallSiteFlags();
 902                         dynamicGetIndex(flags, indexNode.isFunction());
 903                     }
 904                 }.emit(baseAlreadyOnStack ? 2 : 0);
 905                 return false;
 906             }
 907 
 908             @Override
 909             public boolean enterFunctionNode(final FunctionNode functionNode) {
 910                 // function nodes will always leave a constructed function object on stack, no need to load the symbol
 911                 // separately as in enterDefault()
 912                 lc.pop(functionNode);
 913                 functionNode.accept(codegen);
 914                 // NOTE: functionNode.accept() will produce a different FunctionNode that we discard. This incidentally
 915                 // doesn't cause problems as we're never touching FunctionNode again after it's visited here - codegen
 916                 // is the last element in the compilation pipeline, the AST it produces is not used externally. So, we
 917                 // re-push the original functionNode.
 918                 lc.push(functionNode);
 919                 return false;
 920             }
 921 
 922             @Override
 923             public boolean enterASSIGN(final BinaryNode binaryNode) {
 924                 checkAssignTarget(binaryNode.lhs());
 925                 loadASSIGN(binaryNode);
 926                 return false;
 927             }
 928 
 929             @Override
 930             public boolean enterASSIGN_ADD(final BinaryNode binaryNode) {
 931                 checkAssignTarget(binaryNode.lhs());
 932                 loadASSIGN_ADD(binaryNode);
 933                 return false;
 934             }
 935 
 936             @Override
 937             public boolean enterASSIGN_BIT_AND(final BinaryNode binaryNode) {
 938                 checkAssignTarget(binaryNode.lhs());
 939                 loadASSIGN_BIT_AND(binaryNode);
 940                 return false;
 941             }
 942 
 943             @Override
 944             public boolean enterASSIGN_BIT_OR(final BinaryNode binaryNode) {
 945                 checkAssignTarget(binaryNode.lhs());
 946                 loadASSIGN_BIT_OR(binaryNode);
 947                 return false;
 948             }
 949 
 950             @Override
 951             public boolean enterASSIGN_BIT_XOR(final BinaryNode binaryNode) {
 952                 checkAssignTarget(binaryNode.lhs());
 953                 loadASSIGN_BIT_XOR(binaryNode);
 954                 return false;
 955             }
 956 
 957             @Override
 958             public boolean enterASSIGN_DIV(final BinaryNode binaryNode) {
 959                 checkAssignTarget(binaryNode.lhs());
 960                 loadASSIGN_DIV(binaryNode);
 961                 return false;
 962             }
 963 
 964             @Override
 965             public boolean enterASSIGN_MOD(final BinaryNode binaryNode) {
 966                 checkAssignTarget(binaryNode.lhs());
 967                 loadASSIGN_MOD(binaryNode);
 968                 return false;
 969             }
 970 
 971             @Override
 972             public boolean enterASSIGN_MUL(final BinaryNode binaryNode) {
 973                 checkAssignTarget(binaryNode.lhs());
 974                 loadASSIGN_MUL(binaryNode);
 975                 return false;
 976             }
 977 
 978             @Override
 979             public boolean enterASSIGN_SAR(final BinaryNode binaryNode) {
 980                 checkAssignTarget(binaryNode.lhs());
 981                 loadASSIGN_SAR(binaryNode);
 982                 return false;
 983             }
 984 
 985             @Override
 986             public boolean enterASSIGN_SHL(final BinaryNode binaryNode) {
 987                 checkAssignTarget(binaryNode.lhs());
 988                 loadASSIGN_SHL(binaryNode);
 989                 return false;
 990             }
 991 
 992             @Override
 993             public boolean enterASSIGN_SHR(final BinaryNode binaryNode) {
 994                 checkAssignTarget(binaryNode.lhs());
 995                 loadASSIGN_SHR(binaryNode);
 996                 return false;
 997             }
 998 
 999             @Override
1000             public boolean enterASSIGN_SUB(final BinaryNode binaryNode) {
1001                 checkAssignTarget(binaryNode.lhs());
1002                 loadASSIGN_SUB(binaryNode);
1003                 return false;
1004             }
1005 
1006             @Override
1007             public boolean enterCallNode(final CallNode callNode) {
1008                 return loadCallNode(callNode, resultBounds);
1009             }
1010 
1011             @Override
1012             public boolean enterLiteralNode(final LiteralNode<?> literalNode) {
1013                 loadLiteral(literalNode, resultBounds);
1014                 return false;
1015             }
1016 
1017             @Override
1018             public boolean enterTernaryNode(final TernaryNode ternaryNode) {
1019                 loadTernaryNode(ternaryNode, resultBounds);
1020                 return false;
1021             }
1022 
1023             @Override
1024             public boolean enterADD(final BinaryNode binaryNode) {
1025                 loadADD(binaryNode, resultBounds);
1026                 return false;
1027             }
1028 
1029             @Override
1030             public boolean enterSUB(final UnaryNode unaryNode) {
1031                 loadSUB(unaryNode, resultBounds);
1032                 return false;
1033             }
1034 
1035             @Override
1036             public boolean enterSUB(final BinaryNode binaryNode) {
1037                 loadSUB(binaryNode, resultBounds);
1038                 return false;
1039             }
1040 
1041             @Override
1042             public boolean enterMUL(final BinaryNode binaryNode) {
1043                 loadMUL(binaryNode, resultBounds);
1044                 return false;
1045             }
1046 
1047             @Override
1048             public boolean enterDIV(final BinaryNode binaryNode) {
1049                 loadDIV(binaryNode, resultBounds);
1050                 return false;
1051             }
1052 
1053             @Override
1054             public boolean enterMOD(final BinaryNode binaryNode) {
1055                 loadMOD(binaryNode, resultBounds);
1056                 return false;
1057             }
1058 
1059             @Override
1060             public boolean enterSAR(final BinaryNode binaryNode) {
1061                 loadSAR(binaryNode);
1062                 return false;
1063             }
1064 
1065             @Override
1066             public boolean enterSHL(final BinaryNode binaryNode) {
1067                 loadSHL(binaryNode);
1068                 return false;
1069             }
1070 
1071             @Override
1072             public boolean enterSHR(final BinaryNode binaryNode) {
1073                 loadSHR(binaryNode);
1074                 return false;
1075             }
1076 
1077             @Override
1078             public boolean enterCOMMALEFT(final BinaryNode binaryNode) {
1079                 loadCOMMALEFT(binaryNode, resultBounds);
1080                 return false;
1081             }
1082 
1083             @Override
1084             public boolean enterCOMMARIGHT(final BinaryNode binaryNode) {
1085                 loadCOMMARIGHT(binaryNode, resultBounds);
1086                 return false;
1087             }
1088 
1089             @Override
1090             public boolean enterAND(final BinaryNode binaryNode) {
1091                 loadAND_OR(binaryNode, resultBounds, true);
1092                 return false;
1093             }
1094 
1095             @Override
1096             public boolean enterOR(final BinaryNode binaryNode) {
1097                 loadAND_OR(binaryNode, resultBounds, false);
1098                 return false;
1099             }
1100 
1101             @Override
1102             public boolean enterNOT(final UnaryNode unaryNode) {
1103                 loadNOT(unaryNode);
1104                 return false;
1105             }
1106 
1107             @Override
1108             public boolean enterADD(final UnaryNode unaryNode) {
1109                 loadADD(unaryNode, resultBounds);
1110                 return false;
1111             }
1112 
1113             @Override
1114             public boolean enterBIT_NOT(final UnaryNode unaryNode) {
1115                 loadBIT_NOT(unaryNode);
1116                 return false;
1117             }
1118 
1119             @Override
1120             public boolean enterBIT_AND(final BinaryNode binaryNode) {
1121                 loadBIT_AND(binaryNode);
1122                 return false;
1123             }
1124 
1125             @Override
1126             public boolean enterBIT_OR(final BinaryNode binaryNode) {
1127                 loadBIT_OR(binaryNode);
1128                 return false;
1129             }
1130 
1131             @Override
1132             public boolean enterBIT_XOR(final BinaryNode binaryNode) {
1133                 loadBIT_XOR(binaryNode);
1134                 return false;
1135             }
1136 
1137             @Override
1138             public boolean enterVOID(final UnaryNode unaryNode) {
1139                 loadVOID(unaryNode, resultBounds);
1140                 return false;
1141             }
1142 
1143             @Override
1144             public boolean enterEQ(final BinaryNode binaryNode) {
1145                 loadCmp(binaryNode, Condition.EQ);
1146                 return false;
1147             }
1148 
1149             @Override
1150             public boolean enterEQ_STRICT(final BinaryNode binaryNode) {
1151                 loadCmp(binaryNode, Condition.EQ);
1152                 return false;
1153             }
1154 
1155             @Override
1156             public boolean enterGE(final BinaryNode binaryNode) {
1157                 loadCmp(binaryNode, Condition.GE);
1158                 return false;
1159             }
1160 
1161             @Override
1162             public boolean enterGT(final BinaryNode binaryNode) {
1163                 loadCmp(binaryNode, Condition.GT);
1164                 return false;
1165             }
1166 
1167             @Override
1168             public boolean enterLE(final BinaryNode binaryNode) {
1169                 loadCmp(binaryNode, Condition.LE);
1170                 return false;
1171             }
1172 
1173             @Override
1174             public boolean enterLT(final BinaryNode binaryNode) {
1175                 loadCmp(binaryNode, Condition.LT);
1176                 return false;
1177             }
1178 
1179             @Override
1180             public boolean enterNE(final BinaryNode binaryNode) {
1181                 loadCmp(binaryNode, Condition.NE);
1182                 return false;
1183             }
1184 
1185             @Override
1186             public boolean enterNE_STRICT(final BinaryNode binaryNode) {
1187                 loadCmp(binaryNode, Condition.NE);
1188                 return false;
1189             }
1190 
1191             @Override
1192             public boolean enterObjectNode(final ObjectNode objectNode) {
1193                 loadObjectNode(objectNode);
1194                 return false;
1195             }
1196 
1197             @Override
1198             public boolean enterRuntimeNode(final RuntimeNode runtimeNode) {
1199                 loadRuntimeNode(runtimeNode);
1200                 return false;
1201             }
1202 
1203             @Override
1204             public boolean enterNEW(final UnaryNode unaryNode) {
1205                 loadNEW(unaryNode);
1206                 return false;
1207             }
1208 
1209             @Override
1210             public boolean enterDECINC(final UnaryNode unaryNode) {
1211                 checkAssignTarget(unaryNode.getExpression());
1212                 loadDECINC(unaryNode);
1213                 return false;
1214             }
1215 
1216             @Override
1217             public boolean enterJoinPredecessorExpression(final JoinPredecessorExpression joinExpr) {
1218                 loadMaybeDiscard(joinExpr, joinExpr.getExpression(), resultBounds);
1219                 return false;
1220             }
1221 
1222             @Override
1223             public boolean enterGetSplitState(final GetSplitState getSplitState) {
1224                 method.loadScope();
1225                 method.invoke(Scope.GET_SPLIT_STATE);
1226                 return false;
1227             }
1228 
1229             @Override
1230             public boolean enterDefault(final Node otherNode) {
1231                 // Must have handled all expressions that can legally be encountered.
1232                 throw new AssertionError(otherNode.getClass().getName());
1233             }
1234         });
1235         if(!isCurrentDiscard) {
1236             coerceStackTop(resultBounds);
1237         }
1238         return method;
1239     }
1240 
1241     private MethodEmitter coerceStackTop(final TypeBounds typeBounds) {
1242         return method.convert(typeBounds.within(method.peekType()));
1243     }
1244 
1245     /**
1246      * Closes any still open entries for this block's local variables in the bytecode local variable table.
1247      *
1248      * @param block block containing symbols.
1249      */
1250     private void closeBlockVariables(final Block block) {
1251         for (final Symbol symbol : block.getSymbols()) {
1252             if (symbol.isBytecodeLocal()) {
1253                 method.closeLocalVariable(symbol, block.getBreakLabel());
1254             }
1255         }
1256     }
1257 
1258     @Override
1259     public boolean enterBlock(final Block block) {
1260         final Label entryLabel = block.getEntryLabel();
1261         if (entryLabel.isBreakTarget()) {
1262             // Entry label is a break target only for an inlined finally block.
1263             assert !method.isReachable();
1264             method.breakLabel(entryLabel, lc.getUsedSlotCount());
1265         } else {
1266             method.label(entryLabel);
1267         }
1268         if(!method.isReachable()) {
1269             return false;
1270         }
1271         if(lc.isFunctionBody() && emittedMethods.contains(lc.getCurrentFunction().getName())) {
1272             return false;
1273         }
1274         initLocals(block);
1275 
1276         assert lc.getUsedSlotCount() == method.getFirstTemp();
1277         return true;
1278     }
1279 
1280     boolean useOptimisticTypes() {
1281         return !lc.inSplitNode() && compiler.useOptimisticTypes();
1282     }
1283 
1284     // Determine whether a block needs to provide its scope object creator for use by its child nodes.
1285     // This is only necessary for synthetic parent blocks of for-in loops with lexical declarations.
1286     boolean providesScopeCreator(final Block block) {
1287         return block.needsScope() &&  compiler.getScriptEnvironment()._es6
1288                 && block.isSynthetic() && (block.getLastStatement() instanceof ForNode)
1289                 && ((ForNode) block.getLastStatement()).needsScopeCreator();
1290     }
1291 
1292     @Override
1293     public Node leaveBlock(final Block block) {
1294         popBlockScope(block);
1295         method.beforeJoinPoint(block);
1296 
1297         closeBlockVariables(block);
1298         lc.releaseSlots();
1299         assert !method.isReachable() || (lc.isFunctionBody() ? 0 : lc.getUsedSlotCount()) == method.getFirstTemp() :
1300             "reachable="+method.isReachable() +
1301             " isFunctionBody=" + lc.isFunctionBody() +
1302             " usedSlotCount=" + lc.getUsedSlotCount() +
1303             " firstTemp=" + method.getFirstTemp();
1304 
1305         return block;
1306     }
1307 
1308     private void popBlockScope(final Block block) {
1309         final Label breakLabel = block.getBreakLabel();
1310 
1311         if (providesScopeCreator(block)) {
1312             scopeObjectCreators.pop();
1313         }
1314         if(!block.needsScope() || lc.isFunctionBody()) {
1315             emitBlockBreakLabel(breakLabel);
1316             return;
1317         }
1318 
1319         final Label beginTryLabel = scopeEntryLabels.pop();
1320         final Label recoveryLabel = new Label("block_popscope_catch");
1321         emitBlockBreakLabel(breakLabel);
1322         final boolean bodyCanThrow = breakLabel.isAfter(beginTryLabel);
1323         if(bodyCanThrow) {
1324             method._try(beginTryLabel, breakLabel, recoveryLabel);
1325         }
1326 
1327         Label afterCatchLabel = null;
1328 
1329         if(method.isReachable()) {
1330             popScope();
1331             if(bodyCanThrow) {
1332                 afterCatchLabel = new Label("block_after_catch");
1333                 method._goto(afterCatchLabel);
1334             }
1335         }
1336 
1337         if(bodyCanThrow) {
1338             assert !method.isReachable();
1339             method._catch(recoveryLabel);
1340             popScopeException();
1341             method.athrow();
1342         }
1343         if(afterCatchLabel != null) {
1344             method.label(afterCatchLabel);
1345         }
1346     }
1347 
1348     private void emitBlockBreakLabel(final Label breakLabel) {
1349         // TODO: this is totally backwards. Block should not be breakable, LabelNode should be breakable.
1350         final LabelNode labelNode = lc.getCurrentBlockLabelNode();
1351         if(labelNode != null) {
1352             // Only have conversions if we're reachable
1353             assert labelNode.getLocalVariableConversion() == null || method.isReachable();
1354             method.beforeJoinPoint(labelNode);
1355             method.breakLabel(breakLabel, labeledBlockBreakLiveLocals.pop());
1356         } else {
1357             method.label(breakLabel);
1358         }
1359     }
1360 
1361     private void popScope() {
1362         popScopes(1);
1363     }
1364 
1365     /**
1366      * Pop scope as part of an exception handler. Similar to {@code popScope()} but also takes care of adjusting the
1367      * number of scopes that needs to be popped in case a rest-of continuation handler encounters an exception while
1368      * performing a ToPrimitive conversion.
1369      */
1370     private void popScopeException() {
1371         popScope();
1372         final ContinuationInfo ci = getContinuationInfo();
1373         if(ci != null) {
1374             final Label catchLabel = ci.catchLabel;
1375             if(catchLabel != METHOD_BOUNDARY && catchLabel == catchLabels.peek()) {
1376                 ++ci.exceptionScopePops;
1377             }
1378         }
1379     }
1380 
1381     private void popScopesUntil(final LexicalContextNode until) {
1382         popScopes(lc.getScopeNestingLevelTo(until));
1383     }
1384 
1385     private void popScopes(final int count) {
1386         if(count == 0) {
1387             return;
1388         }
1389         assert count > 0; // together with count == 0 check, asserts nonnegative count
1390         if (!method.hasScope()) {
1391             // We can sometimes invoke this method even if the method has no slot for the scope object. Typical example:
1392             // for(;;) { with({}) { break; } }. WithNode normally creates a scope, but if it uses no identifiers and
1393             // nothing else forces creation of a scope in the method, we just won't have the :scope local variable.
1394             return;
1395         }
1396         method.loadCompilerConstant(SCOPE);
1397         if (count > 1) {
1398             method.load(count);
1399             method.invoke(ScriptObject.GET_PROTO_DEPTH);
1400         } else {
1401             method.invoke(ScriptObject.GET_PROTO);
1402         }
1403         method.storeCompilerConstant(SCOPE);
1404     }
1405 
1406     @Override
1407     public boolean enterBreakNode(final BreakNode breakNode) {
1408         return enterJumpStatement(breakNode);
1409     }
1410 
1411     @Override
1412     public boolean enterJumpToInlinedFinally(final JumpToInlinedFinally jumpToInlinedFinally) {
1413         return enterJumpStatement(jumpToInlinedFinally);
1414     }
1415 
1416     private boolean enterJumpStatement(final JumpStatement jump) {
1417         if(!method.isReachable()) {
1418             return false;
1419         }
1420         enterStatement(jump);
1421 
1422         method.beforeJoinPoint(jump);
1423         popScopesUntil(jump.getPopScopeLimit(lc));
1424         final Label targetLabel = jump.getTargetLabel(lc);
1425         targetLabel.markAsBreakTarget();
1426         method._goto(targetLabel);
1427 
1428         return false;
1429     }
1430 
1431     private int loadArgs(final List<Expression> args) {
1432         final int argCount = args.size();
1433         // arg have already been converted to objects here.
1434         if (argCount > LinkerCallSite.ARGLIMIT) {
1435             loadArgsArray(args);
1436             return 1;
1437         }
1438 
1439         for (final Expression arg : args) {
1440             assert arg != null;
1441             loadExpressionUnbounded(arg);
1442         }
1443         return argCount;
1444     }
1445 
1446     private boolean loadCallNode(final CallNode callNode, final TypeBounds resultBounds) {
1447         lineNumber(callNode.getLineNumber());
1448 
1449         final List<Expression> args = callNode.getArgs();
1450         final Expression function = callNode.getFunction();
1451         final Block currentBlock = lc.getCurrentBlock();
1452         final CodeGeneratorLexicalContext codegenLexicalContext = lc;
1453 
1454         function.accept(new SimpleNodeVisitor() {
1455             private MethodEmitter sharedScopeCall(final IdentNode identNode, final int flags) {
1456                 final Symbol symbol = identNode.getSymbol();
1457                 final boolean isFastScope = isFastScope(symbol);
1458                 new OptimisticOperation(callNode, resultBounds) {
1459                     @Override
1460                     void loadStack() {
1461                         method.loadCompilerConstant(SCOPE);
1462                         if (isFastScope) {
1463                             method.load(getScopeProtoDepth(currentBlock, symbol));
1464                         } else {
1465                             method.load(-1); // Bypass fast-scope code in shared callsite
1466                         }
1467                         loadArgs(args);
1468                     }
1469                     @Override
1470                     void consumeStack() {
1471                         final Type[] paramTypes = method.getTypesFromStack(args.size());
1472                         // We have trouble finding e.g. in Type.typeFor(asm.Type) because it can't see the Context class
1473                         // loader, so we need to weaken reference signatures to Object.
1474                         for(int i = 0; i < paramTypes.length; ++i) {
1475                             paramTypes[i] = Type.generic(paramTypes[i]);
1476                         }
1477                         // As shared scope calls are only used in non-optimistic compilation, we switch from using
1478                         // TypeBounds to just a single definitive type, resultBounds.widest.
1479                         final SharedScopeCall scopeCall = codegenLexicalContext.getScopeCall(unit, symbol,
1480                                 identNode.getType(), resultBounds.widest, paramTypes, flags);
1481                         scopeCall.generateInvoke(method);
1482                     }
1483                 }.emit();
1484                 return method;
1485             }
1486 
1487             private void scopeCall(final IdentNode ident, final int flags) {
1488                 new OptimisticOperation(callNode, resultBounds) {
1489                     int argsCount;
1490                     @Override
1491                     void loadStack() {
1492                         loadExpressionAsObject(ident); // foo() makes no sense if foo == 3
1493                         // ScriptFunction will see CALLSITE_SCOPE and will bind scope accordingly.
1494                         method.loadUndefined(Type.OBJECT); //the 'this'
1495                         argsCount = loadArgs(args);
1496                     }
1497                     @Override
1498                     void consumeStack() {
1499                         dynamicCall(2 + argsCount, flags, ident.getName());
1500                     }
1501                 }.emit();
1502             }
1503 
1504             private void evalCall(final IdentNode ident, final int flags) {
1505                 final Label invoke_direct_eval  = new Label("invoke_direct_eval");
1506                 final Label is_not_eval  = new Label("is_not_eval");
1507                 final Label eval_done = new Label("eval_done");
1508 
1509                 new OptimisticOperation(callNode, resultBounds) {
1510                     int argsCount;
1511                     @Override
1512                     void loadStack() {
1513                         /*
1514                          * We want to load 'eval' to check if it is indeed global builtin eval.
1515                          * If this eval call is inside a 'with' statement, GET_METHOD_PROPERTY
1516                          * would be generated if ident is a "isFunction". But, that would result in a
1517                          * bound function from WithObject. We don't want that as bound function as that
1518                          * won't be detected as builtin eval. So, we make ident as "not a function" which
1519                          * results in GET_PROPERTY being generated and so WithObject
1520                          * would return unbounded eval function.
1521                          *
1522                          * Example:
1523                          *
1524                          *  var global = this;
1525                          *  function func() {
1526                          *      with({ eval: global.eval) { eval("var x = 10;") }
1527                          *  }
1528                          */
1529                         loadExpressionAsObject(ident.setIsNotFunction()); // Type.OBJECT as foo() makes no sense if foo == 3
1530                         globalIsEval();
1531                         method.ifeq(is_not_eval);
1532 
1533                         // Load up self (scope).
1534                         method.loadCompilerConstant(SCOPE);
1535                         final List<Expression> evalArgs = callNode.getEvalArgs().getArgs();
1536                         // load evaluated code
1537                         loadExpressionAsObject(evalArgs.get(0));
1538                         // load second and subsequent args for side-effect
1539                         final int numArgs = evalArgs.size();
1540                         for (int i = 1; i < numArgs; i++) {
1541                             loadAndDiscard(evalArgs.get(i));
1542                         }
1543                         method._goto(invoke_direct_eval);
1544 
1545                         method.label(is_not_eval);
1546                         // load this time but with GET_METHOD_PROPERTY
1547                         loadExpressionAsObject(ident); // Type.OBJECT as foo() makes no sense if foo == 3
1548                         // This is some scope 'eval' or global eval replaced by user
1549                         // but not the built-in ECMAScript 'eval' function call
1550                         method.loadNull();
1551                         argsCount = loadArgs(callNode.getArgs());
1552                     }
1553 
1554                     @Override
1555                     void consumeStack() {
1556                         // Ordinary call
1557                         dynamicCall(2 + argsCount, flags, "eval");
1558                         method._goto(eval_done);
1559 
1560                         method.label(invoke_direct_eval);
1561                         // Special/extra 'eval' arguments. These can be loaded late (in consumeStack) as we know none of
1562                         // them can ever be optimistic.
1563                         method.loadCompilerConstant(THIS);
1564                         method.load(callNode.getEvalArgs().getLocation());
1565                         method.load(CodeGenerator.this.lc.getCurrentFunction().isStrict());
1566                         // direct call to Global.directEval
1567                         globalDirectEval();
1568                         convertOptimisticReturnValue();
1569                         coerceStackTop(resultBounds);
1570                     }
1571                 }.emit();
1572 
1573                 method.label(eval_done);
1574             }
1575 
1576             @Override
1577             public boolean enterIdentNode(final IdentNode node) {
1578                 final Symbol symbol = node.getSymbol();
1579 
1580                 if (symbol.isScope()) {
1581                     final int flags = getScopeCallSiteFlags(symbol);
1582                     final int useCount = symbol.getUseCount();
1583 
1584                     // Threshold for generating shared scope callsite is lower for fast scope symbols because we know
1585                     // we can dial in the correct scope. However, we also need to enable it for non-fast scopes to
1586                     // support huge scripts like mandreel.js.
1587                     if (callNode.isEval()) {
1588                         evalCall(node, flags);
1589                     } else if (useCount <= SharedScopeCall.FAST_SCOPE_CALL_THRESHOLD
1590                             || !isFastScope(symbol) && useCount <= SharedScopeCall.SLOW_SCOPE_CALL_THRESHOLD
1591                             || CodeGenerator.this.lc.inDynamicScope()
1592                             || callNode.isOptimistic()) {
1593                         scopeCall(node, flags);
1594                     } else {
1595                         sharedScopeCall(node, flags);
1596                     }
1597                     assert method.peekType().equals(resultBounds.within(callNode.getType())) : method.peekType() + " != " + resultBounds + "(" + callNode.getType() + ")";
1598                 } else {
1599                     enterDefault(node);
1600                 }
1601 
1602                 return false;
1603             }
1604 
1605             @Override
1606             public boolean enterAccessNode(final AccessNode node) {
1607                 //check if this is an apply to call node. only real applies, that haven't been
1608                 //shadowed from their way to the global scope counts
1609 
1610                 //call nodes have program points.
1611 
1612                 final int flags = getCallSiteFlags() | (callNode.isApplyToCall() ? CALLSITE_APPLY_TO_CALL : 0);
1613 
1614                 new OptimisticOperation(callNode, resultBounds) {
1615                     int argCount;
1616                     @Override
1617                     void loadStack() {
1618                         loadExpressionAsObject(node.getBase());
1619                         method.dup();
1620                         // NOTE: not using a nested OptimisticOperation on this dynamicGet, as we expect to get back
1621                         // a callable object. Nobody in their right mind would optimistically type this call site.
1622                         assert !node.isOptimistic();
1623                         method.dynamicGet(node.getType(), node.getProperty(), flags, true, node.isIndex());
1624                         method.swap();
1625                         argCount = loadArgs(args);
1626                     }
1627                     @Override
1628                     void consumeStack() {
1629                         dynamicCall(2 + argCount, flags, node.toString(false));
1630                     }
1631                 }.emit();
1632 
1633                 return false;
1634             }
1635 
1636             @Override
1637             public boolean enterFunctionNode(final FunctionNode origCallee) {
1638                 new OptimisticOperation(callNode, resultBounds) {
1639                     FunctionNode callee;
1640                     int argsCount;
1641                     @Override
1642                     void loadStack() {
1643                         callee = (FunctionNode)origCallee.accept(CodeGenerator.this);
1644                         if (callee.isStrict()) { // "this" is undefined
1645                             method.loadUndefined(Type.OBJECT);
1646                         } else { // get global from scope (which is the self)
1647                             globalInstance();
1648                         }
1649                         argsCount = loadArgs(args);
1650                     }
1651 
1652                     @Override
1653                     void consumeStack() {
1654                         dynamicCall(2 + argsCount, getCallSiteFlags(), null);
1655                     }
1656                 }.emit();
1657                 return false;
1658             }
1659 
1660             @Override
1661             public boolean enterIndexNode(final IndexNode node) {
1662                 new OptimisticOperation(callNode, resultBounds) {
1663                     int argsCount;
1664                     @Override
1665                     void loadStack() {
1666                         loadExpressionAsObject(node.getBase());
1667                         method.dup();
1668                         final Type indexType = node.getIndex().getType();
1669                         if (indexType.isObject() || indexType.isBoolean()) {
1670                             loadExpressionAsObject(node.getIndex()); //TODO boolean
1671                         } else {
1672                             loadExpressionUnbounded(node.getIndex());
1673                         }
1674                         // NOTE: not using a nested OptimisticOperation on this dynamicGetIndex, as we expect to get
1675                         // back a callable object. Nobody in their right mind would optimistically type this call site.
1676                         assert !node.isOptimistic();
1677                         method.dynamicGetIndex(node.getType(), getCallSiteFlags(), true);
1678                         method.swap();
1679                         argsCount = loadArgs(args);
1680                     }
1681                     @Override
1682                     void consumeStack() {
1683                         dynamicCall(2 + argsCount, getCallSiteFlags(), node.toString(false));
1684                     }
1685                 }.emit();
1686                 return false;
1687             }
1688 
1689             @Override
1690             protected boolean enterDefault(final Node node) {
1691                 new OptimisticOperation(callNode, resultBounds) {
1692                     int argsCount;
1693                     @Override
1694                     void loadStack() {
1695                         // Load up function.
1696                         loadExpressionAsObject(function); //TODO, e.g. booleans can be used as functions
1697                         method.loadUndefined(Type.OBJECT); // ScriptFunction will figure out the correct this when it sees CALLSITE_SCOPE
1698                         argsCount = loadArgs(args);
1699                         }
1700                         @Override
1701                         void consumeStack() {
1702                             final int flags = getCallSiteFlags() | CALLSITE_SCOPE;
1703                             dynamicCall(2 + argsCount, flags, node.toString(false));
1704                         }
1705                 }.emit();
1706                 return false;
1707             }
1708         });
1709 
1710         return false;
1711     }
1712 
1713     /**
1714      * Returns the flags with optimistic flag and program point removed.
1715      * @param flags the flags that need optimism stripped from them.
1716      * @return flags without optimism
1717      */
1718     static int nonOptimisticFlags(final int flags) {
1719         return flags & ~(CALLSITE_OPTIMISTIC | -1 << CALLSITE_PROGRAM_POINT_SHIFT);
1720     }
1721 
1722     @Override
1723     public boolean enterContinueNode(final ContinueNode continueNode) {
1724         return enterJumpStatement(continueNode);
1725     }
1726 
1727     @Override
1728     public boolean enterEmptyNode(final EmptyNode emptyNode) {
1729         // Don't even record the line number, it's irrelevant as there's no code.
1730         return false;
1731     }
1732 
1733     @Override
1734     public boolean enterExpressionStatement(final ExpressionStatement expressionStatement) {
1735         if(!method.isReachable()) {
1736             return false;
1737         }
1738         enterStatement(expressionStatement);
1739 
1740         loadAndDiscard(expressionStatement.getExpression());
1741         assert method.getStackSize() == 0 : "stack not empty in " + expressionStatement;
1742 
1743         return false;
1744     }
1745 
1746     @Override
1747     public boolean enterBlockStatement(final BlockStatement blockStatement) {
1748         if(!method.isReachable()) {
1749             return false;
1750         }
1751         enterStatement(blockStatement);
1752 
1753         blockStatement.getBlock().accept(this);
1754 
1755         return false;
1756     }
1757 
1758     @Override
1759     public boolean enterForNode(final ForNode forNode) {
1760         if(!method.isReachable()) {
1761             return false;
1762         }
1763         enterStatement(forNode);
1764         if (forNode.isForIn() || forNode.isForOf()) {
1765             enterForIn(forNode);
1766         } else {
1767             final Expression init = forNode.getInit();
1768             if (init != null) {
1769                 loadAndDiscard(init);
1770             }
1771             enterForOrWhile(forNode, forNode.getModify());
1772         }
1773 
1774         return false;
1775     }
1776 
1777     private void enterForIn(final ForNode forNode) {
1778         loadExpression(forNode.getModify(), TypeBounds.OBJECT);
1779         if (forNode.isForEach()) {
1780             method.invoke(ScriptRuntime.TO_VALUE_ITERATOR);
1781         } else if (forNode.isForIn()) {
1782             method.invoke(ScriptRuntime.TO_PROPERTY_ITERATOR);
1783         } else if (forNode.isForOf()) {
1784             method.invoke(ScriptRuntime.TO_ES6_ITERATOR);
1785         } else {
1786             throw new IllegalArgumentException("Unexpected for node");
1787         }
1788         final Symbol iterSymbol = forNode.getIterator();
1789         final int iterSlot = iterSymbol.getSlot(Type.OBJECT);
1790         method.store(iterSymbol, ITERATOR_TYPE);
1791 
1792         method.beforeJoinPoint(forNode);
1793 
1794         final Label continueLabel = forNode.getContinueLabel();
1795         final Label breakLabel    = forNode.getBreakLabel();
1796 
1797         method.label(continueLabel);
1798         method.load(ITERATOR_TYPE, iterSlot);
1799         method.invoke(interfaceCallNoLookup(ITERATOR_CLASS, "hasNext", boolean.class));
1800         final JoinPredecessorExpression test = forNode.getTest();
1801         final Block body = forNode.getBody();
1802         if(LocalVariableConversion.hasLiveConversion(test)) {
1803             final Label afterConversion = new Label("for_in_after_test_conv");
1804             method.ifne(afterConversion);
1805             method.beforeJoinPoint(test);
1806             method._goto(breakLabel);
1807             method.label(afterConversion);
1808         } else {
1809             method.ifeq(breakLabel);
1810         }
1811 
1812         new Store<Expression>(forNode.getInit()) {
1813             @Override
1814             protected void storeNonDiscard() {
1815                 // This expression is neither part of a discard, nor needs to be left on the stack after it was
1816                 // stored, so we override storeNonDiscard to be a no-op.
1817             }
1818 
1819             @Override
1820             protected void evaluate() {
1821                 new OptimisticOperation((Optimistic)forNode.getInit(), TypeBounds.UNBOUNDED) {
1822                     @Override
1823                     void loadStack() {
1824                         method.load(ITERATOR_TYPE, iterSlot);
1825                     }
1826 
1827                     @Override
1828                     void consumeStack() {
1829                         method.invoke(interfaceCallNoLookup(ITERATOR_CLASS, "next", Object.class));
1830                         convertOptimisticReturnValue();
1831                     }
1832                 }.emit();
1833             }
1834         }.store();
1835         body.accept(this);
1836 
1837         if (forNode.needsScopeCreator() && providesScopeCreator(lc.getCurrentBlock())) {
1838             // for-in loops with lexical declaration need a new scope for each iteration.
1839             final FieldObjectCreator<?> creator = scopeObjectCreators.peek();
1840             assert creator != null;
1841             creator.createForInIterationScope(method);
1842             method.storeCompilerConstant(SCOPE);
1843         }
1844 
1845         if(method.isReachable()) {
1846             method._goto(continueLabel);
1847         }
1848         method.label(breakLabel);
1849     }
1850 
1851     /**
1852      * Initialize the slots in a frame to undefined.
1853      *
1854      * @param block block with local vars.
1855      */
1856     private void initLocals(final Block block) {
1857         lc.onEnterBlock(block);
1858 
1859         final boolean isFunctionBody = lc.isFunctionBody();
1860         final FunctionNode function = lc.getCurrentFunction();
1861         if (isFunctionBody) {
1862             initializeMethodParameters(function);
1863             if(!function.isVarArg()) {
1864                 expandParameterSlots(function);
1865             }
1866             if (method.hasScope()) {
1867                 if (function.needsParentScope()) {
1868                     method.loadCompilerConstant(CALLEE);
1869                     method.invoke(ScriptFunction.GET_SCOPE);
1870                 } else {
1871                     assert function.hasScopeBlock();
1872                     method.loadNull();
1873                 }
1874                 method.storeCompilerConstant(SCOPE);
1875             }
1876             if (function.needsArguments()) {
1877                 initArguments(function);
1878             }
1879         }
1880 
1881         /*
1882          * Determine if block needs scope, if not, just do initSymbols for this block.
1883          */
1884         if (block.needsScope()) {
1885             /*
1886              * Determine if function is varargs and consequently variables have to
1887              * be in the scope.
1888              */
1889             final boolean varsInScope = function.allVarsInScope();
1890 
1891             // TODO for LET we can do better: if *block* does not contain any eval/with, we don't need its vars in scope.
1892 
1893             final boolean hasArguments = function.needsArguments();
1894             final List<MapTuple<Symbol>> tuples = new ArrayList<>();
1895             final Iterator<IdentNode> paramIter = function.getParameters().iterator();
1896             for (final Symbol symbol : block.getSymbols()) {
1897                 if (symbol.isInternal() || symbol.isThis()) {
1898                     continue;
1899                 }
1900 
1901                 if (symbol.isVar()) {
1902                     assert !varsInScope || symbol.isScope();
1903                     if (varsInScope || symbol.isScope()) {
1904                         assert symbol.isScope()   : "scope for " + symbol + " should have been set in Lower already " + function.getName();
1905                         assert !symbol.hasSlot()  : "slot for " + symbol + " should have been removed in Lower already" + function.getName();
1906 
1907                         //this tuple will not be put fielded, as it has no value, just a symbol
1908                         tuples.add(new MapTuple<Symbol>(symbol.getName(), symbol, null));
1909                     } else {
1910                         assert symbol.hasSlot() || symbol.slotCount() == 0 : symbol + " should have a slot only, no scope";
1911                     }
1912                 } else if (symbol.isParam() && (varsInScope || hasArguments || symbol.isScope())) {
1913                     assert symbol.isScope()   : "scope for " + symbol + " should have been set in AssignSymbols already " + function.getName() + " varsInScope="+varsInScope+" hasArguments="+hasArguments+" symbol.isScope()=" + symbol.isScope();
1914                     assert !(hasArguments && symbol.hasSlot())  : "slot for " + symbol + " should have been removed in Lower already " + function.getName();
1915 
1916                     final Type   paramType;
1917                     final Symbol paramSymbol;
1918 
1919                     if (hasArguments) {
1920                         assert !symbol.hasSlot()  : "slot for " + symbol + " should have been removed in Lower already ";
1921                         paramSymbol = null;
1922                         paramType   = null;
1923                     } else {
1924                         paramSymbol = symbol;
1925                         // NOTE: We're relying on the fact here that Block.symbols is a LinkedHashMap, hence it will
1926                         // return symbols in the order they were defined, and parameters are defined in the same order
1927                         // they appear in the function. That's why we can have a single pass over the parameter list
1928                         // with an iterator, always just scanning forward for the next parameter that matches the symbol
1929                         // name.
1930                         for(;;) {
1931                             final IdentNode nextParam = paramIter.next();
1932                             if(nextParam.getName().equals(symbol.getName())) {
1933                                 paramType = nextParam.getType();
1934                                 break;
1935                             }
1936                         }
1937                     }
1938 
1939                     tuples.add(new MapTuple<Symbol>(symbol.getName(), symbol, paramType, paramSymbol) {
1940                         //this symbol will be put fielded, we can't initialize it as undefined with a known type
1941                         @Override
1942                         public Class<?> getValueType() {
1943                             if (!useDualFields() ||  value == null || paramType == null || paramType.isBoolean()) {
1944                                 return Object.class;
1945                             }
1946                             return paramType.getTypeClass();
1947                         }
1948                     });
1949                 }
1950             }
1951 
1952             /*
1953              * Create a new object based on the symbols and values, generate
1954              * bootstrap code for object
1955              */
1956             final FieldObjectCreator<Symbol> creator = new FieldObjectCreator<Symbol>(this, tuples, true, hasArguments) {
1957                 @Override
1958                 protected void loadValue(final Symbol value, final Type type) {
1959                     method.load(value, type);
1960                 }
1961             };
1962             creator.makeObject(method);
1963             if (providesScopeCreator(block)) {
1964                 scopeObjectCreators.push(creator);
1965             }
1966             // program function: merge scope into global
1967             if (isFunctionBody && function.isProgram()) {
1968                 method.invoke(ScriptRuntime.MERGE_SCOPE);
1969             }
1970 
1971             method.storeCompilerConstant(SCOPE);
1972             if(!isFunctionBody) {
1973                 // Function body doesn't need a try/catch to restore scope, as it'd be a dead store anyway. Allowing it
1974                 // actually causes issues with UnwarrantedOptimismException handlers as ASM will sort this handler to
1975                 // the top of the exception handler table, so it'll be triggered instead of the UOE handlers.
1976                 final Label scopeEntryLabel = new Label("scope_entry");
1977                 scopeEntryLabels.push(scopeEntryLabel);
1978                 method.label(scopeEntryLabel);
1979             }
1980         } else if (isFunctionBody && function.isVarArg()) {
1981             // Since we don't have a scope, parameters didn't get assigned array indices by the FieldObjectCreator, so
1982             // we need to assign them separately here.
1983             int nextParam = 0;
1984             for (final IdentNode param : function.getParameters()) {
1985                 param.getSymbol().setFieldIndex(nextParam++);
1986             }
1987         }
1988 
1989         // Debugging: print symbols? @see --print-symbols flag
1990         printSymbols(block, function, (isFunctionBody ? "Function " : "Block in ") + (function.getIdent() == null ? "<anonymous>" : function.getIdent().getName()));
1991     }
1992 
1993     /**
1994      * Incoming method parameters are always declared on method entry; declare them in the local variable table.
1995      * @param function function for which code is being generated.
1996      */
1997     private void initializeMethodParameters(final FunctionNode function) {
1998         final Label functionStart = new Label("fn_start");
1999         method.label(functionStart);
2000         int nextSlot = 0;
2001         if(function.needsCallee()) {
2002             initializeInternalFunctionParameter(CALLEE, function, functionStart, nextSlot++);
2003         }
2004         initializeInternalFunctionParameter(THIS, function, functionStart, nextSlot++);
2005         if(function.isVarArg()) {
2006             initializeInternalFunctionParameter(VARARGS, function, functionStart, nextSlot++);
2007         } else {
2008             for(final IdentNode param: function.getParameters()) {
2009                 final Symbol symbol = param.getSymbol();
2010                 if(symbol.isBytecodeLocal()) {
2011                     method.initializeMethodParameter(symbol, param.getType(), functionStart);
2012                 }
2013             }
2014         }
2015     }
2016 
2017     private void initializeInternalFunctionParameter(final CompilerConstants cc, final FunctionNode fn, final Label functionStart, final int slot) {
2018         final Symbol symbol = initializeInternalFunctionOrSplitParameter(cc, fn, functionStart, slot);
2019         // Internal function params (:callee, this, and :varargs) are never expanded to multiple slots
2020         assert symbol.getFirstSlot() == slot;
2021     }
2022 
2023     private Symbol initializeInternalFunctionOrSplitParameter(final CompilerConstants cc, final FunctionNode fn, final Label functionStart, final int slot) {
2024         final Symbol symbol = fn.getBody().getExistingSymbol(cc.symbolName());
2025         final Type type = Type.typeFor(cc.type());
2026         method.initializeMethodParameter(symbol, type, functionStart);
2027         method.onLocalStore(type, slot);
2028         return symbol;
2029     }
2030 
2031     /**
2032      * Parameters come into the method packed into local variable slots next to each other. Nashorn on the other hand
2033      * can use 1-6 slots for a local variable depending on all the types it needs to store. When this method is invoked,
2034      * the symbols are already allocated such wider slots, but the values are still in tightly packed incoming slots,
2035      * and we need to spread them into their new locations.
2036      * @param function the function for which parameter-spreading code needs to be emitted
2037      */
2038     private void expandParameterSlots(final FunctionNode function) {
2039         final List<IdentNode> parameters = function.getParameters();
2040         // Calculate the total number of incoming parameter slots
2041         int currentIncomingSlot = function.needsCallee() ? 2 : 1;
2042         for(final IdentNode parameter: parameters) {
2043             currentIncomingSlot += parameter.getType().getSlots();
2044         }
2045         // Starting from last parameter going backwards, move the parameter values into their new slots.
2046         for(int i = parameters.size(); i-- > 0;) {
2047             final IdentNode parameter = parameters.get(i);
2048             final Type parameterType = parameter.getType();
2049             final int typeWidth = parameterType.getSlots();
2050             currentIncomingSlot -= typeWidth;
2051             final Symbol symbol = parameter.getSymbol();
2052             final int slotCount = symbol.slotCount();
2053             assert slotCount > 0;
2054             // Scoped parameters must not hold more than one value
2055             assert symbol.isBytecodeLocal() || slotCount == typeWidth;
2056 
2057             // Mark it as having its value stored into it by the method invocation.
2058             method.onLocalStore(parameterType, currentIncomingSlot);
2059             if(currentIncomingSlot != symbol.getSlot(parameterType)) {
2060                 method.load(parameterType, currentIncomingSlot);
2061                 method.store(symbol, parameterType);
2062             }
2063         }
2064     }
2065 
2066     private void initArguments(final FunctionNode function) {
2067         method.loadCompilerConstant(VARARGS);
2068         if (function.needsCallee()) {
2069             method.loadCompilerConstant(CALLEE);
2070         } else {
2071             // If function is strict mode, "arguments.callee" is not populated, so we don't necessarily need the
2072             // caller.
2073             assert function.isStrict();
2074             method.loadNull();
2075         }
2076         method.load(function.getParameters().size());
2077         globalAllocateArguments();
2078         method.storeCompilerConstant(ARGUMENTS);
2079     }
2080 
2081     private boolean skipFunction(final FunctionNode functionNode) {
2082         final ScriptEnvironment env = compiler.getScriptEnvironment();
2083         final boolean lazy = env._lazy_compilation;
2084         final boolean onDemand = compiler.isOnDemandCompilation();
2085 
2086         // If this is on-demand or lazy compilation, don't compile a nested (not topmost) function.
2087         if((onDemand || lazy) && lc.getOutermostFunction() != functionNode) {
2088             return true;
2089         }
2090 
2091         // If lazy compiling with optimistic types, don't compile the program eagerly either. It will soon be
2092         // invalidated anyway. In presence of a class cache, this further means that an obsoleted program version
2093         // lingers around. Also, currently loading previously persisted optimistic types information only works if
2094         // we're on-demand compiling a function, so with this strategy the :program method can also have the warmup
2095         // benefit of using previously persisted types.
2096         //
2097         // NOTE that this means the first compiled class will effectively just have a :createProgramFunction method, and
2098         // the RecompilableScriptFunctionData (RSFD) object in its constants array. It won't even have the :program
2099         // method. This is by design. It does mean that we're wasting one compiler execution (and we could minimize this
2100         // by just running it up to scope depth calculation, which creates the RSFDs and then this limited codegen).
2101         // We could emit an initial separate compile unit with the initial version of :program in it to better utilize
2102         // the compilation pipeline, but that would need more invasive changes, as currently the assumption that
2103         // :program is emitted into the first compilation unit of the function lives in many places.
2104         return !onDemand && lazy && env._optimistic_types && functionNode.isProgram();
2105     }
2106 
2107     @Override
2108     public boolean enterFunctionNode(final FunctionNode functionNode) {
2109         if (skipFunction(functionNode)) {
2110             // In case we are not generating code for the function, we must create or retrieve the function object and
2111             // load it on the stack here.
2112             newFunctionObject(functionNode, false);
2113             return false;
2114         }
2115 
2116         final String fnName = functionNode.getName();
2117 
2118         // NOTE: we only emit the method for a function with the given name once. We can have multiple functions with
2119         // the same name as a result of inlining finally blocks. However, in the future -- with type specialization,
2120         // notably -- we might need to check for both name *and* signature. Of course, even that might not be
2121         // sufficient; the function might have a code dependency on the type of the variables in its enclosing scopes,
2122         // and the type of such a variable can be different in catch and finally blocks. So, in the future we will have
2123         // to decide to either generate a unique method for each inlined copy of the function, maybe figure out its
2124         // exact type closure and deduplicate based on that, or just decide that functions in finally blocks aren't
2125         // worth it, and generate one method with most generic type closure.
2126         if (!emittedMethods.contains(fnName)) {
2127             log.info("=== BEGIN ", fnName);
2128 
2129             assert functionNode.getCompileUnit() != null : "no compile unit for " + fnName + " " + Debug.id(functionNode);
2130             unit = lc.pushCompileUnit(functionNode.getCompileUnit());
2131             assert lc.hasCompileUnits();
2132 
2133             final ClassEmitter classEmitter = unit.getClassEmitter();
2134             pushMethodEmitter(isRestOf() ? classEmitter.restOfMethod(functionNode) : classEmitter.method(functionNode));
2135             method.setPreventUndefinedLoad();
2136             if(useOptimisticTypes()) {
2137                 lc.pushUnwarrantedOptimismHandlers();
2138             }
2139 
2140             // new method - reset last line number
2141             lastLineNumber = -1;
2142 
2143             method.begin();
2144 
2145             if (isRestOf()) {
2146                 assert continuationInfo == null;
2147                 continuationInfo = new ContinuationInfo();
2148                 method.gotoLoopStart(continuationInfo.getHandlerLabel());
2149             }
2150         }
2151 
2152         return true;
2153     }
2154 
2155     private void pushMethodEmitter(final MethodEmitter newMethod) {
2156         method = lc.pushMethodEmitter(newMethod);
2157         catchLabels.push(METHOD_BOUNDARY);
2158     }
2159 
2160     private void popMethodEmitter() {
2161         method = lc.popMethodEmitter(method);
2162         assert catchLabels.peek() == METHOD_BOUNDARY;
2163         catchLabels.pop();
2164     }
2165 
2166     @Override
2167     public Node leaveFunctionNode(final FunctionNode functionNode) {
2168         try {
2169             final boolean markOptimistic;
2170             if (emittedMethods.add(functionNode.getName())) {
2171                 markOptimistic = generateUnwarrantedOptimismExceptionHandlers(functionNode);
2172                 generateContinuationHandler();
2173                 method.end(); // wrap up this method
2174                 unit   = lc.popCompileUnit(functionNode.getCompileUnit());
2175                 popMethodEmitter();
2176                 log.info("=== END ", functionNode.getName());
2177             } else {
2178                 markOptimistic = false;
2179             }
2180 
2181             FunctionNode newFunctionNode = functionNode;
2182             if (markOptimistic) {
2183                 newFunctionNode = newFunctionNode.setFlag(lc, FunctionNode.IS_DEOPTIMIZABLE);
2184             }
2185 
2186             newFunctionObject(newFunctionNode, true);
2187             return newFunctionNode;
2188         } catch (final Throwable t) {
2189             Context.printStackTrace(t);
2190             final VerifyError e = new VerifyError("Code generation bug in \"" + functionNode.getName() + "\": likely stack misaligned: " + t + " " + functionNode.getSource().getName());
2191             e.initCause(t);
2192             throw e;
2193         }
2194     }
2195 
2196     @Override
2197     public boolean enterIfNode(final IfNode ifNode) {
2198         if(!method.isReachable()) {
2199             return false;
2200         }
2201         enterStatement(ifNode);
2202 
2203         final Expression test = ifNode.getTest();
2204         final Block pass = ifNode.getPass();
2205         final Block fail = ifNode.getFail();
2206 
2207         if (Expression.isAlwaysTrue(test)) {
2208             loadAndDiscard(test);
2209             pass.accept(this);
2210             return false;
2211         } else if (Expression.isAlwaysFalse(test)) {
2212             loadAndDiscard(test);
2213             if (fail != null) {
2214                 fail.accept(this);
2215             }
2216             return false;
2217         }
2218 
2219         final boolean hasFailConversion = LocalVariableConversion.hasLiveConversion(ifNode);
2220 
2221         final Label failLabel  = new Label("if_fail");
2222         final Label afterLabel = (fail == null && !hasFailConversion) ? null : new Label("if_done");
2223 
2224         emitBranch(test, failLabel, false);
2225 
2226         pass.accept(this);
2227         if(method.isReachable() && afterLabel != null) {
2228             method._goto(afterLabel); //don't fallthru to fail block
2229         }
2230         method.label(failLabel);
2231 
2232         if (fail != null) {
2233             fail.accept(this);
2234         } else if(hasFailConversion) {
2235             method.beforeJoinPoint(ifNode);
2236         }
2237 
2238         if(afterLabel != null && afterLabel.isReachable()) {
2239             method.label(afterLabel);
2240         }
2241 
2242         return false;
2243     }
2244 
2245     private void emitBranch(final Expression test, final Label label, final boolean jumpWhenTrue) {
2246         new BranchOptimizer(this, method).execute(test, label, jumpWhenTrue);
2247     }
2248 
2249     private void enterStatement(final Statement statement) {
2250         lineNumber(statement);
2251     }
2252 
2253     private void lineNumber(final Statement statement) {
2254         lineNumber(statement.getLineNumber());
2255     }
2256 
2257     private void lineNumber(final int lineNumber) {
2258         if (lineNumber != lastLineNumber && lineNumber != Node.NO_LINE_NUMBER) {
2259             method.lineNumber(lineNumber);
2260             lastLineNumber = lineNumber;
2261         }
2262     }
2263 
2264     int getLastLineNumber() {
2265         return lastLineNumber;
2266     }
2267 
2268     /**
2269      * Load a list of nodes as an array of a specific type
2270      * The array will contain the visited nodes.
2271      *
2272      * @param arrayLiteralNode the array of contents
2273      * @param arrayType        the type of the array, e.g. ARRAY_NUMBER or ARRAY_OBJECT
2274      */
2275     private void loadArray(final ArrayLiteralNode arrayLiteralNode, final ArrayType arrayType) {
2276         assert arrayType == Type.INT_ARRAY || arrayType == Type.NUMBER_ARRAY || arrayType == Type.OBJECT_ARRAY;
2277 
2278         final Expression[]     nodes    = arrayLiteralNode.getValue();
2279         final Object           presets  = arrayLiteralNode.getPresets();
2280         final int[]            postsets = arrayLiteralNode.getPostsets();
2281         final List<Splittable.SplitRange> ranges   = arrayLiteralNode.getSplitRanges();
2282 
2283         loadConstant(presets);
2284 
2285         final Type elementType = arrayType.getElementType();
2286 
2287         if (ranges != null) {
2288 
2289             loadSplitLiteral(new SplitLiteralCreator() {
2290                 @Override
2291                 public void populateRange(final MethodEmitter method, final Type type, final int slot, final int start, final int end) {
2292                     for (int i = start; i < end; i++) {
2293                         method.load(type, slot);
2294                         storeElement(nodes, elementType, postsets[i]);
2295                     }
2296                     method.load(type, slot);
2297                 }
2298             }, ranges, arrayType);
2299 
2300             return;
2301         }
2302 
2303         if(postsets.length > 0) {
2304             final int arraySlot = method.getUsedSlotsWithLiveTemporaries();
2305             method.storeTemp(arrayType, arraySlot);
2306             for (final int postset : postsets) {
2307                 method.load(arrayType, arraySlot);
2308                 storeElement(nodes, elementType, postset);
2309             }
2310             method.load(arrayType, arraySlot);
2311         }
2312     }
2313 
2314     private void storeElement(final Expression[] nodes, final Type elementType, final int index) {
2315         method.load(index);
2316 
2317         final Expression element = nodes[index];
2318 
2319         if (element == null) {
2320             method.loadEmpty(elementType);
2321         } else {
2322             loadExpressionAsType(element, elementType);
2323         }
2324 
2325         method.arraystore();
2326     }
2327 
2328     private MethodEmitter loadArgsArray(final List<Expression> args) {
2329         final Object[] array = new Object[args.size()];
2330         loadConstant(array);
2331 
2332         for (int i = 0; i < args.size(); i++) {
2333             method.dup();
2334             method.load(i);
2335             loadExpression(args.get(i), TypeBounds.OBJECT); // variable arity methods always take objects
2336             method.arraystore();
2337         }
2338 
2339         return method;
2340     }
2341 
2342     /**
2343      * Load a constant from the constant array. This is only public to be callable from the objects
2344      * subpackage. Do not call directly.
2345      *
2346      * @param string string to load
2347      */
2348     void loadConstant(final String string) {
2349         final String       unitClassName = unit.getUnitClassName();
2350         final ClassEmitter classEmitter  = unit.getClassEmitter();
2351         final int          index         = compiler.getConstantData().add(string);
2352 
2353         method.load(index);
2354         method.invokestatic(unitClassName, GET_STRING.symbolName(), methodDescriptor(String.class, int.class));
2355         classEmitter.needGetConstantMethod(String.class);
2356     }
2357 
2358     /**
2359      * Load a constant from the constant array. This is only public to be callable from the objects
2360      * subpackage. Do not call directly.
2361      *
2362      * @param object object to load
2363      */
2364     void loadConstant(final Object object) {
2365         loadConstant(object, unit, method);
2366     }
2367 
2368     private void loadConstant(final Object object, final CompileUnit compileUnit, final MethodEmitter methodEmitter) {
2369         final String       unitClassName = compileUnit.getUnitClassName();
2370         final ClassEmitter classEmitter  = compileUnit.getClassEmitter();
2371         final int          index         = compiler.getConstantData().add(object);
2372         final Class<?>     cls           = object.getClass();
2373 
2374         if (cls == PropertyMap.class) {
2375             methodEmitter.load(index);
2376             methodEmitter.invokestatic(unitClassName, GET_MAP.symbolName(), methodDescriptor(PropertyMap.class, int.class));
2377             classEmitter.needGetConstantMethod(PropertyMap.class);
2378         } else if (cls.isArray()) {
2379             methodEmitter.load(index);
2380             final String methodName = ClassEmitter.getArrayMethodName(cls);
2381             methodEmitter.invokestatic(unitClassName, methodName, methodDescriptor(cls, int.class));
2382             classEmitter.needGetConstantMethod(cls);
2383         } else {
2384             methodEmitter.loadConstants().load(index).arrayload();
2385             if (object instanceof ArrayData) {
2386                 methodEmitter.checkcast(ArrayData.class);
2387                 methodEmitter.invoke(virtualCallNoLookup(ArrayData.class, "copy", ArrayData.class));
2388             } else if (cls != Object.class) {
2389                 methodEmitter.checkcast(cls);
2390             }
2391         }
2392     }
2393 
2394     private void loadConstantsAndIndex(final Object object, final MethodEmitter methodEmitter) {
2395         methodEmitter.loadConstants().load(compiler.getConstantData().add(object));
2396     }
2397 
2398     // literal values
2399     private void loadLiteral(final LiteralNode<?> node, final TypeBounds resultBounds) {
2400         final Object value = node.getValue();
2401 
2402         if (value == null) {
2403             method.loadNull();
2404         } else if (value instanceof Undefined) {
2405             method.loadUndefined(resultBounds.within(Type.OBJECT));
2406         } else if (value instanceof String) {
2407             final String string = (String)value;
2408 
2409             if (string.length() > MethodEmitter.LARGE_STRING_THRESHOLD / 3) { // 3 == max bytes per encoded char
2410                 loadConstant(string);
2411             } else {
2412                 method.load(string);
2413             }
2414         } else if (value instanceof RegexToken) {
2415             loadRegex((RegexToken)value);
2416         } else if (value instanceof Boolean) {
2417             method.load((Boolean)value);
2418         } else if (value instanceof Integer) {
2419             if(!resultBounds.canBeNarrowerThan(Type.OBJECT)) {
2420                 method.load((Integer)value);
2421                 method.convert(Type.OBJECT);
2422             } else if(!resultBounds.canBeNarrowerThan(Type.NUMBER)) {
2423                 method.load(((Integer)value).doubleValue());
2424             } else {
2425                 method.load((Integer)value);
2426             }
2427         } else if (value instanceof Double) {
2428             if(!resultBounds.canBeNarrowerThan(Type.OBJECT)) {
2429                 method.load((Double)value);
2430                 method.convert(Type.OBJECT);
2431             } else {
2432                 method.load((Double)value);
2433             }
2434         } else if (node instanceof ArrayLiteralNode) {
2435             final ArrayLiteralNode arrayLiteral = (ArrayLiteralNode)node;
2436             final ArrayType atype = arrayLiteral.getArrayType();
2437             loadArray(arrayLiteral, atype);
2438             globalAllocateArray(atype);
2439         } else {
2440             throw new UnsupportedOperationException("Unknown literal for " + node.getClass() + " " + value.getClass() + " " + value);
2441         }
2442     }
2443 
2444     private MethodEmitter loadRegexToken(final RegexToken value) {
2445         method.load(value.getExpression());
2446         method.load(value.getOptions());
2447         return globalNewRegExp();
2448     }
2449 
2450     private MethodEmitter loadRegex(final RegexToken regexToken) {
2451         if (regexFieldCount > MAX_REGEX_FIELDS) {
2452             return loadRegexToken(regexToken);
2453         }
2454         // emit field
2455         final String       regexName    = lc.getCurrentFunction().uniqueName(REGEX_PREFIX.symbolName());
2456         final ClassEmitter classEmitter = unit.getClassEmitter();
2457 
2458         classEmitter.field(EnumSet.of(PRIVATE, STATIC), regexName, Object.class);
2459         regexFieldCount++;
2460 
2461         // get field, if null create new regex, finally clone regex object
2462         method.getStatic(unit.getUnitClassName(), regexName, typeDescriptor(Object.class));
2463         method.dup();
2464         final Label cachedLabel = new Label("cached");
2465         method.ifnonnull(cachedLabel);
2466 
2467         method.pop();
2468         loadRegexToken(regexToken);
2469         method.dup();
2470         method.putStatic(unit.getUnitClassName(), regexName, typeDescriptor(Object.class));
2471 
2472         method.label(cachedLabel);
2473         globalRegExpCopy();
2474 
2475         return method;
2476     }
2477 
2478     /**
2479      * Check if a property value contains a particular program point
2480      * @param value value
2481      * @param pp    program point
2482      * @return true if it's there.
2483      */
2484     private static boolean propertyValueContains(final Expression value, final int pp) {
2485         return new Supplier<Boolean>() {
2486             boolean contains;
2487 
2488             @Override
2489             public Boolean get() {
2490                 value.accept(new SimpleNodeVisitor() {
2491                     @Override
2492                     public boolean enterFunctionNode(final FunctionNode functionNode) {
2493                         return false;
2494                     }
2495 
2496                     @Override
2497                     public boolean enterObjectNode(final ObjectNode objectNode) {
2498                         return false;
2499                     }
2500 
2501                     @Override
2502                     public boolean enterDefault(final Node node) {
2503                         if (contains) {
2504                             return false;
2505                         }
2506                         if (node instanceof Optimistic && ((Optimistic)node).getProgramPoint() == pp) {
2507                             contains = true;
2508                             return false;
2509                         }
2510                         return true;
2511                     }
2512                 });
2513 
2514                 return contains;
2515             }
2516         }.get();
2517     }
2518 
2519     private void loadObjectNode(final ObjectNode objectNode) {
2520         final List<PropertyNode> elements = objectNode.getElements();
2521 
2522         final List<MapTuple<Expression>> tuples = new ArrayList<>();
2523         final List<PropertyNode> gettersSetters = new ArrayList<>();
2524         final int ccp = getCurrentContinuationEntryPoint();
2525         final List<Splittable.SplitRange> ranges = objectNode.getSplitRanges();
2526 
2527         Expression protoNode = null;
2528         boolean restOfProperty = false;
2529 
2530         for (final PropertyNode propertyNode : elements) {
2531             final Expression value = propertyNode.getValue();
2532             final String key = propertyNode.getKeyName();
2533             // Just use a pseudo-symbol. We just need something non null; use the name and zero flags.
2534             final Symbol symbol = value == null ? null : new Symbol(key, 0);
2535 
2536             if (value == null) {
2537                 gettersSetters.add(propertyNode);
2538             } else if (propertyNode.getKey() instanceof IdentNode &&
2539                        key.equals(ScriptObject.PROTO_PROPERTY_NAME)) {
2540                 // ES6 draft compliant __proto__ inside object literal
2541                 // Identifier key and name is __proto__
2542                 protoNode = value;
2543                 continue;
2544             }
2545 
2546             restOfProperty |=
2547                 value != null &&
2548                 isValid(ccp) &&
2549                 propertyValueContains(value, ccp);
2550 
2551             //for literals, a value of null means object type, i.e. the value null or getter setter function
2552             //(I think)
2553             final Class<?> valueType = (!useDualFields() || value == null || value.getType().isBoolean()) ? Object.class : value.getType().getTypeClass();
2554             tuples.add(new MapTuple<Expression>(key, symbol, Type.typeFor(valueType), value) {
2555                 @Override
2556                 public Class<?> getValueType() {
2557                     return type.getTypeClass();
2558                 }
2559             });
2560         }
2561 
2562         final ObjectCreator<?> oc;
2563         if (elements.size() > OBJECT_SPILL_THRESHOLD) {
2564             oc = new SpillObjectCreator(this, tuples);
2565         } else {
2566             oc = new FieldObjectCreator<Expression>(this, tuples) {
2567                 @Override
2568                 protected void loadValue(final Expression node, final Type type) {
2569                     loadExpressionAsType(node, type);
2570                 }};
2571         }
2572 
2573         if (ranges != null) {
2574             oc.createObject(method);
2575             loadSplitLiteral(oc, ranges, Type.typeFor(oc.getAllocatorClass()));
2576         } else {
2577             oc.makeObject(method);
2578         }
2579 
2580         //if this is a rest of method and our continuation point was found as one of the values
2581         //in the properties above, we need to reset the map to oc.getMap() in the continuation
2582         //handler
2583         if (restOfProperty) {
2584             final ContinuationInfo ci = getContinuationInfo();
2585             // Can be set at most once for a single rest-of method
2586             assert ci.getObjectLiteralMap() == null;
2587             ci.setObjectLiteralMap(oc.getMap());
2588             ci.setObjectLiteralStackDepth(method.getStackSize());
2589         }
2590 
2591         method.dup();
2592         if (protoNode != null) {
2593             loadExpressionAsObject(protoNode);
2594             // take care of { __proto__: 34 } or some such!
2595             method.convert(Type.OBJECT);
2596             method.invoke(ScriptObject.SET_PROTO_FROM_LITERAL);
2597         } else {
2598             method.invoke(ScriptObject.SET_GLOBAL_OBJECT_PROTO);
2599         }
2600 
2601         for (final PropertyNode propertyNode : gettersSetters) {
2602             final FunctionNode getter = propertyNode.getGetter();
2603             final FunctionNode setter = propertyNode.getSetter();
2604 
2605             assert getter != null || setter != null;
2606 
2607             method.dup().loadKey(propertyNode.getKey());
2608             if (getter == null) {
2609                 method.loadNull();
2610             } else {
2611                 getter.accept(this);
2612             }
2613 
2614             if (setter == null) {
2615                 method.loadNull();
2616             } else {
2617                 setter.accept(this);
2618             }
2619 
2620             method.invoke(ScriptObject.SET_USER_ACCESSORS);
2621         }
2622     }
2623 
2624     @Override
2625     public boolean enterReturnNode(final ReturnNode returnNode) {
2626         if(!method.isReachable()) {
2627             return false;
2628         }
2629         enterStatement(returnNode);
2630 
2631         final Type returnType = lc.getCurrentFunction().getReturnType();
2632 
2633         final Expression expression = returnNode.getExpression();
2634         if (expression != null) {
2635             loadExpressionUnbounded(expression);
2636         } else {
2637             method.loadUndefined(returnType);
2638         }
2639 
2640         method._return(returnType);
2641 
2642         return false;
2643     }
2644 
2645     private boolean undefinedCheck(final RuntimeNode runtimeNode, final List<Expression> args) {
2646         final Request request = runtimeNode.getRequest();
2647 
2648         if (!Request.isUndefinedCheck(request)) {
2649             return false;
2650         }
2651 
2652         final Expression lhs = args.get(0);
2653         final Expression rhs = args.get(1);
2654 
2655         final Symbol lhsSymbol = lhs instanceof IdentNode ? ((IdentNode)lhs).getSymbol() : null;
2656         final Symbol rhsSymbol = rhs instanceof IdentNode ? ((IdentNode)rhs).getSymbol() : null;
2657         // One must be a "undefined" identifier, otherwise we can't get here
2658         assert lhsSymbol != null || rhsSymbol != null;
2659 
2660         final Symbol undefinedSymbol;
2661         if (isUndefinedSymbol(lhsSymbol)) {
2662             undefinedSymbol = lhsSymbol;
2663         } else {
2664             assert isUndefinedSymbol(rhsSymbol);
2665             undefinedSymbol = rhsSymbol;
2666         }
2667 
2668         assert undefinedSymbol != null; //remove warning
2669         if (!undefinedSymbol.isScope()) {
2670             return false; //disallow undefined as local var or parameter
2671         }
2672 
2673         if (lhsSymbol == undefinedSymbol && lhs.getType().isPrimitive()) {
2674             //we load the undefined first. never mind, because this will deoptimize anyway
2675             return false;
2676         }
2677 
2678         if(isDeoptimizedExpression(lhs)) {
2679             // This is actually related to "lhs.getType().isPrimitive()" above: any expression being deoptimized in
2680             // the current chain of rest-of compilations used to have a type narrower than Object (so it was primitive).
2681             // We must not perform undefined check specialization for them, as then we'd violate the basic rule of
2682             // "Thou shalt not alter the stack shape between a deoptimized method and any of its (transitive) rest-ofs."
2683             return false;
2684         }
2685 
2686         //make sure that undefined has not been overridden or scoped as a local var
2687         //between us and global
2688         if (!compiler.isGlobalSymbol(lc.getCurrentFunction(), "undefined")) {
2689             return false;
2690         }
2691 
2692         final boolean isUndefinedCheck = request == Request.IS_UNDEFINED;
2693         final Expression expr = undefinedSymbol == lhsSymbol ? rhs : lhs;
2694         if (expr.getType().isPrimitive()) {
2695             loadAndDiscard(expr); //throw away lhs, but it still needs to be evaluated for side effects, even if not in scope, as it can be optimistic
2696             method.load(!isUndefinedCheck);
2697         } else {
2698             final Label checkTrue  = new Label("ud_check_true");
2699             final Label end        = new Label("end");
2700             loadExpressionAsObject(expr);
2701             method.loadUndefined(Type.OBJECT);
2702             method.if_acmpeq(checkTrue);
2703             method.load(!isUndefinedCheck);
2704             method._goto(end);
2705             method.label(checkTrue);
2706             method.load(isUndefinedCheck);
2707             method.label(end);
2708         }
2709 
2710         return true;
2711     }
2712 
2713     private static boolean isUndefinedSymbol(final Symbol symbol) {
2714         return symbol != null && "undefined".equals(symbol.getName());
2715     }
2716 
2717     private static boolean isNullLiteral(final Node node) {
2718         return node instanceof LiteralNode<?> && ((LiteralNode<?>) node).isNull();
2719     }
2720 
2721     private boolean nullCheck(final RuntimeNode runtimeNode, final List<Expression> args) {
2722         final Request request = runtimeNode.getRequest();
2723 
2724         if (!Request.isEQ(request) && !Request.isNE(request)) {
2725             return false;
2726         }
2727 
2728         assert args.size() == 2 : "EQ or NE or TYPEOF need two args";
2729 
2730         Expression lhs = args.get(0);
2731         Expression rhs = args.get(1);
2732 
2733         if (isNullLiteral(lhs)) {
2734             final Expression tmp = lhs;
2735             lhs = rhs;
2736             rhs = tmp;
2737         }
2738 
2739         if (!isNullLiteral(rhs)) {
2740             return false;
2741         }
2742 
2743         if (!lhs.getType().isObject()) {
2744             return false;
2745         }
2746 
2747         if(isDeoptimizedExpression(lhs)) {
2748             // This is actually related to "!lhs.getType().isObject()" above: any expression being deoptimized in
2749             // the current chain of rest-of compilations used to have a type narrower than Object. We must not
2750             // perform null check specialization for them, as then we'd no longer be loading aconst_null on stack
2751             // and thus violate the basic rule of "Thou shalt not alter the stack shape between a deoptimized
2752             // method and any of its (transitive) rest-ofs."
2753             // NOTE also that if we had a representation for well-known constants (e.g. null, 0, 1, -1, etc.) in
2754             // Label$Stack.localLoads then this wouldn't be an issue, as we would never (somewhat ridiculously)
2755             // allocate a temporary local to hold the result of aconst_null before attempting an optimistic
2756             // operation.
2757             return false;
2758         }
2759 
2760         // this is a null literal check, so if there is implicit coercion
2761         // involved like {D}x=null, we will fail - this is very rare
2762         final Label trueLabel  = new Label("trueLabel");
2763         final Label falseLabel = new Label("falseLabel");
2764         final Label endLabel   = new Label("end");
2765 
2766         loadExpressionUnbounded(lhs);    //lhs
2767         final Label popLabel;
2768         if (!Request.isStrict(request)) {
2769             method.dup(); //lhs lhs
2770             popLabel = new Label("pop");
2771         } else {
2772             popLabel = null;
2773         }
2774 
2775         if (Request.isEQ(request)) {
2776             method.ifnull(!Request.isStrict(request) ? popLabel : trueLabel);
2777             if (!Request.isStrict(request)) {
2778                 method.loadUndefined(Type.OBJECT);
2779                 method.if_acmpeq(trueLabel);
2780             }
2781             method.label(falseLabel);
2782             method.load(false);
2783             method._goto(endLabel);
2784             if (!Request.isStrict(request)) {
2785                 method.label(popLabel);
2786                 method.pop();
2787             }
2788             method.label(trueLabel);
2789             method.load(true);
2790             method.label(endLabel);
2791         } else if (Request.isNE(request)) {
2792             method.ifnull(!Request.isStrict(request) ? popLabel : falseLabel);
2793             if (!Request.isStrict(request)) {
2794                 method.loadUndefined(Type.OBJECT);
2795                 method.if_acmpeq(falseLabel);
2796             }
2797             method.label(trueLabel);
2798             method.load(true);
2799             method._goto(endLabel);
2800             if (!Request.isStrict(request)) {
2801                 method.label(popLabel);
2802                 method.pop();
2803             }
2804             method.label(falseLabel);
2805             method.load(false);
2806             method.label(endLabel);
2807         }
2808 
2809         assert runtimeNode.getType().isBoolean();
2810         method.convert(runtimeNode.getType());
2811 
2812         return true;
2813     }
2814 
2815     /**
2816      * Was this expression or any of its subexpressions deoptimized in the current recompilation chain of rest-of methods?
2817      * @param rootExpr the expression being tested
2818      * @return true if the expression or any of its subexpressions was deoptimized in the current recompilation chain.
2819      */
2820     private boolean isDeoptimizedExpression(final Expression rootExpr) {
2821         if(!isRestOf()) {
2822             return false;
2823         }
2824         return new Supplier<Boolean>() {
2825             boolean contains;
2826             @Override
2827             public Boolean get() {
2828                 rootExpr.accept(new SimpleNodeVisitor() {
2829                     @Override
2830                     public boolean enterFunctionNode(final FunctionNode functionNode) {
2831                         return false;
2832                     }
2833                     @Override
2834                     public boolean enterDefault(final Node node) {
2835                         if(!contains && node instanceof Optimistic) {
2836                             final int pp = ((Optimistic)node).getProgramPoint();
2837                             contains = isValid(pp) && isContinuationEntryPoint(pp);
2838                         }
2839                         return !contains;
2840                     }
2841                 });
2842                 return contains;
2843             }
2844         }.get();
2845     }
2846 
2847     private void loadRuntimeNode(final RuntimeNode runtimeNode) {
2848         final List<Expression> args = new ArrayList<>(runtimeNode.getArgs());
2849         if (nullCheck(runtimeNode, args)) {
2850            return;
2851         } else if(undefinedCheck(runtimeNode, args)) {
2852             return;
2853         }
2854         // Revert a false undefined check to a strict equality check
2855         final RuntimeNode newRuntimeNode;
2856         final Request request = runtimeNode.getRequest();
2857         if (Request.isUndefinedCheck(request)) {
2858             newRuntimeNode = runtimeNode.setRequest(request == Request.IS_UNDEFINED ? Request.EQ_STRICT : Request.NE_STRICT);
2859         } else {
2860             newRuntimeNode = runtimeNode;
2861         }
2862 
2863         for (final Expression arg : args) {
2864             loadExpression(arg, TypeBounds.OBJECT);
2865         }
2866 
2867         method.invokestatic(
2868                 CompilerConstants.className(ScriptRuntime.class),
2869                 newRuntimeNode.getRequest().toString(),
2870                 new FunctionSignature(
2871                     false,
2872                     false,
2873                     newRuntimeNode.getType(),
2874                     args.size()).toString());
2875 
2876         method.convert(newRuntimeNode.getType());
2877     }
2878 
2879     private void defineCommonSplitMethodParameters() {
2880         defineSplitMethodParameter(0, CALLEE);
2881         defineSplitMethodParameter(1, THIS);
2882         defineSplitMethodParameter(2, SCOPE);
2883     }
2884 
2885     private void defineSplitMethodParameter(final int slot, final CompilerConstants cc) {
2886         defineSplitMethodParameter(slot, Type.typeFor(cc.type()));
2887     }
2888 
2889     private void defineSplitMethodParameter(final int slot, final Type type) {
2890         method.defineBlockLocalVariable(slot, slot + type.getSlots());
2891         method.onLocalStore(type, slot);
2892     }
2893 
2894     private void loadSplitLiteral(final SplitLiteralCreator creator, final List<Splittable.SplitRange> ranges, final Type literalType) {
2895         assert ranges != null;
2896 
2897         // final Type literalType = Type.typeFor(literalClass);
2898         final MethodEmitter savedMethod     = method;
2899         final FunctionNode  currentFunction = lc.getCurrentFunction();
2900 
2901         for (final Splittable.SplitRange splitRange : ranges) {
2902             unit = lc.pushCompileUnit(splitRange.getCompileUnit());
2903 
2904             assert unit != null;
2905             final String className = unit.getUnitClassName();
2906             final String name      = currentFunction.uniqueName(SPLIT_PREFIX.symbolName());
2907             final Class<?> clazz   = literalType.getTypeClass();
2908             final String signature = methodDescriptor(clazz, ScriptFunction.class, Object.class, ScriptObject.class, clazz);
2909 
2910             pushMethodEmitter(unit.getClassEmitter().method(EnumSet.of(Flag.PUBLIC, Flag.STATIC), name, signature));
2911 
2912             method.setFunctionNode(currentFunction);
2913             method.begin();
2914 
2915             defineCommonSplitMethodParameters();
2916             defineSplitMethodParameter(CompilerConstants.SPLIT_ARRAY_ARG.slot(), literalType);
2917 
2918             // NOTE: when this is no longer needed, SplitIntoFunctions will no longer have to add IS_SPLIT
2919             // to synthetic functions, and FunctionNode.needsCallee() will no longer need to test for isSplit().
2920             final int literalSlot = fixScopeSlot(currentFunction, 3);
2921 
2922             lc.enterSplitNode();
2923 
2924             creator.populateRange(method, literalType, literalSlot, splitRange.getLow(), splitRange.getHigh());
2925 
2926             method._return();
2927             lc.exitSplitNode();
2928             method.end();
2929             lc.releaseSlots();
2930             popMethodEmitter();
2931 
2932             assert method == savedMethod;
2933             method.loadCompilerConstant(CALLEE).swap();
2934             method.loadCompilerConstant(THIS).swap();
2935             method.loadCompilerConstant(SCOPE).swap();
2936             method.invokestatic(className, name, signature);
2937 
2938             unit = lc.popCompileUnit(unit);
2939         }
2940     }
2941 
2942     private int fixScopeSlot(final FunctionNode functionNode, final int extraSlot) {
2943         // TODO hack to move the scope to the expected slot (needed because split methods reuse the same slots as the root method)
2944         final int actualScopeSlot = functionNode.compilerConstant(SCOPE).getSlot(SCOPE_TYPE);
2945         final int defaultScopeSlot = SCOPE.slot();
2946         int newExtraSlot = extraSlot;
2947         if (actualScopeSlot != defaultScopeSlot) {
2948             if (actualScopeSlot == extraSlot) {
2949                 newExtraSlot = extraSlot + 1;
2950                 method.defineBlockLocalVariable(newExtraSlot, newExtraSlot + 1);
2951                 method.load(Type.OBJECT, extraSlot);
2952                 method.storeHidden(Type.OBJECT, newExtraSlot);
2953             } else {
2954                 method.defineBlockLocalVariable(actualScopeSlot, actualScopeSlot + 1);
2955             }
2956             method.load(SCOPE_TYPE, defaultScopeSlot);
2957             method.storeCompilerConstant(SCOPE);
2958         }
2959         return newExtraSlot;
2960     }
2961 
2962     @Override
2963     public boolean enterSplitReturn(final SplitReturn splitReturn) {
2964         if (method.isReachable()) {
2965             method.loadUndefined(lc.getCurrentFunction().getReturnType())._return();
2966         }
2967         return false;
2968     }
2969 
2970     @Override
2971     public boolean enterSetSplitState(final SetSplitState setSplitState) {
2972         if (method.isReachable()) {
2973             method.setSplitState(setSplitState.getState());
2974         }
2975         return false;
2976     }
2977 
2978     @Override
2979     public boolean enterSwitchNode(final SwitchNode switchNode) {
2980         if(!method.isReachable()) {
2981             return false;
2982         }
2983         enterStatement(switchNode);
2984 
2985         final Expression     expression  = switchNode.getExpression();
2986         final List<CaseNode> cases       = switchNode.getCases();
2987 
2988         if (cases.isEmpty()) {
2989             // still evaluate expression for side-effects.
2990             loadAndDiscard(expression);
2991             return false;
2992         }
2993 
2994         final CaseNode defaultCase       = switchNode.getDefaultCase();
2995         final Label    breakLabel        = switchNode.getBreakLabel();
2996         final int      liveLocalsOnBreak = method.getUsedSlotsWithLiveTemporaries();
2997 
2998         if (defaultCase != null && cases.size() == 1) {
2999             // default case only
3000             assert cases.get(0) == defaultCase;
3001             loadAndDiscard(expression);
3002             defaultCase.getBody().accept(this);
3003             method.breakLabel(breakLabel, liveLocalsOnBreak);
3004             return false;
3005         }
3006 
3007         // NOTE: it can still change in the tableswitch/lookupswitch case if there's no default case
3008         // but we need to add a synthetic default case for local variable conversions
3009         Label defaultLabel = defaultCase != null ? defaultCase.getEntry() : breakLabel;
3010         final boolean hasSkipConversion = LocalVariableConversion.hasLiveConversion(switchNode);
3011 
3012         if (switchNode.isUniqueInteger()) {
3013             // Tree for sorting values.
3014             final TreeMap<Integer, Label> tree = new TreeMap<>();
3015 
3016             // Build up sorted tree.
3017             for (final CaseNode caseNode : cases) {
3018                 final Node test = caseNode.getTest();
3019 
3020                 if (test != null) {
3021                     final Integer value = (Integer)((LiteralNode<?>)test).getValue();
3022                     final Label   entry = caseNode.getEntry();
3023 
3024                     // Take first duplicate.
3025                     if (!tree.containsKey(value)) {
3026                         tree.put(value, entry);
3027                     }
3028                 }
3029             }
3030 
3031             // Copy values and labels to arrays.
3032             final int       size   = tree.size();
3033             final Integer[] values = tree.keySet().toArray(new Integer[0]);
3034             final Label[]   labels = tree.values().toArray(new Label[0]);
3035 
3036             // Discern low, high and range.
3037             final int lo    = values[0];
3038             final int hi    = values[size - 1];
3039             final long range = (long)hi - (long)lo + 1;
3040 
3041             // Find an unused value for default.
3042             int deflt = Integer.MIN_VALUE;
3043             for (final int value : values) {
3044                 if (deflt == value) {
3045                     deflt++;
3046                 } else if (deflt < value) {
3047                     break;
3048                 }
3049             }
3050 
3051             // Load switch expression.
3052             loadExpressionUnbounded(expression);
3053             final Type type = expression.getType();
3054 
3055             // If expression not int see if we can convert, if not use deflt to trigger default.
3056             if (!type.isInteger()) {
3057                 method.load(deflt);
3058                 final Class<?> exprClass = type.getTypeClass();
3059                 method.invoke(staticCallNoLookup(ScriptRuntime.class, "switchTagAsInt", int.class, exprClass.isPrimitive()? exprClass : Object.class, int.class));
3060             }
3061 
3062             if(hasSkipConversion) {
3063                 assert defaultLabel == breakLabel;
3064                 defaultLabel = new Label("switch_skip");
3065             }
3066             // TABLESWITCH needs (range + 3) 32-bit values; LOOKUPSWITCH needs ((size * 2) + 2). Choose the one with
3067             // smaller representation, favor TABLESWITCH when they're equal size.
3068             if (range + 1 <= (size * 2) && range <= Integer.MAX_VALUE) {
3069                 final Label[] table = new Label[(int)range];
3070                 Arrays.fill(table, defaultLabel);
3071                 for (int i = 0; i < size; i++) {
3072                     final int value = values[i];
3073                     table[value - lo] = labels[i];
3074                 }
3075 
3076                 method.tableswitch(lo, hi, defaultLabel, table);
3077             } else {
3078                 final int[] ints = new int[size];
3079                 for (int i = 0; i < size; i++) {
3080                     ints[i] = values[i];
3081                 }
3082 
3083                 method.lookupswitch(defaultLabel, ints, labels);
3084             }
3085             // This is a synthetic "default case" used in absence of actual default case, created if we need to apply
3086             // local variable conversions if neither case is taken.
3087             if(hasSkipConversion) {
3088                 method.label(defaultLabel);
3089                 method.beforeJoinPoint(switchNode);
3090                 method._goto(breakLabel);
3091             }
3092         } else {
3093             final Symbol tagSymbol = switchNode.getTag();
3094             // TODO: we could have non-object tag
3095             final int tagSlot = tagSymbol.getSlot(Type.OBJECT);
3096             loadExpressionAsObject(expression);
3097             method.store(tagSymbol, Type.OBJECT);
3098 
3099             for (final CaseNode caseNode : cases) {
3100                 final Expression test = caseNode.getTest();
3101 
3102                 if (test != null) {
3103                     method.load(Type.OBJECT, tagSlot);
3104                     loadExpressionAsObject(test);
3105                     method.invoke(ScriptRuntime.EQ_STRICT);
3106                     method.ifne(caseNode.getEntry());
3107                 }
3108             }
3109 
3110             if (defaultCase != null) {
3111                 method._goto(defaultLabel);
3112             } else {
3113                 method.beforeJoinPoint(switchNode);
3114                 method._goto(breakLabel);
3115             }
3116         }
3117 
3118         // First case is only reachable through jump
3119         assert !method.isReachable();
3120 
3121         for (final CaseNode caseNode : cases) {
3122             final Label fallThroughLabel;
3123             if(caseNode.getLocalVariableConversion() != null && method.isReachable()) {
3124                 fallThroughLabel = new Label("fallthrough");
3125                 method._goto(fallThroughLabel);
3126             } else {
3127                 fallThroughLabel = null;
3128             }
3129             method.label(caseNode.getEntry());
3130             method.beforeJoinPoint(caseNode);
3131             if(fallThroughLabel != null) {
3132                 method.label(fallThroughLabel);
3133             }
3134             caseNode.getBody().accept(this);
3135         }
3136 
3137         method.breakLabel(breakLabel, liveLocalsOnBreak);
3138 
3139         return false;
3140     }
3141 
3142     @Override
3143     public boolean enterThrowNode(final ThrowNode throwNode) {
3144         if(!method.isReachable()) {
3145             return false;
3146         }
3147         enterStatement(throwNode);
3148 
3149         if (throwNode.isSyntheticRethrow()) {
3150             method.beforeJoinPoint(throwNode);
3151 
3152             //do not wrap whatever this is in an ecma exception, just rethrow it
3153             final IdentNode exceptionExpr = (IdentNode)throwNode.getExpression();
3154             final Symbol exceptionSymbol = exceptionExpr.getSymbol();
3155             method.load(exceptionSymbol, EXCEPTION_TYPE);
3156             method.checkcast(EXCEPTION_TYPE.getTypeClass());
3157             method.athrow();
3158             return false;
3159         }
3160 
3161         final Source     source     = getCurrentSource();
3162         final Expression expression = throwNode.getExpression();
3163         final int        position   = throwNode.position();
3164         final int        line       = throwNode.getLineNumber();
3165         final int        column     = source.getColumn(position);
3166 
3167         // NOTE: we first evaluate the expression, and only after it was evaluated do we create the new ECMAException
3168         // object and then somewhat cumbersomely move it beneath the evaluated expression on the stack. The reason for
3169         // this is that if expression is optimistic (or contains an optimistic subexpression), we'd potentially access
3170         // the not-yet-<init>ialized object on the stack from the UnwarrantedOptimismException handler, and bytecode
3171         // verifier forbids that.
3172         loadExpressionAsObject(expression);
3173 
3174         method.load(source.getName());
3175         method.load(line);
3176         method.load(column);
3177         method.invoke(ECMAException.CREATE);
3178 
3179         method.beforeJoinPoint(throwNode);
3180         method.athrow();
3181 
3182         return false;
3183     }
3184 
3185     private Source getCurrentSource() {
3186         return lc.getCurrentFunction().getSource();
3187     }
3188 
3189     @Override
3190     public boolean enterTryNode(final TryNode tryNode) {
3191         if(!method.isReachable()) {
3192             return false;
3193         }
3194         enterStatement(tryNode);
3195 
3196         final Block       body        = tryNode.getBody();
3197         final List<Block> catchBlocks = tryNode.getCatchBlocks();
3198         final Symbol      vmException = tryNode.getException();
3199         final Label       entry       = new Label("try");
3200         final Label       recovery    = new Label("catch");
3201         final Label       exit        = new Label("end_try");
3202         final Label       skip        = new Label("skip");
3203 
3204         method.canThrow(recovery);
3205         // Effect any conversions that might be observed at the entry of the catch node before entering the try node.
3206         // This is because even the first instruction in the try block must be presumed to be able to transfer control
3207         // to the catch block. Note that this doesn't kill the original values; in this regard it works a lot like
3208         // conversions of assignments within the try block.
3209         method.beforeTry(tryNode, recovery);
3210         method.label(entry);
3211         catchLabels.push(recovery);
3212         try {
3213             body.accept(this);
3214         } finally {
3215             assert catchLabels.peek() == recovery;
3216             catchLabels.pop();
3217         }
3218 
3219         method.label(exit);
3220         final boolean bodyCanThrow = exit.isAfter(entry);
3221         if(!bodyCanThrow) {
3222             // The body can't throw an exception; don't even bother emitting the catch handlers, they're all dead code.
3223             return false;
3224         }
3225 
3226         method._try(entry, exit, recovery, Throwable.class);
3227 
3228         if (method.isReachable()) {
3229             method._goto(skip);
3230         }
3231 
3232         for (final Block inlinedFinally : tryNode.getInlinedFinallies()) {
3233             TryNode.getLabelledInlinedFinallyBlock(inlinedFinally).accept(this);
3234             // All inlined finallies end with a jump or a return
3235             assert !method.isReachable();
3236         }
3237 
3238 
3239         method._catch(recovery);
3240         method.store(vmException, EXCEPTION_TYPE);
3241 
3242         final int catchBlockCount = catchBlocks.size();
3243         final Label afterCatch = new Label("after_catch");
3244         for (int i = 0; i < catchBlockCount; i++) {
3245             assert method.isReachable();
3246             final Block catchBlock = catchBlocks.get(i);
3247 
3248             // Because of the peculiarities of the flow control, we need to use an explicit push/enterBlock/leaveBlock
3249             // here.
3250             lc.push(catchBlock);
3251             enterBlock(catchBlock);
3252 
3253             final CatchNode  catchNode          = (CatchNode)catchBlocks.get(i).getStatements().get(0);
3254             final IdentNode  exception          = catchNode.getException();
3255             final Expression exceptionCondition = catchNode.getExceptionCondition();
3256             final Block      catchBody          = catchNode.getBody();
3257 
3258             new Store<IdentNode>(exception) {
3259                 @Override
3260                 protected void storeNonDiscard() {
3261                     // This expression is neither part of a discard, nor needs to be left on the stack after it was
3262                     // stored, so we override storeNonDiscard to be a no-op.
3263                 }
3264 
3265                 @Override
3266                 protected void evaluate() {
3267                     if (catchNode.isSyntheticRethrow()) {
3268                         method.load(vmException, EXCEPTION_TYPE);
3269                         return;
3270                     }
3271                     /*
3272                      * If caught object is an instance of ECMAException, then
3273                      * bind obj.thrown to the script catch var. Or else bind the
3274                      * caught object itself to the script catch var.
3275                      */
3276                     final Label notEcmaException = new Label("no_ecma_exception");
3277                     method.load(vmException, EXCEPTION_TYPE).dup()._instanceof(ECMAException.class).ifeq(notEcmaException);
3278                     method.checkcast(ECMAException.class); //TODO is this necessary?
3279                     method.getField(ECMAException.THROWN);
3280                     method.label(notEcmaException);
3281                 }
3282             }.store();
3283 
3284             final boolean isConditionalCatch = exceptionCondition != null;
3285             final Label nextCatch;
3286             if (isConditionalCatch) {
3287                 loadExpressionAsBoolean(exceptionCondition);
3288                 nextCatch = new Label("next_catch");
3289                 nextCatch.markAsBreakTarget();
3290                 method.ifeq(nextCatch);
3291             } else {
3292                 nextCatch = null;
3293             }
3294 
3295             catchBody.accept(this);
3296             leaveBlock(catchBlock);
3297             lc.pop(catchBlock);
3298             if(nextCatch != null) {
3299                 if(method.isReachable()) {
3300                     method._goto(afterCatch);
3301                 }
3302                 method.breakLabel(nextCatch, lc.getUsedSlotCount());
3303             }
3304         }
3305 
3306         // afterCatch could be the same as skip, except that we need to establish that the vmException is dead.
3307         method.label(afterCatch);
3308         if(method.isReachable()) {
3309             method.markDeadLocalVariable(vmException);
3310         }
3311         method.label(skip);
3312 
3313         // Finally body is always inlined elsewhere so it doesn't need to be emitted
3314         assert tryNode.getFinallyBody() == null;
3315 
3316         return false;
3317     }
3318 
3319     @Override
3320     public boolean enterVarNode(final VarNode varNode) {
3321         if(!method.isReachable()) {
3322             return false;
3323         }
3324         final Expression init = varNode.getInit();
3325         final IdentNode identNode = varNode.getName();
3326         final Symbol identSymbol = identNode.getSymbol();
3327         assert identSymbol != null : "variable node " + varNode + " requires a name with a symbol";
3328         final boolean needsScope = identSymbol.isScope();
3329 
3330         if (init == null) {
3331             // Block-scoped variables need a DECLARE flag to signal end of temporal dead zone (TDZ).
3332             // However, don't do this for CONST which always has an initializer except in the special case of
3333             // for-in/of loops, in which it is initialized in the loop header and should be left untouched here.
3334             if (needsScope && varNode.isLet()) {
3335                 method.loadCompilerConstant(SCOPE);
3336                 method.loadUndefined(Type.OBJECT);
3337                 final int flags = getScopeCallSiteFlags(identSymbol) | CALLSITE_DECLARE;
3338                 assert isFastScope(identSymbol);
3339                 storeFastScopeVar(identSymbol, flags);
3340             }
3341             return false;
3342         }
3343 
3344         enterStatement(varNode);
3345         assert method != null;
3346 
3347         if (needsScope) {
3348             method.loadCompilerConstant(SCOPE);
3349             loadExpressionUnbounded(init);
3350             // block scoped variables need a DECLARE flag to signal end of temporal dead zone (TDZ)
3351             final int flags = getScopeCallSiteFlags(identSymbol) | (varNode.isBlockScoped() ? CALLSITE_DECLARE : 0);
3352             if (isFastScope(identSymbol)) {
3353                 storeFastScopeVar(identSymbol, flags);
3354             } else {
3355                 method.dynamicSet(identNode.getName(), flags, false);
3356             }
3357         } else {
3358             final Type identType = identNode.getType();
3359             if(identType == Type.UNDEFINED) {
3360                 // The initializer is either itself undefined (explicit assignment of undefined to undefined),
3361                 // or the left hand side is a dead variable.
3362                 assert init.getType() == Type.UNDEFINED || identNode.getSymbol().slotCount() == 0;
3363                 loadAndDiscard(init);
3364                 return false;
3365             }
3366             loadExpressionAsType(init, identType);
3367             storeIdentWithCatchConversion(identNode, identType);
3368         }
3369 
3370         return false;
3371     }
3372 
3373     private void storeIdentWithCatchConversion(final IdentNode identNode, final Type type) {
3374         // Assignments happening in try/catch blocks need to ensure that they also store a possibly wider typed value
3375         // that will be live at the exit from the try block
3376         final LocalVariableConversion conversion = identNode.getLocalVariableConversion();
3377         final Symbol symbol = identNode.getSymbol();
3378         if(conversion != null && conversion.isLive()) {
3379             assert symbol == conversion.getSymbol();
3380             assert symbol.isBytecodeLocal();
3381             // Only a single conversion from the target type to the join type is expected.
3382             assert conversion.getNext() == null;
3383             assert conversion.getFrom() == type;
3384             // We must propagate potential type change to the catch block
3385             final Label catchLabel = catchLabels.peek();
3386             assert catchLabel != METHOD_BOUNDARY; // ident conversion only exists in try blocks
3387             assert catchLabel.isReachable();
3388             final Type joinType = conversion.getTo();
3389             final Label.Stack catchStack = catchLabel.getStack();
3390             final int joinSlot = symbol.getSlot(joinType);
3391             // With nested try/catch blocks (incl. synthetic ones for finally), we can have a supposed conversion for
3392             // the exception symbol in the nested catch, but it isn't live in the outer catch block, so prevent doing
3393             // conversions for it. E.g. in "try { try { ... } catch(e) { e = 1; } } catch(e2) { ... }", we must not
3394             // introduce an I->O conversion on "e = 1" assignment as "e" is not live in "catch(e2)".
3395             if(catchStack.getUsedSlotsWithLiveTemporaries() > joinSlot) {
3396                 method.dup();
3397                 method.convert(joinType);
3398                 method.store(symbol, joinType);
3399                 catchLabel.getStack().onLocalStore(joinType, joinSlot, true);
3400                 method.canThrow(catchLabel);
3401                 // Store but keep the previous store live too.
3402                 method.store(symbol, type, false);
3403                 return;
3404             }
3405         }
3406 
3407         method.store(symbol, type, true);
3408     }
3409 
3410     @Override
3411     public boolean enterWhileNode(final WhileNode whileNode) {
3412         if(!method.isReachable()) {
3413             return false;
3414         }
3415         if(whileNode.isDoWhile()) {
3416             enterDoWhile(whileNode);
3417         } else {
3418             enterStatement(whileNode);
3419             enterForOrWhile(whileNode, null);
3420         }
3421         return false;
3422     }
3423 
3424     private void enterForOrWhile(final LoopNode loopNode, final JoinPredecessorExpression modify) {
3425         // NOTE: the usual pattern for compiling test-first loops is "GOTO test; body; test; IFNE body". We use the less
3426         // conventional "test; IFEQ break; body; GOTO test; break;". It has one extra unconditional GOTO in each repeat
3427         // of the loop, but it's not a problem for modern JIT compilers. We do this because our local variable type
3428         // tracking is unfortunately not really prepared for out-of-order execution, e.g. compiling the following
3429         // contrived but legal JavaScript code snippet would fail because the test changes the type of "i" from object
3430         // to double: var i = {valueOf: function() { return 1} }; while(--i >= 0) { ... }
3431         // Instead of adding more complexity to the local variable type tracking, we instead choose to emit this
3432         // different code shape.
3433         final int liveLocalsOnBreak = method.getUsedSlotsWithLiveTemporaries();
3434         final JoinPredecessorExpression test = loopNode.getTest();
3435         if(Expression.isAlwaysFalse(test)) {
3436             loadAndDiscard(test);
3437             return;
3438         }
3439 
3440         method.beforeJoinPoint(loopNode);
3441 
3442         final Label continueLabel = loopNode.getContinueLabel();
3443         final Label repeatLabel = modify != null ? new Label("for_repeat") : continueLabel;
3444         method.label(repeatLabel);
3445         final int liveLocalsOnContinue = method.getUsedSlotsWithLiveTemporaries();
3446 
3447         final Block   body                  = loopNode.getBody();
3448         final Label   breakLabel            = loopNode.getBreakLabel();
3449         final boolean testHasLiveConversion = test != null && LocalVariableConversion.hasLiveConversion(test);
3450 
3451         if(Expression.isAlwaysTrue(test)) {
3452             if(test != null) {
3453                 loadAndDiscard(test);
3454                 if(testHasLiveConversion) {
3455                     method.beforeJoinPoint(test);
3456                 }
3457             }
3458         } else if (test != null) {
3459             if (testHasLiveConversion) {
3460                 emitBranch(test.getExpression(), body.getEntryLabel(), true);
3461                 method.beforeJoinPoint(test);
3462                 method._goto(breakLabel);
3463             } else {
3464                 emitBranch(test.getExpression(), breakLabel, false);
3465             }
3466         }
3467 
3468         body.accept(this);
3469         if(repeatLabel != continueLabel) {
3470             emitContinueLabel(continueLabel, liveLocalsOnContinue);
3471         }
3472 
3473         if (loopNode.hasPerIterationScope() && lc.getCurrentBlock().needsScope()) {
3474             // ES6 for loops with LET init need a new scope for each iteration. We just create a shallow copy here.
3475             method.loadCompilerConstant(SCOPE);
3476             method.invoke(virtualCallNoLookup(ScriptObject.class, "copy", ScriptObject.class));
3477             method.storeCompilerConstant(SCOPE);
3478         }
3479 
3480         if(method.isReachable()) {
3481             if(modify != null) {
3482                 lineNumber(loopNode);
3483                 loadAndDiscard(modify);
3484                 method.beforeJoinPoint(modify);
3485             }
3486             method._goto(repeatLabel);
3487         }
3488 
3489         method.breakLabel(breakLabel, liveLocalsOnBreak);
3490     }
3491 
3492     private void emitContinueLabel(final Label continueLabel, final int liveLocals) {
3493         final boolean reachable = method.isReachable();
3494         method.breakLabel(continueLabel, liveLocals);
3495         // If we reach here only through a continue statement (e.g. body does not exit normally) then the
3496         // continueLabel can have extra non-temp symbols (e.g. exception from a try/catch contained in the body). We
3497         // must make sure those are thrown away.
3498         if(!reachable) {
3499             method.undefineLocalVariables(lc.getUsedSlotCount(), false);
3500         }
3501     }
3502 
3503     private void enterDoWhile(final WhileNode whileNode) {
3504         final int liveLocalsOnContinueOrBreak = method.getUsedSlotsWithLiveTemporaries();
3505         method.beforeJoinPoint(whileNode);
3506 
3507         final Block body = whileNode.getBody();
3508         body.accept(this);
3509 
3510         emitContinueLabel(whileNode.getContinueLabel(), liveLocalsOnContinueOrBreak);
3511         if(method.isReachable()) {
3512             lineNumber(whileNode);
3513             final JoinPredecessorExpression test = whileNode.getTest();
3514             final Label bodyEntryLabel = body.getEntryLabel();
3515             final boolean testHasLiveConversion = LocalVariableConversion.hasLiveConversion(test);
3516             if(Expression.isAlwaysFalse(test)) {
3517                 loadAndDiscard(test);
3518                 if(testHasLiveConversion) {
3519                     method.beforeJoinPoint(test);
3520                 }
3521             } else if(testHasLiveConversion) {
3522                 // If we have conversions after the test in do-while, they need to be effected on both branches.
3523                 final Label beforeExit = new Label("do_while_preexit");
3524                 emitBranch(test.getExpression(), beforeExit, false);
3525                 method.beforeJoinPoint(test);
3526                 method._goto(bodyEntryLabel);
3527                 method.label(beforeExit);
3528                 method.beforeJoinPoint(test);
3529             } else {
3530                 emitBranch(test.getExpression(), bodyEntryLabel, true);
3531             }
3532         }
3533         method.breakLabel(whileNode.getBreakLabel(), liveLocalsOnContinueOrBreak);
3534     }
3535 
3536 
3537     @Override
3538     public boolean enterWithNode(final WithNode withNode) {
3539         if(!method.isReachable()) {
3540             return false;
3541         }
3542         enterStatement(withNode);
3543         final Expression expression = withNode.getExpression();
3544         final Block      body       = withNode.getBody();
3545 
3546         // It is possible to have a "pathological" case where the with block does not reference *any* identifiers. It's
3547         // pointless, but legal. In that case, if nothing else in the method forced the assignment of a slot to the
3548         // scope object, its' possible that it won't have a slot assigned. In this case we'll only evaluate expression
3549         // for its side effect and visit the body, and not bother opening and closing a WithObject.
3550         final boolean hasScope = method.hasScope();
3551 
3552         if (hasScope) {
3553             method.loadCompilerConstant(SCOPE);
3554         }
3555 
3556         loadExpressionAsObject(expression);
3557 
3558         final Label tryLabel;
3559         if (hasScope) {
3560             // Construct a WithObject if we have a scope
3561             method.invoke(ScriptRuntime.OPEN_WITH);
3562             method.storeCompilerConstant(SCOPE);
3563             tryLabel = new Label("with_try");
3564             method.label(tryLabel);
3565         } else {
3566             // We just loaded the expression for its side effect and to check
3567             // for null or undefined value.
3568             globalCheckObjectCoercible();
3569             tryLabel = null;
3570         }
3571 
3572         // Always process body
3573         body.accept(this);
3574 
3575         if (hasScope) {
3576             // Ensure we always close the WithObject
3577             final Label endLabel   = new Label("with_end");
3578             final Label catchLabel = new Label("with_catch");
3579             final Label exitLabel  = new Label("with_exit");
3580 
3581             method.label(endLabel);
3582             // Somewhat conservatively presume that if the body is not empty, it can throw an exception. In any case,
3583             // we must prevent trying to emit a try-catch for empty range, as it causes a verification error.
3584             final boolean bodyCanThrow = endLabel.isAfter(tryLabel);
3585             if(bodyCanThrow) {
3586                 method._try(tryLabel, endLabel, catchLabel);
3587             }
3588 
3589             final boolean reachable = method.isReachable();
3590             if(reachable) {
3591                 popScope();
3592                 if(bodyCanThrow) {
3593                     method._goto(exitLabel);
3594                 }
3595             }
3596 
3597             if(bodyCanThrow) {
3598                 method._catch(catchLabel);
3599                 popScopeException();
3600                 method.athrow();
3601                 if(reachable) {
3602                     method.label(exitLabel);
3603                 }
3604             }
3605         }
3606         return false;
3607     }
3608 
3609     private void loadADD(final UnaryNode unaryNode, final TypeBounds resultBounds) {
3610         loadExpression(unaryNode.getExpression(), resultBounds.booleanToInt().notWiderThan(Type.NUMBER));
3611         if(method.peekType() == Type.BOOLEAN) {
3612             // It's a no-op in bytecode, but we must make sure it is treated as an int for purposes of type signatures
3613             method.convert(Type.INT);
3614         }
3615     }
3616 
3617     private void loadBIT_NOT(final UnaryNode unaryNode) {
3618         loadExpression(unaryNode.getExpression(), TypeBounds.INT).load(-1).xor();
3619     }
3620 
3621     private void loadDECINC(final UnaryNode unaryNode) {
3622         final Expression operand     = unaryNode.getExpression();
3623         final Type       type        = unaryNode.getType();
3624         final TypeBounds typeBounds  = new TypeBounds(type, Type.NUMBER);
3625         final TokenType  tokenType   = unaryNode.tokenType();
3626         final boolean    isPostfix   = tokenType == TokenType.DECPOSTFIX || tokenType == TokenType.INCPOSTFIX;
3627         final boolean    isIncrement = tokenType == TokenType.INCPREFIX || tokenType == TokenType.INCPOSTFIX;
3628 
3629         assert !type.isObject();
3630 
3631         new SelfModifyingStore<UnaryNode>(unaryNode, operand) {
3632 
3633             private void loadRhs() {
3634                 loadExpression(operand, typeBounds, true);
3635             }
3636 
3637             @Override
3638             protected void evaluate() {
3639                 if(isPostfix) {
3640                     loadRhs();
3641                 } else {
3642                     new OptimisticOperation(unaryNode, typeBounds) {
3643                         @Override
3644                         void loadStack() {
3645                             loadRhs();
3646                             loadMinusOne();
3647                         }
3648                         @Override
3649                         void consumeStack() {
3650                             doDecInc(getProgramPoint());
3651                         }
3652                     }.emit(getOptimisticIgnoreCountForSelfModifyingExpression(operand));
3653                 }
3654             }
3655 
3656             @Override
3657             protected void storeNonDiscard() {
3658                 super.storeNonDiscard();
3659                 if (isPostfix) {
3660                     new OptimisticOperation(unaryNode, typeBounds) {
3661                         @Override
3662                         void loadStack() {
3663                             loadMinusOne();
3664                         }
3665                         @Override
3666                         void consumeStack() {
3667                             doDecInc(getProgramPoint());
3668                         }
3669                     }.emit(1); // 1 for non-incremented result on the top of the stack pushed in evaluate()
3670                 }
3671             }
3672 
3673             private void loadMinusOne() {
3674                 if (type.isInteger()) {
3675                     method.load(isIncrement ? 1 : -1);
3676                 } else {
3677                     method.load(isIncrement ? 1.0 : -1.0);
3678                 }
3679             }
3680 
3681             private void doDecInc(final int programPoint) {
3682                 method.add(programPoint);
3683             }
3684         }.store();
3685     }
3686 
3687     private static int getOptimisticIgnoreCountForSelfModifyingExpression(final Expression target) {
3688         return target instanceof AccessNode ? 1 : target instanceof IndexNode ? 2 : 0;
3689     }
3690 
3691     private void loadAndDiscard(final Expression expr) {
3692         // TODO: move checks for discarding to actual expression load code (e.g. as we do with void). That way we might
3693         // be able to eliminate even more checks.
3694         if(expr instanceof PrimitiveLiteralNode | isLocalVariable(expr)) {
3695             assert !lc.isCurrentDiscard(expr);
3696             // Don't bother evaluating expressions without side effects. Typical usage is "void 0" for reliably generating
3697             // undefined.
3698             return;
3699         }
3700 
3701         lc.pushDiscard(expr);
3702         loadExpression(expr, TypeBounds.UNBOUNDED);
3703         if (lc.popDiscardIfCurrent(expr)) {
3704             assert !expr.isAssignment();
3705             // NOTE: if we had a way to load with type void, we could avoid popping
3706             method.pop();
3707         }
3708     }
3709 
3710     /**
3711      * Loads the expression with the specified type bounds, but if the parent expression is the current discard,
3712      * then instead loads and discards the expression.
3713      * @param parent the parent expression that's tested for being the current discard
3714      * @param expr the expression that's either normally loaded or discard-loaded
3715      * @param resultBounds result bounds for when loading the expression normally
3716      */
3717     private void loadMaybeDiscard(final Expression parent, final Expression expr, final TypeBounds resultBounds) {
3718         loadMaybeDiscard(lc.popDiscardIfCurrent(parent), expr, resultBounds);
3719     }
3720 
3721     /**
3722      * Loads the expression with the specified type bounds, or loads and discards the expression, depending on the
3723      * value of the discard flag. Useful as a helper for expressions with control flow where you often can't combine
3724      * testing for being the current discard and loading the subexpressions.
3725      * @param discard if true, the expression is loaded and discarded
3726      * @param expr the expression that's either normally loaded or discard-loaded
3727      * @param resultBounds result bounds for when loading the expression normally
3728      */
3729     private void loadMaybeDiscard(final boolean discard, final Expression expr, final TypeBounds resultBounds) {
3730         if (discard) {
3731             loadAndDiscard(expr);
3732         } else {
3733             loadExpression(expr, resultBounds);
3734         }
3735     }
3736 
3737     private void loadNEW(final UnaryNode unaryNode) {
3738         final CallNode callNode = (CallNode)unaryNode.getExpression();
3739         final List<Expression> args   = callNode.getArgs();
3740 
3741         final Expression func = callNode.getFunction();
3742         // Load function reference.
3743         loadExpressionAsObject(func); // must detect type error
3744 
3745         method.dynamicNew(1 + loadArgs(args), getCallSiteFlags(), func.toString(false));
3746     }
3747 
3748     private void loadNOT(final UnaryNode unaryNode) {
3749         final Expression expr = unaryNode.getExpression();
3750         if(expr instanceof UnaryNode && expr.isTokenType(TokenType.NOT)) {
3751             // !!x is idiomatic boolean cast in JavaScript
3752             loadExpressionAsBoolean(((UnaryNode)expr).getExpression());
3753         } else {
3754             final Label trueLabel  = new Label("true");
3755             final Label afterLabel = new Label("after");
3756 
3757             emitBranch(expr, trueLabel, true);
3758             method.load(true);
3759             method._goto(afterLabel);
3760             method.label(trueLabel);
3761             method.load(false);
3762             method.label(afterLabel);
3763         }
3764     }
3765 
3766     private void loadSUB(final UnaryNode unaryNode, final TypeBounds resultBounds) {
3767         final Type type = unaryNode.getType();
3768         assert type.isNumeric();
3769         final TypeBounds numericBounds = resultBounds.booleanToInt();
3770         new OptimisticOperation(unaryNode, numericBounds) {
3771             @Override
3772             void loadStack() {
3773                 final Expression expr = unaryNode.getExpression();
3774                 loadExpression(expr, numericBounds.notWiderThan(Type.NUMBER));
3775             }
3776             @Override
3777             void consumeStack() {
3778                 // Must do an explicit conversion to the operation's type when it's double so that we correctly handle
3779                 // negation of an int 0 to a double -0. With this, we get the correct negation of a local variable after
3780                 // it deoptimized, e.g. "iload_2; i2d; dneg". Without this, we get "iload_2; ineg; i2d".
3781                 if(type.isNumber()) {
3782                     method.convert(type);
3783                 }
3784                 method.neg(getProgramPoint());
3785             }
3786         }.emit();
3787     }
3788 
3789     public void loadVOID(final UnaryNode unaryNode, final TypeBounds resultBounds) {
3790         loadAndDiscard(unaryNode.getExpression());
3791         if (!lc.popDiscardIfCurrent(unaryNode)) {
3792             method.loadUndefined(resultBounds.widest);
3793         }
3794     }
3795 
3796     public void loadADD(final BinaryNode binaryNode, final TypeBounds resultBounds) {
3797         new OptimisticOperation(binaryNode, resultBounds) {
3798             @Override
3799             void loadStack() {
3800                 final TypeBounds operandBounds;
3801                 final boolean isOptimistic = isValid(getProgramPoint());
3802                 boolean forceConversionSeparation = false;
3803                 if(isOptimistic) {
3804                     operandBounds = new TypeBounds(binaryNode.getType(), Type.OBJECT);
3805                 } else {
3806                     // Non-optimistic, non-FP +. Allow it to overflow.
3807                     final Type widestOperationType = binaryNode.getWidestOperationType();
3808                     operandBounds = new TypeBounds(Type.narrowest(binaryNode.getWidestOperandType(), resultBounds.widest), widestOperationType);
3809                     forceConversionSeparation = widestOperationType.narrowerThan(resultBounds.widest);
3810                 }
3811                 loadBinaryOperands(binaryNode.lhs(), binaryNode.rhs(), operandBounds, false, forceConversionSeparation);
3812             }
3813 
3814             @Override
3815             void consumeStack() {
3816                 method.add(getProgramPoint());
3817             }
3818         }.emit();
3819     }
3820 
3821     private void loadAND_OR(final BinaryNode binaryNode, final TypeBounds resultBounds, final boolean isAnd) {
3822         final Type narrowestOperandType = Type.widestReturnType(binaryNode.lhs().getType(), binaryNode.rhs().getType());
3823 
3824         final boolean isCurrentDiscard = lc.popDiscardIfCurrent(binaryNode);
3825 
3826         final Label skip = new Label("skip");
3827         if(narrowestOperandType == Type.BOOLEAN) {
3828             // optimize all-boolean logical expressions
3829             final Label onTrue = new Label("andor_true");
3830             emitBranch(binaryNode, onTrue, true);
3831             if (isCurrentDiscard) {
3832                 method.label(onTrue);
3833             } else {
3834                 method.load(false);
3835                 method._goto(skip);
3836                 method.label(onTrue);
3837                 method.load(true);
3838                 method.label(skip);
3839             }
3840             return;
3841         }
3842 
3843         final TypeBounds outBounds = resultBounds.notNarrowerThan(narrowestOperandType);
3844         final JoinPredecessorExpression lhs = (JoinPredecessorExpression)binaryNode.lhs();
3845         final boolean lhsConvert = LocalVariableConversion.hasLiveConversion(lhs);
3846         final Label evalRhs = lhsConvert ? new Label("eval_rhs") : null;
3847 
3848         loadExpression(lhs, outBounds);
3849         if (!isCurrentDiscard) {
3850             method.dup();
3851         }
3852         method.convert(Type.BOOLEAN);
3853         if (isAnd) {
3854             if(lhsConvert) {
3855                 method.ifne(evalRhs);
3856             } else {
3857                 method.ifeq(skip);
3858             }
3859         } else if(lhsConvert) {
3860             method.ifeq(evalRhs);
3861         } else {
3862             method.ifne(skip);
3863         }
3864 
3865         if(lhsConvert) {
3866             method.beforeJoinPoint(lhs);
3867             method._goto(skip);
3868             method.label(evalRhs);
3869         }
3870 
3871         if (!isCurrentDiscard) {
3872             method.pop();
3873         }
3874         final JoinPredecessorExpression rhs = (JoinPredecessorExpression)binaryNode.rhs();
3875         loadMaybeDiscard(isCurrentDiscard, rhs, outBounds);
3876         method.beforeJoinPoint(rhs);
3877         method.label(skip);
3878     }
3879 
3880     private static boolean isLocalVariable(final Expression lhs) {
3881         return lhs instanceof IdentNode && isLocalVariable((IdentNode)lhs);
3882     }
3883 
3884     private static boolean isLocalVariable(final IdentNode lhs) {
3885         return lhs.getSymbol().isBytecodeLocal();
3886     }
3887 
3888     // NOTE: does not use resultBounds as the assignment is driven by the type of the RHS
3889     private void loadASSIGN(final BinaryNode binaryNode) {
3890         final Expression lhs = binaryNode.lhs();
3891         final Expression rhs = binaryNode.rhs();
3892 
3893         final Type rhsType = rhs.getType();
3894         // Detect dead assignments
3895         if(lhs instanceof IdentNode) {
3896             final Symbol symbol = ((IdentNode)lhs).getSymbol();
3897             if(!symbol.isScope() && !symbol.hasSlotFor(rhsType) && lc.popDiscardIfCurrent(binaryNode)) {
3898                 loadAndDiscard(rhs);
3899                 method.markDeadLocalVariable(symbol);
3900                 return;
3901             }
3902         }
3903 
3904         new Store<BinaryNode>(binaryNode, lhs) {
3905             @Override
3906             protected void evaluate() {
3907                 // NOTE: we're loading with "at least as wide as" so optimistic operations on the right hand side
3908                 // remain optimistic, and then explicitly convert to the required type if needed.
3909                 loadExpressionAsType(rhs, rhsType);
3910             }
3911         }.store();
3912     }
3913 
3914     /**
3915      * Binary self-assignment that can be optimistic: +=, -=, *=, and /=.
3916      */
3917     private abstract class BinaryOptimisticSelfAssignment extends SelfModifyingStore<BinaryNode> {
3918 
3919         /**
3920          * Constructor
3921          *
3922          * @param node the assign op node
3923          */
3924         BinaryOptimisticSelfAssignment(final BinaryNode node) {
3925             super(node, node.lhs());
3926         }
3927 
3928         protected abstract void op(OptimisticOperation oo);
3929 
3930         @Override
3931         protected void evaluate() {
3932             final Expression lhs = assignNode.lhs();
3933             final Expression rhs = assignNode.rhs();
3934             final Type widestOperationType = assignNode.getWidestOperationType();
3935             final TypeBounds bounds = new TypeBounds(assignNode.getType(), widestOperationType);
3936             new OptimisticOperation(assignNode, bounds) {
3937                 @Override
3938                 void loadStack() {
3939                     final boolean forceConversionSeparation;
3940                     if (isValid(getProgramPoint()) || widestOperationType == Type.NUMBER) {
3941                         forceConversionSeparation = false;
3942                     } else {
3943                         final Type operandType = Type.widest(booleanToInt(objectToNumber(lhs.getType())), booleanToInt(objectToNumber(rhs.getType())));
3944                         forceConversionSeparation = operandType.narrowerThan(widestOperationType);
3945                     }
3946                     loadBinaryOperands(lhs, rhs, bounds, true, forceConversionSeparation);
3947                 }
3948                 @Override
3949                 void consumeStack() {
3950                     op(this);
3951                 }
3952             }.emit(getOptimisticIgnoreCountForSelfModifyingExpression(lhs));
3953             method.convert(assignNode.getType());
3954         }
3955     }
3956 
3957     /**
3958      * Non-optimistic binary self-assignment operation. Basically, everything except +=, -=, *=, and /=.
3959      */
3960     private abstract class BinarySelfAssignment extends SelfModifyingStore<BinaryNode> {
3961         BinarySelfAssignment(final BinaryNode node) {
3962             super(node, node.lhs());
3963         }
3964 
3965         protected abstract void op();
3966 
3967         @Override
3968         protected void evaluate() {
3969             loadBinaryOperands(assignNode.lhs(), assignNode.rhs(), TypeBounds.UNBOUNDED.notWiderThan(assignNode.getWidestOperandType()), true, false);
3970             op();
3971         }
3972     }
3973 
3974     private void loadASSIGN_ADD(final BinaryNode binaryNode) {
3975         new BinaryOptimisticSelfAssignment(binaryNode) {
3976             @Override
3977             protected void op(final OptimisticOperation oo) {
3978                 assert !(binaryNode.getType().isObject() && oo.isOptimistic);
3979                 method.add(oo.getProgramPoint());
3980             }
3981         }.store();
3982     }
3983 
3984     private void loadASSIGN_BIT_AND(final BinaryNode binaryNode) {
3985         new BinarySelfAssignment(binaryNode) {
3986             @Override
3987             protected void op() {
3988                 method.and();
3989             }
3990         }.store();
3991     }
3992 
3993     private void loadASSIGN_BIT_OR(final BinaryNode binaryNode) {
3994         new BinarySelfAssignment(binaryNode) {
3995             @Override
3996             protected void op() {
3997                 method.or();
3998             }
3999         }.store();
4000     }
4001 
4002     private void loadASSIGN_BIT_XOR(final BinaryNode binaryNode) {
4003         new BinarySelfAssignment(binaryNode) {
4004             @Override
4005             protected void op() {
4006                 method.xor();
4007             }
4008         }.store();
4009     }
4010 
4011     private void loadASSIGN_DIV(final BinaryNode binaryNode) {
4012         new BinaryOptimisticSelfAssignment(binaryNode) {
4013             @Override
4014             protected void op(final OptimisticOperation oo) {
4015                 method.div(oo.getProgramPoint());
4016             }
4017         }.store();
4018     }
4019 
4020     private void loadASSIGN_MOD(final BinaryNode binaryNode) {
4021         new BinaryOptimisticSelfAssignment(binaryNode) {
4022             @Override
4023             protected void op(final OptimisticOperation oo) {
4024                 method.rem(oo.getProgramPoint());
4025             }
4026         }.store();
4027     }
4028 
4029     private void loadASSIGN_MUL(final BinaryNode binaryNode) {
4030         new BinaryOptimisticSelfAssignment(binaryNode) {
4031             @Override
4032             protected void op(final OptimisticOperation oo) {
4033                 method.mul(oo.getProgramPoint());
4034             }
4035         }.store();
4036     }
4037 
4038     private void loadASSIGN_SAR(final BinaryNode binaryNode) {
4039         new BinarySelfAssignment(binaryNode) {
4040             @Override
4041             protected void op() {
4042                 method.sar();
4043             }
4044         }.store();
4045     }
4046 
4047     private void loadASSIGN_SHL(final BinaryNode binaryNode) {
4048         new BinarySelfAssignment(binaryNode) {
4049             @Override
4050             protected void op() {
4051                 method.shl();
4052             }
4053         }.store();
4054     }
4055 
4056     private void loadASSIGN_SHR(final BinaryNode binaryNode) {
4057         new SelfModifyingStore<BinaryNode>(binaryNode, binaryNode.lhs()) {
4058             @Override
4059             protected void evaluate() {
4060                 new OptimisticOperation(assignNode, new TypeBounds(Type.INT, Type.NUMBER)) {
4061                     @Override
4062                     void loadStack() {
4063                         assert assignNode.getWidestOperandType() == Type.INT;
4064                         if (isRhsZero(binaryNode)) {
4065                             loadExpressionAsType(binaryNode.lhs(), Type.INT);
4066                         } else {
4067                             loadBinaryOperands(binaryNode.lhs(), binaryNode.rhs(), TypeBounds.INT, true, false);
4068                             method.shr();
4069                         }
4070                     }
4071 
4072                     @Override
4073                     void consumeStack() {
4074                         if (isOptimistic(binaryNode)) {
4075                             toUint32Optimistic(binaryNode.getProgramPoint());
4076                         } else {
4077                             toUint32Double();
4078                         }
4079                     }
4080                 }.emit(getOptimisticIgnoreCountForSelfModifyingExpression(binaryNode.lhs()));
4081                 method.convert(assignNode.getType());
4082             }
4083         }.store();
4084     }
4085 
4086     private void doSHR(final BinaryNode binaryNode) {
4087         new OptimisticOperation(binaryNode, new TypeBounds(Type.INT, Type.NUMBER)) {
4088             @Override
4089             void loadStack() {
4090                 if (isRhsZero(binaryNode)) {
4091                     loadExpressionAsType(binaryNode.lhs(), Type.INT);
4092                 } else {
4093                     loadBinaryOperands(binaryNode);
4094                     method.shr();
4095                 }
4096             }
4097 
4098             @Override
4099             void consumeStack() {
4100                 if (isOptimistic(binaryNode)) {
4101                     toUint32Optimistic(binaryNode.getProgramPoint());
4102                 } else {
4103                     toUint32Double();
4104                 }
4105             }
4106         }.emit();
4107 
4108     }
4109 
4110     private void toUint32Optimistic(final int programPoint) {
4111         method.load(programPoint);
4112         JSType.TO_UINT32_OPTIMISTIC.invoke(method);
4113     }
4114 
4115     private void toUint32Double() {
4116         JSType.TO_UINT32_DOUBLE.invoke(method);
4117     }
4118 
4119     private void loadASSIGN_SUB(final BinaryNode binaryNode) {
4120         new BinaryOptimisticSelfAssignment(binaryNode) {
4121             @Override
4122             protected void op(final OptimisticOperation oo) {
4123                 method.sub(oo.getProgramPoint());
4124             }
4125         }.store();
4126     }
4127 
4128     /**
4129      * Helper class for binary arithmetic ops
4130      */
4131     private abstract class BinaryArith {
4132         protected abstract void op(int programPoint);
4133 
4134         protected void evaluate(final BinaryNode node, final TypeBounds resultBounds) {
4135             final TypeBounds numericBounds = resultBounds.booleanToInt().objectToNumber();
4136             new OptimisticOperation(node, numericBounds) {
4137                 @Override
4138                 void loadStack() {
4139                     final TypeBounds operandBounds;
4140                     boolean forceConversionSeparation = false;
4141                     if(numericBounds.narrowest == Type.NUMBER) {
4142                         // Result should be double always. Propagate it into the operands so we don't have lots of I2D
4143                         // and L2D after operand evaluation.
4144                         assert numericBounds.widest == Type.NUMBER;
4145                         operandBounds = numericBounds;
4146                     } else {
4147                         final boolean isOptimistic = isValid(getProgramPoint());
4148                         if(isOptimistic || node.isTokenType(TokenType.DIV) || node.isTokenType(TokenType.MOD)) {
4149                             operandBounds = new TypeBounds(node.getType(), Type.NUMBER);
4150                         } else {
4151                             // Non-optimistic, non-FP subtraction or multiplication. Allow them to overflow.
4152                             operandBounds = new TypeBounds(Type.narrowest(node.getWidestOperandType(),
4153                                     numericBounds.widest), Type.NUMBER);
4154                             forceConversionSeparation = true;
4155                         }
4156                     }
4157                     loadBinaryOperands(node.lhs(), node.rhs(), operandBounds, false, forceConversionSeparation);
4158                 }
4159 
4160                 @Override
4161                 void consumeStack() {
4162                     op(getProgramPoint());
4163                 }
4164             }.emit();
4165         }
4166     }
4167 
4168     private void loadBIT_AND(final BinaryNode binaryNode) {
4169         loadBinaryOperands(binaryNode);
4170         method.and();
4171     }
4172 
4173     private void loadBIT_OR(final BinaryNode binaryNode) {
4174         // Optimize x|0 to (int)x
4175         if (isRhsZero(binaryNode)) {
4176             loadExpressionAsType(binaryNode.lhs(), Type.INT);
4177         } else {
4178             loadBinaryOperands(binaryNode);
4179             method.or();
4180         }
4181     }
4182 
4183     private static boolean isRhsZero(final BinaryNode binaryNode) {
4184         final Expression rhs = binaryNode.rhs();
4185         return rhs instanceof LiteralNode && INT_ZERO.equals(((LiteralNode<?>)rhs).getValue());
4186     }
4187 
4188     private void loadBIT_XOR(final BinaryNode binaryNode) {
4189         loadBinaryOperands(binaryNode);
4190         method.xor();
4191     }
4192 
4193     private void loadCOMMARIGHT(final BinaryNode binaryNode, final TypeBounds resultBounds) {
4194         loadAndDiscard(binaryNode.lhs());
4195         loadMaybeDiscard(binaryNode, binaryNode.rhs(), resultBounds);
4196     }
4197 
4198     private void loadCOMMALEFT(final BinaryNode binaryNode, final TypeBounds resultBounds) {
4199         loadMaybeDiscard(binaryNode, binaryNode.lhs(), resultBounds);
4200         loadAndDiscard(binaryNode.rhs());
4201     }
4202 
4203     private void loadDIV(final BinaryNode binaryNode, final TypeBounds resultBounds) {
4204         new BinaryArith() {
4205             @Override
4206             protected void op(final int programPoint) {
4207                 method.div(programPoint);
4208             }
4209         }.evaluate(binaryNode, resultBounds);
4210     }
4211 
4212     private void loadCmp(final BinaryNode binaryNode, final Condition cond) {
4213         loadComparisonOperands(binaryNode);
4214 
4215         final Label trueLabel  = new Label("trueLabel");
4216         final Label afterLabel = new Label("skip");
4217 
4218         method.conditionalJump(cond, trueLabel);
4219 
4220         method.load(Boolean.FALSE);
4221         method._goto(afterLabel);
4222         method.label(trueLabel);
4223         method.load(Boolean.TRUE);
4224         method.label(afterLabel);
4225     }
4226 
4227     private void loadMOD(final BinaryNode binaryNode, final TypeBounds resultBounds) {
4228         new BinaryArith() {
4229             @Override
4230             protected void op(final int programPoint) {
4231                 method.rem(programPoint);
4232             }
4233         }.evaluate(binaryNode, resultBounds);
4234     }
4235 
4236     private void loadMUL(final BinaryNode binaryNode, final TypeBounds resultBounds) {
4237         new BinaryArith() {
4238             @Override
4239             protected void op(final int programPoint) {
4240                 method.mul(programPoint);
4241             }
4242         }.evaluate(binaryNode, resultBounds);
4243     }
4244 
4245     private void loadSAR(final BinaryNode binaryNode) {
4246         loadBinaryOperands(binaryNode);
4247         method.sar();
4248     }
4249 
4250     private void loadSHL(final BinaryNode binaryNode) {
4251         loadBinaryOperands(binaryNode);
4252         method.shl();
4253     }
4254 
4255     private void loadSHR(final BinaryNode binaryNode) {
4256         doSHR(binaryNode);
4257     }
4258 
4259     private void loadSUB(final BinaryNode binaryNode, final TypeBounds resultBounds) {
4260         new BinaryArith() {
4261             @Override
4262             protected void op(final int programPoint) {
4263                 method.sub(programPoint);
4264             }
4265         }.evaluate(binaryNode, resultBounds);
4266     }
4267 
4268     @Override
4269     public boolean enterLabelNode(final LabelNode labelNode) {
4270         labeledBlockBreakLiveLocals.push(lc.getUsedSlotCount());
4271         return true;
4272     }
4273 
4274     @Override
4275     protected boolean enterDefault(final Node node) {
4276         throw new AssertionError("Code generator entered node of type " + node.getClass().getName());
4277     }
4278 
4279     private void loadTernaryNode(final TernaryNode ternaryNode, final TypeBounds resultBounds) {
4280         final Expression test = ternaryNode.getTest();
4281         final JoinPredecessorExpression trueExpr  = ternaryNode.getTrueExpression();
4282         final JoinPredecessorExpression falseExpr = ternaryNode.getFalseExpression();
4283 
4284         final Label falseLabel = new Label("ternary_false");
4285         final Label exitLabel  = new Label("ternary_exit");
4286 
4287         final Type outNarrowest = Type.narrowest(resultBounds.widest, Type.generic(Type.widestReturnType(trueExpr.getType(), falseExpr.getType())));
4288         final TypeBounds outBounds = resultBounds.notNarrowerThan(outNarrowest);
4289 
4290         emitBranch(test, falseLabel, false);
4291 
4292         final boolean isCurrentDiscard = lc.popDiscardIfCurrent(ternaryNode);
4293         loadMaybeDiscard(isCurrentDiscard, trueExpr.getExpression(), outBounds);
4294         assert isCurrentDiscard || Type.generic(method.peekType()) == outBounds.narrowest;
4295         method.beforeJoinPoint(trueExpr);
4296         method._goto(exitLabel);
4297         method.label(falseLabel);
4298         loadMaybeDiscard(isCurrentDiscard, falseExpr.getExpression(), outBounds);
4299         assert isCurrentDiscard || Type.generic(method.peekType()) == outBounds.narrowest;
4300         method.beforeJoinPoint(falseExpr);
4301         method.label(exitLabel);
4302     }
4303 
4304     /**
4305      * Generate all shared scope calls generated during codegen.
4306      */
4307     void generateScopeCalls() {
4308         for (final SharedScopeCall scopeAccess : lc.getScopeCalls()) {
4309             scopeAccess.generateScopeCall();
4310         }
4311     }
4312 
4313     /**
4314      * Debug code used to print symbols
4315      *
4316      * @param block the block we are in
4317      * @param function the function we are in
4318      * @param ident identifier for block or function where applicable
4319      */
4320     private void printSymbols(final Block block, final FunctionNode function, final String ident) {
4321         if (compiler.getScriptEnvironment()._print_symbols || function.getFlag(FunctionNode.IS_PRINT_SYMBOLS)) {
4322             final PrintWriter out = compiler.getScriptEnvironment().getErr();
4323             out.println("[BLOCK in '" + ident + "']");
4324             if (!block.printSymbols(out)) {
4325                 out.println("<no symbols>");
4326             }
4327             out.println();
4328         }
4329     }
4330 
4331 
4332     /**
4333      * The difference between a store and a self modifying store is that
4334      * the latter may load part of the target on the stack, e.g. the base
4335      * of an AccessNode or the base and index of an IndexNode. These are used
4336      * both as target and as an extra source. Previously it was problematic
4337      * for self modifying stores if the target/lhs didn't belong to one
4338      * of three trivial categories: IdentNode, AcessNodes, IndexNodes. In that
4339      * case it was evaluated and tagged as "resolved", which meant at the second
4340      * time the lhs of this store was read (e.g. in a = a (second) + b for a += b,
4341      * it would be evaluated to a nop in the scope and cause stack underflow
4342      *
4343      * see NASHORN-703
4344      *
4345      * @param <T>
4346      */
4347     private abstract class SelfModifyingStore<T extends Expression> extends Store<T> {
4348         protected SelfModifyingStore(final T assignNode, final Expression target) {
4349             super(assignNode, target);
4350         }
4351 
4352         @Override
4353         protected boolean isSelfModifying() {
4354             return true;
4355         }
4356     }
4357 
4358     /**
4359      * Helper class to generate stores
4360      */
4361     private abstract class Store<T extends Expression> {
4362 
4363         /** An assignment node, e.g. x += y */
4364         protected final T assignNode;
4365 
4366         /** The target node to store to, e.g. x */
4367         private final Expression target;
4368 
4369         /** How deep on the stack do the arguments go if this generates an indy call */
4370         private int depth;
4371 
4372         /** If we have too many arguments, we need temporary storage, this is stored in 'quick' */
4373         private IdentNode quick;
4374 
4375         /**
4376          * Constructor
4377          *
4378          * @param assignNode the node representing the whole assignment
4379          * @param target     the target node of the assignment (destination)
4380          */
4381         protected Store(final T assignNode, final Expression target) {
4382             this.assignNode = assignNode;
4383             this.target = target;
4384         }
4385 
4386         /**
4387          * Constructor
4388          *
4389          * @param assignNode the node representing the whole assignment
4390          */
4391         protected Store(final T assignNode) {
4392             this(assignNode, assignNode);
4393         }
4394 
4395         /**
4396          * Is this a self modifying store operation, e.g. *= or ++
4397          * @return true if self modifying store
4398          */
4399         protected boolean isSelfModifying() {
4400             return false;
4401         }
4402 
4403         private void prologue() {
4404             /*
4405              * This loads the parts of the target, e.g base and index. they are kept
4406              * on the stack throughout the store and used at the end to execute it
4407              */
4408 
4409             target.accept(new SimpleNodeVisitor() {
4410                 @Override
4411                 public boolean enterIdentNode(final IdentNode node) {
4412                     if (node.getSymbol().isScope()) {
4413                         method.loadCompilerConstant(SCOPE);
4414                         depth += Type.SCOPE.getSlots();
4415                         assert depth == 1;
4416                     }
4417                     return false;
4418                 }
4419 
4420                 private void enterBaseNode() {
4421                     assert target instanceof BaseNode : "error - base node " + target + " must be instanceof BaseNode";
4422                     final BaseNode   baseNode = (BaseNode)target;
4423                     final Expression base     = baseNode.getBase();
4424 
4425                     loadExpressionAsObject(base);
4426                     depth += Type.OBJECT.getSlots();
4427                     assert depth == 1;
4428 
4429                     if (isSelfModifying()) {
4430                         method.dup();
4431                     }
4432                 }
4433 
4434                 @Override
4435                 public boolean enterAccessNode(final AccessNode node) {
4436                     enterBaseNode();
4437                     return false;
4438                 }
4439 
4440                 @Override
4441                 public boolean enterIndexNode(final IndexNode node) {
4442                     enterBaseNode();
4443 
4444                     final Expression index = node.getIndex();
4445                     if (!index.getType().isNumeric()) {
4446                         // could be boolean here as well
4447                         loadExpressionAsObject(index);
4448                     } else {
4449                         loadExpressionUnbounded(index);
4450                     }
4451                     depth += index.getType().getSlots();
4452 
4453                     if (isSelfModifying()) {
4454                         //convert "base base index" to "base index base index"
4455                         method.dup(1);
4456                     }
4457 
4458                     return false;
4459                 }
4460 
4461             });
4462         }
4463 
4464         /**
4465          * Generates an extra local variable, always using the same slot, one that is available after the end of the
4466          * frame.
4467          *
4468          * @param type the type of the variable
4469          *
4470          * @return the quick variable
4471          */
4472         private IdentNode quickLocalVariable(final Type type) {
4473             final String name = lc.getCurrentFunction().uniqueName(QUICK_PREFIX.symbolName());
4474             final Symbol symbol = new Symbol(name, IS_INTERNAL | HAS_SLOT);
4475             symbol.setHasSlotFor(type);
4476             symbol.setFirstSlot(lc.quickSlot(type));
4477 
4478             final IdentNode quickIdent = IdentNode.createInternalIdentifier(symbol).setType(type);
4479 
4480             return quickIdent;
4481         }
4482 
4483         // store the result that "lives on" after the op, e.g. "i" in i++ postfix.
4484         protected void storeNonDiscard() {
4485             if (lc.popDiscardIfCurrent(assignNode)) {
4486                 assert assignNode.isAssignment();
4487                 return;
4488             }
4489 
4490             if (method.dup(depth) == null) {
4491                 method.dup();
4492                 final Type quickType = method.peekType();
4493                 this.quick = quickLocalVariable(quickType);
4494                 final Symbol quickSymbol = quick.getSymbol();
4495                 method.storeTemp(quickType, quickSymbol.getFirstSlot());
4496             }
4497         }
4498 
4499         private void epilogue() {
4500             /**
4501              * Take the original target args from the stack and use them
4502              * together with the value to be stored to emit the store code
4503              *
4504              * The case that targetSymbol is in scope (!hasSlot) and we actually
4505              * need to do a conversion on non-equivalent types exists, but is
4506              * very rare. See for example test/script/basic/access-specializer.js
4507              */
4508             target.accept(new SimpleNodeVisitor() {
4509                 @Override
4510                 protected boolean enterDefault(final Node node) {
4511                     throw new AssertionError("Unexpected node " + node + " in store epilogue");
4512                 }
4513 
4514                 @Override
4515                 public boolean enterIdentNode(final IdentNode node) {
4516                     final Symbol symbol = node.getSymbol();
4517                     assert symbol != null;
4518                     if (symbol.isScope()) {
4519                         final int flags = getScopeCallSiteFlags(symbol) | (node.isDeclaredHere() ? CALLSITE_DECLARE : 0);
4520                         if (isFastScope(symbol)) {
4521                             storeFastScopeVar(symbol, flags);
4522                         } else {
4523                             method.dynamicSet(node.getName(), flags, false);
4524                         }
4525                     } else {
4526                         final Type storeType = assignNode.getType();
4527                         assert storeType != Type.LONG;
4528                         if (symbol.hasSlotFor(storeType)) {
4529                             // Only emit a convert for a store known to be live; converts for dead stores can
4530                             // give us an unnecessary ClassCastException.
4531                             method.convert(storeType);
4532                         }
4533                         storeIdentWithCatchConversion(node, storeType);
4534                     }
4535                     return false;
4536 
4537                 }
4538 
4539                 @Override
4540                 public boolean enterAccessNode(final AccessNode node) {
4541                     method.dynamicSet(node.getProperty(), getCallSiteFlags(), node.isIndex());
4542                     return false;
4543                 }
4544 
4545                 @Override
4546                 public boolean enterIndexNode(final IndexNode node) {
4547                     method.dynamicSetIndex(getCallSiteFlags());
4548                     return false;
4549                 }
4550             });
4551 
4552 
4553             // whatever is on the stack now is the final answer
4554         }
4555 
4556         protected abstract void evaluate();
4557 
4558         void store() {
4559             if (target instanceof IdentNode) {
4560                 checkTemporalDeadZone((IdentNode)target);
4561             }
4562             prologue();
4563             evaluate(); // leaves an operation of whatever the operationType was on the stack
4564             storeNonDiscard();
4565             epilogue();
4566             if (quick != null) {
4567                 method.load(quick);
4568             }
4569         }
4570     }
4571 
4572     private void newFunctionObject(final FunctionNode functionNode, final boolean addInitializer) {
4573         assert lc.peek() == functionNode;
4574 
4575         final RecompilableScriptFunctionData data = compiler.getScriptFunctionData(functionNode.getId());
4576 
4577         if (functionNode.isProgram() && !compiler.isOnDemandCompilation()) {
4578             final MethodEmitter createFunction = functionNode.getCompileUnit().getClassEmitter().method(
4579                     EnumSet.of(Flag.PUBLIC, Flag.STATIC), CREATE_PROGRAM_FUNCTION.symbolName(),
4580                     ScriptFunction.class, ScriptObject.class);
4581             createFunction.begin();
4582             loadConstantsAndIndex(data, createFunction);
4583             createFunction.load(SCOPE_TYPE, 0);
4584             createFunction.invoke(CREATE_FUNCTION_OBJECT);
4585             createFunction._return();
4586             createFunction.end();
4587         }
4588 
4589         if (addInitializer && !compiler.isOnDemandCompilation()) {
4590             functionNode.getCompileUnit().addFunctionInitializer(data, functionNode);
4591         }
4592 
4593         // We don't emit a ScriptFunction on stack for the outermost compiled function (as there's no code being
4594         // generated in its outer context that'd need it as a callee).
4595         if (lc.getOutermostFunction() == functionNode) {
4596             return;
4597         }
4598 
4599         loadConstantsAndIndex(data, method);
4600 
4601         if (functionNode.needsParentScope()) {
4602             method.loadCompilerConstant(SCOPE);
4603             method.invoke(CREATE_FUNCTION_OBJECT);
4604         } else {
4605             method.invoke(CREATE_FUNCTION_OBJECT_NO_SCOPE);
4606         }
4607     }
4608 
4609     // calls on Global class.
4610     private MethodEmitter globalInstance() {
4611         return method.invokestatic(GLOBAL_OBJECT, "instance", "()L" + GLOBAL_OBJECT + ';');
4612     }
4613 
4614     private MethodEmitter globalAllocateArguments() {
4615         return method.invokestatic(GLOBAL_OBJECT, "allocateArguments", methodDescriptor(ScriptObject.class, Object[].class, Object.class, int.class));
4616     }
4617 
4618     private MethodEmitter globalNewRegExp() {
4619         return method.invokestatic(GLOBAL_OBJECT, "newRegExp", methodDescriptor(Object.class, String.class, String.class));
4620     }
4621 
4622     private MethodEmitter globalRegExpCopy() {
4623         return method.invokestatic(GLOBAL_OBJECT, "regExpCopy", methodDescriptor(Object.class, Object.class));
4624     }
4625 
4626     private MethodEmitter globalAllocateArray(final ArrayType type) {
4627         //make sure the native array is treated as an array type
4628         return method.invokestatic(GLOBAL_OBJECT, "allocate", "(" + type.getDescriptor() + ")Ljdk/nashorn/internal/objects/NativeArray;");
4629     }
4630 
4631     private MethodEmitter globalIsEval() {
4632         return method.invokestatic(GLOBAL_OBJECT, "isEval", methodDescriptor(boolean.class, Object.class));
4633     }
4634 
4635     private MethodEmitter globalReplaceLocationPropertyPlaceholder() {
4636         return method.invokestatic(GLOBAL_OBJECT, "replaceLocationPropertyPlaceholder", methodDescriptor(Object.class, Object.class, Object.class));
4637     }
4638 
4639     private MethodEmitter globalCheckObjectCoercible() {
4640         return method.invokestatic(GLOBAL_OBJECT, "checkObjectCoercible", methodDescriptor(void.class, Object.class));
4641     }
4642 
4643     private MethodEmitter globalDirectEval() {
4644         return method.invokestatic(GLOBAL_OBJECT, "directEval",
4645                 methodDescriptor(Object.class, Object.class, Object.class, Object.class, Object.class, boolean.class));
4646     }
4647 
4648     private abstract class OptimisticOperation {
4649         private final boolean isOptimistic;
4650         // expression and optimistic are the same reference
4651         private final Expression expression;
4652         private final Optimistic optimistic;
4653         private final TypeBounds resultBounds;
4654 
4655         OptimisticOperation(final Optimistic optimistic, final TypeBounds resultBounds) {
4656             this.optimistic = optimistic;
4657             this.expression = (Expression)optimistic;
4658             this.resultBounds = resultBounds;
4659             this.isOptimistic = isOptimistic(optimistic) && useOptimisticTypes() &&
4660                     // Operation is only effectively optimistic if its type, after being coerced into the result bounds
4661                     // is narrower than the upper bound.
4662                     resultBounds.within(Type.generic(((Expression)optimistic).getType())).narrowerThan(resultBounds.widest);
4663         }
4664 
4665         MethodEmitter emit() {
4666             return emit(0);
4667         }
4668 
4669         MethodEmitter emit(final int ignoredArgCount) {
4670             final int     programPoint                  = optimistic.getProgramPoint();
4671             final boolean optimisticOrContinuation      = isOptimistic || isContinuationEntryPoint(programPoint);
4672             final boolean currentContinuationEntryPoint = isCurrentContinuationEntryPoint(programPoint);
4673             final int     stackSizeOnEntry              = method.getStackSize() - ignoredArgCount;
4674 
4675             // First store the values on the stack opportunistically into local variables. Doing it before loadStack()
4676             // allows us to not have to pop/load any arguments that are pushed onto it by loadStack() in the second
4677             // storeStack().
4678             storeStack(ignoredArgCount, optimisticOrContinuation);
4679 
4680             // Now, load the stack
4681             loadStack();
4682 
4683             // Now store the values on the stack ultimately into local variables. In vast majority of cases, this is
4684             // (aside from creating the local types map) a no-op, as the first opportunistic stack store will already
4685             // store all variables. However, there can be operations in the loadStack() that invalidate some of the
4686             // stack stores, e.g. in "x[i] = x[++i]", "++i" will invalidate the already stored value for "i". In such
4687             // unfortunate cases this second storeStack() will restore the invariant that everything on the stack is
4688             // stored into a local variable, although at the cost of doing a store/load on the loaded arguments as well.
4689             final int liveLocalsCount = storeStack(method.getStackSize() - stackSizeOnEntry, optimisticOrContinuation);
4690             assert optimisticOrContinuation == (liveLocalsCount != -1);
4691 
4692             final Label beginTry;
4693             final Label catchLabel;
4694             final Label afterConsumeStack = isOptimistic || currentContinuationEntryPoint ? new Label("after_consume_stack") : null;
4695             if(isOptimistic) {
4696                 beginTry = new Label("try_optimistic");
4697                 final String catchLabelName = (afterConsumeStack == null ? "" : afterConsumeStack.toString()) + "_handler";
4698                 catchLabel = new Label(catchLabelName);
4699                 method.label(beginTry);
4700             } else {
4701                 beginTry = catchLabel = null;
4702             }
4703 
4704             consumeStack();
4705 
4706             if(isOptimistic) {
4707                 method._try(beginTry, afterConsumeStack, catchLabel, UnwarrantedOptimismException.class);
4708             }
4709 
4710             if(isOptimistic || currentContinuationEntryPoint) {
4711                 method.label(afterConsumeStack);
4712 
4713                 final int[] localLoads = method.getLocalLoadsOnStack(0, stackSizeOnEntry);
4714                 assert everyStackValueIsLocalLoad(localLoads) : Arrays.toString(localLoads) + ", " + stackSizeOnEntry + ", " + ignoredArgCount;
4715                 final List<Type> localTypesList = method.getLocalVariableTypes();
4716                 final int usedLocals = method.getUsedSlotsWithLiveTemporaries();
4717                 final List<Type> localTypes = method.getWidestLiveLocals(localTypesList.subList(0, usedLocals));
4718                 assert everyLocalLoadIsValid(localLoads, usedLocals) : Arrays.toString(localLoads) + " ~ " + localTypes;
4719 
4720                 if(isOptimistic) {
4721                     addUnwarrantedOptimismHandlerLabel(localTypes, catchLabel);
4722                 }
4723                 if(currentContinuationEntryPoint) {
4724                     final ContinuationInfo ci = getContinuationInfo();
4725                     assert ci != null : "no continuation info found for " + lc.getCurrentFunction();
4726                     assert !ci.hasTargetLabel(); // No duplicate program points
4727                     ci.setTargetLabel(afterConsumeStack);
4728                     ci.getHandlerLabel().markAsOptimisticContinuationHandlerFor(afterConsumeStack);
4729                     // Can't rely on targetLabel.stack.localVariableTypes.length, as it can be higher due to effectively
4730                     // dead local variables.
4731                     ci.lvarCount = localTypes.size();
4732                     ci.setStackStoreSpec(localLoads);
4733                     ci.setStackTypes(Arrays.copyOf(method.getTypesFromStack(method.getStackSize()), stackSizeOnEntry));
4734                     assert ci.getStackStoreSpec().length == ci.getStackTypes().length;
4735                     ci.setReturnValueType(method.peekType());
4736                     ci.lineNumber = getLastLineNumber();
4737                     ci.catchLabel = catchLabels.peek();
4738                 }
4739             }
4740             return method;
4741         }
4742 
4743         /**
4744          * Stores the current contents of the stack into local variables so they are not lost before invoking something that
4745          * can result in an {@code UnwarantedOptimizationException}.
4746          * @param ignoreArgCount the number of topmost arguments on stack to ignore when deciding on the shape of the catch
4747          * block. Those are used in the situations when we could not place the call to {@code storeStack} early enough
4748          * (before emitting code for pushing the arguments that the optimistic call will pop). This is admittedly a
4749          * deficiency in the design of the code generator when it deals with self-assignments and we should probably look
4750          * into fixing it.
4751          * @return types of the significant local variables after the stack was stored (types for local variables used
4752          * for temporary storage of ignored arguments are not returned).
4753          * @param optimisticOrContinuation if false, this method should not execute
4754          * a label for a catch block for the {@code UnwarantedOptimizationException}, suitable for capturing the
4755          * currently live local variables, tailored to their types.
4756          */
4757         private int storeStack(final int ignoreArgCount, final boolean optimisticOrContinuation) {
4758             if(!optimisticOrContinuation) {
4759                 return -1; // NOTE: correct value to return is lc.getUsedSlotCount(), but it wouldn't be used anyway
4760             }
4761 
4762             final int stackSize = method.getStackSize();
4763             final Type[] stackTypes = method.getTypesFromStack(stackSize);
4764             final int[] localLoadsOnStack = method.getLocalLoadsOnStack(0, stackSize);
4765             final int usedSlots = method.getUsedSlotsWithLiveTemporaries();
4766 
4767             final int firstIgnored = stackSize - ignoreArgCount;
4768             // Find the first value on the stack (from the bottom) that is not a load from a local variable.
4769             int firstNonLoad = 0;
4770             while(firstNonLoad < firstIgnored && localLoadsOnStack[firstNonLoad] != Label.Stack.NON_LOAD) {
4771                 firstNonLoad++;
4772             }
4773 
4774             // Only do the store/load if first non-load is not an ignored argument. Otherwise, do nothing and return
4775             // the number of used slots as the number of live local variables.
4776             if(firstNonLoad >= firstIgnored) {
4777                 return usedSlots;
4778             }
4779 
4780             // Find the number of new temporary local variables that we need; it's the number of values on the stack that
4781             // are not direct loads of existing local variables.
4782             int tempSlotsNeeded = 0;
4783             for(int i = firstNonLoad; i < stackSize; ++i) {
4784                 if(localLoadsOnStack[i] == Label.Stack.NON_LOAD) {
4785                     tempSlotsNeeded += stackTypes[i].getSlots();
4786                 }
4787             }
4788 
4789             // Ensure all values on the stack that weren't directly loaded from a local variable are stored in a local
4790             // variable. We're starting from highest local variable index, so that in case ignoreArgCount > 0 the ignored
4791             // ones end up at the end of the local variable table.
4792             int lastTempSlot = usedSlots + tempSlotsNeeded;
4793             int ignoreSlotCount = 0;
4794             for(int i = stackSize; i -- > firstNonLoad;) {
4795                 final int loadSlot = localLoadsOnStack[i];
4796                 if(loadSlot == Label.Stack.NON_LOAD) {
4797                     final Type type = stackTypes[i];
4798                     final int slots = type.getSlots();
4799                     lastTempSlot -= slots;
4800                     if(i >= firstIgnored) {
4801                         ignoreSlotCount += slots;
4802                     }
4803                     method.storeTemp(type, lastTempSlot);
4804                 } else {
4805                     method.pop();
4806                 }
4807             }
4808             assert lastTempSlot == usedSlots; // used all temporary locals
4809 
4810             final List<Type> localTypesList = method.getLocalVariableTypes();
4811 
4812             // Load values back on stack.
4813             for(int i = firstNonLoad; i < stackSize; ++i) {
4814                 final int loadSlot = localLoadsOnStack[i];
4815                 final Type stackType = stackTypes[i];
4816                 final boolean isLoad = loadSlot != Label.Stack.NON_LOAD;
4817                 final int lvarSlot = isLoad ? loadSlot : lastTempSlot;
4818                 final Type lvarType = localTypesList.get(lvarSlot);
4819                 method.load(lvarType, lvarSlot);
4820                 if(isLoad) {
4821                     // Conversion operators (I2L etc.) preserve "load"-ness of the value despite the fact that, in the
4822                     // strict sense they are creating a derived value from the loaded value. This special behavior of
4823                     // on-stack conversion operators is necessary to accommodate for differences in local variable types
4824                     // after deoptimization; having a conversion operator throw away "load"-ness would create different
4825                     // local variable table shapes between optimism-failed code and its deoptimized rest-of method).
4826                     // After we load the value back, we need to redo the conversion to the stack type if stack type is
4827                     // different.
4828                     // NOTE: this would only strictly be necessary for widening conversions (I2L, L2D, I2D), and not for
4829                     // narrowing ones (L2I, D2L, D2I) as only widening conversions are the ones that can get eliminated
4830                     // in a deoptimized method, as their original input argument got widened. Maybe experiment with
4831                     // throwing away "load"-ness for narrowing conversions in MethodEmitter.convert()?
4832                     method.convert(stackType);
4833                 } else {
4834                     // temporary stores never needs a convert, as their type is always the same as the stack type.
4835                     assert lvarType == stackType;
4836                     lastTempSlot += lvarType.getSlots();
4837                 }
4838             }
4839             // used all temporaries
4840             assert lastTempSlot == usedSlots + tempSlotsNeeded;
4841 
4842             return lastTempSlot - ignoreSlotCount;
4843         }
4844 
4845         private void addUnwarrantedOptimismHandlerLabel(final List<Type> localTypes, final Label label) {
4846             final String lvarTypesDescriptor = getLvarTypesDescriptor(localTypes);
4847             final Map<String, Collection<Label>> unwarrantedOptimismHandlers = lc.getUnwarrantedOptimismHandlers();
4848             Collection<Label> labels = unwarrantedOptimismHandlers.get(lvarTypesDescriptor);
4849             if(labels == null) {
4850                 labels = new LinkedList<>();
4851                 unwarrantedOptimismHandlers.put(lvarTypesDescriptor, labels);
4852             }
4853             method.markLabelAsOptimisticCatchHandler(label, localTypes.size());
4854             labels.add(label);
4855         }
4856 
4857         abstract void loadStack();
4858 
4859         // Make sure that whatever indy call site you emit from this method uses {@code getCallSiteFlagsOptimistic(node)}
4860         // or otherwise ensure optimistic flag is correctly set in the call site, otherwise it doesn't make much sense
4861         // to use OptimisticExpression for emitting it.
4862         abstract void consumeStack();
4863 
4864         /**
4865          * Emits the correct dynamic getter code. Normally just delegates to method emitter, except when the target
4866          * expression is optimistic, and the desired type is narrower than the optimistic type. In that case, it'll emit a
4867          * dynamic getter with its original optimistic type, and explicitly insert a narrowing conversion. This way we can
4868          * preserve the optimism of the values even if they're subsequently immediately coerced into a narrower type. This
4869          * is beneficial because in this case we can still presume that since the original getter was optimistic, the
4870          * conversion has no side effects.
4871          * @param name the name of the property being get
4872          * @param flags call site flags
4873          * @param isMethod whether we're preferably retrieving a function
4874          * @return the current method emitter
4875          */
4876         MethodEmitter dynamicGet(final String name, final int flags, final boolean isMethod, final boolean isIndex) {
4877             if(isOptimistic) {
4878                 return method.dynamicGet(getOptimisticCoercedType(), name, getOptimisticFlags(flags), isMethod, isIndex);
4879             }
4880             return method.dynamicGet(resultBounds.within(expression.getType()), name, nonOptimisticFlags(flags), isMethod, isIndex);
4881         }
4882 
4883         MethodEmitter dynamicGetIndex(final int flags, final boolean isMethod) {
4884             if(isOptimistic) {
4885                 return method.dynamicGetIndex(getOptimisticCoercedType(), getOptimisticFlags(flags), isMethod);
4886             }
4887             return method.dynamicGetIndex(resultBounds.within(expression.getType()), nonOptimisticFlags(flags), isMethod);
4888         }
4889 
4890         MethodEmitter dynamicCall(final int argCount, final int flags, final String msg) {
4891             if (isOptimistic) {
4892                 return method.dynamicCall(getOptimisticCoercedType(), argCount, getOptimisticFlags(flags), msg);
4893             }
4894             return method.dynamicCall(resultBounds.within(expression.getType()), argCount, nonOptimisticFlags(flags), msg);
4895         }
4896 
4897         int getOptimisticFlags(final int flags) {
4898             return flags | CALLSITE_OPTIMISTIC | (optimistic.getProgramPoint() << CALLSITE_PROGRAM_POINT_SHIFT); //encode program point in high bits
4899         }
4900 
4901         int getProgramPoint() {
4902             return isOptimistic ? optimistic.getProgramPoint() : INVALID_PROGRAM_POINT;
4903         }
4904 
4905         void convertOptimisticReturnValue() {
4906             if (isOptimistic) {
4907                 final Type optimisticType = getOptimisticCoercedType();
4908                 if(!optimisticType.isObject()) {
4909                     method.load(optimistic.getProgramPoint());
4910                     if(optimisticType.isInteger()) {
4911                         method.invoke(ENSURE_INT);
4912                     } else if(optimisticType.isNumber()) {
4913                         method.invoke(ENSURE_NUMBER);
4914                     } else {
4915                         throw new AssertionError(optimisticType);
4916                     }
4917                 }
4918             }
4919         }
4920 
4921         void replaceCompileTimeProperty() {
4922             final IdentNode identNode = (IdentNode)expression;
4923             final String name = identNode.getSymbol().getName();
4924             if (CompilerConstants.__FILE__.name().equals(name)) {
4925                 replaceCompileTimeProperty(getCurrentSource().getName());
4926             } else if (CompilerConstants.__DIR__.name().equals(name)) {
4927                 replaceCompileTimeProperty(getCurrentSource().getBase());
4928             } else if (CompilerConstants.__LINE__.name().equals(name)) {
4929                 replaceCompileTimeProperty(getCurrentSource().getLine(identNode.position()));
4930             }
4931         }
4932 
4933         /**
4934          * When an ident with name __FILE__, __DIR__, or __LINE__ is loaded, we'll try to look it up as any other
4935          * identifier. However, if it gets all the way up to the Global object, it will send back a special value that
4936          * represents a placeholder for these compile-time location properties. This method will generate code that loads
4937          * the value of the compile-time location property and then invokes a method in Global that will replace the
4938          * placeholder with the value. Effectively, if the symbol for these properties is defined anywhere in the lexical
4939          * scope, they take precedence, but if they aren't, then they resolve to the compile-time location property.
4940          * @param propertyValue the actual value of the property
4941          */
4942         private void replaceCompileTimeProperty(final Object propertyValue) {
4943             assert method.peekType().isObject();
4944             if(propertyValue instanceof String || propertyValue == null) {
4945                 method.load((String)propertyValue);
4946             } else if(propertyValue instanceof Integer) {
4947                 method.load(((Integer)propertyValue));
4948                 method.convert(Type.OBJECT);
4949             } else {
4950                 throw new AssertionError();
4951             }
4952             globalReplaceLocationPropertyPlaceholder();
4953             convertOptimisticReturnValue();
4954         }
4955 
4956         /**
4957          * Returns the type that should be used as the return type of the dynamic invocation that is emitted as the code
4958          * for the current optimistic operation. If the type bounds is exact boolean or narrower than the expression's
4959          * optimistic type, then the optimistic type is returned, otherwise the coercing type. Effectively, this method
4960          * allows for moving the coercion into the optimistic type when it won't adversely affect the optimistic
4961          * evaluation semantics, and for preserving the optimistic type and doing a separate coercion when it would
4962          * affect it.
4963          * @return
4964          */
4965         private Type getOptimisticCoercedType() {
4966             final Type optimisticType = expression.getType();
4967             assert resultBounds.widest.widerThan(optimisticType);
4968             final Type narrowest = resultBounds.narrowest;
4969 
4970             if(narrowest.isBoolean() || narrowest.narrowerThan(optimisticType)) {
4971                 assert !optimisticType.isObject();
4972                 return optimisticType;
4973             }
4974             assert !narrowest.isObject();
4975             return narrowest;
4976         }
4977     }
4978 
4979     private static boolean isOptimistic(final Optimistic optimistic) {
4980         if(!optimistic.canBeOptimistic()) {
4981             return false;
4982         }
4983         final Expression expr = (Expression)optimistic;
4984         return expr.getType().narrowerThan(expr.getWidestOperationType());
4985     }
4986 
4987     private static boolean everyLocalLoadIsValid(final int[] loads, final int localCount) {
4988         for (final int load : loads) {
4989             if(load < 0 || load >= localCount) {
4990                 return false;
4991             }
4992         }
4993         return true;
4994     }
4995 
4996     private static boolean everyStackValueIsLocalLoad(final int[] loads) {
4997         for (final int load : loads) {
4998             if(load == Label.Stack.NON_LOAD) {
4999                 return false;
5000             }
5001         }
5002         return true;
5003     }
5004 
5005     private String getLvarTypesDescriptor(final List<Type> localVarTypes) {
5006         final int count = localVarTypes.size();
5007         final StringBuilder desc = new StringBuilder(count);
5008         for(int i = 0; i < count;) {
5009             i += appendType(desc, localVarTypes.get(i));
5010         }
5011         return method.markSymbolBoundariesInLvarTypesDescriptor(desc.toString());
5012     }
5013 
5014     private static int appendType(final StringBuilder b, final Type t) {
5015         b.append(t.getBytecodeStackType());
5016         return t.getSlots();
5017     }
5018 
5019     private static int countSymbolsInLvarTypeDescriptor(final String lvarTypeDescriptor) {
5020         int count = 0;
5021         for(int i = 0; i < lvarTypeDescriptor.length(); ++i) {
5022             if(Character.isUpperCase(lvarTypeDescriptor.charAt(i))) {
5023                 ++count;
5024             }
5025         }
5026         return count;
5027 
5028     }
5029     /**
5030      * Generates all the required {@code UnwarrantedOptimismException} handlers for the current function. The employed
5031      * strategy strives to maximize code reuse. Every handler constructs an array to hold the local variables, then
5032      * fills in some trailing part of the local variables (those for which it has a unique suffix in the descriptor),
5033      * then jumps to a handler for a prefix that's shared with other handlers. A handler that fills up locals up to
5034      * position 0 will not jump to a prefix handler (as it has no prefix), but instead end with constructing and
5035      * throwing a {@code RewriteException}. Since we lexicographically sort the entries, we only need to check every
5036      * entry to its immediately preceding one for longest matching prefix.
5037      * @return true if there is at least one exception handler
5038      */
5039     private boolean generateUnwarrantedOptimismExceptionHandlers(final FunctionNode fn) {
5040         if(!useOptimisticTypes()) {
5041             return false;
5042         }
5043 
5044         // Take the mapping of lvarSpecs -> labels, and turn them into a descending lexicographically sorted list of
5045         // handler specifications.
5046         final Map<String, Collection<Label>> unwarrantedOptimismHandlers = lc.popUnwarrantedOptimismHandlers();
5047         if(unwarrantedOptimismHandlers.isEmpty()) {
5048             return false;
5049         }
5050 
5051         method.lineNumber(0);
5052 
5053         final List<OptimismExceptionHandlerSpec> handlerSpecs = new ArrayList<>(unwarrantedOptimismHandlers.size() * 4/3);
5054         for(final String spec: unwarrantedOptimismHandlers.keySet()) {
5055             handlerSpecs.add(new OptimismExceptionHandlerSpec(spec, true));
5056         }
5057         Collections.sort(handlerSpecs, Collections.reverseOrder());
5058 
5059         // Map of local variable specifications to labels for populating the array for that local variable spec.
5060         final Map<String, Label> delegationLabels = new HashMap<>();
5061 
5062         // Do everything in a single pass over the handlerSpecs list. Note that the list can actually grow as we're
5063         // passing through it as we might add new prefix handlers into it, so can't hoist size() outside of the loop.
5064         for(int handlerIndex = 0; handlerIndex < handlerSpecs.size(); ++handlerIndex) {
5065             final OptimismExceptionHandlerSpec spec = handlerSpecs.get(handlerIndex);
5066             final String lvarSpec = spec.lvarSpec;
5067             if(spec.catchTarget) {
5068                 assert !method.isReachable();
5069                 // Start a catch block and assign the labels for this lvarSpec with it.
5070                 method._catch(unwarrantedOptimismHandlers.get(lvarSpec));
5071                 // This spec is a catch target, so emit array creation code. The length of the array is the number of
5072                 // symbols - the number of uppercase characters.
5073                 method.load(countSymbolsInLvarTypeDescriptor(lvarSpec));
5074                 method.newarray(Type.OBJECT_ARRAY);
5075             }
5076             if(spec.delegationTarget) {
5077                 // If another handler can delegate to this handler as its prefix, then put a jump target here for the
5078                 // shared code (after the array creation code, which is never shared).
5079                 method.label(delegationLabels.get(lvarSpec)); // label must exist
5080             }
5081 
5082             final boolean lastHandler = handlerIndex == handlerSpecs.size() - 1;
5083 
5084             int lvarIndex;
5085             final int firstArrayIndex;
5086             final int firstLvarIndex;
5087             Label delegationLabel;
5088             final String commonLvarSpec;
5089             if(lastHandler) {
5090                 // Last handler block, doesn't delegate to anything.
5091                 lvarIndex = 0;
5092                 firstLvarIndex = 0;
5093                 firstArrayIndex = 0;
5094                 delegationLabel = null;
5095                 commonLvarSpec = null;
5096             } else {
5097                 // Not yet the last handler block, will definitely delegate to another handler; let's figure out which
5098                 // one. It can be an already declared handler further down the list, or it might need to declare a new
5099                 // prefix handler.
5100 
5101                 // Since we're lexicographically ordered, the common prefix handler is defined by the common prefix of
5102                 // this handler and the next handler on the list.
5103                 final int nextHandlerIndex = handlerIndex + 1;
5104                 final String nextLvarSpec = handlerSpecs.get(nextHandlerIndex).lvarSpec;
5105                 commonLvarSpec = commonPrefix(lvarSpec, nextLvarSpec);
5106                 // We don't chop symbols in half
5107                 assert Character.isUpperCase(commonLvarSpec.charAt(commonLvarSpec.length() - 1));
5108 
5109                 // Let's find if we already have a declaration for such handler, or we need to insert it.
5110                 {
5111                     boolean addNewHandler = true;
5112                     int commonHandlerIndex = nextHandlerIndex;
5113                     for(; commonHandlerIndex < handlerSpecs.size(); ++commonHandlerIndex) {
5114                         final OptimismExceptionHandlerSpec forwardHandlerSpec = handlerSpecs.get(commonHandlerIndex);
5115                         final String forwardLvarSpec = forwardHandlerSpec.lvarSpec;
5116                         if(forwardLvarSpec.equals(commonLvarSpec)) {
5117                             // We already have a handler for the common prefix.
5118                             addNewHandler = false;
5119                             // Make sure we mark it as a delegation target.
5120                             forwardHandlerSpec.delegationTarget = true;
5121                             break;
5122                         } else if(!forwardLvarSpec.startsWith(commonLvarSpec)) {
5123                             break;
5124                         }
5125                     }
5126                     if(addNewHandler) {
5127                         // We need to insert a common prefix handler. Note handlers created with catchTarget == false
5128                         // will automatically have delegationTarget == true (because that's the only reason for their
5129                         // existence).
5130                         handlerSpecs.add(commonHandlerIndex, new OptimismExceptionHandlerSpec(commonLvarSpec, false));
5131                     }
5132                 }
5133 
5134                 firstArrayIndex = countSymbolsInLvarTypeDescriptor(commonLvarSpec);
5135                 lvarIndex = 0;
5136                 for(int j = 0; j < commonLvarSpec.length(); ++j) {
5137                     lvarIndex += CodeGeneratorLexicalContext.getTypeForSlotDescriptor(commonLvarSpec.charAt(j)).getSlots();
5138                 }
5139                 firstLvarIndex = lvarIndex;
5140 
5141                 // Create a delegation label if not already present
5142                 delegationLabel = delegationLabels.get(commonLvarSpec);
5143                 if(delegationLabel == null) {
5144                     // uo_pa == "unwarranted optimism, populate array"
5145                     delegationLabel = new Label("uo_pa_" + commonLvarSpec);
5146                     delegationLabels.put(commonLvarSpec, delegationLabel);
5147                 }
5148             }
5149 
5150             // Load local variables handled by this handler on stack
5151             int args = 0;
5152             boolean symbolHadValue = false;
5153             for(int typeIndex = commonLvarSpec == null ? 0 : commonLvarSpec.length(); typeIndex < lvarSpec.length(); ++typeIndex) {
5154                 final char typeDesc = lvarSpec.charAt(typeIndex);
5155                 final Type lvarType = CodeGeneratorLexicalContext.getTypeForSlotDescriptor(typeDesc);
5156                 if (!lvarType.isUnknown()) {
5157                     method.load(lvarType, lvarIndex);
5158                     symbolHadValue = true;
5159                     args++;
5160                 } else if(typeDesc == 'U' && !symbolHadValue) {
5161                     // Symbol boundary with undefined last value. Check if all previous values for this symbol were also
5162                     // undefined; if so, emit one explicit Undefined. This serves to ensure that we're emiting exactly
5163                     // one value for every symbol that uses local slots. While we could in theory ignore symbols that
5164                     // are undefined (in other words, dead) at the point where this exception was thrown, unfortunately
5165                     // we can't do it in practice. The reason for this is that currently our liveness analysis is
5166                     // coarse (it can determine whether a symbol has not been read with a particular type anywhere in
5167                     // the function being compiled, but that's it), and a symbol being promoted to Object due to a
5168                     // deoptimization will suddenly show up as "live for Object type", and previously dead U->O
5169                     // conversions on loop entries will suddenly become alive in the deoptimized method which will then
5170                     // expect a value for that slot in its continuation handler. If we had precise liveness analysis, we
5171                     // could go back to excluding known dead symbols from the payload of the RewriteException.
5172                     if(method.peekType() == Type.UNDEFINED) {
5173                         method.dup();
5174                     } else {
5175                         method.loadUndefined(Type.OBJECT);
5176                     }
5177                     args++;
5178                 }
5179                 if(Character.isUpperCase(typeDesc)) {
5180                     // Reached symbol boundary; reset flag for the next symbol.
5181                     symbolHadValue = false;
5182                 }
5183                 lvarIndex += lvarType.getSlots();
5184             }
5185             assert args > 0;
5186             // Delegate actual storing into array to an array populator utility method.
5187             //on the stack:
5188             // object array to be populated
5189             // start index
5190             // a lot of types
5191             method.dynamicArrayPopulatorCall(args + 1, firstArrayIndex);
5192             if(delegationLabel != null) {
5193                 // We cascade to a prefix handler to fill out the rest of the local variables and throw the
5194                 // RewriteException.
5195                 assert !lastHandler;
5196                 assert commonLvarSpec != null;
5197                 // Must undefine the local variables that we have already processed for the sake of correct join on the
5198                 // delegate label
5199                 method.undefineLocalVariables(firstLvarIndex, true);
5200                 final OptimismExceptionHandlerSpec nextSpec = handlerSpecs.get(handlerIndex + 1);
5201                 // If the delegate immediately follows, and it's not a catch target (so it doesn't have array setup
5202                 // code) don't bother emitting a jump, as we'd just jump to the next instruction.
5203                 if(!nextSpec.lvarSpec.equals(commonLvarSpec) || nextSpec.catchTarget) {
5204                     method._goto(delegationLabel);
5205                 }
5206             } else {
5207                 assert lastHandler;
5208                 // Nothing to delegate to, so this handler must create and throw the RewriteException.
5209                 // At this point we have the UnwarrantedOptimismException and the Object[] with local variables on
5210                 // stack. We need to create a RewriteException, push two references to it below the constructor
5211                 // arguments, invoke the constructor, and throw the exception.
5212                 loadConstant(getByteCodeSymbolNames(fn));
5213                 if (isRestOf()) {
5214                     loadConstant(getContinuationEntryPoints());
5215                     method.invoke(CREATE_REWRITE_EXCEPTION_REST_OF);
5216                 } else {
5217                     method.invoke(CREATE_REWRITE_EXCEPTION);
5218                 }
5219                 method.athrow();
5220             }
5221         }
5222         return true;
5223     }
5224 
5225     private static String[] getByteCodeSymbolNames(final FunctionNode fn) {
5226         // Only names of local variables on the function level are captured. This information is used to reduce
5227         // deoptimizations, so as much as we can capture will help. We rely on the fact that function wide variables are
5228         // all live all the time, so the array passed to rewrite exception contains one element for every slotted symbol
5229         // here.
5230         final List<String> names = new ArrayList<>();
5231         for (final Symbol symbol: fn.getBody().getSymbols()) {
5232             if (symbol.hasSlot()) {
5233                 if (symbol.isScope()) {
5234                     // slot + scope can only be true for parameters
5235                     assert symbol.isParam();
5236                     names.add(null);
5237                 } else {
5238                     names.add(symbol.getName());
5239                 }
5240             }
5241         }
5242         return names.toArray(new String[0]);
5243     }
5244 
5245     private static String commonPrefix(final String s1, final String s2) {
5246         final int l1 = s1.length();
5247         final int l = Math.min(l1, s2.length());
5248         int lms = -1; // last matching symbol
5249         for(int i = 0; i < l; ++i) {
5250             final char c1 = s1.charAt(i);
5251             if(c1 != s2.charAt(i)) {
5252                 return s1.substring(0, lms + 1);
5253             } else if(Character.isUpperCase(c1)) {
5254                 lms = i;
5255             }
5256         }
5257         return l == l1 ? s1 : s2;
5258     }
5259 
5260     private static class OptimismExceptionHandlerSpec implements Comparable<OptimismExceptionHandlerSpec> {
5261         private final String lvarSpec;
5262         private final boolean catchTarget;
5263         private boolean delegationTarget;
5264 
5265         OptimismExceptionHandlerSpec(final String lvarSpec, final boolean catchTarget) {
5266             this.lvarSpec = lvarSpec;
5267             this.catchTarget = catchTarget;
5268             if(!catchTarget) {
5269                 delegationTarget = true;
5270             }
5271         }
5272 
5273         @Override
5274         public int compareTo(final OptimismExceptionHandlerSpec o) {
5275             return lvarSpec.compareTo(o.lvarSpec);
5276         }
5277 
5278         @Override
5279         public String toString() {
5280             final StringBuilder b = new StringBuilder(64).append("[HandlerSpec ").append(lvarSpec);
5281             if(catchTarget) {
5282                 b.append(", catchTarget");
5283             }
5284             if(delegationTarget) {
5285                 b.append(", delegationTarget");
5286             }
5287             return b.append("]").toString();
5288         }
5289     }
5290 
5291     private static class ContinuationInfo {
5292         private final Label handlerLabel;
5293         private Label targetLabel; // Label for the target instruction.
5294         int lvarCount;
5295         // Indices of local variables that need to be loaded on the stack when this node completes
5296         private int[] stackStoreSpec;
5297         // Types of values loaded on the stack
5298         private Type[] stackTypes;
5299         // If non-null, this node should perform the requisite type conversion
5300         private Type returnValueType;
5301         // If we are in the middle of an object literal initialization, we need to update the map
5302         private PropertyMap objectLiteralMap;
5303         // Object literal stack depth for object literal - not necessarily top if property is a tree
5304         private int objectLiteralStackDepth = -1;
5305         // The line number at the continuation point
5306         private int lineNumber;
5307         // The active catch label, in case the continuation point is in a try/catch block
5308         private Label catchLabel;
5309         // The number of scopes that need to be popped before control is transferred to the catch label.
5310         private int exceptionScopePops;
5311 
5312         ContinuationInfo() {
5313             this.handlerLabel = new Label("continuation_handler");
5314         }
5315 
5316         Label getHandlerLabel() {
5317             return handlerLabel;
5318         }
5319 
5320         boolean hasTargetLabel() {
5321             return targetLabel != null;
5322         }
5323 
5324         Label getTargetLabel() {
5325             return targetLabel;
5326         }
5327 
5328         void setTargetLabel(final Label targetLabel) {
5329             this.targetLabel = targetLabel;
5330         }
5331 
5332         int[] getStackStoreSpec() {
5333             return stackStoreSpec.clone();
5334         }
5335 
5336         void setStackStoreSpec(final int[] stackStoreSpec) {
5337             this.stackStoreSpec = stackStoreSpec;
5338         }
5339 
5340         Type[] getStackTypes() {
5341             return stackTypes.clone();
5342         }
5343 
5344         void setStackTypes(final Type[] stackTypes) {
5345             this.stackTypes = stackTypes;
5346         }
5347 
5348         Type getReturnValueType() {
5349             return returnValueType;
5350         }
5351 
5352         void setReturnValueType(final Type returnValueType) {
5353             this.returnValueType = returnValueType;
5354         }
5355 
5356         int getObjectLiteralStackDepth() {
5357             return objectLiteralStackDepth;
5358         }
5359 
5360         void setObjectLiteralStackDepth(final int objectLiteralStackDepth) {
5361             this.objectLiteralStackDepth = objectLiteralStackDepth;
5362         }
5363 
5364         PropertyMap getObjectLiteralMap() {
5365             return objectLiteralMap;
5366         }
5367 
5368         void setObjectLiteralMap(final PropertyMap objectLiteralMap) {
5369             this.objectLiteralMap = objectLiteralMap;
5370         }
5371 
5372         @Override
5373         public String toString() {
5374              return "[localVariableTypes=" + targetLabel.getStack().getLocalVariableTypesCopy() + ", stackStoreSpec=" +
5375                      Arrays.toString(stackStoreSpec) + ", returnValueType=" + returnValueType + "]";
5376         }
5377     }
5378 
5379     private ContinuationInfo getContinuationInfo() {
5380         return continuationInfo;
5381     }
5382 
5383     private void generateContinuationHandler() {
5384         if (!isRestOf()) {
5385             return;
5386         }
5387 
5388         final ContinuationInfo ci = getContinuationInfo();
5389         method.label(ci.getHandlerLabel());
5390 
5391         // There should never be an exception thrown from the continuation handler, but in case there is (meaning,
5392         // Nashorn has a bug), then line number 0 will be an indication of where it came from (line numbers are Uint16).
5393         method.lineNumber(0);
5394 
5395         final Label.Stack stack = ci.getTargetLabel().getStack();
5396         final List<Type> lvarTypes = stack.getLocalVariableTypesCopy();
5397         final BitSet symbolBoundary = stack.getSymbolBoundaryCopy();
5398         final int lvarCount = ci.lvarCount;
5399 
5400         final Type rewriteExceptionType = Type.typeFor(RewriteException.class);
5401         // Store the RewriteException into an unused local variable slot.
5402         method.load(rewriteExceptionType, 0);
5403         method.storeTemp(rewriteExceptionType, lvarCount);
5404         // Get local variable array
5405         method.load(rewriteExceptionType, 0);
5406         method.invoke(RewriteException.GET_BYTECODE_SLOTS);
5407         // Store local variables. Note that deoptimization might introduce new value types for existing local variables,
5408         // so we must use both liveLocals and symbolBoundary, as in some cases (when the continuation is inside of a try
5409         // block) we need to store the incoming value into multiple slots. The optimism exception handlers will have
5410         // exactly one array element for every symbol that uses bytecode storage. If in the originating method the value
5411         // was undefined, there will be an explicit Undefined value in the array.
5412         int arrayIndex = 0;
5413         for(int lvarIndex = 0; lvarIndex < lvarCount;) {
5414             final Type lvarType = lvarTypes.get(lvarIndex);
5415             if(!lvarType.isUnknown()) {
5416                 method.dup();
5417                 method.load(arrayIndex).arrayload();
5418                 final Class<?> typeClass = lvarType.getTypeClass();
5419                 // Deoptimization in array initializers can cause arrays to undergo component type widening
5420                 if(typeClass == long[].class) {
5421                     method.load(rewriteExceptionType, lvarCount);
5422                     method.invoke(RewriteException.TO_LONG_ARRAY);
5423                 } else if(typeClass == double[].class) {
5424                     method.load(rewriteExceptionType, lvarCount);
5425                     method.invoke(RewriteException.TO_DOUBLE_ARRAY);
5426                 } else if(typeClass == Object[].class) {
5427                     method.load(rewriteExceptionType, lvarCount);
5428                     method.invoke(RewriteException.TO_OBJECT_ARRAY);
5429                 } else {
5430                     if(!(typeClass.isPrimitive() || typeClass == Object.class)) {
5431                         // NOTE: this can only happen with dead stores. E.g. for the program "1; []; f();" in which the
5432                         // call to f() will deoptimize the call site, but it'll expect :return to have the type
5433                         // NativeArray. However, in the more optimal version, :return's only live type is int, therefore
5434                         // "{O}:return = []" is a dead store, and the variable will be sent into the continuation as
5435                         // Undefined, however NativeArray can't hold Undefined instance.
5436                         method.loadType(Type.getInternalName(typeClass));
5437                         method.invoke(RewriteException.INSTANCE_OR_NULL);
5438                     }
5439                     method.convert(lvarType);
5440                 }
5441                 method.storeHidden(lvarType, lvarIndex, false);
5442             }
5443             final int nextLvarIndex = lvarIndex + lvarType.getSlots();
5444             if(symbolBoundary.get(nextLvarIndex - 1)) {
5445                 ++arrayIndex;
5446             }
5447             lvarIndex = nextLvarIndex;
5448         }
5449         if (AssertsEnabled.assertsEnabled()) {
5450             method.load(arrayIndex);
5451             method.invoke(RewriteException.ASSERT_ARRAY_LENGTH);
5452         } else {
5453             method.pop();
5454         }
5455 
5456         final int[]   stackStoreSpec = ci.getStackStoreSpec();
5457         final Type[]  stackTypes     = ci.getStackTypes();
5458         final boolean isStackEmpty   = stackStoreSpec.length == 0;
5459         boolean replacedObjectLiteralMap = false;
5460         if(!isStackEmpty) {
5461             // Load arguments on the stack
5462             final int objectLiteralStackDepth = ci.getObjectLiteralStackDepth();
5463             for(int i = 0; i < stackStoreSpec.length; ++i) {
5464                 final int slot = stackStoreSpec[i];
5465                 method.load(lvarTypes.get(slot), slot);
5466                 method.convert(stackTypes[i]);
5467                 // stack: s0=object literal being initialized
5468                 // change map of s0 so that the property we are initializing when we failed
5469                 // is now ci.returnValueType
5470                 if (i == objectLiteralStackDepth) {
5471                     method.dup();
5472                     assert ci.getObjectLiteralMap() != null;
5473                     assert ScriptObject.class.isAssignableFrom(method.peekType().getTypeClass()) : method.peekType().getTypeClass() + " is not a script object";
5474                     loadConstant(ci.getObjectLiteralMap());
5475                     method.invoke(ScriptObject.SET_MAP);
5476                     replacedObjectLiteralMap = true;
5477                 }
5478             }
5479         }
5480         // Must have emitted the code for replacing the map of an object literal if we have a set object literal stack depth
5481         assert ci.getObjectLiteralStackDepth() == -1 || replacedObjectLiteralMap;
5482         // Load RewriteException back.
5483         method.load(rewriteExceptionType, lvarCount);
5484         // Get rid of the stored reference
5485         method.loadNull();
5486         method.storeHidden(Type.OBJECT, lvarCount);
5487         // Mark it dead
5488         method.markDeadSlots(lvarCount, Type.OBJECT.getSlots());
5489 
5490         // Load return value on the stack
5491         method.invoke(RewriteException.GET_RETURN_VALUE);
5492 
5493         final Type returnValueType = ci.getReturnValueType();
5494 
5495         // Set up an exception handler for primitive type conversion of return value if needed
5496         boolean needsCatch = false;
5497         final Label targetCatchLabel = ci.catchLabel;
5498         Label _try = null;
5499         if(returnValueType.isPrimitive()) {
5500             // If the conversion throws an exception, we want to report the line number of the continuation point.
5501             method.lineNumber(ci.lineNumber);
5502 
5503             if(targetCatchLabel != METHOD_BOUNDARY) {
5504                 _try = new Label("");
5505                 method.label(_try);
5506                 needsCatch = true;
5507             }
5508         }
5509 
5510         // Convert return value
5511         method.convert(returnValueType);
5512 
5513         final int scopePopCount = needsCatch ? ci.exceptionScopePops : 0;
5514 
5515         // Declare a try/catch for the conversion. If no scopes need to be popped until the target catch block, just
5516         // jump into it. Otherwise, we'll need to create a scope-popping catch block below.
5517         final Label catchLabel = scopePopCount > 0 ? new Label("") : targetCatchLabel;
5518         if(needsCatch) {
5519             final Label _end_try = new Label("");
5520             method.label(_end_try);
5521             method._try(_try, _end_try, catchLabel);
5522         }
5523 
5524         // Jump to continuation point
5525         method._goto(ci.getTargetLabel());
5526 
5527         // Make a scope-popping exception delegate if needed
5528         if(catchLabel != targetCatchLabel) {
5529             method.lineNumber(0);
5530             assert scopePopCount > 0;
5531             method._catch(catchLabel);
5532             popScopes(scopePopCount);
5533             method.uncheckedGoto(targetCatchLabel);
5534         }
5535     }
5536 
5537     /**
5538      * Interface implemented by object creators that support splitting over multiple methods.
5539      */
5540     interface SplitLiteralCreator {
5541         /**
5542          * Generate code to populate a range of the literal object. A reference to the object
5543          * should be left on the stack when the method terminates.
5544          *
5545          * @param method the method emitter
5546          * @param type the type of the literal object
5547          * @param slot the local slot containing the literal object
5548          * @param start the start index (inclusive)
5549          * @param end the end index (exclusive)
5550          */
5551         void populateRange(MethodEmitter method, Type type, int slot, int start, int end);
5552     }
5553 }