
CRaC in maven-daemon project
Contributors:
Ashutosh Mehra, RedHat
Dan Heidinga, RedHat

Date: June 6, 2022

Maven-daemon is an approach to speed up maven builds. It uses a long-lived daemon process
that executes the maven build tasks for the client. Using a long-lived Java process avoids JVM
startup costs, caches the plugins across builds to avoid re-reading and reparsing, and allows
JIT compilation to be amortized across multiple builds.

We updated the Maven-Daemon to use OpenJDK Project CRaC checkpoint/restore to
experiment with different execution models and share the lessons learned from this process.

A brief description of maven-daemon architecture:
It uses a client-server architecture. There is a thin client called mvnd which is responsible for
finding an existing compatible daemon process to use (or starting a new daemon process if
none are available) and communicating with the daemon process. The lifetime of the client
spans a single build request.

The daemon process is a long-lived JVM process which accepts build requests from the thin
client, performs the builds, and then waits for the next request from a client. Its lifetime spans
multiple build requests.

Information about daemon processes and their state is maintained in a central registry which is
shared between daemons and clients.

If a client fails to find any idle daemons, it spawns a new daemon process. This is where there is
opportunity to use CRaC. Instead of starting a new daemon process from scratch, the client can
restore from a CRaC checkpoint image.

But when should the checkpoint be taken? This is done by the first daemon process started by a
client. After performing the requested build, it takes the checkpoint and exits.

Onto details
The daemon process starts from the MavenDaemon class’s main() method. The main method
creates an instance of URLClassLoader to load the Server class, creates an instance of Server,
and then starts executing its run method.

https://github.com/apache/maven-mvnd
https://github.com/apache/maven-mvnd/blob/827c09c51a1da8eba9d5fba9d284937b5ecefa04/common/src/main/java/org/mvndaemon/mvnd/common/MavenDaemon.java#L27
https://github.com/apache/maven-mvnd/blob/827c09c51a1da8eba9d5fba9d284937b5ecefa04/daemon/src/main/java/org/mvndaemon/mvnd/daemon/Server.java#L74

Server is a typical server class - it spawns a new thread that waits for a new client in a loop,
while the main thread waits for a stop event to occur. The Server class holds all the resources
required by the daemon process like the daemon Id, socket channel, registry etc. In addition, it
also creates a logger which results in initializing the logging framework.

When exactly should a daemon process take a checkpoint?
There are two options depending on the execution model. You can read more about the
execution models with CRaC in the blog post on phase-aware source code.

1. In the first approach, the execution on restore continues from the point where the
checkpoint was taken.

2. In the second approach, the execution on restore starts from an initialized image but as
though the MavenDaemon’s main() was being invoked anew.

Approach 1: Continued Execution
For the first approach, Server class is modified to take the checkpoint after it has completed the
first request. In this case we would need to take certain actions on checkpoint and restore
events:

1. Before the checkpoint
a. close the server socket
b. close the handle to the registry file
c. shutdown executor service
d. reset the logging framework

2. On restore we would need to perform some fixups which are the same as we do in the
Server’s constructor. These involve

a. getting the daemon id from the system property
b. creating a new socket channel
c. opening the registry file
d. store the daemon info in the registry file
e. reconfigure the logging framework

Once these activities are done, the execution resumes from the point where it was
checkpointed.

Let’s talk about some of the concerns with this approach:
1. Some of the fields that need fixup on restore in the Server class, like daemon id and

server socket channel, are declared as final. Since they now need to be modified on
restore, the Java language requires that the final modifier is removed from them.

2. Managing shared resources in checkpoint-restore hooks is a challenge. Checkpoint and
restore hooks add another point in the application lifecycle where threads and processes
can contend for resources, thus creating more race conditions.
To give an example, Server starts an executor service that periodically reads the registry
file, but in the beforeCheckpoint hook, we need to close this registry file. This
requirement introduces a race condition between the registry reading threads and the

https://danheidinga.github.io/phase-aware-source-code/
https://github.com/ashu-mehra/maven-mvnd/commit/ecddb92f1fe2c817ae274bccf5982202c607a40e

thread closing the registry. It is easy to solve it here by shutting down the executor
before closing the registry file but these kinds of ordering constraints are implicit and
may not be that apparent in a more complex application.

3. In normal development, Server is marked as AutoCloseable and has a close() method
which cleanly and orderly shuts down its resources with an implicit contract that the
Server instance would no longer be usable once closed. The lifetime of these resources
is tied to the lifetime of the Server instance. This contract takes a hit here because we
end up closing and re-initializing some of the resources held by the Server instance
without actually closing the instance itself. This partly arises due to the execution model
which resumes execution from the point where checkpoint was taken, resulting in
re-using the Server instance.

The client process invokes following command to create checkpoint:
$ java -XX:CRaCCheckpointTo=<dir> -Dmvnd.id=xxx … MavenDaemon

To restore, client would issue:
$ java -XX:CRaCCheckpointTo=<dir> -Dmvnd.id=yyy …

Approach 2: Restored With New Main() Method
Let’s look at the second approach. The second approach allows us to specify a different main
method() on restore. In this case we can use MavenDaemon again as the entry point. This also
allows us to shift the time of checkpoint after the Server instance has been closed normally. On
restore, the application would continue execution as if it had started from the beginning.
This approach greatly simplifies the processing needed in “beforeCheckpoint” and
“afterRestore” hooks. Infact, now we are using Server class in the manner it is designed to be
used. The only thing we need to take care of is shutting down the logging framework before
checkpoint and reconfigure it on restore.

Although this change is enough to use checkpoint-restore correctly, it does not produce the
expected benefits in daemon startup time. This points out that the restored process is not
benefitting from the execution done prior to checkpoint.

Looking closely at the debug logs and some code digging reveals that DaemonMavenCli
constructor is the most time consuming computation done in Server’s constructor. Moreover,
there is one-to-one correspondence between Server and DaemonMavenCli objects, which isn’t
a problem in normal cases as only one instance of Server class is created throughout the
lifetime of the daemon process.

However, with this approach of checkpointing, we end up creating a new instance of Server
class on restore, thus creating another DaemonMavenCli object. Again, this can be easily fixed
by making DaemonMavenCli a singleton class, so that the Server object created after restore
can benefit from the pre-initialized DaemonMavenCli object created before checkpoint.

https://github.com/ashu-mehra/maven-mvnd/commit/d30f963d0dc0065fc7d2e680532fe6eecc5cd180
https://github.com/ashu-mehra/maven-mvnd/commit/42e94fc5f6588969a2342fdd84fceb3b03312402

The client process invokes following command to create the checkpoint:
$ java -XX:CRaCCheckpointTo=<dir> -Dmvnd.id=xxx … MavenDaemon

To restore, client would issue:
$ java -XX:CRaCCheckpointTo=<dir> -Dmvnd.id=yyy … MavenDaemon

Snapsafety

This experiment also provide some insight into the concept of "snapsafety" as we have to deal
with the snapsafety of the logging framework.

In maven-daemon the logger logs messages into a file. The file name is obtained from daemon
id which is set by the client using system property "mvnd.id". So it turns out the snapsafety of
the logging framework depends on whether the daemon id changes on restore or not. Each
daemon process, whether started from scratch or restored from the snapshot, has a unique
daemon id which makes the logging framework snap-unsafe. As a result it needs to be fixed on
restore to use the new daemon id to determine the file to use for logging.

Now consider the same logging framework being used in a REST application which runs in a
container. To improve startup time, users can bundle the snapshot file in the container image.
Whenever the container starts, the application is restored from the snapshot. In this case the
container provides sufficient isolation to multiple instances of the application running on the
same system that they can continue to use the same file for logging as before the checkpoint.
Here the logging framework can be considered snap-safe.

This highlights two important aspects of snap-safety:
1. It appears to be a property of the functionality, either provided by a single class or a set of
classes, that gets consumed by the client code.
In the case of a logging framework, the user is concerned about the snapsafety of the logging
functionality, rather than thinking about the individual classes in the logging library.

2. The use-case of snapshot-restore seems to play a role in determining how "snapsafe" a
functionality is. The execution model after restore or the deployment model of the application
also affects the snapsafety. It is not just a static property of the code being analyzed. The
deployment model and snapshot point also must be taken into account

Lessons learned
1. Program invariants may have to change to support checkpoint/restore operations.

Whether that’s removing final from static fields so they can be updated by

before/afterCheckpoint methods or violating application ordering constraints to allow
updating of state across the checkpoint.

2. Checkpoint/restore can introduce new kinds of race conditions into your application. The
before/afterCheckpoint methods may modify data at unpredictable points that race with
normal execution. Careful ordering of events, or new locks, may be required to achieve
a consistent ordering.

3. Execution model strongly affects the startup benefits of using CRaC. If insufficient state
is reused after restore, such as in the second approach, then the application may need
to be redesigned to actually benefit from checkpoint/restore.

4. Snapsafety should be looked at a more abstract level and in context of the use-case of
the snapshot-restore feature. The execution model and the deployment model on restore
would also influence the snap-safety of the functionality.

5. Each checkpoint wants to use the same PID when restored. It should be obvious (but it
wasn’t) that a checkpoint can’t be restarted multiple times on the same machine without
isolating each restored process in its own PID namespace. This affects all execution
models and limits some of the benefit of checkpoints for some deployment models.

