1 /*
   2  * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 package java.util.stream;
  26 
  27 import java.util.Objects;
  28 import java.util.Spliterator;
  29 import java.util.function.IntFunction;
  30 import java.util.function.Supplier;
  31 
  32 /**
  33  * Abstract base class for "pipeline" classes, which are the core
  34  * implementations of the Stream interface and its primitive specializations.
  35  * Manages construction and evaluation of stream pipelines.
  36  *
  37  * <p>An {@code AbstractPipeline} represents an initial portion of a stream
  38  * pipeline, encapsulating a stream source and zero or more intermediate
  39  * operations.  The individual {@code AbstractPipeline} objects are often
  40  * referred to as <em>stages</em>, where each stage describes either the stream
  41  * source or an intermediate operation.
  42  *
  43  * <p>A concrete intermediate stage is generally built from an
  44  * {@code AbstractPipeline}, a shape-specific pipeline class which extends it
  45  * (e.g., {@code IntPipeline}) which is also abstract, and an operation-specific
  46  * concrete class which extends that.  {@code AbstractPipeline} contains most of
  47  * the mechanics of evaluating the pipeline, and implements methods that will be
  48  * used by the operation; the shape-specific classes add helper methods for
  49  * dealing with collection of results into the appropriate shape-specific
  50  * containers.
  51  *
  52  * <p>After chaining a new intermediate operation, or executing a terminal
  53  * operation, the stream is considered to be consumed, and no more intermediate
  54  * or terminal operations are permitted on this stream instance.
  55  *
  56  * @implNote
  57  * <p>For sequential streams, and parallel streams without
  58  * <a href="package-summary.html#StreamOps">stateful intermediate
  59  * operations</a>, parallel streams, pipeline evaluation is done in a single
  60  * pass that "jams" all the operations together.  For parallel streams with
  61  * stateful operations, execution is divided into segments, where each
  62  * stateful operations marks the end of a segment, and each segment is
  63  * evaluated separately and the result used as the input to the next
  64  * segment.  In all cases, the source data is not consumed until a terminal
  65  * operation begins.
  66  *
  67  * @param <E_IN>  type of input elements
  68  * @param <E_OUT> type of output elements
  69  * @param <S> type of the subclass implementing {@code BaseStream}
  70  * @since 1.8
  71  */
  72 abstract class AbstractPipeline<E_IN, E_OUT, S extends BaseStream<E_OUT, S>>
  73         extends PipelineHelper<E_OUT> implements BaseStream<E_OUT, S> {
  74     /**
  75      * Backlink to the head of the pipeline chain (self if this is the source
  76      * stage).
  77      */
  78     private final AbstractPipeline sourceStage;
  79 
  80     /**
  81      * The "upstream" pipeline, or null if this is the source stage.
  82      */
  83     private final AbstractPipeline previousStage;
  84 
  85     /**
  86      * The operation flags for the intermediate operation represented by this
  87      * pipeline object.
  88      */
  89     protected final int sourceOrOpFlags;
  90 
  91     /**
  92      * The next stage in the pipeline, or null if this is the last stage.
  93      * Effectively final at the point of linking to the next pipeline.
  94      */
  95     private AbstractPipeline nextStage;
  96 
  97     /**
  98      * The number of intermediate operations between this pipeline object
  99      * and the stream source if sequential, or the previous stateful if parallel.
 100      * Valid at the point of pipeline preparation for evaluation.
 101      */
 102     private int depth;
 103 
 104     /**
 105      * The combined source and operation flags for the source and all operations
 106      * up to and including the operation represented by this pipeline object.
 107      * Valid at the point of pipeline preparation for evaluation.
 108      */
 109     private int combinedFlags;
 110 
 111     /**
 112      * The source spliterator. Only valid for the head pipeline.
 113      * Before the pipeline is consumed if non-null then {@code sourceSupplier}
 114      * must be null. After the pipeline is consumed if non-null then is set to
 115      * null.
 116      */
 117     private Spliterator<?> sourceSpliterator;
 118 
 119     /**
 120      * The source supplier. Only valid for the head pipeline. Before the
 121      * pipeline is consumed if non-null then {@code sourceSpliterator} must be
 122      * null. After the pipeline is consumed if non-null then is set to null.
 123      */
 124     private Supplier<? extends Spliterator<?>> sourceSupplier;
 125 
 126     /**
 127      * True if this pipeline has been linked or consumed
 128      */
 129     private boolean linkedOrConsumed;
 130 
 131     /**
 132      * True if there are any stateful ops in the pipeline; only valid for the
 133      * source stage.
 134      */
 135     private boolean sourceAnyStateful;
 136 
 137     /**
 138      * True if pipeline is parallel, otherwise the pipeline is sequential; only
 139      * valid for the source stage.
 140      */
 141     private boolean parallel;
 142 
 143     /**
 144      * Constructor for the head of a stream pipeline.
 145      *
 146      * @param source {@code Supplier<Spliterator>} describing the stream source
 147      * @param sourceFlags The source flags for the stream source, described in
 148      * {@link StreamOpFlag}
 149      * @param parallel True if the pipeline is parallel
 150      */
 151     AbstractPipeline(Supplier<? extends Spliterator<?>> source,
 152                      int sourceFlags, boolean parallel) {
 153         this.previousStage = null;
 154         this.sourceSupplier = source;
 155         this.sourceStage = this;
 156         this.sourceOrOpFlags = sourceFlags & StreamOpFlag.STREAM_MASK;
 157         // The following is an optimization of:
 158         // StreamOpFlag.combineOpFlags(sourceOrOpFlags, StreamOpFlag.INITIAL_OPS_VALUE);
 159         this.combinedFlags = (~(sourceOrOpFlags << 1)) & StreamOpFlag.INITIAL_OPS_VALUE;
 160         this.depth = 0;
 161         this.parallel = parallel;
 162     }
 163 
 164     /**
 165      * Constructor for the head of a stream pipeline.
 166      *
 167      * @param source {@code Spliterator} describing the stream source
 168      * @param sourceFlags the source flags for the stream source, described in
 169      * {@link StreamOpFlag}
 170      * @param parallel {@code true} if the pipeline is parallel
 171      */
 172     AbstractPipeline(Spliterator<?> source,
 173                      int sourceFlags, boolean parallel) {
 174         this.previousStage = null;
 175         this.sourceSpliterator = source;
 176         this.sourceStage = this;
 177         this.sourceOrOpFlags = sourceFlags & StreamOpFlag.STREAM_MASK;
 178         // The following is an optimization of:
 179         // StreamOpFlag.combineOpFlags(sourceOrOpFlags, StreamOpFlag.INITIAL_OPS_VALUE);
 180         this.combinedFlags = (~(sourceOrOpFlags << 1)) & StreamOpFlag.INITIAL_OPS_VALUE;
 181         this.depth = 0;
 182         this.parallel = parallel;
 183     }
 184 
 185     /**
 186      * Constructor for appending an intermediate operation stage onto an
 187      * existing pipeline.
 188      *
 189      * @param previousStage the upstream pipeline stage
 190      * @param opFlags the operation flags for the new stage, described in
 191      * {@link StreamOpFlag}
 192      */
 193     AbstractPipeline(AbstractPipeline<?, E_IN, ?> previousStage, int opFlags) {
 194         if (previousStage.linkedOrConsumed)
 195             throw new IllegalStateException("stream has already been operated upon");
 196         previousStage.linkedOrConsumed = true;
 197         previousStage.nextStage = this;
 198 
 199         this.previousStage = previousStage;
 200         this.sourceOrOpFlags = opFlags & StreamOpFlag.OP_MASK;
 201         this.combinedFlags = StreamOpFlag.combineOpFlags(opFlags, previousStage.combinedFlags);
 202         this.sourceStage = previousStage.sourceStage;
 203         if (opIsStateful())
 204             sourceStage.sourceAnyStateful = true;
 205         this.depth = previousStage.depth + 1;
 206     }
 207 
 208 
 209     // Terminal evaluation methods
 210 
 211     /**
 212      * Evaluate the pipeline with a terminal operation to produce a result.
 213      *
 214      * @param <R> the type of result
 215      * @param terminalOp the terminal operation to be applied to the pipeline.
 216      * @return the result
 217      */
 218     final <R> R evaluate(TerminalOp<E_OUT, R> terminalOp) {
 219         assert getOutputShape() == terminalOp.inputShape();
 220         if (linkedOrConsumed)
 221             throw new IllegalStateException("stream has already been operated upon");
 222         linkedOrConsumed = true;
 223 
 224         return isParallel()
 225                ? (R) terminalOp.evaluateParallel(this, sourceSpliterator(terminalOp.getOpFlags()))
 226                : (R) terminalOp.evaluateSequential(this, sourceSpliterator(terminalOp.getOpFlags()));
 227     }
 228 
 229     /**
 230      * Collect the elements output from the pipeline stage.
 231      *
 232      * @param generator the array generator to be used to create array instances
 233      * @return a flat array-backed Node that holds the collected output elements
 234      */
 235     final Node<E_OUT> evaluateToArrayNode(IntFunction<E_OUT[]> generator) {
 236         if (linkedOrConsumed)
 237             throw new IllegalStateException("stream has already been operated upon");
 238         linkedOrConsumed = true;
 239 
 240         // If the last intermediate operation is stateful then
 241         // evaluate directly to avoid an extra collection step
 242         if (isParallel() && previousStage != null && opIsStateful()) {
 243             return opEvaluateParallel(previousStage, previousStage.sourceSpliterator(0), generator);
 244         }
 245         else {
 246             return evaluate(sourceSpliterator(0), true, generator);
 247         }
 248     }
 249 
 250     /**
 251      * Gets the source stage spliterator if this pipeline stage is the source
 252      * stage.  The pipeline is consumed after this method is called and
 253      * returns successfully.
 254      *
 255      * @return the source stage spliterator
 256      * @throws IllegalStateException if this pipeline stage is not the source
 257      *         stage.
 258      */
 259     final Spliterator<E_OUT> sourceStageSpliterator() {
 260         if (this != sourceStage)
 261             throw new IllegalStateException();
 262 
 263         if (linkedOrConsumed)
 264             throw new IllegalStateException("stream has already been operated upon");
 265         linkedOrConsumed = true;
 266 
 267         if (sourceStage.sourceSpliterator != null) {
 268             Spliterator<E_OUT> s = sourceStage.sourceSpliterator;
 269             sourceStage.sourceSpliterator = null;
 270             return s;
 271         }
 272         else if (sourceStage.sourceSupplier != null) {
 273             Spliterator<E_OUT> s = (Spliterator<E_OUT>) sourceStage.sourceSupplier.get();
 274             sourceStage.sourceSupplier = null;
 275             return s;
 276         }
 277         else {
 278             throw new IllegalStateException("source already consumed");
 279         }
 280     }
 281 
 282     // BaseStream
 283 
 284     @Override
 285     public final S sequential() {
 286         sourceStage.parallel = false;
 287         return (S) this;
 288     }
 289 
 290     @Override
 291     public final S parallel() {
 292         sourceStage.parallel = true;
 293         return (S) this;
 294     }
 295 
 296     // Primitive specialization use co-variant overrides, hence is not final
 297     @Override
 298     public Spliterator<E_OUT> spliterator() {
 299         if (linkedOrConsumed)
 300             throw new IllegalStateException("stream has already been operated upon");
 301         linkedOrConsumed = true;
 302 
 303         if (this == sourceStage) {
 304             if (sourceStage.sourceSpliterator != null) {
 305                 Spliterator<E_OUT> s = sourceStage.sourceSpliterator;
 306                 sourceStage.sourceSpliterator = null;
 307                 return s;
 308             }
 309             else if (sourceStage.sourceSupplier != null) {
 310                 Supplier<Spliterator<E_OUT>> s = sourceStage.sourceSupplier;
 311                 sourceStage.sourceSupplier = null;
 312                 return lazySpliterator(s);
 313             }
 314             else {
 315                 throw new IllegalStateException("source already consumed");
 316             }
 317         }
 318         else {
 319             return wrap(this, () -> sourceSpliterator(0), isParallel());
 320         }
 321     }
 322 
 323     @Override
 324     public final boolean isParallel() {
 325         return sourceStage.parallel;
 326     }
 327 
 328 
 329     /**
 330      * Returns the composition of stream flags of the stream source and all
 331      * intermediate operations.
 332      *
 333      * @return the composition of stream flags of the stream source and all
 334      *         intermediate operations
 335      * @see StreamOpFlag
 336      */
 337     final int getStreamFlags() {
 338         return StreamOpFlag.toStreamFlags(combinedFlags);
 339     }
 340 
 341     /**
 342      * Prepare the pipeline for a parallel execution.  As the pipeline is built,
 343      * the flags and depth indicators are set up for a sequential execution.
 344      * If the execution is parallel, and there are any stateful operations, then
 345      * some of these need to be adjusted, as well as adjusting for flags from
 346      * the terminal operation (such as back-propagating UNORDERED).
 347      * Need not be called for a sequential execution.
 348      *
 349      * @param terminalFlags Operation flags for the terminal operation
 350      */
 351     private void parallelPrepare(int terminalFlags) {
 352         AbstractPipeline backPropagationHead = sourceStage;
 353         if (sourceStage.sourceAnyStateful) {
 354             int depth = 1;
 355             for (AbstractPipeline u = sourceStage, p = sourceStage.nextStage;
 356                  p != null;
 357                  u = p, p = p.nextStage) {
 358                 int thisOpFlags = p.sourceOrOpFlags;
 359                 if (p.opIsStateful()) {
 360                     // If the stateful operation is a short-circuit operation
 361                     // then move the back propagation head forwards
 362                     // NOTE: there are no size-injecting ops
 363                     if (StreamOpFlag.SHORT_CIRCUIT.isKnown(thisOpFlags)) {
 364                         backPropagationHead = p;
 365                         // Clear the short circuit flag for next pipeline stage
 366                         // This stage encapsulates short-circuiting, the next
 367                         // stage may not have any short-circuit operations, and
 368                         // if so spliterator.forEachRemaining should be be used
 369                         // for traversal
 370                         thisOpFlags = thisOpFlags & ~StreamOpFlag.IS_SHORT_CIRCUIT;
 371                     }
 372 
 373                     depth = 0;
 374                     // The following injects size, it is equivalent to:
 375                     // StreamOpFlag.combineOpFlags(StreamOpFlag.IS_SIZED, p.combinedFlags);
 376                     thisOpFlags = (thisOpFlags & ~StreamOpFlag.NOT_SIZED) | StreamOpFlag.IS_SIZED;
 377                 }
 378                 p.depth = depth++;
 379                 p.combinedFlags = StreamOpFlag.combineOpFlags(thisOpFlags, u.combinedFlags);
 380             }
 381         }
 382 
 383         // Apply the upstream terminal flags
 384         if (terminalFlags != 0) {
 385             int upstreamTerminalFlags = terminalFlags & StreamOpFlag.UPSTREAM_TERMINAL_OP_MASK;
 386             for (AbstractPipeline p = backPropagationHead; p.nextStage != null; p = p.nextStage) {
 387                 p.combinedFlags = StreamOpFlag.combineOpFlags(upstreamTerminalFlags, p.combinedFlags);
 388             }
 389 
 390             combinedFlags = StreamOpFlag.combineOpFlags(terminalFlags, combinedFlags);
 391         }
 392     }
 393 
 394     /**
 395      * Get the source spliterator for this pipeline stage.  For a sequential or
 396      * stateless parallel pipeline, this is the source spliterator.  For a
 397      * stateful parallel pipeline, this is a spliterator describing the results
 398      * of all computations up to and including the most recent stateful
 399      * operation.
 400      */
 401     private Spliterator<?> sourceSpliterator(int terminalFlags) {
 402         // Get the source spliterator of the pipeline
 403         Spliterator<?> spliterator = null;
 404         if (sourceStage.sourceSpliterator != null) {
 405             spliterator = sourceStage.sourceSpliterator;
 406             sourceStage.sourceSpliterator = null;
 407         }
 408         else if (sourceStage.sourceSupplier != null) {
 409             spliterator = (Spliterator<?>) sourceStage.sourceSupplier.get();
 410             sourceStage.sourceSupplier = null;
 411         }
 412         else {
 413             throw new IllegalStateException("source already consumed");
 414         }
 415 
 416         if (isParallel()) {
 417             // @@@ Merge parallelPrepare with the loop below and use the
 418             //     spliterator characteristics to determine if SIZED
 419             //     should be injected
 420             parallelPrepare(terminalFlags);
 421 
 422             // Adapt the source spliterator, evaluating each stateful op
 423             // in the pipeline up to and including this pipeline stage
 424             for (AbstractPipeline u = sourceStage, p = sourceStage.nextStage, e = this;
 425                  u != e;
 426                  u = p, p = p.nextStage) {
 427 
 428                 if (p.opIsStateful()) {
 429                     spliterator = p.opEvaluateParallelLazy(u, spliterator);
 430                 }
 431             }
 432         }
 433         else if (terminalFlags != 0)  {
 434             combinedFlags = StreamOpFlag.combineOpFlags(terminalFlags, combinedFlags);
 435         }
 436 
 437         return spliterator;
 438     }
 439 
 440 
 441     // PipelineHelper
 442 
 443     @Override
 444     final StreamShape getSourceShape() {
 445         AbstractPipeline p = AbstractPipeline.this;
 446         while (p.depth > 0) {
 447             p = p.previousStage;
 448         }
 449         return p.getOutputShape();
 450     }
 451 
 452     @Override
 453     final <P_IN> long exactOutputSizeIfKnown(Spliterator<P_IN> spliterator) {
 454         return StreamOpFlag.SIZED.isKnown(getStreamAndOpFlags()) ? spliterator.getExactSizeIfKnown() : -1;
 455     }
 456 
 457     @Override
 458     final <P_IN, S extends Sink<E_OUT>> S wrapAndCopyInto(S sink, Spliterator<P_IN> spliterator) {
 459         copyInto(wrapSink(Objects.requireNonNull(sink)), spliterator);
 460         return sink;
 461     }
 462 
 463     @Override
 464     final <P_IN> void copyInto(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator) {
 465         Objects.requireNonNull(wrappedSink);
 466 
 467         if (!StreamOpFlag.SHORT_CIRCUIT.isKnown(getStreamAndOpFlags())) {
 468             wrappedSink.begin(spliterator.getExactSizeIfKnown());
 469             spliterator.forEachRemaining(wrappedSink);
 470             wrappedSink.end();
 471         }
 472         else {
 473             copyIntoWithCancel(wrappedSink, spliterator);
 474         }
 475     }
 476 
 477     @Override
 478     final <P_IN> void copyIntoWithCancel(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator) {
 479         AbstractPipeline p = AbstractPipeline.this;
 480         while (p.depth > 0) {
 481             p = p.previousStage;
 482         }
 483         wrappedSink.begin(spliterator.getExactSizeIfKnown());
 484         p.forEachWithCancel(spliterator, wrappedSink);
 485         wrappedSink.end();
 486     }
 487 
 488     @Override
 489     final int getStreamAndOpFlags() {
 490         return combinedFlags;
 491     }
 492 
 493     final boolean isOrdered() {
 494         return StreamOpFlag.ORDERED.isKnown(combinedFlags);
 495     }
 496 
 497     @Override
 498     final <P_IN> Sink<P_IN> wrapSink(Sink<E_OUT> sink) {
 499         Objects.requireNonNull(sink);
 500 
 501         for (AbstractPipeline p=AbstractPipeline.this; p.depth > 0; p=p.previousStage) {
 502             sink = p.opWrapSink(p.previousStage.combinedFlags, sink);
 503         }
 504         return (Sink<P_IN>) sink;
 505     }
 506 
 507     @Override
 508     final <P_IN> Spliterator<E_OUT> wrapSpliterator(Spliterator<P_IN> sourceSpliterator) {
 509         if (depth == 0) {
 510             return (Spliterator<E_OUT>) sourceSpliterator;
 511         }
 512         else {
 513             return wrap(this, () -> sourceSpliterator, isParallel());
 514         }
 515     }
 516 
 517     @Override
 518     @SuppressWarnings("unchecked")
 519     final <P_IN> Node<E_OUT> evaluate(Spliterator<P_IN> spliterator,
 520                                       boolean flatten,
 521                                       IntFunction<E_OUT[]> generator) {
 522         if (isParallel()) {
 523             // @@@ Optimize if op of this pipeline stage is a stateful op
 524             return evaluateToNode(this, spliterator, flatten, generator);
 525         }
 526         else {
 527             Node.Builder<E_OUT> nb = makeNodeBuilder(
 528                     exactOutputSizeIfKnown(spliterator), generator);
 529             return wrapAndCopyInto(nb, spliterator).build();
 530         }
 531     }
 532 
 533 
 534     // Shape-specific abstract methods, implemented by XxxPipeline classes
 535 
 536     /**
 537      * Get the output shape of the pipeline.  If the pipeline is the head,
 538      * then it's output shape corresponds to the shape of the source.
 539      * Otherwise, it's output shape corresponds to the output shape of the
 540      * associated operation.
 541      *
 542      * @return the output shape
 543      */
 544     abstract StreamShape getOutputShape();
 545 
 546     /**
 547      * Collect elements output from a pipeline into a Node that holds elements
 548      * of this shape.
 549      *
 550      * @param helper the pipeline helper describing the pipeline stages
 551      * @param spliterator the source spliterator
 552      * @param flattenTree true if the returned node should be flattened
 553      * @param generator the array generator
 554      * @return a Node holding the output of the pipeline
 555      */
 556     abstract <P_IN> Node<E_OUT> evaluateToNode(PipelineHelper<E_OUT> helper,
 557                                                Spliterator<P_IN> spliterator,
 558                                                boolean flattenTree,
 559                                                IntFunction<E_OUT[]> generator);
 560 
 561     /**
 562      * Create a spliterator that wraps a source spliterator, compatible with
 563      * this stream shape, and operations associated with a {@link
 564      * PipelineHelper}.
 565      *
 566      * @param ph the pipeline helper describing the pipeline stages
 567      * @param supplier the supplier of a spliterator
 568      * @return a wrapping spliterator compatible with this shape
 569      */
 570     abstract <P_IN> Spliterator<E_OUT> wrap(PipelineHelper<E_OUT> ph,
 571                                             Supplier<Spliterator<P_IN>> supplier,
 572                                             boolean isParallel);
 573 
 574     /**
 575      * Create a lazy spliterator that wraps and obtains the supplied the
 576      * spliterator when a method is invoked on the lazy spliterator.
 577      * @param supplier the supplier of a spliterator
 578      */
 579     abstract Spliterator<E_OUT> lazySpliterator(Supplier<? extends Spliterator<E_OUT>> supplier);
 580 
 581     /**
 582      * Traverse the elements of a spliterator compatible with this stream shape,
 583      * pushing those elements into a sink.   If the sink requests cancellation,
 584      * no further elements will be pulled or pushed.
 585      *
 586      * @param spliterator the spliterator to pull elements from
 587      * @param sink the sink to push elements to
 588      */
 589     abstract void forEachWithCancel(Spliterator<E_OUT> spliterator, Sink<E_OUT> sink);
 590 
 591     /**
 592      * Make a node builder compatible with this stream shape.
 593      *
 594      * @param exactSizeIfKnown if {@literal >=0}, then a node builder will be created that
 595      * has a fixed capacity of at most sizeIfKnown elements. If {@literal < 0},
 596      * then the node builder has an unfixed capacity. A fixed capacity node
 597      * builder will throw exceptions if an element is added after builder has
 598      * reached capacity, or is built before the builder has reached capacity.
 599      * @param generator the array generator to be used to create instances of a
 600      * T[] array. For implementations supporting primitive nodes, this parameter
 601      * may be ignored.
 602      * @return a node builder
 603      */
 604     abstract Node.Builder<E_OUT> makeNodeBuilder(long exactSizeIfKnown,
 605                                                  IntFunction<E_OUT[]> generator);
 606 
 607 
 608     // Op-specific abstract methods, implemented by the operation class
 609 
 610     /**
 611      * Returns whether this operation is stateful or not.  If it is stateful,
 612      * then the method
 613      * {@link #opEvaluateParallel(PipelineHelper, java.util.Spliterator, java.util.function.IntFunction)}
 614      * must be overridden.
 615      *
 616      * @return {@code true} if this operation is stateful
 617      */
 618     abstract boolean opIsStateful();
 619 
 620     /**
 621      * Accepts a {@code Sink} which will receive the results of this operation,
 622      * and return a {@code Sink} which accepts elements of the input type of
 623      * this operation and which performs the operation, passing the results to
 624      * the provided {@code Sink}.
 625      *
 626      * @apiNote
 627      * The implementation may use the {@code flags} parameter to optimize the
 628      * sink wrapping.  For example, if the input is already {@code DISTINCT},
 629      * the implementation for the {@code Stream#distinct()} method could just
 630      * return the sink it was passed.
 631      *
 632      * @param flags The combined stream and operation flags up to, but not
 633      *        including, this operation
 634      * @param sink sink to which elements should be sent after processing
 635      * @return a sink which accepts elements, perform the operation upon
 636      *         each element, and passes the results (if any) to the provided
 637      *         {@code Sink}.
 638      */
 639     abstract Sink<E_IN> opWrapSink(int flags, Sink<E_OUT> sink);
 640 
 641     /**
 642      * Performs a parallel evaluation of the operation using the specified
 643      * {@code PipelineHelper} which describes the upstream intermediate
 644      * operations.  Only called on stateful operations.  If {@link
 645      * #opIsStateful()} returns true then implementations must override the
 646      * default implementation.
 647      *
 648      * @implSpec The default implementation always throw
 649      * {@code UnsupportedOperationException}.
 650      *
 651      * @param helper the pipeline helper describing the pipeline stages
 652      * @param spliterator the source {@code Spliterator}
 653      * @param generator the array generator
 654      * @return a {@code Node} describing the result of the evaluation
 655      */
 656     <P_IN> Node<E_OUT> opEvaluateParallel(PipelineHelper<E_OUT> helper,
 657                                           Spliterator<P_IN> spliterator,
 658                                           IntFunction<E_OUT[]> generator) {
 659         throw new UnsupportedOperationException("Parallel evaluation is not supported");
 660     }
 661 
 662     /**
 663      * Returns a {@code Spliterator} describing a parallel evaluation of the
 664      * operation, using the specified {@code PipelineHelper} which describes the
 665      * upstream intermediate operations.  Only called on stateful operations.
 666      * It is not necessary (though acceptable) to do a full computation of the
 667      * result here; it is preferable, if possible, to describe the result via a
 668      * lazily evaluated spliterator.
 669      *
 670      * @implSpec The default implementation behaves as if:
 671      * <pre>{@code
 672      *     return evaluateParallel(helper, i -> (E_OUT[]) new
 673      * Object[i]).spliterator();
 674      * }</pre>
 675      * and is suitable for implementations that cannot do better than a full
 676      * synchronous evaluation.
 677      *
 678      * @param helper the pipeline helper
 679      * @param spliterator the source {@code Spliterator}
 680      * @return a {@code Spliterator} describing the result of the evaluation
 681      */
 682     <P_IN> Spliterator<E_OUT> opEvaluateParallelLazy(PipelineHelper<E_OUT> helper,
 683                                                      Spliterator<P_IN> spliterator) {
 684         return opEvaluateParallel(helper, spliterator, i -> (E_OUT[]) new Object[i]).spliterator();
 685     }
 686 }