1 /*
   2  * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 package java.util.stream;
  26 
  27 import java.util.Comparator;
  28 import java.util.Iterator;
  29 import java.util.Objects;
  30 import java.util.Optional;
  31 import java.util.Spliterator;
  32 import java.util.Spliterators;
  33 import java.util.function.BiConsumer;
  34 import java.util.function.BiFunction;
  35 import java.util.function.BinaryOperator;
  36 import java.util.function.Consumer;
  37 import java.util.function.DoubleConsumer;
  38 import java.util.function.Function;
  39 import java.util.function.IntConsumer;
  40 import java.util.function.IntFunction;
  41 import java.util.function.LongConsumer;
  42 import java.util.function.Predicate;
  43 import java.util.function.Supplier;
  44 import java.util.function.ToDoubleFunction;
  45 import java.util.function.ToIntFunction;
  46 import java.util.function.ToLongFunction;
  47 
  48 /**
  49  * Abstract base class for an intermediate pipeline stage or pipeline source
  50  * stage implementing whose elements are of type {@code U}.
  51  *
  52  * @param <P_IN> type of elements in the upstream source
  53  * @param <P_OUT> type of elements in produced by this stage
  54  *
  55  * @since 1.8
  56  */
  57 abstract class ReferencePipeline<P_IN, P_OUT>
  58         extends AbstractPipeline<P_IN, P_OUT, Stream<P_OUT>>
  59         implements Stream<P_OUT>  {
  60 
  61     /**
  62      * Constructor for the head of a stream pipeline.
  63      *
  64      * @param source {@code Supplier<Spliterator>} describing the stream source
  65      * @param sourceFlags the source flags for the stream source, described in
  66      *        {@link StreamOpFlag}
  67      * @param parallel {@code true} if the pipeline is parallel
  68      */
  69     ReferencePipeline(Supplier<? extends Spliterator<?>> source,
  70                       int sourceFlags, boolean parallel) {
  71         super(source, sourceFlags, parallel);
  72     }
  73 
  74     /**
  75      * Constructor for the head of a stream pipeline.
  76      *
  77      * @param source {@code Spliterator} describing the stream source
  78      * @param sourceFlags The source flags for the stream source, described in
  79      *        {@link StreamOpFlag}
  80      * @param parallel {@code true} if the pipeline is parallel
  81      */
  82     ReferencePipeline(Spliterator<?> source,
  83                       int sourceFlags, boolean parallel) {
  84         super(source, sourceFlags, parallel);
  85     }
  86 
  87     /**
  88      * Constructor for appending an intermediate operation onto an existing
  89      * pipeline.
  90      *
  91      * @param upstream the upstream element source.
  92      */
  93     ReferencePipeline(AbstractPipeline<?, P_IN, ?> upstream, int opFlags) {
  94         super(upstream, opFlags);
  95     }
  96 
  97     // Shape-specific methods
  98 
  99     @Override
 100     final StreamShape getOutputShape() {
 101         return StreamShape.REFERENCE;
 102     }
 103 
 104     @Override
 105     final <P_IN> Node<P_OUT> evaluateToNode(PipelineHelper<P_OUT> helper,
 106                                         Spliterator<P_IN> spliterator,
 107                                         boolean flattenTree,
 108                                         IntFunction<P_OUT[]> generator) {
 109         return Nodes.collect(helper, spliterator, flattenTree, generator);
 110     }
 111 
 112     @Override
 113     final <P_IN> Spliterator<P_OUT> wrap(PipelineHelper<P_OUT> ph,
 114                                      Supplier<Spliterator<P_IN>> supplier,
 115                                      boolean isParallel) {
 116         return new StreamSpliterators.WrappingSpliterator<>(ph, supplier, isParallel);
 117     }
 118 
 119     @Override
 120     final Spliterator<P_OUT> lazySpliterator(Supplier<? extends Spliterator<P_OUT>> supplier) {
 121         return new StreamSpliterators.DelegatingSpliterator<>(supplier);
 122     }
 123 
 124     @Override
 125     final void forEachWithCancel(Spliterator<P_OUT> spliterator, Sink<P_OUT> sink) {
 126         do { } while (!sink.cancellationRequested() && spliterator.tryAdvance(sink));
 127     }
 128 
 129     @Override
 130     final Node.Builder<P_OUT> makeNodeBuilder(long exactSizeIfKnown, IntFunction<P_OUT[]> generator) {
 131         return Nodes.builder(exactSizeIfKnown, generator);
 132     }
 133 
 134 
 135     // BaseStream
 136 
 137     @Override
 138     public final Iterator<P_OUT> iterator() {
 139         return Spliterators.iterator(spliterator());
 140     }
 141 
 142 
 143     // Stream
 144 
 145     // Stateless intermediate operations from Stream
 146 
 147     @Override
 148     public Stream<P_OUT> unordered() {
 149         if (!isOrdered())
 150             return this;
 151         return new StatelessOp<P_OUT, P_OUT>(this, StreamShape.REFERENCE, StreamOpFlag.NOT_ORDERED) {
 152             @Override
 153             Sink<P_OUT> opWrapSink(int flags, Sink<P_OUT> sink) {
 154                 return sink;
 155             }
 156         };
 157     }
 158 
 159     @Override
 160     public final Stream<P_OUT> filter(Predicate<? super P_OUT> predicate) {
 161         Objects.requireNonNull(predicate);
 162         return new StatelessOp<P_OUT, P_OUT>(this, StreamShape.REFERENCE,
 163                                      StreamOpFlag.NOT_SIZED) {
 164             @Override
 165             Sink<P_OUT> opWrapSink(int flags, Sink<P_OUT> sink) {
 166                 return new Sink.ChainedReference<P_OUT>(sink) {
 167                     @Override
 168                     public void begin(long size) {
 169                         downstream.begin(-1);
 170                     }
 171 
 172                     @Override
 173                     public void accept(P_OUT u) {
 174                         if (predicate.test(u))
 175                             downstream.accept(u);
 176                     }
 177                 };
 178             }
 179         };
 180     }
 181 
 182     @Override
 183     public final <R> Stream<R> map(Function<? super P_OUT, ? extends R> mapper) {
 184         Objects.requireNonNull(mapper);
 185         return new StatelessOp<P_OUT, R>(this, StreamShape.REFERENCE,
 186                                      StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
 187             @Override
 188             Sink<P_OUT> opWrapSink(int flags, Sink<R> sink) {
 189                 return new Sink.ChainedReference<P_OUT>(sink) {
 190                     @Override
 191                     public void accept(P_OUT u) {
 192                         downstream.accept(mapper.apply(u));
 193                     }
 194                 };
 195             }
 196         };
 197     }
 198 
 199     @Override
 200     public final IntStream mapToInt(ToIntFunction<? super P_OUT> mapper) {
 201         Objects.requireNonNull(mapper);
 202         return new IntPipeline.StatelessOp<P_OUT>(this, StreamShape.REFERENCE,
 203                                               StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
 204             @Override
 205             Sink<P_OUT> opWrapSink(int flags, Sink<Integer> sink) {
 206                 return new Sink.ChainedReference<P_OUT>(sink) {
 207                     @Override
 208                     public void accept(P_OUT u) {
 209                         downstream.accept(mapper.applyAsInt(u));
 210                     }
 211                 };
 212             }
 213         };
 214     }
 215 
 216     @Override
 217     public final LongStream mapToLong(ToLongFunction<? super P_OUT> mapper) {
 218         Objects.requireNonNull(mapper);
 219         return new LongPipeline.StatelessOp<P_OUT>(this, StreamShape.REFERENCE,
 220                                       StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
 221             @Override
 222             Sink<P_OUT> opWrapSink(int flags, Sink<Long> sink) {
 223                 return new Sink.ChainedReference<P_OUT>(sink) {
 224                     @Override
 225                     public void accept(P_OUT u) {
 226                         downstream.accept(mapper.applyAsLong(u));
 227                     }
 228                 };
 229             }
 230         };
 231     }
 232 
 233     @Override
 234     public final DoubleStream mapToDouble(ToDoubleFunction<? super P_OUT> mapper) {
 235         Objects.requireNonNull(mapper);
 236         return new DoublePipeline.StatelessOp<P_OUT>(this, StreamShape.REFERENCE,
 237                                         StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
 238             @Override
 239             Sink<P_OUT> opWrapSink(int flags, Sink<Double> sink) {
 240                 return new Sink.ChainedReference<P_OUT>(sink) {
 241                     @Override
 242                     public void accept(P_OUT u) {
 243                         downstream.accept(mapper.applyAsDouble(u));
 244                     }
 245                 };
 246             }
 247         };
 248     }
 249 
 250     @Override
 251     public final <R> Stream<R> flatMap(Function<? super P_OUT, ? extends Stream<? extends R>> mapper) {
 252         Objects.requireNonNull(mapper);
 253         // We can do better than this, by polling cancellationRequested when stream is infinite
 254         return new StatelessOp<P_OUT, R>(this, StreamShape.REFERENCE,
 255                                      StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) {
 256             @Override
 257             Sink<P_OUT> opWrapSink(int flags, Sink<R> sink) {
 258                 return new Sink.ChainedReference<P_OUT>(sink) {
 259                     @Override
 260                     public void begin(long size) {
 261                         downstream.begin(-1);
 262                     }
 263 
 264                     @Override
 265                     public void accept(P_OUT u) {
 266                         // We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it
 267                         Stream<? extends R> result = mapper.apply(u);
 268                         if (result != null)
 269                             result.sequential().forEach(downstream);
 270                     }
 271                 };
 272             }
 273         };
 274     }
 275 
 276     @Override
 277     public final IntStream flatMapToInt(Function<? super P_OUT, ? extends IntStream> mapper) {
 278         Objects.requireNonNull(mapper);
 279         // We can do better than this, by polling cancellationRequested when stream is infinite
 280         return new IntPipeline.StatelessOp<P_OUT>(this, StreamShape.REFERENCE,
 281                                               StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) {
 282             @Override
 283             Sink<P_OUT> opWrapSink(int flags, Sink<Integer> sink) {
 284                 return new Sink.ChainedReference<P_OUT>(sink) {
 285                     IntConsumer downstreamAsInt = downstream::accept;
 286                     @Override
 287                     public void begin(long size) {
 288                         downstream.begin(-1);
 289                     }
 290 
 291                     @Override
 292                     public void accept(P_OUT u) {
 293                         // We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it
 294                         IntStream result = mapper.apply(u);
 295                         if (result != null)
 296                             result.sequential().forEach(downstreamAsInt);
 297                     }
 298                 };
 299             }
 300         };
 301     }
 302 
 303     @Override
 304     public final DoubleStream flatMapToDouble(Function<? super P_OUT, ? extends DoubleStream> mapper) {
 305         Objects.requireNonNull(mapper);
 306         // We can do better than this, by polling cancellationRequested when stream is infinite
 307         return new DoublePipeline.StatelessOp<P_OUT>(this, StreamShape.REFERENCE,
 308                                                      StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) {
 309             @Override
 310             Sink<P_OUT> opWrapSink(int flags, Sink<Double> sink) {
 311                 return new Sink.ChainedReference<P_OUT>(sink) {
 312                     DoubleConsumer downstreamAsDouble = downstream::accept;
 313                     @Override
 314                     public void begin(long size) {
 315                         downstream.begin(-1);
 316                     }
 317 
 318                     @Override
 319                     public void accept(P_OUT u) {
 320                         // We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it
 321                         DoubleStream result = mapper.apply(u);
 322                         if (result != null)
 323                             result.sequential().forEach(downstreamAsDouble);
 324                     }
 325                 };
 326             }
 327         };
 328     }
 329 
 330     @Override
 331     public final LongStream flatMapToLong(Function<? super P_OUT, ? extends LongStream> mapper) {
 332         Objects.requireNonNull(mapper);
 333         // We can do better than this, by polling cancellationRequested when stream is infinite
 334         return new LongPipeline.StatelessOp<P_OUT>(this, StreamShape.REFERENCE,
 335                                                    StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) {
 336             @Override
 337             Sink<P_OUT> opWrapSink(int flags, Sink<Long> sink) {
 338                 return new Sink.ChainedReference<P_OUT>(sink) {
 339                     LongConsumer downstreamAsLong = downstream::accept;
 340                     @Override
 341                     public void begin(long size) {
 342                         downstream.begin(-1);
 343                     }
 344 
 345                     @Override
 346                     public void accept(P_OUT u) {
 347                         // We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it
 348                         LongStream result = mapper.apply(u);
 349                         if (result != null)
 350                             result.sequential().forEach(downstreamAsLong);
 351                     }
 352                 };
 353             }
 354         };
 355     }
 356 
 357     @Override
 358     public final Stream<P_OUT> peek(Consumer<? super P_OUT> tee) {
 359         Objects.requireNonNull(tee);
 360         return new StatelessOp<P_OUT, P_OUT>(this, StreamShape.REFERENCE,
 361                                      0) {
 362             @Override
 363             Sink<P_OUT> opWrapSink(int flags, Sink<P_OUT> sink) {
 364                 return new Sink.ChainedReference<P_OUT>(sink) {
 365                     @Override
 366                     public void accept(P_OUT u) {
 367                         tee.accept(u);
 368                         downstream.accept(u);
 369                     }
 370                 };
 371             }
 372         };
 373     }
 374 
 375     // Stateful intermediate operations from Stream
 376 
 377     @Override
 378     public final Stream<P_OUT> distinct() {
 379         return DistinctOps.makeRef(this);
 380     }
 381 
 382     @Override
 383     public final Stream<P_OUT> sorted() {
 384         return SortedOps.makeRef(this);
 385     }
 386 
 387     @Override
 388     public final Stream<P_OUT> sorted(Comparator<? super P_OUT> comparator) {
 389         return SortedOps.makeRef(this, comparator);
 390     }
 391 
 392     private Stream<P_OUT> slice(long skip, long limit) {
 393         return SliceOps.makeRef(this, skip, limit);
 394     }
 395 
 396     @Override
 397     public final Stream<P_OUT> limit(long maxSize) {
 398         if (maxSize < 0)
 399             throw new IllegalArgumentException(Long.toString(maxSize));
 400         return slice(0, maxSize);
 401     }
 402 
 403     @Override
 404     public final Stream<P_OUT> substream(long startingOffset) {
 405         if (startingOffset < 0)
 406             throw new IllegalArgumentException(Long.toString(startingOffset));
 407         if (startingOffset == 0)
 408             return this;
 409         else
 410             return slice(startingOffset, -1);
 411     }
 412 
 413     @Override
 414     public final Stream<P_OUT> substream(long startingOffset, long endingOffset) {
 415         if (startingOffset < 0 || endingOffset < startingOffset)
 416             throw new IllegalArgumentException(String.format("substream(%d, %d)", startingOffset, endingOffset));
 417         return slice(startingOffset, endingOffset - startingOffset);
 418     }
 419 
 420     // Terminal operations from Stream
 421 
 422     @Override
 423     public void forEach(Consumer<? super P_OUT> action) {
 424         evaluate(ForEachOps.makeRef(action, false));
 425     }
 426 
 427     @Override
 428     public void forEachOrdered(Consumer<? super P_OUT> action) {
 429         evaluate(ForEachOps.makeRef(action, true));
 430     }
 431 
 432     @Override
 433     @SuppressWarnings("unchecked")
 434     public final <A> A[] toArray(IntFunction<A[]> generator) {
 435         // Since A has no relation to U (not possible to declare that A is an upper bound of U)
 436         // there will be no static type checking.
 437         // Therefore use a raw type and assume A == U rather than propagating the separation of A and U
 438         // throughout the code-base.
 439         // The runtime type of U is never checked for equality with the component type of the runtime type of A[].
 440         // Runtime checking will be performed when an element is stored in A[], thus if A is not a
 441         // super type of U an ArrayStoreException will be thrown.
 442         IntFunction rawGenerator = (IntFunction) generator;
 443         return (A[]) Nodes.flatten(evaluateToArrayNode(rawGenerator), rawGenerator)
 444                               .asArray(rawGenerator);
 445     }
 446 
 447     @Override
 448     public final Object[] toArray() {
 449         return toArray(Object[]::new);
 450     }
 451 
 452     @Override
 453     public final boolean anyMatch(Predicate<? super P_OUT> predicate) {
 454         return evaluate(MatchOps.makeRef(predicate, MatchOps.MatchKind.ANY));
 455     }
 456 
 457     @Override
 458     public final boolean allMatch(Predicate<? super P_OUT> predicate) {
 459         return evaluate(MatchOps.makeRef(predicate, MatchOps.MatchKind.ALL));
 460     }
 461 
 462     @Override
 463     public final boolean noneMatch(Predicate<? super P_OUT> predicate) {
 464         return evaluate(MatchOps.makeRef(predicate, MatchOps.MatchKind.NONE));
 465     }
 466 
 467     @Override
 468     public final Optional<P_OUT> findFirst() {
 469         return evaluate(FindOps.makeRef(true));
 470     }
 471 
 472     @Override
 473     public final Optional<P_OUT> findAny() {
 474         return evaluate(FindOps.makeRef(false));
 475     }
 476 
 477     @Override
 478     public final P_OUT reduce(final P_OUT identity, final BinaryOperator<P_OUT> accumulator) {
 479         return evaluate(ReduceOps.makeRef(identity, accumulator, accumulator));
 480     }
 481 
 482     @Override
 483     public final Optional<P_OUT> reduce(BinaryOperator<P_OUT> accumulator) {
 484         return evaluate(ReduceOps.makeRef(accumulator));
 485     }
 486 
 487     @Override
 488     public final <R> R reduce(R identity, BiFunction<R, ? super P_OUT, R> accumulator, BinaryOperator<R> combiner) {
 489         return evaluate(ReduceOps.makeRef(identity, accumulator, combiner));
 490     }
 491 
 492     @Override
 493     public final <R, A> R collect(Collector<? super P_OUT, A, R> collector) {
 494         A container;
 495         if (isParallel()
 496                 && (collector.characteristics().contains(Collector.Characteristics.CONCURRENT))
 497                 && (!isOrdered() || collector.characteristics().contains(Collector.Characteristics.UNORDERED))) {
 498             container = collector.supplier().get();
 499             BiConsumer<A, ? super P_OUT> accumulator = collector.accumulator();
 500             forEach(u -> accumulator.accept(container, u));
 501         }
 502         else {
 503             container = evaluate(ReduceOps.makeRef(collector));
 504         }
 505         return collector.characteristics().contains(Collector.Characteristics.IDENTITY_FINISH)
 506                ? (R) container
 507                : collector.finisher().apply(container);
 508     }
 509 
 510     @Override
 511     public final <R> R collect(Supplier<R> resultFactory,
 512                                BiConsumer<R, ? super P_OUT> accumulator,
 513                                BiConsumer<R, R> combiner) {
 514         return evaluate(ReduceOps.makeRef(resultFactory, accumulator, combiner));
 515     }
 516 
 517     @Override
 518     public final Optional<P_OUT> max(Comparator<? super P_OUT> comparator) {
 519         return reduce(BinaryOperator.maxBy(comparator));
 520     }
 521 
 522     @Override
 523     public final Optional<P_OUT> min(Comparator<? super P_OUT> comparator) {
 524         return reduce(BinaryOperator.minBy(comparator));
 525 
 526     }
 527 
 528     @Override
 529     public final long count() {
 530         return mapToLong(e -> 1L).sum();
 531     }
 532 
 533 
 534     //
 535 
 536     /**
 537      * Source stage of a ReferencePipeline.
 538      *
 539      * @param <E_IN> type of elements in the upstream source
 540      * @param <E_OUT> type of elements in produced by this stage
 541      * @since 1.8
 542      */
 543     static class Head<E_IN, E_OUT> extends ReferencePipeline<E_IN, E_OUT> {
 544         /**
 545          * Constructor for the source stage of a Stream.
 546          *
 547          * @param source {@code Supplier<Spliterator>} describing the stream
 548          *               source
 549          * @param sourceFlags the source flags for the stream source, described
 550          *                    in {@link StreamOpFlag}
 551          */
 552         Head(Supplier<? extends Spliterator<?>> source,
 553              int sourceFlags, boolean parallel) {
 554             super(source, sourceFlags, parallel);
 555         }
 556 
 557         /**
 558          * Constructor for the source stage of a Stream.
 559          *
 560          * @param source {@code Spliterator} describing the stream source
 561          * @param sourceFlags the source flags for the stream source, described
 562          *                    in {@link StreamOpFlag}
 563          */
 564         Head(Spliterator<?> source,
 565              int sourceFlags, boolean parallel) {
 566             super(source, sourceFlags, parallel);
 567         }
 568 
 569         @Override
 570         final boolean opIsStateful() {
 571             throw new UnsupportedOperationException();
 572         }
 573 
 574         @Override
 575         final Sink<E_IN> opWrapSink(int flags, Sink<E_OUT> sink) {
 576             throw new UnsupportedOperationException();
 577         }
 578 
 579         // Optimized sequential terminal operations for the head of the pipeline
 580 
 581         @Override
 582         public void forEach(Consumer<? super E_OUT> action) {
 583             if (!isParallel()) {
 584                 sourceStageSpliterator().forEachRemaining(action);
 585             }
 586             else {
 587                 super.forEach(action);
 588             }
 589         }
 590 
 591         @Override
 592         public void forEachOrdered(Consumer<? super E_OUT> action) {
 593             if (!isParallel()) {
 594                 sourceStageSpliterator().forEachRemaining(action);
 595             }
 596             else {
 597                 super.forEachOrdered(action);
 598             }
 599         }
 600     }
 601 
 602     /**
 603      * Base class for a stateless intermediate stage of a Stream.
 604      *
 605      * @param <E_IN> type of elements in the upstream source
 606      * @param <E_OUT> type of elements in produced by this stage
 607      * @since 1.8
 608      */
 609     abstract static class StatelessOp<E_IN, E_OUT>
 610             extends ReferencePipeline<E_IN, E_OUT> {
 611         /**
 612          * Construct a new Stream by appending a stateless intermediate
 613          * operation to an existing stream.
 614          *
 615          * @param upstream The upstream pipeline stage
 616          * @param inputShape The stream shape for the upstream pipeline stage
 617          * @param opFlags Operation flags for the new stage
 618          */
 619         StatelessOp(AbstractPipeline<?, E_IN, ?> upstream,
 620                     StreamShape inputShape,
 621                     int opFlags) {
 622             super(upstream, opFlags);
 623             assert upstream.getOutputShape() == inputShape;
 624         }
 625 
 626         @Override
 627         final boolean opIsStateful() {
 628             return false;
 629         }
 630     }
 631 
 632     /**
 633      * Base class for a stateful intermediate stage of a Stream.
 634      *
 635      * @param <E_IN> type of elements in the upstream source
 636      * @param <E_OUT> type of elements in produced by this stage
 637      * @since 1.8
 638      */
 639     abstract static class StatefulOp<E_IN, E_OUT>
 640             extends ReferencePipeline<E_IN, E_OUT> {
 641         /**
 642          * Construct a new Stream by appending a stateful intermediate operation
 643          * to an existing stream.
 644          * @param upstream The upstream pipeline stage
 645          * @param inputShape The stream shape for the upstream pipeline stage
 646          * @param opFlags Operation flags for the new stage
 647          */
 648         StatefulOp(AbstractPipeline<?, E_IN, ?> upstream,
 649                    StreamShape inputShape,
 650                    int opFlags) {
 651             super(upstream, opFlags);
 652             assert upstream.getOutputShape() == inputShape;
 653         }
 654 
 655         @Override
 656         final boolean opIsStateful() {
 657             return true;
 658         }
 659 
 660         @Override
 661         abstract <P_IN> Node<E_OUT> opEvaluateParallel(PipelineHelper<E_OUT> helper,
 662                                                        Spliterator<P_IN> spliterator,
 663                                                        IntFunction<E_OUT[]> generator);
 664     }
 665 }