1 /*
   2  * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 package java.util.stream;
  26 
  27 import java.util.Objects;
  28 import java.util.Spliterator;
  29 import java.util.function.IntFunction;
  30 import java.util.function.Supplier;
  31 
  32 /**
  33  * Abstract base class for "pipeline" classes, which are the core
  34  * implementations of the Stream interface and its primitive specializations.
  35  * Manages construction and evaluation of stream pipelines.
  36  *
  37  * <p>An {@code AbstractPipeline} represents an initial portion of a stream
  38  * pipeline, encapsulating a stream source and zero or more intermediate
  39  * operations.  The individual {@code AbstractPipeline} objects are often
  40  * referred to as <em>stages</em>, where each stage describes either the stream
  41  * source or an intermediate operation.
  42  *
  43  * <p>A concrete intermediate stage is generally built from an
  44  * {@code AbstractPipeline}, a shape-specific pipeline class which extends it
  45  * (e.g., {@code IntPipeline}) which is also abstract, and an operation-specific
  46  * concrete class which extends that.  {@code AbstractPipeline} contains most of
  47  * the mechanics of evaluating the pipeline, and implements methods that will be
  48  * used by the operation; the shape-specific classes add helper methods for
  49  * dealing with collection of results into the appropriate shape-specific
  50  * containers.
  51  *
  52  * <p>After chaining a new intermediate operation, or executing a terminal
  53  * operation, the stream is considered to be consumed, and no more intermediate
  54  * or terminal operations are permitted on this stream instance.
  55  *
  56  * @implNote
  57  * <p>For sequential streams, and parallel streams without
  58  * <a href="package-summary.html#StreamOps">stateful intermediate
  59  * operations</a>, parallel streams, pipeline evaluation is done in a single
  60  * pass that "jams" all the operations together.  For parallel streams with
  61  * stateful operations, execution is divided into segments, where each
  62  * stateful operations marks the end of a segment, and each segment is
  63  * evaluated separately and the result used as the input to the next
  64  * segment.  In all cases, the source data is not consumed until a terminal
  65  * operation begins.
  66  *
  67  * @param <E_IN>  type of input elements
  68  * @param <E_OUT> type of output elements
  69  * @param <S> type of the subclass implementing {@code BaseStream}
  70  * @since 1.8
  71  */
  72 abstract class AbstractPipeline<E_IN, E_OUT, S extends BaseStream<E_OUT, S>>
  73         extends PipelineHelper<E_OUT> implements BaseStream<E_OUT, S> {
  74     /**
  75      * Backlink to the head of the pipeline chain (self if this is the source
  76      * stage).
  77      */
  78     @SuppressWarnings("rawtypes")
  79     private final AbstractPipeline sourceStage;
  80 
  81     /**
  82      * The "upstream" pipeline, or null if this is the source stage.
  83      */
  84     @SuppressWarnings("rawtypes")
  85     private final AbstractPipeline previousStage;
  86 
  87     /**
  88      * The operation flags for the intermediate operation represented by this
  89      * pipeline object.
  90      */
  91     protected final int sourceOrOpFlags;
  92 
  93     /**
  94      * The next stage in the pipeline, or null if this is the last stage.
  95      * Effectively final at the point of linking to the next pipeline.
  96      */
  97     @SuppressWarnings("rawtypes")
  98     private AbstractPipeline nextStage;
  99 
 100     /**
 101      * The number of intermediate operations between this pipeline object
 102      * and the stream source if sequential, or the previous stateful if parallel.
 103      * Valid at the point of pipeline preparation for evaluation.
 104      */
 105     private int depth;
 106 
 107     /**
 108      * The combined source and operation flags for the source and all operations
 109      * up to and including the operation represented by this pipeline object.
 110      * Valid at the point of pipeline preparation for evaluation.
 111      */
 112     private int combinedFlags;
 113 
 114     /**
 115      * The source spliterator. Only valid for the head pipeline.
 116      * Before the pipeline is consumed if non-null then {@code sourceSupplier}
 117      * must be null. After the pipeline is consumed if non-null then is set to
 118      * null.
 119      */
 120     private Spliterator<?> sourceSpliterator;
 121 
 122     /**
 123      * The source supplier. Only valid for the head pipeline. Before the
 124      * pipeline is consumed if non-null then {@code sourceSpliterator} must be
 125      * null. After the pipeline is consumed if non-null then is set to null.
 126      */
 127     private Supplier<? extends Spliterator<?>> sourceSupplier;
 128 
 129     /**
 130      * True if this pipeline has been linked or consumed
 131      */
 132     private boolean linkedOrConsumed;
 133 
 134     /**
 135      * True if there are any stateful ops in the pipeline; only valid for the
 136      * source stage.
 137      */
 138     private boolean sourceAnyStateful;
 139 
 140     /**
 141      * True if pipeline is parallel, otherwise the pipeline is sequential; only
 142      * valid for the source stage.
 143      */
 144     private boolean parallel;
 145 
 146     /**
 147      * Constructor for the head of a stream pipeline.
 148      *
 149      * @param source {@code Supplier<Spliterator>} describing the stream source
 150      * @param sourceFlags The source flags for the stream source, described in
 151      * {@link StreamOpFlag}
 152      * @param parallel True if the pipeline is parallel
 153      */
 154     AbstractPipeline(Supplier<? extends Spliterator<?>> source,
 155                      int sourceFlags, boolean parallel) {
 156         this.previousStage = null;
 157         this.sourceSupplier = source;
 158         this.sourceStage = this;
 159         this.sourceOrOpFlags = sourceFlags & StreamOpFlag.STREAM_MASK;
 160         // The following is an optimization of:
 161         // StreamOpFlag.combineOpFlags(sourceOrOpFlags, StreamOpFlag.INITIAL_OPS_VALUE);
 162         this.combinedFlags = (~(sourceOrOpFlags << 1)) & StreamOpFlag.INITIAL_OPS_VALUE;
 163         this.depth = 0;
 164         this.parallel = parallel;
 165     }
 166 
 167     /**
 168      * Constructor for the head of a stream pipeline.
 169      *
 170      * @param source {@code Spliterator} describing the stream source
 171      * @param sourceFlags the source flags for the stream source, described in
 172      * {@link StreamOpFlag}
 173      * @param parallel {@code true} if the pipeline is parallel
 174      */
 175     AbstractPipeline(Spliterator<?> source,
 176                      int sourceFlags, boolean parallel) {
 177         this.previousStage = null;
 178         this.sourceSpliterator = source;
 179         this.sourceStage = this;
 180         this.sourceOrOpFlags = sourceFlags & StreamOpFlag.STREAM_MASK;
 181         // The following is an optimization of:
 182         // StreamOpFlag.combineOpFlags(sourceOrOpFlags, StreamOpFlag.INITIAL_OPS_VALUE);
 183         this.combinedFlags = (~(sourceOrOpFlags << 1)) & StreamOpFlag.INITIAL_OPS_VALUE;
 184         this.depth = 0;
 185         this.parallel = parallel;
 186     }
 187 
 188     /**
 189      * Constructor for appending an intermediate operation stage onto an
 190      * existing pipeline.
 191      *
 192      * @param previousStage the upstream pipeline stage
 193      * @param opFlags the operation flags for the new stage, described in
 194      * {@link StreamOpFlag}
 195      */
 196     AbstractPipeline(AbstractPipeline<?, E_IN, ?> previousStage, int opFlags) {
 197         if (previousStage.linkedOrConsumed)
 198             throw new IllegalStateException("stream has already been operated upon");
 199         previousStage.linkedOrConsumed = true;
 200         previousStage.nextStage = this;
 201 
 202         this.previousStage = previousStage;
 203         this.sourceOrOpFlags = opFlags & StreamOpFlag.OP_MASK;
 204         this.combinedFlags = StreamOpFlag.combineOpFlags(opFlags, previousStage.combinedFlags);
 205         this.sourceStage = previousStage.sourceStage;
 206         if (opIsStateful())
 207             sourceStage.sourceAnyStateful = true;
 208         this.depth = previousStage.depth + 1;
 209     }
 210 
 211 
 212     // Terminal evaluation methods
 213 
 214     /**
 215      * Evaluate the pipeline with a terminal operation to produce a result.
 216      *
 217      * @param <R> the type of result
 218      * @param terminalOp the terminal operation to be applied to the pipeline.
 219      * @return the result
 220      */
 221     final <R> R evaluate(TerminalOp<E_OUT, R> terminalOp) {
 222         assert getOutputShape() == terminalOp.inputShape();
 223         if (linkedOrConsumed)
 224             throw new IllegalStateException("stream has already been operated upon");
 225         linkedOrConsumed = true;
 226 
 227         return isParallel()
 228                ? terminalOp.evaluateParallel(this, sourceSpliterator(terminalOp.getOpFlags()))
 229                : terminalOp.evaluateSequential(this, sourceSpliterator(terminalOp.getOpFlags()));
 230     }
 231 
 232     /**
 233      * Collect the elements output from the pipeline stage.
 234      *
 235      * @param generator the array generator to be used to create array instances
 236      * @return a flat array-backed Node that holds the collected output elements
 237      */
 238     @SuppressWarnings("unchecked")
 239     final Node<E_OUT> evaluateToArrayNode(IntFunction<E_OUT[]> generator) {
 240         if (linkedOrConsumed)
 241             throw new IllegalStateException("stream has already been operated upon");
 242         linkedOrConsumed = true;
 243 
 244         // If the last intermediate operation is stateful then
 245         // evaluate directly to avoid an extra collection step
 246         if (isParallel() && previousStage != null && opIsStateful()) {
 247             return opEvaluateParallel(previousStage, previousStage.sourceSpliterator(0), generator);
 248         }
 249         else {
 250             return evaluate(sourceSpliterator(0), true, generator);
 251         }
 252     }
 253 
 254     /**
 255      * Gets the source stage spliterator if this pipeline stage is the source
 256      * stage.  The pipeline is consumed after this method is called and
 257      * returns successfully.
 258      *
 259      * @return the source stage spliterator
 260      * @throws IllegalStateException if this pipeline stage is not the source
 261      *         stage.
 262      */
 263     @SuppressWarnings("unchecked")
 264     final Spliterator<E_OUT> sourceStageSpliterator() {
 265         if (this != sourceStage)
 266             throw new IllegalStateException();
 267 
 268         if (linkedOrConsumed)
 269             throw new IllegalStateException("stream has already been operated upon");
 270         linkedOrConsumed = true;
 271 
 272         if (sourceStage.sourceSpliterator != null) {
 273             @SuppressWarnings("unchecked")
 274             Spliterator<E_OUT> s = sourceStage.sourceSpliterator;
 275             sourceStage.sourceSpliterator = null;
 276             return s;
 277         }
 278         else if (sourceStage.sourceSupplier != null) {
 279             @SuppressWarnings("unchecked")
 280             Spliterator<E_OUT> s = (Spliterator<E_OUT>) sourceStage.sourceSupplier.get();
 281             sourceStage.sourceSupplier = null;
 282             return s;
 283         }
 284         else {
 285             throw new IllegalStateException("source already consumed");
 286         }
 287     }
 288 
 289     // BaseStream
 290 
 291     @Override
 292     @SuppressWarnings("unchecked")
 293     public final S sequential() {
 294         sourceStage.parallel = false;
 295         return (S) this;
 296     }
 297 
 298     @Override
 299     @SuppressWarnings("unchecked")
 300     public final S parallel() {
 301         sourceStage.parallel = true;
 302         return (S) this;
 303     }
 304 
 305     // Primitive specialization use co-variant overrides, hence is not final
 306     @Override
 307     @SuppressWarnings("unchecked")
 308     public Spliterator<E_OUT> spliterator() {
 309         if (linkedOrConsumed)
 310             throw new IllegalStateException("stream has already been operated upon");
 311         linkedOrConsumed = true;
 312 
 313         if (this == sourceStage) {
 314             if (sourceStage.sourceSpliterator != null) {
 315                 @SuppressWarnings("unchecked")
 316                 Spliterator<E_OUT> s = (Spliterator<E_OUT>) sourceStage.sourceSpliterator;
 317                 sourceStage.sourceSpliterator = null;
 318                 return s;
 319             }
 320             else if (sourceStage.sourceSupplier != null) {
 321                 @SuppressWarnings("unchecked")
 322                 Supplier<Spliterator<E_OUT>> s = (Supplier<Spliterator<E_OUT>>) sourceStage.sourceSupplier;
 323                 sourceStage.sourceSupplier = null;
 324                 return lazySpliterator(s);
 325             }
 326             else {
 327                 throw new IllegalStateException("source already consumed");
 328             }
 329         }
 330         else {
 331             return wrap(this, () -> sourceSpliterator(0), isParallel());
 332         }
 333     }
 334 
 335     @Override
 336     public final boolean isParallel() {
 337         return sourceStage.parallel;
 338     }
 339 
 340 
 341     /**
 342      * Returns the composition of stream flags of the stream source and all
 343      * intermediate operations.
 344      *
 345      * @return the composition of stream flags of the stream source and all
 346      *         intermediate operations
 347      * @see StreamOpFlag
 348      */
 349     final int getStreamFlags() {
 350         return StreamOpFlag.toStreamFlags(combinedFlags);
 351     }
 352 
 353     /**
 354      * Prepare the pipeline for a parallel execution.  As the pipeline is built,
 355      * the flags and depth indicators are set up for a sequential execution.
 356      * If the execution is parallel, and there are any stateful operations, then
 357      * some of these need to be adjusted, as well as adjusting for flags from
 358      * the terminal operation (such as back-propagating UNORDERED).
 359      * Need not be called for a sequential execution.
 360      *
 361      * @param terminalFlags Operation flags for the terminal operation
 362      */
 363     private void parallelPrepare(int terminalFlags) {
 364         @SuppressWarnings("rawtypes")
 365         AbstractPipeline backPropagationHead = sourceStage;
 366         if (sourceStage.sourceAnyStateful) {
 367             int depth = 1;
 368             for (  @SuppressWarnings("rawtypes") AbstractPipeline u = sourceStage, p = sourceStage.nextStage;
 369                  p != null;
 370                  u = p, p = p.nextStage) {
 371                 int thisOpFlags = p.sourceOrOpFlags;
 372                 if (p.opIsStateful()) {
 373                     // If the stateful operation is a short-circuit operation
 374                     // then move the back propagation head forwards
 375                     // NOTE: there are no size-injecting ops
 376                     if (StreamOpFlag.SHORT_CIRCUIT.isKnown(thisOpFlags)) {
 377                         backPropagationHead = p;
 378                         // Clear the short circuit flag for next pipeline stage
 379                         // This stage encapsulates short-circuiting, the next
 380                         // stage may not have any short-circuit operations, and
 381                         // if so spliterator.forEachRemaining should be be used
 382                         // for traversal
 383                         thisOpFlags = thisOpFlags & ~StreamOpFlag.IS_SHORT_CIRCUIT;
 384                     }
 385 
 386                     depth = 0;
 387                     // The following injects size, it is equivalent to:
 388                     // StreamOpFlag.combineOpFlags(StreamOpFlag.IS_SIZED, p.combinedFlags);
 389                     thisOpFlags = (thisOpFlags & ~StreamOpFlag.NOT_SIZED) | StreamOpFlag.IS_SIZED;
 390                 }
 391                 p.depth = depth++;
 392                 p.combinedFlags = StreamOpFlag.combineOpFlags(thisOpFlags, u.combinedFlags);
 393             }
 394         }
 395 
 396         // Apply the upstream terminal flags
 397         if (terminalFlags != 0) {
 398             int upstreamTerminalFlags = terminalFlags & StreamOpFlag.UPSTREAM_TERMINAL_OP_MASK;
 399             for ( @SuppressWarnings("rawtypes") AbstractPipeline p = backPropagationHead; p.nextStage != null; p = p.nextStage) {
 400                 p.combinedFlags = StreamOpFlag.combineOpFlags(upstreamTerminalFlags, p.combinedFlags);
 401             }
 402 
 403             combinedFlags = StreamOpFlag.combineOpFlags(terminalFlags, combinedFlags);
 404         }
 405     }
 406 
 407     /**
 408      * Get the source spliterator for this pipeline stage.  For a sequential or
 409      * stateless parallel pipeline, this is the source spliterator.  For a
 410      * stateful parallel pipeline, this is a spliterator describing the results
 411      * of all computations up to and including the most recent stateful
 412      * operation.
 413      */
 414     @SuppressWarnings("unchecked")
 415     private Spliterator<?> sourceSpliterator(int terminalFlags) {
 416         // Get the source spliterator of the pipeline
 417         Spliterator<?> spliterator = null;
 418         if (sourceStage.sourceSpliterator != null) {
 419             spliterator = sourceStage.sourceSpliterator;
 420             sourceStage.sourceSpliterator = null;
 421         }
 422         else if (sourceStage.sourceSupplier != null) {
 423             spliterator = (Spliterator<?>) sourceStage.sourceSupplier.get();
 424             sourceStage.sourceSupplier = null;
 425         }
 426         else {
 427             throw new IllegalStateException("source already consumed");
 428         }
 429 
 430         if (isParallel()) {
 431             // @@@ Merge parallelPrepare with the loop below and use the
 432             //     spliterator characteristics to determine if SIZED
 433             //     should be injected
 434             parallelPrepare(terminalFlags);
 435 
 436             // Adapt the source spliterator, evaluating each stateful op
 437             // in the pipeline up to and including this pipeline stage
 438             for ( @SuppressWarnings("rawtypes") AbstractPipeline u = sourceStage, p = sourceStage.nextStage, e = this;
 439                  u != e;
 440                  u = p, p = p.nextStage) {
 441 
 442                 if (p.opIsStateful()) {
 443                     spliterator = p.opEvaluateParallelLazy(u, spliterator);
 444                 }
 445             }
 446         }
 447         else if (terminalFlags != 0)  {
 448             combinedFlags = StreamOpFlag.combineOpFlags(terminalFlags, combinedFlags);
 449         }
 450 
 451         return spliterator;
 452     }
 453 
 454 
 455     // PipelineHelper
 456 
 457     @Override
 458     final StreamShape getSourceShape() {
 459         @SuppressWarnings("rawtypes")
 460         AbstractPipeline p = AbstractPipeline.this;
 461         while (p.depth > 0) {
 462             p = p.previousStage;
 463         }
 464         return p.getOutputShape();
 465     }
 466 
 467     @Override
 468     final <P_IN> long exactOutputSizeIfKnown(Spliterator<P_IN> spliterator) {
 469         return StreamOpFlag.SIZED.isKnown(getStreamAndOpFlags()) ? spliterator.getExactSizeIfKnown() : -1;
 470     }
 471 
 472     @Override
 473     final <P_IN, S extends Sink<E_OUT>> S wrapAndCopyInto(S sink, Spliterator<P_IN> spliterator) {
 474         copyInto(wrapSink(Objects.requireNonNull(sink)), spliterator);
 475         return sink;
 476     }
 477 
 478     @Override
 479     final <P_IN> void copyInto(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator) {
 480         Objects.requireNonNull(wrappedSink);
 481 
 482         if (!StreamOpFlag.SHORT_CIRCUIT.isKnown(getStreamAndOpFlags())) {
 483             wrappedSink.begin(spliterator.getExactSizeIfKnown());
 484             spliterator.forEachRemaining(wrappedSink);
 485             wrappedSink.end();
 486         }
 487         else {
 488             copyIntoWithCancel(wrappedSink, spliterator);
 489         }
 490     }
 491 
 492     @Override
 493     @SuppressWarnings("unchecked")
 494     final <P_IN> void copyIntoWithCancel(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator) {
 495         @SuppressWarnings({"rawtypes","unchecked"})
 496         AbstractPipeline p = AbstractPipeline.this;
 497         while (p.depth > 0) {
 498             p = p.previousStage;
 499         }
 500         wrappedSink.begin(spliterator.getExactSizeIfKnown());
 501         p.forEachWithCancel(spliterator, wrappedSink);
 502         wrappedSink.end();
 503     }
 504 
 505     @Override
 506     final int getStreamAndOpFlags() {
 507         return combinedFlags;
 508     }
 509 
 510     final boolean isOrdered() {
 511         return StreamOpFlag.ORDERED.isKnown(combinedFlags);
 512     }
 513 
 514     @Override
 515     @SuppressWarnings("unchecked")
 516     final <P_IN> Sink<P_IN> wrapSink(Sink<E_OUT> sink) {
 517         Objects.requireNonNull(sink);
 518 
 519         for ( @SuppressWarnings("rawtypes") AbstractPipeline p=AbstractPipeline.this; p.depth > 0; p=p.previousStage) {
 520             sink = p.opWrapSink(p.previousStage.combinedFlags, sink);
 521         }
 522         return (Sink<P_IN>) sink;
 523     }
 524 
 525     @Override
 526     @SuppressWarnings("unchecked")
 527     final <P_IN> Spliterator<E_OUT> wrapSpliterator(Spliterator<P_IN> sourceSpliterator) {
 528         if (depth == 0) {
 529             return (Spliterator<E_OUT>) sourceSpliterator;
 530         }
 531         else {
 532             return wrap(this, () -> sourceSpliterator, isParallel());
 533         }
 534     }
 535 
 536     @Override
 537     @SuppressWarnings("unchecked")
 538     final <P_IN> Node<E_OUT> evaluate(Spliterator<P_IN> spliterator,
 539                                       boolean flatten,
 540                                       IntFunction<E_OUT[]> generator) {
 541         if (isParallel()) {
 542             // @@@ Optimize if op of this pipeline stage is a stateful op
 543             return evaluateToNode(this, spliterator, flatten, generator);
 544         }
 545         else {
 546             Node.Builder<E_OUT> nb = makeNodeBuilder(
 547                     exactOutputSizeIfKnown(spliterator), generator);
 548             return wrapAndCopyInto(nb, spliterator).build();
 549         }
 550     }
 551 
 552 
 553     // Shape-specific abstract methods, implemented by XxxPipeline classes
 554 
 555     /**
 556      * Get the output shape of the pipeline.  If the pipeline is the head,
 557      * then it's output shape corresponds to the shape of the source.
 558      * Otherwise, it's output shape corresponds to the output shape of the
 559      * associated operation.
 560      *
 561      * @return the output shape
 562      */
 563     abstract StreamShape getOutputShape();
 564 
 565     /**
 566      * Collect elements output from a pipeline into a Node that holds elements
 567      * of this shape.
 568      *
 569      * @param helper the pipeline helper describing the pipeline stages
 570      * @param spliterator the source spliterator
 571      * @param flattenTree true if the returned node should be flattened
 572      * @param generator the array generator
 573      * @return a Node holding the output of the pipeline
 574      */
 575     abstract <P_IN> Node<E_OUT> evaluateToNode(PipelineHelper<E_OUT> helper,
 576                                                Spliterator<P_IN> spliterator,
 577                                                boolean flattenTree,
 578                                                IntFunction<E_OUT[]> generator);
 579 
 580     /**
 581      * Create a spliterator that wraps a source spliterator, compatible with
 582      * this stream shape, and operations associated with a {@link
 583      * PipelineHelper}.
 584      *
 585      * @param ph the pipeline helper describing the pipeline stages
 586      * @param supplier the supplier of a spliterator
 587      * @return a wrapping spliterator compatible with this shape
 588      */
 589     abstract <P_IN> Spliterator<E_OUT> wrap(PipelineHelper<E_OUT> ph,
 590                                             Supplier<Spliterator<P_IN>> supplier,
 591                                             boolean isParallel);
 592 
 593     /**
 594      * Create a lazy spliterator that wraps and obtains the supplied the
 595      * spliterator when a method is invoked on the lazy spliterator.
 596      * @param supplier the supplier of a spliterator
 597      */
 598     abstract Spliterator<E_OUT> lazySpliterator(Supplier<? extends Spliterator<E_OUT>> supplier);
 599 
 600     /**
 601      * Traverse the elements of a spliterator compatible with this stream shape,
 602      * pushing those elements into a sink.   If the sink requests cancellation,
 603      * no further elements will be pulled or pushed.
 604      *
 605      * @param spliterator the spliterator to pull elements from
 606      * @param sink the sink to push elements to
 607      */
 608     abstract void forEachWithCancel(Spliterator<E_OUT> spliterator, Sink<E_OUT> sink);
 609 
 610     /**
 611      * Make a node builder compatible with this stream shape.
 612      *
 613      * @param exactSizeIfKnown if {@literal >=0}, then a node builder will be
 614      * created that has a fixed capacity of at most sizeIfKnown elements. If
 615      * {@literal < 0}, then the node builder has an unfixed capacity. A fixed
 616      * capacity node builder will throw exceptions if an element is added after
 617      * builder has reached capacity, or is built before the builder has reached
 618      * capacity.
 619      *
 620      * @param generator the array generator to be used to create instances of a
 621      * T[] array. For implementations supporting primitive nodes, this parameter
 622      * may be ignored.
 623      * @return a node builder
 624      */
 625     @Override
 626     abstract Node.Builder<E_OUT> makeNodeBuilder(long exactSizeIfKnown,
 627                                                  IntFunction<E_OUT[]> generator);
 628 
 629 
 630     // Op-specific abstract methods, implemented by the operation class
 631 
 632     /**
 633      * Returns whether this operation is stateful or not.  If it is stateful,
 634      * then the method
 635      * {@link #opEvaluateParallel(PipelineHelper, java.util.Spliterator, java.util.function.IntFunction)}
 636      * must be overridden.
 637      *
 638      * @return {@code true} if this operation is stateful
 639      */
 640     abstract boolean opIsStateful();
 641 
 642     /**
 643      * Accepts a {@code Sink} which will receive the results of this operation,
 644      * and return a {@code Sink} which accepts elements of the input type of
 645      * this operation and which performs the operation, passing the results to
 646      * the provided {@code Sink}.
 647      *
 648      * @apiNote
 649      * The implementation may use the {@code flags} parameter to optimize the
 650      * sink wrapping.  For example, if the input is already {@code DISTINCT},
 651      * the implementation for the {@code Stream#distinct()} method could just
 652      * return the sink it was passed.
 653      *
 654      * @param flags The combined stream and operation flags up to, but not
 655      *        including, this operation
 656      * @param sink sink to which elements should be sent after processing
 657      * @return a sink which accepts elements, perform the operation upon
 658      *         each element, and passes the results (if any) to the provided
 659      *         {@code Sink}.
 660      */
 661     abstract Sink<E_IN> opWrapSink(int flags, Sink<E_OUT> sink);
 662 
 663     /**
 664      * Performs a parallel evaluation of the operation using the specified
 665      * {@code PipelineHelper} which describes the upstream intermediate
 666      * operations.  Only called on stateful operations.  If {@link
 667      * #opIsStateful()} returns true then implementations must override the
 668      * default implementation.
 669      *
 670      * @implSpec The default implementation always throw
 671      * {@code UnsupportedOperationException}.
 672      *
 673      * @param helper the pipeline helper describing the pipeline stages
 674      * @param spliterator the source {@code Spliterator}
 675      * @param generator the array generator
 676      * @return a {@code Node} describing the result of the evaluation
 677      */
 678     <P_IN> Node<E_OUT> opEvaluateParallel(PipelineHelper<E_OUT> helper,
 679                                           Spliterator<P_IN> spliterator,
 680                                           IntFunction<E_OUT[]> generator) {
 681         throw new UnsupportedOperationException("Parallel evaluation is not supported");
 682     }
 683 
 684     /**
 685      * Returns a {@code Spliterator} describing a parallel evaluation of the
 686      * operation, using the specified {@code PipelineHelper} which describes the
 687      * upstream intermediate operations.  Only called on stateful operations.
 688      * It is not necessary (though acceptable) to do a full computation of the
 689      * result here; it is preferable, if possible, to describe the result via a
 690      * lazily evaluated spliterator.
 691      *
 692      * @implSpec The default implementation behaves as if:
 693      * <pre>{@code
 694      *     return evaluateParallel(helper, i -> (E_OUT[]) new
 695      * Object[i]).spliterator();
 696      * }</pre>
 697      * and is suitable for implementations that cannot do better than a full
 698      * synchronous evaluation.
 699      *
 700      * @param helper the pipeline helper
 701      * @param spliterator the source {@code Spliterator}
 702      * @return a {@code Spliterator} describing the result of the evaluation
 703      */
 704     @SuppressWarnings("unchecked")
 705     <P_IN> Spliterator<E_OUT> opEvaluateParallelLazy(PipelineHelper<E_OUT> helper,
 706                                                      Spliterator<P_IN> spliterator) {
 707         return opEvaluateParallel(helper, spliterator, i -> (E_OUT[]) new Object[i]).spliterator();
 708     }
 709 }