1 /*
   2  * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 package java.util.stream;
  26 
  27 import java.util.Objects;
  28 import java.util.Spliterator;
  29 import java.util.function.IntFunction;
  30 import java.util.function.Supplier;
  31 
  32 /**
  33  * Abstract base class for "pipeline" classes, which are the core
  34  * implementations of the Stream interface and its primitive specializations.
  35  * Manages construction and evaluation of stream pipelines.
  36  *
  37  * <p>An {@code AbstractPipeline} represents an initial portion of a stream
  38  * pipeline, encapsulating a stream source and zero or more intermediate
  39  * operations.  The individual {@code AbstractPipeline} objects are often
  40  * referred to as <em>stages</em>, where each stage describes either the stream
  41  * source or an intermediate operation.
  42  *
  43  * <p>A concrete intermediate stage is generally built from an
  44  * {@code AbstractPipeline}, a shape-specific pipeline class which extends it
  45  * (e.g., {@code IntPipeline}) which is also abstract, and an operation-specific
  46  * concrete class which extends that.  {@code AbstractPipeline} contains most of
  47  * the mechanics of evaluating the pipeline, and implements methods that will be
  48  * used by the operation; the shape-specific classes add helper methods for
  49  * dealing with collection of results into the appropriate shape-specific
  50  * containers.
  51  *
  52  * <p>After chaining a new intermediate operation, or executing a terminal
  53  * operation, the stream is considered to be consumed, and no more intermediate
  54  * or terminal operations are permitted on this stream instance.
  55  *
  56  * @implNote
  57  * <p>For sequential streams, and parallel streams without
  58  * <a href="package-summary.html#StreamOps">stateful intermediate
  59  * operations</a>, parallel streams, pipeline evaluation is done in a single
  60  * pass that "jams" all the operations together.  For parallel streams with
  61  * stateful operations, execution is divided into segments, where each
  62  * stateful operations marks the end of a segment, and each segment is
  63  * evaluated separately and the result used as the input to the next
  64  * segment.  In all cases, the source data is not consumed until a terminal
  65  * operation begins.
  66  *
  67  * @param <E_IN>  type of input elements
  68  * @param <E_OUT> type of output elements
  69  * @param <S> type of the subclass implementing {@code BaseStream}
  70  * @since 1.8
  71  */
  72 abstract class AbstractPipeline<E_IN, E_OUT, S extends BaseStream<E_OUT, S>>
  73         extends PipelineHelper<E_OUT> implements BaseStream<E_OUT, S> {
  74     private static final String MSG_STREAM_LINKED = "stream has already been operated upon or closed";
  75     private static final String MSG_CONSUMED = "source already consumed or closed";
  76 
  77     /**
  78      * Backlink to the head of the pipeline chain (self if this is the source
  79      * stage).
  80      */
  81     @SuppressWarnings("rawtypes")
  82     private final AbstractPipeline sourceStage;
  83 
  84     /**
  85      * The "upstream" pipeline, or null if this is the source stage.
  86      */
  87     @SuppressWarnings("rawtypes")
  88     private final AbstractPipeline previousStage;
  89 
  90     /**
  91      * The operation flags for the intermediate operation represented by this
  92      * pipeline object.
  93      */
  94     protected final int sourceOrOpFlags;
  95 
  96     /**
  97      * The next stage in the pipeline, or null if this is the last stage.
  98      * Effectively final at the point of linking to the next pipeline.
  99      */
 100     @SuppressWarnings("rawtypes")
 101     private AbstractPipeline nextStage;
 102 
 103     /**
 104      * The number of intermediate operations between this pipeline object
 105      * and the stream source if sequential, or the previous stateful if parallel.
 106      * Valid at the point of pipeline preparation for evaluation.
 107      */
 108     private int depth;
 109 
 110     /**
 111      * The combined source and operation flags for the source and all operations
 112      * up to and including the operation represented by this pipeline object.
 113      * Valid at the point of pipeline preparation for evaluation.
 114      */
 115     private int combinedFlags;
 116 
 117     /**
 118      * The source spliterator. Only valid for the head pipeline.
 119      * Before the pipeline is consumed if non-null then {@code sourceSupplier}
 120      * must be null. After the pipeline is consumed if non-null then is set to
 121      * null.
 122      */
 123     private Spliterator<?> sourceSpliterator;
 124 
 125     /**
 126      * The source supplier. Only valid for the head pipeline. Before the
 127      * pipeline is consumed if non-null then {@code sourceSpliterator} must be
 128      * null. After the pipeline is consumed if non-null then is set to null.
 129      */
 130     private Supplier<? extends Spliterator<?>> sourceSupplier;
 131 
 132     /**
 133      * True if this pipeline has been linked or consumed
 134      */
 135     private boolean linkedOrConsumed;
 136 
 137     /**
 138      * True if there are any stateful ops in the pipeline; only valid for the
 139      * source stage.
 140      */
 141     private boolean sourceAnyStateful;
 142 
 143     private Runnable sourceCloseAction;
 144 
 145     /**
 146      * True if pipeline is parallel, otherwise the pipeline is sequential; only
 147      * valid for the source stage.
 148      */
 149     private boolean parallel;
 150 
 151     /**
 152      * Constructor for the head of a stream pipeline.
 153      *
 154      * @param source {@code Supplier<Spliterator>} describing the stream source
 155      * @param sourceFlags The source flags for the stream source, described in
 156      * {@link StreamOpFlag}
 157      * @param parallel True if the pipeline is parallel
 158      */
 159     AbstractPipeline(Supplier<? extends Spliterator<?>> source,
 160                      int sourceFlags, boolean parallel) {
 161         this.previousStage = null;
 162         this.sourceSupplier = source;
 163         this.sourceStage = this;
 164         this.sourceOrOpFlags = sourceFlags & StreamOpFlag.STREAM_MASK;
 165         // The following is an optimization of:
 166         // StreamOpFlag.combineOpFlags(sourceOrOpFlags, StreamOpFlag.INITIAL_OPS_VALUE);
 167         this.combinedFlags = (~(sourceOrOpFlags << 1)) & StreamOpFlag.INITIAL_OPS_VALUE;
 168         this.depth = 0;
 169         this.parallel = parallel;
 170     }
 171 
 172     /**
 173      * Constructor for the head of a stream pipeline.
 174      *
 175      * @param source {@code Spliterator} describing the stream source
 176      * @param sourceFlags the source flags for the stream source, described in
 177      * {@link StreamOpFlag}
 178      * @param parallel {@code true} if the pipeline is parallel
 179      */
 180     AbstractPipeline(Spliterator<?> source,
 181                      int sourceFlags, boolean parallel) {
 182         this.previousStage = null;
 183         this.sourceSpliterator = source;
 184         this.sourceStage = this;
 185         this.sourceOrOpFlags = sourceFlags & StreamOpFlag.STREAM_MASK;
 186         // The following is an optimization of:
 187         // StreamOpFlag.combineOpFlags(sourceOrOpFlags, StreamOpFlag.INITIAL_OPS_VALUE);
 188         this.combinedFlags = (~(sourceOrOpFlags << 1)) & StreamOpFlag.INITIAL_OPS_VALUE;
 189         this.depth = 0;
 190         this.parallel = parallel;
 191     }
 192 
 193     /**
 194      * Constructor for appending an intermediate operation stage onto an
 195      * existing pipeline.
 196      *
 197      * @param previousStage the upstream pipeline stage
 198      * @param opFlags the operation flags for the new stage, described in
 199      * {@link StreamOpFlag}
 200      */
 201     AbstractPipeline(AbstractPipeline<?, E_IN, ?> previousStage, int opFlags) {
 202         if (previousStage.linkedOrConsumed)
 203             throw new IllegalStateException(MSG_STREAM_LINKED);
 204         previousStage.linkedOrConsumed = true;
 205         previousStage.nextStage = this;
 206 
 207         this.previousStage = previousStage;
 208         this.sourceOrOpFlags = opFlags & StreamOpFlag.OP_MASK;
 209         this.combinedFlags = StreamOpFlag.combineOpFlags(opFlags, previousStage.combinedFlags);
 210         this.sourceStage = previousStage.sourceStage;
 211         if (opIsStateful())
 212             sourceStage.sourceAnyStateful = true;
 213         this.depth = previousStage.depth + 1;
 214     }
 215 
 216 
 217     // Terminal evaluation methods
 218 
 219     /**
 220      * Evaluate the pipeline with a terminal operation to produce a result.
 221      *
 222      * @param <R> the type of result
 223      * @param terminalOp the terminal operation to be applied to the pipeline.
 224      * @return the result
 225      */
 226     final <R> R evaluate(TerminalOp<E_OUT, R> terminalOp) {
 227         assert getOutputShape() == terminalOp.inputShape();
 228         if (linkedOrConsumed)
 229             throw new IllegalStateException(MSG_STREAM_LINKED);
 230         linkedOrConsumed = true;
 231 
 232         return isParallel()
 233                ? terminalOp.evaluateParallel(this, sourceSpliterator(terminalOp.getOpFlags()))
 234                : terminalOp.evaluateSequential(this, sourceSpliterator(terminalOp.getOpFlags()));
 235     }
 236 
 237     /**
 238      * Collect the elements output from the pipeline stage.
 239      *
 240      * @param generator the array generator to be used to create array instances
 241      * @return a flat array-backed Node that holds the collected output elements
 242      */
 243     @SuppressWarnings("unchecked")
 244     final Node<E_OUT> evaluateToArrayNode(IntFunction<E_OUT[]> generator) {
 245         if (linkedOrConsumed)
 246             throw new IllegalStateException(MSG_STREAM_LINKED);
 247         linkedOrConsumed = true;
 248 
 249         // If the last intermediate operation is stateful then
 250         // evaluate directly to avoid an extra collection step
 251         if (isParallel() && previousStage != null && opIsStateful()) {
 252             return opEvaluateParallel(previousStage, previousStage.sourceSpliterator(0), generator);
 253         }
 254         else {
 255             return evaluate(sourceSpliterator(0), true, generator);
 256         }
 257     }
 258 
 259     /**
 260      * Gets the source stage spliterator if this pipeline stage is the source
 261      * stage.  The pipeline is consumed after this method is called and
 262      * returns successfully.
 263      *
 264      * @return the source stage spliterator
 265      * @throws IllegalStateException if this pipeline stage is not the source
 266      *         stage.
 267      */
 268     @SuppressWarnings("unchecked")
 269     final Spliterator<E_OUT> sourceStageSpliterator() {
 270         if (this != sourceStage)
 271             throw new IllegalStateException();
 272 
 273         if (linkedOrConsumed)
 274             throw new IllegalStateException(MSG_STREAM_LINKED);
 275         linkedOrConsumed = true;
 276 
 277         if (sourceStage.sourceSpliterator != null) {
 278             @SuppressWarnings("unchecked")
 279             Spliterator<E_OUT> s = sourceStage.sourceSpliterator;
 280             sourceStage.sourceSpliterator = null;
 281             return s;
 282         }
 283         else if (sourceStage.sourceSupplier != null) {
 284             @SuppressWarnings("unchecked")
 285             Spliterator<E_OUT> s = (Spliterator<E_OUT>) sourceStage.sourceSupplier.get();
 286             sourceStage.sourceSupplier = null;
 287             return s;
 288         }
 289         else {
 290             throw new IllegalStateException(MSG_CONSUMED);
 291         }
 292     }
 293 
 294     // BaseStream
 295 
 296     @Override
 297     @SuppressWarnings("unchecked")
 298     public final S sequential() {
 299         sourceStage.parallel = false;
 300         return (S) this;
 301     }
 302 
 303     @Override
 304     @SuppressWarnings("unchecked")
 305     public final S parallel() {
 306         sourceStage.parallel = true;
 307         return (S) this;
 308     }
 309 
 310     @Override
 311     public void close() {
 312         linkedOrConsumed = true;
 313         sourceSupplier = null;
 314         sourceSpliterator = null;
 315         if (sourceStage.sourceCloseAction != null) {
 316             Runnable closeAction = sourceStage.sourceCloseAction;
 317             sourceStage.sourceCloseAction = null;
 318             closeAction.run();
 319         }
 320     }
 321 
 322     @Override
 323     @SuppressWarnings("unchecked")
 324     public S onClose(Runnable closeHandler) {
 325         Runnable existingHandler = sourceStage.sourceCloseAction;
 326         sourceStage.sourceCloseAction =
 327                 (existingHandler == null)
 328                 ? closeHandler
 329                 : Streams.composeWithExceptions(existingHandler, closeHandler);
 330         return (S) this;
 331     }
 332 
 333     // Primitive specialization use co-variant overrides, hence is not final
 334     @Override
 335     @SuppressWarnings("unchecked")
 336     public Spliterator<E_OUT> spliterator() {
 337         if (linkedOrConsumed)
 338             throw new IllegalStateException(MSG_STREAM_LINKED);
 339         linkedOrConsumed = true;
 340 
 341         if (this == sourceStage) {
 342             if (sourceStage.sourceSpliterator != null) {
 343                 @SuppressWarnings("unchecked")
 344                 Spliterator<E_OUT> s = (Spliterator<E_OUT>) sourceStage.sourceSpliterator;
 345                 sourceStage.sourceSpliterator = null;
 346                 return s;
 347             }
 348             else if (sourceStage.sourceSupplier != null) {
 349                 @SuppressWarnings("unchecked")
 350                 Supplier<Spliterator<E_OUT>> s = (Supplier<Spliterator<E_OUT>>) sourceStage.sourceSupplier;
 351                 sourceStage.sourceSupplier = null;
 352                 return lazySpliterator(s);
 353             }
 354             else {
 355                 throw new IllegalStateException(MSG_CONSUMED);
 356             }
 357         }
 358         else {
 359             return wrap(this, () -> sourceSpliterator(0), isParallel());
 360         }
 361     }
 362 
 363     @Override
 364     public final boolean isParallel() {
 365         return sourceStage.parallel;
 366     }
 367 
 368 
 369     /**
 370      * Returns the composition of stream flags of the stream source and all
 371      * intermediate operations.
 372      *
 373      * @return the composition of stream flags of the stream source and all
 374      *         intermediate operations
 375      * @see StreamOpFlag
 376      */
 377     final int getStreamFlags() {
 378         return StreamOpFlag.toStreamFlags(combinedFlags);
 379     }
 380 
 381     /**
 382      * Prepare the pipeline for a parallel execution.  As the pipeline is built,
 383      * the flags and depth indicators are set up for a sequential execution.
 384      * If the execution is parallel, and there are any stateful operations, then
 385      * some of these need to be adjusted, as well as adjusting for flags from
 386      * the terminal operation (such as back-propagating UNORDERED).
 387      * Need not be called for a sequential execution.
 388      *
 389      * @param terminalFlags Operation flags for the terminal operation
 390      */
 391     private void parallelPrepare(int terminalFlags) {
 392         @SuppressWarnings("rawtypes")
 393         AbstractPipeline backPropagationHead = sourceStage;
 394         if (sourceStage.sourceAnyStateful) {
 395             int depth = 1;
 396             for (  @SuppressWarnings("rawtypes") AbstractPipeline u = sourceStage, p = sourceStage.nextStage;
 397                  p != null;
 398                  u = p, p = p.nextStage) {
 399                 int thisOpFlags = p.sourceOrOpFlags;
 400                 if (p.opIsStateful()) {
 401                     // If the stateful operation is a short-circuit operation
 402                     // then move the back propagation head forwards
 403                     // NOTE: there are no size-injecting ops
 404                     if (StreamOpFlag.SHORT_CIRCUIT.isKnown(thisOpFlags)) {
 405                         backPropagationHead = p;
 406                         // Clear the short circuit flag for next pipeline stage
 407                         // This stage encapsulates short-circuiting, the next
 408                         // stage may not have any short-circuit operations, and
 409                         // if so spliterator.forEachRemaining should be be used
 410                         // for traversal
 411                         thisOpFlags = thisOpFlags & ~StreamOpFlag.IS_SHORT_CIRCUIT;
 412                     }
 413 
 414                     depth = 0;
 415                     // The following injects size, it is equivalent to:
 416                     // StreamOpFlag.combineOpFlags(StreamOpFlag.IS_SIZED, p.combinedFlags);
 417                     thisOpFlags = (thisOpFlags & ~StreamOpFlag.NOT_SIZED) | StreamOpFlag.IS_SIZED;
 418                 }
 419                 p.depth = depth++;
 420                 p.combinedFlags = StreamOpFlag.combineOpFlags(thisOpFlags, u.combinedFlags);
 421             }
 422         }
 423 
 424         // Apply the upstream terminal flags
 425         if (terminalFlags != 0) {
 426             int upstreamTerminalFlags = terminalFlags & StreamOpFlag.UPSTREAM_TERMINAL_OP_MASK;
 427             for ( @SuppressWarnings("rawtypes") AbstractPipeline p = backPropagationHead; p.nextStage != null; p = p.nextStage) {
 428                 p.combinedFlags = StreamOpFlag.combineOpFlags(upstreamTerminalFlags, p.combinedFlags);
 429             }
 430 
 431             combinedFlags = StreamOpFlag.combineOpFlags(terminalFlags, combinedFlags);
 432         }
 433     }
 434 
 435     /**
 436      * Get the source spliterator for this pipeline stage.  For a sequential or
 437      * stateless parallel pipeline, this is the source spliterator.  For a
 438      * stateful parallel pipeline, this is a spliterator describing the results
 439      * of all computations up to and including the most recent stateful
 440      * operation.
 441      */
 442     @SuppressWarnings("unchecked")
 443     private Spliterator<?> sourceSpliterator(int terminalFlags) {
 444         // Get the source spliterator of the pipeline
 445         Spliterator<?> spliterator = null;
 446         if (sourceStage.sourceSpliterator != null) {
 447             spliterator = sourceStage.sourceSpliterator;
 448             sourceStage.sourceSpliterator = null;
 449         }
 450         else if (sourceStage.sourceSupplier != null) {
 451             spliterator = (Spliterator<?>) sourceStage.sourceSupplier.get();
 452             sourceStage.sourceSupplier = null;
 453         }
 454         else {
 455             throw new IllegalStateException(MSG_CONSUMED);
 456         }
 457 
 458         if (isParallel()) {
 459             // @@@ Merge parallelPrepare with the loop below and use the
 460             //     spliterator characteristics to determine if SIZED
 461             //     should be injected
 462             parallelPrepare(terminalFlags);
 463 
 464             // Adapt the source spliterator, evaluating each stateful op
 465             // in the pipeline up to and including this pipeline stage
 466             for ( @SuppressWarnings("rawtypes") AbstractPipeline u = sourceStage, p = sourceStage.nextStage, e = this;
 467                  u != e;
 468                  u = p, p = p.nextStage) {
 469 
 470                 if (p.opIsStateful()) {
 471                     spliterator = p.opEvaluateParallelLazy(u, spliterator);
 472                 }
 473             }
 474         }
 475         else if (terminalFlags != 0)  {
 476             combinedFlags = StreamOpFlag.combineOpFlags(terminalFlags, combinedFlags);
 477         }
 478 
 479         return spliterator;
 480     }
 481 
 482 
 483     // PipelineHelper
 484 
 485     @Override
 486     final StreamShape getSourceShape() {
 487         @SuppressWarnings("rawtypes")
 488         AbstractPipeline p = AbstractPipeline.this;
 489         while (p.depth > 0) {
 490             p = p.previousStage;
 491         }
 492         return p.getOutputShape();
 493     }
 494 
 495     @Override
 496     final <P_IN> long exactOutputSizeIfKnown(Spliterator<P_IN> spliterator) {
 497         return StreamOpFlag.SIZED.isKnown(getStreamAndOpFlags()) ? spliterator.getExactSizeIfKnown() : -1;
 498     }
 499 
 500     @Override
 501     final <P_IN, S extends Sink<E_OUT>> S wrapAndCopyInto(S sink, Spliterator<P_IN> spliterator) {
 502         copyInto(wrapSink(Objects.requireNonNull(sink)), spliterator);
 503         return sink;
 504     }
 505 
 506     @Override
 507     final <P_IN> void copyInto(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator) {
 508         Objects.requireNonNull(wrappedSink);
 509 
 510         if (!StreamOpFlag.SHORT_CIRCUIT.isKnown(getStreamAndOpFlags())) {
 511             wrappedSink.begin(spliterator.getExactSizeIfKnown());
 512             spliterator.forEachRemaining(wrappedSink);
 513             wrappedSink.end();
 514         }
 515         else {
 516             copyIntoWithCancel(wrappedSink, spliterator);
 517         }
 518     }
 519 
 520     @Override
 521     @SuppressWarnings("unchecked")
 522     final <P_IN> void copyIntoWithCancel(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator) {
 523         @SuppressWarnings({"rawtypes","unchecked"})
 524         AbstractPipeline p = AbstractPipeline.this;
 525         while (p.depth > 0) {
 526             p = p.previousStage;
 527         }
 528         wrappedSink.begin(spliterator.getExactSizeIfKnown());
 529         p.forEachWithCancel(spliterator, wrappedSink);
 530         wrappedSink.end();
 531     }
 532 
 533     @Override
 534     final int getStreamAndOpFlags() {
 535         return combinedFlags;
 536     }
 537 
 538     final boolean isOrdered() {
 539         return StreamOpFlag.ORDERED.isKnown(combinedFlags);
 540     }
 541 
 542     @Override
 543     @SuppressWarnings("unchecked")
 544     final <P_IN> Sink<P_IN> wrapSink(Sink<E_OUT> sink) {
 545         Objects.requireNonNull(sink);
 546 
 547         for ( @SuppressWarnings("rawtypes") AbstractPipeline p=AbstractPipeline.this; p.depth > 0; p=p.previousStage) {
 548             sink = p.opWrapSink(p.previousStage.combinedFlags, sink);
 549         }
 550         return (Sink<P_IN>) sink;
 551     }
 552 
 553     @Override
 554     @SuppressWarnings("unchecked")
 555     final <P_IN> Spliterator<E_OUT> wrapSpliterator(Spliterator<P_IN> sourceSpliterator) {
 556         if (depth == 0) {
 557             return (Spliterator<E_OUT>) sourceSpliterator;
 558         }
 559         else {
 560             return wrap(this, () -> sourceSpliterator, isParallel());
 561         }
 562     }
 563 
 564     @Override
 565     @SuppressWarnings("unchecked")
 566     final <P_IN> Node<E_OUT> evaluate(Spliterator<P_IN> spliterator,
 567                                       boolean flatten,
 568                                       IntFunction<E_OUT[]> generator) {
 569         if (isParallel()) {
 570             // @@@ Optimize if op of this pipeline stage is a stateful op
 571             return evaluateToNode(this, spliterator, flatten, generator);
 572         }
 573         else {
 574             Node.Builder<E_OUT> nb = makeNodeBuilder(
 575                     exactOutputSizeIfKnown(spliterator), generator);
 576             return wrapAndCopyInto(nb, spliterator).build();
 577         }
 578     }
 579 
 580 
 581     // Shape-specific abstract methods, implemented by XxxPipeline classes
 582 
 583     /**
 584      * Get the output shape of the pipeline.  If the pipeline is the head,
 585      * then it's output shape corresponds to the shape of the source.
 586      * Otherwise, it's output shape corresponds to the output shape of the
 587      * associated operation.
 588      *
 589      * @return the output shape
 590      */
 591     abstract StreamShape getOutputShape();
 592 
 593     /**
 594      * Collect elements output from a pipeline into a Node that holds elements
 595      * of this shape.
 596      *
 597      * @param helper the pipeline helper describing the pipeline stages
 598      * @param spliterator the source spliterator
 599      * @param flattenTree true if the returned node should be flattened
 600      * @param generator the array generator
 601      * @return a Node holding the output of the pipeline
 602      */
 603     abstract <P_IN> Node<E_OUT> evaluateToNode(PipelineHelper<E_OUT> helper,
 604                                                Spliterator<P_IN> spliterator,
 605                                                boolean flattenTree,
 606                                                IntFunction<E_OUT[]> generator);
 607 
 608     /**
 609      * Create a spliterator that wraps a source spliterator, compatible with
 610      * this stream shape, and operations associated with a {@link
 611      * PipelineHelper}.
 612      *
 613      * @param ph the pipeline helper describing the pipeline stages
 614      * @param supplier the supplier of a spliterator
 615      * @return a wrapping spliterator compatible with this shape
 616      */
 617     abstract <P_IN> Spliterator<E_OUT> wrap(PipelineHelper<E_OUT> ph,
 618                                             Supplier<Spliterator<P_IN>> supplier,
 619                                             boolean isParallel);
 620 
 621     /**
 622      * Create a lazy spliterator that wraps and obtains the supplied the
 623      * spliterator when a method is invoked on the lazy spliterator.
 624      * @param supplier the supplier of a spliterator
 625      */
 626     abstract Spliterator<E_OUT> lazySpliterator(Supplier<? extends Spliterator<E_OUT>> supplier);
 627 
 628     /**
 629      * Traverse the elements of a spliterator compatible with this stream shape,
 630      * pushing those elements into a sink.   If the sink requests cancellation,
 631      * no further elements will be pulled or pushed.
 632      *
 633      * @param spliterator the spliterator to pull elements from
 634      * @param sink the sink to push elements to
 635      */
 636     abstract void forEachWithCancel(Spliterator<E_OUT> spliterator, Sink<E_OUT> sink);
 637 
 638     /**
 639      * Make a node builder compatible with this stream shape.
 640      *
 641      * @param exactSizeIfKnown if {@literal >=0}, then a node builder will be
 642      * created that has a fixed capacity of at most sizeIfKnown elements. If
 643      * {@literal < 0}, then the node builder has an unfixed capacity. A fixed
 644      * capacity node builder will throw exceptions if an element is added after
 645      * builder has reached capacity, or is built before the builder has reached
 646      * capacity.
 647      *
 648      * @param generator the array generator to be used to create instances of a
 649      * T[] array. For implementations supporting primitive nodes, this parameter
 650      * may be ignored.
 651      * @return a node builder
 652      */
 653     @Override
 654     abstract Node.Builder<E_OUT> makeNodeBuilder(long exactSizeIfKnown,
 655                                                  IntFunction<E_OUT[]> generator);
 656 
 657 
 658     // Op-specific abstract methods, implemented by the operation class
 659 
 660     /**
 661      * Returns whether this operation is stateful or not.  If it is stateful,
 662      * then the method
 663      * {@link #opEvaluateParallel(PipelineHelper, java.util.Spliterator, java.util.function.IntFunction)}
 664      * must be overridden.
 665      *
 666      * @return {@code true} if this operation is stateful
 667      */
 668     abstract boolean opIsStateful();
 669 
 670     /**
 671      * Accepts a {@code Sink} which will receive the results of this operation,
 672      * and return a {@code Sink} which accepts elements of the input type of
 673      * this operation and which performs the operation, passing the results to
 674      * the provided {@code Sink}.
 675      *
 676      * @apiNote
 677      * The implementation may use the {@code flags} parameter to optimize the
 678      * sink wrapping.  For example, if the input is already {@code DISTINCT},
 679      * the implementation for the {@code Stream#distinct()} method could just
 680      * return the sink it was passed.
 681      *
 682      * @param flags The combined stream and operation flags up to, but not
 683      *        including, this operation
 684      * @param sink sink to which elements should be sent after processing
 685      * @return a sink which accepts elements, perform the operation upon
 686      *         each element, and passes the results (if any) to the provided
 687      *         {@code Sink}.
 688      */
 689     abstract Sink<E_IN> opWrapSink(int flags, Sink<E_OUT> sink);
 690 
 691     /**
 692      * Performs a parallel evaluation of the operation using the specified
 693      * {@code PipelineHelper} which describes the upstream intermediate
 694      * operations.  Only called on stateful operations.  If {@link
 695      * #opIsStateful()} returns true then implementations must override the
 696      * default implementation.
 697      *
 698      * @implSpec The default implementation always throw
 699      * {@code UnsupportedOperationException}.
 700      *
 701      * @param helper the pipeline helper describing the pipeline stages
 702      * @param spliterator the source {@code Spliterator}
 703      * @param generator the array generator
 704      * @return a {@code Node} describing the result of the evaluation
 705      */
 706     <P_IN> Node<E_OUT> opEvaluateParallel(PipelineHelper<E_OUT> helper,
 707                                           Spliterator<P_IN> spliterator,
 708                                           IntFunction<E_OUT[]> generator) {
 709         throw new UnsupportedOperationException("Parallel evaluation is not supported");
 710     }
 711 
 712     /**
 713      * Returns a {@code Spliterator} describing a parallel evaluation of the
 714      * operation, using the specified {@code PipelineHelper} which describes the
 715      * upstream intermediate operations.  Only called on stateful operations.
 716      * It is not necessary (though acceptable) to do a full computation of the
 717      * result here; it is preferable, if possible, to describe the result via a
 718      * lazily evaluated spliterator.
 719      *
 720      * @implSpec The default implementation behaves as if:
 721      * <pre>{@code
 722      *     return evaluateParallel(helper, i -> (E_OUT[]) new
 723      * Object[i]).spliterator();
 724      * }</pre>
 725      * and is suitable for implementations that cannot do better than a full
 726      * synchronous evaluation.
 727      *
 728      * @param helper the pipeline helper
 729      * @param spliterator the source {@code Spliterator}
 730      * @return a {@code Spliterator} describing the result of the evaluation
 731      */
 732     @SuppressWarnings("unchecked")
 733     <P_IN> Spliterator<E_OUT> opEvaluateParallelLazy(PipelineHelper<E_OUT> helper,
 734                                                      Spliterator<P_IN> spliterator) {
 735         return opEvaluateParallel(helper, spliterator, i -> (E_OUT[]) new Object[i]).spliterator();
 736     }
 737 }