1 /*
   2  * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 package java.util.stream;
  26 
  27 import java.util.DoubleSummaryStatistics;
  28 import java.util.Objects;
  29 import java.util.OptionalDouble;
  30 import java.util.PrimitiveIterator;
  31 import java.util.Spliterator;
  32 import java.util.Spliterators;
  33 import java.util.function.BiConsumer;
  34 import java.util.function.BinaryOperator;
  35 import java.util.function.DoubleBinaryOperator;
  36 import java.util.function.DoubleConsumer;
  37 import java.util.function.DoubleFunction;
  38 import java.util.function.DoublePredicate;
  39 import java.util.function.DoubleToIntFunction;
  40 import java.util.function.DoubleToLongFunction;
  41 import java.util.function.DoubleUnaryOperator;
  42 import java.util.function.IntFunction;
  43 import java.util.function.ObjDoubleConsumer;
  44 import java.util.function.Supplier;
  45 
  46 /**
  47  * Abstract base class for an intermediate pipeline stage or pipeline source
  48  * stage implementing whose elements are of type {@code double}.
  49  *
  50  * @param <E_IN> type of elements in the upstream source
  51  *
  52  * @since 1.8
  53  */
  54 abstract class DoublePipeline<E_IN>
  55         extends AbstractPipeline<E_IN, Double, DoubleStream>
  56         implements DoubleStream {
  57 
  58     /**
  59      * Constructor for the head of a stream pipeline.
  60      *
  61      * @param source {@code Supplier<Spliterator>} describing the stream source
  62      * @param sourceFlags the source flags for the stream source, described in
  63      * {@link StreamOpFlag}
  64      */
  65     DoublePipeline(Supplier<? extends Spliterator<Double>> source,
  66                    int sourceFlags, boolean parallel) {
  67         super(source, sourceFlags, parallel);
  68     }
  69 
  70     /**
  71      * Constructor for the head of a stream pipeline.
  72      *
  73      * @param source {@code Spliterator} describing the stream source
  74      * @param sourceFlags the source flags for the stream source, described in
  75      * {@link StreamOpFlag}
  76      */
  77     DoublePipeline(Spliterator<Double> source,
  78                    int sourceFlags, boolean parallel) {
  79         super(source, sourceFlags, parallel);
  80     }
  81 
  82     /**
  83      * Constructor for appending an intermediate operation onto an existing
  84      * pipeline.
  85      *
  86      * @param upstream the upstream element source.
  87      * @param opFlags the operation flags
  88      */
  89     DoublePipeline(AbstractPipeline<?, E_IN, ?> upstream, int opFlags) {
  90         super(upstream, opFlags);
  91     }
  92 
  93     /**
  94      * Adapt a {@code Sink<Double> to a {@code DoubleConsumer}, ideally simply
  95      * by casting.
  96      */
  97     private static DoubleConsumer adapt(Sink<Double> sink) {
  98         if (sink instanceof DoubleConsumer) {
  99             return (DoubleConsumer) sink;
 100         } else {
 101             if (Tripwire.ENABLED)
 102                 Tripwire.trip(AbstractPipeline.class,
 103                               "using DoubleStream.adapt(Sink<Double> s)");
 104             return sink::accept;
 105         }
 106     }
 107 
 108     /**
 109      * Adapt a {@code Spliterator<Double>} to a {@code Spliterator.OfDouble}.
 110      *
 111      * @implNote
 112      * The implementation attempts to cast to a Spliterator.OfDouble, and throws
 113      * an exception if this cast is not possible.
 114      */
 115     private static Spliterator.OfDouble adapt(Spliterator<Double> s) {
 116         if (s instanceof Spliterator.OfDouble) {
 117             return (Spliterator.OfDouble) s;
 118         } else {
 119             if (Tripwire.ENABLED)
 120                 Tripwire.trip(AbstractPipeline.class,
 121                               "using DoubleStream.adapt(Spliterator<Double> s)");
 122             throw new UnsupportedOperationException("DoubleStream.adapt(Spliterator<Double> s)");
 123         }
 124     }
 125 
 126 
 127     // Shape-specific methods
 128 
 129     @Override
 130     final StreamShape getOutputShape() {
 131         return StreamShape.DOUBLE_VALUE;
 132     }
 133 
 134     @Override
 135     final <P_IN> Node<Double> evaluateToNode(PipelineHelper<Double> helper,
 136                                              Spliterator<P_IN> spliterator,
 137                                              boolean flattenTree,
 138                                              IntFunction<Double[]> generator) {
 139         return Nodes.collectDouble(helper, spliterator, flattenTree);
 140     }
 141 
 142     @Override
 143     final <P_IN> Spliterator<Double> wrap(PipelineHelper<Double> ph,
 144                                           Supplier<Spliterator<P_IN>> supplier,
 145                                           boolean isParallel) {
 146         return new StreamSpliterators.DoubleWrappingSpliterator<>(ph, supplier, isParallel);
 147     }
 148 
 149     @Override
 150     @SuppressWarnings("unchecked")
 151     final Spliterator.OfDouble lazySpliterator(Supplier<? extends Spliterator<Double>> supplier) {
 152         return new StreamSpliterators.DelegatingSpliterator.OfDouble((Supplier<Spliterator.OfDouble>) supplier);
 153     }
 154 
 155     @Override
 156     final void forEachWithCancel(Spliterator<Double> spliterator, Sink<Double> sink) {
 157         Spliterator.OfDouble spl = adapt(spliterator);
 158         DoubleConsumer adaptedSink = adapt(sink);
 159         do { } while (!sink.cancellationRequested() && spl.tryAdvance(adaptedSink));
 160     }
 161 
 162     @Override
 163     final  Node.Builder<Double> makeNodeBuilder(long exactSizeIfKnown, IntFunction<Double[]> generator) {
 164         return Nodes.doubleBuilder(exactSizeIfKnown);
 165     }
 166 
 167 
 168     // DoubleStream
 169 
 170     @Override
 171     public final PrimitiveIterator.OfDouble iterator() {
 172         return Spliterators.iterator(spliterator());
 173     }
 174 
 175     @Override
 176     public final Spliterator.OfDouble spliterator() {
 177         return adapt(super.spliterator());
 178     }
 179 
 180     // Stateless intermediate ops from DoubleStream
 181 
 182     @Override
 183     public final Stream<Double> boxed() {
 184         return mapToObj(Double::valueOf);
 185     }
 186 
 187     @Override
 188     public final DoubleStream map(DoubleUnaryOperator mapper) {
 189         Objects.requireNonNull(mapper);
 190         return new StatelessOp<Double>(this, StreamShape.DOUBLE_VALUE,
 191                                        StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
 192             @Override
 193             Sink<Double> opWrapSink(int flags, Sink<Double> sink) {
 194                 return new Sink.ChainedDouble<Double>(sink) {
 195                     @Override
 196                     public void accept(double t) {
 197                         downstream.accept(mapper.applyAsDouble(t));
 198                     }
 199                 };
 200             }
 201         };
 202     }
 203 
 204     @Override
 205     public final <U> Stream<U> mapToObj(DoubleFunction<? extends U> mapper) {
 206         Objects.requireNonNull(mapper);
 207         return new ReferencePipeline.StatelessOp<Double, U>(this, StreamShape.DOUBLE_VALUE,
 208                                                             StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
 209             @Override
 210             Sink<Double> opWrapSink(int flags, Sink<U> sink) {
 211                 return new Sink.ChainedDouble<U>(sink) {
 212                     @Override
 213                     public void accept(double t) {
 214                         downstream.accept(mapper.apply(t));
 215                     }
 216                 };
 217             }
 218         };
 219     }
 220 
 221     @Override
 222     public final IntStream mapToInt(DoubleToIntFunction mapper) {
 223         Objects.requireNonNull(mapper);
 224         return new IntPipeline.StatelessOp<Double>(this, StreamShape.DOUBLE_VALUE,
 225                                                    StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
 226             @Override
 227             Sink<Double> opWrapSink(int flags, Sink<Integer> sink) {
 228                 return new Sink.ChainedDouble<Integer>(sink) {
 229                     @Override
 230                     public void accept(double t) {
 231                         downstream.accept(mapper.applyAsInt(t));
 232                     }
 233                 };
 234             }
 235         };
 236     }
 237 
 238     @Override
 239     public final LongStream mapToLong(DoubleToLongFunction mapper) {
 240         Objects.requireNonNull(mapper);
 241         return new LongPipeline.StatelessOp<Double>(this, StreamShape.DOUBLE_VALUE,
 242                                                     StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
 243             @Override
 244             Sink<Double> opWrapSink(int flags, Sink<Long> sink) {
 245                 return new Sink.ChainedDouble<Long>(sink) {
 246                     @Override
 247                     public void accept(double t) {
 248                         downstream.accept(mapper.applyAsLong(t));
 249                     }
 250                 };
 251             }
 252         };
 253     }
 254 
 255     @Override
 256     public final DoubleStream flatMap(DoubleFunction<? extends DoubleStream> mapper) {
 257         return new StatelessOp<Double>(this, StreamShape.DOUBLE_VALUE,
 258                                         StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) {
 259             @Override
 260             Sink<Double> opWrapSink(int flags, Sink<Double> sink) {
 261                 return new Sink.ChainedDouble<Double>(sink) {
 262                     @Override
 263                     public void begin(long size) {
 264                         downstream.begin(-1);
 265                     }
 266 
 267                     @Override
 268                     public void accept(double t) {
 269                         // We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it
 270                         DoubleStream result = mapper.apply(t);
 271                         if (result != null)
 272                             result.sequential().forEach(i -> downstream.accept(i));
 273                     }
 274                 };
 275             }
 276         };
 277     }
 278 
 279     @Override
 280     public DoubleStream unordered() {
 281         if (!isOrdered())
 282             return this;
 283         return new StatelessOp<Double>(this, StreamShape.DOUBLE_VALUE, StreamOpFlag.NOT_ORDERED) {
 284             @Override
 285             Sink<Double> opWrapSink(int flags, Sink<Double> sink) {
 286                 return sink;
 287             }
 288         };
 289     }
 290 
 291     @Override
 292     public final DoubleStream filter(DoublePredicate predicate) {
 293         Objects.requireNonNull(predicate);
 294         return new StatelessOp<Double>(this, StreamShape.DOUBLE_VALUE,
 295                                        StreamOpFlag.NOT_SIZED) {
 296             @Override
 297             Sink<Double> opWrapSink(int flags, Sink<Double> sink) {
 298                 return new Sink.ChainedDouble<Double>(sink) {
 299                     @Override
 300                     public void begin(long size) {
 301                         downstream.begin(-1);
 302                     }
 303 
 304                     @Override
 305                     public void accept(double t) {
 306                         if (predicate.test(t))
 307                             downstream.accept(t);
 308                     }
 309                 };
 310             }
 311         };
 312     }
 313 
 314     @Override
 315     public final DoubleStream peek(DoubleConsumer consumer) {
 316         Objects.requireNonNull(consumer);
 317         return new StatelessOp<Double>(this, StreamShape.DOUBLE_VALUE,
 318                                        0) {
 319             @Override
 320             Sink<Double> opWrapSink(int flags, Sink<Double> sink) {
 321                 return new Sink.ChainedDouble<Double>(sink) {
 322                     @Override
 323                     public void accept(double t) {
 324                         consumer.accept(t);
 325                         downstream.accept(t);
 326                     }
 327                 };
 328             }
 329         };
 330     }
 331 
 332     // Stateful intermediate ops from DoubleStream
 333 
 334     @Override
 335     public final DoubleStream limit(long maxSize) {
 336         if (maxSize < 0)
 337             throw new IllegalArgumentException(Long.toString(maxSize));
 338         return SliceOps.makeDouble(this, (long) 0, maxSize);
 339     }
 340 
 341     @Override
 342     public final DoubleStream substream(long startingOffset) {
 343         if (startingOffset < 0)
 344             throw new IllegalArgumentException(Long.toString(startingOffset));
 345         if (startingOffset == 0)
 346             return this;
 347         else {
 348             long limit = -1;
 349             return SliceOps.makeDouble(this, startingOffset, limit);
 350         }
 351     }
 352 
 353     @Override
 354     public final DoubleStream substream(long startingOffset, long endingOffset) {
 355         if (startingOffset < 0 || endingOffset < startingOffset)
 356             throw new IllegalArgumentException(String.format("substream(%d, %d)", startingOffset, endingOffset));
 357         return SliceOps.makeDouble(this, startingOffset, endingOffset - startingOffset);
 358     }
 359 
 360     @Override
 361     public final DoubleStream sorted() {
 362         return SortedOps.makeDouble(this);
 363     }
 364 
 365     @Override
 366     public final DoubleStream distinct() {
 367         // While functional and quick to implement, this approach is not very efficient.
 368         // An efficient version requires a double-specific map/set implementation.
 369         return boxed().distinct().mapToDouble(i -> (double) i);
 370     }
 371 
 372     // Terminal ops from DoubleStream
 373 
 374     @Override
 375     public void forEach(DoubleConsumer consumer) {
 376         evaluate(ForEachOps.makeDouble(consumer, false));
 377     }
 378 
 379     @Override
 380     public void forEachOrdered(DoubleConsumer consumer) {
 381         evaluate(ForEachOps.makeDouble(consumer, true));
 382     }
 383 
 384     @Override
 385     public final double sum() {
 386         // TODO: better algorithm to compensate for errors
 387         return reduce(0.0, Double::sum);
 388     }
 389 
 390     @Override
 391     public final OptionalDouble min() {
 392         return reduce(Math::min);
 393     }
 394 
 395     @Override
 396     public final OptionalDouble max() {
 397         return reduce(Math::max);
 398     }
 399 
 400     @Override
 401     public final OptionalDouble average() {
 402         double[] avg = collect(() -> new double[2],
 403                                (ll, i) -> {
 404                                    ll[0]++;
 405                                    ll[1] += i;
 406                                },
 407                                (ll, rr) -> {
 408                                    ll[0] += rr[0];
 409                                    ll[1] += rr[1];
 410                                });
 411         return avg[0] > 0
 412                ? OptionalDouble.of(avg[1] / avg[0])
 413                : OptionalDouble.empty();
 414     }
 415 
 416     @Override
 417     public final long count() {
 418         return mapToObj(e -> null).mapToInt(e -> 1).sum();
 419     }
 420 
 421     @Override
 422     public final DoubleSummaryStatistics summaryStatistics() {
 423         return collect(DoubleSummaryStatistics::new, DoubleSummaryStatistics::accept,
 424                        DoubleSummaryStatistics::combine);
 425     }
 426 
 427     @Override
 428     public final double reduce(double identity, DoubleBinaryOperator op) {
 429         return evaluate(ReduceOps.makeDouble(identity, op));
 430     }
 431 
 432     @Override
 433     public final OptionalDouble reduce(DoubleBinaryOperator op) {
 434         return evaluate(ReduceOps.makeDouble(op));
 435     }
 436 
 437     @Override
 438     public final <R> R collect(Supplier<R> resultFactory,
 439                                ObjDoubleConsumer<R> accumulator,
 440                                BiConsumer<R, R> combiner) {
 441         BinaryOperator<R> operator = (left, right) -> {
 442             combiner.accept(left, right);
 443             return left;
 444         };
 445         return evaluate(ReduceOps.makeDouble(resultFactory, accumulator, operator));
 446     }
 447 
 448     @Override
 449     public final boolean anyMatch(DoublePredicate predicate) {
 450         return evaluate(MatchOps.makeDouble(predicate, MatchOps.MatchKind.ANY));
 451     }
 452 
 453     @Override
 454     public final boolean allMatch(DoublePredicate predicate) {
 455         return evaluate(MatchOps.makeDouble(predicate, MatchOps.MatchKind.ALL));
 456     }
 457 
 458     @Override
 459     public final boolean noneMatch(DoublePredicate predicate) {
 460         return evaluate(MatchOps.makeDouble(predicate, MatchOps.MatchKind.NONE));
 461     }
 462 
 463     @Override
 464     public final OptionalDouble findFirst() {
 465         return evaluate(FindOps.makeDouble(true));
 466     }
 467 
 468     @Override
 469     public final OptionalDouble findAny() {
 470         return evaluate(FindOps.makeDouble(false));
 471     }
 472 
 473     @Override
 474     public final double[] toArray() {
 475         return Nodes.flattenDouble((Node.OfDouble) evaluateToArrayNode(Double[]::new))
 476                         .asPrimitiveArray();
 477     }
 478 
 479     //
 480 
 481     /**
 482      * Source stage of a DoubleStream
 483      *
 484      * @param <E_IN> type of elements in the upstream source
 485      */
 486     static class Head<E_IN> extends DoublePipeline<E_IN> {
 487         /**
 488          * Constructor for the source stage of a DoubleStream.
 489          *
 490          * @param source {@code Supplier<Spliterator>} describing the stream
 491          *               source
 492          * @param sourceFlags the source flags for the stream source, described
 493          *                    in {@link StreamOpFlag}
 494          * @param parallel {@code true} if the pipeline is parallel
 495          */
 496         Head(Supplier<? extends Spliterator<Double>> source,
 497              int sourceFlags, boolean parallel) {
 498             super(source, sourceFlags, parallel);
 499         }
 500 
 501         /**
 502          * Constructor for the source stage of a DoubleStream.
 503          *
 504          * @param source {@code Spliterator} describing the stream source
 505          * @param sourceFlags the source flags for the stream source, described
 506          *                    in {@link StreamOpFlag}
 507          * @param parallel {@code true} if the pipeline is parallel
 508          */
 509         Head(Spliterator<Double> source,
 510              int sourceFlags, boolean parallel) {
 511             super(source, sourceFlags, parallel);
 512         }
 513 
 514         @Override
 515         final boolean opIsStateful() {
 516             throw new UnsupportedOperationException();
 517         }
 518 
 519         @Override
 520         final Sink<E_IN> opWrapSink(int flags, Sink<Double> sink) {
 521             throw new UnsupportedOperationException();
 522         }
 523 
 524         // Optimized sequential terminal operations for the head of the pipeline
 525 
 526         @Override
 527         public void forEach(DoubleConsumer consumer) {
 528             if (!isParallel()) {
 529                 adapt(sourceStageSpliterator()).forEachRemaining(consumer);
 530             }
 531             else {
 532                 super.forEach(consumer);
 533             }
 534         }
 535 
 536         @Override
 537         public void forEachOrdered(DoubleConsumer consumer) {
 538             if (!isParallel()) {
 539                 adapt(sourceStageSpliterator()).forEachRemaining(consumer);
 540             }
 541             else {
 542                 super.forEachOrdered(consumer);
 543             }
 544         }
 545 
 546     }
 547 
 548     /**
 549      * Base class for a stateless intermediate stage of a DoubleStream.
 550      *
 551      * @param <E_IN> type of elements in the upstream source
 552      * @since 1.8
 553      */
 554     abstract static class StatelessOp<E_IN> extends DoublePipeline<E_IN> {
 555         /**
 556          * Construct a new DoubleStream by appending a stateless intermediate
 557          * operation to an existing stream.
 558          *
 559          * @param upstream the upstream pipeline stage
 560          * @param inputShape the stream shape for the upstream pipeline stage
 561          * @param opFlags operation flags for the new stage
 562          */
 563         StatelessOp(AbstractPipeline<?, E_IN, ?> upstream,
 564                     StreamShape inputShape,
 565                     int opFlags) {
 566             super(upstream, opFlags);
 567             assert upstream.getOutputShape() == inputShape;
 568         }
 569 
 570         @Override
 571         final boolean opIsStateful() {
 572             return false;
 573         }
 574     }
 575 
 576     /**
 577      * Base class for a stateful intermediate stage of a DoubleStream.
 578      *
 579      * @param <E_IN> type of elements in the upstream source
 580      * @since 1.8
 581      */
 582     abstract static class StatefulOp<E_IN> extends DoublePipeline<E_IN> {
 583         /**
 584          * Construct a new DoubleStream by appending a stateful intermediate
 585          * operation to an existing stream.
 586          *
 587          * @param upstream the upstream pipeline stage
 588          * @param inputShape the stream shape for the upstream pipeline stage
 589          * @param opFlags operation flags for the new stage
 590          */
 591         StatefulOp(AbstractPipeline<?, E_IN, ?> upstream,
 592                    StreamShape inputShape,
 593                    int opFlags) {
 594             super(upstream, opFlags);
 595             assert upstream.getOutputShape() == inputShape;
 596         }
 597 
 598         @Override
 599         final boolean opIsStateful() {
 600             return true;
 601         }
 602 
 603         @Override
 604         abstract <P_IN> Node<Double> opEvaluateParallel(PipelineHelper<Double> helper,
 605                                                         Spliterator<P_IN> spliterator,
 606                                                         IntFunction<Double[]> generator);
 607     }
 608 }