1 /*
   2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "interpreter/templateTable.hpp"
  30 #include "memory/universe.inline.hpp"
  31 #include "oops/methodData.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/sharedRuntime.hpp"
  36 #include "runtime/stubRoutines.hpp"
  37 #include "runtime/synchronizer.hpp"
  38 #include "utilities/macros.hpp"
  39 
  40 #ifndef CC_INTERP
  41 
  42 #define __ _masm->
  43 
  44 // Platform-dependent initialization
  45 
  46 void TemplateTable::pd_initialize() {
  47   // No amd64 specific initialization
  48 }
  49 
  50 // Address computation: local variables
  51 
  52 static inline Address iaddress(int n) {
  53   return Address(r14, Interpreter::local_offset_in_bytes(n));
  54 }
  55 
  56 static inline Address laddress(int n) {
  57   return iaddress(n + 1);
  58 }
  59 
  60 static inline Address faddress(int n) {
  61   return iaddress(n);
  62 }
  63 
  64 static inline Address daddress(int n) {
  65   return laddress(n);
  66 }
  67 
  68 static inline Address aaddress(int n) {
  69   return iaddress(n);
  70 }
  71 
  72 static inline Address iaddress(Register r) {
  73   return Address(r14, r, Address::times_8);
  74 }
  75 
  76 static inline Address laddress(Register r) {
  77   return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1));
  78 }
  79 
  80 static inline Address faddress(Register r) {
  81   return iaddress(r);
  82 }
  83 
  84 static inline Address daddress(Register r) {
  85   return laddress(r);
  86 }
  87 
  88 static inline Address aaddress(Register r) {
  89   return iaddress(r);
  90 }
  91 
  92 static inline Address at_rsp() {
  93   return Address(rsp, 0);
  94 }
  95 
  96 // At top of Java expression stack which may be different than esp().  It
  97 // isn't for category 1 objects.
  98 static inline Address at_tos   () {
  99   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
 100 }
 101 
 102 static inline Address at_tos_p1() {
 103   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
 104 }
 105 
 106 static inline Address at_tos_p2() {
 107   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
 108 }
 109 
 110 static inline Address at_tos_p3() {
 111   return Address(rsp,  Interpreter::expr_offset_in_bytes(3));
 112 }
 113 
 114 // Condition conversion
 115 static Assembler::Condition j_not(TemplateTable::Condition cc) {
 116   switch (cc) {
 117   case TemplateTable::equal        : return Assembler::notEqual;
 118   case TemplateTable::not_equal    : return Assembler::equal;
 119   case TemplateTable::less         : return Assembler::greaterEqual;
 120   case TemplateTable::less_equal   : return Assembler::greater;
 121   case TemplateTable::greater      : return Assembler::lessEqual;
 122   case TemplateTable::greater_equal: return Assembler::less;
 123   }
 124   ShouldNotReachHere();
 125   return Assembler::zero;
 126 }
 127 
 128 
 129 // Miscelaneous helper routines
 130 // Store an oop (or NULL) at the address described by obj.
 131 // If val == noreg this means store a NULL
 132 
 133 static void do_oop_store(InterpreterMacroAssembler* _masm,
 134                          Address obj,
 135                          Register val,
 136                          BarrierSet::Name barrier,
 137                          bool precise) {
 138   assert(val == noreg || val == rax, "parameter is just for looks");
 139   switch (barrier) {
 140 #if INCLUDE_ALL_GCS
 141     case BarrierSet::G1SATBCT:
 142     case BarrierSet::G1SATBCTLogging:
 143       {
 144         // flatten object address if needed
 145         if (obj.index() == noreg && obj.disp() == 0) {
 146           if (obj.base() != rdx) {
 147             __ movq(rdx, obj.base());
 148           }
 149         } else {
 150           __ leaq(rdx, obj);
 151         }
 152         __ g1_write_barrier_pre(rdx /* obj */,
 153                                 rbx /* pre_val */,
 154                                 r15_thread /* thread */,
 155                                 r8  /* tmp */,
 156                                 val != noreg /* tosca_live */,
 157                                 false /* expand_call */);
 158         if (val == noreg) {
 159           __ store_heap_oop_null(Address(rdx, 0));
 160         } else {
 161           // G1 barrier needs uncompressed oop for region cross check.
 162           Register new_val = val;
 163           if (UseCompressedOops) {
 164             new_val = rbx;
 165             __ movptr(new_val, val);
 166           }
 167           __ store_heap_oop(Address(rdx, 0), val);
 168           __ g1_write_barrier_post(rdx /* store_adr */,
 169                                    new_val /* new_val */,
 170                                    r15_thread /* thread */,
 171                                    r8 /* tmp */,
 172                                    rbx /* tmp2 */);
 173         }
 174       }
 175       break;
 176 #endif // INCLUDE_ALL_GCS
 177     case BarrierSet::CardTableModRef:
 178     case BarrierSet::CardTableExtension:
 179       {
 180         if (val == noreg) {
 181           __ store_heap_oop_null(obj);
 182         } else {
 183           __ store_heap_oop(obj, val);
 184           // flatten object address if needed
 185           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
 186             __ store_check(obj.base());
 187           } else {
 188             __ leaq(rdx, obj);
 189             __ store_check(rdx);
 190           }
 191         }
 192       }
 193       break;
 194     case BarrierSet::ModRef:
 195     case BarrierSet::Other:
 196       if (val == noreg) {
 197         __ store_heap_oop_null(obj);
 198       } else {
 199         __ store_heap_oop(obj, val);
 200       }
 201       break;
 202     default      :
 203       ShouldNotReachHere();
 204 
 205   }
 206 }
 207 
 208 Address TemplateTable::at_bcp(int offset) {
 209   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 210   return Address(r13, offset);
 211 }
 212 
 213 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 214                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 215                                    int byte_no) {
 216   if (!RewriteBytecodes)  return;
 217   Label L_patch_done;
 218 
 219   switch (bc) {
 220   case Bytecodes::_fast_aputfield:
 221   case Bytecodes::_fast_bputfield:
 222   case Bytecodes::_fast_cputfield:
 223   case Bytecodes::_fast_dputfield:
 224   case Bytecodes::_fast_fputfield:
 225   case Bytecodes::_fast_iputfield:
 226   case Bytecodes::_fast_lputfield:
 227   case Bytecodes::_fast_sputfield:
 228     {
 229       // We skip bytecode quickening for putfield instructions when
 230       // the put_code written to the constant pool cache is zero.
 231       // This is required so that every execution of this instruction
 232       // calls out to InterpreterRuntime::resolve_get_put to do
 233       // additional, required work.
 234       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 235       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 236       __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1);
 237       __ movl(bc_reg, bc);
 238       __ cmpl(temp_reg, (int) 0);
 239       __ jcc(Assembler::zero, L_patch_done);  // don't patch
 240     }
 241     break;
 242   default:
 243     assert(byte_no == -1, "sanity");
 244     // the pair bytecodes have already done the load.
 245     if (load_bc_into_bc_reg) {
 246       __ movl(bc_reg, bc);
 247     }
 248   }
 249 
 250   if (JvmtiExport::can_post_breakpoint()) {
 251     Label L_fast_patch;
 252     // if a breakpoint is present we can't rewrite the stream directly
 253     __ movzbl(temp_reg, at_bcp(0));
 254     __ cmpl(temp_reg, Bytecodes::_breakpoint);
 255     __ jcc(Assembler::notEqual, L_fast_patch);
 256     __ get_method(temp_reg);
 257     // Let breakpoint table handling rewrite to quicker bytecode
 258     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, r13, bc_reg);
 259 #ifndef ASSERT
 260     __ jmpb(L_patch_done);
 261 #else
 262     __ jmp(L_patch_done);
 263 #endif
 264     __ bind(L_fast_patch);
 265   }
 266 
 267 #ifdef ASSERT
 268   Label L_okay;
 269   __ load_unsigned_byte(temp_reg, at_bcp(0));
 270   __ cmpl(temp_reg, (int) Bytecodes::java_code(bc));
 271   __ jcc(Assembler::equal, L_okay);
 272   __ cmpl(temp_reg, bc_reg);
 273   __ jcc(Assembler::equal, L_okay);
 274   __ stop("patching the wrong bytecode");
 275   __ bind(L_okay);
 276 #endif
 277 
 278   // patch bytecode
 279   __ movb(at_bcp(0), bc_reg);
 280   __ bind(L_patch_done);
 281 }
 282 
 283 
 284 // Individual instructions
 285 
 286 void TemplateTable::nop() {
 287   transition(vtos, vtos);
 288   // nothing to do
 289 }
 290 
 291 void TemplateTable::shouldnotreachhere() {
 292   transition(vtos, vtos);
 293   __ stop("shouldnotreachhere bytecode");
 294 }
 295 
 296 void TemplateTable::aconst_null() {
 297   transition(vtos, atos);
 298   __ xorl(rax, rax);
 299 }
 300 
 301 void TemplateTable::iconst(int value) {
 302   transition(vtos, itos);
 303   if (value == 0) {
 304     __ xorl(rax, rax);
 305   } else {
 306     __ movl(rax, value);
 307   }
 308 }
 309 
 310 void TemplateTable::lconst(int value) {
 311   transition(vtos, ltos);
 312   if (value == 0) {
 313     __ xorl(rax, rax);
 314   } else {
 315     __ movl(rax, value);
 316   }
 317 }
 318 
 319 void TemplateTable::fconst(int value) {
 320   transition(vtos, ftos);
 321   static float one = 1.0f, two = 2.0f;
 322   switch (value) {
 323   case 0:
 324     __ xorps(xmm0, xmm0);
 325     break;
 326   case 1:
 327     __ movflt(xmm0, ExternalAddress((address) &one));
 328     break;
 329   case 2:
 330     __ movflt(xmm0, ExternalAddress((address) &two));
 331     break;
 332   default:
 333     ShouldNotReachHere();
 334     break;
 335   }
 336 }
 337 
 338 void TemplateTable::dconst(int value) {
 339   transition(vtos, dtos);
 340   static double one = 1.0;
 341   switch (value) {
 342   case 0:
 343     __ xorpd(xmm0, xmm0);
 344     break;
 345   case 1:
 346     __ movdbl(xmm0, ExternalAddress((address) &one));
 347     break;
 348   default:
 349     ShouldNotReachHere();
 350     break;
 351   }
 352 }
 353 
 354 void TemplateTable::bipush() {
 355   transition(vtos, itos);
 356   __ load_signed_byte(rax, at_bcp(1));
 357 }
 358 
 359 void TemplateTable::sipush() {
 360   transition(vtos, itos);
 361   __ load_unsigned_short(rax, at_bcp(1));
 362   __ bswapl(rax);
 363   __ sarl(rax, 16);
 364 }
 365 
 366 void TemplateTable::ldc(bool wide) {
 367   transition(vtos, vtos);
 368   Label call_ldc, notFloat, notClass, Done;
 369 
 370   if (wide) {
 371     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 372   } else {
 373     __ load_unsigned_byte(rbx, at_bcp(1));
 374   }
 375 
 376   __ get_cpool_and_tags(rcx, rax);
 377   const int base_offset = ConstantPool::header_size() * wordSize;
 378   const int tags_offset = Array<u1>::base_offset_in_bytes();
 379 
 380   // get type
 381   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
 382 
 383   // unresolved class - get the resolved class
 384   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
 385   __ jccb(Assembler::equal, call_ldc);
 386 
 387   // unresolved class in error state - call into runtime to throw the error
 388   // from the first resolution attempt
 389   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
 390   __ jccb(Assembler::equal, call_ldc);
 391 
 392   // resolved class - need to call vm to get java mirror of the class
 393   __ cmpl(rdx, JVM_CONSTANT_Class);
 394   __ jcc(Assembler::notEqual, notClass);
 395 
 396   __ bind(call_ldc);
 397   __ movl(c_rarg1, wide);
 398   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
 399   __ push_ptr(rax);
 400   __ verify_oop(rax);
 401   __ jmp(Done);
 402 
 403   __ bind(notClass);
 404   __ cmpl(rdx, JVM_CONSTANT_Float);
 405   __ jccb(Assembler::notEqual, notFloat);
 406   // ftos
 407   __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
 408   __ push_f();
 409   __ jmp(Done);
 410 
 411   __ bind(notFloat);
 412 #ifdef ASSERT
 413   {
 414     Label L;
 415     __ cmpl(rdx, JVM_CONSTANT_Integer);
 416     __ jcc(Assembler::equal, L);
 417     // String and Object are rewritten to fast_aldc
 418     __ stop("unexpected tag type in ldc");
 419     __ bind(L);
 420   }
 421 #endif
 422   // itos JVM_CONSTANT_Integer only
 423   __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset));
 424   __ push_i(rax);
 425   __ bind(Done);
 426 }
 427 
 428 // Fast path for caching oop constants.
 429 void TemplateTable::fast_aldc(bool wide) {
 430   transition(vtos, atos);
 431 
 432   Register result = rax;
 433   Register tmp = rdx;
 434   int index_size = wide ? sizeof(u2) : sizeof(u1);
 435 
 436   Label resolved;
 437 
 438   // We are resolved if the resolved reference cache entry contains a
 439   // non-null object (String, MethodType, etc.)
 440   assert_different_registers(result, tmp);
 441   __ get_cache_index_at_bcp(tmp, 1, index_size);
 442   __ load_resolved_reference_at_index(result, tmp);
 443   __ testl(result, result);
 444   __ jcc(Assembler::notZero, resolved);
 445 
 446   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 447 
 448   // first time invocation - must resolve first
 449   __ movl(tmp, (int)bytecode());
 450   __ call_VM(result, entry, tmp);
 451 
 452   __ bind(resolved);
 453 
 454   if (VerifyOops) {
 455     __ verify_oop(result);
 456   }
 457 }
 458 
 459 void TemplateTable::ldc2_w() {
 460   transition(vtos, vtos);
 461   Label Long, Done;
 462   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 463 
 464   __ get_cpool_and_tags(rcx, rax);
 465   const int base_offset = ConstantPool::header_size() * wordSize;
 466   const int tags_offset = Array<u1>::base_offset_in_bytes();
 467 
 468   // get type
 469   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
 470           JVM_CONSTANT_Double);
 471   __ jccb(Assembler::notEqual, Long);
 472   // dtos
 473   __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
 474   __ push_d();
 475   __ jmpb(Done);
 476 
 477   __ bind(Long);
 478   // ltos
 479   __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
 480   __ push_l();
 481 
 482   __ bind(Done);
 483 }
 484 
 485 void TemplateTable::locals_index(Register reg, int offset) {
 486   __ load_unsigned_byte(reg, at_bcp(offset));
 487   __ negptr(reg);
 488 }
 489 
 490 void TemplateTable::iload() {
 491   transition(vtos, itos);
 492   if (RewriteFrequentPairs) {
 493     Label rewrite, done;
 494     const Register bc = c_rarg3;
 495     assert(rbx != bc, "register damaged");
 496 
 497     // get next byte
 498     __ load_unsigned_byte(rbx,
 499                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
 500     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 501     // last two iloads in a pair.  Comparing against fast_iload means that
 502     // the next bytecode is neither an iload or a caload, and therefore
 503     // an iload pair.
 504     __ cmpl(rbx, Bytecodes::_iload);
 505     __ jcc(Assembler::equal, done);
 506 
 507     __ cmpl(rbx, Bytecodes::_fast_iload);
 508     __ movl(bc, Bytecodes::_fast_iload2);
 509     __ jccb(Assembler::equal, rewrite);
 510 
 511     // if _caload, rewrite to fast_icaload
 512     __ cmpl(rbx, Bytecodes::_caload);
 513     __ movl(bc, Bytecodes::_fast_icaload);
 514     __ jccb(Assembler::equal, rewrite);
 515 
 516     // rewrite so iload doesn't check again.
 517     __ movl(bc, Bytecodes::_fast_iload);
 518 
 519     // rewrite
 520     // bc: fast bytecode
 521     __ bind(rewrite);
 522     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
 523     __ bind(done);
 524   }
 525 
 526   // Get the local value into tos
 527   locals_index(rbx);
 528   __ movl(rax, iaddress(rbx));
 529 }
 530 
 531 void TemplateTable::fast_iload2() {
 532   transition(vtos, itos);
 533   locals_index(rbx);
 534   __ movl(rax, iaddress(rbx));
 535   __ push(itos);
 536   locals_index(rbx, 3);
 537   __ movl(rax, iaddress(rbx));
 538 }
 539 
 540 void TemplateTable::fast_iload() {
 541   transition(vtos, itos);
 542   locals_index(rbx);
 543   __ movl(rax, iaddress(rbx));
 544 }
 545 
 546 void TemplateTable::lload() {
 547   transition(vtos, ltos);
 548   locals_index(rbx);
 549   __ movq(rax, laddress(rbx));
 550 }
 551 
 552 void TemplateTable::fload() {
 553   transition(vtos, ftos);
 554   locals_index(rbx);
 555   __ movflt(xmm0, faddress(rbx));
 556 }
 557 
 558 void TemplateTable::dload() {
 559   transition(vtos, dtos);
 560   locals_index(rbx);
 561   __ movdbl(xmm0, daddress(rbx));
 562 }
 563 
 564 void TemplateTable::aload() {
 565   transition(vtos, atos);
 566   locals_index(rbx);
 567   __ movptr(rax, aaddress(rbx));
 568 }
 569 
 570 void TemplateTable::locals_index_wide(Register reg) {
 571   __ load_unsigned_short(reg, at_bcp(2));
 572   __ bswapl(reg);
 573   __ shrl(reg, 16);
 574   __ negptr(reg);
 575 }
 576 
 577 void TemplateTable::wide_iload() {
 578   transition(vtos, itos);
 579   locals_index_wide(rbx);
 580   __ movl(rax, iaddress(rbx));
 581 }
 582 
 583 void TemplateTable::wide_lload() {
 584   transition(vtos, ltos);
 585   locals_index_wide(rbx);
 586   __ movq(rax, laddress(rbx));
 587 }
 588 
 589 void TemplateTable::wide_fload() {
 590   transition(vtos, ftos);
 591   locals_index_wide(rbx);
 592   __ movflt(xmm0, faddress(rbx));
 593 }
 594 
 595 void TemplateTable::wide_dload() {
 596   transition(vtos, dtos);
 597   locals_index_wide(rbx);
 598   __ movdbl(xmm0, daddress(rbx));
 599 }
 600 
 601 void TemplateTable::wide_aload() {
 602   transition(vtos, atos);
 603   locals_index_wide(rbx);
 604   __ movptr(rax, aaddress(rbx));
 605 }
 606 
 607 void TemplateTable::index_check(Register array, Register index) {
 608   // destroys rbx
 609   // check array
 610   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
 611   // sign extend index for use by indexed load
 612   __ movl2ptr(index, index);
 613   // check index
 614   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
 615   if (index != rbx) {
 616     // ??? convention: move aberrant index into ebx for exception message
 617     assert(rbx != array, "different registers");
 618     __ movl(rbx, index);
 619   }
 620   __ jump_cc(Assembler::aboveEqual,
 621              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
 622 }
 623 
 624 void TemplateTable::iaload() {
 625   transition(itos, itos);
 626   __ pop_ptr(rdx);
 627   // eax: index
 628   // rdx: array
 629   index_check(rdx, rax); // kills rbx
 630   __ movl(rax, Address(rdx, rax,
 631                        Address::times_4,
 632                        arrayOopDesc::base_offset_in_bytes(T_INT)));
 633 }
 634 
 635 void TemplateTable::laload() {
 636   transition(itos, ltos);
 637   __ pop_ptr(rdx);
 638   // eax: index
 639   // rdx: array
 640   index_check(rdx, rax); // kills rbx
 641   __ movq(rax, Address(rdx, rbx,
 642                        Address::times_8,
 643                        arrayOopDesc::base_offset_in_bytes(T_LONG)));
 644 }
 645 
 646 void TemplateTable::faload() {
 647   transition(itos, ftos);
 648   __ pop_ptr(rdx);
 649   // eax: index
 650   // rdx: array
 651   index_check(rdx, rax); // kills rbx
 652   __ movflt(xmm0, Address(rdx, rax,
 653                          Address::times_4,
 654                          arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
 655 }
 656 
 657 void TemplateTable::daload() {
 658   transition(itos, dtos);
 659   __ pop_ptr(rdx);
 660   // eax: index
 661   // rdx: array
 662   index_check(rdx, rax); // kills rbx
 663   __ movdbl(xmm0, Address(rdx, rax,
 664                           Address::times_8,
 665                           arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
 666 }
 667 
 668 void TemplateTable::aaload() {
 669   transition(itos, atos);
 670   __ pop_ptr(rdx);
 671   // eax: index
 672   // rdx: array
 673   index_check(rdx, rax); // kills rbx
 674   __ load_heap_oop(rax, Address(rdx, rax,
 675                                 UseCompressedOops ? Address::times_4 : Address::times_8,
 676                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 677 }
 678 
 679 void TemplateTable::baload() {
 680   transition(itos, itos);
 681   __ pop_ptr(rdx);
 682   // eax: index
 683   // rdx: array
 684   index_check(rdx, rax); // kills rbx
 685   __ load_signed_byte(rax,
 686                       Address(rdx, rax,
 687                               Address::times_1,
 688                               arrayOopDesc::base_offset_in_bytes(T_BYTE)));
 689 }
 690 
 691 void TemplateTable::caload() {
 692   transition(itos, itos);
 693   __ pop_ptr(rdx);
 694   // eax: index
 695   // rdx: array
 696   index_check(rdx, rax); // kills rbx
 697   __ load_unsigned_short(rax,
 698                          Address(rdx, rax,
 699                                  Address::times_2,
 700                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 701 }
 702 
 703 // iload followed by caload frequent pair
 704 void TemplateTable::fast_icaload() {
 705   transition(vtos, itos);
 706   // load index out of locals
 707   locals_index(rbx);
 708   __ movl(rax, iaddress(rbx));
 709 
 710   // eax: index
 711   // rdx: array
 712   __ pop_ptr(rdx);
 713   index_check(rdx, rax); // kills rbx
 714   __ load_unsigned_short(rax,
 715                          Address(rdx, rax,
 716                                  Address::times_2,
 717                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 718 }
 719 
 720 void TemplateTable::saload() {
 721   transition(itos, itos);
 722   __ pop_ptr(rdx);
 723   // eax: index
 724   // rdx: array
 725   index_check(rdx, rax); // kills rbx
 726   __ load_signed_short(rax,
 727                        Address(rdx, rax,
 728                                Address::times_2,
 729                                arrayOopDesc::base_offset_in_bytes(T_SHORT)));
 730 }
 731 
 732 void TemplateTable::iload(int n) {
 733   transition(vtos, itos);
 734   __ movl(rax, iaddress(n));
 735 }
 736 
 737 void TemplateTable::lload(int n) {
 738   transition(vtos, ltos);
 739   __ movq(rax, laddress(n));
 740 }
 741 
 742 void TemplateTable::fload(int n) {
 743   transition(vtos, ftos);
 744   __ movflt(xmm0, faddress(n));
 745 }
 746 
 747 void TemplateTable::dload(int n) {
 748   transition(vtos, dtos);
 749   __ movdbl(xmm0, daddress(n));
 750 }
 751 
 752 void TemplateTable::aload(int n) {
 753   transition(vtos, atos);
 754   __ movptr(rax, aaddress(n));
 755 }
 756 
 757 void TemplateTable::aload_0() {
 758   transition(vtos, atos);
 759   // According to bytecode histograms, the pairs:
 760   //
 761   // _aload_0, _fast_igetfield
 762   // _aload_0, _fast_agetfield
 763   // _aload_0, _fast_fgetfield
 764   //
 765   // occur frequently. If RewriteFrequentPairs is set, the (slow)
 766   // _aload_0 bytecode checks if the next bytecode is either
 767   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
 768   // rewrites the current bytecode into a pair bytecode; otherwise it
 769   // rewrites the current bytecode into _fast_aload_0 that doesn't do
 770   // the pair check anymore.
 771   //
 772   // Note: If the next bytecode is _getfield, the rewrite must be
 773   //       delayed, otherwise we may miss an opportunity for a pair.
 774   //
 775   // Also rewrite frequent pairs
 776   //   aload_0, aload_1
 777   //   aload_0, iload_1
 778   // These bytecodes with a small amount of code are most profitable
 779   // to rewrite
 780   if (RewriteFrequentPairs) {
 781     Label rewrite, done;
 782     const Register bc = c_rarg3;
 783     assert(rbx != bc, "register damaged");
 784     // get next byte
 785     __ load_unsigned_byte(rbx,
 786                           at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
 787 
 788     // do actual aload_0
 789     aload(0);
 790 
 791     // if _getfield then wait with rewrite
 792     __ cmpl(rbx, Bytecodes::_getfield);
 793     __ jcc(Assembler::equal, done);
 794 
 795     // if _igetfield then reqrite to _fast_iaccess_0
 796     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) ==
 797            Bytecodes::_aload_0,
 798            "fix bytecode definition");
 799     __ cmpl(rbx, Bytecodes::_fast_igetfield);
 800     __ movl(bc, Bytecodes::_fast_iaccess_0);
 801     __ jccb(Assembler::equal, rewrite);
 802 
 803     // if _agetfield then reqrite to _fast_aaccess_0
 804     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) ==
 805            Bytecodes::_aload_0,
 806            "fix bytecode definition");
 807     __ cmpl(rbx, Bytecodes::_fast_agetfield);
 808     __ movl(bc, Bytecodes::_fast_aaccess_0);
 809     __ jccb(Assembler::equal, rewrite);
 810 
 811     // if _fgetfield then reqrite to _fast_faccess_0
 812     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) ==
 813            Bytecodes::_aload_0,
 814            "fix bytecode definition");
 815     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
 816     __ movl(bc, Bytecodes::_fast_faccess_0);
 817     __ jccb(Assembler::equal, rewrite);
 818 
 819     // else rewrite to _fast_aload0
 820     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) ==
 821            Bytecodes::_aload_0,
 822            "fix bytecode definition");
 823     __ movl(bc, Bytecodes::_fast_aload_0);
 824 
 825     // rewrite
 826     // bc: fast bytecode
 827     __ bind(rewrite);
 828     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
 829 
 830     __ bind(done);
 831   } else {
 832     aload(0);
 833   }
 834 }
 835 
 836 void TemplateTable::istore() {
 837   transition(itos, vtos);
 838   locals_index(rbx);
 839   __ movl(iaddress(rbx), rax);
 840 }
 841 
 842 void TemplateTable::lstore() {
 843   transition(ltos, vtos);
 844   locals_index(rbx);
 845   __ movq(laddress(rbx), rax);
 846 }
 847 
 848 void TemplateTable::fstore() {
 849   transition(ftos, vtos);
 850   locals_index(rbx);
 851   __ movflt(faddress(rbx), xmm0);
 852 }
 853 
 854 void TemplateTable::dstore() {
 855   transition(dtos, vtos);
 856   locals_index(rbx);
 857   __ movdbl(daddress(rbx), xmm0);
 858 }
 859 
 860 void TemplateTable::astore() {
 861   transition(vtos, vtos);
 862   __ pop_ptr(rax);
 863   locals_index(rbx);
 864   __ movptr(aaddress(rbx), rax);
 865 }
 866 
 867 void TemplateTable::wide_istore() {
 868   transition(vtos, vtos);
 869   __ pop_i();
 870   locals_index_wide(rbx);
 871   __ movl(iaddress(rbx), rax);
 872 }
 873 
 874 void TemplateTable::wide_lstore() {
 875   transition(vtos, vtos);
 876   __ pop_l();
 877   locals_index_wide(rbx);
 878   __ movq(laddress(rbx), rax);
 879 }
 880 
 881 void TemplateTable::wide_fstore() {
 882   transition(vtos, vtos);
 883   __ pop_f();
 884   locals_index_wide(rbx);
 885   __ movflt(faddress(rbx), xmm0);
 886 }
 887 
 888 void TemplateTable::wide_dstore() {
 889   transition(vtos, vtos);
 890   __ pop_d();
 891   locals_index_wide(rbx);
 892   __ movdbl(daddress(rbx), xmm0);
 893 }
 894 
 895 void TemplateTable::wide_astore() {
 896   transition(vtos, vtos);
 897   __ pop_ptr(rax);
 898   locals_index_wide(rbx);
 899   __ movptr(aaddress(rbx), rax);
 900 }
 901 
 902 void TemplateTable::iastore() {
 903   transition(itos, vtos);
 904   __ pop_i(rbx);
 905   __ pop_ptr(rdx);
 906   // eax: value
 907   // ebx: index
 908   // rdx: array
 909   index_check(rdx, rbx); // prefer index in ebx
 910   __ movl(Address(rdx, rbx,
 911                   Address::times_4,
 912                   arrayOopDesc::base_offset_in_bytes(T_INT)),
 913           rax);
 914 }
 915 
 916 void TemplateTable::lastore() {
 917   transition(ltos, vtos);
 918   __ pop_i(rbx);
 919   __ pop_ptr(rdx);
 920   // rax: value
 921   // ebx: index
 922   // rdx: array
 923   index_check(rdx, rbx); // prefer index in ebx
 924   __ movq(Address(rdx, rbx,
 925                   Address::times_8,
 926                   arrayOopDesc::base_offset_in_bytes(T_LONG)),
 927           rax);
 928 }
 929 
 930 void TemplateTable::fastore() {
 931   transition(ftos, vtos);
 932   __ pop_i(rbx);
 933   __ pop_ptr(rdx);
 934   // xmm0: value
 935   // ebx:  index
 936   // rdx:  array
 937   index_check(rdx, rbx); // prefer index in ebx
 938   __ movflt(Address(rdx, rbx,
 939                    Address::times_4,
 940                    arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
 941            xmm0);
 942 }
 943 
 944 void TemplateTable::dastore() {
 945   transition(dtos, vtos);
 946   __ pop_i(rbx);
 947   __ pop_ptr(rdx);
 948   // xmm0: value
 949   // ebx:  index
 950   // rdx:  array
 951   index_check(rdx, rbx); // prefer index in ebx
 952   __ movdbl(Address(rdx, rbx,
 953                    Address::times_8,
 954                    arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
 955            xmm0);
 956 }
 957 
 958 void TemplateTable::aastore() {
 959   Label is_null, ok_is_subtype, done;
 960   transition(vtos, vtos);
 961   // stack: ..., array, index, value
 962   __ movptr(rax, at_tos());    // value
 963   __ movl(rcx, at_tos_p1()); // index
 964   __ movptr(rdx, at_tos_p2()); // array
 965 
 966   Address element_address(rdx, rcx,
 967                           UseCompressedOops? Address::times_4 : Address::times_8,
 968                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
 969 
 970   index_check(rdx, rcx);     // kills rbx
 971   // do array store check - check for NULL value first
 972   __ testptr(rax, rax);
 973   __ jcc(Assembler::zero, is_null);
 974 
 975   // Move subklass into rbx
 976   __ load_klass(rbx, rax);
 977   // Move superklass into rax
 978   __ load_klass(rax, rdx);
 979   __ movptr(rax, Address(rax,
 980                          ObjArrayKlass::element_klass_offset()));
 981   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
 982   __ lea(rdx, element_address);
 983 
 984   // Generate subtype check.  Blows rcx, rdi
 985   // Superklass in rax.  Subklass in rbx.
 986   __ gen_subtype_check(rbx, ok_is_subtype);
 987 
 988   // Come here on failure
 989   // object is at TOS
 990   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
 991 
 992   // Come here on success
 993   __ bind(ok_is_subtype);
 994 
 995   // Get the value we will store
 996   __ movptr(rax, at_tos());
 997   // Now store using the appropriate barrier
 998   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
 999   __ jmp(done);
1000 
1001   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
1002   __ bind(is_null);
1003   __ profile_null_seen(rbx);
1004 
1005   // Store a NULL
1006   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
1007 
1008   // Pop stack arguments
1009   __ bind(done);
1010   __ addptr(rsp, 3 * Interpreter::stackElementSize);
1011 }
1012 
1013 void TemplateTable::bastore() {
1014   transition(itos, vtos);
1015   __ pop_i(rbx);
1016   __ pop_ptr(rdx);
1017   // eax: value
1018   // ebx: index
1019   // rdx: array
1020   index_check(rdx, rbx); // prefer index in ebx
1021   __ movb(Address(rdx, rbx,
1022                   Address::times_1,
1023                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
1024           rax);
1025 }
1026 
1027 void TemplateTable::castore() {
1028   transition(itos, vtos);
1029   __ pop_i(rbx);
1030   __ pop_ptr(rdx);
1031   // eax: value
1032   // ebx: index
1033   // rdx: array
1034   index_check(rdx, rbx);  // prefer index in ebx
1035   __ movw(Address(rdx, rbx,
1036                   Address::times_2,
1037                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
1038           rax);
1039 }
1040 
1041 void TemplateTable::sastore() {
1042   castore();
1043 }
1044 
1045 void TemplateTable::istore(int n) {
1046   transition(itos, vtos);
1047   __ movl(iaddress(n), rax);
1048 }
1049 
1050 void TemplateTable::lstore(int n) {
1051   transition(ltos, vtos);
1052   __ movq(laddress(n), rax);
1053 }
1054 
1055 void TemplateTable::fstore(int n) {
1056   transition(ftos, vtos);
1057   __ movflt(faddress(n), xmm0);
1058 }
1059 
1060 void TemplateTable::dstore(int n) {
1061   transition(dtos, vtos);
1062   __ movdbl(daddress(n), xmm0);
1063 }
1064 
1065 void TemplateTable::astore(int n) {
1066   transition(vtos, vtos);
1067   __ pop_ptr(rax);
1068   __ movptr(aaddress(n), rax);
1069 }
1070 
1071 void TemplateTable::pop() {
1072   transition(vtos, vtos);
1073   __ addptr(rsp, Interpreter::stackElementSize);
1074 }
1075 
1076 void TemplateTable::pop2() {
1077   transition(vtos, vtos);
1078   __ addptr(rsp, 2 * Interpreter::stackElementSize);
1079 }
1080 
1081 void TemplateTable::dup() {
1082   transition(vtos, vtos);
1083   __ load_ptr(0, rax);
1084   __ push_ptr(rax);
1085   // stack: ..., a, a
1086 }
1087 
1088 void TemplateTable::dup_x1() {
1089   transition(vtos, vtos);
1090   // stack: ..., a, b
1091   __ load_ptr( 0, rax);  // load b
1092   __ load_ptr( 1, rcx);  // load a
1093   __ store_ptr(1, rax);  // store b
1094   __ store_ptr(0, rcx);  // store a
1095   __ push_ptr(rax);      // push b
1096   // stack: ..., b, a, b
1097 }
1098 
1099 void TemplateTable::dup_x2() {
1100   transition(vtos, vtos);
1101   // stack: ..., a, b, c
1102   __ load_ptr( 0, rax);  // load c
1103   __ load_ptr( 2, rcx);  // load a
1104   __ store_ptr(2, rax);  // store c in a
1105   __ push_ptr(rax);      // push c
1106   // stack: ..., c, b, c, c
1107   __ load_ptr( 2, rax);  // load b
1108   __ store_ptr(2, rcx);  // store a in b
1109   // stack: ..., c, a, c, c
1110   __ store_ptr(1, rax);  // store b in c
1111   // stack: ..., c, a, b, c
1112 }
1113 
1114 void TemplateTable::dup2() {
1115   transition(vtos, vtos);
1116   // stack: ..., a, b
1117   __ load_ptr(1, rax);  // load a
1118   __ push_ptr(rax);     // push a
1119   __ load_ptr(1, rax);  // load b
1120   __ push_ptr(rax);     // push b
1121   // stack: ..., a, b, a, b
1122 }
1123 
1124 void TemplateTable::dup2_x1() {
1125   transition(vtos, vtos);
1126   // stack: ..., a, b, c
1127   __ load_ptr( 0, rcx);  // load c
1128   __ load_ptr( 1, rax);  // load b
1129   __ push_ptr(rax);      // push b
1130   __ push_ptr(rcx);      // push c
1131   // stack: ..., a, b, c, b, c
1132   __ store_ptr(3, rcx);  // store c in b
1133   // stack: ..., a, c, c, b, c
1134   __ load_ptr( 4, rcx);  // load a
1135   __ store_ptr(2, rcx);  // store a in 2nd c
1136   // stack: ..., a, c, a, b, c
1137   __ store_ptr(4, rax);  // store b in a
1138   // stack: ..., b, c, a, b, c
1139 }
1140 
1141 void TemplateTable::dup2_x2() {
1142   transition(vtos, vtos);
1143   // stack: ..., a, b, c, d
1144   __ load_ptr( 0, rcx);  // load d
1145   __ load_ptr( 1, rax);  // load c
1146   __ push_ptr(rax);      // push c
1147   __ push_ptr(rcx);      // push d
1148   // stack: ..., a, b, c, d, c, d
1149   __ load_ptr( 4, rax);  // load b
1150   __ store_ptr(2, rax);  // store b in d
1151   __ store_ptr(4, rcx);  // store d in b
1152   // stack: ..., a, d, c, b, c, d
1153   __ load_ptr( 5, rcx);  // load a
1154   __ load_ptr( 3, rax);  // load c
1155   __ store_ptr(3, rcx);  // store a in c
1156   __ store_ptr(5, rax);  // store c in a
1157   // stack: ..., c, d, a, b, c, d
1158 }
1159 
1160 void TemplateTable::swap() {
1161   transition(vtos, vtos);
1162   // stack: ..., a, b
1163   __ load_ptr( 1, rcx);  // load a
1164   __ load_ptr( 0, rax);  // load b
1165   __ store_ptr(0, rcx);  // store a in b
1166   __ store_ptr(1, rax);  // store b in a
1167   // stack: ..., b, a
1168 }
1169 
1170 void TemplateTable::iop2(Operation op) {
1171   transition(itos, itos);
1172   switch (op) {
1173   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
1174   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
1175   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
1176   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
1177   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
1178   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
1179   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
1180   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
1181   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
1182   default   : ShouldNotReachHere();
1183   }
1184 }
1185 
1186 void TemplateTable::lop2(Operation op) {
1187   transition(ltos, ltos);
1188   switch (op) {
1189   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
1190   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
1191   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
1192   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
1193   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
1194   default   : ShouldNotReachHere();
1195   }
1196 }
1197 
1198 void TemplateTable::idiv() {
1199   transition(itos, itos);
1200   __ movl(rcx, rax);
1201   __ pop_i(rax);
1202   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
1203   //       they are not equal, one could do a normal division (no correction
1204   //       needed), which may speed up this implementation for the common case.
1205   //       (see also JVM spec., p.243 & p.271)
1206   __ corrected_idivl(rcx);
1207 }
1208 
1209 void TemplateTable::irem() {
1210   transition(itos, itos);
1211   __ movl(rcx, rax);
1212   __ pop_i(rax);
1213   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
1214   //       they are not equal, one could do a normal division (no correction
1215   //       needed), which may speed up this implementation for the common case.
1216   //       (see also JVM spec., p.243 & p.271)
1217   __ corrected_idivl(rcx);
1218   __ movl(rax, rdx);
1219 }
1220 
1221 void TemplateTable::lmul() {
1222   transition(ltos, ltos);
1223   __ pop_l(rdx);
1224   __ imulq(rax, rdx);
1225 }
1226 
1227 void TemplateTable::ldiv() {
1228   transition(ltos, ltos);
1229   __ mov(rcx, rax);
1230   __ pop_l(rax);
1231   // generate explicit div0 check
1232   __ testq(rcx, rcx);
1233   __ jump_cc(Assembler::zero,
1234              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1235   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1236   //       they are not equal, one could do a normal division (no correction
1237   //       needed), which may speed up this implementation for the common case.
1238   //       (see also JVM spec., p.243 & p.271)
1239   __ corrected_idivq(rcx); // kills rbx
1240 }
1241 
1242 void TemplateTable::lrem() {
1243   transition(ltos, ltos);
1244   __ mov(rcx, rax);
1245   __ pop_l(rax);
1246   __ testq(rcx, rcx);
1247   __ jump_cc(Assembler::zero,
1248              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1249   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1250   //       they are not equal, one could do a normal division (no correction
1251   //       needed), which may speed up this implementation for the common case.
1252   //       (see also JVM spec., p.243 & p.271)
1253   __ corrected_idivq(rcx); // kills rbx
1254   __ mov(rax, rdx);
1255 }
1256 
1257 void TemplateTable::lshl() {
1258   transition(itos, ltos);
1259   __ movl(rcx, rax);                             // get shift count
1260   __ pop_l(rax);                                 // get shift value
1261   __ shlq(rax);
1262 }
1263 
1264 void TemplateTable::lshr() {
1265   transition(itos, ltos);
1266   __ movl(rcx, rax);                             // get shift count
1267   __ pop_l(rax);                                 // get shift value
1268   __ sarq(rax);
1269 }
1270 
1271 void TemplateTable::lushr() {
1272   transition(itos, ltos);
1273   __ movl(rcx, rax);                             // get shift count
1274   __ pop_l(rax);                                 // get shift value
1275   __ shrq(rax);
1276 }
1277 
1278 void TemplateTable::fop2(Operation op) {
1279   transition(ftos, ftos);
1280   switch (op) {
1281   case add:
1282     __ addss(xmm0, at_rsp());
1283     __ addptr(rsp, Interpreter::stackElementSize);
1284     break;
1285   case sub:
1286     __ movflt(xmm1, xmm0);
1287     __ pop_f(xmm0);
1288     __ subss(xmm0, xmm1);
1289     break;
1290   case mul:
1291     __ mulss(xmm0, at_rsp());
1292     __ addptr(rsp, Interpreter::stackElementSize);
1293     break;
1294   case div:
1295     __ movflt(xmm1, xmm0);
1296     __ pop_f(xmm0);
1297     __ divss(xmm0, xmm1);
1298     break;
1299   case rem:
1300     __ movflt(xmm1, xmm0);
1301     __ pop_f(xmm0);
1302     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
1303     break;
1304   default:
1305     ShouldNotReachHere();
1306     break;
1307   }
1308 }
1309 
1310 void TemplateTable::dop2(Operation op) {
1311   transition(dtos, dtos);
1312   switch (op) {
1313   case add:
1314     __ addsd(xmm0, at_rsp());
1315     __ addptr(rsp, 2 * Interpreter::stackElementSize);
1316     break;
1317   case sub:
1318     __ movdbl(xmm1, xmm0);
1319     __ pop_d(xmm0);
1320     __ subsd(xmm0, xmm1);
1321     break;
1322   case mul:
1323     __ mulsd(xmm0, at_rsp());
1324     __ addptr(rsp, 2 * Interpreter::stackElementSize);
1325     break;
1326   case div:
1327     __ movdbl(xmm1, xmm0);
1328     __ pop_d(xmm0);
1329     __ divsd(xmm0, xmm1);
1330     break;
1331   case rem:
1332     __ movdbl(xmm1, xmm0);
1333     __ pop_d(xmm0);
1334     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
1335     break;
1336   default:
1337     ShouldNotReachHere();
1338     break;
1339   }
1340 }
1341 
1342 void TemplateTable::ineg() {
1343   transition(itos, itos);
1344   __ negl(rax);
1345 }
1346 
1347 void TemplateTable::lneg() {
1348   transition(ltos, ltos);
1349   __ negq(rax);
1350 }
1351 
1352 // Note: 'double' and 'long long' have 32-bits alignment on x86.
1353 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
1354   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
1355   // of 128-bits operands for SSE instructions.
1356   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
1357   // Store the value to a 128-bits operand.
1358   operand[0] = lo;
1359   operand[1] = hi;
1360   return operand;
1361 }
1362 
1363 // Buffer for 128-bits masks used by SSE instructions.
1364 static jlong float_signflip_pool[2*2];
1365 static jlong double_signflip_pool[2*2];
1366 
1367 void TemplateTable::fneg() {
1368   transition(ftos, ftos);
1369   static jlong *float_signflip  = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000);
1370   __ xorps(xmm0, ExternalAddress((address) float_signflip));
1371 }
1372 
1373 void TemplateTable::dneg() {
1374   transition(dtos, dtos);
1375   static jlong *double_signflip  = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000);
1376   __ xorpd(xmm0, ExternalAddress((address) double_signflip));
1377 }
1378 
1379 void TemplateTable::iinc() {
1380   transition(vtos, vtos);
1381   __ load_signed_byte(rdx, at_bcp(2)); // get constant
1382   locals_index(rbx);
1383   __ addl(iaddress(rbx), rdx);
1384 }
1385 
1386 void TemplateTable::wide_iinc() {
1387   transition(vtos, vtos);
1388   __ movl(rdx, at_bcp(4)); // get constant
1389   locals_index_wide(rbx);
1390   __ bswapl(rdx); // swap bytes & sign-extend constant
1391   __ sarl(rdx, 16);
1392   __ addl(iaddress(rbx), rdx);
1393   // Note: should probably use only one movl to get both
1394   //       the index and the constant -> fix this
1395 }
1396 
1397 void TemplateTable::convert() {
1398   // Checking
1399 #ifdef ASSERT
1400   {
1401     TosState tos_in  = ilgl;
1402     TosState tos_out = ilgl;
1403     switch (bytecode()) {
1404     case Bytecodes::_i2l: // fall through
1405     case Bytecodes::_i2f: // fall through
1406     case Bytecodes::_i2d: // fall through
1407     case Bytecodes::_i2b: // fall through
1408     case Bytecodes::_i2c: // fall through
1409     case Bytecodes::_i2s: tos_in = itos; break;
1410     case Bytecodes::_l2i: // fall through
1411     case Bytecodes::_l2f: // fall through
1412     case Bytecodes::_l2d: tos_in = ltos; break;
1413     case Bytecodes::_f2i: // fall through
1414     case Bytecodes::_f2l: // fall through
1415     case Bytecodes::_f2d: tos_in = ftos; break;
1416     case Bytecodes::_d2i: // fall through
1417     case Bytecodes::_d2l: // fall through
1418     case Bytecodes::_d2f: tos_in = dtos; break;
1419     default             : ShouldNotReachHere();
1420     }
1421     switch (bytecode()) {
1422     case Bytecodes::_l2i: // fall through
1423     case Bytecodes::_f2i: // fall through
1424     case Bytecodes::_d2i: // fall through
1425     case Bytecodes::_i2b: // fall through
1426     case Bytecodes::_i2c: // fall through
1427     case Bytecodes::_i2s: tos_out = itos; break;
1428     case Bytecodes::_i2l: // fall through
1429     case Bytecodes::_f2l: // fall through
1430     case Bytecodes::_d2l: tos_out = ltos; break;
1431     case Bytecodes::_i2f: // fall through
1432     case Bytecodes::_l2f: // fall through
1433     case Bytecodes::_d2f: tos_out = ftos; break;
1434     case Bytecodes::_i2d: // fall through
1435     case Bytecodes::_l2d: // fall through
1436     case Bytecodes::_f2d: tos_out = dtos; break;
1437     default             : ShouldNotReachHere();
1438     }
1439     transition(tos_in, tos_out);
1440   }
1441 #endif // ASSERT
1442 
1443   static const int64_t is_nan = 0x8000000000000000L;
1444 
1445   // Conversion
1446   switch (bytecode()) {
1447   case Bytecodes::_i2l:
1448     __ movslq(rax, rax);
1449     break;
1450   case Bytecodes::_i2f:
1451     __ cvtsi2ssl(xmm0, rax);
1452     break;
1453   case Bytecodes::_i2d:
1454     __ cvtsi2sdl(xmm0, rax);
1455     break;
1456   case Bytecodes::_i2b:
1457     __ movsbl(rax, rax);
1458     break;
1459   case Bytecodes::_i2c:
1460     __ movzwl(rax, rax);
1461     break;
1462   case Bytecodes::_i2s:
1463     __ movswl(rax, rax);
1464     break;
1465   case Bytecodes::_l2i:
1466     __ movl(rax, rax);
1467     break;
1468   case Bytecodes::_l2f:
1469     __ cvtsi2ssq(xmm0, rax);
1470     break;
1471   case Bytecodes::_l2d:
1472     __ cvtsi2sdq(xmm0, rax);
1473     break;
1474   case Bytecodes::_f2i:
1475   {
1476     Label L;
1477     __ cvttss2sil(rax, xmm0);
1478     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1479     __ jcc(Assembler::notEqual, L);
1480     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1481     __ bind(L);
1482   }
1483     break;
1484   case Bytecodes::_f2l:
1485   {
1486     Label L;
1487     __ cvttss2siq(rax, xmm0);
1488     // NaN or overflow/underflow?
1489     __ cmp64(rax, ExternalAddress((address) &is_nan));
1490     __ jcc(Assembler::notEqual, L);
1491     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1492     __ bind(L);
1493   }
1494     break;
1495   case Bytecodes::_f2d:
1496     __ cvtss2sd(xmm0, xmm0);
1497     break;
1498   case Bytecodes::_d2i:
1499   {
1500     Label L;
1501     __ cvttsd2sil(rax, xmm0);
1502     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1503     __ jcc(Assembler::notEqual, L);
1504     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
1505     __ bind(L);
1506   }
1507     break;
1508   case Bytecodes::_d2l:
1509   {
1510     Label L;
1511     __ cvttsd2siq(rax, xmm0);
1512     // NaN or overflow/underflow?
1513     __ cmp64(rax, ExternalAddress((address) &is_nan));
1514     __ jcc(Assembler::notEqual, L);
1515     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
1516     __ bind(L);
1517   }
1518     break;
1519   case Bytecodes::_d2f:
1520     __ cvtsd2ss(xmm0, xmm0);
1521     break;
1522   default:
1523     ShouldNotReachHere();
1524   }
1525 }
1526 
1527 void TemplateTable::lcmp() {
1528   transition(ltos, itos);
1529   Label done;
1530   __ pop_l(rdx);
1531   __ cmpq(rdx, rax);
1532   __ movl(rax, -1);
1533   __ jccb(Assembler::less, done);
1534   __ setb(Assembler::notEqual, rax);
1535   __ movzbl(rax, rax);
1536   __ bind(done);
1537 }
1538 
1539 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1540   Label done;
1541   if (is_float) {
1542     // XXX get rid of pop here, use ... reg, mem32
1543     __ pop_f(xmm1);
1544     __ ucomiss(xmm1, xmm0);
1545   } else {
1546     // XXX get rid of pop here, use ... reg, mem64
1547     __ pop_d(xmm1);
1548     __ ucomisd(xmm1, xmm0);
1549   }
1550   if (unordered_result < 0) {
1551     __ movl(rax, -1);
1552     __ jccb(Assembler::parity, done);
1553     __ jccb(Assembler::below, done);
1554     __ setb(Assembler::notEqual, rdx);
1555     __ movzbl(rax, rdx);
1556   } else {
1557     __ movl(rax, 1);
1558     __ jccb(Assembler::parity, done);
1559     __ jccb(Assembler::above, done);
1560     __ movl(rax, 0);
1561     __ jccb(Assembler::equal, done);
1562     __ decrementl(rax);
1563   }
1564   __ bind(done);
1565 }
1566 
1567 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1568   __ get_method(rcx); // rcx holds method
1569   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
1570                                      // holds bumped taken count
1571 
1572   const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
1573                              InvocationCounter::counter_offset();
1574   const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
1575                               InvocationCounter::counter_offset();
1576 
1577   // Load up edx with the branch displacement
1578   if (is_wide) {
1579     __ movl(rdx, at_bcp(1));
1580   } else {
1581     __ load_signed_short(rdx, at_bcp(1));
1582   }
1583   __ bswapl(rdx);
1584 
1585   if (!is_wide) {
1586     __ sarl(rdx, 16);
1587   }
1588   __ movl2ptr(rdx, rdx);
1589 
1590   // Handle all the JSR stuff here, then exit.
1591   // It's much shorter and cleaner than intermingling with the non-JSR
1592   // normal-branch stuff occurring below.
1593   if (is_jsr) {
1594     // Pre-load the next target bytecode into rbx
1595     __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0));
1596 
1597     // compute return address as bci in rax
1598     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
1599                         in_bytes(ConstMethod::codes_offset())));
1600     __ subptr(rax, Address(rcx, Method::const_offset()));
1601     // Adjust the bcp in r13 by the displacement in rdx
1602     __ addptr(r13, rdx);
1603     // jsr returns atos that is not an oop
1604     __ push_i(rax);
1605     __ dispatch_only(vtos);
1606     return;
1607   }
1608 
1609   // Normal (non-jsr) branch handling
1610 
1611   // Adjust the bcp in r13 by the displacement in rdx
1612   __ addptr(r13, rdx);
1613 
1614   assert(UseLoopCounter || !UseOnStackReplacement,
1615          "on-stack-replacement requires loop counters");
1616   Label backedge_counter_overflow;
1617   Label profile_method;
1618   Label dispatch;
1619   if (UseLoopCounter) {
1620     // increment backedge counter for backward branches
1621     // rax: MDO
1622     // ebx: MDO bumped taken-count
1623     // rcx: method
1624     // rdx: target offset
1625     // r13: target bcp
1626     // r14: locals pointer
1627     __ testl(rdx, rdx);             // check if forward or backward branch
1628     __ jcc(Assembler::positive, dispatch); // count only if backward branch
1629 
1630     // check if MethodCounters exists
1631     Label has_counters;
1632     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
1633     __ testptr(rax, rax);
1634     __ jcc(Assembler::notZero, has_counters);
1635     __ push(rdx);
1636     __ push(rcx);
1637     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters),
1638                rcx);
1639     __ pop(rcx);
1640     __ pop(rdx);
1641     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
1642     __ jcc(Assembler::zero, dispatch);
1643     __ bind(has_counters);
1644 
1645     if (TieredCompilation) {
1646       Label no_mdo;
1647       int increment = InvocationCounter::count_increment;
1648       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
1649       if (ProfileInterpreter) {
1650         // Are we profiling?
1651         __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset())));
1652         __ testptr(rbx, rbx);
1653         __ jccb(Assembler::zero, no_mdo);
1654         // Increment the MDO backedge counter
1655         const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) +
1656                                            in_bytes(InvocationCounter::counter_offset()));
1657         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
1658                                    rax, false, Assembler::zero, &backedge_counter_overflow);
1659         __ jmp(dispatch);
1660       }
1661       __ bind(no_mdo);
1662       // Increment backedge counter in MethodCounters*
1663       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
1664       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
1665                                  rax, false, Assembler::zero, &backedge_counter_overflow);
1666     } else {
1667       // increment counter
1668       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
1669       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
1670       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
1671       __ movl(Address(rcx, be_offset), rax);        // store counter
1672 
1673       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
1674 
1675       __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
1676       __ addl(rax, Address(rcx, be_offset));        // add both counters
1677 
1678       if (ProfileInterpreter) {
1679         // Test to see if we should create a method data oop
1680         __ cmp32(rax,
1681                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
1682         __ jcc(Assembler::less, dispatch);
1683 
1684         // if no method data exists, go to profile method
1685         __ test_method_data_pointer(rax, profile_method);
1686 
1687         if (UseOnStackReplacement) {
1688           // check for overflow against ebx which is the MDO taken count
1689           __ cmp32(rbx,
1690                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1691           __ jcc(Assembler::below, dispatch);
1692 
1693           // When ProfileInterpreter is on, the backedge_count comes
1694           // from the MethodData*, which value does not get reset on
1695           // the call to frequency_counter_overflow().  To avoid
1696           // excessive calls to the overflow routine while the method is
1697           // being compiled, add a second test to make sure the overflow
1698           // function is called only once every overflow_frequency.
1699           const int overflow_frequency = 1024;
1700           __ andl(rbx, overflow_frequency - 1);
1701           __ jcc(Assembler::zero, backedge_counter_overflow);
1702 
1703         }
1704       } else {
1705         if (UseOnStackReplacement) {
1706           // check for overflow against eax, which is the sum of the
1707           // counters
1708           __ cmp32(rax,
1709                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1710           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
1711 
1712         }
1713       }
1714     }
1715     __ bind(dispatch);
1716   }
1717 
1718   // Pre-load the next target bytecode into rbx
1719   __ load_unsigned_byte(rbx, Address(r13, 0));
1720 
1721   // continue with the bytecode @ target
1722   // eax: return bci for jsr's, unused otherwise
1723   // ebx: target bytecode
1724   // r13: target bcp
1725   __ dispatch_only(vtos);
1726 
1727   if (UseLoopCounter) {
1728     if (ProfileInterpreter) {
1729       // Out-of-line code to allocate method data oop.
1730       __ bind(profile_method);
1731       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1732       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
1733       __ set_method_data_pointer_for_bcp();
1734       __ jmp(dispatch);
1735     }
1736 
1737     if (UseOnStackReplacement) {
1738       // invocation counter overflow
1739       __ bind(backedge_counter_overflow);
1740       __ negptr(rdx);
1741       __ addptr(rdx, r13); // branch bcp
1742       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
1743       __ call_VM(noreg,
1744                  CAST_FROM_FN_PTR(address,
1745                                   InterpreterRuntime::frequency_counter_overflow),
1746                  rdx);
1747       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
1748 
1749       // rax: osr nmethod (osr ok) or NULL (osr not possible)
1750       // ebx: target bytecode
1751       // rdx: scratch
1752       // r14: locals pointer
1753       // r13: bcp
1754       __ testptr(rax, rax);                        // test result
1755       __ jcc(Assembler::zero, dispatch);         // no osr if null
1756       // nmethod may have been invalidated (VM may block upon call_VM return)
1757       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
1758       __ cmpl(rcx, InvalidOSREntryBci);
1759       __ jcc(Assembler::equal, dispatch);
1760 
1761       // We have the address of an on stack replacement routine in eax
1762       // We need to prepare to execute the OSR method. First we must
1763       // migrate the locals and monitors off of the stack.
1764 
1765       __ mov(r13, rax);                             // save the nmethod
1766 
1767       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1768 
1769       // eax is OSR buffer, move it to expected parameter location
1770       __ mov(j_rarg0, rax);
1771 
1772       // We use j_rarg definitions here so that registers don't conflict as parameter
1773       // registers change across platforms as we are in the midst of a calling
1774       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
1775 
1776       const Register retaddr = j_rarg2;
1777       const Register sender_sp = j_rarg1;
1778 
1779       // pop the interpreter frame
1780       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
1781       __ leave();                                // remove frame anchor
1782       __ pop(retaddr);                           // get return address
1783       __ mov(rsp, sender_sp);                   // set sp to sender sp
1784       // Ensure compiled code always sees stack at proper alignment
1785       __ andptr(rsp, -(StackAlignmentInBytes));
1786 
1787       // unlike x86 we need no specialized return from compiled code
1788       // to the interpreter or the call stub.
1789 
1790       // push the return address
1791       __ push(retaddr);
1792 
1793       // and begin the OSR nmethod
1794       __ jmp(Address(r13, nmethod::osr_entry_point_offset()));
1795     }
1796   }
1797 }
1798 
1799 
1800 void TemplateTable::if_0cmp(Condition cc) {
1801   transition(itos, vtos);
1802   // assume branch is more often taken than not (loops use backward branches)
1803   Label not_taken;
1804   __ testl(rax, rax);
1805   __ jcc(j_not(cc), not_taken);
1806   branch(false, false);
1807   __ bind(not_taken);
1808   __ profile_not_taken_branch(rax);
1809 }
1810 
1811 void TemplateTable::if_icmp(Condition cc) {
1812   transition(itos, vtos);
1813   // assume branch is more often taken than not (loops use backward branches)
1814   Label not_taken;
1815   __ pop_i(rdx);
1816   __ cmpl(rdx, rax);
1817   __ jcc(j_not(cc), not_taken);
1818   branch(false, false);
1819   __ bind(not_taken);
1820   __ profile_not_taken_branch(rax);
1821 }
1822 
1823 void TemplateTable::if_nullcmp(Condition cc) {
1824   transition(atos, vtos);
1825   // assume branch is more often taken than not (loops use backward branches)
1826   Label not_taken;
1827   __ testptr(rax, rax);
1828   __ jcc(j_not(cc), not_taken);
1829   branch(false, false);
1830   __ bind(not_taken);
1831   __ profile_not_taken_branch(rax);
1832 }
1833 
1834 void TemplateTable::if_acmp(Condition cc) {
1835   transition(atos, vtos);
1836   // assume branch is more often taken than not (loops use backward branches)
1837   Label not_taken;
1838   __ pop_ptr(rdx);
1839   __ cmpptr(rdx, rax);
1840   __ jcc(j_not(cc), not_taken);
1841   branch(false, false);
1842   __ bind(not_taken);
1843   __ profile_not_taken_branch(rax);
1844 }
1845 
1846 void TemplateTable::ret() {
1847   transition(vtos, vtos);
1848   locals_index(rbx);
1849   __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp
1850   __ profile_ret(rbx, rcx);
1851   __ get_method(rax);
1852   __ movptr(r13, Address(rax, Method::const_offset()));
1853   __ lea(r13, Address(r13, rbx, Address::times_1,
1854                       ConstMethod::codes_offset()));
1855   __ dispatch_next(vtos);
1856 }
1857 
1858 void TemplateTable::wide_ret() {
1859   transition(vtos, vtos);
1860   locals_index_wide(rbx);
1861   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
1862   __ profile_ret(rbx, rcx);
1863   __ get_method(rax);
1864   __ movptr(r13, Address(rax, Method::const_offset()));
1865   __ lea(r13, Address(r13, rbx, Address::times_1, ConstMethod::codes_offset()));
1866   __ dispatch_next(vtos);
1867 }
1868 
1869 void TemplateTable::tableswitch() {
1870   Label default_case, continue_execution;
1871   transition(itos, vtos);
1872   // align r13
1873   __ lea(rbx, at_bcp(BytesPerInt));
1874   __ andptr(rbx, -BytesPerInt);
1875   // load lo & hi
1876   __ movl(rcx, Address(rbx, BytesPerInt));
1877   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
1878   __ bswapl(rcx);
1879   __ bswapl(rdx);
1880   // check against lo & hi
1881   __ cmpl(rax, rcx);
1882   __ jcc(Assembler::less, default_case);
1883   __ cmpl(rax, rdx);
1884   __ jcc(Assembler::greater, default_case);
1885   // lookup dispatch offset
1886   __ subl(rax, rcx);
1887   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
1888   __ profile_switch_case(rax, rbx, rcx);
1889   // continue execution
1890   __ bind(continue_execution);
1891   __ bswapl(rdx);
1892   __ movl2ptr(rdx, rdx);
1893   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
1894   __ addptr(r13, rdx);
1895   __ dispatch_only(vtos);
1896   // handle default
1897   __ bind(default_case);
1898   __ profile_switch_default(rax);
1899   __ movl(rdx, Address(rbx, 0));
1900   __ jmp(continue_execution);
1901 }
1902 
1903 void TemplateTable::lookupswitch() {
1904   transition(itos, itos);
1905   __ stop("lookupswitch bytecode should have been rewritten");
1906 }
1907 
1908 void TemplateTable::fast_linearswitch() {
1909   transition(itos, vtos);
1910   Label loop_entry, loop, found, continue_execution;
1911   // bswap rax so we can avoid bswapping the table entries
1912   __ bswapl(rax);
1913   // align r13
1914   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
1915                                     // this instruction (change offsets
1916                                     // below)
1917   __ andptr(rbx, -BytesPerInt);
1918   // set counter
1919   __ movl(rcx, Address(rbx, BytesPerInt));
1920   __ bswapl(rcx);
1921   __ jmpb(loop_entry);
1922   // table search
1923   __ bind(loop);
1924   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
1925   __ jcc(Assembler::equal, found);
1926   __ bind(loop_entry);
1927   __ decrementl(rcx);
1928   __ jcc(Assembler::greaterEqual, loop);
1929   // default case
1930   __ profile_switch_default(rax);
1931   __ movl(rdx, Address(rbx, 0));
1932   __ jmp(continue_execution);
1933   // entry found -> get offset
1934   __ bind(found);
1935   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
1936   __ profile_switch_case(rcx, rax, rbx);
1937   // continue execution
1938   __ bind(continue_execution);
1939   __ bswapl(rdx);
1940   __ movl2ptr(rdx, rdx);
1941   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
1942   __ addptr(r13, rdx);
1943   __ dispatch_only(vtos);
1944 }
1945 
1946 void TemplateTable::fast_binaryswitch() {
1947   transition(itos, vtos);
1948   // Implementation using the following core algorithm:
1949   //
1950   // int binary_search(int key, LookupswitchPair* array, int n) {
1951   //   // Binary search according to "Methodik des Programmierens" by
1952   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1953   //   int i = 0;
1954   //   int j = n;
1955   //   while (i+1 < j) {
1956   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1957   //     // with      Q: for all i: 0 <= i < n: key < a[i]
1958   //     // where a stands for the array and assuming that the (inexisting)
1959   //     // element a[n] is infinitely big.
1960   //     int h = (i + j) >> 1;
1961   //     // i < h < j
1962   //     if (key < array[h].fast_match()) {
1963   //       j = h;
1964   //     } else {
1965   //       i = h;
1966   //     }
1967   //   }
1968   //   // R: a[i] <= key < a[i+1] or Q
1969   //   // (i.e., if key is within array, i is the correct index)
1970   //   return i;
1971   // }
1972 
1973   // Register allocation
1974   const Register key   = rax; // already set (tosca)
1975   const Register array = rbx;
1976   const Register i     = rcx;
1977   const Register j     = rdx;
1978   const Register h     = rdi;
1979   const Register temp  = rsi;
1980 
1981   // Find array start
1982   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
1983                                           // get rid of this
1984                                           // instruction (change
1985                                           // offsets below)
1986   __ andptr(array, -BytesPerInt);
1987 
1988   // Initialize i & j
1989   __ xorl(i, i);                            // i = 0;
1990   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
1991 
1992   // Convert j into native byteordering
1993   __ bswapl(j);
1994 
1995   // And start
1996   Label entry;
1997   __ jmp(entry);
1998 
1999   // binary search loop
2000   {
2001     Label loop;
2002     __ bind(loop);
2003     // int h = (i + j) >> 1;
2004     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
2005     __ sarl(h, 1);                               // h = (i + j) >> 1;
2006     // if (key < array[h].fast_match()) {
2007     //   j = h;
2008     // } else {
2009     //   i = h;
2010     // }
2011     // Convert array[h].match to native byte-ordering before compare
2012     __ movl(temp, Address(array, h, Address::times_8));
2013     __ bswapl(temp);
2014     __ cmpl(key, temp);
2015     // j = h if (key <  array[h].fast_match())
2016     __ cmovl(Assembler::less, j, h);
2017     // i = h if (key >= array[h].fast_match())
2018     __ cmovl(Assembler::greaterEqual, i, h);
2019     // while (i+1 < j)
2020     __ bind(entry);
2021     __ leal(h, Address(i, 1)); // i+1
2022     __ cmpl(h, j);             // i+1 < j
2023     __ jcc(Assembler::less, loop);
2024   }
2025 
2026   // end of binary search, result index is i (must check again!)
2027   Label default_case;
2028   // Convert array[i].match to native byte-ordering before compare
2029   __ movl(temp, Address(array, i, Address::times_8));
2030   __ bswapl(temp);
2031   __ cmpl(key, temp);
2032   __ jcc(Assembler::notEqual, default_case);
2033 
2034   // entry found -> j = offset
2035   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
2036   __ profile_switch_case(i, key, array);
2037   __ bswapl(j);
2038   __ movl2ptr(j, j);
2039   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
2040   __ addptr(r13, j);
2041   __ dispatch_only(vtos);
2042 
2043   // default case -> j = default offset
2044   __ bind(default_case);
2045   __ profile_switch_default(i);
2046   __ movl(j, Address(array, -2 * BytesPerInt));
2047   __ bswapl(j);
2048   __ movl2ptr(j, j);
2049   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
2050   __ addptr(r13, j);
2051   __ dispatch_only(vtos);
2052 }
2053 
2054 
2055 void TemplateTable::_return(TosState state) {
2056   transition(state, state);
2057   assert(_desc->calls_vm(),
2058          "inconsistent calls_vm information"); // call in remove_activation
2059 
2060   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2061     assert(state == vtos, "only valid state");
2062     __ movptr(c_rarg1, aaddress(0));
2063     __ load_klass(rdi, c_rarg1);
2064     __ movl(rdi, Address(rdi, Klass::access_flags_offset()));
2065     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
2066     Label skip_register_finalizer;
2067     __ jcc(Assembler::zero, skip_register_finalizer);
2068 
2069     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
2070 
2071     __ bind(skip_register_finalizer);
2072   }
2073 
2074   __ remove_activation(state, r13);
2075   __ jmp(r13);
2076 }
2077 
2078 // ----------------------------------------------------------------------------
2079 // Volatile variables demand their effects be made known to all CPU's
2080 // in order.  Store buffers on most chips allow reads & writes to
2081 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2082 // without some kind of memory barrier (i.e., it's not sufficient that
2083 // the interpreter does not reorder volatile references, the hardware
2084 // also must not reorder them).
2085 //
2086 // According to the new Java Memory Model (JMM):
2087 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
2088 //     writes act as aquire & release, so:
2089 // (2) A read cannot let unrelated NON-volatile memory refs that
2090 //     happen after the read float up to before the read.  It's OK for
2091 //     non-volatile memory refs that happen before the volatile read to
2092 //     float down below it.
2093 // (3) Similar a volatile write cannot let unrelated NON-volatile
2094 //     memory refs that happen BEFORE the write float down to after the
2095 //     write.  It's OK for non-volatile memory refs that happen after the
2096 //     volatile write to float up before it.
2097 //
2098 // We only put in barriers around volatile refs (they are expensive),
2099 // not _between_ memory refs (that would require us to track the
2100 // flavor of the previous memory refs).  Requirements (2) and (3)
2101 // require some barriers before volatile stores and after volatile
2102 // loads.  These nearly cover requirement (1) but miss the
2103 // volatile-store-volatile-load case.  This final case is placed after
2104 // volatile-stores although it could just as well go before
2105 // volatile-loads.
2106 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits
2107                                      order_constraint) {
2108   // Helper function to insert a is-volatile test and memory barrier
2109   if (os::is_MP()) { // Not needed on single CPU
2110     __ membar(order_constraint);
2111   }
2112 }
2113 
2114 void TemplateTable::resolve_cache_and_index(int byte_no,
2115                                             Register Rcache,
2116                                             Register index,
2117                                             size_t index_size) {
2118   const Register temp = rbx;
2119   assert_different_registers(Rcache, index, temp);
2120 
2121   Label resolved;
2122     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2123     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
2124     __ cmpl(temp, (int) bytecode());  // have we resolved this bytecode?
2125     __ jcc(Assembler::equal, resolved);
2126 
2127   // resolve first time through
2128   address entry;
2129   switch (bytecode()) {
2130   case Bytecodes::_getstatic:
2131   case Bytecodes::_putstatic:
2132   case Bytecodes::_getfield:
2133   case Bytecodes::_putfield:
2134     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
2135     break;
2136   case Bytecodes::_invokevirtual:
2137   case Bytecodes::_invokespecial:
2138   case Bytecodes::_invokestatic:
2139   case Bytecodes::_invokeinterface:
2140     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
2141     break;
2142   case Bytecodes::_invokehandle:
2143     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle);
2144     break;
2145   case Bytecodes::_invokedynamic:
2146     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);
2147     break;
2148   default:
2149     fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
2150     break;
2151   }
2152   __ movl(temp, (int) bytecode());
2153   __ call_VM(noreg, entry, temp);
2154 
2155   // Update registers with resolved info
2156   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2157   __ bind(resolved);
2158 }
2159 
2160 // The cache and index registers must be set before call
2161 void TemplateTable::load_field_cp_cache_entry(Register obj,
2162                                               Register cache,
2163                                               Register index,
2164                                               Register off,
2165                                               Register flags,
2166                                               bool is_static = false) {
2167   assert_different_registers(cache, index, flags, off);
2168 
2169   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2170   // Field offset
2171   __ movptr(off, Address(cache, index, Address::times_ptr,
2172                          in_bytes(cp_base_offset +
2173                                   ConstantPoolCacheEntry::f2_offset())));
2174   // Flags
2175   __ movl(flags, Address(cache, index, Address::times_ptr,
2176                          in_bytes(cp_base_offset +
2177                                   ConstantPoolCacheEntry::flags_offset())));
2178 
2179   // klass overwrite register
2180   if (is_static) {
2181     __ movptr(obj, Address(cache, index, Address::times_ptr,
2182                            in_bytes(cp_base_offset +
2183                                     ConstantPoolCacheEntry::f1_offset())));
2184     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2185     __ movptr(obj, Address(obj, mirror_offset));
2186   }
2187 }
2188 
2189 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2190                                                Register method,
2191                                                Register itable_index,
2192                                                Register flags,
2193                                                bool is_invokevirtual,
2194                                                bool is_invokevfinal, /*unused*/
2195                                                bool is_invokedynamic) {
2196   // setup registers
2197   const Register cache = rcx;
2198   const Register index = rdx;
2199   assert_different_registers(method, flags);
2200   assert_different_registers(method, cache, index);
2201   assert_different_registers(itable_index, flags);
2202   assert_different_registers(itable_index, cache, index);
2203   // determine constant pool cache field offsets
2204   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2205   const int method_offset = in_bytes(
2206     ConstantPoolCache::base_offset() +
2207       ((byte_no == f2_byte)
2208        ? ConstantPoolCacheEntry::f2_offset()
2209        : ConstantPoolCacheEntry::f1_offset()));
2210   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
2211                                     ConstantPoolCacheEntry::flags_offset());
2212   // access constant pool cache fields
2213   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
2214                                     ConstantPoolCacheEntry::f2_offset());
2215 
2216   size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
2217   resolve_cache_and_index(byte_no, cache, index, index_size);
2218     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
2219 
2220   if (itable_index != noreg) {
2221     // pick up itable or appendix index from f2 also:
2222     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
2223   }
2224   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
2225 }
2226 
2227 // Correct values of the cache and index registers are preserved.
2228 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
2229                                             bool is_static, bool has_tos) {
2230   // do the JVMTI work here to avoid disturbing the register state below
2231   // We use c_rarg registers here because we want to use the register used in
2232   // the call to the VM
2233   if (JvmtiExport::can_post_field_access()) {
2234     // Check to see if a field access watch has been set before we
2235     // take the time to call into the VM.
2236     Label L1;
2237     assert_different_registers(cache, index, rax);
2238     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2239     __ testl(rax, rax);
2240     __ jcc(Assembler::zero, L1);
2241 
2242     __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
2243 
2244     // cache entry pointer
2245     __ addptr(c_rarg2, in_bytes(ConstantPoolCache::base_offset()));
2246     __ shll(c_rarg3, LogBytesPerWord);
2247     __ addptr(c_rarg2, c_rarg3);
2248     if (is_static) {
2249       __ xorl(c_rarg1, c_rarg1); // NULL object reference
2250     } else {
2251       __ movptr(c_rarg1, at_tos()); // get object pointer without popping it
2252       __ verify_oop(c_rarg1);
2253     }
2254     // c_rarg1: object pointer or NULL
2255     // c_rarg2: cache entry pointer
2256     // c_rarg3: jvalue object on the stack
2257     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2258                                        InterpreterRuntime::post_field_access),
2259                c_rarg1, c_rarg2, c_rarg3);
2260     __ get_cache_and_index_at_bcp(cache, index, 1);
2261     __ bind(L1);
2262   }
2263 }
2264 
2265 void TemplateTable::pop_and_check_object(Register r) {
2266   __ pop_ptr(r);
2267   __ null_check(r);  // for field access must check obj.
2268   __ verify_oop(r);
2269 }
2270 
2271 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2272   transition(vtos, vtos);
2273 
2274   const Register cache = rcx;
2275   const Register index = rdx;
2276   const Register obj   = c_rarg3;
2277   const Register off   = rbx;
2278   const Register flags = rax;
2279   const Register bc = c_rarg3; // uses same reg as obj, so don't mix them
2280 
2281   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2282   jvmti_post_field_access(cache, index, is_static, false);
2283   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2284 
2285   if (!is_static) {
2286     // obj is on the stack
2287     pop_and_check_object(obj);
2288   }
2289 
2290   const Address field(obj, off, Address::times_1);
2291 
2292   Label Done, notByte, notInt, notShort, notChar,
2293               notLong, notFloat, notObj, notDouble;
2294 
2295   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
2296   // Make sure we don't need to mask edx after the above shift
2297   assert(btos == 0, "change code, btos != 0");
2298 
2299   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
2300   __ jcc(Assembler::notZero, notByte);
2301   // btos
2302   __ load_signed_byte(rax, field);
2303   __ push(btos);
2304   // Rewrite bytecode to be faster
2305   if (!is_static) {
2306     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2307   }
2308   __ jmp(Done);
2309 
2310   __ bind(notByte);
2311   __ cmpl(flags, atos);
2312   __ jcc(Assembler::notEqual, notObj);
2313   // atos
2314   __ load_heap_oop(rax, field);
2315   __ push(atos);
2316   if (!is_static) {
2317     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
2318   }
2319   __ jmp(Done);
2320 
2321   __ bind(notObj);
2322   __ cmpl(flags, itos);
2323   __ jcc(Assembler::notEqual, notInt);
2324   // itos
2325   __ movl(rax, field);
2326   __ push(itos);
2327   // Rewrite bytecode to be faster
2328   if (!is_static) {
2329     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
2330   }
2331   __ jmp(Done);
2332 
2333   __ bind(notInt);
2334   __ cmpl(flags, ctos);
2335   __ jcc(Assembler::notEqual, notChar);
2336   // ctos
2337   __ load_unsigned_short(rax, field);
2338   __ push(ctos);
2339   // Rewrite bytecode to be faster
2340   if (!is_static) {
2341     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
2342   }
2343   __ jmp(Done);
2344 
2345   __ bind(notChar);
2346   __ cmpl(flags, stos);
2347   __ jcc(Assembler::notEqual, notShort);
2348   // stos
2349   __ load_signed_short(rax, field);
2350   __ push(stos);
2351   // Rewrite bytecode to be faster
2352   if (!is_static) {
2353     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
2354   }
2355   __ jmp(Done);
2356 
2357   __ bind(notShort);
2358   __ cmpl(flags, ltos);
2359   __ jcc(Assembler::notEqual, notLong);
2360   // ltos
2361   __ movq(rax, field);
2362   __ push(ltos);
2363   // Rewrite bytecode to be faster
2364   if (!is_static) {
2365     patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
2366   }
2367   __ jmp(Done);
2368 
2369   __ bind(notLong);
2370   __ cmpl(flags, ftos);
2371   __ jcc(Assembler::notEqual, notFloat);
2372   // ftos
2373   __ movflt(xmm0, field);
2374   __ push(ftos);
2375   // Rewrite bytecode to be faster
2376   if (!is_static) {
2377     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
2378   }
2379   __ jmp(Done);
2380 
2381   __ bind(notFloat);
2382 #ifdef ASSERT
2383   __ cmpl(flags, dtos);
2384   __ jcc(Assembler::notEqual, notDouble);
2385 #endif
2386   // dtos
2387   __ movdbl(xmm0, field);
2388   __ push(dtos);
2389   // Rewrite bytecode to be faster
2390   if (!is_static) {
2391     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
2392   }
2393 #ifdef ASSERT
2394   __ jmp(Done);
2395 
2396   __ bind(notDouble);
2397   __ stop("Bad state");
2398 #endif
2399 
2400   __ bind(Done);
2401   // [jk] not needed currently
2402   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
2403   //                                              Assembler::LoadStore));
2404 }
2405 
2406 
2407 void TemplateTable::getfield(int byte_no) {
2408   getfield_or_static(byte_no, false);
2409 }
2410 
2411 void TemplateTable::getstatic(int byte_no) {
2412   getfield_or_static(byte_no, true);
2413 }
2414 
2415 // The registers cache and index expected to be set before call.
2416 // The function may destroy various registers, just not the cache and index registers.
2417 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2418   transition(vtos, vtos);
2419 
2420   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2421 
2422   if (JvmtiExport::can_post_field_modification()) {
2423     // Check to see if a field modification watch has been set before
2424     // we take the time to call into the VM.
2425     Label L1;
2426     assert_different_registers(cache, index, rax);
2427     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2428     __ testl(rax, rax);
2429     __ jcc(Assembler::zero, L1);
2430 
2431     __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
2432 
2433     if (is_static) {
2434       // Life is simple.  Null out the object pointer.
2435       __ xorl(c_rarg1, c_rarg1);
2436     } else {
2437       // Life is harder. The stack holds the value on top, followed by
2438       // the object.  We don't know the size of the value, though; it
2439       // could be one or two words depending on its type. As a result,
2440       // we must find the type to determine where the object is.
2441       __ movl(c_rarg3, Address(c_rarg2, rscratch1,
2442                            Address::times_8,
2443                            in_bytes(cp_base_offset +
2444                                      ConstantPoolCacheEntry::flags_offset())));
2445       __ shrl(c_rarg3, ConstantPoolCacheEntry::tos_state_shift);
2446       // Make sure we don't need to mask rcx after the above shift
2447       ConstantPoolCacheEntry::verify_tos_state_shift();
2448       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
2449       __ cmpl(c_rarg3, ltos);
2450       __ cmovptr(Assembler::equal,
2451                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
2452       __ cmpl(c_rarg3, dtos);
2453       __ cmovptr(Assembler::equal,
2454                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
2455     }
2456     // cache entry pointer
2457     __ addptr(c_rarg2, in_bytes(cp_base_offset));
2458     __ shll(rscratch1, LogBytesPerWord);
2459     __ addptr(c_rarg2, rscratch1);
2460     // object (tos)
2461     __ mov(c_rarg3, rsp);
2462     // c_rarg1: object pointer set up above (NULL if static)
2463     // c_rarg2: cache entry pointer
2464     // c_rarg3: jvalue object on the stack
2465     __ call_VM(noreg,
2466                CAST_FROM_FN_PTR(address,
2467                                 InterpreterRuntime::post_field_modification),
2468                c_rarg1, c_rarg2, c_rarg3);
2469     __ get_cache_and_index_at_bcp(cache, index, 1);
2470     __ bind(L1);
2471   }
2472 }
2473 
2474 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2475   transition(vtos, vtos);
2476 
2477   const Register cache = rcx;
2478   const Register index = rdx;
2479   const Register obj   = rcx;
2480   const Register off   = rbx;
2481   const Register flags = rax;
2482   const Register bc    = c_rarg3;
2483 
2484   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2485   jvmti_post_field_mod(cache, index, is_static);
2486   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2487 
2488   // [jk] not needed currently
2489   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
2490   //                                              Assembler::StoreStore));
2491 
2492   Label notVolatile, Done;
2493   __ movl(rdx, flags);
2494   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
2495   __ andl(rdx, 0x1);
2496 
2497   // field address
2498   const Address field(obj, off, Address::times_1);
2499 
2500   Label notByte, notInt, notShort, notChar,
2501         notLong, notFloat, notObj, notDouble;
2502 
2503   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
2504 
2505   assert(btos == 0, "change code, btos != 0");
2506   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
2507   __ jcc(Assembler::notZero, notByte);
2508 
2509   // btos
2510   {
2511     __ pop(btos);
2512     if (!is_static) pop_and_check_object(obj);
2513     __ movb(field, rax);
2514     if (!is_static) {
2515       patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no);
2516     }
2517     __ jmp(Done);
2518   }
2519 
2520   __ bind(notByte);
2521   __ cmpl(flags, atos);
2522   __ jcc(Assembler::notEqual, notObj);
2523 
2524   // atos
2525   {
2526     __ pop(atos);
2527     if (!is_static) pop_and_check_object(obj);
2528     // Store into the field
2529     do_oop_store(_masm, field, rax, _bs->kind(), false);
2530     if (!is_static) {
2531       patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
2532     }
2533     __ jmp(Done);
2534   }
2535 
2536   __ bind(notObj);
2537   __ cmpl(flags, itos);
2538   __ jcc(Assembler::notEqual, notInt);
2539 
2540   // itos
2541   {
2542     __ pop(itos);
2543     if (!is_static) pop_and_check_object(obj);
2544     __ movl(field, rax);
2545     if (!is_static) {
2546       patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
2547     }
2548     __ jmp(Done);
2549   }
2550 
2551   __ bind(notInt);
2552   __ cmpl(flags, ctos);
2553   __ jcc(Assembler::notEqual, notChar);
2554 
2555   // ctos
2556   {
2557     __ pop(ctos);
2558     if (!is_static) pop_and_check_object(obj);
2559     __ movw(field, rax);
2560     if (!is_static) {
2561       patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no);
2562     }
2563     __ jmp(Done);
2564   }
2565 
2566   __ bind(notChar);
2567   __ cmpl(flags, stos);
2568   __ jcc(Assembler::notEqual, notShort);
2569 
2570   // stos
2571   {
2572     __ pop(stos);
2573     if (!is_static) pop_and_check_object(obj);
2574     __ movw(field, rax);
2575     if (!is_static) {
2576       patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no);
2577     }
2578     __ jmp(Done);
2579   }
2580 
2581   __ bind(notShort);
2582   __ cmpl(flags, ltos);
2583   __ jcc(Assembler::notEqual, notLong);
2584 
2585   // ltos
2586   {
2587     __ pop(ltos);
2588     if (!is_static) pop_and_check_object(obj);
2589     __ movq(field, rax);
2590     if (!is_static) {
2591       patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no);
2592     }
2593     __ jmp(Done);
2594   }
2595 
2596   __ bind(notLong);
2597   __ cmpl(flags, ftos);
2598   __ jcc(Assembler::notEqual, notFloat);
2599 
2600   // ftos
2601   {
2602     __ pop(ftos);
2603     if (!is_static) pop_and_check_object(obj);
2604     __ movflt(field, xmm0);
2605     if (!is_static) {
2606       patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no);
2607     }
2608     __ jmp(Done);
2609   }
2610 
2611   __ bind(notFloat);
2612 #ifdef ASSERT
2613   __ cmpl(flags, dtos);
2614   __ jcc(Assembler::notEqual, notDouble);
2615 #endif
2616 
2617   // dtos
2618   {
2619     __ pop(dtos);
2620     if (!is_static) pop_and_check_object(obj);
2621     __ movdbl(field, xmm0);
2622     if (!is_static) {
2623       patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no);
2624     }
2625   }
2626 
2627 #ifdef ASSERT
2628   __ jmp(Done);
2629 
2630   __ bind(notDouble);
2631   __ stop("Bad state");
2632 #endif
2633 
2634   __ bind(Done);
2635 
2636   // Check for volatile store
2637   __ testl(rdx, rdx);
2638   __ jcc(Assembler::zero, notVolatile);
2639   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2640                                                Assembler::StoreStore));
2641   __ bind(notVolatile);
2642 }
2643 
2644 void TemplateTable::putfield(int byte_no) {
2645   putfield_or_static(byte_no, false);
2646 }
2647 
2648 void TemplateTable::putstatic(int byte_no) {
2649   putfield_or_static(byte_no, true);
2650 }
2651 
2652 void TemplateTable::jvmti_post_fast_field_mod() {
2653   if (JvmtiExport::can_post_field_modification()) {
2654     // Check to see if a field modification watch has been set before
2655     // we take the time to call into the VM.
2656     Label L2;
2657     __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2658     __ testl(c_rarg3, c_rarg3);
2659     __ jcc(Assembler::zero, L2);
2660     __ pop_ptr(rbx);                  // copy the object pointer from tos
2661     __ verify_oop(rbx);
2662     __ push_ptr(rbx);                 // put the object pointer back on tos
2663     // Save tos values before call_VM() clobbers them. Since we have
2664     // to do it for every data type, we use the saved values as the
2665     // jvalue object.
2666     switch (bytecode()) {          // load values into the jvalue object
2667     case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
2668     case Bytecodes::_fast_bputfield: // fall through
2669     case Bytecodes::_fast_sputfield: // fall through
2670     case Bytecodes::_fast_cputfield: // fall through
2671     case Bytecodes::_fast_iputfield: __ push_i(rax); break;
2672     case Bytecodes::_fast_dputfield: __ push_d(); break;
2673     case Bytecodes::_fast_fputfield: __ push_f(); break;
2674     case Bytecodes::_fast_lputfield: __ push_l(rax); break;
2675 
2676     default:
2677       ShouldNotReachHere();
2678     }
2679     __ mov(c_rarg3, rsp);             // points to jvalue on the stack
2680     // access constant pool cache entry
2681     __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1);
2682     __ verify_oop(rbx);
2683     // rbx: object pointer copied above
2684     // c_rarg2: cache entry pointer
2685     // c_rarg3: jvalue object on the stack
2686     __ call_VM(noreg,
2687                CAST_FROM_FN_PTR(address,
2688                                 InterpreterRuntime::post_field_modification),
2689                rbx, c_rarg2, c_rarg3);
2690 
2691     switch (bytecode()) {             // restore tos values
2692     case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
2693     case Bytecodes::_fast_bputfield: // fall through
2694     case Bytecodes::_fast_sputfield: // fall through
2695     case Bytecodes::_fast_cputfield: // fall through
2696     case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
2697     case Bytecodes::_fast_dputfield: __ pop_d(); break;
2698     case Bytecodes::_fast_fputfield: __ pop_f(); break;
2699     case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
2700     }
2701     __ bind(L2);
2702   }
2703 }
2704 
2705 void TemplateTable::fast_storefield(TosState state) {
2706   transition(state, vtos);
2707 
2708   ByteSize base = ConstantPoolCache::base_offset();
2709 
2710   jvmti_post_fast_field_mod();
2711 
2712   // access constant pool cache
2713   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2714 
2715   // test for volatile with rdx
2716   __ movl(rdx, Address(rcx, rbx, Address::times_8,
2717                        in_bytes(base +
2718                                 ConstantPoolCacheEntry::flags_offset())));
2719 
2720   // replace index with field offset from cache entry
2721   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
2722                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
2723 
2724   // [jk] not needed currently
2725   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
2726   //                                              Assembler::StoreStore));
2727 
2728   Label notVolatile;
2729   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
2730   __ andl(rdx, 0x1);
2731 
2732   // Get object from stack
2733   pop_and_check_object(rcx);
2734 
2735   // field address
2736   const Address field(rcx, rbx, Address::times_1);
2737 
2738   // access field
2739   switch (bytecode()) {
2740   case Bytecodes::_fast_aputfield:
2741     do_oop_store(_masm, field, rax, _bs->kind(), false);
2742     break;
2743   case Bytecodes::_fast_lputfield:
2744     __ movq(field, rax);
2745     break;
2746   case Bytecodes::_fast_iputfield:
2747     __ movl(field, rax);
2748     break;
2749   case Bytecodes::_fast_bputfield:
2750     __ movb(field, rax);
2751     break;
2752   case Bytecodes::_fast_sputfield:
2753     // fall through
2754   case Bytecodes::_fast_cputfield:
2755     __ movw(field, rax);
2756     break;
2757   case Bytecodes::_fast_fputfield:
2758     __ movflt(field, xmm0);
2759     break;
2760   case Bytecodes::_fast_dputfield:
2761     __ movdbl(field, xmm0);
2762     break;
2763   default:
2764     ShouldNotReachHere();
2765   }
2766 
2767   // Check for volatile store
2768   __ testl(rdx, rdx);
2769   __ jcc(Assembler::zero, notVolatile);
2770   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2771                                                Assembler::StoreStore));
2772   __ bind(notVolatile);
2773 }
2774 
2775 
2776 void TemplateTable::fast_accessfield(TosState state) {
2777   transition(atos, state);
2778 
2779   // Do the JVMTI work here to avoid disturbing the register state below
2780   if (JvmtiExport::can_post_field_access()) {
2781     // Check to see if a field access watch has been set before we
2782     // take the time to call into the VM.
2783     Label L1;
2784     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2785     __ testl(rcx, rcx);
2786     __ jcc(Assembler::zero, L1);
2787     // access constant pool cache entry
2788     __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1);
2789     __ verify_oop(rax);
2790     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
2791     __ mov(c_rarg1, rax);
2792     // c_rarg1: object pointer copied above
2793     // c_rarg2: cache entry pointer
2794     __ call_VM(noreg,
2795                CAST_FROM_FN_PTR(address,
2796                                 InterpreterRuntime::post_field_access),
2797                c_rarg1, c_rarg2);
2798     __ pop_ptr(rax); // restore object pointer
2799     __ bind(L1);
2800   }
2801 
2802   // access constant pool cache
2803   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2804   // replace index with field offset from cache entry
2805   // [jk] not needed currently
2806   // if (os::is_MP()) {
2807   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
2808   //                        in_bytes(ConstantPoolCache::base_offset() +
2809   //                                 ConstantPoolCacheEntry::flags_offset())));
2810   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
2811   //   __ andl(rdx, 0x1);
2812   // }
2813   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
2814                          in_bytes(ConstantPoolCache::base_offset() +
2815                                   ConstantPoolCacheEntry::f2_offset())));
2816 
2817   // rax: object
2818   __ verify_oop(rax);
2819   __ null_check(rax);
2820   Address field(rax, rbx, Address::times_1);
2821 
2822   // access field
2823   switch (bytecode()) {
2824   case Bytecodes::_fast_agetfield:
2825     __ load_heap_oop(rax, field);
2826     __ verify_oop(rax);
2827     break;
2828   case Bytecodes::_fast_lgetfield:
2829     __ movq(rax, field);
2830     break;
2831   case Bytecodes::_fast_igetfield:
2832     __ movl(rax, field);
2833     break;
2834   case Bytecodes::_fast_bgetfield:
2835     __ movsbl(rax, field);
2836     break;
2837   case Bytecodes::_fast_sgetfield:
2838     __ load_signed_short(rax, field);
2839     break;
2840   case Bytecodes::_fast_cgetfield:
2841     __ load_unsigned_short(rax, field);
2842     break;
2843   case Bytecodes::_fast_fgetfield:
2844     __ movflt(xmm0, field);
2845     break;
2846   case Bytecodes::_fast_dgetfield:
2847     __ movdbl(xmm0, field);
2848     break;
2849   default:
2850     ShouldNotReachHere();
2851   }
2852   // [jk] not needed currently
2853   // if (os::is_MP()) {
2854   //   Label notVolatile;
2855   //   __ testl(rdx, rdx);
2856   //   __ jcc(Assembler::zero, notVolatile);
2857   //   __ membar(Assembler::LoadLoad);
2858   //   __ bind(notVolatile);
2859   //};
2860 }
2861 
2862 void TemplateTable::fast_xaccess(TosState state) {
2863   transition(vtos, state);
2864 
2865   // get receiver
2866   __ movptr(rax, aaddress(0));
2867   // access constant pool cache
2868   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
2869   __ movptr(rbx,
2870             Address(rcx, rdx, Address::times_8,
2871                     in_bytes(ConstantPoolCache::base_offset() +
2872                              ConstantPoolCacheEntry::f2_offset())));
2873   // make sure exception is reported in correct bcp range (getfield is
2874   // next instruction)
2875   __ increment(r13);
2876   __ null_check(rax);
2877   switch (state) {
2878   case itos:
2879     __ movl(rax, Address(rax, rbx, Address::times_1));
2880     break;
2881   case atos:
2882     __ load_heap_oop(rax, Address(rax, rbx, Address::times_1));
2883     __ verify_oop(rax);
2884     break;
2885   case ftos:
2886     __ movflt(xmm0, Address(rax, rbx, Address::times_1));
2887     break;
2888   default:
2889     ShouldNotReachHere();
2890   }
2891 
2892   // [jk] not needed currently
2893   // if (os::is_MP()) {
2894   //   Label notVolatile;
2895   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
2896   //                        in_bytes(ConstantPoolCache::base_offset() +
2897   //                                 ConstantPoolCacheEntry::flags_offset())));
2898   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
2899   //   __ testl(rdx, 0x1);
2900   //   __ jcc(Assembler::zero, notVolatile);
2901   //   __ membar(Assembler::LoadLoad);
2902   //   __ bind(notVolatile);
2903   // }
2904 
2905   __ decrement(r13);
2906 }
2907 
2908 
2909 
2910 //-----------------------------------------------------------------------------
2911 // Calls
2912 
2913 void TemplateTable::count_calls(Register method, Register temp) {
2914   // implemented elsewhere
2915   ShouldNotReachHere();
2916 }
2917 
2918 void TemplateTable::prepare_invoke(int byte_no,
2919                                    Register method,  // linked method (or i-klass)
2920                                    Register index,   // itable index, MethodType, etc.
2921                                    Register recv,    // if caller wants to see it
2922                                    Register flags    // if caller wants to test it
2923                                    ) {
2924   // determine flags
2925   const Bytecodes::Code code = bytecode();
2926   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
2927   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
2928   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
2929   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
2930   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
2931   const bool load_receiver       = (recv  != noreg);
2932   const bool save_flags          = (flags != noreg);
2933   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
2934   assert(save_flags    == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
2935   assert(flags == noreg || flags == rdx, "");
2936   assert(recv  == noreg || recv  == rcx, "");
2937 
2938   // setup registers & access constant pool cache
2939   if (recv  == noreg)  recv  = rcx;
2940   if (flags == noreg)  flags = rdx;
2941   assert_different_registers(method, index, recv, flags);
2942 
2943   // save 'interpreter return address'
2944   __ save_bcp();
2945 
2946   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
2947 
2948   // maybe push appendix to arguments (just before return address)
2949   if (is_invokedynamic || is_invokehandle) {
2950     Label L_no_push;
2951     __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
2952     __ jcc(Assembler::zero, L_no_push);
2953     // Push the appendix as a trailing parameter.
2954     // This must be done before we get the receiver,
2955     // since the parameter_size includes it.
2956     __ push(rbx);
2957     __ mov(rbx, index);
2958     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
2959     __ load_resolved_reference_at_index(index, rbx);
2960     __ pop(rbx);
2961     __ push(index);  // push appendix (MethodType, CallSite, etc.)
2962     __ bind(L_no_push);
2963   }
2964 
2965   // load receiver if needed (after appendix is pushed so parameter size is correct)
2966   // Note: no return address pushed yet
2967   if (load_receiver) {
2968     __ movl(recv, flags);
2969     __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
2970     const int no_return_pc_pushed_yet = -1;  // argument slot correction before we push return address
2971     const int receiver_is_at_end      = -1;  // back off one slot to get receiver
2972     Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
2973     __ movptr(recv, recv_addr);
2974     __ verify_oop(recv);
2975   }
2976 
2977   if (save_flags) {
2978     __ movl(r13, flags);
2979   }
2980 
2981   // compute return type
2982   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
2983   // Make sure we don't need to mask flags after the above shift
2984   ConstantPoolCacheEntry::verify_tos_state_shift();
2985   // load return address
2986   {
2987     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
2988     ExternalAddress table(table_addr);
2989     __ lea(rscratch1, table);
2990     __ movptr(flags, Address(rscratch1, flags, Address::times_ptr));
2991   }
2992 
2993   // push return address
2994   __ push(flags);
2995 
2996   // Restore flags value from the constant pool cache, and restore rsi
2997   // for later null checks.  r13 is the bytecode pointer
2998   if (save_flags) {
2999     __ movl(flags, r13);
3000     __ restore_bcp();
3001   }
3002 }
3003 
3004 
3005 void TemplateTable::invokevirtual_helper(Register index,
3006                                          Register recv,
3007                                          Register flags) {
3008   // Uses temporary registers rax, rdx
3009   assert_different_registers(index, recv, rax, rdx);
3010   assert(index == rbx, "");
3011   assert(recv  == rcx, "");
3012 
3013   // Test for an invoke of a final method
3014   Label notFinal;
3015   __ movl(rax, flags);
3016   __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
3017   __ jcc(Assembler::zero, notFinal);
3018 
3019   const Register method = index;  // method must be rbx
3020   assert(method == rbx,
3021          "Method* must be rbx for interpreter calling convention");
3022 
3023   // do the call - the index is actually the method to call
3024   // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
3025 
3026   // It's final, need a null check here!
3027   __ null_check(recv);
3028 
3029   // profile this call
3030   __ profile_final_call(rax);
3031   __ profile_arguments_type(rax, method, r13, true);
3032 
3033   __ jump_from_interpreted(method, rax);
3034 
3035   __ bind(notFinal);
3036 
3037   // get receiver klass
3038   __ null_check(recv, oopDesc::klass_offset_in_bytes());
3039   __ load_klass(rax, recv);
3040 
3041   // profile this call
3042   __ profile_virtual_call(rax, r14, rdx);
3043 
3044   // get target Method* & entry point
3045   __ lookup_virtual_method(rax, index, method);
3046   __ profile_arguments_type(rdx, method, r13, true);
3047   __ jump_from_interpreted(method, rdx);
3048 }
3049 
3050 
3051 void TemplateTable::invokevirtual(int byte_no) {
3052   transition(vtos, vtos);
3053   assert(byte_no == f2_byte, "use this argument");
3054   prepare_invoke(byte_no,
3055                  rbx,    // method or vtable index
3056                  noreg,  // unused itable index
3057                  rcx, rdx); // recv, flags
3058 
3059   // rbx: index
3060   // rcx: receiver
3061   // rdx: flags
3062 
3063   invokevirtual_helper(rbx, rcx, rdx);
3064 }
3065 
3066 
3067 void TemplateTable::invokespecial(int byte_no) {
3068   transition(vtos, vtos);
3069   assert(byte_no == f1_byte, "use this argument");
3070   prepare_invoke(byte_no, rbx, noreg,  // get f1 Method*
3071                  rcx);  // get receiver also for null check
3072   __ verify_oop(rcx);
3073   __ null_check(rcx);
3074   // do the call
3075   __ profile_call(rax);
3076   __ profile_arguments_type(rax, rbx, r13, false);
3077   __ jump_from_interpreted(rbx, rax);
3078 }
3079 
3080 
3081 void TemplateTable::invokestatic(int byte_no) {
3082   transition(vtos, vtos);
3083   assert(byte_no == f1_byte, "use this argument");
3084   prepare_invoke(byte_no, rbx);  // get f1 Method*
3085   // do the call
3086   __ profile_call(rax);
3087   __ profile_arguments_type(rax, rbx, r13, false);
3088   __ jump_from_interpreted(rbx, rax);
3089 }
3090 
3091 void TemplateTable::fast_invokevfinal(int byte_no) {
3092   transition(vtos, vtos);
3093   assert(byte_no == f2_byte, "use this argument");
3094   __ stop("fast_invokevfinal not used on amd64");
3095 }
3096 
3097 void TemplateTable::invokeinterface(int byte_no) {
3098   transition(vtos, vtos);
3099   assert(byte_no == f1_byte, "use this argument");
3100   prepare_invoke(byte_no, rax, rbx,  // get f1 Klass*, f2 itable index
3101                  rcx, rdx); // recv, flags
3102 
3103   // rax: interface klass (from f1)
3104   // rbx: itable index (from f2)
3105   // rcx: receiver
3106   // rdx: flags
3107 
3108   // Special case of invokeinterface called for virtual method of
3109   // java.lang.Object.  See cpCacheOop.cpp for details.
3110   // This code isn't produced by javac, but could be produced by
3111   // another compliant java compiler.
3112   Label notMethod;
3113   __ movl(r14, rdx);
3114   __ andl(r14, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
3115   __ jcc(Assembler::zero, notMethod);
3116 
3117   invokevirtual_helper(rbx, rcx, rdx);
3118   __ bind(notMethod);
3119 
3120   // Get receiver klass into rdx - also a null check
3121   __ restore_locals();  // restore r14
3122   __ null_check(rcx, oopDesc::klass_offset_in_bytes());
3123   __ load_klass(rdx, rcx);
3124 
3125   // profile this call
3126   __ profile_virtual_call(rdx, r13, r14);
3127 
3128   Label no_such_interface, no_such_method;
3129 
3130   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3131                              rdx, rax, rbx,
3132                              // outputs: method, scan temp. reg
3133                              rbx, r13,
3134                              no_such_interface);
3135 
3136   // rbx: Method* to call
3137   // rcx: receiver
3138   // Check for abstract method error
3139   // Note: This should be done more efficiently via a throw_abstract_method_error
3140   //       interpreter entry point and a conditional jump to it in case of a null
3141   //       method.
3142   __ testptr(rbx, rbx);
3143   __ jcc(Assembler::zero, no_such_method);
3144 
3145   __ profile_arguments_type(rdx, rbx, r13, true);
3146 
3147   // do the call
3148   // rcx: receiver
3149   // rbx,: Method*
3150   __ jump_from_interpreted(rbx, rdx);
3151   __ should_not_reach_here();
3152 
3153   // exception handling code follows...
3154   // note: must restore interpreter registers to canonical
3155   //       state for exception handling to work correctly!
3156 
3157   __ bind(no_such_method);
3158   // throw exception
3159   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3160   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
3161   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3162   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3163   // the call_VM checks for exception, so we should never return here.
3164   __ should_not_reach_here();
3165 
3166   __ bind(no_such_interface);
3167   // throw exception
3168   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3169   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
3170   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3171   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3172                    InterpreterRuntime::throw_IncompatibleClassChangeError));
3173   // the call_VM checks for exception, so we should never return here.
3174   __ should_not_reach_here();
3175 }
3176 
3177 
3178 void TemplateTable::invokehandle(int byte_no) {
3179   transition(vtos, vtos);
3180   assert(byte_no == f1_byte, "use this argument");
3181   const Register rbx_method = rbx;
3182   const Register rax_mtype  = rax;
3183   const Register rcx_recv   = rcx;
3184   const Register rdx_flags  = rdx;
3185 
3186   if (!EnableInvokeDynamic) {
3187     // rewriter does not generate this bytecode
3188     __ should_not_reach_here();
3189     return;
3190   }
3191 
3192   prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv);
3193   __ verify_method_ptr(rbx_method);
3194   __ verify_oop(rcx_recv);
3195   __ null_check(rcx_recv);
3196 
3197   // rax: MethodType object (from cpool->resolved_references[f1], if necessary)
3198   // rbx: MH.invokeExact_MT method (from f2)
3199 
3200   // Note:  rax_mtype is already pushed (if necessary) by prepare_invoke
3201 
3202   // FIXME: profile the LambdaForm also
3203   __ profile_final_call(rax);
3204   __ profile_arguments_type(rdx, rbx_method, r13, true);
3205 
3206   __ jump_from_interpreted(rbx_method, rdx);
3207 }
3208 
3209 
3210 void TemplateTable::invokedynamic(int byte_no) {
3211   transition(vtos, vtos);
3212   assert(byte_no == f1_byte, "use this argument");
3213 
3214   if (!EnableInvokeDynamic) {
3215     // We should not encounter this bytecode if !EnableInvokeDynamic.
3216     // The verifier will stop it.  However, if we get past the verifier,
3217     // this will stop the thread in a reasonable way, without crashing the JVM.
3218     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3219                      InterpreterRuntime::throw_IncompatibleClassChangeError));
3220     // the call_VM checks for exception, so we should never return here.
3221     __ should_not_reach_here();
3222     return;
3223   }
3224 
3225   const Register rbx_method   = rbx;
3226   const Register rax_callsite = rax;
3227 
3228   prepare_invoke(byte_no, rbx_method, rax_callsite);
3229 
3230   // rax: CallSite object (from cpool->resolved_references[f1])
3231   // rbx: MH.linkToCallSite method (from f2)
3232 
3233   // Note:  rax_callsite is already pushed by prepare_invoke
3234 
3235   // %%% should make a type profile for any invokedynamic that takes a ref argument
3236   // profile this call
3237   __ profile_call(r13);
3238   __ profile_arguments_type(rdx, rbx_method, r13, false);
3239 
3240   __ verify_oop(rax_callsite);
3241 
3242   __ jump_from_interpreted(rbx_method, rdx);
3243 }
3244 
3245 
3246 //-----------------------------------------------------------------------------
3247 // Allocation
3248 
3249 void TemplateTable::_new() {
3250   transition(vtos, atos);
3251   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3252   Label slow_case;
3253   Label done;
3254   Label initialize_header;
3255   Label initialize_object; // including clearing the fields
3256   Label allocate_shared;
3257 
3258   __ get_cpool_and_tags(rsi, rax);
3259   // Make sure the class we're about to instantiate has been resolved.
3260   // This is done before loading InstanceKlass to be consistent with the order
3261   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3262   const int tags_offset = Array<u1>::base_offset_in_bytes();
3263   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset),
3264           JVM_CONSTANT_Class);
3265   __ jcc(Assembler::notEqual, slow_case);
3266 
3267   // get InstanceKlass
3268   __ movptr(rsi, Address(rsi, rdx,
3269             Address::times_8, sizeof(ConstantPool)));
3270 
3271   // make sure klass is initialized & doesn't have finalizer
3272   // make sure klass is fully initialized
3273   __ cmpb(Address(rsi,
3274                   InstanceKlass::init_state_offset()),
3275           InstanceKlass::fully_initialized);
3276   __ jcc(Assembler::notEqual, slow_case);
3277 
3278   // get instance_size in InstanceKlass (scaled to a count of bytes)
3279   __ movl(rdx,
3280           Address(rsi,
3281                   Klass::layout_helper_offset()));
3282   // test to see if it has a finalizer or is malformed in some way
3283   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
3284   __ jcc(Assembler::notZero, slow_case);
3285 
3286   // Allocate the instance
3287   // 1) Try to allocate in the TLAB
3288   // 2) if fail and the object is large allocate in the shared Eden
3289   // 3) if the above fails (or is not applicable), go to a slow case
3290   // (creates a new TLAB, etc.)
3291 
3292   const bool allow_shared_alloc =
3293     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
3294 
3295   if (UseTLAB) {
3296     __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
3297     __ lea(rbx, Address(rax, rdx, Address::times_1));
3298     __ cmpptr(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
3299     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
3300     __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
3301     if (ZeroTLAB) {
3302       // the fields have been already cleared
3303       __ jmp(initialize_header);
3304     } else {
3305       // initialize both the header and fields
3306       __ jmp(initialize_object);
3307     }
3308   }
3309 
3310   // Allocation in the shared Eden, if allowed.
3311   //
3312   // rdx: instance size in bytes
3313   if (allow_shared_alloc) {
3314     __ bind(allocate_shared);
3315 
3316     ExternalAddress top((address)Universe::heap()->top_addr());
3317     ExternalAddress end((address)Universe::heap()->end_addr());
3318 
3319     const Register RtopAddr = rscratch1;
3320     const Register RendAddr = rscratch2;
3321 
3322     __ lea(RtopAddr, top);
3323     __ lea(RendAddr, end);
3324     __ movptr(rax, Address(RtopAddr, 0));
3325 
3326     // For retries rax gets set by cmpxchgq
3327     Label retry;
3328     __ bind(retry);
3329     __ lea(rbx, Address(rax, rdx, Address::times_1));
3330     __ cmpptr(rbx, Address(RendAddr, 0));
3331     __ jcc(Assembler::above, slow_case);
3332 
3333     // Compare rax with the top addr, and if still equal, store the new
3334     // top addr in rbx at the address of the top addr pointer. Sets ZF if was
3335     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
3336     //
3337     // rax: object begin
3338     // rbx: object end
3339     // rdx: instance size in bytes
3340     if (os::is_MP()) {
3341       __ lock();
3342     }
3343     __ cmpxchgptr(rbx, Address(RtopAddr, 0));
3344 
3345     // if someone beat us on the allocation, try again, otherwise continue
3346     __ jcc(Assembler::notEqual, retry);
3347 
3348     __ incr_allocated_bytes(r15_thread, rdx, 0);
3349   }
3350 
3351   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3352     // The object is initialized before the header.  If the object size is
3353     // zero, go directly to the header initialization.
3354     __ bind(initialize_object);
3355     __ decrementl(rdx, sizeof(oopDesc));
3356     __ jcc(Assembler::zero, initialize_header);
3357 
3358     // Initialize object fields
3359     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
3360     __ shrl(rdx, LogBytesPerLong);  // divide by oopSize to simplify the loop
3361     {
3362       Label loop;
3363       __ bind(loop);
3364       __ movq(Address(rax, rdx, Address::times_8,
3365                       sizeof(oopDesc) - oopSize),
3366               rcx);
3367       __ decrementl(rdx);
3368       __ jcc(Assembler::notZero, loop);
3369     }
3370 
3371     // initialize object header only.
3372     __ bind(initialize_header);
3373     if (UseBiasedLocking) {
3374       __ movptr(rscratch1, Address(rsi, Klass::prototype_header_offset()));
3375       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1);
3376     } else {
3377       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
3378                (intptr_t) markOopDesc::prototype()); // header (address 0x1)
3379     }
3380     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
3381     __ store_klass_gap(rax, rcx);  // zero klass gap for compressed oops
3382     __ store_klass(rax, rsi);      // store klass last
3383 
3384     {
3385       SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
3386       // Trigger dtrace event for fastpath
3387       __ push(atos); // save the return value
3388       __ call_VM_leaf(
3389            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
3390       __ pop(atos); // restore the return value
3391 
3392     }
3393     __ jmp(done);
3394   }
3395 
3396 
3397   // slow case
3398   __ bind(slow_case);
3399   __ get_constant_pool(c_rarg1);
3400   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3401   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3402   __ verify_oop(rax);
3403 
3404   // continue
3405   __ bind(done);
3406 }
3407 
3408 void TemplateTable::newarray() {
3409   transition(itos, atos);
3410   __ load_unsigned_byte(c_rarg1, at_bcp(1));
3411   __ movl(c_rarg2, rax);
3412   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3413           c_rarg1, c_rarg2);
3414 }
3415 
3416 void TemplateTable::anewarray() {
3417   transition(itos, atos);
3418   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3419   __ get_constant_pool(c_rarg1);
3420   __ movl(c_rarg3, rax);
3421   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
3422           c_rarg1, c_rarg2, c_rarg3);
3423 }
3424 
3425 void TemplateTable::arraylength() {
3426   transition(atos, itos);
3427   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
3428   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
3429 }
3430 
3431 void TemplateTable::checkcast() {
3432   transition(atos, atos);
3433   Label done, is_null, ok_is_subtype, quicked, resolved;
3434   __ testptr(rax, rax); // object is in rax
3435   __ jcc(Assembler::zero, is_null);
3436 
3437   // Get cpool & tags index
3438   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
3439   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
3440   // See if bytecode has already been quicked
3441   __ cmpb(Address(rdx, rbx,
3442                   Address::times_1,
3443                   Array<u1>::base_offset_in_bytes()),
3444           JVM_CONSTANT_Class);
3445   __ jcc(Assembler::equal, quicked);
3446   __ push(atos); // save receiver for result, and for GC
3447   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3448   // vm_result_2 has metadata result
3449   __ get_vm_result_2(rax, r15_thread);
3450   __ pop_ptr(rdx); // restore receiver
3451   __ jmpb(resolved);
3452 
3453   // Get superklass in rax and subklass in rbx
3454   __ bind(quicked);
3455   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
3456   __ movptr(rax, Address(rcx, rbx,
3457                        Address::times_8, sizeof(ConstantPool)));
3458 
3459   __ bind(resolved);
3460   __ load_klass(rbx, rdx);
3461 
3462   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
3463   // Superklass in rax.  Subklass in rbx.
3464   __ gen_subtype_check(rbx, ok_is_subtype);
3465 
3466   // Come here on failure
3467   __ push_ptr(rdx);
3468   // object is at TOS
3469   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
3470 
3471   // Come here on success
3472   __ bind(ok_is_subtype);
3473   __ mov(rax, rdx); // Restore object in rdx
3474 
3475   // Collect counts on whether this check-cast sees NULLs a lot or not.
3476   if (ProfileInterpreter) {
3477     __ jmp(done);
3478     __ bind(is_null);
3479     __ profile_null_seen(rcx);
3480   } else {
3481     __ bind(is_null);   // same as 'done'
3482   }
3483   __ bind(done);
3484 }
3485 
3486 void TemplateTable::instanceof() {
3487   transition(atos, itos);
3488   Label done, is_null, ok_is_subtype, quicked, resolved;
3489   __ testptr(rax, rax);
3490   __ jcc(Assembler::zero, is_null);
3491 
3492   // Get cpool & tags index
3493   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
3494   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
3495   // See if bytecode has already been quicked
3496   __ cmpb(Address(rdx, rbx,
3497                   Address::times_1,
3498                   Array<u1>::base_offset_in_bytes()),
3499           JVM_CONSTANT_Class);
3500   __ jcc(Assembler::equal, quicked);
3501 
3502   __ push(atos); // save receiver for result, and for GC
3503   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3504   // vm_result_2 has metadata result
3505   __ get_vm_result_2(rax, r15_thread);
3506   __ pop_ptr(rdx); // restore receiver
3507   __ verify_oop(rdx);
3508   __ load_klass(rdx, rdx);
3509   __ jmpb(resolved);
3510 
3511   // Get superklass in rax and subklass in rdx
3512   __ bind(quicked);
3513   __ load_klass(rdx, rax);
3514   __ movptr(rax, Address(rcx, rbx,
3515                          Address::times_8, sizeof(ConstantPool)));
3516 
3517   __ bind(resolved);
3518 
3519   // Generate subtype check.  Blows rcx, rdi
3520   // Superklass in rax.  Subklass in rdx.
3521   __ gen_subtype_check(rdx, ok_is_subtype);
3522 
3523   // Come here on failure
3524   __ xorl(rax, rax);
3525   __ jmpb(done);
3526   // Come here on success
3527   __ bind(ok_is_subtype);
3528   __ movl(rax, 1);
3529 
3530   // Collect counts on whether this test sees NULLs a lot or not.
3531   if (ProfileInterpreter) {
3532     __ jmp(done);
3533     __ bind(is_null);
3534     __ profile_null_seen(rcx);
3535   } else {
3536     __ bind(is_null);   // same as 'done'
3537   }
3538   __ bind(done);
3539   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
3540   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
3541 }
3542 
3543 //-----------------------------------------------------------------------------
3544 // Breakpoints
3545 void TemplateTable::_breakpoint() {
3546   // Note: We get here even if we are single stepping..
3547   // jbug inists on setting breakpoints at every bytecode
3548   // even if we are in single step mode.
3549 
3550   transition(vtos, vtos);
3551 
3552   // get the unpatched byte code
3553   __ get_method(c_rarg1);
3554   __ call_VM(noreg,
3555              CAST_FROM_FN_PTR(address,
3556                               InterpreterRuntime::get_original_bytecode_at),
3557              c_rarg1, r13);
3558   __ mov(rbx, rax);
3559 
3560   // post the breakpoint event
3561   __ get_method(c_rarg1);
3562   __ call_VM(noreg,
3563              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
3564              c_rarg1, r13);
3565 
3566   // complete the execution of original bytecode
3567   __ dispatch_only_normal(vtos);
3568 }
3569 
3570 //-----------------------------------------------------------------------------
3571 // Exceptions
3572 
3573 void TemplateTable::athrow() {
3574   transition(atos, vtos);
3575   __ null_check(rax);
3576   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
3577 }
3578 
3579 //-----------------------------------------------------------------------------
3580 // Synchronization
3581 //
3582 // Note: monitorenter & exit are symmetric routines; which is reflected
3583 //       in the assembly code structure as well
3584 //
3585 // Stack layout:
3586 //
3587 // [expressions  ] <--- rsp               = expression stack top
3588 // ..
3589 // [expressions  ]
3590 // [monitor entry] <--- monitor block top = expression stack bot
3591 // ..
3592 // [monitor entry]
3593 // [frame data   ] <--- monitor block bot
3594 // ...
3595 // [saved rbp    ] <--- rbp
3596 void TemplateTable::monitorenter() {
3597   transition(atos, vtos);
3598 
3599   // check for NULL object
3600   __ null_check(rax);
3601 
3602   const Address monitor_block_top(
3603         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3604   const Address monitor_block_bot(
3605         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
3606   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
3607 
3608   Label allocated;
3609 
3610   // initialize entry pointer
3611   __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL
3612 
3613   // find a free slot in the monitor block (result in c_rarg1)
3614   {
3615     Label entry, loop, exit;
3616     __ movptr(c_rarg3, monitor_block_top); // points to current entry,
3617                                      // starting with top-most entry
3618     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3619                                      // of monitor block
3620     __ jmpb(entry);
3621 
3622     __ bind(loop);
3623     // check if current entry is used
3624     __ cmpptr(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
3625     // if not used then remember entry in c_rarg1
3626     __ cmov(Assembler::equal, c_rarg1, c_rarg3);
3627     // check if current entry is for same object
3628     __ cmpptr(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
3629     // if same object then stop searching
3630     __ jccb(Assembler::equal, exit);
3631     // otherwise advance to next entry
3632     __ addptr(c_rarg3, entry_size);
3633     __ bind(entry);
3634     // check if bottom reached
3635     __ cmpptr(c_rarg3, c_rarg2);
3636     // if not at bottom then check this entry
3637     __ jcc(Assembler::notEqual, loop);
3638     __ bind(exit);
3639   }
3640 
3641   __ testptr(c_rarg1, c_rarg1); // check if a slot has been found
3642   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
3643 
3644   // allocate one if there's no free slot
3645   {
3646     Label entry, loop;
3647     // 1. compute new pointers             // rsp: old expression stack top
3648     __ movptr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
3649     __ subptr(rsp, entry_size);            // move expression stack top
3650     __ subptr(c_rarg1, entry_size);        // move expression stack bottom
3651     __ mov(c_rarg3, rsp);                  // set start value for copy loop
3652     __ movptr(monitor_block_bot, c_rarg1); // set new monitor block bottom
3653     __ jmp(entry);
3654     // 2. move expression stack contents
3655     __ bind(loop);
3656     __ movptr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
3657                                                       // word from old location
3658     __ movptr(Address(c_rarg3, 0), c_rarg2);          // and store it at new location
3659     __ addptr(c_rarg3, wordSize);                     // advance to next word
3660     __ bind(entry);
3661     __ cmpptr(c_rarg3, c_rarg1);            // check if bottom reached
3662     __ jcc(Assembler::notEqual, loop);      // if not at bottom then
3663                                             // copy next word
3664   }
3665 
3666   // call run-time routine
3667   // c_rarg1: points to monitor entry
3668   __ bind(allocated);
3669 
3670   // Increment bcp to point to the next bytecode, so exception
3671   // handling for async. exceptions work correctly.
3672   // The object has already been poped from the stack, so the
3673   // expression stack looks correct.
3674   __ increment(r13);
3675 
3676   // store object
3677   __ movptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax);
3678   __ lock_object(c_rarg1);
3679 
3680   // check to make sure this monitor doesn't cause stack overflow after locking
3681   __ save_bcp();  // in case of exception
3682   __ generate_stack_overflow_check(0);
3683 
3684   // The bcp has already been incremented. Just need to dispatch to
3685   // next instruction.
3686   __ dispatch_next(vtos);
3687 }
3688 
3689 
3690 void TemplateTable::monitorexit() {
3691   transition(atos, vtos);
3692 
3693   // check for NULL object
3694   __ null_check(rax);
3695 
3696   const Address monitor_block_top(
3697         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3698   const Address monitor_block_bot(
3699         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
3700   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
3701 
3702   Label found;
3703 
3704   // find matching slot
3705   {
3706     Label entry, loop;
3707     __ movptr(c_rarg1, monitor_block_top); // points to current entry,
3708                                      // starting with top-most entry
3709     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3710                                      // of monitor block
3711     __ jmpb(entry);
3712 
3713     __ bind(loop);
3714     // check if current entry is for same object
3715     __ cmpptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
3716     // if same object then stop searching
3717     __ jcc(Assembler::equal, found);
3718     // otherwise advance to next entry
3719     __ addptr(c_rarg1, entry_size);
3720     __ bind(entry);
3721     // check if bottom reached
3722     __ cmpptr(c_rarg1, c_rarg2);
3723     // if not at bottom then check this entry
3724     __ jcc(Assembler::notEqual, loop);
3725   }
3726 
3727   // error handling. Unlocking was not block-structured
3728   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3729                    InterpreterRuntime::throw_illegal_monitor_state_exception));
3730   __ should_not_reach_here();
3731 
3732   // call run-time routine
3733   // rsi: points to monitor entry
3734   __ bind(found);
3735   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
3736   __ unlock_object(c_rarg1);
3737   __ pop_ptr(rax); // discard object
3738 }
3739 
3740 
3741 // Wide instructions
3742 void TemplateTable::wide() {
3743   transition(vtos, vtos);
3744   __ load_unsigned_byte(rbx, at_bcp(1));
3745   __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point));
3746   __ jmp(Address(rscratch1, rbx, Address::times_8));
3747   // Note: the r13 increment step is part of the individual wide
3748   // bytecode implementations
3749 }
3750 
3751 
3752 // Multi arrays
3753 void TemplateTable::multianewarray() {
3754   transition(vtos, atos);
3755   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
3756   // last dim is on top of stack; we want address of first one:
3757   // first_addr = last_addr + (ndims - 1) * wordSize
3758   __ lea(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize));
3759   call_VM(rax,
3760           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
3761           c_rarg1);
3762   __ load_unsigned_byte(rbx, at_bcp(3));
3763   __ lea(rsp, Address(rsp, rbx, Address::times_8));
3764 }
3765 #endif // !CC_INTERP