1 /*
   2  * Copyright (c) 2000, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package javax.imageio.spi;
  27 
  28 import java.util.AbstractSet;
  29 import java.util.HashMap;
  30 import java.util.Iterator;
  31 import java.util.LinkedList;
  32 import java.util.Map;
  33 import java.util.Set;
  34 
  35 /**
  36  * A set of <code>Object</code>s with pairwise orderings between them.
  37  * The <code>iterator</code> method provides the elements in
  38  * topologically sorted order.  Elements participating in a cycle
  39  * are not returned.
  40  *
  41  * Unlike the <code>SortedSet</code> and <code>SortedMap</code>
  42  * interfaces, which require their elements to implement the
  43  * <code>Comparable</code> interface, this class receives ordering
  44  * information via its <code>setOrdering</code> and
  45  * <code>unsetPreference</code> methods.  This difference is due to
  46  * the fact that the relevant ordering between elements is unlikely to
  47  * be inherent in the elements themselves; rather, it is set
  48  * dynamically accoring to application policy.  For example, in a
  49  * service provider registry situation, an application might allow the
  50  * user to set a preference order for service provider objects
  51  * supplied by a trusted vendor over those supplied by another.
  52  *
  53  */
  54 class PartiallyOrderedSet<E> extends AbstractSet<E> {
  55 
  56     // The topological sort (roughly) follows the algorithm described in
  57     // Horowitz and Sahni, _Fundamentals of Data Structures_ (1976),
  58     // p. 315.
  59 
  60     // Maps Objects to DigraphNodes that contain them
  61     private Map<E, DigraphNode<E>> poNodes = new HashMap<>();
  62 
  63     // The set of Objects
  64     private Set<E> nodes = poNodes.keySet();
  65 
  66     /**
  67      * Constructs a <code>PartiallyOrderedSet</code>.
  68      */
  69     public PartiallyOrderedSet() {}
  70 
  71     public int size() {
  72         return nodes.size();
  73     }
  74 
  75     public boolean contains(Object o) {
  76         return nodes.contains(o);
  77     }
  78 
  79     /**
  80      * Returns an iterator over the elements contained in this
  81      * collection, with an ordering that respects the orderings set
  82      * by the <code>setOrdering</code> method.
  83      */
  84     public Iterator<E> iterator() {
  85         return new PartialOrderIterator<>(poNodes.values().iterator());
  86     }
  87 
  88     /**
  89      * Adds an <code>Object</code> to this
  90      * <code>PartiallyOrderedSet</code>.
  91      */
  92     public boolean add(E o) {
  93         if (nodes.contains(o)) {
  94             return false;
  95         }
  96 
  97         DigraphNode<E> node = new DigraphNode<>(o);
  98         poNodes.put(o, node);
  99         return true;
 100     }
 101 
 102     /**
 103      * Removes an <code>Object</code> from this
 104      * <code>PartiallyOrderedSet</code>.
 105      */
 106     public boolean remove(Object o) {
 107         DigraphNode<E> node = poNodes.get(o);
 108         if (node == null) {
 109             return false;
 110         }
 111 
 112         poNodes.remove(o);
 113         node.dispose();
 114         return true;
 115     }
 116 
 117     public void clear() {
 118         poNodes.clear();
 119     }
 120 
 121     /**
 122      * Sets an ordering between two nodes.  When an iterator is
 123      * requested, the first node will appear earlier in the
 124      * sequence than the second node.  If a prior ordering existed
 125      * between the nodes in the opposite order, it is removed.
 126      *
 127      * @return <code>true</code> if no prior ordering existed
 128      * between the nodes, <code>false</code>otherwise.
 129      */
 130     public boolean setOrdering(E first, E second) {
 131         DigraphNode<E> firstPONode = poNodes.get(first);
 132         DigraphNode<E> secondPONode = poNodes.get(second);
 133 
 134         secondPONode.removeEdge(firstPONode);
 135         return firstPONode.addEdge(secondPONode);
 136     }
 137 
 138     /**
 139      * Removes any ordering between two nodes.
 140      *
 141      * @return true if a prior prefence existed between the nodes.
 142      */
 143     public boolean unsetOrdering(E first, E second) {
 144         DigraphNode<E> firstPONode = poNodes.get(first);
 145         DigraphNode<E> secondPONode = poNodes.get(second);
 146 
 147         return firstPONode.removeEdge(secondPONode) ||
 148             secondPONode.removeEdge(firstPONode);
 149     }
 150 
 151     /**
 152      * Returns <code>true</code> if an ordering exists between two
 153      * nodes.
 154      */
 155     public boolean hasOrdering(E preferred, E other) {
 156         DigraphNode<E> preferredPONode = poNodes.get(preferred);
 157         DigraphNode<E> otherPONode = poNodes.get(other);
 158 
 159         return preferredPONode.hasEdge(otherPONode);
 160     }
 161 }
 162 
 163 class PartialOrderIterator<E> implements Iterator<E> {
 164 
 165     LinkedList<DigraphNode<E>> zeroList = new LinkedList<>();
 166     Map<DigraphNode<E>, Integer> inDegrees = new HashMap<>();
 167 
 168     public PartialOrderIterator(Iterator<DigraphNode<E>> iter) {
 169         // Initialize scratch in-degree values, zero list
 170         while (iter.hasNext()) {
 171             DigraphNode<E> node = iter.next();
 172             int inDegree = node.getInDegree();
 173             inDegrees.put(node, new Integer(inDegree));
 174 
 175             // Add nodes with zero in-degree to the zero list
 176             if (inDegree == 0) {
 177                 zeroList.add(node);
 178             }
 179         }
 180     }
 181 
 182     public boolean hasNext() {
 183         return !zeroList.isEmpty();
 184     }
 185 
 186     public E next() {
 187         DigraphNode<E> first = zeroList.removeFirst();
 188 
 189         // For each out node of the output node, decrement its in-degree
 190         Iterator<DigraphNode<E>> outNodes = first.getOutNodes();
 191         while (outNodes.hasNext()) {
 192             DigraphNode<E> node = outNodes.next();
 193             int inDegree = inDegrees.get(node).intValue() - 1;
 194             inDegrees.put(node, new Integer(inDegree));
 195 
 196             // If the in-degree has fallen to 0, place the node on the list
 197             if (inDegree == 0) {
 198                 zeroList.add(node);
 199             }
 200         }
 201 
 202         return first.getData();
 203     }
 204 
 205     public void remove() {
 206         throw new UnsupportedOperationException();
 207     }
 208 }