1 /*
   2  * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import java.util.function.Consumer;
  29 import java.util.function.Predicate;
  30 import java.util.function.UnaryOperator;
  31 
  32 /**
  33  * The {@code Vector} class implements a growable array of
  34  * objects. Like an array, it contains components that can be
  35  * accessed using an integer index. However, the size of a
  36  * {@code Vector} can grow or shrink as needed to accommodate
  37  * adding and removing items after the {@code Vector} has been created.
  38  *
  39  * <p>Each vector tries to optimize storage management by maintaining a
  40  * {@code capacity} and a {@code capacityIncrement}. The
  41  * {@code capacity} is always at least as large as the vector
  42  * size; it is usually larger because as components are added to the
  43  * vector, the vector's storage increases in chunks the size of
  44  * {@code capacityIncrement}. An application can increase the
  45  * capacity of a vector before inserting a large number of
  46  * components; this reduces the amount of incremental reallocation.
  47  *
  48  * <p id="fail-fast">
  49  * The iterators returned by this class's {@link #iterator() iterator} and
  50  * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
  51  * if the vector is structurally modified at any time after the iterator is
  52  * created, in any way except through the iterator's own
  53  * {@link ListIterator#remove() remove} or
  54  * {@link ListIterator#add(Object) add} methods, the iterator will throw a
  55  * {@link ConcurrentModificationException}.  Thus, in the face of
  56  * concurrent modification, the iterator fails quickly and cleanly, rather
  57  * than risking arbitrary, non-deterministic behavior at an undetermined
  58  * time in the future.  The {@link Enumeration Enumerations} returned by
  59  * the {@link #elements() elements} method are <em>not</em> fail-fast; if the
  60  * Vector is structurally modified at any time after the enumeration is
  61  * created then the results of enumerating are undefined.
  62  *
  63  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
  64  * as it is, generally speaking, impossible to make any hard guarantees in the
  65  * presence of unsynchronized concurrent modification.  Fail-fast iterators
  66  * throw {@code ConcurrentModificationException} on a best-effort basis.
  67  * Therefore, it would be wrong to write a program that depended on this
  68  * exception for its correctness:  <i>the fail-fast behavior of iterators
  69  * should be used only to detect bugs.</i>
  70  *
  71  * <p>As of the Java 2 platform v1.2, this class was retrofitted to
  72  * implement the {@link List} interface, making it a member of the
  73  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
  74  * Java Collections Framework</a>.  Unlike the new collection
  75  * implementations, {@code Vector} is synchronized.  If a thread-safe
  76  * implementation is not needed, it is recommended to use {@link
  77  * ArrayList} in place of {@code Vector}.
  78  *
  79  * @param <E> Type of component elements
  80  *
  81  * @author  Lee Boynton
  82  * @author  Jonathan Payne
  83  * @see Collection
  84  * @see LinkedList
  85  * @since   1.0
  86  */
  87 public class Vector<E>
  88     extends AbstractList<E>
  89     implements List<E>, RandomAccess, Cloneable, java.io.Serializable
  90 {
  91     /**
  92      * The array buffer into which the components of the vector are
  93      * stored. The capacity of the vector is the length of this array buffer,
  94      * and is at least large enough to contain all the vector's elements.
  95      *
  96      * <p>Any array elements following the last element in the Vector are null.
  97      *
  98      * @serial
  99      */
 100     protected Object[] elementData;
 101 
 102     /**
 103      * The number of valid components in this {@code Vector} object.
 104      * Components {@code elementData[0]} through
 105      * {@code elementData[elementCount-1]} are the actual items.
 106      *
 107      * @serial
 108      */
 109     protected int elementCount;
 110 
 111     /**
 112      * The amount by which the capacity of the vector is automatically
 113      * incremented when its size becomes greater than its capacity.  If
 114      * the capacity increment is less than or equal to zero, the capacity
 115      * of the vector is doubled each time it needs to grow.
 116      *
 117      * @serial
 118      */
 119     protected int capacityIncrement;
 120 
 121     /** use serialVersionUID from JDK 1.0.2 for interoperability */
 122     private static final long serialVersionUID = -2767605614048989439L;
 123 
 124     /**
 125      * Constructs an empty vector with the specified initial capacity and
 126      * capacity increment.
 127      *
 128      * @param   initialCapacity     the initial capacity of the vector
 129      * @param   capacityIncrement   the amount by which the capacity is
 130      *                              increased when the vector overflows
 131      * @throws IllegalArgumentException if the specified initial capacity
 132      *         is negative
 133      */
 134     public Vector(int initialCapacity, int capacityIncrement) {
 135         super();
 136         if (initialCapacity < 0)
 137             throw new IllegalArgumentException("Illegal Capacity: "+
 138                                                initialCapacity);
 139         this.elementData = new Object[initialCapacity];
 140         this.capacityIncrement = capacityIncrement;
 141     }
 142 
 143     /**
 144      * Constructs an empty vector with the specified initial capacity and
 145      * with its capacity increment equal to zero.
 146      *
 147      * @param   initialCapacity   the initial capacity of the vector
 148      * @throws IllegalArgumentException if the specified initial capacity
 149      *         is negative
 150      */
 151     public Vector(int initialCapacity) {
 152         this(initialCapacity, 0);
 153     }
 154 
 155     /**
 156      * Constructs an empty vector so that its internal data array
 157      * has size {@code 10} and its standard capacity increment is
 158      * zero.
 159      */
 160     public Vector() {
 161         this(10);
 162     }
 163 
 164     /**
 165      * Constructs a vector containing the elements of the specified
 166      * collection, in the order they are returned by the collection's
 167      * iterator.
 168      *
 169      * @param c the collection whose elements are to be placed into this
 170      *       vector
 171      * @throws NullPointerException if the specified collection is null
 172      * @since   1.2
 173      */
 174     public Vector(Collection<? extends E> c) {
 175         elementData = c.toArray();
 176         elementCount = elementData.length;
 177         // c.toArray might (incorrectly) not return Object[] (see 6260652)
 178         if (elementData.getClass() != Object[].class)
 179             elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
 180     }
 181 
 182     /**
 183      * Copies the components of this vector into the specified array.
 184      * The item at index {@code k} in this vector is copied into
 185      * component {@code k} of {@code anArray}.
 186      *
 187      * @param  anArray the array into which the components get copied
 188      * @throws NullPointerException if the given array is null
 189      * @throws IndexOutOfBoundsException if the specified array is not
 190      *         large enough to hold all the components of this vector
 191      * @throws ArrayStoreException if a component of this vector is not of
 192      *         a runtime type that can be stored in the specified array
 193      * @see #toArray(Object[])
 194      */
 195     public synchronized void copyInto(Object[] anArray) {
 196         System.arraycopy(elementData, 0, anArray, 0, elementCount);
 197     }
 198 
 199     /**
 200      * Trims the capacity of this vector to be the vector's current
 201      * size. If the capacity of this vector is larger than its current
 202      * size, then the capacity is changed to equal the size by replacing
 203      * its internal data array, kept in the field {@code elementData},
 204      * with a smaller one. An application can use this operation to
 205      * minimize the storage of a vector.
 206      */
 207     public synchronized void trimToSize() {
 208         modCount++;
 209         int oldCapacity = elementData.length;
 210         if (elementCount < oldCapacity) {
 211             elementData = Arrays.copyOf(elementData, elementCount);
 212         }
 213     }
 214 
 215     /**
 216      * Increases the capacity of this vector, if necessary, to ensure
 217      * that it can hold at least the number of components specified by
 218      * the minimum capacity argument.
 219      *
 220      * <p>If the current capacity of this vector is less than
 221      * {@code minCapacity}, then its capacity is increased by replacing its
 222      * internal data array, kept in the field {@code elementData}, with a
 223      * larger one.  The size of the new data array will be the old size plus
 224      * {@code capacityIncrement}, unless the value of
 225      * {@code capacityIncrement} is less than or equal to zero, in which case
 226      * the new capacity will be twice the old capacity; but if this new size
 227      * is still smaller than {@code minCapacity}, then the new capacity will
 228      * be {@code minCapacity}.
 229      *
 230      * @param minCapacity the desired minimum capacity
 231      */
 232     public synchronized void ensureCapacity(int minCapacity) {
 233         if (minCapacity > 0) {
 234             modCount++;
 235             ensureCapacityHelper(minCapacity);
 236         }
 237     }
 238 
 239     /**
 240      * This implements the unsynchronized semantics of ensureCapacity.
 241      * Synchronized methods in this class can internally call this
 242      * method for ensuring capacity without incurring the cost of an
 243      * extra synchronization.
 244      *
 245      * @see #ensureCapacity(int)
 246      */
 247     private void ensureCapacityHelper(int minCapacity) {
 248         // overflow-conscious code
 249         if (minCapacity - elementData.length > 0)
 250             grow(minCapacity);
 251     }
 252 
 253     /**
 254      * The maximum size of array to allocate.
 255      * Some VMs reserve some header words in an array.
 256      * Attempts to allocate larger arrays may result in
 257      * OutOfMemoryError: Requested array size exceeds VM limit
 258      */
 259     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
 260 
 261     private void grow(int minCapacity) {
 262         // overflow-conscious code
 263         int oldCapacity = elementData.length;
 264         int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
 265                                          capacityIncrement : oldCapacity);
 266         if (newCapacity - minCapacity < 0)
 267             newCapacity = minCapacity;
 268         if (newCapacity - MAX_ARRAY_SIZE > 0)
 269             newCapacity = hugeCapacity(minCapacity);
 270         elementData = Arrays.copyOf(elementData, newCapacity);
 271     }
 272 
 273     private static int hugeCapacity(int minCapacity) {
 274         if (minCapacity < 0) // overflow
 275             throw new OutOfMemoryError();
 276         return (minCapacity > MAX_ARRAY_SIZE) ?
 277             Integer.MAX_VALUE :
 278             MAX_ARRAY_SIZE;
 279     }
 280 
 281     /**
 282      * Sets the size of this vector. If the new size is greater than the
 283      * current size, new {@code null} items are added to the end of
 284      * the vector. If the new size is less than the current size, all
 285      * components at index {@code newSize} and greater are discarded.
 286      *
 287      * @param  newSize   the new size of this vector
 288      * @throws ArrayIndexOutOfBoundsException if the new size is negative
 289      */
 290     public synchronized void setSize(int newSize) {
 291         modCount++;
 292         if (newSize > elementCount) {
 293             ensureCapacityHelper(newSize);
 294         } else {
 295             for (int i = newSize ; i < elementCount ; i++) {
 296                 elementData[i] = null;
 297             }
 298         }
 299         elementCount = newSize;
 300     }
 301 
 302     /**
 303      * Returns the current capacity of this vector.
 304      *
 305      * @return  the current capacity (the length of its internal
 306      *          data array, kept in the field {@code elementData}
 307      *          of this vector)
 308      */
 309     public synchronized int capacity() {
 310         return elementData.length;
 311     }
 312 
 313     /**
 314      * Returns the number of components in this vector.
 315      *
 316      * @return  the number of components in this vector
 317      */
 318     public synchronized int size() {
 319         return elementCount;
 320     }
 321 
 322     /**
 323      * Tests if this vector has no components.
 324      *
 325      * @return  {@code true} if and only if this vector has
 326      *          no components, that is, its size is zero;
 327      *          {@code false} otherwise.
 328      */
 329     public synchronized boolean isEmpty() {
 330         return elementCount == 0;
 331     }
 332 
 333     /**
 334      * Returns an enumeration of the components of this vector. The
 335      * returned {@code Enumeration} object will generate all items in
 336      * this vector. The first item generated is the item at index {@code 0},
 337      * then the item at index {@code 1}, and so on. If the vector is
 338      * structurally modified while enumerating over the elements then the
 339      * results of enumerating are undefined.
 340      *
 341      * @return  an enumeration of the components of this vector
 342      * @see     Iterator
 343      */
 344     public Enumeration<E> elements() {
 345         return new Enumeration<E>() {
 346             int count = 0;
 347 
 348             public boolean hasMoreElements() {
 349                 return count < elementCount;
 350             }
 351 
 352             public E nextElement() {
 353                 synchronized (Vector.this) {
 354                     if (count < elementCount) {
 355                         return elementData(count++);
 356                     }
 357                 }
 358                 throw new NoSuchElementException("Vector Enumeration");
 359             }
 360         };
 361     }
 362 
 363     /**
 364      * Returns {@code true} if this vector contains the specified element.
 365      * More formally, returns {@code true} if and only if this vector
 366      * contains at least one element {@code e} such that
 367      * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
 368      *
 369      * @param o element whose presence in this vector is to be tested
 370      * @return {@code true} if this vector contains the specified element
 371      */
 372     public boolean contains(Object o) {
 373         return indexOf(o, 0) >= 0;
 374     }
 375 
 376     /**
 377      * Returns the index of the first occurrence of the specified element
 378      * in this vector, or -1 if this vector does not contain the element.
 379      * More formally, returns the lowest index {@code i} such that
 380      * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
 381      * or -1 if there is no such index.
 382      *
 383      * @param o element to search for
 384      * @return the index of the first occurrence of the specified element in
 385      *         this vector, or -1 if this vector does not contain the element
 386      */
 387     public int indexOf(Object o) {
 388         return indexOf(o, 0);
 389     }
 390 
 391     /**
 392      * Returns the index of the first occurrence of the specified element in
 393      * this vector, searching forwards from {@code index}, or returns -1 if
 394      * the element is not found.
 395      * More formally, returns the lowest index {@code i} such that
 396      * <tt>(i&nbsp;&gt;=&nbsp;index&nbsp;&amp;&amp;&nbsp;(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i))))</tt>,
 397      * or -1 if there is no such index.
 398      *
 399      * @param o element to search for
 400      * @param index index to start searching from
 401      * @return the index of the first occurrence of the element in
 402      *         this vector at position {@code index} or later in the vector;
 403      *         {@code -1} if the element is not found.
 404      * @throws IndexOutOfBoundsException if the specified index is negative
 405      * @see     Object#equals(Object)
 406      */
 407     public synchronized int indexOf(Object o, int index) {
 408         if (o == null) {
 409             for (int i = index ; i < elementCount ; i++)
 410                 if (elementData[i]==null)
 411                     return i;
 412         } else {
 413             for (int i = index ; i < elementCount ; i++)
 414                 if (o.equals(elementData[i]))
 415                     return i;
 416         }
 417         return -1;
 418     }
 419 
 420     /**
 421      * Returns the index of the last occurrence of the specified element
 422      * in this vector, or -1 if this vector does not contain the element.
 423      * More formally, returns the highest index {@code i} such that
 424      * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
 425      * or -1 if there is no such index.
 426      *
 427      * @param o element to search for
 428      * @return the index of the last occurrence of the specified element in
 429      *         this vector, or -1 if this vector does not contain the element
 430      */
 431     public synchronized int lastIndexOf(Object o) {
 432         return lastIndexOf(o, elementCount-1);
 433     }
 434 
 435     /**
 436      * Returns the index of the last occurrence of the specified element in
 437      * this vector, searching backwards from {@code index}, or returns -1 if
 438      * the element is not found.
 439      * More formally, returns the highest index {@code i} such that
 440      * <tt>(i&nbsp;&lt;=&nbsp;index&nbsp;&amp;&amp;&nbsp;(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i))))</tt>,
 441      * or -1 if there is no such index.
 442      *
 443      * @param o element to search for
 444      * @param index index to start searching backwards from
 445      * @return the index of the last occurrence of the element at position
 446      *         less than or equal to {@code index} in this vector;
 447      *         -1 if the element is not found.
 448      * @throws IndexOutOfBoundsException if the specified index is greater
 449      *         than or equal to the current size of this vector
 450      */
 451     public synchronized int lastIndexOf(Object o, int index) {
 452         if (index >= elementCount)
 453             throw new IndexOutOfBoundsException(index + " >= "+ elementCount);
 454 
 455         if (o == null) {
 456             for (int i = index; i >= 0; i--)
 457                 if (elementData[i]==null)
 458                     return i;
 459         } else {
 460             for (int i = index; i >= 0; i--)
 461                 if (o.equals(elementData[i]))
 462                     return i;
 463         }
 464         return -1;
 465     }
 466 
 467     /**
 468      * Returns the component at the specified index.
 469      *
 470      * <p>This method is identical in functionality to the {@link #get(int)}
 471      * method (which is part of the {@link List} interface).
 472      *
 473      * @param      index   an index into this vector
 474      * @return     the component at the specified index
 475      * @throws ArrayIndexOutOfBoundsException if the index is out of range
 476      *         ({@code index < 0 || index >= size()})
 477      */
 478     public synchronized E elementAt(int index) {
 479         if (index >= elementCount) {
 480             throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
 481         }
 482 
 483         return elementData(index);
 484     }
 485 
 486     /**
 487      * Returns the first component (the item at index {@code 0}) of
 488      * this vector.
 489      *
 490      * @return     the first component of this vector
 491      * @throws NoSuchElementException if this vector has no components
 492      */
 493     public synchronized E firstElement() {
 494         if (elementCount == 0) {
 495             throw new NoSuchElementException();
 496         }
 497         return elementData(0);
 498     }
 499 
 500     /**
 501      * Returns the last component of the vector.
 502      *
 503      * @return  the last component of the vector, i.e., the component at index
 504      *          <code>size()&nbsp;-&nbsp;1</code>.
 505      * @throws NoSuchElementException if this vector is empty
 506      */
 507     public synchronized E lastElement() {
 508         if (elementCount == 0) {
 509             throw new NoSuchElementException();
 510         }
 511         return elementData(elementCount - 1);
 512     }
 513 
 514     /**
 515      * Sets the component at the specified {@code index} of this
 516      * vector to be the specified object. The previous component at that
 517      * position is discarded.
 518      *
 519      * <p>The index must be a value greater than or equal to {@code 0}
 520      * and less than the current size of the vector.
 521      *
 522      * <p>This method is identical in functionality to the
 523      * {@link #set(int, Object) set(int, E)}
 524      * method (which is part of the {@link List} interface). Note that the
 525      * {@code set} method reverses the order of the parameters, to more closely
 526      * match array usage.  Note also that the {@code set} method returns the
 527      * old value that was stored at the specified position.
 528      *
 529      * @param      obj     what the component is to be set to
 530      * @param      index   the specified index
 531      * @throws ArrayIndexOutOfBoundsException if the index is out of range
 532      *         ({@code index < 0 || index >= size()})
 533      */
 534     public synchronized void setElementAt(E obj, int index) {
 535         if (index >= elementCount) {
 536             throw new ArrayIndexOutOfBoundsException(index + " >= " +
 537                                                      elementCount);
 538         }
 539         elementData[index] = obj;
 540     }
 541 
 542     /**
 543      * Deletes the component at the specified index. Each component in
 544      * this vector with an index greater or equal to the specified
 545      * {@code index} is shifted downward to have an index one
 546      * smaller than the value it had previously. The size of this vector
 547      * is decreased by {@code 1}.
 548      *
 549      * <p>The index must be a value greater than or equal to {@code 0}
 550      * and less than the current size of the vector.
 551      *
 552      * <p>This method is identical in functionality to the {@link #remove(int)}
 553      * method (which is part of the {@link List} interface).  Note that the
 554      * {@code remove} method returns the old value that was stored at the
 555      * specified position.
 556      *
 557      * @param      index   the index of the object to remove
 558      * @throws ArrayIndexOutOfBoundsException if the index is out of range
 559      *         ({@code index < 0 || index >= size()})
 560      */
 561     public synchronized void removeElementAt(int index) {
 562         if (index >= elementCount) {
 563             throw new ArrayIndexOutOfBoundsException(index + " >= " +
 564                                                      elementCount);
 565         }
 566         else if (index < 0) {
 567             throw new ArrayIndexOutOfBoundsException(index);
 568         }
 569         int j = elementCount - index - 1;
 570         if (j > 0) {
 571             System.arraycopy(elementData, index + 1, elementData, index, j);
 572         }
 573         modCount++;
 574         elementCount--;
 575         elementData[elementCount] = null; /* to let gc do its work */
 576     }
 577 
 578     /**
 579      * Inserts the specified object as a component in this vector at the
 580      * specified {@code index}. Each component in this vector with
 581      * an index greater or equal to the specified {@code index} is
 582      * shifted upward to have an index one greater than the value it had
 583      * previously.
 584      *
 585      * <p>The index must be a value greater than or equal to {@code 0}
 586      * and less than or equal to the current size of the vector. (If the
 587      * index is equal to the current size of the vector, the new element
 588      * is appended to the Vector.)
 589      *
 590      * <p>This method is identical in functionality to the
 591      * {@link #add(int, Object) add(int, E)}
 592      * method (which is part of the {@link List} interface).  Note that the
 593      * {@code add} method reverses the order of the parameters, to more closely
 594      * match array usage.
 595      *
 596      * @param      obj     the component to insert
 597      * @param      index   where to insert the new component
 598      * @throws ArrayIndexOutOfBoundsException if the index is out of range
 599      *         ({@code index < 0 || index > size()})
 600      */
 601     public synchronized void insertElementAt(E obj, int index) {
 602         if (index > elementCount) {
 603             throw new ArrayIndexOutOfBoundsException(index
 604                                                      + " > " + elementCount);
 605         }
 606         ensureCapacityHelper(elementCount + 1);
 607         System.arraycopy(elementData, index, elementData, index + 1, elementCount - index);
 608         elementData[index] = obj;
 609         modCount++;
 610         elementCount++;
 611     }
 612 
 613     /**
 614      * Adds the specified component to the end of this vector,
 615      * increasing its size by one. The capacity of this vector is
 616      * increased if its size becomes greater than its capacity.
 617      *
 618      * <p>This method is identical in functionality to the
 619      * {@link #add(Object) add(E)}
 620      * method (which is part of the {@link List} interface).
 621      *
 622      * @param   obj   the component to be added
 623      */
 624     public synchronized void addElement(E obj) {
 625         ensureCapacityHelper(elementCount + 1);
 626         modCount++;
 627         elementData[elementCount++] = obj;
 628     }
 629 
 630     /**
 631      * Removes the first (lowest-indexed) occurrence of the argument
 632      * from this vector. If the object is found in this vector, each
 633      * component in the vector with an index greater or equal to the
 634      * object's index is shifted downward to have an index one smaller
 635      * than the value it had previously.
 636      *
 637      * <p>This method is identical in functionality to the
 638      * {@link #remove(Object)} method (which is part of the
 639      * {@link List} interface).
 640      *
 641      * @param   obj   the component to be removed
 642      * @return  {@code true} if the argument was a component of this
 643      *          vector; {@code false} otherwise.
 644      */
 645     public synchronized boolean removeElement(Object obj) {
 646         modCount++;
 647         int i = indexOf(obj);
 648         if (i >= 0) {
 649             removeElementAt(i);
 650             return true;
 651         }
 652         return false;
 653     }
 654 
 655     /**
 656      * Removes all components from this vector and sets its size to zero.
 657      *
 658      * <p>This method is identical in functionality to the {@link #clear}
 659      * method (which is part of the {@link List} interface).
 660      */
 661     public synchronized void removeAllElements() {
 662         // Let gc do its work
 663         for (int i = 0; i < elementCount; i++)
 664             elementData[i] = null;
 665 
 666         modCount++;
 667         elementCount = 0;
 668     }
 669 
 670     /**
 671      * Returns a clone of this vector. The copy will contain a
 672      * reference to a clone of the internal data array, not a reference
 673      * to the original internal data array of this {@code Vector} object.
 674      *
 675      * @return  a clone of this vector
 676      */
 677     public synchronized Object clone() {
 678         try {
 679             @SuppressWarnings("unchecked")
 680                 Vector<E> v = (Vector<E>) super.clone();
 681             v.elementData = Arrays.copyOf(elementData, elementCount);
 682             v.modCount = 0;
 683             return v;
 684         } catch (CloneNotSupportedException e) {
 685             // this shouldn't happen, since we are Cloneable
 686             throw new InternalError(e);
 687         }
 688     }
 689 
 690     /**
 691      * Returns an array containing all of the elements in this Vector
 692      * in the correct order.
 693      *
 694      * @since 1.2
 695      */
 696     public synchronized Object[] toArray() {
 697         return Arrays.copyOf(elementData, elementCount);
 698     }
 699 
 700     /**
 701      * Returns an array containing all of the elements in this Vector in the
 702      * correct order; the runtime type of the returned array is that of the
 703      * specified array.  If the Vector fits in the specified array, it is
 704      * returned therein.  Otherwise, a new array is allocated with the runtime
 705      * type of the specified array and the size of this Vector.
 706      *
 707      * <p>If the Vector fits in the specified array with room to spare
 708      * (i.e., the array has more elements than the Vector),
 709      * the element in the array immediately following the end of the
 710      * Vector is set to null.  (This is useful in determining the length
 711      * of the Vector <em>only</em> if the caller knows that the Vector
 712      * does not contain any null elements.)
 713      *
 714      * @param <T> type of array elements. The same type as {@code <E>} or a
 715      * supertype of {@code <E>}.
 716      * @param a the array into which the elements of the Vector are to
 717      *          be stored, if it is big enough; otherwise, a new array of the
 718      *          same runtime type is allocated for this purpose.
 719      * @return an array containing the elements of the Vector
 720      * @throws ArrayStoreException if the runtime type of a, {@code <T>}, is not
 721      * a supertype of the runtime type, {@code <E>}, of every element in this
 722      * Vector
 723      * @throws NullPointerException if the given array is null
 724      * @since 1.2
 725      */
 726     @SuppressWarnings("unchecked")
 727     public synchronized <T> T[] toArray(T[] a) {
 728         if (a.length < elementCount)
 729             return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());
 730 
 731         System.arraycopy(elementData, 0, a, 0, elementCount);
 732 
 733         if (a.length > elementCount)
 734             a[elementCount] = null;
 735 
 736         return a;
 737     }
 738 
 739     // Positional Access Operations
 740 
 741     @SuppressWarnings("unchecked")
 742     E elementData(int index) {
 743         return (E) elementData[index];
 744     }
 745 
 746     /**
 747      * Returns the element at the specified position in this Vector.
 748      *
 749      * @param index index of the element to return
 750      * @return object at the specified index
 751      * @throws ArrayIndexOutOfBoundsException if the index is out of range
 752      *            ({@code index < 0 || index >= size()})
 753      * @since 1.2
 754      */
 755     public synchronized E get(int index) {
 756         if (index >= elementCount)
 757             throw new ArrayIndexOutOfBoundsException(index);
 758 
 759         return elementData(index);
 760     }
 761 
 762     /**
 763      * Replaces the element at the specified position in this Vector with the
 764      * specified element.
 765      *
 766      * @param index index of the element to replace
 767      * @param element element to be stored at the specified position
 768      * @return the element previously at the specified position
 769      * @throws ArrayIndexOutOfBoundsException if the index is out of range
 770      *         ({@code index < 0 || index >= size()})
 771      * @since 1.2
 772      */
 773     public synchronized E set(int index, E element) {
 774         if (index >= elementCount)
 775             throw new ArrayIndexOutOfBoundsException(index);
 776 
 777         E oldValue = elementData(index);
 778         elementData[index] = element;
 779         return oldValue;
 780     }
 781 
 782     /**
 783      * Appends the specified element to the end of this Vector.
 784      *
 785      * @param e element to be appended to this Vector
 786      * @return {@code true} (as specified by {@link Collection#add})
 787      * @since 1.2
 788      */
 789     public synchronized boolean add(E e) {
 790         ensureCapacityHelper(elementCount + 1);
 791         modCount++;
 792         elementData[elementCount++] = e;
 793         return true;
 794     }
 795 
 796     /**
 797      * Removes the first occurrence of the specified element in this Vector
 798      * If the Vector does not contain the element, it is unchanged.  More
 799      * formally, removes the element with the lowest index i such that
 800      * {@code (o==null ? get(i)==null : o.equals(get(i)))} (if such
 801      * an element exists).
 802      *
 803      * @param o element to be removed from this Vector, if present
 804      * @return true if the Vector contained the specified element
 805      * @since 1.2
 806      */
 807     public boolean remove(Object o) {
 808         return removeElement(o);
 809     }
 810 
 811     /**
 812      * Inserts the specified element at the specified position in this Vector.
 813      * Shifts the element currently at that position (if any) and any
 814      * subsequent elements to the right (adds one to their indices).
 815      *
 816      * @param index index at which the specified element is to be inserted
 817      * @param element element to be inserted
 818      * @throws ArrayIndexOutOfBoundsException if the index is out of range
 819      *         ({@code index < 0 || index > size()})
 820      * @since 1.2
 821      */
 822     public void add(int index, E element) {
 823         insertElementAt(element, index);
 824     }
 825 
 826     /**
 827      * Removes the element at the specified position in this Vector.
 828      * Shifts any subsequent elements to the left (subtracts one from their
 829      * indices).  Returns the element that was removed from the Vector.
 830      *
 831      * @throws ArrayIndexOutOfBoundsException if the index is out of range
 832      *         ({@code index < 0 || index >= size()})
 833      * @param index the index of the element to be removed
 834      * @return element that was removed
 835      * @since 1.2
 836      */
 837     public synchronized E remove(int index) {
 838         modCount++;
 839         if (index >= elementCount)
 840             throw new ArrayIndexOutOfBoundsException(index);
 841         E oldValue = elementData(index);
 842 
 843         int numMoved = elementCount - index - 1;
 844         if (numMoved > 0)
 845             System.arraycopy(elementData, index+1, elementData, index,
 846                              numMoved);
 847         elementData[--elementCount] = null; // Let gc do its work
 848 
 849         return oldValue;
 850     }
 851 
 852     /**
 853      * Removes all of the elements from this Vector.  The Vector will
 854      * be empty after this call returns (unless it throws an exception).
 855      *
 856      * @since 1.2
 857      */
 858     public void clear() {
 859         removeAllElements();
 860     }
 861 
 862     // Bulk Operations
 863 
 864     /**
 865      * Returns true if this Vector contains all of the elements in the
 866      * specified Collection.
 867      *
 868      * @param   c a collection whose elements will be tested for containment
 869      *          in this Vector
 870      * @return true if this Vector contains all of the elements in the
 871      *         specified collection
 872      * @throws NullPointerException if the specified collection is null
 873      */
 874     public synchronized boolean containsAll(Collection<?> c) {
 875         return super.containsAll(c);
 876     }
 877 
 878     /**
 879      * Appends all of the elements in the specified Collection to the end of
 880      * this Vector, in the order that they are returned by the specified
 881      * Collection's Iterator.  The behavior of this operation is undefined if
 882      * the specified Collection is modified while the operation is in progress.
 883      * (This implies that the behavior of this call is undefined if the
 884      * specified Collection is this Vector, and this Vector is nonempty.)
 885      *
 886      * @param c elements to be inserted into this Vector
 887      * @return {@code true} if this Vector changed as a result of the call
 888      * @throws NullPointerException if the specified collection is null
 889      * @since 1.2
 890      */
 891     public boolean addAll(Collection<? extends E> c) {
 892         Object[] a = c.toArray();
 893         int numNew = a.length;
 894         if (numNew > 0) {
 895             synchronized (this) {
 896                 ensureCapacityHelper(elementCount + numNew);
 897                 System.arraycopy(a, 0, elementData, elementCount, numNew);
 898                 modCount++;
 899                 elementCount += numNew;
 900             }
 901         }
 902         return numNew > 0;
 903     }
 904 
 905     /**
 906      * Removes from this Vector all of its elements that are contained in the
 907      * specified Collection.
 908      *
 909      * @param c a collection of elements to be removed from the Vector
 910      * @return true if this Vector changed as a result of the call
 911      * @throws ClassCastException if the types of one or more elements
 912      *         in this vector are incompatible with the specified
 913      *         collection
 914      * (<a href="Collection.html#optional-restrictions">optional</a>)
 915      * @throws NullPointerException if this vector contains one or more null
 916      *         elements and the specified collection does not support null
 917      *         elements
 918      * (<a href="Collection.html#optional-restrictions">optional</a>),
 919      *         or if the specified collection is null
 920      * @since 1.2
 921      */
 922     public synchronized boolean removeAll(Collection<?> c) {
 923         return super.removeAll(c);
 924     }
 925 
 926     /**
 927      * Retains only the elements in this Vector that are contained in the
 928      * specified Collection.  In other words, removes from this Vector all
 929      * of its elements that are not contained in the specified Collection.
 930      *
 931      * @param c a collection of elements to be retained in this Vector
 932      *          (all other elements are removed)
 933      * @return true if this Vector changed as a result of the call
 934      * @throws ClassCastException if the types of one or more elements
 935      *         in this vector are incompatible with the specified
 936      *         collection
 937      * (<a href="Collection.html#optional-restrictions">optional</a>)
 938      * @throws NullPointerException if this vector contains one or more null
 939      *         elements and the specified collection does not support null
 940      *         elements
 941      *         (<a href="Collection.html#optional-restrictions">optional</a>),
 942      *         or if the specified collection is null
 943      * @since 1.2
 944      */
 945     public synchronized boolean retainAll(Collection<?> c) {
 946         return super.retainAll(c);
 947     }
 948 
 949     /**
 950      * Inserts all of the elements in the specified Collection into this
 951      * Vector at the specified position.  Shifts the element currently at
 952      * that position (if any) and any subsequent elements to the right
 953      * (increases their indices).  The new elements will appear in the Vector
 954      * in the order that they are returned by the specified Collection's
 955      * iterator.
 956      *
 957      * @param index index at which to insert the first element from the
 958      *              specified collection
 959      * @param c elements to be inserted into this Vector
 960      * @return {@code true} if this Vector changed as a result of the call
 961      * @throws ArrayIndexOutOfBoundsException if the index is out of range
 962      *         ({@code index < 0 || index > size()})
 963      * @throws NullPointerException if the specified collection is null
 964      * @since 1.2
 965      */
 966     public synchronized boolean addAll(int index, Collection<? extends E> c) {
 967         if (index < 0 || index > elementCount)
 968             throw new ArrayIndexOutOfBoundsException(index);
 969 
 970         Object[] a = c.toArray();
 971         int numNew = a.length;
 972 
 973         if (numNew > 0) {
 974             ensureCapacityHelper(elementCount + numNew);
 975 
 976             int numMoved = elementCount - index;
 977             if (numMoved > 0)
 978                 System.arraycopy(elementData, index, elementData,
 979                         index + numNew, numMoved);
 980 
 981              System.arraycopy(a, 0, elementData, index, numNew);
 982              elementCount += numNew;
 983              modCount++;
 984         }
 985         return numNew > 0;
 986     }
 987 
 988     /**
 989      * Compares the specified Object with this Vector for equality.  Returns
 990      * true if and only if the specified Object is also a List, both Lists
 991      * have the same size, and all corresponding pairs of elements in the two
 992      * Lists are <em>equal</em>.  (Two elements {@code e1} and
 993      * {@code e2} are <em>equal</em> if {@code (e1==null ? e2==null :
 994      * e1.equals(e2))}.)  In other words, two Lists are defined to be
 995      * equal if they contain the same elements in the same order.
 996      *
 997      * @param o the Object to be compared for equality with this Vector
 998      * @return true if the specified Object is equal to this Vector
 999      */
1000     public synchronized boolean equals(Object o) {
1001         return super.equals(o);
1002     }
1003 
1004     /**
1005      * Returns the hash code value for this Vector.
1006      */
1007     public synchronized int hashCode() {
1008         return super.hashCode();
1009     }
1010 
1011     /**
1012      * Returns a string representation of this Vector, containing
1013      * the String representation of each element.
1014      */
1015     public synchronized String toString() {
1016         return super.toString();
1017     }
1018 
1019     /**
1020      * Returns a view of the portion of this List between fromIndex,
1021      * inclusive, and toIndex, exclusive.  (If fromIndex and toIndex are
1022      * equal, the returned List is empty.)  The returned List is backed by this
1023      * List, so changes in the returned List are reflected in this List, and
1024      * vice-versa.  The returned List supports all of the optional List
1025      * operations supported by this List.
1026      *
1027      * <p>This method eliminates the need for explicit range operations (of
1028      * the sort that commonly exist for arrays).  Any operation that expects
1029      * a List can be used as a range operation by operating on a subList view
1030      * instead of a whole List.  For example, the following idiom
1031      * removes a range of elements from a List:
1032      * <pre>
1033      *      list.subList(from, to).clear();
1034      * </pre>
1035      * Similar idioms may be constructed for indexOf and lastIndexOf,
1036      * and all of the algorithms in the Collections class can be applied to
1037      * a subList.
1038      *
1039      * <p>The semantics of the List returned by this method become undefined if
1040      * the backing list (i.e., this List) is <i>structurally modified</i> in
1041      * any way other than via the returned List.  (Structural modifications are
1042      * those that change the size of the List, or otherwise perturb it in such
1043      * a fashion that iterations in progress may yield incorrect results.)
1044      *
1045      * @param fromIndex low endpoint (inclusive) of the subList
1046      * @param toIndex high endpoint (exclusive) of the subList
1047      * @return a view of the specified range within this List
1048      * @throws IndexOutOfBoundsException if an endpoint index value is out of range
1049      *         {@code (fromIndex < 0 || toIndex > size)}
1050      * @throws IllegalArgumentException if the endpoint indices are out of order
1051      *         {@code (fromIndex > toIndex)}
1052      */
1053     public synchronized List<E> subList(int fromIndex, int toIndex) {
1054         return Collections.synchronizedList(super.subList(fromIndex, toIndex),
1055                                             this);
1056     }
1057 
1058     /**
1059      * Removes from this list all of the elements whose index is between
1060      * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
1061      * Shifts any succeeding elements to the left (reduces their index).
1062      * This call shortens the list by {@code (toIndex - fromIndex)} elements.
1063      * (If {@code toIndex==fromIndex}, this operation has no effect.)
1064      */
1065     protected synchronized void removeRange(int fromIndex, int toIndex) {
1066         int numMoved = elementCount - toIndex;
1067         System.arraycopy(elementData, toIndex, elementData, fromIndex,
1068                          numMoved);
1069 
1070         // Let gc do its work
1071         modCount++;
1072         int newElementCount = elementCount - (toIndex-fromIndex);
1073         while (elementCount != newElementCount)
1074             elementData[--elementCount] = null;
1075     }
1076 
1077     /**
1078      * Save the state of the {@code Vector} instance to a stream (that
1079      * is, serialize it).
1080      * This method performs synchronization to ensure the consistency
1081      * of the serialized data.
1082      */
1083     private void writeObject(java.io.ObjectOutputStream s)
1084             throws java.io.IOException {
1085         final java.io.ObjectOutputStream.PutField fields = s.putFields();
1086         final Object[] data;
1087         synchronized (this) {
1088             fields.put("capacityIncrement", capacityIncrement);
1089             fields.put("elementCount", elementCount);
1090             data = elementData.clone();
1091         }
1092         fields.put("elementData", data);
1093         s.writeFields();
1094     }
1095 
1096     /**
1097      * Returns a list iterator over the elements in this list (in proper
1098      * sequence), starting at the specified position in the list.
1099      * The specified index indicates the first element that would be
1100      * returned by an initial call to {@link ListIterator#next next}.
1101      * An initial call to {@link ListIterator#previous previous} would
1102      * return the element with the specified index minus one.
1103      *
1104      * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1105      *
1106      * @throws IndexOutOfBoundsException {@inheritDoc}
1107      */
1108     public synchronized ListIterator<E> listIterator(int index) {
1109         if (index < 0 || index > elementCount)
1110             throw new IndexOutOfBoundsException("Index: "+index);
1111         return new ListItr(index);
1112     }
1113 
1114     /**
1115      * Returns a list iterator over the elements in this list (in proper
1116      * sequence).
1117      *
1118      * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1119      *
1120      * @see #listIterator(int)
1121      */
1122     public synchronized ListIterator<E> listIterator() {
1123         return new ListItr(0);
1124     }
1125 
1126     /**
1127      * Returns an iterator over the elements in this list in proper sequence.
1128      *
1129      * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1130      *
1131      * @return an iterator over the elements in this list in proper sequence
1132      */
1133     public synchronized Iterator<E> iterator() {
1134         return new Itr();
1135     }
1136 
1137     /**
1138      * An optimized version of AbstractList.Itr
1139      */
1140     private class Itr implements Iterator<E> {
1141         int cursor;       // index of next element to return
1142         int lastRet = -1; // index of last element returned; -1 if no such
1143         int expectedModCount = modCount;
1144 
1145         public boolean hasNext() {
1146             // Racy but within spec, since modifications are checked
1147             // within or after synchronization in next/previous
1148             return cursor != elementCount;
1149         }
1150 
1151         public E next() {
1152             synchronized (Vector.this) {
1153                 checkForComodification();
1154                 int i = cursor;
1155                 if (i >= elementCount)
1156                     throw new NoSuchElementException();
1157                 cursor = i + 1;
1158                 return elementData(lastRet = i);
1159             }
1160         }
1161 
1162         public void remove() {
1163             if (lastRet == -1)
1164                 throw new IllegalStateException();
1165             synchronized (Vector.this) {
1166                 checkForComodification();
1167                 Vector.this.remove(lastRet);
1168                 expectedModCount = modCount;
1169             }
1170             cursor = lastRet;
1171             lastRet = -1;
1172         }
1173 
1174         @Override
1175         public void forEachRemaining(Consumer<? super E> action) {
1176             Objects.requireNonNull(action);
1177             synchronized (Vector.this) {
1178                 final int size = elementCount;
1179                 int i = cursor;
1180                 if (i >= size) {
1181                     return;
1182                 }
1183         @SuppressWarnings("unchecked")
1184                 final E[] elementData = (E[]) Vector.this.elementData;
1185                 if (i >= elementData.length) {
1186                     throw new ConcurrentModificationException();
1187                 }
1188                 while (i != size && modCount == expectedModCount) {
1189                     action.accept(elementData[i++]);
1190                 }
1191                 // update once at end of iteration to reduce heap write traffic
1192                 cursor = i;
1193                 lastRet = i - 1;
1194                 checkForComodification();
1195             }
1196         }
1197 
1198         final void checkForComodification() {
1199             if (modCount != expectedModCount)
1200                 throw new ConcurrentModificationException();
1201         }
1202     }
1203 
1204     /**
1205      * An optimized version of AbstractList.ListItr
1206      */
1207     final class ListItr extends Itr implements ListIterator<E> {
1208         ListItr(int index) {
1209             super();
1210             cursor = index;
1211         }
1212 
1213         public boolean hasPrevious() {
1214             return cursor != 0;
1215         }
1216 
1217         public int nextIndex() {
1218             return cursor;
1219         }
1220 
1221         public int previousIndex() {
1222             return cursor - 1;
1223         }
1224 
1225         public E previous() {
1226             synchronized (Vector.this) {
1227                 checkForComodification();
1228                 int i = cursor - 1;
1229                 if (i < 0)
1230                     throw new NoSuchElementException();
1231                 cursor = i;
1232                 return elementData(lastRet = i);
1233             }
1234         }
1235 
1236         public void set(E e) {
1237             if (lastRet == -1)
1238                 throw new IllegalStateException();
1239             synchronized (Vector.this) {
1240                 checkForComodification();
1241                 Vector.this.set(lastRet, e);
1242             }
1243         }
1244 
1245         public void add(E e) {
1246             int i = cursor;
1247             synchronized (Vector.this) {
1248                 checkForComodification();
1249                 Vector.this.add(i, e);
1250                 expectedModCount = modCount;
1251             }
1252             cursor = i + 1;
1253             lastRet = -1;
1254         }
1255     }
1256 
1257     @Override
1258     public synchronized void forEach(Consumer<? super E> action) {
1259         Objects.requireNonNull(action);
1260         final int expectedModCount = modCount;
1261         @SuppressWarnings("unchecked")
1262         final E[] elementData = (E[]) this.elementData;
1263         final int elementCount = this.elementCount;
1264         for (int i=0; modCount == expectedModCount && i < elementCount; i++) {
1265             action.accept(elementData[i]);
1266         }
1267         if (modCount != expectedModCount) {
1268             throw new ConcurrentModificationException();
1269         }
1270     }
1271 
1272     @Override
1273     @SuppressWarnings("unchecked")
1274     public synchronized boolean removeIf(Predicate<? super E> filter) {
1275         Objects.requireNonNull(filter);
1276         // figure out which elements are to be removed
1277         // any exception thrown from the filter predicate at this stage
1278         // will leave the collection unmodified
1279         int removeCount = 0;
1280         final int size = elementCount;
1281         final BitSet removeSet = new BitSet(size);
1282         final int expectedModCount = modCount;
1283         for (int i=0; modCount == expectedModCount && i < size; i++) {
1284             @SuppressWarnings("unchecked")
1285             final E element = (E) elementData[i];
1286             if (filter.test(element)) {
1287                 removeSet.set(i);
1288                 removeCount++;
1289             }
1290         }
1291         if (modCount != expectedModCount) {
1292             throw new ConcurrentModificationException();
1293         }
1294 
1295         // shift surviving elements left over the spaces left by removed elements
1296         final boolean anyToRemove = removeCount > 0;
1297         if (anyToRemove) {
1298             final int newSize = size - removeCount;
1299             for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {
1300                 i = removeSet.nextClearBit(i);
1301                 elementData[j] = elementData[i];
1302             }
1303             for (int k=newSize; k < size; k++) {
1304                 elementData[k] = null;  // Let gc do its work
1305             }
1306             elementCount = newSize;
1307             if (modCount != expectedModCount) {
1308                 throw new ConcurrentModificationException();
1309             }
1310             modCount++;
1311         }
1312 
1313         return anyToRemove;
1314     }
1315 
1316     @Override
1317     @SuppressWarnings("unchecked")
1318     public synchronized void replaceAll(UnaryOperator<E> operator) {
1319         Objects.requireNonNull(operator);
1320         final int expectedModCount = modCount;
1321         final int size = elementCount;
1322         for (int i=0; modCount == expectedModCount && i < size; i++) {
1323             elementData[i] = operator.apply((E) elementData[i]);
1324         }
1325         if (modCount != expectedModCount) {
1326             throw new ConcurrentModificationException();
1327         }
1328         modCount++;
1329     }
1330 
1331     @SuppressWarnings("unchecked")
1332     @Override
1333     public synchronized void sort(Comparator<? super E> c) {
1334         final int expectedModCount = modCount;
1335         Arrays.sort((E[]) elementData, 0, elementCount, c);
1336         if (modCount != expectedModCount) {
1337             throw new ConcurrentModificationException();
1338         }
1339         modCount++;
1340     }
1341 
1342     /**
1343      * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1344      * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1345      * list.
1346      *
1347      * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1348      * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1349      * Overriding implementations should document the reporting of additional
1350      * characteristic values.
1351      *
1352      * @return a {@code Spliterator} over the elements in this list
1353      * @since 1.8
1354      */
1355     @Override
1356     public Spliterator<E> spliterator() {
1357         return new VectorSpliterator<>(this, null, 0, -1, 0);
1358     }
1359 
1360     /** Similar to ArrayList Spliterator */
1361     static final class VectorSpliterator<E> implements Spliterator<E> {
1362         private final Vector<E> list;
1363         private Object[] array;
1364         private int index; // current index, modified on advance/split
1365         private int fence; // -1 until used; then one past last index
1366         private int expectedModCount; // initialized when fence set
1367 
1368         /** Create new spliterator covering the given  range */
1369         VectorSpliterator(Vector<E> list, Object[] array, int origin, int fence,
1370                           int expectedModCount) {
1371             this.list = list;
1372             this.array = array;
1373             this.index = origin;
1374             this.fence = fence;
1375             this.expectedModCount = expectedModCount;
1376         }
1377 
1378         private int getFence() { // initialize on first use
1379             int hi;
1380             if ((hi = fence) < 0) {
1381                 synchronized(list) {
1382                     array = list.elementData;
1383                     expectedModCount = list.modCount;
1384                     hi = fence = list.elementCount;
1385                 }
1386             }
1387             return hi;
1388         }
1389 
1390         public Spliterator<E> trySplit() {
1391             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1392             return (lo >= mid) ? null :
1393                 new VectorSpliterator<>(list, array, lo, index = mid,
1394                                         expectedModCount);
1395         }
1396 
1397         @SuppressWarnings("unchecked")
1398         public boolean tryAdvance(Consumer<? super E> action) {
1399             int i;
1400             if (action == null)
1401                 throw new NullPointerException();
1402             if (getFence() > (i = index)) {
1403                 index = i + 1;
1404                 action.accept((E)array[i]);
1405                 if (list.modCount != expectedModCount)
1406                     throw new ConcurrentModificationException();
1407                 return true;
1408             }
1409             return false;
1410         }
1411 
1412         @SuppressWarnings("unchecked")
1413         public void forEachRemaining(Consumer<? super E> action) {
1414             int i, hi; // hoist accesses and checks from loop
1415             Vector<E> lst; Object[] a;
1416             if (action == null)
1417                 throw new NullPointerException();
1418             if ((lst = list) != null) {
1419                 if ((hi = fence) < 0) {
1420                     synchronized(lst) {
1421                         expectedModCount = lst.modCount;
1422                         a = array = lst.elementData;
1423                         hi = fence = lst.elementCount;
1424                     }
1425                 }
1426                 else
1427                     a = array;
1428                 if (a != null && (i = index) >= 0 && (index = hi) <= a.length) {
1429                     while (i < hi)
1430                         action.accept((E) a[i++]);
1431                     if (lst.modCount == expectedModCount)
1432                         return;
1433                 }
1434             }
1435             throw new ConcurrentModificationException();
1436         }
1437 
1438         public long estimateSize() {
1439             return getFence() - index;
1440         }
1441 
1442         public int characteristics() {
1443             return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1444         }
1445     }
1446 }