1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "jvm.h"
  30 #include "classfile/classLoader.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "classfile/vmSymbols.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/disassembler.hpp"
  37 #include "interpreter/interpreter.hpp"
  38 #include "logging/log.hpp"
  39 #include "logging/logStream.hpp"
  40 #include "memory/allocation.inline.hpp"
  41 #include "memory/filemap.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "os_share_windows.hpp"
  44 #include "os_windows.inline.hpp"
  45 #include "prims/jniFastGetField.hpp"
  46 #include "prims/jvm_misc.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.hpp"
  49 #include "runtime/extendedPC.hpp"
  50 #include "runtime/globals.hpp"
  51 #include "runtime/interfaceSupport.inline.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/orderAccess.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/perfMemory.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/statSampler.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/thread.inline.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "services/attachListener.hpp"
  67 #include "services/memTracker.hpp"
  68 #include "services/runtimeService.hpp"
  69 #include "utilities/align.hpp"
  70 #include "utilities/decoder.hpp"
  71 #include "utilities/defaultStream.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/vmError.hpp"
  76 #include "symbolengine.hpp"
  77 #include "windbghelp.hpp"
  78 
  79 
  80 #ifdef _DEBUG
  81 #include <crtdbg.h>
  82 #endif
  83 
  84 
  85 #include <windows.h>
  86 #include <sys/types.h>
  87 #include <sys/stat.h>
  88 #include <sys/timeb.h>
  89 #include <objidl.h>
  90 #include <shlobj.h>
  91 
  92 #include <malloc.h>
  93 #include <signal.h>
  94 #include <direct.h>
  95 #include <errno.h>
  96 #include <fcntl.h>
  97 #include <io.h>
  98 #include <process.h>              // For _beginthreadex(), _endthreadex()
  99 #include <imagehlp.h>             // For os::dll_address_to_function_name
 100 // for enumerating dll libraries
 101 #include <vdmdbg.h>
 102 #include <psapi.h>
 103 #include <mmsystem.h>
 104 #include <winsock2.h>
 105 
 106 // for timer info max values which include all bits
 107 #define ALL_64_BITS CONST64(-1)
 108 
 109 // For DLL loading/load error detection
 110 // Values of PE COFF
 111 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 112 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 113 
 114 static HANDLE main_process;
 115 static HANDLE main_thread;
 116 static int    main_thread_id;
 117 
 118 static FILETIME process_creation_time;
 119 static FILETIME process_exit_time;
 120 static FILETIME process_user_time;
 121 static FILETIME process_kernel_time;
 122 
 123 #ifdef _M_AMD64
 124   #define __CPU__ amd64
 125 #else
 126   #define __CPU__ i486
 127 #endif
 128 
 129 #if INCLUDE_AOT
 130 PVOID  topLevelVectoredExceptionHandler = NULL;
 131 LONG WINAPI topLevelVectoredExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 132 #endif
 133 
 134 // save DLL module handle, used by GetModuleFileName
 135 
 136 HINSTANCE vm_lib_handle;
 137 
 138 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 139   switch (reason) {
 140   case DLL_PROCESS_ATTACH:
 141     vm_lib_handle = hinst;
 142     if (ForceTimeHighResolution) {
 143       timeBeginPeriod(1L);
 144     }
 145     WindowsDbgHelp::pre_initialize();
 146     SymbolEngine::pre_initialize();
 147     break;
 148   case DLL_PROCESS_DETACH:
 149     if (ForceTimeHighResolution) {
 150       timeEndPeriod(1L);
 151     }
 152 #if INCLUDE_AOT
 153     if (topLevelVectoredExceptionHandler != NULL) {
 154       RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
 155       topLevelVectoredExceptionHandler = NULL;
 156     }
 157 #endif
 158     break;
 159   default:
 160     break;
 161   }
 162   return true;
 163 }
 164 
 165 static inline double fileTimeAsDouble(FILETIME* time) {
 166   const double high  = (double) ((unsigned int) ~0);
 167   const double split = 10000000.0;
 168   double result = (time->dwLowDateTime / split) +
 169                    time->dwHighDateTime * (high/split);
 170   return result;
 171 }
 172 
 173 // Implementation of os
 174 
 175 bool os::unsetenv(const char* name) {
 176   assert(name != NULL, "Null pointer");
 177   return (SetEnvironmentVariable(name, NULL) == TRUE);
 178 }
 179 
 180 // No setuid programs under Windows.
 181 bool os::have_special_privileges() {
 182   return false;
 183 }
 184 
 185 
 186 // This method is  a periodic task to check for misbehaving JNI applications
 187 // under CheckJNI, we can add any periodic checks here.
 188 // For Windows at the moment does nothing
 189 void os::run_periodic_checks() {
 190   return;
 191 }
 192 
 193 // previous UnhandledExceptionFilter, if there is one
 194 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 195 
 196 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 197 
 198 void os::init_system_properties_values() {
 199   // sysclasspath, java_home, dll_dir
 200   {
 201     char *home_path;
 202     char *dll_path;
 203     char *pslash;
 204     char *bin = "\\bin";
 205     char home_dir[MAX_PATH + 1];
 206     char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
 207 
 208     if (alt_home_dir != NULL)  {
 209       strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
 210       home_dir[MAX_PATH] = '\0';
 211     } else {
 212       os::jvm_path(home_dir, sizeof(home_dir));
 213       // Found the full path to jvm.dll.
 214       // Now cut the path to <java_home>/jre if we can.
 215       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 216       pslash = strrchr(home_dir, '\\');
 217       if (pslash != NULL) {
 218         *pslash = '\0';                   // get rid of \{client|server}
 219         pslash = strrchr(home_dir, '\\');
 220         if (pslash != NULL) {
 221           *pslash = '\0';                 // get rid of \bin
 222         }
 223       }
 224     }
 225 
 226     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 227     if (home_path == NULL) {
 228       return;
 229     }
 230     strcpy(home_path, home_dir);
 231     Arguments::set_java_home(home_path);
 232     FREE_C_HEAP_ARRAY(char, home_path);
 233 
 234     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 235                                 mtInternal);
 236     if (dll_path == NULL) {
 237       return;
 238     }
 239     strcpy(dll_path, home_dir);
 240     strcat(dll_path, bin);
 241     Arguments::set_dll_dir(dll_path);
 242     FREE_C_HEAP_ARRAY(char, dll_path);
 243 
 244     if (!set_boot_path('\\', ';')) {
 245       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 246     }
 247   }
 248 
 249 // library_path
 250 #define EXT_DIR "\\lib\\ext"
 251 #define BIN_DIR "\\bin"
 252 #define PACKAGE_DIR "\\Sun\\Java"
 253   {
 254     // Win32 library search order (See the documentation for LoadLibrary):
 255     //
 256     // 1. The directory from which application is loaded.
 257     // 2. The system wide Java Extensions directory (Java only)
 258     // 3. System directory (GetSystemDirectory)
 259     // 4. Windows directory (GetWindowsDirectory)
 260     // 5. The PATH environment variable
 261     // 6. The current directory
 262 
 263     char *library_path;
 264     char tmp[MAX_PATH];
 265     char *path_str = ::getenv("PATH");
 266 
 267     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 268                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 269 
 270     library_path[0] = '\0';
 271 
 272     GetModuleFileName(NULL, tmp, sizeof(tmp));
 273     *(strrchr(tmp, '\\')) = '\0';
 274     strcat(library_path, tmp);
 275 
 276     GetWindowsDirectory(tmp, sizeof(tmp));
 277     strcat(library_path, ";");
 278     strcat(library_path, tmp);
 279     strcat(library_path, PACKAGE_DIR BIN_DIR);
 280 
 281     GetSystemDirectory(tmp, sizeof(tmp));
 282     strcat(library_path, ";");
 283     strcat(library_path, tmp);
 284 
 285     GetWindowsDirectory(tmp, sizeof(tmp));
 286     strcat(library_path, ";");
 287     strcat(library_path, tmp);
 288 
 289     if (path_str) {
 290       strcat(library_path, ";");
 291       strcat(library_path, path_str);
 292     }
 293 
 294     strcat(library_path, ";.");
 295 
 296     Arguments::set_library_path(library_path);
 297     FREE_C_HEAP_ARRAY(char, library_path);
 298   }
 299 
 300   // Default extensions directory
 301   {
 302     char path[MAX_PATH];
 303     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 304     GetWindowsDirectory(path, MAX_PATH);
 305     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 306             path, PACKAGE_DIR, EXT_DIR);
 307     Arguments::set_ext_dirs(buf);
 308   }
 309   #undef EXT_DIR
 310   #undef BIN_DIR
 311   #undef PACKAGE_DIR
 312 
 313 #ifndef _WIN64
 314   // set our UnhandledExceptionFilter and save any previous one
 315   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 316 #endif
 317 
 318   // Done
 319   return;
 320 }
 321 
 322 void os::breakpoint() {
 323   DebugBreak();
 324 }
 325 
 326 // Invoked from the BREAKPOINT Macro
 327 extern "C" void breakpoint() {
 328   os::breakpoint();
 329 }
 330 
 331 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 332 // So far, this method is only used by Native Memory Tracking, which is
 333 // only supported on Windows XP or later.
 334 //
 335 int os::get_native_stack(address* stack, int frames, int toSkip) {
 336   int captured = RtlCaptureStackBackTrace(toSkip + 1, frames, (PVOID*)stack, NULL);
 337   for (int index = captured; index < frames; index ++) {
 338     stack[index] = NULL;
 339   }
 340   return captured;
 341 }
 342 
 343 
 344 // os::current_stack_base()
 345 //
 346 //   Returns the base of the stack, which is the stack's
 347 //   starting address.  This function must be called
 348 //   while running on the stack of the thread being queried.
 349 
 350 address os::current_stack_base() {
 351   MEMORY_BASIC_INFORMATION minfo;
 352   address stack_bottom;
 353   size_t stack_size;
 354 
 355   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 356   stack_bottom =  (address)minfo.AllocationBase;
 357   stack_size = minfo.RegionSize;
 358 
 359   // Add up the sizes of all the regions with the same
 360   // AllocationBase.
 361   while (1) {
 362     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 363     if (stack_bottom == (address)minfo.AllocationBase) {
 364       stack_size += minfo.RegionSize;
 365     } else {
 366       break;
 367     }
 368   }
 369   return stack_bottom + stack_size;
 370 }
 371 
 372 size_t os::current_stack_size() {
 373   size_t sz;
 374   MEMORY_BASIC_INFORMATION minfo;
 375   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 376   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 377   return sz;
 378 }
 379 
 380 bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
 381   MEMORY_BASIC_INFORMATION minfo;
 382   committed_start = NULL;
 383   committed_size = 0;
 384   address top = start + size;
 385   const address start_addr = start;
 386   while (start < top) {
 387     VirtualQuery(start, &minfo, sizeof(minfo));
 388     if ((minfo.State & MEM_COMMIT) == 0) {  // not committed
 389       if (committed_start != NULL) {
 390         break;
 391       }
 392     } else {  // committed
 393       if (committed_start == NULL) {
 394         committed_start = start;
 395       }
 396       size_t offset = start - (address)minfo.BaseAddress;
 397       committed_size += minfo.RegionSize - offset;
 398     }
 399     start = (address)minfo.BaseAddress + minfo.RegionSize;
 400   }
 401 
 402   if (committed_start == NULL) {
 403     assert(committed_size == 0, "Sanity");
 404     return false;
 405   } else {
 406     assert(committed_start >= start_addr && committed_start < top, "Out of range");
 407     // current region may go beyond the limit, trim to the limit
 408     committed_size = MIN2(committed_size, size_t(top - committed_start));
 409     return true;
 410   }
 411 }
 412 
 413 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 414   const struct tm* time_struct_ptr = localtime(clock);
 415   if (time_struct_ptr != NULL) {
 416     *res = *time_struct_ptr;
 417     return res;
 418   }
 419   return NULL;
 420 }
 421 
 422 struct tm* os::gmtime_pd(const time_t* clock, struct tm* res) {
 423   const struct tm* time_struct_ptr = gmtime(clock);
 424   if (time_struct_ptr != NULL) {
 425     *res = *time_struct_ptr;
 426     return res;
 427   }
 428   return NULL;
 429 }
 430 
 431 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 432 
 433 // Thread start routine for all newly created threads
 434 static unsigned __stdcall thread_native_entry(Thread* thread) {
 435 
 436   thread->record_stack_base_and_size();
 437 
 438   // Try to randomize the cache line index of hot stack frames.
 439   // This helps when threads of the same stack traces evict each other's
 440   // cache lines. The threads can be either from the same JVM instance, or
 441   // from different JVM instances. The benefit is especially true for
 442   // processors with hyperthreading technology.
 443   static int counter = 0;
 444   int pid = os::current_process_id();
 445   _alloca(((pid ^ counter++) & 7) * 128);
 446 
 447   thread->initialize_thread_current();
 448 
 449   OSThread* osthr = thread->osthread();
 450   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 451 
 452   if (UseNUMA) {
 453     int lgrp_id = os::numa_get_group_id();
 454     if (lgrp_id != -1) {
 455       thread->set_lgrp_id(lgrp_id);
 456     }
 457   }
 458 
 459   // Diagnostic code to investigate JDK-6573254
 460   int res = 30115;  // non-java thread
 461   if (thread->is_Java_thread()) {
 462     res = 20115;    // java thread
 463   }
 464 
 465   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").", os::current_thread_id());
 466 
 467   // Install a win32 structured exception handler around every thread created
 468   // by VM, so VM can generate error dump when an exception occurred in non-
 469   // Java thread (e.g. VM thread).
 470   __try {
 471     thread->call_run();
 472   } __except(topLevelExceptionFilter(
 473                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 474     // Nothing to do.
 475   }
 476 
 477   // Note: at this point the thread object may already have deleted itself.
 478   // Do not dereference it from here on out.
 479 
 480   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
 481 
 482   // One less thread is executing
 483   // When the VMThread gets here, the main thread may have already exited
 484   // which frees the CodeHeap containing the Atomic::add code
 485   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 486     Atomic::dec(&os::win32::_os_thread_count);
 487   }
 488 
 489   // Thread must not return from exit_process_or_thread(), but if it does,
 490   // let it proceed to exit normally
 491   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 492 }
 493 
 494 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 495                                   int thread_id) {
 496   // Allocate the OSThread object
 497   OSThread* osthread = new OSThread(NULL, NULL);
 498   if (osthread == NULL) return NULL;
 499 
 500   // Initialize support for Java interrupts
 501   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 502   if (interrupt_event == NULL) {
 503     delete osthread;
 504     return NULL;
 505   }
 506   osthread->set_interrupt_event(interrupt_event);
 507 
 508   // Store info on the Win32 thread into the OSThread
 509   osthread->set_thread_handle(thread_handle);
 510   osthread->set_thread_id(thread_id);
 511 
 512   if (UseNUMA) {
 513     int lgrp_id = os::numa_get_group_id();
 514     if (lgrp_id != -1) {
 515       thread->set_lgrp_id(lgrp_id);
 516     }
 517   }
 518 
 519   // Initial thread state is INITIALIZED, not SUSPENDED
 520   osthread->set_state(INITIALIZED);
 521 
 522   return osthread;
 523 }
 524 
 525 
 526 bool os::create_attached_thread(JavaThread* thread) {
 527 #ifdef ASSERT
 528   thread->verify_not_published();
 529 #endif
 530   HANDLE thread_h;
 531   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 532                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 533     fatal("DuplicateHandle failed\n");
 534   }
 535   OSThread* osthread = create_os_thread(thread, thread_h,
 536                                         (int)current_thread_id());
 537   if (osthread == NULL) {
 538     return false;
 539   }
 540 
 541   // Initial thread state is RUNNABLE
 542   osthread->set_state(RUNNABLE);
 543 
 544   thread->set_osthread(osthread);
 545 
 546   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
 547     os::current_thread_id());
 548 
 549   return true;
 550 }
 551 
 552 bool os::create_main_thread(JavaThread* thread) {
 553 #ifdef ASSERT
 554   thread->verify_not_published();
 555 #endif
 556   if (_starting_thread == NULL) {
 557     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 558     if (_starting_thread == NULL) {
 559       return false;
 560     }
 561   }
 562 
 563   // The primordial thread is runnable from the start)
 564   _starting_thread->set_state(RUNNABLE);
 565 
 566   thread->set_osthread(_starting_thread);
 567   return true;
 568 }
 569 
 570 // Helper function to trace _beginthreadex attributes,
 571 //  similar to os::Posix::describe_pthread_attr()
 572 static char* describe_beginthreadex_attributes(char* buf, size_t buflen,
 573                                                size_t stacksize, unsigned initflag) {
 574   stringStream ss(buf, buflen);
 575   if (stacksize == 0) {
 576     ss.print("stacksize: default, ");
 577   } else {
 578     ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
 579   }
 580   ss.print("flags: ");
 581   #define PRINT_FLAG(f) if (initflag & f) ss.print( #f " ");
 582   #define ALL(X) \
 583     X(CREATE_SUSPENDED) \
 584     X(STACK_SIZE_PARAM_IS_A_RESERVATION)
 585   ALL(PRINT_FLAG)
 586   #undef ALL
 587   #undef PRINT_FLAG
 588   return buf;
 589 }
 590 
 591 // Allocate and initialize a new OSThread
 592 bool os::create_thread(Thread* thread, ThreadType thr_type,
 593                        size_t stack_size) {
 594   unsigned thread_id;
 595 
 596   // Allocate the OSThread object
 597   OSThread* osthread = new OSThread(NULL, NULL);
 598   if (osthread == NULL) {
 599     return false;
 600   }
 601 
 602   // Initialize support for Java interrupts
 603   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 604   if (interrupt_event == NULL) {
 605     delete osthread;
 606     return false;
 607   }
 608   osthread->set_interrupt_event(interrupt_event);
 609   osthread->set_interrupted(false);
 610 
 611   thread->set_osthread(osthread);
 612 
 613   if (stack_size == 0) {
 614     switch (thr_type) {
 615     case os::java_thread:
 616       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 617       if (JavaThread::stack_size_at_create() > 0) {
 618         stack_size = JavaThread::stack_size_at_create();
 619       }
 620       break;
 621     case os::compiler_thread:
 622       if (CompilerThreadStackSize > 0) {
 623         stack_size = (size_t)(CompilerThreadStackSize * K);
 624         break;
 625       } // else fall through:
 626         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 627     case os::vm_thread:
 628     case os::pgc_thread:
 629     case os::cgc_thread:
 630     case os::watcher_thread:
 631       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 632       break;
 633     }
 634   }
 635 
 636   // Create the Win32 thread
 637   //
 638   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 639   // does not specify stack size. Instead, it specifies the size of
 640   // initially committed space. The stack size is determined by
 641   // PE header in the executable. If the committed "stack_size" is larger
 642   // than default value in the PE header, the stack is rounded up to the
 643   // nearest multiple of 1MB. For example if the launcher has default
 644   // stack size of 320k, specifying any size less than 320k does not
 645   // affect the actual stack size at all, it only affects the initial
 646   // commitment. On the other hand, specifying 'stack_size' larger than
 647   // default value may cause significant increase in memory usage, because
 648   // not only the stack space will be rounded up to MB, but also the
 649   // entire space is committed upfront.
 650   //
 651   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 652   // for CreateThread() that can treat 'stack_size' as stack size. However we
 653   // are not supposed to call CreateThread() directly according to MSDN
 654   // document because JVM uses C runtime library. The good news is that the
 655   // flag appears to work with _beginthredex() as well.
 656 
 657   const unsigned initflag = CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION;
 658   HANDLE thread_handle =
 659     (HANDLE)_beginthreadex(NULL,
 660                            (unsigned)stack_size,
 661                            (unsigned (__stdcall *)(void*)) thread_native_entry,
 662                            thread,
 663                            initflag,
 664                            &thread_id);
 665 
 666   char buf[64];
 667   if (thread_handle != NULL) {
 668     log_info(os, thread)("Thread started (tid: %u, attributes: %s)",
 669       thread_id, describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
 670   } else {
 671     log_warning(os, thread)("Failed to start thread - _beginthreadex failed (%s) for attributes: %s.",
 672       os::errno_name(errno), describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
 673     // Log some OS information which might explain why creating the thread failed.
 674     log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
 675     LogStream st(Log(os, thread)::info());
 676     os::print_memory_info(&st);
 677   }
 678 
 679   if (thread_handle == NULL) {
 680     // Need to clean up stuff we've allocated so far
 681     CloseHandle(osthread->interrupt_event());
 682     thread->set_osthread(NULL);
 683     delete osthread;
 684     return false;
 685   }
 686 
 687   Atomic::inc(&os::win32::_os_thread_count);
 688 
 689   // Store info on the Win32 thread into the OSThread
 690   osthread->set_thread_handle(thread_handle);
 691   osthread->set_thread_id(thread_id);
 692 
 693   // Initial thread state is INITIALIZED, not SUSPENDED
 694   osthread->set_state(INITIALIZED);
 695 
 696   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 697   return true;
 698 }
 699 
 700 
 701 // Free Win32 resources related to the OSThread
 702 void os::free_thread(OSThread* osthread) {
 703   assert(osthread != NULL, "osthread not set");
 704 
 705   // We are told to free resources of the argument thread,
 706   // but we can only really operate on the current thread.
 707   assert(Thread::current()->osthread() == osthread,
 708          "os::free_thread but not current thread");
 709 
 710   CloseHandle(osthread->thread_handle());
 711   CloseHandle(osthread->interrupt_event());
 712   delete osthread;
 713 }
 714 
 715 static jlong first_filetime;
 716 static jlong initial_performance_count;
 717 static jlong performance_frequency;
 718 
 719 
 720 jlong as_long(LARGE_INTEGER x) {
 721   jlong result = 0; // initialization to avoid warning
 722   set_high(&result, x.HighPart);
 723   set_low(&result, x.LowPart);
 724   return result;
 725 }
 726 
 727 
 728 jlong os::elapsed_counter() {
 729   LARGE_INTEGER count;
 730   QueryPerformanceCounter(&count);
 731   return as_long(count) - initial_performance_count;
 732 }
 733 
 734 
 735 jlong os::elapsed_frequency() {
 736   return performance_frequency;
 737 }
 738 
 739 
 740 julong os::available_memory() {
 741   return win32::available_memory();
 742 }
 743 
 744 julong os::win32::available_memory() {
 745   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 746   // value if total memory is larger than 4GB
 747   MEMORYSTATUSEX ms;
 748   ms.dwLength = sizeof(ms);
 749   GlobalMemoryStatusEx(&ms);
 750 
 751   return (julong)ms.ullAvailPhys;
 752 }
 753 
 754 julong os::physical_memory() {
 755   return win32::physical_memory();
 756 }
 757 
 758 bool os::has_allocatable_memory_limit(julong* limit) {
 759   MEMORYSTATUSEX ms;
 760   ms.dwLength = sizeof(ms);
 761   GlobalMemoryStatusEx(&ms);
 762 #ifdef _LP64
 763   *limit = (julong)ms.ullAvailVirtual;
 764   return true;
 765 #else
 766   // Limit to 1400m because of the 2gb address space wall
 767   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 768   return true;
 769 #endif
 770 }
 771 
 772 int os::active_processor_count() {
 773   // User has overridden the number of active processors
 774   if (ActiveProcessorCount > 0) {
 775     log_trace(os)("active_processor_count: "
 776                   "active processor count set by user : %d",
 777                   ActiveProcessorCount);
 778     return ActiveProcessorCount;
 779   }
 780 
 781   DWORD_PTR lpProcessAffinityMask = 0;
 782   DWORD_PTR lpSystemAffinityMask = 0;
 783   int proc_count = processor_count();
 784   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 785       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 786     // Nof active processors is number of bits in process affinity mask
 787     int bitcount = 0;
 788     while (lpProcessAffinityMask != 0) {
 789       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 790       bitcount++;
 791     }
 792     return bitcount;
 793   } else {
 794     return proc_count;
 795   }
 796 }
 797 
 798 void os::set_native_thread_name(const char *name) {
 799 
 800   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 801   //
 802   // Note that unfortunately this only works if the process
 803   // is already attached to a debugger; debugger must observe
 804   // the exception below to show the correct name.
 805 
 806   // If there is no debugger attached skip raising the exception
 807   if (!IsDebuggerPresent()) {
 808     return;
 809   }
 810 
 811   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 812   struct {
 813     DWORD dwType;     // must be 0x1000
 814     LPCSTR szName;    // pointer to name (in user addr space)
 815     DWORD dwThreadID; // thread ID (-1=caller thread)
 816     DWORD dwFlags;    // reserved for future use, must be zero
 817   } info;
 818 
 819   info.dwType = 0x1000;
 820   info.szName = name;
 821   info.dwThreadID = -1;
 822   info.dwFlags = 0;
 823 
 824   __try {
 825     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 826   } __except(EXCEPTION_EXECUTE_HANDLER) {}
 827 }
 828 
 829 bool os::distribute_processes(uint length, uint* distribution) {
 830   // Not yet implemented.
 831   return false;
 832 }
 833 
 834 bool os::bind_to_processor(uint processor_id) {
 835   // Not yet implemented.
 836   return false;
 837 }
 838 
 839 void os::win32::initialize_performance_counter() {
 840   LARGE_INTEGER count;
 841   QueryPerformanceFrequency(&count);
 842   performance_frequency = as_long(count);
 843   QueryPerformanceCounter(&count);
 844   initial_performance_count = as_long(count);
 845 }
 846 
 847 
 848 double os::elapsedTime() {
 849   return (double) elapsed_counter() / (double) elapsed_frequency();
 850 }
 851 
 852 
 853 // Windows format:
 854 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 855 // Java format:
 856 //   Java standards require the number of milliseconds since 1/1/1970
 857 
 858 // Constant offset - calculated using offset()
 859 static jlong  _offset   = 116444736000000000;
 860 // Fake time counter for reproducible results when debugging
 861 static jlong  fake_time = 0;
 862 
 863 #ifdef ASSERT
 864 // Just to be safe, recalculate the offset in debug mode
 865 static jlong _calculated_offset = 0;
 866 static int   _has_calculated_offset = 0;
 867 
 868 jlong offset() {
 869   if (_has_calculated_offset) return _calculated_offset;
 870   SYSTEMTIME java_origin;
 871   java_origin.wYear          = 1970;
 872   java_origin.wMonth         = 1;
 873   java_origin.wDayOfWeek     = 0; // ignored
 874   java_origin.wDay           = 1;
 875   java_origin.wHour          = 0;
 876   java_origin.wMinute        = 0;
 877   java_origin.wSecond        = 0;
 878   java_origin.wMilliseconds  = 0;
 879   FILETIME jot;
 880   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 881     fatal("Error = %d\nWindows error", GetLastError());
 882   }
 883   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 884   _has_calculated_offset = 1;
 885   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 886   return _calculated_offset;
 887 }
 888 #else
 889 jlong offset() {
 890   return _offset;
 891 }
 892 #endif
 893 
 894 jlong windows_to_java_time(FILETIME wt) {
 895   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 896   return (a - offset()) / 10000;
 897 }
 898 
 899 // Returns time ticks in (10th of micro seconds)
 900 jlong windows_to_time_ticks(FILETIME wt) {
 901   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 902   return (a - offset());
 903 }
 904 
 905 FILETIME java_to_windows_time(jlong l) {
 906   jlong a = (l * 10000) + offset();
 907   FILETIME result;
 908   result.dwHighDateTime = high(a);
 909   result.dwLowDateTime  = low(a);
 910   return result;
 911 }
 912 
 913 bool os::supports_vtime() { return true; }
 914 bool os::enable_vtime() { return false; }
 915 bool os::vtime_enabled() { return false; }
 916 
 917 double os::elapsedVTime() {
 918   FILETIME created;
 919   FILETIME exited;
 920   FILETIME kernel;
 921   FILETIME user;
 922   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 923     // the resolution of windows_to_java_time() should be sufficient (ms)
 924     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 925   } else {
 926     return elapsedTime();
 927   }
 928 }
 929 
 930 jlong os::javaTimeMillis() {
 931   FILETIME wt;
 932   GetSystemTimeAsFileTime(&wt);
 933   return windows_to_java_time(wt);
 934 }
 935 
 936 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 937   FILETIME wt;
 938   GetSystemTimeAsFileTime(&wt);
 939   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 940   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 941   seconds = secs;
 942   nanos = jlong(ticks - (secs*10000000)) * 100;
 943 }
 944 
 945 jlong os::javaTimeNanos() {
 946     LARGE_INTEGER current_count;
 947     QueryPerformanceCounter(&current_count);
 948     double current = as_long(current_count);
 949     double freq = performance_frequency;
 950     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 951     return time;
 952 }
 953 
 954 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 955   jlong freq = performance_frequency;
 956   if (freq < NANOSECS_PER_SEC) {
 957     // the performance counter is 64 bits and we will
 958     // be multiplying it -- so no wrap in 64 bits
 959     info_ptr->max_value = ALL_64_BITS;
 960   } else if (freq > NANOSECS_PER_SEC) {
 961     // use the max value the counter can reach to
 962     // determine the max value which could be returned
 963     julong max_counter = (julong)ALL_64_BITS;
 964     info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 965   } else {
 966     // the performance counter is 64 bits and we will
 967     // be using it directly -- so no wrap in 64 bits
 968     info_ptr->max_value = ALL_64_BITS;
 969   }
 970 
 971   // using a counter, so no skipping
 972   info_ptr->may_skip_backward = false;
 973   info_ptr->may_skip_forward = false;
 974 
 975   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 976 }
 977 
 978 char* os::local_time_string(char *buf, size_t buflen) {
 979   SYSTEMTIME st;
 980   GetLocalTime(&st);
 981   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 982                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 983   return buf;
 984 }
 985 
 986 bool os::getTimesSecs(double* process_real_time,
 987                       double* process_user_time,
 988                       double* process_system_time) {
 989   HANDLE h_process = GetCurrentProcess();
 990   FILETIME create_time, exit_time, kernel_time, user_time;
 991   BOOL result = GetProcessTimes(h_process,
 992                                 &create_time,
 993                                 &exit_time,
 994                                 &kernel_time,
 995                                 &user_time);
 996   if (result != 0) {
 997     FILETIME wt;
 998     GetSystemTimeAsFileTime(&wt);
 999     jlong rtc_millis = windows_to_java_time(wt);
1000     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
1001     *process_user_time =
1002       (double) jlong_from(user_time.dwHighDateTime, user_time.dwLowDateTime) / (10 * MICROUNITS);
1003     *process_system_time =
1004       (double) jlong_from(kernel_time.dwHighDateTime, kernel_time.dwLowDateTime) / (10 * MICROUNITS);
1005     return true;
1006   } else {
1007     return false;
1008   }
1009 }
1010 
1011 void os::shutdown() {
1012   // allow PerfMemory to attempt cleanup of any persistent resources
1013   perfMemory_exit();
1014 
1015   // flush buffered output, finish log files
1016   ostream_abort();
1017 
1018   // Check for abort hook
1019   abort_hook_t abort_hook = Arguments::abort_hook();
1020   if (abort_hook != NULL) {
1021     abort_hook();
1022   }
1023 }
1024 
1025 
1026 static HANDLE dumpFile = NULL;
1027 
1028 // Check if dump file can be created.
1029 void os::check_dump_limit(char* buffer, size_t buffsz) {
1030   bool status = true;
1031   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
1032     jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
1033     status = false;
1034   }
1035 
1036 #ifndef ASSERT
1037   if (!os::win32::is_windows_server() && FLAG_IS_DEFAULT(CreateCoredumpOnCrash)) {
1038     jio_snprintf(buffer, buffsz, "Minidumps are not enabled by default on client versions of Windows");
1039     status = false;
1040   }
1041 #endif
1042 
1043   if (status) {
1044     const char* cwd = get_current_directory(NULL, 0);
1045     int pid = current_process_id();
1046     if (cwd != NULL) {
1047       jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1048     } else {
1049       jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1050     }
1051 
1052     if (dumpFile == NULL &&
1053        (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1054                  == INVALID_HANDLE_VALUE) {
1055       jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1056       status = false;
1057     }
1058   }
1059   VMError::record_coredump_status(buffer, status);
1060 }
1061 
1062 void os::abort(bool dump_core, void* siginfo, const void* context) {
1063   EXCEPTION_POINTERS ep;
1064   MINIDUMP_EXCEPTION_INFORMATION mei;
1065   MINIDUMP_EXCEPTION_INFORMATION* pmei;
1066 
1067   HANDLE hProcess = GetCurrentProcess();
1068   DWORD processId = GetCurrentProcessId();
1069   MINIDUMP_TYPE dumpType;
1070 
1071   shutdown();
1072   if (!dump_core || dumpFile == NULL) {
1073     if (dumpFile != NULL) {
1074       CloseHandle(dumpFile);
1075     }
1076     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1077   }
1078 
1079   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData |
1080     MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo | MiniDumpWithUnloadedModules);
1081 
1082   if (siginfo != NULL && context != NULL) {
1083     ep.ContextRecord = (PCONTEXT) context;
1084     ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1085 
1086     mei.ThreadId = GetCurrentThreadId();
1087     mei.ExceptionPointers = &ep;
1088     pmei = &mei;
1089   } else {
1090     pmei = NULL;
1091   }
1092 
1093   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1094   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1095   if (!WindowsDbgHelp::miniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) &&
1096       !WindowsDbgHelp::miniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL)) {
1097     jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1098   }
1099   CloseHandle(dumpFile);
1100   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1101 }
1102 
1103 // Die immediately, no exit hook, no abort hook, no cleanup.
1104 void os::die() {
1105   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1106 }
1107 
1108 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1109 //  * dirent_md.c       1.15 00/02/02
1110 //
1111 // The declarations for DIR and struct dirent are in jvm_win32.h.
1112 
1113 // Caller must have already run dirname through JVM_NativePath, which removes
1114 // duplicate slashes and converts all instances of '/' into '\\'.
1115 
1116 DIR * os::opendir(const char *dirname) {
1117   assert(dirname != NULL, "just checking");   // hotspot change
1118   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1119   DWORD fattr;                                // hotspot change
1120   char alt_dirname[4] = { 0, 0, 0, 0 };
1121 
1122   if (dirp == 0) {
1123     errno = ENOMEM;
1124     return 0;
1125   }
1126 
1127   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1128   // as a directory in FindFirstFile().  We detect this case here and
1129   // prepend the current drive name.
1130   //
1131   if (dirname[1] == '\0' && dirname[0] == '\\') {
1132     alt_dirname[0] = _getdrive() + 'A' - 1;
1133     alt_dirname[1] = ':';
1134     alt_dirname[2] = '\\';
1135     alt_dirname[3] = '\0';
1136     dirname = alt_dirname;
1137   }
1138 
1139   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1140   if (dirp->path == 0) {
1141     free(dirp);
1142     errno = ENOMEM;
1143     return 0;
1144   }
1145   strcpy(dirp->path, dirname);
1146 
1147   fattr = GetFileAttributes(dirp->path);
1148   if (fattr == 0xffffffff) {
1149     free(dirp->path);
1150     free(dirp);
1151     errno = ENOENT;
1152     return 0;
1153   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1154     free(dirp->path);
1155     free(dirp);
1156     errno = ENOTDIR;
1157     return 0;
1158   }
1159 
1160   // Append "*.*", or possibly "\\*.*", to path
1161   if (dirp->path[1] == ':' &&
1162       (dirp->path[2] == '\0' ||
1163       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1164     // No '\\' needed for cases like "Z:" or "Z:\"
1165     strcat(dirp->path, "*.*");
1166   } else {
1167     strcat(dirp->path, "\\*.*");
1168   }
1169 
1170   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1171   if (dirp->handle == INVALID_HANDLE_VALUE) {
1172     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1173       free(dirp->path);
1174       free(dirp);
1175       errno = EACCES;
1176       return 0;
1177     }
1178   }
1179   return dirp;
1180 }
1181 
1182 struct dirent * os::readdir(DIR *dirp) {
1183   assert(dirp != NULL, "just checking");      // hotspot change
1184   if (dirp->handle == INVALID_HANDLE_VALUE) {
1185     return NULL;
1186   }
1187 
1188   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1189 
1190   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1191     if (GetLastError() == ERROR_INVALID_HANDLE) {
1192       errno = EBADF;
1193       return NULL;
1194     }
1195     FindClose(dirp->handle);
1196     dirp->handle = INVALID_HANDLE_VALUE;
1197   }
1198 
1199   return &dirp->dirent;
1200 }
1201 
1202 int os::closedir(DIR *dirp) {
1203   assert(dirp != NULL, "just checking");      // hotspot change
1204   if (dirp->handle != INVALID_HANDLE_VALUE) {
1205     if (!FindClose(dirp->handle)) {
1206       errno = EBADF;
1207       return -1;
1208     }
1209     dirp->handle = INVALID_HANDLE_VALUE;
1210   }
1211   free(dirp->path);
1212   free(dirp);
1213   return 0;
1214 }
1215 
1216 // This must be hard coded because it's the system's temporary
1217 // directory not the java application's temp directory, ala java.io.tmpdir.
1218 const char* os::get_temp_directory() {
1219   static char path_buf[MAX_PATH];
1220   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1221     return path_buf;
1222   } else {
1223     path_buf[0] = '\0';
1224     return path_buf;
1225   }
1226 }
1227 
1228 // Needs to be in os specific directory because windows requires another
1229 // header file <direct.h>
1230 const char* os::get_current_directory(char *buf, size_t buflen) {
1231   int n = static_cast<int>(buflen);
1232   if (buflen > INT_MAX)  n = INT_MAX;
1233   return _getcwd(buf, n);
1234 }
1235 
1236 //-----------------------------------------------------------
1237 // Helper functions for fatal error handler
1238 #ifdef _WIN64
1239 // Helper routine which returns true if address in
1240 // within the NTDLL address space.
1241 //
1242 static bool _addr_in_ntdll(address addr) {
1243   HMODULE hmod;
1244   MODULEINFO minfo;
1245 
1246   hmod = GetModuleHandle("NTDLL.DLL");
1247   if (hmod == NULL) return false;
1248   if (!GetModuleInformation(GetCurrentProcess(), hmod,
1249                                           &minfo, sizeof(MODULEINFO))) {
1250     return false;
1251   }
1252 
1253   if ((addr >= minfo.lpBaseOfDll) &&
1254       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1255     return true;
1256   } else {
1257     return false;
1258   }
1259 }
1260 #endif
1261 
1262 struct _modinfo {
1263   address addr;
1264   char*   full_path;   // point to a char buffer
1265   int     buflen;      // size of the buffer
1266   address base_addr;
1267 };
1268 
1269 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1270                                   address top_address, void * param) {
1271   struct _modinfo *pmod = (struct _modinfo *)param;
1272   if (!pmod) return -1;
1273 
1274   if (base_addr   <= pmod->addr &&
1275       top_address > pmod->addr) {
1276     // if a buffer is provided, copy path name to the buffer
1277     if (pmod->full_path) {
1278       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1279     }
1280     pmod->base_addr = base_addr;
1281     return 1;
1282   }
1283   return 0;
1284 }
1285 
1286 bool os::dll_address_to_library_name(address addr, char* buf,
1287                                      int buflen, int* offset) {
1288   // buf is not optional, but offset is optional
1289   assert(buf != NULL, "sanity check");
1290 
1291 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1292 //       return the full path to the DLL file, sometimes it returns path
1293 //       to the corresponding PDB file (debug info); sometimes it only
1294 //       returns partial path, which makes life painful.
1295 
1296   struct _modinfo mi;
1297   mi.addr      = addr;
1298   mi.full_path = buf;
1299   mi.buflen    = buflen;
1300   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1301     // buf already contains path name
1302     if (offset) *offset = addr - mi.base_addr;
1303     return true;
1304   }
1305 
1306   buf[0] = '\0';
1307   if (offset) *offset = -1;
1308   return false;
1309 }
1310 
1311 bool os::dll_address_to_function_name(address addr, char *buf,
1312                                       int buflen, int *offset,
1313                                       bool demangle) {
1314   // buf is not optional, but offset is optional
1315   assert(buf != NULL, "sanity check");
1316 
1317   if (Decoder::decode(addr, buf, buflen, offset, demangle)) {
1318     return true;
1319   }
1320   if (offset != NULL)  *offset  = -1;
1321   buf[0] = '\0';
1322   return false;
1323 }
1324 
1325 // save the start and end address of jvm.dll into param[0] and param[1]
1326 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1327                            address top_address, void * param) {
1328   if (!param) return -1;
1329 
1330   if (base_addr   <= (address)_locate_jvm_dll &&
1331       top_address > (address)_locate_jvm_dll) {
1332     ((address*)param)[0] = base_addr;
1333     ((address*)param)[1] = top_address;
1334     return 1;
1335   }
1336   return 0;
1337 }
1338 
1339 address vm_lib_location[2];    // start and end address of jvm.dll
1340 
1341 // check if addr is inside jvm.dll
1342 bool os::address_is_in_vm(address addr) {
1343   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1344     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1345       assert(false, "Can't find jvm module.");
1346       return false;
1347     }
1348   }
1349 
1350   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1351 }
1352 
1353 // print module info; param is outputStream*
1354 static int _print_module(const char* fname, address base_address,
1355                          address top_address, void* param) {
1356   if (!param) return -1;
1357 
1358   outputStream* st = (outputStream*)param;
1359 
1360   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1361   return 0;
1362 }
1363 
1364 // Loads .dll/.so and
1365 // in case of error it checks if .dll/.so was built for the
1366 // same architecture as Hotspot is running on
1367 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1368   void * result = LoadLibrary(name);
1369   if (result != NULL) {
1370     // Recalculate pdb search path if a DLL was loaded successfully.
1371     SymbolEngine::recalc_search_path();
1372     return result;
1373   }
1374 
1375   DWORD errcode = GetLastError();
1376   if (errcode == ERROR_MOD_NOT_FOUND) {
1377     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1378     ebuf[ebuflen - 1] = '\0';
1379     return NULL;
1380   }
1381 
1382   // Parsing dll below
1383   // If we can read dll-info and find that dll was built
1384   // for an architecture other than Hotspot is running in
1385   // - then print to buffer "DLL was built for a different architecture"
1386   // else call os::lasterror to obtain system error message
1387 
1388   // Read system error message into ebuf
1389   // It may or may not be overwritten below (in the for loop and just above)
1390   lasterror(ebuf, (size_t) ebuflen);
1391   ebuf[ebuflen - 1] = '\0';
1392   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1393   if (fd < 0) {
1394     return NULL;
1395   }
1396 
1397   uint32_t signature_offset;
1398   uint16_t lib_arch = 0;
1399   bool failed_to_get_lib_arch =
1400     ( // Go to position 3c in the dll
1401      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1402      ||
1403      // Read location of signature
1404      (sizeof(signature_offset) !=
1405      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1406      ||
1407      // Go to COFF File Header in dll
1408      // that is located after "signature" (4 bytes long)
1409      (os::seek_to_file_offset(fd,
1410      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1411      ||
1412      // Read field that contains code of architecture
1413      // that dll was built for
1414      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1415     );
1416 
1417   ::close(fd);
1418   if (failed_to_get_lib_arch) {
1419     // file i/o error - report os::lasterror(...) msg
1420     return NULL;
1421   }
1422 
1423   typedef struct {
1424     uint16_t arch_code;
1425     char* arch_name;
1426   } arch_t;
1427 
1428   static const arch_t arch_array[] = {
1429     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1430     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"}
1431   };
1432 #if (defined _M_AMD64)
1433   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1434 #elif (defined _M_IX86)
1435   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1436 #else
1437   #error Method os::dll_load requires that one of following \
1438          is defined :_M_AMD64 or _M_IX86
1439 #endif
1440 
1441 
1442   // Obtain a string for printf operation
1443   // lib_arch_str shall contain string what platform this .dll was built for
1444   // running_arch_str shall string contain what platform Hotspot was built for
1445   char *running_arch_str = NULL, *lib_arch_str = NULL;
1446   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1447     if (lib_arch == arch_array[i].arch_code) {
1448       lib_arch_str = arch_array[i].arch_name;
1449     }
1450     if (running_arch == arch_array[i].arch_code) {
1451       running_arch_str = arch_array[i].arch_name;
1452     }
1453   }
1454 
1455   assert(running_arch_str,
1456          "Didn't find running architecture code in arch_array");
1457 
1458   // If the architecture is right
1459   // but some other error took place - report os::lasterror(...) msg
1460   if (lib_arch == running_arch) {
1461     return NULL;
1462   }
1463 
1464   if (lib_arch_str != NULL) {
1465     ::_snprintf(ebuf, ebuflen - 1,
1466                 "Can't load %s-bit .dll on a %s-bit platform",
1467                 lib_arch_str, running_arch_str);
1468   } else {
1469     // don't know what architecture this dll was build for
1470     ::_snprintf(ebuf, ebuflen - 1,
1471                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1472                 lib_arch, running_arch_str);
1473   }
1474 
1475   return NULL;
1476 }
1477 
1478 void os::print_dll_info(outputStream *st) {
1479   st->print_cr("Dynamic libraries:");
1480   get_loaded_modules_info(_print_module, (void *)st);
1481 }
1482 
1483 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1484   HANDLE   hProcess;
1485 
1486 # define MAX_NUM_MODULES 128
1487   HMODULE     modules[MAX_NUM_MODULES];
1488   static char filename[MAX_PATH];
1489   int         result = 0;
1490 
1491   int pid = os::current_process_id();
1492   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1493                          FALSE, pid);
1494   if (hProcess == NULL) return 0;
1495 
1496   DWORD size_needed;
1497   if (!EnumProcessModules(hProcess, modules, sizeof(modules), &size_needed)) {
1498     CloseHandle(hProcess);
1499     return 0;
1500   }
1501 
1502   // number of modules that are currently loaded
1503   int num_modules = size_needed / sizeof(HMODULE);
1504 
1505   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1506     // Get Full pathname:
1507     if (!GetModuleFileNameEx(hProcess, modules[i], filename, sizeof(filename))) {
1508       filename[0] = '\0';
1509     }
1510 
1511     MODULEINFO modinfo;
1512     if (!GetModuleInformation(hProcess, modules[i], &modinfo, sizeof(modinfo))) {
1513       modinfo.lpBaseOfDll = NULL;
1514       modinfo.SizeOfImage = 0;
1515     }
1516 
1517     // Invoke callback function
1518     result = callback(filename, (address)modinfo.lpBaseOfDll,
1519                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1520     if (result) break;
1521   }
1522 
1523   CloseHandle(hProcess);
1524   return result;
1525 }
1526 
1527 bool os::get_host_name(char* buf, size_t buflen) {
1528   DWORD size = (DWORD)buflen;
1529   return (GetComputerNameEx(ComputerNameDnsHostname, buf, &size) == TRUE);
1530 }
1531 
1532 void os::get_summary_os_info(char* buf, size_t buflen) {
1533   stringStream sst(buf, buflen);
1534   os::win32::print_windows_version(&sst);
1535   // chop off newline character
1536   char* nl = strchr(buf, '\n');
1537   if (nl != NULL) *nl = '\0';
1538 }
1539 
1540 int os::vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
1541 #if _MSC_VER >= 1900
1542   // Starting with Visual Studio 2015, vsnprint is C99 compliant.
1543   int result = ::vsnprintf(buf, len, fmt, args);
1544   // If an encoding error occurred (result < 0) then it's not clear
1545   // whether the buffer is NUL terminated, so ensure it is.
1546   if ((result < 0) && (len > 0)) {
1547     buf[len - 1] = '\0';
1548   }
1549   return result;
1550 #else
1551   // Before Visual Studio 2015, vsnprintf is not C99 compliant, so use
1552   // _vsnprintf, whose behavior seems to be *mostly* consistent across
1553   // versions.  However, when len == 0, avoid _vsnprintf too, and just
1554   // go straight to _vscprintf.  The output is going to be truncated in
1555   // that case, except in the unusual case of empty output.  More
1556   // importantly, the documentation for various versions of Visual Studio
1557   // are inconsistent about the behavior of _vsnprintf when len == 0,
1558   // including it possibly being an error.
1559   int result = -1;
1560   if (len > 0) {
1561     result = _vsnprintf(buf, len, fmt, args);
1562     // If output (including NUL terminator) is truncated, the buffer
1563     // won't be NUL terminated.  Add the trailing NUL specified by C99.
1564     if ((result < 0) || ((size_t)result >= len)) {
1565       buf[len - 1] = '\0';
1566     }
1567   }
1568   if (result < 0) {
1569     result = _vscprintf(fmt, args);
1570   }
1571   return result;
1572 #endif // _MSC_VER dispatch
1573 }
1574 
1575 static inline time_t get_mtime(const char* filename) {
1576   struct stat st;
1577   int ret = os::stat(filename, &st);
1578   assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
1579   return st.st_mtime;
1580 }
1581 
1582 int os::compare_file_modified_times(const char* file1, const char* file2) {
1583   time_t t1 = get_mtime(file1);
1584   time_t t2 = get_mtime(file2);
1585   return t1 - t2;
1586 }
1587 
1588 void os::print_os_info_brief(outputStream* st) {
1589   os::print_os_info(st);
1590 }
1591 
1592 void os::print_os_info(outputStream* st) {
1593 #ifdef ASSERT
1594   char buffer[1024];
1595   st->print("HostName: ");
1596   if (get_host_name(buffer, sizeof(buffer))) {
1597     st->print("%s ", buffer);
1598   } else {
1599     st->print("N/A ");
1600   }
1601 #endif
1602   st->print("OS:");
1603   os::win32::print_windows_version(st);
1604 }
1605 
1606 void os::win32::print_windows_version(outputStream* st) {
1607   OSVERSIONINFOEX osvi;
1608   VS_FIXEDFILEINFO *file_info;
1609   TCHAR kernel32_path[MAX_PATH];
1610   UINT len, ret;
1611 
1612   // Use the GetVersionEx information to see if we're on a server or
1613   // workstation edition of Windows. Starting with Windows 8.1 we can't
1614   // trust the OS version information returned by this API.
1615   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1616   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1617   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1618     st->print_cr("Call to GetVersionEx failed");
1619     return;
1620   }
1621   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1622 
1623   // Get the full path to \Windows\System32\kernel32.dll and use that for
1624   // determining what version of Windows we're running on.
1625   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1626   ret = GetSystemDirectory(kernel32_path, len);
1627   if (ret == 0 || ret > len) {
1628     st->print_cr("Call to GetSystemDirectory failed");
1629     return;
1630   }
1631   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1632 
1633   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1634   if (version_size == 0) {
1635     st->print_cr("Call to GetFileVersionInfoSize failed");
1636     return;
1637   }
1638 
1639   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1640   if (version_info == NULL) {
1641     st->print_cr("Failed to allocate version_info");
1642     return;
1643   }
1644 
1645   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1646     os::free(version_info);
1647     st->print_cr("Call to GetFileVersionInfo failed");
1648     return;
1649   }
1650 
1651   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1652     os::free(version_info);
1653     st->print_cr("Call to VerQueryValue failed");
1654     return;
1655   }
1656 
1657   int major_version = HIWORD(file_info->dwProductVersionMS);
1658   int minor_version = LOWORD(file_info->dwProductVersionMS);
1659   int build_number = HIWORD(file_info->dwProductVersionLS);
1660   int build_minor = LOWORD(file_info->dwProductVersionLS);
1661   int os_vers = major_version * 1000 + minor_version;
1662   os::free(version_info);
1663 
1664   st->print(" Windows ");
1665   switch (os_vers) {
1666 
1667   case 6000:
1668     if (is_workstation) {
1669       st->print("Vista");
1670     } else {
1671       st->print("Server 2008");
1672     }
1673     break;
1674 
1675   case 6001:
1676     if (is_workstation) {
1677       st->print("7");
1678     } else {
1679       st->print("Server 2008 R2");
1680     }
1681     break;
1682 
1683   case 6002:
1684     if (is_workstation) {
1685       st->print("8");
1686     } else {
1687       st->print("Server 2012");
1688     }
1689     break;
1690 
1691   case 6003:
1692     if (is_workstation) {
1693       st->print("8.1");
1694     } else {
1695       st->print("Server 2012 R2");
1696     }
1697     break;
1698 
1699   case 10000:
1700     if (is_workstation) {
1701       st->print("10");
1702     } else {
1703       // distinguish Windows Server 2016 and 2019 by build number
1704       // Windows server 2019 GA 10/2018 build number is 17763
1705       if (build_number > 17762) {
1706         st->print("Server 2019");
1707       } else {
1708         st->print("Server 2016");
1709       }
1710     }
1711     break;
1712 
1713   default:
1714     // Unrecognized windows, print out its major and minor versions
1715     st->print("%d.%d", major_version, minor_version);
1716     break;
1717   }
1718 
1719   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1720   // find out whether we are running on 64 bit processor or not
1721   SYSTEM_INFO si;
1722   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1723   GetNativeSystemInfo(&si);
1724   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1725     st->print(" , 64 bit");
1726   }
1727 
1728   st->print(" Build %d", build_number);
1729   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1730   st->cr();
1731 }
1732 
1733 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1734   // Nothing to do for now.
1735 }
1736 
1737 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1738   HKEY key;
1739   DWORD status = RegOpenKey(HKEY_LOCAL_MACHINE,
1740                "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", &key);
1741   if (status == ERROR_SUCCESS) {
1742     DWORD size = (DWORD)buflen;
1743     status = RegQueryValueEx(key, "ProcessorNameString", NULL, NULL, (byte*)buf, &size);
1744     if (status != ERROR_SUCCESS) {
1745         strncpy(buf, "## __CPU__", buflen);
1746     }
1747     RegCloseKey(key);
1748   } else {
1749     // Put generic cpu info to return
1750     strncpy(buf, "## __CPU__", buflen);
1751   }
1752 }
1753 
1754 void os::print_memory_info(outputStream* st) {
1755   st->print("Memory:");
1756   st->print(" %dk page", os::vm_page_size()>>10);
1757 
1758   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1759   // value if total memory is larger than 4GB
1760   MEMORYSTATUSEX ms;
1761   ms.dwLength = sizeof(ms);
1762   int r1 = GlobalMemoryStatusEx(&ms);
1763 
1764   if (r1 != 0) {
1765     st->print(", system-wide physical " INT64_FORMAT "M ",
1766              (int64_t) ms.ullTotalPhys >> 20);
1767     st->print("(" INT64_FORMAT "M free)\n", (int64_t) ms.ullAvailPhys >> 20);
1768 
1769     st->print("TotalPageFile size " INT64_FORMAT "M ",
1770              (int64_t) ms.ullTotalPageFile >> 20);
1771     st->print("(AvailPageFile size " INT64_FORMAT "M)",
1772              (int64_t) ms.ullAvailPageFile >> 20);
1773 
1774     // on 32bit Total/AvailVirtual are interesting (show us how close we get to 2-4 GB per process borders)
1775 #if defined(_M_IX86)
1776     st->print(", user-mode portion of virtual address-space " INT64_FORMAT "M ",
1777              (int64_t) ms.ullTotalVirtual >> 20);
1778     st->print("(" INT64_FORMAT "M free)", (int64_t) ms.ullAvailVirtual >> 20);
1779 #endif
1780   } else {
1781     st->print(", GlobalMemoryStatusEx did not succeed so we miss some memory values.");
1782   }
1783 
1784   // extended memory statistics for a process
1785   PROCESS_MEMORY_COUNTERS_EX pmex;
1786   ZeroMemory(&pmex, sizeof(PROCESS_MEMORY_COUNTERS_EX));
1787   pmex.cb = sizeof(pmex);
1788   int r2 = GetProcessMemoryInfo(GetCurrentProcess(), (PROCESS_MEMORY_COUNTERS*) &pmex, sizeof(pmex));
1789 
1790   if (r2 != 0) {
1791     st->print("\ncurrent process WorkingSet (physical memory assigned to process): " INT64_FORMAT "M, ",
1792              (int64_t) pmex.WorkingSetSize >> 20);
1793     st->print("peak: " INT64_FORMAT "M\n", (int64_t) pmex.PeakWorkingSetSize >> 20);
1794 
1795     st->print("current process commit charge (\"private bytes\"): " INT64_FORMAT "M, ",
1796              (int64_t) pmex.PrivateUsage >> 20);
1797     st->print("peak: " INT64_FORMAT "M", (int64_t) pmex.PeakPagefileUsage >> 20);
1798   } else {
1799     st->print("\nGetProcessMemoryInfo did not succeed so we miss some memory values.");
1800   }
1801 
1802   st->cr();
1803 }
1804 
1805 bool os::signal_sent_by_kill(const void* siginfo) {
1806   // TODO: Is this possible?
1807   return false;
1808 }
1809 
1810 void os::print_siginfo(outputStream *st, const void* siginfo) {
1811   const EXCEPTION_RECORD* const er = (EXCEPTION_RECORD*)siginfo;
1812   st->print("siginfo:");
1813 
1814   char tmp[64];
1815   if (os::exception_name(er->ExceptionCode, tmp, sizeof(tmp)) == NULL) {
1816     strcpy(tmp, "EXCEPTION_??");
1817   }
1818   st->print(" %s (0x%x)", tmp, er->ExceptionCode);
1819 
1820   if ((er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION ||
1821        er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR) &&
1822        er->NumberParameters >= 2) {
1823     switch (er->ExceptionInformation[0]) {
1824     case 0: st->print(", reading address"); break;
1825     case 1: st->print(", writing address"); break;
1826     case 8: st->print(", data execution prevention violation at address"); break;
1827     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1828                        er->ExceptionInformation[0]);
1829     }
1830     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1831   } else {
1832     int num = er->NumberParameters;
1833     if (num > 0) {
1834       st->print(", ExceptionInformation=");
1835       for (int i = 0; i < num; i++) {
1836         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1837       }
1838     }
1839   }
1840   st->cr();
1841 }
1842 
1843 bool os::signal_thread(Thread* thread, int sig, const char* reason) {
1844   // TODO: Can we kill thread?
1845   return false;
1846 }
1847 
1848 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1849   // do nothing
1850 }
1851 
1852 static char saved_jvm_path[MAX_PATH] = {0};
1853 
1854 // Find the full path to the current module, jvm.dll
1855 void os::jvm_path(char *buf, jint buflen) {
1856   // Error checking.
1857   if (buflen < MAX_PATH) {
1858     assert(false, "must use a large-enough buffer");
1859     buf[0] = '\0';
1860     return;
1861   }
1862   // Lazy resolve the path to current module.
1863   if (saved_jvm_path[0] != 0) {
1864     strcpy(buf, saved_jvm_path);
1865     return;
1866   }
1867 
1868   buf[0] = '\0';
1869   if (Arguments::sun_java_launcher_is_altjvm()) {
1870     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1871     // for a JAVA_HOME environment variable and fix up the path so it
1872     // looks like jvm.dll is installed there (append a fake suffix
1873     // hotspot/jvm.dll).
1874     char* java_home_var = ::getenv("JAVA_HOME");
1875     if (java_home_var != NULL && java_home_var[0] != 0 &&
1876         strlen(java_home_var) < (size_t)buflen) {
1877       strncpy(buf, java_home_var, buflen);
1878 
1879       // determine if this is a legacy image or modules image
1880       // modules image doesn't have "jre" subdirectory
1881       size_t len = strlen(buf);
1882       char* jrebin_p = buf + len;
1883       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1884       if (0 != _access(buf, 0)) {
1885         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1886       }
1887       len = strlen(buf);
1888       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1889     }
1890   }
1891 
1892   if (buf[0] == '\0') {
1893     GetModuleFileName(vm_lib_handle, buf, buflen);
1894   }
1895   strncpy(saved_jvm_path, buf, MAX_PATH);
1896   saved_jvm_path[MAX_PATH - 1] = '\0';
1897 }
1898 
1899 
1900 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1901 #ifndef _WIN64
1902   st->print("_");
1903 #endif
1904 }
1905 
1906 
1907 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1908 #ifndef _WIN64
1909   st->print("@%d", args_size  * sizeof(int));
1910 #endif
1911 }
1912 
1913 // This method is a copy of JDK's sysGetLastErrorString
1914 // from src/windows/hpi/src/system_md.c
1915 
1916 size_t os::lasterror(char* buf, size_t len) {
1917   DWORD errval;
1918 
1919   if ((errval = GetLastError()) != 0) {
1920     // DOS error
1921     size_t n = (size_t)FormatMessage(
1922                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1923                                      NULL,
1924                                      errval,
1925                                      0,
1926                                      buf,
1927                                      (DWORD)len,
1928                                      NULL);
1929     if (n > 3) {
1930       // Drop final '.', CR, LF
1931       if (buf[n - 1] == '\n') n--;
1932       if (buf[n - 1] == '\r') n--;
1933       if (buf[n - 1] == '.') n--;
1934       buf[n] = '\0';
1935     }
1936     return n;
1937   }
1938 
1939   if (errno != 0) {
1940     // C runtime error that has no corresponding DOS error code
1941     const char* s = os::strerror(errno);
1942     size_t n = strlen(s);
1943     if (n >= len) n = len - 1;
1944     strncpy(buf, s, n);
1945     buf[n] = '\0';
1946     return n;
1947   }
1948 
1949   return 0;
1950 }
1951 
1952 int os::get_last_error() {
1953   DWORD error = GetLastError();
1954   if (error == 0) {
1955     error = errno;
1956   }
1957   return (int)error;
1958 }
1959 
1960 // sun.misc.Signal
1961 // NOTE that this is a workaround for an apparent kernel bug where if
1962 // a signal handler for SIGBREAK is installed then that signal handler
1963 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1964 // See bug 4416763.
1965 static void (*sigbreakHandler)(int) = NULL;
1966 
1967 static void UserHandler(int sig, void *siginfo, void *context) {
1968   os::signal_notify(sig);
1969   // We need to reinstate the signal handler each time...
1970   os::signal(sig, (void*)UserHandler);
1971 }
1972 
1973 void* os::user_handler() {
1974   return (void*) UserHandler;
1975 }
1976 
1977 void* os::signal(int signal_number, void* handler) {
1978   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1979     void (*oldHandler)(int) = sigbreakHandler;
1980     sigbreakHandler = (void (*)(int)) handler;
1981     return (void*) oldHandler;
1982   } else {
1983     return (void*)::signal(signal_number, (void (*)(int))handler);
1984   }
1985 }
1986 
1987 void os::signal_raise(int signal_number) {
1988   raise(signal_number);
1989 }
1990 
1991 // The Win32 C runtime library maps all console control events other than ^C
1992 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1993 // logoff, and shutdown events.  We therefore install our own console handler
1994 // that raises SIGTERM for the latter cases.
1995 //
1996 static BOOL WINAPI consoleHandler(DWORD event) {
1997   switch (event) {
1998   case CTRL_C_EVENT:
1999     if (VMError::is_error_reported()) {
2000       // Ctrl-C is pressed during error reporting, likely because the error
2001       // handler fails to abort. Let VM die immediately.
2002       os::die();
2003     }
2004 
2005     os::signal_raise(SIGINT);
2006     return TRUE;
2007     break;
2008   case CTRL_BREAK_EVENT:
2009     if (sigbreakHandler != NULL) {
2010       (*sigbreakHandler)(SIGBREAK);
2011     }
2012     return TRUE;
2013     break;
2014   case CTRL_LOGOFF_EVENT: {
2015     // Don't terminate JVM if it is running in a non-interactive session,
2016     // such as a service process.
2017     USEROBJECTFLAGS flags;
2018     HANDLE handle = GetProcessWindowStation();
2019     if (handle != NULL &&
2020         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
2021         sizeof(USEROBJECTFLAGS), NULL)) {
2022       // If it is a non-interactive session, let next handler to deal
2023       // with it.
2024       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
2025         return FALSE;
2026       }
2027     }
2028   }
2029   case CTRL_CLOSE_EVENT:
2030   case CTRL_SHUTDOWN_EVENT:
2031     os::signal_raise(SIGTERM);
2032     return TRUE;
2033     break;
2034   default:
2035     break;
2036   }
2037   return FALSE;
2038 }
2039 
2040 // The following code is moved from os.cpp for making this
2041 // code platform specific, which it is by its very nature.
2042 
2043 // Return maximum OS signal used + 1 for internal use only
2044 // Used as exit signal for signal_thread
2045 int os::sigexitnum_pd() {
2046   return NSIG;
2047 }
2048 
2049 // a counter for each possible signal value, including signal_thread exit signal
2050 static volatile jint pending_signals[NSIG+1] = { 0 };
2051 static Semaphore* sig_sem = NULL;
2052 
2053 static void jdk_misc_signal_init() {
2054   // Initialize signal structures
2055   memset((void*)pending_signals, 0, sizeof(pending_signals));
2056 
2057   // Initialize signal semaphore
2058   sig_sem = new Semaphore();
2059 
2060   // Programs embedding the VM do not want it to attempt to receive
2061   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2062   // shutdown hooks mechanism introduced in 1.3.  For example, when
2063   // the VM is run as part of a Windows NT service (i.e., a servlet
2064   // engine in a web server), the correct behavior is for any console
2065   // control handler to return FALSE, not TRUE, because the OS's
2066   // "final" handler for such events allows the process to continue if
2067   // it is a service (while terminating it if it is not a service).
2068   // To make this behavior uniform and the mechanism simpler, we
2069   // completely disable the VM's usage of these console events if -Xrs
2070   // (=ReduceSignalUsage) is specified.  This means, for example, that
2071   // the CTRL-BREAK thread dump mechanism is also disabled in this
2072   // case.  See bugs 4323062, 4345157, and related bugs.
2073 
2074   // Add a CTRL-C handler
2075   SetConsoleCtrlHandler(consoleHandler, TRUE);
2076 }
2077 
2078 void os::signal_notify(int sig) {
2079   if (sig_sem != NULL) {
2080     Atomic::inc(&pending_signals[sig]);
2081     sig_sem->signal();
2082   } else {
2083     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2084     // initialization isn't called.
2085     assert(ReduceSignalUsage, "signal semaphore should be created");
2086   }
2087 }
2088 
2089 static int check_pending_signals() {
2090   while (true) {
2091     for (int i = 0; i < NSIG + 1; i++) {
2092       jint n = pending_signals[i];
2093       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2094         return i;
2095       }
2096     }
2097     JavaThread *thread = JavaThread::current();
2098 
2099     ThreadBlockInVM tbivm(thread);
2100 
2101     bool threadIsSuspended;
2102     do {
2103       thread->set_suspend_equivalent();
2104       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2105       sig_sem->wait();
2106 
2107       // were we externally suspended while we were waiting?
2108       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2109       if (threadIsSuspended) {
2110         // The semaphore has been incremented, but while we were waiting
2111         // another thread suspended us. We don't want to continue running
2112         // while suspended because that would surprise the thread that
2113         // suspended us.
2114         sig_sem->signal();
2115 
2116         thread->java_suspend_self();
2117       }
2118     } while (threadIsSuspended);
2119   }
2120 }
2121 
2122 int os::signal_wait() {
2123   return check_pending_signals();
2124 }
2125 
2126 // Implicit OS exception handling
2127 
2128 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2129                       address handler) {
2130   JavaThread* thread = (JavaThread*) Thread::current_or_null();
2131   // Save pc in thread
2132 #ifdef _M_AMD64
2133   // Do not blow up if no thread info available.
2134   if (thread) {
2135     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2136   }
2137   // Set pc to handler
2138   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2139 #else
2140   // Do not blow up if no thread info available.
2141   if (thread) {
2142     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2143   }
2144   // Set pc to handler
2145   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2146 #endif
2147 
2148   // Continue the execution
2149   return EXCEPTION_CONTINUE_EXECUTION;
2150 }
2151 
2152 
2153 // Used for PostMortemDump
2154 extern "C" void safepoints();
2155 extern "C" void find(int x);
2156 extern "C" void events();
2157 
2158 // According to Windows API documentation, an illegal instruction sequence should generate
2159 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2160 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2161 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2162 
2163 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2164 
2165 // From "Execution Protection in the Windows Operating System" draft 0.35
2166 // Once a system header becomes available, the "real" define should be
2167 // included or copied here.
2168 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2169 
2170 // Windows Vista/2008 heap corruption check
2171 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2172 
2173 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2174 // C++ compiler contain this error code. Because this is a compiler-generated
2175 // error, the code is not listed in the Win32 API header files.
2176 // The code is actually a cryptic mnemonic device, with the initial "E"
2177 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2178 // ASCII values of "msc".
2179 
2180 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2181 
2182 #define def_excpt(val) { #val, (val) }
2183 
2184 static const struct { char* name; uint number; } exceptlabels[] = {
2185     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2186     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2187     def_excpt(EXCEPTION_BREAKPOINT),
2188     def_excpt(EXCEPTION_SINGLE_STEP),
2189     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2190     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2191     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2192     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2193     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2194     def_excpt(EXCEPTION_FLT_OVERFLOW),
2195     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2196     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2197     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2198     def_excpt(EXCEPTION_INT_OVERFLOW),
2199     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2200     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2201     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2202     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2203     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2204     def_excpt(EXCEPTION_STACK_OVERFLOW),
2205     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2206     def_excpt(EXCEPTION_GUARD_PAGE),
2207     def_excpt(EXCEPTION_INVALID_HANDLE),
2208     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2209     def_excpt(EXCEPTION_HEAP_CORRUPTION)
2210 };
2211 
2212 #undef def_excpt
2213 
2214 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2215   uint code = static_cast<uint>(exception_code);
2216   for (uint i = 0; i < ARRAY_SIZE(exceptlabels); ++i) {
2217     if (exceptlabels[i].number == code) {
2218       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2219       return buf;
2220     }
2221   }
2222 
2223   return NULL;
2224 }
2225 
2226 //-----------------------------------------------------------------------------
2227 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2228   // handle exception caused by idiv; should only happen for -MinInt/-1
2229   // (division by zero is handled explicitly)
2230 #ifdef  _M_AMD64
2231   PCONTEXT ctx = exceptionInfo->ContextRecord;
2232   address pc = (address)ctx->Rip;
2233   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && pc[1] == 0xF7 || pc[0] == 0xF7, "not an idiv opcode");
2234   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && (pc[2] & ~0x7) == 0xF8 || (pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2235   if (pc[0] == 0xF7) {
2236     // set correct result values and continue after idiv instruction
2237     ctx->Rip = (DWORD64)pc + 2;        // idiv reg, reg  is 2 bytes
2238   } else {
2239     ctx->Rip = (DWORD64)pc + 3;        // REX idiv reg, reg  is 3 bytes
2240   }
2241   // Do not set ctx->Rax as it already contains the correct value (either 32 or 64 bit, depending on the operation)
2242   // this is the case because the exception only happens for -MinValue/-1 and -MinValue is always in rax because of the
2243   // idiv opcode (0xF7).
2244   ctx->Rdx = (DWORD)0;             // remainder
2245   // Continue the execution
2246 #else
2247   PCONTEXT ctx = exceptionInfo->ContextRecord;
2248   address pc = (address)ctx->Eip;
2249   assert(pc[0] == 0xF7, "not an idiv opcode");
2250   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2251   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2252   // set correct result values and continue after idiv instruction
2253   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2254   ctx->Eax = (DWORD)min_jint;      // result
2255   ctx->Edx = (DWORD)0;             // remainder
2256   // Continue the execution
2257 #endif
2258   return EXCEPTION_CONTINUE_EXECUTION;
2259 }
2260 
2261 //-----------------------------------------------------------------------------
2262 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2263   PCONTEXT ctx = exceptionInfo->ContextRecord;
2264 #ifndef  _WIN64
2265   // handle exception caused by native method modifying control word
2266   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2267 
2268   switch (exception_code) {
2269   case EXCEPTION_FLT_DENORMAL_OPERAND:
2270   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2271   case EXCEPTION_FLT_INEXACT_RESULT:
2272   case EXCEPTION_FLT_INVALID_OPERATION:
2273   case EXCEPTION_FLT_OVERFLOW:
2274   case EXCEPTION_FLT_STACK_CHECK:
2275   case EXCEPTION_FLT_UNDERFLOW:
2276     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2277     if (fp_control_word != ctx->FloatSave.ControlWord) {
2278       // Restore FPCW and mask out FLT exceptions
2279       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2280       // Mask out pending FLT exceptions
2281       ctx->FloatSave.StatusWord &=  0xffffff00;
2282       return EXCEPTION_CONTINUE_EXECUTION;
2283     }
2284   }
2285 
2286   if (prev_uef_handler != NULL) {
2287     // We didn't handle this exception so pass it to the previous
2288     // UnhandledExceptionFilter.
2289     return (prev_uef_handler)(exceptionInfo);
2290   }
2291 #else // !_WIN64
2292   // On Windows, the mxcsr control bits are non-volatile across calls
2293   // See also CR 6192333
2294   //
2295   jint MxCsr = INITIAL_MXCSR;
2296   // we can't use StubRoutines::addr_mxcsr_std()
2297   // because in Win64 mxcsr is not saved there
2298   if (MxCsr != ctx->MxCsr) {
2299     ctx->MxCsr = MxCsr;
2300     return EXCEPTION_CONTINUE_EXECUTION;
2301   }
2302 #endif // !_WIN64
2303 
2304   return EXCEPTION_CONTINUE_SEARCH;
2305 }
2306 
2307 static inline void report_error(Thread* t, DWORD exception_code,
2308                                 address addr, void* siginfo, void* context) {
2309   VMError::report_and_die(t, exception_code, addr, siginfo, context);
2310 
2311   // If UseOsErrorReporting, this will return here and save the error file
2312   // somewhere where we can find it in the minidump.
2313 }
2314 
2315 bool os::win32::get_frame_at_stack_banging_point(JavaThread* thread,
2316         struct _EXCEPTION_POINTERS* exceptionInfo, address pc, frame* fr) {
2317   PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2318   address addr = (address) exceptionRecord->ExceptionInformation[1];
2319   if (Interpreter::contains(pc)) {
2320     *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2321     if (!fr->is_first_java_frame()) {
2322       // get_frame_at_stack_banging_point() is only called when we
2323       // have well defined stacks so java_sender() calls do not need
2324       // to assert safe_for_sender() first.
2325       *fr = fr->java_sender();
2326     }
2327   } else {
2328     // more complex code with compiled code
2329     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
2330     CodeBlob* cb = CodeCache::find_blob(pc);
2331     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
2332       // Not sure where the pc points to, fallback to default
2333       // stack overflow handling
2334       return false;
2335     } else {
2336       *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2337       // in compiled code, the stack banging is performed just after the return pc
2338       // has been pushed on the stack
2339       *fr = frame(fr->sp() + 1, fr->fp(), (address)*(fr->sp()));
2340       if (!fr->is_java_frame()) {
2341         // See java_sender() comment above.
2342         *fr = fr->java_sender();
2343       }
2344     }
2345   }
2346   assert(fr->is_java_frame(), "Safety check");
2347   return true;
2348 }
2349 
2350 #if INCLUDE_AOT
2351 LONG WINAPI topLevelVectoredExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2352   PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2353   address addr = (address) exceptionRecord->ExceptionInformation[1];
2354   address pc = (address) exceptionInfo->ContextRecord->Rip;
2355 
2356   // Handle the case where we get an implicit exception in AOT generated
2357   // code.  AOT DLL's loaded are not registered for structured exceptions.
2358   // If the exception occurred in the codeCache or AOT code, pass control
2359   // to our normal exception handler.
2360   CodeBlob* cb = CodeCache::find_blob(pc);
2361   if (cb != NULL) {
2362     return topLevelExceptionFilter(exceptionInfo);
2363   }
2364 
2365   return EXCEPTION_CONTINUE_SEARCH;
2366 }
2367 #endif
2368 
2369 //-----------------------------------------------------------------------------
2370 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2371   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2372   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2373 #ifdef _M_AMD64
2374   address pc = (address) exceptionInfo->ContextRecord->Rip;
2375 #else
2376   address pc = (address) exceptionInfo->ContextRecord->Eip;
2377 #endif
2378   Thread* t = Thread::current_or_null_safe();
2379 
2380   // Handle SafeFetch32 and SafeFetchN exceptions.
2381   if (StubRoutines::is_safefetch_fault(pc)) {
2382     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2383   }
2384 
2385 #ifndef _WIN64
2386   // Execution protection violation - win32 running on AMD64 only
2387   // Handled first to avoid misdiagnosis as a "normal" access violation;
2388   // This is safe to do because we have a new/unique ExceptionInformation
2389   // code for this condition.
2390   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2391     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2392     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2393     address addr = (address) exceptionRecord->ExceptionInformation[1];
2394 
2395     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2396       int page_size = os::vm_page_size();
2397 
2398       // Make sure the pc and the faulting address are sane.
2399       //
2400       // If an instruction spans a page boundary, and the page containing
2401       // the beginning of the instruction is executable but the following
2402       // page is not, the pc and the faulting address might be slightly
2403       // different - we still want to unguard the 2nd page in this case.
2404       //
2405       // 15 bytes seems to be a (very) safe value for max instruction size.
2406       bool pc_is_near_addr =
2407         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2408       bool instr_spans_page_boundary =
2409         (align_down((intptr_t) pc ^ (intptr_t) addr,
2410                          (intptr_t) page_size) > 0);
2411 
2412       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2413         static volatile address last_addr =
2414           (address) os::non_memory_address_word();
2415 
2416         // In conservative mode, don't unguard unless the address is in the VM
2417         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2418             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2419 
2420           // Set memory to RWX and retry
2421           address page_start = align_down(addr, page_size);
2422           bool res = os::protect_memory((char*) page_start, page_size,
2423                                         os::MEM_PROT_RWX);
2424 
2425           log_debug(os)("Execution protection violation "
2426                         "at " INTPTR_FORMAT
2427                         ", unguarding " INTPTR_FORMAT ": %s", p2i(addr),
2428                         p2i(page_start), (res ? "success" : os::strerror(errno)));
2429 
2430           // Set last_addr so if we fault again at the same address, we don't
2431           // end up in an endless loop.
2432           //
2433           // There are two potential complications here.  Two threads trapping
2434           // at the same address at the same time could cause one of the
2435           // threads to think it already unguarded, and abort the VM.  Likely
2436           // very rare.
2437           //
2438           // The other race involves two threads alternately trapping at
2439           // different addresses and failing to unguard the page, resulting in
2440           // an endless loop.  This condition is probably even more unlikely
2441           // than the first.
2442           //
2443           // Although both cases could be avoided by using locks or thread
2444           // local last_addr, these solutions are unnecessary complication:
2445           // this handler is a best-effort safety net, not a complete solution.
2446           // It is disabled by default and should only be used as a workaround
2447           // in case we missed any no-execute-unsafe VM code.
2448 
2449           last_addr = addr;
2450 
2451           return EXCEPTION_CONTINUE_EXECUTION;
2452         }
2453       }
2454 
2455       // Last unguard failed or not unguarding
2456       tty->print_raw_cr("Execution protection violation");
2457       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2458                    exceptionInfo->ContextRecord);
2459       return EXCEPTION_CONTINUE_SEARCH;
2460     }
2461   }
2462 #endif // _WIN64
2463 
2464   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2465       VM_Version::is_cpuinfo_segv_addr(pc)) {
2466     // Verify that OS save/restore AVX registers.
2467     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2468   }
2469 
2470   if (t != NULL && t->is_Java_thread()) {
2471     JavaThread* thread = (JavaThread*) t;
2472     bool in_java = thread->thread_state() == _thread_in_Java;
2473 
2474     // Handle potential stack overflows up front.
2475     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2476       if (thread->stack_guards_enabled()) {
2477         if (in_java) {
2478           frame fr;
2479           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2480           address addr = (address) exceptionRecord->ExceptionInformation[1];
2481           if (os::win32::get_frame_at_stack_banging_point(thread, exceptionInfo, pc, &fr)) {
2482             assert(fr.is_java_frame(), "Must be a Java frame");
2483             SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
2484           }
2485         }
2486         // Yellow zone violation.  The o/s has unprotected the first yellow
2487         // zone page for us.  Note:  must call disable_stack_yellow_zone to
2488         // update the enabled status, even if the zone contains only one page.
2489         assert(thread->thread_state() != _thread_in_vm, "Undersized StackShadowPages");
2490         thread->disable_stack_yellow_reserved_zone();
2491         // If not in java code, return and hope for the best.
2492         return in_java
2493             ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2494             :  EXCEPTION_CONTINUE_EXECUTION;
2495       } else {
2496         // Fatal red zone violation.
2497         thread->disable_stack_red_zone();
2498         tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2499         report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2500                       exceptionInfo->ContextRecord);
2501         return EXCEPTION_CONTINUE_SEARCH;
2502       }
2503     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2504       // Either stack overflow or null pointer exception.
2505       if (in_java) {
2506         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2507         address addr = (address) exceptionRecord->ExceptionInformation[1];
2508         address stack_end = thread->stack_end();
2509         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2510           // Stack overflow.
2511           assert(!os::uses_stack_guard_pages(),
2512                  "should be caught by red zone code above.");
2513           return Handle_Exception(exceptionInfo,
2514                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2515         }
2516         // Check for safepoint polling and implicit null
2517         // We only expect null pointers in the stubs (vtable)
2518         // the rest are checked explicitly now.
2519         CodeBlob* cb = CodeCache::find_blob(pc);
2520         if (cb != NULL) {
2521           if (os::is_poll_address(addr)) {
2522             address stub = SharedRuntime::get_poll_stub(pc);
2523             return Handle_Exception(exceptionInfo, stub);
2524           }
2525         }
2526         {
2527 #ifdef _WIN64
2528           // If it's a legal stack address map the entire region in
2529           //
2530           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2531           address addr = (address) exceptionRecord->ExceptionInformation[1];
2532           if (addr > thread->stack_reserved_zone_base() && addr < thread->stack_base()) {
2533             addr = (address)((uintptr_t)addr &
2534                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2535             os::commit_memory((char *)addr, thread->stack_base() - addr,
2536                               !ExecMem);
2537             return EXCEPTION_CONTINUE_EXECUTION;
2538           } else
2539 #endif
2540           {
2541             // Null pointer exception.
2542             if (MacroAssembler::uses_implicit_null_check((void*)addr)) {
2543               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2544               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2545             }
2546             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2547                          exceptionInfo->ContextRecord);
2548             return EXCEPTION_CONTINUE_SEARCH;
2549           }
2550         }
2551       }
2552 
2553 #ifdef _WIN64
2554       // Special care for fast JNI field accessors.
2555       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2556       // in and the heap gets shrunk before the field access.
2557       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2558         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2559         if (addr != (address)-1) {
2560           return Handle_Exception(exceptionInfo, addr);
2561         }
2562       }
2563 #endif
2564 
2565       // Stack overflow or null pointer exception in native code.
2566       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2567                    exceptionInfo->ContextRecord);
2568       return EXCEPTION_CONTINUE_SEARCH;
2569     } // /EXCEPTION_ACCESS_VIOLATION
2570     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2571 
2572     if (exception_code == EXCEPTION_IN_PAGE_ERROR) {
2573       CompiledMethod* nm = NULL;
2574       JavaThread* thread = (JavaThread*)t;
2575       if (in_java) {
2576         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
2577         nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
2578       }
2579       if ((thread->thread_state() == _thread_in_vm &&
2580           thread->doing_unsafe_access()) ||
2581           (nm != NULL && nm->has_unsafe_access())) {
2582         return Handle_Exception(exceptionInfo, SharedRuntime::handle_unsafe_access(thread, (address)Assembler::locate_next_instruction(pc)));
2583       }
2584     }
2585 
2586     if (in_java) {
2587       switch (exception_code) {
2588       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2589         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2590 
2591       case EXCEPTION_INT_OVERFLOW:
2592         return Handle_IDiv_Exception(exceptionInfo);
2593 
2594       } // switch
2595     }
2596     if (((thread->thread_state() == _thread_in_Java) ||
2597          (thread->thread_state() == _thread_in_native)) &&
2598          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2599       LONG result=Handle_FLT_Exception(exceptionInfo);
2600       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2601     }
2602   }
2603 
2604   if (exception_code != EXCEPTION_BREAKPOINT) {
2605     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2606                  exceptionInfo->ContextRecord);
2607   }
2608   return EXCEPTION_CONTINUE_SEARCH;
2609 }
2610 
2611 #ifndef _WIN64
2612 // Special care for fast JNI accessors.
2613 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2614 // the heap gets shrunk before the field access.
2615 // Need to install our own structured exception handler since native code may
2616 // install its own.
2617 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2618   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2619   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2620     address pc = (address) exceptionInfo->ContextRecord->Eip;
2621     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2622     if (addr != (address)-1) {
2623       return Handle_Exception(exceptionInfo, addr);
2624     }
2625   }
2626   return EXCEPTION_CONTINUE_SEARCH;
2627 }
2628 
2629 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2630   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2631                                                      jobject obj,           \
2632                                                      jfieldID fieldID) {    \
2633     __try {                                                                 \
2634       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2635                                                                  obj,       \
2636                                                                  fieldID);  \
2637     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2638                                               _exception_info())) {         \
2639     }                                                                       \
2640     return 0;                                                               \
2641   }
2642 
2643 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2644 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2645 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2646 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2647 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2648 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2649 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2650 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2651 
2652 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2653   switch (type) {
2654   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2655   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2656   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2657   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2658   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2659   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2660   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2661   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2662   default:        ShouldNotReachHere();
2663   }
2664   return (address)-1;
2665 }
2666 #endif
2667 
2668 // Virtual Memory
2669 
2670 int os::vm_page_size() { return os::win32::vm_page_size(); }
2671 int os::vm_allocation_granularity() {
2672   return os::win32::vm_allocation_granularity();
2673 }
2674 
2675 // Windows large page support is available on Windows 2003. In order to use
2676 // large page memory, the administrator must first assign additional privilege
2677 // to the user:
2678 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2679 //   + select Local Policies -> User Rights Assignment
2680 //   + double click "Lock pages in memory", add users and/or groups
2681 //   + reboot
2682 // Note the above steps are needed for administrator as well, as administrators
2683 // by default do not have the privilege to lock pages in memory.
2684 //
2685 // Note about Windows 2003: although the API supports committing large page
2686 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2687 // scenario, I found through experiment it only uses large page if the entire
2688 // memory region is reserved and committed in a single VirtualAlloc() call.
2689 // This makes Windows large page support more or less like Solaris ISM, in
2690 // that the entire heap must be committed upfront. This probably will change
2691 // in the future, if so the code below needs to be revisited.
2692 
2693 #ifndef MEM_LARGE_PAGES
2694   #define MEM_LARGE_PAGES 0x20000000
2695 #endif
2696 
2697 static HANDLE    _hProcess;
2698 static HANDLE    _hToken;
2699 
2700 // Container for NUMA node list info
2701 class NUMANodeListHolder {
2702  private:
2703   int *_numa_used_node_list;  // allocated below
2704   int _numa_used_node_count;
2705 
2706   void free_node_list() {
2707     if (_numa_used_node_list != NULL) {
2708       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2709     }
2710   }
2711 
2712  public:
2713   NUMANodeListHolder() {
2714     _numa_used_node_count = 0;
2715     _numa_used_node_list = NULL;
2716     // do rest of initialization in build routine (after function pointers are set up)
2717   }
2718 
2719   ~NUMANodeListHolder() {
2720     free_node_list();
2721   }
2722 
2723   bool build() {
2724     DWORD_PTR proc_aff_mask;
2725     DWORD_PTR sys_aff_mask;
2726     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2727     ULONG highest_node_number;
2728     if (!GetNumaHighestNodeNumber(&highest_node_number)) return false;
2729     free_node_list();
2730     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2731     for (unsigned int i = 0; i <= highest_node_number; i++) {
2732       ULONGLONG proc_mask_numa_node;
2733       if (!GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2734       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2735         _numa_used_node_list[_numa_used_node_count++] = i;
2736       }
2737     }
2738     return (_numa_used_node_count > 1);
2739   }
2740 
2741   int get_count() { return _numa_used_node_count; }
2742   int get_node_list_entry(int n) {
2743     // for indexes out of range, returns -1
2744     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2745   }
2746 
2747 } numa_node_list_holder;
2748 
2749 
2750 
2751 static size_t _large_page_size = 0;
2752 
2753 static bool request_lock_memory_privilege() {
2754   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2755                           os::current_process_id());
2756 
2757   LUID luid;
2758   if (_hProcess != NULL &&
2759       OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2760       LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2761 
2762     TOKEN_PRIVILEGES tp;
2763     tp.PrivilegeCount = 1;
2764     tp.Privileges[0].Luid = luid;
2765     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2766 
2767     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2768     // privilege. Check GetLastError() too. See MSDN document.
2769     if (AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2770         (GetLastError() == ERROR_SUCCESS)) {
2771       return true;
2772     }
2773   }
2774 
2775   return false;
2776 }
2777 
2778 static void cleanup_after_large_page_init() {
2779   if (_hProcess) CloseHandle(_hProcess);
2780   _hProcess = NULL;
2781   if (_hToken) CloseHandle(_hToken);
2782   _hToken = NULL;
2783 }
2784 
2785 static bool numa_interleaving_init() {
2786   bool success = false;
2787   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2788 
2789   // print a warning if UseNUMAInterleaving flag is specified on command line
2790   bool warn_on_failure = use_numa_interleaving_specified;
2791 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2792 
2793   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2794   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2795   NUMAInterleaveGranularity = align_up(NUMAInterleaveGranularity, min_interleave_granularity);
2796 
2797   if (numa_node_list_holder.build()) {
2798     if (log_is_enabled(Debug, os, cpu)) {
2799       Log(os, cpu) log;
2800       log.debug("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2801       for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2802         log.debug("  %d ", numa_node_list_holder.get_node_list_entry(i));
2803       }
2804     }
2805     success = true;
2806   } else {
2807     WARN("Process does not cover multiple NUMA nodes.");
2808   }
2809   if (!success) {
2810     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2811   }
2812   return success;
2813 #undef WARN
2814 }
2815 
2816 // this routine is used whenever we need to reserve a contiguous VA range
2817 // but we need to make separate VirtualAlloc calls for each piece of the range
2818 // Reasons for doing this:
2819 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2820 //  * UseNUMAInterleaving requires a separate node for each piece
2821 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2822                                          DWORD prot,
2823                                          bool should_inject_error = false) {
2824   char * p_buf;
2825   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2826   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2827   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2828 
2829   // first reserve enough address space in advance since we want to be
2830   // able to break a single contiguous virtual address range into multiple
2831   // large page commits but WS2003 does not allow reserving large page space
2832   // so we just use 4K pages for reserve, this gives us a legal contiguous
2833   // address space. then we will deallocate that reservation, and re alloc
2834   // using large pages
2835   const size_t size_of_reserve = bytes + chunk_size;
2836   if (bytes > size_of_reserve) {
2837     // Overflowed.
2838     return NULL;
2839   }
2840   p_buf = (char *) VirtualAlloc(addr,
2841                                 size_of_reserve,  // size of Reserve
2842                                 MEM_RESERVE,
2843                                 PAGE_READWRITE);
2844   // If reservation failed, return NULL
2845   if (p_buf == NULL) return NULL;
2846   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2847   os::release_memory(p_buf, bytes + chunk_size);
2848 
2849   // we still need to round up to a page boundary (in case we are using large pages)
2850   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2851   // instead we handle this in the bytes_to_rq computation below
2852   p_buf = align_up(p_buf, page_size);
2853 
2854   // now go through and allocate one chunk at a time until all bytes are
2855   // allocated
2856   size_t  bytes_remaining = bytes;
2857   // An overflow of align_up() would have been caught above
2858   // in the calculation of size_of_reserve.
2859   char * next_alloc_addr = p_buf;
2860   HANDLE hProc = GetCurrentProcess();
2861 
2862 #ifdef ASSERT
2863   // Variable for the failure injection
2864   int ran_num = os::random();
2865   size_t fail_after = ran_num % bytes;
2866 #endif
2867 
2868   int count=0;
2869   while (bytes_remaining) {
2870     // select bytes_to_rq to get to the next chunk_size boundary
2871 
2872     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2873     // Note allocate and commit
2874     char * p_new;
2875 
2876 #ifdef ASSERT
2877     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2878 #else
2879     const bool inject_error_now = false;
2880 #endif
2881 
2882     if (inject_error_now) {
2883       p_new = NULL;
2884     } else {
2885       if (!UseNUMAInterleaving) {
2886         p_new = (char *) VirtualAlloc(next_alloc_addr,
2887                                       bytes_to_rq,
2888                                       flags,
2889                                       prot);
2890       } else {
2891         // get the next node to use from the used_node_list
2892         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2893         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2894         p_new = (char *)VirtualAllocExNuma(hProc, next_alloc_addr, bytes_to_rq, flags, prot, node);
2895       }
2896     }
2897 
2898     if (p_new == NULL) {
2899       // Free any allocated pages
2900       if (next_alloc_addr > p_buf) {
2901         // Some memory was committed so release it.
2902         size_t bytes_to_release = bytes - bytes_remaining;
2903         // NMT has yet to record any individual blocks, so it
2904         // need to create a dummy 'reserve' record to match
2905         // the release.
2906         MemTracker::record_virtual_memory_reserve((address)p_buf,
2907                                                   bytes_to_release, CALLER_PC);
2908         os::release_memory(p_buf, bytes_to_release);
2909       }
2910 #ifdef ASSERT
2911       if (should_inject_error) {
2912         log_develop_debug(pagesize)("Reserving pages individually failed.");
2913       }
2914 #endif
2915       return NULL;
2916     }
2917 
2918     bytes_remaining -= bytes_to_rq;
2919     next_alloc_addr += bytes_to_rq;
2920     count++;
2921   }
2922   // Although the memory is allocated individually, it is returned as one.
2923   // NMT records it as one block.
2924   if ((flags & MEM_COMMIT) != 0) {
2925     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
2926   } else {
2927     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
2928   }
2929 
2930   // made it this far, success
2931   return p_buf;
2932 }
2933 
2934 
2935 
2936 void os::large_page_init() {
2937   if (!UseLargePages) return;
2938 
2939   // print a warning if any large page related flag is specified on command line
2940   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2941                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2942   bool success = false;
2943 
2944 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2945   if (request_lock_memory_privilege()) {
2946     size_t s = GetLargePageMinimum();
2947     if (s) {
2948 #if defined(IA32) || defined(AMD64)
2949       if (s > 4*M || LargePageSizeInBytes > 4*M) {
2950         WARN("JVM cannot use large pages bigger than 4mb.");
2951       } else {
2952 #endif
2953         if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2954           _large_page_size = LargePageSizeInBytes;
2955         } else {
2956           _large_page_size = s;
2957         }
2958         success = true;
2959 #if defined(IA32) || defined(AMD64)
2960       }
2961 #endif
2962     } else {
2963       WARN("Large page is not supported by the processor.");
2964     }
2965   } else {
2966     WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
2967   }
2968 #undef WARN
2969 
2970   const size_t default_page_size = (size_t) vm_page_size();
2971   if (success && _large_page_size > default_page_size) {
2972     _page_sizes[0] = _large_page_size;
2973     _page_sizes[1] = default_page_size;
2974     _page_sizes[2] = 0;
2975   }
2976 
2977   cleanup_after_large_page_init();
2978   UseLargePages = success;
2979 }
2980 
2981 int os::create_file_for_heap(const char* dir) {
2982 
2983   const char name_template[] = "/jvmheap.XXXXXX";
2984 
2985   size_t fullname_len = strlen(dir) + strlen(name_template);
2986   char *fullname = (char*)os::malloc(fullname_len + 1, mtInternal);
2987   if (fullname == NULL) {
2988     vm_exit_during_initialization(err_msg("Malloc failed during creation of backing file for heap (%s)", os::strerror(errno)));
2989     return -1;
2990   }
2991   int n = snprintf(fullname, fullname_len + 1, "%s%s", dir, name_template);
2992   assert((size_t)n == fullname_len, "Unexpected number of characters in string");
2993 
2994   os::native_path(fullname);
2995 
2996   char *path = _mktemp(fullname);
2997   if (path == NULL) {
2998     warning("_mktemp could not create file name from template %s (%s)", fullname, os::strerror(errno));
2999     os::free(fullname);
3000     return -1;
3001   }
3002 
3003   int fd = _open(path, O_RDWR | O_CREAT | O_TEMPORARY | O_EXCL, S_IWRITE | S_IREAD);
3004 
3005   os::free(fullname);
3006   if (fd < 0) {
3007     warning("Problem opening file for heap (%s)", os::strerror(errno));
3008     return -1;
3009   }
3010   return fd;
3011 }
3012 
3013 // If 'base' is not NULL, function will return NULL if it cannot get 'base'
3014 char* os::map_memory_to_file(char* base, size_t size, int fd) {
3015   assert(fd != -1, "File descriptor is not valid");
3016 
3017   HANDLE fh = (HANDLE)_get_osfhandle(fd);
3018 #ifdef _LP64
3019   HANDLE fileMapping = CreateFileMapping(fh, NULL, PAGE_READWRITE,
3020     (DWORD)(size >> 32), (DWORD)(size & 0xFFFFFFFF), NULL);
3021 #else
3022   HANDLE fileMapping = CreateFileMapping(fh, NULL, PAGE_READWRITE,
3023     0, (DWORD)size, NULL);
3024 #endif
3025   if (fileMapping == NULL) {
3026     if (GetLastError() == ERROR_DISK_FULL) {
3027       vm_exit_during_initialization(err_msg("Could not allocate sufficient disk space for Java heap"));
3028     }
3029     else {
3030       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
3031     }
3032 
3033     return NULL;
3034   }
3035 
3036   LPVOID addr = MapViewOfFileEx(fileMapping, FILE_MAP_WRITE, 0, 0, size, base);
3037 
3038   CloseHandle(fileMapping);
3039 
3040   return (char*)addr;
3041 }
3042 
3043 char* os::replace_existing_mapping_with_file_mapping(char* base, size_t size, int fd) {
3044   assert(fd != -1, "File descriptor is not valid");
3045   assert(base != NULL, "Base address cannot be NULL");
3046 
3047   release_memory(base, size);
3048   return map_memory_to_file(base, size, fd);
3049 }
3050 
3051 // On win32, one cannot release just a part of reserved memory, it's an
3052 // all or nothing deal.  When we split a reservation, we must break the
3053 // reservation into two reservations.
3054 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3055                                   bool realloc) {
3056   if (size > 0) {
3057     release_memory(base, size);
3058     if (realloc) {
3059       reserve_memory(split, base);
3060     }
3061     if (size != split) {
3062       reserve_memory(size - split, base + split);
3063     }
3064   }
3065 }
3066 
3067 // Multiple threads can race in this code but it's not possible to unmap small sections of
3068 // virtual space to get requested alignment, like posix-like os's.
3069 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3070 char* os::reserve_memory_aligned(size_t size, size_t alignment, int file_desc) {
3071   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3072          "Alignment must be a multiple of allocation granularity (page size)");
3073   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3074 
3075   size_t extra_size = size + alignment;
3076   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3077 
3078   char* aligned_base = NULL;
3079 
3080   do {
3081     char* extra_base = os::reserve_memory(extra_size, NULL, alignment, file_desc);
3082     if (extra_base == NULL) {
3083       return NULL;
3084     }
3085     // Do manual alignment
3086     aligned_base = align_up(extra_base, alignment);
3087 
3088     if (file_desc != -1) {
3089       os::unmap_memory(extra_base, extra_size);
3090     } else {
3091       os::release_memory(extra_base, extra_size);
3092     }
3093 
3094     aligned_base = os::reserve_memory(size, aligned_base, 0, file_desc);
3095 
3096   } while (aligned_base == NULL);
3097 
3098   return aligned_base;
3099 }
3100 
3101 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3102   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3103          "reserve alignment");
3104   assert(bytes % os::vm_page_size() == 0, "reserve page size");
3105   char* res;
3106   // note that if UseLargePages is on, all the areas that require interleaving
3107   // will go thru reserve_memory_special rather than thru here.
3108   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3109   if (!use_individual) {
3110     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3111   } else {
3112     elapsedTimer reserveTimer;
3113     if (Verbose && PrintMiscellaneous) reserveTimer.start();
3114     // in numa interleaving, we have to allocate pages individually
3115     // (well really chunks of NUMAInterleaveGranularity size)
3116     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3117     if (res == NULL) {
3118       warning("NUMA page allocation failed");
3119     }
3120     if (Verbose && PrintMiscellaneous) {
3121       reserveTimer.stop();
3122       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3123                     reserveTimer.milliseconds(), reserveTimer.ticks());
3124     }
3125   }
3126   assert(res == NULL || addr == NULL || addr == res,
3127          "Unexpected address from reserve.");
3128 
3129   return res;
3130 }
3131 
3132 // Reserve memory at an arbitrary address, only if that area is
3133 // available (and not reserved for something else).
3134 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3135   // Windows os::reserve_memory() fails of the requested address range is
3136   // not avilable.
3137   return reserve_memory(bytes, requested_addr);
3138 }
3139 
3140 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
3141   assert(file_desc >= 0, "file_desc is not valid");
3142   return map_memory_to_file(requested_addr, bytes, file_desc);
3143 }
3144 
3145 size_t os::large_page_size() {
3146   return _large_page_size;
3147 }
3148 
3149 bool os::can_commit_large_page_memory() {
3150   // Windows only uses large page memory when the entire region is reserved
3151   // and committed in a single VirtualAlloc() call. This may change in the
3152   // future, but with Windows 2003 it's not possible to commit on demand.
3153   return false;
3154 }
3155 
3156 bool os::can_execute_large_page_memory() {
3157   return true;
3158 }
3159 
3160 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3161                                  bool exec) {
3162   assert(UseLargePages, "only for large pages");
3163 
3164   if (!is_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3165     return NULL; // Fallback to small pages.
3166   }
3167 
3168   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3169   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3170 
3171   // with large pages, there are two cases where we need to use Individual Allocation
3172   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3173   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3174   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3175     log_debug(pagesize)("Reserving large pages individually.");
3176 
3177     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3178     if (p_buf == NULL) {
3179       // give an appropriate warning message
3180       if (UseNUMAInterleaving) {
3181         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3182       }
3183       if (UseLargePagesIndividualAllocation) {
3184         warning("Individually allocated large pages failed, "
3185                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3186       }
3187       return NULL;
3188     }
3189 
3190     return p_buf;
3191 
3192   } else {
3193     log_debug(pagesize)("Reserving large pages in a single large chunk.");
3194 
3195     // normal policy just allocate it all at once
3196     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3197     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3198     if (res != NULL) {
3199       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3200     }
3201 
3202     return res;
3203   }
3204 }
3205 
3206 bool os::release_memory_special(char* base, size_t bytes) {
3207   assert(base != NULL, "Sanity check");
3208   return release_memory(base, bytes);
3209 }
3210 
3211 void os::print_statistics() {
3212 }
3213 
3214 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3215   int err = os::get_last_error();
3216   char buf[256];
3217   size_t buf_len = os::lasterror(buf, sizeof(buf));
3218   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3219           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3220           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3221 }
3222 
3223 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3224   if (bytes == 0) {
3225     // Don't bother the OS with noops.
3226     return true;
3227   }
3228   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3229   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3230   // Don't attempt to print anything if the OS call fails. We're
3231   // probably low on resources, so the print itself may cause crashes.
3232 
3233   // unless we have NUMAInterleaving enabled, the range of a commit
3234   // is always within a reserve covered by a single VirtualAlloc
3235   // in that case we can just do a single commit for the requested size
3236   if (!UseNUMAInterleaving) {
3237     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3238       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3239       return false;
3240     }
3241     if (exec) {
3242       DWORD oldprot;
3243       // Windows doc says to use VirtualProtect to get execute permissions
3244       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3245         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3246         return false;
3247       }
3248     }
3249     return true;
3250   } else {
3251 
3252     // when NUMAInterleaving is enabled, the commit might cover a range that
3253     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3254     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3255     // returns represents the number of bytes that can be committed in one step.
3256     size_t bytes_remaining = bytes;
3257     char * next_alloc_addr = addr;
3258     while (bytes_remaining > 0) {
3259       MEMORY_BASIC_INFORMATION alloc_info;
3260       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3261       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3262       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3263                        PAGE_READWRITE) == NULL) {
3264         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3265                                             exec);)
3266         return false;
3267       }
3268       if (exec) {
3269         DWORD oldprot;
3270         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3271                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3272           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3273                                               exec);)
3274           return false;
3275         }
3276       }
3277       bytes_remaining -= bytes_to_rq;
3278       next_alloc_addr += bytes_to_rq;
3279     }
3280   }
3281   // if we made it this far, return true
3282   return true;
3283 }
3284 
3285 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3286                           bool exec) {
3287   // alignment_hint is ignored on this OS
3288   return pd_commit_memory(addr, size, exec);
3289 }
3290 
3291 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3292                                   const char* mesg) {
3293   assert(mesg != NULL, "mesg must be specified");
3294   if (!pd_commit_memory(addr, size, exec)) {
3295     warn_fail_commit_memory(addr, size, exec);
3296     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
3297   }
3298 }
3299 
3300 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3301                                   size_t alignment_hint, bool exec,
3302                                   const char* mesg) {
3303   // alignment_hint is ignored on this OS
3304   pd_commit_memory_or_exit(addr, size, exec, mesg);
3305 }
3306 
3307 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3308   if (bytes == 0) {
3309     // Don't bother the OS with noops.
3310     return true;
3311   }
3312   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3313   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3314   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3315 }
3316 
3317 bool os::pd_release_memory(char* addr, size_t bytes) {
3318   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3319 }
3320 
3321 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3322   return os::commit_memory(addr, size, !ExecMem);
3323 }
3324 
3325 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3326   return os::uncommit_memory(addr, size);
3327 }
3328 
3329 static bool protect_pages_individually(char* addr, size_t bytes, unsigned int p, DWORD *old_status) {
3330   uint count = 0;
3331   bool ret = false;
3332   size_t bytes_remaining = bytes;
3333   char * next_protect_addr = addr;
3334 
3335   // Use VirtualQuery() to get the chunk size.
3336   while (bytes_remaining) {
3337     MEMORY_BASIC_INFORMATION alloc_info;
3338     if (VirtualQuery(next_protect_addr, &alloc_info, sizeof(alloc_info)) == 0) {
3339       return false;
3340     }
3341 
3342     size_t bytes_to_protect = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3343     // We used different API at allocate_pages_individually() based on UseNUMAInterleaving,
3344     // but we don't distinguish here as both cases are protected by same API.
3345     ret = VirtualProtect(next_protect_addr, bytes_to_protect, p, old_status) != 0;
3346     warning("Failed protecting pages individually for chunk #%u", count);
3347     if (!ret) {
3348       return false;
3349     }
3350 
3351     bytes_remaining -= bytes_to_protect;
3352     next_protect_addr += bytes_to_protect;
3353     count++;
3354   }
3355   return ret;
3356 }
3357 
3358 // Set protections specified
3359 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3360                         bool is_committed) {
3361   unsigned int p = 0;
3362   switch (prot) {
3363   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3364   case MEM_PROT_READ: p = PAGE_READONLY; break;
3365   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3366   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3367   default:
3368     ShouldNotReachHere();
3369   }
3370 
3371   DWORD old_status;
3372 
3373   // Strange enough, but on Win32 one can change protection only for committed
3374   // memory, not a big deal anyway, as bytes less or equal than 64K
3375   if (!is_committed) {
3376     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3377                           "cannot commit protection page");
3378   }
3379   // One cannot use os::guard_memory() here, as on Win32 guard page
3380   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3381   //
3382   // Pages in the region become guard pages. Any attempt to access a guard page
3383   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3384   // the guard page status. Guard pages thus act as a one-time access alarm.
3385   bool ret;
3386   if (UseNUMAInterleaving) {
3387     // If UseNUMAInterleaving is enabled, the pages may have been allocated a chunk at a time,
3388     // so we must protect the chunks individually.
3389     ret = protect_pages_individually(addr, bytes, p, &old_status);
3390   } else {
3391     ret = VirtualProtect(addr, bytes, p, &old_status) != 0;
3392   }
3393 #ifdef ASSERT
3394   if (!ret) {
3395     int err = os::get_last_error();
3396     char buf[256];
3397     size_t buf_len = os::lasterror(buf, sizeof(buf));
3398     warning("INFO: os::protect_memory(" PTR_FORMAT ", " SIZE_FORMAT
3399           ") failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3400           buf_len != 0 ? buf : "<no_error_string>", err);
3401   }
3402 #endif
3403   return ret;
3404 }
3405 
3406 bool os::guard_memory(char* addr, size_t bytes) {
3407   DWORD old_status;
3408   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3409 }
3410 
3411 bool os::unguard_memory(char* addr, size_t bytes) {
3412   DWORD old_status;
3413   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3414 }
3415 
3416 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3417 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3418 void os::numa_make_global(char *addr, size_t bytes)    { }
3419 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3420 bool os::numa_topology_changed()                       { return false; }
3421 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3422 int os::numa_get_group_id()                            { return 0; }
3423 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3424   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3425     // Provide an answer for UMA systems
3426     ids[0] = 0;
3427     return 1;
3428   } else {
3429     // check for size bigger than actual groups_num
3430     size = MIN2(size, numa_get_groups_num());
3431     for (int i = 0; i < (int)size; i++) {
3432       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3433     }
3434     return size;
3435   }
3436 }
3437 
3438 bool os::get_page_info(char *start, page_info* info) {
3439   return false;
3440 }
3441 
3442 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3443                      page_info* page_found) {
3444   return end;
3445 }
3446 
3447 char* os::non_memory_address_word() {
3448   // Must never look like an address returned by reserve_memory,
3449   // even in its subfields (as defined by the CPU immediate fields,
3450   // if the CPU splits constants across multiple instructions).
3451   return (char*)-1;
3452 }
3453 
3454 #define MAX_ERROR_COUNT 100
3455 #define SYS_THREAD_ERROR 0xffffffffUL
3456 
3457 void os::pd_start_thread(Thread* thread) {
3458   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3459   // Returns previous suspend state:
3460   // 0:  Thread was not suspended
3461   // 1:  Thread is running now
3462   // >1: Thread is still suspended.
3463   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3464 }
3465 
3466 class HighResolutionInterval : public CHeapObj<mtThread> {
3467   // The default timer resolution seems to be 10 milliseconds.
3468   // (Where is this written down?)
3469   // If someone wants to sleep for only a fraction of the default,
3470   // then we set the timer resolution down to 1 millisecond for
3471   // the duration of their interval.
3472   // We carefully set the resolution back, since otherwise we
3473   // seem to incur an overhead (3%?) that we don't need.
3474   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3475   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3476   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3477   // timeBeginPeriod() if the relative error exceeded some threshold.
3478   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3479   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3480   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3481   // resolution timers running.
3482  private:
3483   jlong resolution;
3484  public:
3485   HighResolutionInterval(jlong ms) {
3486     resolution = ms % 10L;
3487     if (resolution != 0) {
3488       MMRESULT result = timeBeginPeriod(1L);
3489     }
3490   }
3491   ~HighResolutionInterval() {
3492     if (resolution != 0) {
3493       MMRESULT result = timeEndPeriod(1L);
3494     }
3495     resolution = 0L;
3496   }
3497 };
3498 
3499 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3500   jlong limit = (jlong) MAXDWORD;
3501 
3502   while (ms > limit) {
3503     int res;
3504     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3505       return res;
3506     }
3507     ms -= limit;
3508   }
3509 
3510   assert(thread == Thread::current(), "thread consistency check");
3511   OSThread* osthread = thread->osthread();
3512   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3513   int result;
3514   if (interruptable) {
3515     assert(thread->is_Java_thread(), "must be java thread");
3516     JavaThread *jt = (JavaThread *) thread;
3517     ThreadBlockInVM tbivm(jt);
3518 
3519     jt->set_suspend_equivalent();
3520     // cleared by handle_special_suspend_equivalent_condition() or
3521     // java_suspend_self() via check_and_wait_while_suspended()
3522 
3523     HANDLE events[1];
3524     events[0] = osthread->interrupt_event();
3525     HighResolutionInterval *phri=NULL;
3526     if (!ForceTimeHighResolution) {
3527       phri = new HighResolutionInterval(ms);
3528     }
3529     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3530       result = OS_TIMEOUT;
3531     } else {
3532       ResetEvent(osthread->interrupt_event());
3533       osthread->set_interrupted(false);
3534       result = OS_INTRPT;
3535     }
3536     delete phri; //if it is NULL, harmless
3537 
3538     // were we externally suspended while we were waiting?
3539     jt->check_and_wait_while_suspended();
3540   } else {
3541     assert(!thread->is_Java_thread(), "must not be java thread");
3542     Sleep((long) ms);
3543     result = OS_TIMEOUT;
3544   }
3545   return result;
3546 }
3547 
3548 // Short sleep, direct OS call.
3549 //
3550 // ms = 0, means allow others (if any) to run.
3551 //
3552 void os::naked_short_sleep(jlong ms) {
3553   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3554   Sleep(ms);
3555 }
3556 
3557 void os::naked_short_nanosleep(jlong ns) {
3558   assert(ns > -1 && ns < NANOUNITS, "Un-interruptable sleep, short time use only");
3559   LARGE_INTEGER hundreds_nanos = { 0 };
3560   HANDLE wait_timer = ::CreateWaitableTimer(NULL /* attributes*/,
3561                                             true /* manual reset */,
3562                                             NULL /* name */ );
3563   if (wait_timer == NULL) {
3564     log_warning(os)("Failed to CreateWaitableTimer: %u", GetLastError());
3565     return;
3566   }
3567 
3568   // We need a minimum of one hundred nanos.
3569   ns = ns > 100 ? ns : 100;
3570 
3571   // Round ns to the nearst hundred of nanos.
3572   // Negative values indicate relative time.
3573   hundreds_nanos.QuadPart = -((ns + 50) / 100);
3574 
3575   if (::SetWaitableTimer(wait_timer /* handle */,
3576                          &hundreds_nanos /* due time */,
3577                          0 /* period */,
3578                          NULL /* comp func */,
3579                          NULL /* comp func args */,
3580                          FALSE /* resume */)) {
3581     DWORD res = ::WaitForSingleObject(wait_timer /* handle */, INFINITE /* timeout */);
3582     if (res != WAIT_OBJECT_0) {
3583       if (res == WAIT_FAILED) {
3584         log_warning(os)("Failed to WaitForSingleObject: %u", GetLastError());
3585       } else {
3586         log_warning(os)("Unexpected return from WaitForSingleObject: %s",
3587                         res == WAIT_ABANDONED ? "WAIT_ABANDONED" : "WAIT_TIMEOUT");
3588       }
3589     }
3590   }
3591   ::CloseHandle(wait_timer /* handle */);
3592 }
3593 
3594 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3595 void os::infinite_sleep() {
3596   while (true) {    // sleep forever ...
3597     Sleep(100000);  // ... 100 seconds at a time
3598   }
3599 }
3600 
3601 typedef BOOL (WINAPI * STTSignature)(void);
3602 
3603 void os::naked_yield() {
3604   // Consider passing back the return value from SwitchToThread().
3605   SwitchToThread();
3606 }
3607 
3608 // Win32 only gives you access to seven real priorities at a time,
3609 // so we compress Java's ten down to seven.  It would be better
3610 // if we dynamically adjusted relative priorities.
3611 
3612 int os::java_to_os_priority[CriticalPriority + 1] = {
3613   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3614   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3615   THREAD_PRIORITY_LOWEST,                       // 2
3616   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3617   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3618   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3619   THREAD_PRIORITY_NORMAL,                       // 6
3620   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3621   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3622   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3623   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3624   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3625 };
3626 
3627 int prio_policy1[CriticalPriority + 1] = {
3628   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3629   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3630   THREAD_PRIORITY_LOWEST,                       // 2
3631   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3632   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3633   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3634   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3635   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3636   THREAD_PRIORITY_HIGHEST,                      // 8
3637   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3638   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3639   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3640 };
3641 
3642 static int prio_init() {
3643   // If ThreadPriorityPolicy is 1, switch tables
3644   if (ThreadPriorityPolicy == 1) {
3645     int i;
3646     for (i = 0; i < CriticalPriority + 1; i++) {
3647       os::java_to_os_priority[i] = prio_policy1[i];
3648     }
3649   }
3650   if (UseCriticalJavaThreadPriority) {
3651     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3652   }
3653   return 0;
3654 }
3655 
3656 OSReturn os::set_native_priority(Thread* thread, int priority) {
3657   if (!UseThreadPriorities) return OS_OK;
3658   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3659   return ret ? OS_OK : OS_ERR;
3660 }
3661 
3662 OSReturn os::get_native_priority(const Thread* const thread,
3663                                  int* priority_ptr) {
3664   if (!UseThreadPriorities) {
3665     *priority_ptr = java_to_os_priority[NormPriority];
3666     return OS_OK;
3667   }
3668   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3669   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3670     assert(false, "GetThreadPriority failed");
3671     return OS_ERR;
3672   }
3673   *priority_ptr = os_prio;
3674   return OS_OK;
3675 }
3676 
3677 void os::interrupt(Thread* thread) {
3678   debug_only(Thread::check_for_dangling_thread_pointer(thread);)
3679 
3680   OSThread* osthread = thread->osthread();
3681   osthread->set_interrupted(true);
3682   // More than one thread can get here with the same value of osthread,
3683   // resulting in multiple notifications.  We do, however, want the store
3684   // to interrupted() to be visible to other threads before we post
3685   // the interrupt event.
3686   OrderAccess::release();
3687   SetEvent(osthread->interrupt_event());
3688   // For JSR166:  unpark after setting status
3689   if (thread->is_Java_thread()) {
3690     ((JavaThread*)thread)->parker()->unpark();
3691   }
3692 
3693   ParkEvent * ev = thread->_ParkEvent;
3694   if (ev != NULL) ev->unpark();
3695 }
3696 
3697 
3698 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3699   debug_only(Thread::check_for_dangling_thread_pointer(thread);)
3700 
3701   OSThread* osthread = thread->osthread();
3702   // There is no synchronization between the setting of the interrupt
3703   // and it being cleared here. It is critical - see 6535709 - that
3704   // we only clear the interrupt state, and reset the interrupt event,
3705   // if we are going to report that we were indeed interrupted - else
3706   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3707   // depending on the timing. By checking thread interrupt event to see
3708   // if the thread gets real interrupt thus prevent spurious wakeup.
3709   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3710   if (interrupted && clear_interrupted) {
3711     osthread->set_interrupted(false);
3712     ResetEvent(osthread->interrupt_event());
3713   } // Otherwise leave the interrupted state alone
3714 
3715   return interrupted;
3716 }
3717 
3718 // GetCurrentThreadId() returns DWORD
3719 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3720 
3721 static int _initial_pid = 0;
3722 
3723 int os::current_process_id() {
3724   return (_initial_pid ? _initial_pid : _getpid());
3725 }
3726 
3727 int    os::win32::_vm_page_size              = 0;
3728 int    os::win32::_vm_allocation_granularity = 0;
3729 int    os::win32::_processor_type            = 0;
3730 // Processor level is not available on non-NT systems, use vm_version instead
3731 int    os::win32::_processor_level           = 0;
3732 julong os::win32::_physical_memory           = 0;
3733 size_t os::win32::_default_stack_size        = 0;
3734 
3735 intx          os::win32::_os_thread_limit    = 0;
3736 volatile intx os::win32::_os_thread_count    = 0;
3737 
3738 bool   os::win32::_is_windows_server         = false;
3739 
3740 // 6573254
3741 // Currently, the bug is observed across all the supported Windows releases,
3742 // including the latest one (as of this writing - Windows Server 2012 R2)
3743 bool   os::win32::_has_exit_bug              = true;
3744 
3745 void os::win32::initialize_system_info() {
3746   SYSTEM_INFO si;
3747   GetSystemInfo(&si);
3748   _vm_page_size    = si.dwPageSize;
3749   _vm_allocation_granularity = si.dwAllocationGranularity;
3750   _processor_type  = si.dwProcessorType;
3751   _processor_level = si.wProcessorLevel;
3752   set_processor_count(si.dwNumberOfProcessors);
3753 
3754   MEMORYSTATUSEX ms;
3755   ms.dwLength = sizeof(ms);
3756 
3757   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3758   // dwMemoryLoad (% of memory in use)
3759   GlobalMemoryStatusEx(&ms);
3760   _physical_memory = ms.ullTotalPhys;
3761 
3762   if (FLAG_IS_DEFAULT(MaxRAM)) {
3763     // Adjust MaxRAM according to the maximum virtual address space available.
3764     FLAG_SET_DEFAULT(MaxRAM, MIN2(MaxRAM, (uint64_t) ms.ullTotalVirtual));
3765   }
3766 
3767   OSVERSIONINFOEX oi;
3768   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3769   GetVersionEx((OSVERSIONINFO*)&oi);
3770   switch (oi.dwPlatformId) {
3771   case VER_PLATFORM_WIN32_NT:
3772     {
3773       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3774       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3775           oi.wProductType == VER_NT_SERVER) {
3776         _is_windows_server = true;
3777       }
3778     }
3779     break;
3780   default: fatal("Unknown platform");
3781   }
3782 
3783   _default_stack_size = os::current_stack_size();
3784   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3785   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3786          "stack size not a multiple of page size");
3787 
3788   initialize_performance_counter();
3789 }
3790 
3791 
3792 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3793                                       int ebuflen) {
3794   char path[MAX_PATH];
3795   DWORD size;
3796   DWORD pathLen = (DWORD)sizeof(path);
3797   HINSTANCE result = NULL;
3798 
3799   // only allow library name without path component
3800   assert(strchr(name, '\\') == NULL, "path not allowed");
3801   assert(strchr(name, ':') == NULL, "path not allowed");
3802   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3803     jio_snprintf(ebuf, ebuflen,
3804                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3805     return NULL;
3806   }
3807 
3808   // search system directory
3809   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3810     if (size >= pathLen) {
3811       return NULL; // truncated
3812     }
3813     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3814       return NULL; // truncated
3815     }
3816     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3817       return result;
3818     }
3819   }
3820 
3821   // try Windows directory
3822   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3823     if (size >= pathLen) {
3824       return NULL; // truncated
3825     }
3826     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3827       return NULL; // truncated
3828     }
3829     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3830       return result;
3831     }
3832   }
3833 
3834   jio_snprintf(ebuf, ebuflen,
3835                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3836   return NULL;
3837 }
3838 
3839 #define MAXIMUM_THREADS_TO_KEEP (16 * MAXIMUM_WAIT_OBJECTS)
3840 #define EXIT_TIMEOUT 300000 /* 5 minutes */
3841 
3842 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3843   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3844   return TRUE;
3845 }
3846 
3847 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3848   // Basic approach:
3849   //  - Each exiting thread registers its intent to exit and then does so.
3850   //  - A thread trying to terminate the process must wait for all
3851   //    threads currently exiting to complete their exit.
3852 
3853   if (os::win32::has_exit_bug()) {
3854     // The array holds handles of the threads that have started exiting by calling
3855     // _endthreadex().
3856     // Should be large enough to avoid blocking the exiting thread due to lack of
3857     // a free slot.
3858     static HANDLE handles[MAXIMUM_THREADS_TO_KEEP];
3859     static int handle_count = 0;
3860 
3861     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3862     static CRITICAL_SECTION crit_sect;
3863     static volatile DWORD process_exiting = 0;
3864     int i, j;
3865     DWORD res;
3866     HANDLE hproc, hthr;
3867 
3868     // We only attempt to register threads until a process exiting
3869     // thread manages to set the process_exiting flag. Any threads
3870     // that come through here after the process_exiting flag is set
3871     // are unregistered and will be caught in the SuspendThread()
3872     // infinite loop below.
3873     bool registered = false;
3874 
3875     // The first thread that reached this point, initializes the critical section.
3876     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3877       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3878     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3879       if (what != EPT_THREAD) {
3880         // Atomically set process_exiting before the critical section
3881         // to increase the visibility between racing threads.
3882         Atomic::cmpxchg(GetCurrentThreadId(), &process_exiting, (DWORD)0);
3883       }
3884       EnterCriticalSection(&crit_sect);
3885 
3886       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3887         // Remove from the array those handles of the threads that have completed exiting.
3888         for (i = 0, j = 0; i < handle_count; ++i) {
3889           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3890           if (res == WAIT_TIMEOUT) {
3891             handles[j++] = handles[i];
3892           } else {
3893             if (res == WAIT_FAILED) {
3894               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3895                       GetLastError(), __FILE__, __LINE__);
3896             }
3897             // Don't keep the handle, if we failed waiting for it.
3898             CloseHandle(handles[i]);
3899           }
3900         }
3901 
3902         // If there's no free slot in the array of the kept handles, we'll have to
3903         // wait until at least one thread completes exiting.
3904         if ((handle_count = j) == MAXIMUM_THREADS_TO_KEEP) {
3905           // Raise the priority of the oldest exiting thread to increase its chances
3906           // to complete sooner.
3907           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3908           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3909           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3910             i = (res - WAIT_OBJECT_0);
3911             handle_count = MAXIMUM_THREADS_TO_KEEP - 1;
3912             for (; i < handle_count; ++i) {
3913               handles[i] = handles[i + 1];
3914             }
3915           } else {
3916             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3917                     (res == WAIT_FAILED ? "failed" : "timed out"),
3918                     GetLastError(), __FILE__, __LINE__);
3919             // Don't keep handles, if we failed waiting for them.
3920             for (i = 0; i < MAXIMUM_THREADS_TO_KEEP; ++i) {
3921               CloseHandle(handles[i]);
3922             }
3923             handle_count = 0;
3924           }
3925         }
3926 
3927         // Store a duplicate of the current thread handle in the array of handles.
3928         hproc = GetCurrentProcess();
3929         hthr = GetCurrentThread();
3930         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3931                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3932           warning("DuplicateHandle failed (%u) in %s: %d\n",
3933                   GetLastError(), __FILE__, __LINE__);
3934 
3935           // We can't register this thread (no more handles) so this thread
3936           // may be racing with a thread that is calling exit(). If the thread
3937           // that is calling exit() has managed to set the process_exiting
3938           // flag, then this thread will be caught in the SuspendThread()
3939           // infinite loop below which closes that race. A small timing
3940           // window remains before the process_exiting flag is set, but it
3941           // is only exposed when we are out of handles.
3942         } else {
3943           ++handle_count;
3944           registered = true;
3945 
3946           // The current exiting thread has stored its handle in the array, and now
3947           // should leave the critical section before calling _endthreadex().
3948         }
3949 
3950       } else if (what != EPT_THREAD && handle_count > 0) {
3951         jlong start_time, finish_time, timeout_left;
3952         // Before ending the process, make sure all the threads that had called
3953         // _endthreadex() completed.
3954 
3955         // Set the priority level of the current thread to the same value as
3956         // the priority level of exiting threads.
3957         // This is to ensure it will be given a fair chance to execute if
3958         // the timeout expires.
3959         hthr = GetCurrentThread();
3960         SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3961         start_time = os::javaTimeNanos();
3962         finish_time = start_time + ((jlong)EXIT_TIMEOUT * 1000000L);
3963         for (i = 0; ; ) {
3964           int portion_count = handle_count - i;
3965           if (portion_count > MAXIMUM_WAIT_OBJECTS) {
3966             portion_count = MAXIMUM_WAIT_OBJECTS;
3967           }
3968           for (j = 0; j < portion_count; ++j) {
3969             SetThreadPriority(handles[i + j], THREAD_PRIORITY_ABOVE_NORMAL);
3970           }
3971           timeout_left = (finish_time - start_time) / 1000000L;
3972           if (timeout_left < 0) {
3973             timeout_left = 0;
3974           }
3975           res = WaitForMultipleObjects(portion_count, handles + i, TRUE, timeout_left);
3976           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3977             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3978                     (res == WAIT_FAILED ? "failed" : "timed out"),
3979                     GetLastError(), __FILE__, __LINE__);
3980             // Reset portion_count so we close the remaining
3981             // handles due to this error.
3982             portion_count = handle_count - i;
3983           }
3984           for (j = 0; j < portion_count; ++j) {
3985             CloseHandle(handles[i + j]);
3986           }
3987           if ((i += portion_count) >= handle_count) {
3988             break;
3989           }
3990           start_time = os::javaTimeNanos();
3991         }
3992         handle_count = 0;
3993       }
3994 
3995       LeaveCriticalSection(&crit_sect);
3996     }
3997 
3998     if (!registered &&
3999         OrderAccess::load_acquire(&process_exiting) != 0 &&
4000         process_exiting != GetCurrentThreadId()) {
4001       // Some other thread is about to call exit(), so we don't let
4002       // the current unregistered thread proceed to exit() or _endthreadex()
4003       while (true) {
4004         SuspendThread(GetCurrentThread());
4005         // Avoid busy-wait loop, if SuspendThread() failed.
4006         Sleep(EXIT_TIMEOUT);
4007       }
4008     }
4009   }
4010 
4011   // We are here if either
4012   // - there's no 'race at exit' bug on this OS release;
4013   // - initialization of the critical section failed (unlikely);
4014   // - the current thread has registered itself and left the critical section;
4015   // - the process-exiting thread has raised the flag and left the critical section.
4016   if (what == EPT_THREAD) {
4017     _endthreadex((unsigned)exit_code);
4018   } else if (what == EPT_PROCESS) {
4019     ::exit(exit_code);
4020   } else {
4021     _exit(exit_code);
4022   }
4023 
4024   // Should not reach here
4025   return exit_code;
4026 }
4027 
4028 #undef EXIT_TIMEOUT
4029 
4030 void os::win32::setmode_streams() {
4031   _setmode(_fileno(stdin), _O_BINARY);
4032   _setmode(_fileno(stdout), _O_BINARY);
4033   _setmode(_fileno(stderr), _O_BINARY);
4034 }
4035 
4036 
4037 bool os::is_debugger_attached() {
4038   return IsDebuggerPresent() ? true : false;
4039 }
4040 
4041 
4042 void os::wait_for_keypress_at_exit(void) {
4043   if (PauseAtExit) {
4044     fprintf(stderr, "Press any key to continue...\n");
4045     fgetc(stdin);
4046   }
4047 }
4048 
4049 
4050 bool os::message_box(const char* title, const char* message) {
4051   int result = MessageBox(NULL, message, title,
4052                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
4053   return result == IDYES;
4054 }
4055 
4056 #ifndef PRODUCT
4057 #ifndef _WIN64
4058 // Helpers to check whether NX protection is enabled
4059 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
4060   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
4061       pex->ExceptionRecord->NumberParameters > 0 &&
4062       pex->ExceptionRecord->ExceptionInformation[0] ==
4063       EXCEPTION_INFO_EXEC_VIOLATION) {
4064     return EXCEPTION_EXECUTE_HANDLER;
4065   }
4066   return EXCEPTION_CONTINUE_SEARCH;
4067 }
4068 
4069 void nx_check_protection() {
4070   // If NX is enabled we'll get an exception calling into code on the stack
4071   char code[] = { (char)0xC3 }; // ret
4072   void *code_ptr = (void *)code;
4073   __try {
4074     __asm call code_ptr
4075   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
4076     tty->print_raw_cr("NX protection detected.");
4077   }
4078 }
4079 #endif // _WIN64
4080 #endif // PRODUCT
4081 
4082 // This is called _before_ the global arguments have been parsed
4083 void os::init(void) {
4084   _initial_pid = _getpid();
4085 
4086   init_random(1234567);
4087 
4088   win32::initialize_system_info();
4089   win32::setmode_streams();
4090   init_page_sizes((size_t) win32::vm_page_size());
4091 
4092   // This may be overridden later when argument processing is done.
4093   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation, false);
4094 
4095   // Initialize main_process and main_thread
4096   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4097   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4098                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4099     fatal("DuplicateHandle failed\n");
4100   }
4101   main_thread_id = (int) GetCurrentThreadId();
4102 
4103   // initialize fast thread access - only used for 32-bit
4104   win32::initialize_thread_ptr_offset();
4105 }
4106 
4107 // To install functions for atexit processing
4108 extern "C" {
4109   static void perfMemory_exit_helper() {
4110     perfMemory_exit();
4111   }
4112 }
4113 
4114 static jint initSock();
4115 
4116 // this is called _after_ the global arguments have been parsed
4117 jint os::init_2(void) {
4118 
4119   // This could be set any time but all platforms
4120   // have to set it the same so we have to mirror Solaris.
4121   DEBUG_ONLY(os::set_mutex_init_done();)
4122 
4123   // Setup Windows Exceptions
4124 
4125 #if INCLUDE_AOT
4126   // If AOT is enabled we need to install a vectored exception handler
4127   // in order to forward implicit exceptions from code in AOT
4128   // generated DLLs.  This is necessary since these DLLs are not
4129   // registered for structured exceptions like codecache methods are.
4130   if (UseAOT) {
4131     topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelVectoredExceptionFilter);
4132   }
4133 #endif
4134 
4135   // for debugging float code generation bugs
4136   if (ForceFloatExceptions) {
4137 #ifndef  _WIN64
4138     static long fp_control_word = 0;
4139     __asm { fstcw fp_control_word }
4140     // see Intel PPro Manual, Vol. 2, p 7-16
4141     const long precision = 0x20;
4142     const long underflow = 0x10;
4143     const long overflow  = 0x08;
4144     const long zero_div  = 0x04;
4145     const long denorm    = 0x02;
4146     const long invalid   = 0x01;
4147     fp_control_word |= invalid;
4148     __asm { fldcw fp_control_word }
4149 #endif
4150   }
4151 
4152   // If stack_commit_size is 0, windows will reserve the default size,
4153   // but only commit a small portion of it.
4154   size_t stack_commit_size = align_up(ThreadStackSize*K, os::vm_page_size());
4155   size_t default_reserve_size = os::win32::default_stack_size();
4156   size_t actual_reserve_size = stack_commit_size;
4157   if (stack_commit_size < default_reserve_size) {
4158     // If stack_commit_size == 0, we want this too
4159     actual_reserve_size = default_reserve_size;
4160   }
4161 
4162   // Check minimum allowable stack size for thread creation and to initialize
4163   // the java system classes, including StackOverflowError - depends on page
4164   // size.  Add two 4K pages for compiler2 recursion in main thread.
4165   // Add in 4*BytesPerWord 4K pages to account for VM stack during
4166   // class initialization depending on 32 or 64 bit VM.
4167   size_t min_stack_allowed =
4168             (size_t)(JavaThread::stack_guard_zone_size() +
4169                      JavaThread::stack_shadow_zone_size() +
4170                      (4*BytesPerWord COMPILER2_PRESENT(+2)) * 4 * K);
4171 
4172   min_stack_allowed = align_up(min_stack_allowed, os::vm_page_size());
4173 
4174   if (actual_reserve_size < min_stack_allowed) {
4175     tty->print_cr("\nThe Java thread stack size specified is too small. "
4176                   "Specify at least %dk",
4177                   min_stack_allowed / K);
4178     return JNI_ERR;
4179   }
4180 
4181   JavaThread::set_stack_size_at_create(stack_commit_size);
4182 
4183   // Calculate theoretical max. size of Threads to guard gainst artifical
4184   // out-of-memory situations, where all available address-space has been
4185   // reserved by thread stacks.
4186   assert(actual_reserve_size != 0, "Must have a stack");
4187 
4188   // Calculate the thread limit when we should start doing Virtual Memory
4189   // banging. Currently when the threads will have used all but 200Mb of space.
4190   //
4191   // TODO: consider performing a similar calculation for commit size instead
4192   // as reserve size, since on a 64-bit platform we'll run into that more
4193   // often than running out of virtual memory space.  We can use the
4194   // lower value of the two calculations as the os_thread_limit.
4195   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4196   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4197 
4198   // at exit methods are called in the reverse order of their registration.
4199   // there is no limit to the number of functions registered. atexit does
4200   // not set errno.
4201 
4202   if (PerfAllowAtExitRegistration) {
4203     // only register atexit functions if PerfAllowAtExitRegistration is set.
4204     // atexit functions can be delayed until process exit time, which
4205     // can be problematic for embedded VM situations. Embedded VMs should
4206     // call DestroyJavaVM() to assure that VM resources are released.
4207 
4208     // note: perfMemory_exit_helper atexit function may be removed in
4209     // the future if the appropriate cleanup code can be added to the
4210     // VM_Exit VMOperation's doit method.
4211     if (atexit(perfMemory_exit_helper) != 0) {
4212       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4213     }
4214   }
4215 
4216 #ifndef _WIN64
4217   // Print something if NX is enabled (win32 on AMD64)
4218   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4219 #endif
4220 
4221   // initialize thread priority policy
4222   prio_init();
4223 
4224   if (UseNUMA && !ForceNUMA) {
4225     UseNUMA = false; // We don't fully support this yet
4226   }
4227 
4228   if (UseNUMAInterleaving) {
4229     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4230     bool success = numa_interleaving_init();
4231     if (!success) UseNUMAInterleaving = false;
4232   }
4233 
4234   if (initSock() != JNI_OK) {
4235     return JNI_ERR;
4236   }
4237 
4238   SymbolEngine::recalc_search_path();
4239 
4240   // Initialize data for jdk.internal.misc.Signal
4241   if (!ReduceSignalUsage) {
4242     jdk_misc_signal_init();
4243   }
4244 
4245   return JNI_OK;
4246 }
4247 
4248 // Mark the polling page as unreadable
4249 void os::make_polling_page_unreadable(void) {
4250   DWORD old_status;
4251   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4252                       PAGE_NOACCESS, &old_status)) {
4253     fatal("Could not disable polling page");
4254   }
4255 }
4256 
4257 // Mark the polling page as readable
4258 void os::make_polling_page_readable(void) {
4259   DWORD old_status;
4260   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4261                       PAGE_READONLY, &old_status)) {
4262     fatal("Could not enable polling page");
4263   }
4264 }
4265 
4266 // combine the high and low DWORD into a ULONGLONG
4267 static ULONGLONG make_double_word(DWORD high_word, DWORD low_word) {
4268   ULONGLONG value = high_word;
4269   value <<= sizeof(high_word) * 8;
4270   value |= low_word;
4271   return value;
4272 }
4273 
4274 // Transfers data from WIN32_FILE_ATTRIBUTE_DATA structure to struct stat
4275 static void file_attribute_data_to_stat(struct stat* sbuf, WIN32_FILE_ATTRIBUTE_DATA file_data) {
4276   ::memset((void*)sbuf, 0, sizeof(struct stat));
4277   sbuf->st_size = (_off_t)make_double_word(file_data.nFileSizeHigh, file_data.nFileSizeLow);
4278   sbuf->st_mtime = make_double_word(file_data.ftLastWriteTime.dwHighDateTime,
4279                                   file_data.ftLastWriteTime.dwLowDateTime);
4280   sbuf->st_ctime = make_double_word(file_data.ftCreationTime.dwHighDateTime,
4281                                   file_data.ftCreationTime.dwLowDateTime);
4282   sbuf->st_atime = make_double_word(file_data.ftLastAccessTime.dwHighDateTime,
4283                                   file_data.ftLastAccessTime.dwLowDateTime);
4284   if ((file_data.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) != 0) {
4285     sbuf->st_mode |= S_IFDIR;
4286   } else {
4287     sbuf->st_mode |= S_IFREG;
4288   }
4289 }
4290 
4291 // The following function is adapted from java.base/windows/native/libjava/canonicalize_md.c
4292 // Creates an UNC path from a single byte path. Return buffer is
4293 // allocated in C heap and needs to be freed by the caller.
4294 // Returns NULL on error.
4295 static wchar_t* create_unc_path(const char* path, errno_t &err) {
4296   wchar_t* wpath = NULL;
4297   size_t converted_chars = 0;
4298   size_t path_len = strlen(path) + 1; // includes the terminating NULL
4299   if (path[0] == '\\' && path[1] == '\\') {
4300     if (path[2] == '?' && path[3] == '\\'){
4301       // if it already has a \\?\ don't do the prefix
4302       wpath = (wchar_t*)os::malloc(path_len * sizeof(wchar_t), mtInternal);
4303       if (wpath != NULL) {
4304         err = ::mbstowcs_s(&converted_chars, wpath, path_len, path, path_len);
4305       } else {
4306         err = ENOMEM;
4307       }
4308     } else {
4309       // only UNC pathname includes double slashes here
4310       wpath = (wchar_t*)os::malloc((path_len + 7) * sizeof(wchar_t), mtInternal);
4311       if (wpath != NULL) {
4312         ::wcscpy(wpath, L"\\\\?\\UNC\0");
4313         err = ::mbstowcs_s(&converted_chars, &wpath[7], path_len, path, path_len);
4314       } else {
4315         err = ENOMEM;
4316       }
4317     }
4318   } else {
4319     wpath = (wchar_t*)os::malloc((path_len + 4) * sizeof(wchar_t), mtInternal);
4320     if (wpath != NULL) {
4321       ::wcscpy(wpath, L"\\\\?\\\0");
4322       err = ::mbstowcs_s(&converted_chars, &wpath[4], path_len, path, path_len);
4323     } else {
4324       err = ENOMEM;
4325     }
4326   }
4327   return wpath;
4328 }
4329 
4330 static void destroy_unc_path(wchar_t* wpath) {
4331   os::free(wpath);
4332 }
4333 
4334 int os::stat(const char *path, struct stat *sbuf) {
4335   char* pathbuf = (char*)os::strdup(path, mtInternal);
4336   if (pathbuf == NULL) {
4337     errno = ENOMEM;
4338     return -1;
4339   }
4340   os::native_path(pathbuf);
4341   int ret;
4342   WIN32_FILE_ATTRIBUTE_DATA file_data;
4343   // Not using stat() to avoid the problem described in JDK-6539723
4344   if (strlen(path) < MAX_PATH) {
4345     BOOL bret = ::GetFileAttributesExA(pathbuf, GetFileExInfoStandard, &file_data);
4346     if (!bret) {
4347       errno = ::GetLastError();
4348       ret = -1;
4349     }
4350     else {
4351       file_attribute_data_to_stat(sbuf, file_data);
4352       ret = 0;
4353     }
4354   } else {
4355     errno_t err = ERROR_SUCCESS;
4356     wchar_t* wpath = create_unc_path(pathbuf, err);
4357     if (err != ERROR_SUCCESS) {
4358       if (wpath != NULL) {
4359         destroy_unc_path(wpath);
4360       }
4361       os::free(pathbuf);
4362       errno = err;
4363       return -1;
4364     }
4365     BOOL bret = ::GetFileAttributesExW(wpath, GetFileExInfoStandard, &file_data);
4366     if (!bret) {
4367       errno = ::GetLastError();
4368       ret = -1;
4369     } else {
4370       file_attribute_data_to_stat(sbuf, file_data);
4371       ret = 0;
4372     }
4373     destroy_unc_path(wpath);
4374   }
4375   os::free(pathbuf);
4376   return ret;
4377 }
4378 
4379 
4380 #define FT2INT64(ft) \
4381   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4382 
4383 
4384 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4385 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4386 // of a thread.
4387 //
4388 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4389 // the fast estimate available on the platform.
4390 
4391 // current_thread_cpu_time() is not optimized for Windows yet
4392 jlong os::current_thread_cpu_time() {
4393   // return user + sys since the cost is the same
4394   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4395 }
4396 
4397 jlong os::thread_cpu_time(Thread* thread) {
4398   // consistent with what current_thread_cpu_time() returns.
4399   return os::thread_cpu_time(thread, true /* user+sys */);
4400 }
4401 
4402 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4403   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4404 }
4405 
4406 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4407   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4408   // If this function changes, os::is_thread_cpu_time_supported() should too
4409   FILETIME CreationTime;
4410   FILETIME ExitTime;
4411   FILETIME KernelTime;
4412   FILETIME UserTime;
4413 
4414   if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4415                       &ExitTime, &KernelTime, &UserTime) == 0) {
4416     return -1;
4417   } else if (user_sys_cpu_time) {
4418     return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4419   } else {
4420     return FT2INT64(UserTime) * 100;
4421   }
4422 }
4423 
4424 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4425   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4426   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4427   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4428   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4429 }
4430 
4431 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4432   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4433   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4434   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4435   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4436 }
4437 
4438 bool os::is_thread_cpu_time_supported() {
4439   // see os::thread_cpu_time
4440   FILETIME CreationTime;
4441   FILETIME ExitTime;
4442   FILETIME KernelTime;
4443   FILETIME UserTime;
4444 
4445   if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4446                       &KernelTime, &UserTime) == 0) {
4447     return false;
4448   } else {
4449     return true;
4450   }
4451 }
4452 
4453 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4454 // It does have primitives (PDH API) to get CPU usage and run queue length.
4455 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4456 // If we wanted to implement loadavg on Windows, we have a few options:
4457 //
4458 // a) Query CPU usage and run queue length and "fake" an answer by
4459 //    returning the CPU usage if it's under 100%, and the run queue
4460 //    length otherwise.  It turns out that querying is pretty slow
4461 //    on Windows, on the order of 200 microseconds on a fast machine.
4462 //    Note that on the Windows the CPU usage value is the % usage
4463 //    since the last time the API was called (and the first call
4464 //    returns 100%), so we'd have to deal with that as well.
4465 //
4466 // b) Sample the "fake" answer using a sampling thread and store
4467 //    the answer in a global variable.  The call to loadavg would
4468 //    just return the value of the global, avoiding the slow query.
4469 //
4470 // c) Sample a better answer using exponential decay to smooth the
4471 //    value.  This is basically the algorithm used by UNIX kernels.
4472 //
4473 // Note that sampling thread starvation could affect both (b) and (c).
4474 int os::loadavg(double loadavg[], int nelem) {
4475   return -1;
4476 }
4477 
4478 
4479 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4480 bool os::dont_yield() {
4481   return DontYieldALot;
4482 }
4483 
4484 // This method is a slightly reworked copy of JDK's sysOpen
4485 // from src/windows/hpi/src/sys_api_md.c
4486 
4487 int os::open(const char *path, int oflag, int mode) {
4488   char* pathbuf = (char*)os::strdup(path, mtInternal);
4489   if (pathbuf == NULL) {
4490     errno = ENOMEM;
4491     return -1;
4492   }
4493   os::native_path(pathbuf);
4494   int ret;
4495   if (strlen(path) < MAX_PATH) {
4496     ret = ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4497   } else {
4498     errno_t err = ERROR_SUCCESS;
4499     wchar_t* wpath = create_unc_path(pathbuf, err);
4500     if (err != ERROR_SUCCESS) {
4501       if (wpath != NULL) {
4502         destroy_unc_path(wpath);
4503       }
4504       os::free(pathbuf);
4505       errno = err;
4506       return -1;
4507     }
4508     ret = ::_wopen(wpath, oflag | O_BINARY | O_NOINHERIT, mode);
4509     if (ret == -1) {
4510       errno = ::GetLastError();
4511     }
4512     destroy_unc_path(wpath);
4513   }
4514   os::free(pathbuf);
4515   return ret;
4516 }
4517 
4518 FILE* os::open(int fd, const char* mode) {
4519   return ::_fdopen(fd, mode);
4520 }
4521 
4522 // Is a (classpath) directory empty?
4523 bool os::dir_is_empty(const char* path) {
4524   char* search_path = (char*)os::malloc(strlen(path) + 3, mtInternal);
4525   if (search_path == NULL) {
4526     errno = ENOMEM;
4527     return false;
4528   }
4529   strcpy(search_path, path);
4530   os::native_path(search_path);
4531   // Append "*", or possibly "\\*", to path
4532   if (search_path[1] == ':' &&
4533        (search_path[2] == '\0' ||
4534          (search_path[2] == '\\' && search_path[3] == '\0'))) {
4535     // No '\\' needed for cases like "Z:" or "Z:\"
4536     strcat(search_path, "*");
4537   }
4538   else {
4539     strcat(search_path, "\\*");
4540   }
4541   errno_t err = ERROR_SUCCESS;
4542   wchar_t* wpath = create_unc_path(search_path, err);
4543   if (err != ERROR_SUCCESS) {
4544     if (wpath != NULL) {
4545       destroy_unc_path(wpath);
4546     }
4547     os::free(search_path);
4548     errno = err;
4549     return false;
4550   }
4551   WIN32_FIND_DATAW fd;
4552   HANDLE f = ::FindFirstFileW(wpath, &fd);
4553   destroy_unc_path(wpath);
4554   bool is_empty = true;
4555   if (f != INVALID_HANDLE_VALUE) {
4556     while (is_empty && ::FindNextFileW(f, &fd)) {
4557       // An empty directory contains only the current directory file
4558       // and the previous directory file.
4559       if ((wcscmp(fd.cFileName, L".") != 0) &&
4560           (wcscmp(fd.cFileName, L"..") != 0)) {
4561         is_empty = false;
4562       }
4563     }
4564     FindClose(f);
4565   }
4566   os::free(search_path);
4567   return is_empty;
4568 }
4569 
4570 // create binary file, rewriting existing file if required
4571 int os::create_binary_file(const char* path, bool rewrite_existing) {
4572   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4573   if (!rewrite_existing) {
4574     oflags |= _O_EXCL;
4575   }
4576   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4577 }
4578 
4579 // return current position of file pointer
4580 jlong os::current_file_offset(int fd) {
4581   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4582 }
4583 
4584 // move file pointer to the specified offset
4585 jlong os::seek_to_file_offset(int fd, jlong offset) {
4586   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4587 }
4588 
4589 
4590 jlong os::lseek(int fd, jlong offset, int whence) {
4591   return (jlong) ::_lseeki64(fd, offset, whence);
4592 }
4593 
4594 ssize_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4595   OVERLAPPED ov;
4596   DWORD nread;
4597   BOOL result;
4598 
4599   ZeroMemory(&ov, sizeof(ov));
4600   ov.Offset = (DWORD)offset;
4601   ov.OffsetHigh = (DWORD)(offset >> 32);
4602 
4603   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4604 
4605   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4606 
4607   return result ? nread : 0;
4608 }
4609 
4610 
4611 // This method is a slightly reworked copy of JDK's sysNativePath
4612 // from src/windows/hpi/src/path_md.c
4613 
4614 // Convert a pathname to native format.  On win32, this involves forcing all
4615 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4616 // sometimes rejects '/') and removing redundant separators.  The input path is
4617 // assumed to have been converted into the character encoding used by the local
4618 // system.  Because this might be a double-byte encoding, care is taken to
4619 // treat double-byte lead characters correctly.
4620 //
4621 // This procedure modifies the given path in place, as the result is never
4622 // longer than the original.  There is no error return; this operation always
4623 // succeeds.
4624 char * os::native_path(char *path) {
4625   char *src = path, *dst = path, *end = path;
4626   char *colon = NULL;  // If a drive specifier is found, this will
4627                        // point to the colon following the drive letter
4628 
4629   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4630   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4631           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4632 
4633   // Check for leading separators
4634 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4635   while (isfilesep(*src)) {
4636     src++;
4637   }
4638 
4639   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4640     // Remove leading separators if followed by drive specifier.  This
4641     // hack is necessary to support file URLs containing drive
4642     // specifiers (e.g., "file://c:/path").  As a side effect,
4643     // "/c:/path" can be used as an alternative to "c:/path".
4644     *dst++ = *src++;
4645     colon = dst;
4646     *dst++ = ':';
4647     src++;
4648   } else {
4649     src = path;
4650     if (isfilesep(src[0]) && isfilesep(src[1])) {
4651       // UNC pathname: Retain first separator; leave src pointed at
4652       // second separator so that further separators will be collapsed
4653       // into the second separator.  The result will be a pathname
4654       // beginning with "\\\\" followed (most likely) by a host name.
4655       src = dst = path + 1;
4656       path[0] = '\\';     // Force first separator to '\\'
4657     }
4658   }
4659 
4660   end = dst;
4661 
4662   // Remove redundant separators from remainder of path, forcing all
4663   // separators to be '\\' rather than '/'. Also, single byte space
4664   // characters are removed from the end of the path because those
4665   // are not legal ending characters on this operating system.
4666   //
4667   while (*src != '\0') {
4668     if (isfilesep(*src)) {
4669       *dst++ = '\\'; src++;
4670       while (isfilesep(*src)) src++;
4671       if (*src == '\0') {
4672         // Check for trailing separator
4673         end = dst;
4674         if (colon == dst - 2) break;  // "z:\\"
4675         if (dst == path + 1) break;   // "\\"
4676         if (dst == path + 2 && isfilesep(path[0])) {
4677           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4678           // beginning of a UNC pathname.  Even though it is not, by
4679           // itself, a valid UNC pathname, we leave it as is in order
4680           // to be consistent with the path canonicalizer as well
4681           // as the win32 APIs, which treat this case as an invalid
4682           // UNC pathname rather than as an alias for the root
4683           // directory of the current drive.
4684           break;
4685         }
4686         end = --dst;  // Path does not denote a root directory, so
4687                       // remove trailing separator
4688         break;
4689       }
4690       end = dst;
4691     } else {
4692       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4693         *dst++ = *src++;
4694         if (*src) *dst++ = *src++;
4695         end = dst;
4696       } else {  // Copy a single-byte character
4697         char c = *src++;
4698         *dst++ = c;
4699         // Space is not a legal ending character
4700         if (c != ' ') end = dst;
4701       }
4702     }
4703   }
4704 
4705   *end = '\0';
4706 
4707   // For "z:", add "." to work around a bug in the C runtime library
4708   if (colon == dst - 1) {
4709     path[2] = '.';
4710     path[3] = '\0';
4711   }
4712 
4713   return path;
4714 }
4715 
4716 // This code is a copy of JDK's sysSetLength
4717 // from src/windows/hpi/src/sys_api_md.c
4718 
4719 int os::ftruncate(int fd, jlong length) {
4720   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4721   long high = (long)(length >> 32);
4722   DWORD ret;
4723 
4724   if (h == (HANDLE)(-1)) {
4725     return -1;
4726   }
4727 
4728   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4729   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4730     return -1;
4731   }
4732 
4733   if (::SetEndOfFile(h) == FALSE) {
4734     return -1;
4735   }
4736 
4737   return 0;
4738 }
4739 
4740 int os::get_fileno(FILE* fp) {
4741   return _fileno(fp);
4742 }
4743 
4744 // This code is a copy of JDK's sysSync
4745 // from src/windows/hpi/src/sys_api_md.c
4746 // except for the legacy workaround for a bug in Win 98
4747 
4748 int os::fsync(int fd) {
4749   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4750 
4751   if ((!::FlushFileBuffers(handle)) &&
4752       (GetLastError() != ERROR_ACCESS_DENIED)) {
4753     // from winerror.h
4754     return -1;
4755   }
4756   return 0;
4757 }
4758 
4759 static int nonSeekAvailable(int, long *);
4760 static int stdinAvailable(int, long *);
4761 
4762 // This code is a copy of JDK's sysAvailable
4763 // from src/windows/hpi/src/sys_api_md.c
4764 
4765 int os::available(int fd, jlong *bytes) {
4766   jlong cur, end;
4767   struct _stati64 stbuf64;
4768 
4769   if (::_fstati64(fd, &stbuf64) >= 0) {
4770     int mode = stbuf64.st_mode;
4771     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4772       int ret;
4773       long lpbytes;
4774       if (fd == 0) {
4775         ret = stdinAvailable(fd, &lpbytes);
4776       } else {
4777         ret = nonSeekAvailable(fd, &lpbytes);
4778       }
4779       (*bytes) = (jlong)(lpbytes);
4780       return ret;
4781     }
4782     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4783       return FALSE;
4784     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4785       return FALSE;
4786     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4787       return FALSE;
4788     }
4789     *bytes = end - cur;
4790     return TRUE;
4791   } else {
4792     return FALSE;
4793   }
4794 }
4795 
4796 void os::flockfile(FILE* fp) {
4797   _lock_file(fp);
4798 }
4799 
4800 void os::funlockfile(FILE* fp) {
4801   _unlock_file(fp);
4802 }
4803 
4804 // This code is a copy of JDK's nonSeekAvailable
4805 // from src/windows/hpi/src/sys_api_md.c
4806 
4807 static int nonSeekAvailable(int fd, long *pbytes) {
4808   // This is used for available on non-seekable devices
4809   // (like both named and anonymous pipes, such as pipes
4810   //  connected to an exec'd process).
4811   // Standard Input is a special case.
4812   HANDLE han;
4813 
4814   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4815     return FALSE;
4816   }
4817 
4818   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4819     // PeekNamedPipe fails when at EOF.  In that case we
4820     // simply make *pbytes = 0 which is consistent with the
4821     // behavior we get on Solaris when an fd is at EOF.
4822     // The only alternative is to raise an Exception,
4823     // which isn't really warranted.
4824     //
4825     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4826       return FALSE;
4827     }
4828     *pbytes = 0;
4829   }
4830   return TRUE;
4831 }
4832 
4833 #define MAX_INPUT_EVENTS 2000
4834 
4835 // This code is a copy of JDK's stdinAvailable
4836 // from src/windows/hpi/src/sys_api_md.c
4837 
4838 static int stdinAvailable(int fd, long *pbytes) {
4839   HANDLE han;
4840   DWORD numEventsRead = 0;  // Number of events read from buffer
4841   DWORD numEvents = 0;      // Number of events in buffer
4842   DWORD i = 0;              // Loop index
4843   DWORD curLength = 0;      // Position marker
4844   DWORD actualLength = 0;   // Number of bytes readable
4845   BOOL error = FALSE;       // Error holder
4846   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4847 
4848   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4849     return FALSE;
4850   }
4851 
4852   // Construct an array of input records in the console buffer
4853   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4854   if (error == 0) {
4855     return nonSeekAvailable(fd, pbytes);
4856   }
4857 
4858   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4859   if (numEvents > MAX_INPUT_EVENTS) {
4860     numEvents = MAX_INPUT_EVENTS;
4861   }
4862 
4863   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4864   if (lpBuffer == NULL) {
4865     return FALSE;
4866   }
4867 
4868   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4869   if (error == 0) {
4870     os::free(lpBuffer);
4871     return FALSE;
4872   }
4873 
4874   // Examine input records for the number of bytes available
4875   for (i=0; i<numEvents; i++) {
4876     if (lpBuffer[i].EventType == KEY_EVENT) {
4877 
4878       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4879                                       &(lpBuffer[i].Event);
4880       if (keyRecord->bKeyDown == TRUE) {
4881         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4882         curLength++;
4883         if (*keyPressed == '\r') {
4884           actualLength = curLength;
4885         }
4886       }
4887     }
4888   }
4889 
4890   if (lpBuffer != NULL) {
4891     os::free(lpBuffer);
4892   }
4893 
4894   *pbytes = (long) actualLength;
4895   return TRUE;
4896 }
4897 
4898 // Map a block of memory.
4899 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4900                         char *addr, size_t bytes, bool read_only,
4901                         bool allow_exec) {
4902   HANDLE hFile;
4903   char* base;
4904 
4905   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4906                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4907   if (hFile == NULL) {
4908     log_info(os)("CreateFile() failed: GetLastError->%ld.", GetLastError());
4909     return NULL;
4910   }
4911 
4912   if (allow_exec) {
4913     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4914     // unless it comes from a PE image (which the shared archive is not.)
4915     // Even VirtualProtect refuses to give execute access to mapped memory
4916     // that was not previously executable.
4917     //
4918     // Instead, stick the executable region in anonymous memory.  Yuck.
4919     // Penalty is that ~4 pages will not be shareable - in the future
4920     // we might consider DLLizing the shared archive with a proper PE
4921     // header so that mapping executable + sharing is possible.
4922 
4923     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4924                                 PAGE_READWRITE);
4925     if (base == NULL) {
4926       log_info(os)("VirtualAlloc() failed: GetLastError->%ld.", GetLastError());
4927       CloseHandle(hFile);
4928       return NULL;
4929     }
4930 
4931     DWORD bytes_read;
4932     OVERLAPPED overlapped;
4933     overlapped.Offset = (DWORD)file_offset;
4934     overlapped.OffsetHigh = 0;
4935     overlapped.hEvent = NULL;
4936     // ReadFile guarantees that if the return value is true, the requested
4937     // number of bytes were read before returning.
4938     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4939     if (!res) {
4940       log_info(os)("ReadFile() failed: GetLastError->%ld.", GetLastError());
4941       release_memory(base, bytes);
4942       CloseHandle(hFile);
4943       return NULL;
4944     }
4945   } else {
4946     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4947                                     NULL /* file_name */);
4948     if (hMap == NULL) {
4949       log_info(os)("CreateFileMapping() failed: GetLastError->%ld.", GetLastError());
4950       CloseHandle(hFile);
4951       return NULL;
4952     }
4953 
4954     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4955     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4956                                   (DWORD)bytes, addr);
4957     if (base == NULL) {
4958       log_info(os)("MapViewOfFileEx() failed: GetLastError->%ld.", GetLastError());
4959       CloseHandle(hMap);
4960       CloseHandle(hFile);
4961       return NULL;
4962     }
4963 
4964     if (CloseHandle(hMap) == 0) {
4965       log_info(os)("CloseHandle(hMap) failed: GetLastError->%ld.", GetLastError());
4966       CloseHandle(hFile);
4967       return base;
4968     }
4969   }
4970 
4971   if (allow_exec) {
4972     DWORD old_protect;
4973     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4974     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4975 
4976     if (!res) {
4977       log_info(os)("VirtualProtect() failed: GetLastError->%ld.", GetLastError());
4978       // Don't consider this a hard error, on IA32 even if the
4979       // VirtualProtect fails, we should still be able to execute
4980       CloseHandle(hFile);
4981       return base;
4982     }
4983   }
4984 
4985   if (CloseHandle(hFile) == 0) {
4986     log_info(os)("CloseHandle(hFile) failed: GetLastError->%ld.", GetLastError());
4987     return base;
4988   }
4989 
4990   return base;
4991 }
4992 
4993 
4994 // Remap a block of memory.
4995 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4996                           char *addr, size_t bytes, bool read_only,
4997                           bool allow_exec) {
4998   // This OS does not allow existing memory maps to be remapped so we
4999   // have to unmap the memory before we remap it.
5000   if (!os::unmap_memory(addr, bytes)) {
5001     return NULL;
5002   }
5003 
5004   // There is a very small theoretical window between the unmap_memory()
5005   // call above and the map_memory() call below where a thread in native
5006   // code may be able to access an address that is no longer mapped.
5007 
5008   return os::map_memory(fd, file_name, file_offset, addr, bytes,
5009                         read_only, allow_exec);
5010 }
5011 
5012 
5013 // Unmap a block of memory.
5014 // Returns true=success, otherwise false.
5015 
5016 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5017   MEMORY_BASIC_INFORMATION mem_info;
5018   if (VirtualQuery(addr, &mem_info, sizeof(mem_info)) == 0) {
5019     log_info(os)("VirtualQuery() failed: GetLastError->%ld.", GetLastError());
5020     return false;
5021   }
5022 
5023   // Executable memory was not mapped using CreateFileMapping/MapViewOfFileEx.
5024   // Instead, executable region was allocated using VirtualAlloc(). See
5025   // pd_map_memory() above.
5026   //
5027   // The following flags should match the 'exec_access' flages used for
5028   // VirtualProtect() in pd_map_memory().
5029   if (mem_info.Protect == PAGE_EXECUTE_READ ||
5030       mem_info.Protect == PAGE_EXECUTE_READWRITE) {
5031     return pd_release_memory(addr, bytes);
5032   }
5033 
5034   BOOL result = UnmapViewOfFile(addr);
5035   if (result == 0) {
5036     log_info(os)("UnmapViewOfFile() failed: GetLastError->%ld.", GetLastError());
5037     return false;
5038   }
5039   return true;
5040 }
5041 
5042 void os::pause() {
5043   char filename[MAX_PATH];
5044   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5045     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5046   } else {
5047     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5048   }
5049 
5050   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5051   if (fd != -1) {
5052     struct stat buf;
5053     ::close(fd);
5054     while (::stat(filename, &buf) == 0) {
5055       Sleep(100);
5056     }
5057   } else {
5058     jio_fprintf(stderr,
5059                 "Could not open pause file '%s', continuing immediately.\n", filename);
5060   }
5061 }
5062 
5063 Thread* os::ThreadCrashProtection::_protected_thread = NULL;
5064 os::ThreadCrashProtection* os::ThreadCrashProtection::_crash_protection = NULL;
5065 volatile intptr_t os::ThreadCrashProtection::_crash_mux = 0;
5066 
5067 os::ThreadCrashProtection::ThreadCrashProtection() {
5068 }
5069 
5070 // See the caveats for this class in os_windows.hpp
5071 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
5072 // into this method and returns false. If no OS EXCEPTION was raised, returns
5073 // true.
5074 // The callback is supposed to provide the method that should be protected.
5075 //
5076 bool os::ThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
5077 
5078   Thread::muxAcquire(&_crash_mux, "CrashProtection");
5079 
5080   _protected_thread = Thread::current_or_null();
5081   assert(_protected_thread != NULL, "Cannot crash protect a NULL thread");
5082 
5083   bool success = true;
5084   __try {
5085     _crash_protection = this;
5086     cb.call();
5087   } __except(EXCEPTION_EXECUTE_HANDLER) {
5088     // only for protection, nothing to do
5089     success = false;
5090   }
5091   _crash_protection = NULL;
5092   _protected_thread = NULL;
5093   Thread::muxRelease(&_crash_mux);
5094   return success;
5095 }
5096 
5097 // An Event wraps a win32 "CreateEvent" kernel handle.
5098 //
5099 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
5100 //
5101 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
5102 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
5103 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
5104 //     In addition, an unpark() operation might fetch the handle field, but the
5105 //     event could recycle between the fetch and the SetEvent() operation.
5106 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
5107 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
5108 //     on an stale but recycled handle would be harmless, but in practice this might
5109 //     confuse other non-Sun code, so it's not a viable approach.
5110 //
5111 // 2:  Once a win32 event handle is associated with an Event, it remains associated
5112 //     with the Event.  The event handle is never closed.  This could be construed
5113 //     as handle leakage, but only up to the maximum # of threads that have been extant
5114 //     at any one time.  This shouldn't be an issue, as windows platforms typically
5115 //     permit a process to have hundreds of thousands of open handles.
5116 //
5117 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
5118 //     and release unused handles.
5119 //
5120 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
5121 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
5122 //
5123 // 5.  Use an RCU-like mechanism (Read-Copy Update).
5124 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
5125 //
5126 // We use (2).
5127 //
5128 // TODO-FIXME:
5129 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
5130 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
5131 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
5132 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
5133 //     into a single win32 CreateEvent() handle.
5134 //
5135 // Assumption:
5136 //    Only one parker can exist on an event, which is why we allocate
5137 //    them per-thread. Multiple unparkers can coexist.
5138 //
5139 // _Event transitions in park()
5140 //   -1 => -1 : illegal
5141 //    1 =>  0 : pass - return immediately
5142 //    0 => -1 : block; then set _Event to 0 before returning
5143 //
5144 // _Event transitions in unpark()
5145 //    0 => 1 : just return
5146 //    1 => 1 : just return
5147 //   -1 => either 0 or 1; must signal target thread
5148 //         That is, we can safely transition _Event from -1 to either
5149 //         0 or 1.
5150 //
5151 // _Event serves as a restricted-range semaphore.
5152 //   -1 : thread is blocked, i.e. there is a waiter
5153 //    0 : neutral: thread is running or ready,
5154 //        could have been signaled after a wait started
5155 //    1 : signaled - thread is running or ready
5156 //
5157 // Another possible encoding of _Event would be with
5158 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5159 //
5160 
5161 int os::PlatformEvent::park(jlong Millis) {
5162   // Transitions for _Event:
5163   //   -1 => -1 : illegal
5164   //    1 =>  0 : pass - return immediately
5165   //    0 => -1 : block; then set _Event to 0 before returning
5166 
5167   guarantee(_ParkHandle != NULL , "Invariant");
5168   guarantee(Millis > 0          , "Invariant");
5169 
5170   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
5171   // the initial park() operation.
5172   // Consider: use atomic decrement instead of CAS-loop
5173 
5174   int v;
5175   for (;;) {
5176     v = _Event;
5177     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5178   }
5179   guarantee((v == 0) || (v == 1), "invariant");
5180   if (v != 0) return OS_OK;
5181 
5182   // Do this the hard way by blocking ...
5183   // TODO: consider a brief spin here, gated on the success of recent
5184   // spin attempts by this thread.
5185   //
5186   // We decompose long timeouts into series of shorter timed waits.
5187   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
5188   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
5189   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
5190   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
5191   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
5192   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
5193   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
5194   // for the already waited time.  This policy does not admit any new outcomes.
5195   // In the future, however, we might want to track the accumulated wait time and
5196   // adjust Millis accordingly if we encounter a spurious wakeup.
5197 
5198   const int MAXTIMEOUT = 0x10000000;
5199   DWORD rv = WAIT_TIMEOUT;
5200   while (_Event < 0 && Millis > 0) {
5201     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5202     if (Millis > MAXTIMEOUT) {
5203       prd = MAXTIMEOUT;
5204     }
5205     rv = ::WaitForSingleObject(_ParkHandle, prd);
5206     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5207     if (rv == WAIT_TIMEOUT) {
5208       Millis -= prd;
5209     }
5210   }
5211   v = _Event;
5212   _Event = 0;
5213   // see comment at end of os::PlatformEvent::park() below:
5214   OrderAccess::fence();
5215   // If we encounter a nearly simultanous timeout expiry and unpark()
5216   // we return OS_OK indicating we awoke via unpark().
5217   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5218   return (v >= 0) ? OS_OK : OS_TIMEOUT;
5219 }
5220 
5221 void os::PlatformEvent::park() {
5222   // Transitions for _Event:
5223   //   -1 => -1 : illegal
5224   //    1 =>  0 : pass - return immediately
5225   //    0 => -1 : block; then set _Event to 0 before returning
5226 
5227   guarantee(_ParkHandle != NULL, "Invariant");
5228   // Invariant: Only the thread associated with the Event/PlatformEvent
5229   // may call park().
5230   // Consider: use atomic decrement instead of CAS-loop
5231   int v;
5232   for (;;) {
5233     v = _Event;
5234     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5235   }
5236   guarantee((v == 0) || (v == 1), "invariant");
5237   if (v != 0) return;
5238 
5239   // Do this the hard way by blocking ...
5240   // TODO: consider a brief spin here, gated on the success of recent
5241   // spin attempts by this thread.
5242   while (_Event < 0) {
5243     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5244     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5245   }
5246 
5247   // Usually we'll find _Event == 0 at this point, but as
5248   // an optional optimization we clear it, just in case can
5249   // multiple unpark() operations drove _Event up to 1.
5250   _Event = 0;
5251   OrderAccess::fence();
5252   guarantee(_Event >= 0, "invariant");
5253 }
5254 
5255 void os::PlatformEvent::unpark() {
5256   guarantee(_ParkHandle != NULL, "Invariant");
5257 
5258   // Transitions for _Event:
5259   //    0 => 1 : just return
5260   //    1 => 1 : just return
5261   //   -1 => either 0 or 1; must signal target thread
5262   //         That is, we can safely transition _Event from -1 to either
5263   //         0 or 1.
5264   // See also: "Semaphores in Plan 9" by Mullender & Cox
5265   //
5266   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5267   // that it will take two back-to-back park() calls for the owning
5268   // thread to block. This has the benefit of forcing a spurious return
5269   // from the first park() call after an unpark() call which will help
5270   // shake out uses of park() and unpark() without condition variables.
5271 
5272   if (Atomic::xchg(1, &_Event) >= 0) return;
5273 
5274   ::SetEvent(_ParkHandle);
5275 }
5276 
5277 
5278 // JSR166
5279 // -------------------------------------------------------
5280 
5281 // The Windows implementation of Park is very straightforward: Basic
5282 // operations on Win32 Events turn out to have the right semantics to
5283 // use them directly. We opportunistically resuse the event inherited
5284 // from Monitor.
5285 
5286 void Parker::park(bool isAbsolute, jlong time) {
5287   guarantee(_ParkEvent != NULL, "invariant");
5288   // First, demultiplex/decode time arguments
5289   if (time < 0) { // don't wait
5290     return;
5291   } else if (time == 0 && !isAbsolute) {
5292     time = INFINITE;
5293   } else if (isAbsolute) {
5294     time -= os::javaTimeMillis(); // convert to relative time
5295     if (time <= 0) {  // already elapsed
5296       return;
5297     }
5298   } else { // relative
5299     time /= 1000000;  // Must coarsen from nanos to millis
5300     if (time == 0) {  // Wait for the minimal time unit if zero
5301       time = 1;
5302     }
5303   }
5304 
5305   JavaThread* thread = JavaThread::current();
5306 
5307   // Don't wait if interrupted or already triggered
5308   if (Thread::is_interrupted(thread, false) ||
5309       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5310     ResetEvent(_ParkEvent);
5311     return;
5312   } else {
5313     ThreadBlockInVM tbivm(thread);
5314     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5315     thread->set_suspend_equivalent();
5316 
5317     WaitForSingleObject(_ParkEvent, time);
5318     ResetEvent(_ParkEvent);
5319 
5320     // If externally suspended while waiting, re-suspend
5321     if (thread->handle_special_suspend_equivalent_condition()) {
5322       thread->java_suspend_self();
5323     }
5324   }
5325 }
5326 
5327 void Parker::unpark() {
5328   guarantee(_ParkEvent != NULL, "invariant");
5329   SetEvent(_ParkEvent);
5330 }
5331 
5332 // Platform Monitor implementation
5333 
5334 // Must already be locked
5335 int os::PlatformMonitor::wait(jlong millis) {
5336   assert(millis >= 0, "negative timeout");
5337   int ret = OS_TIMEOUT;
5338   int status = SleepConditionVariableCS(&_cond, &_mutex,
5339                                         millis == 0 ? INFINITE : millis);
5340   if (status != 0) {
5341     ret = OS_OK;
5342   }
5343   #ifndef PRODUCT
5344   else {
5345     DWORD err = GetLastError();
5346     assert(err == ERROR_TIMEOUT, "SleepConditionVariableCS: %ld:", err);
5347   }
5348   #endif
5349   return ret;
5350 }
5351 
5352 // Run the specified command in a separate process. Return its exit value,
5353 // or -1 on failure (e.g. can't create a new process).
5354 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5355   STARTUPINFO si;
5356   PROCESS_INFORMATION pi;
5357   DWORD exit_code;
5358 
5359   char * cmd_string;
5360   char * cmd_prefix = "cmd /C ";
5361   size_t len = strlen(cmd) + strlen(cmd_prefix) + 1;
5362   cmd_string = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtInternal);
5363   if (cmd_string == NULL) {
5364     return -1;
5365   }
5366   cmd_string[0] = '\0';
5367   strcat(cmd_string, cmd_prefix);
5368   strcat(cmd_string, cmd);
5369 
5370   // now replace all '\n' with '&'
5371   char * substring = cmd_string;
5372   while ((substring = strchr(substring, '\n')) != NULL) {
5373     substring[0] = '&';
5374     substring++;
5375   }
5376   memset(&si, 0, sizeof(si));
5377   si.cb = sizeof(si);
5378   memset(&pi, 0, sizeof(pi));
5379   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5380                             cmd_string,    // command line
5381                             NULL,   // process security attribute
5382                             NULL,   // thread security attribute
5383                             TRUE,   // inherits system handles
5384                             0,      // no creation flags
5385                             NULL,   // use parent's environment block
5386                             NULL,   // use parent's starting directory
5387                             &si,    // (in) startup information
5388                             &pi);   // (out) process information
5389 
5390   if (rslt) {
5391     // Wait until child process exits.
5392     WaitForSingleObject(pi.hProcess, INFINITE);
5393 
5394     GetExitCodeProcess(pi.hProcess, &exit_code);
5395 
5396     // Close process and thread handles.
5397     CloseHandle(pi.hProcess);
5398     CloseHandle(pi.hThread);
5399   } else {
5400     exit_code = -1;
5401   }
5402 
5403   FREE_C_HEAP_ARRAY(char, cmd_string);
5404   return (int)exit_code;
5405 }
5406 
5407 bool os::find(address addr, outputStream* st) {
5408   int offset = -1;
5409   bool result = false;
5410   char buf[256];
5411   if (os::dll_address_to_library_name(addr, buf, sizeof(buf), &offset)) {
5412     st->print(PTR_FORMAT " ", addr);
5413     if (strlen(buf) < sizeof(buf) - 1) {
5414       char* p = strrchr(buf, '\\');
5415       if (p) {
5416         st->print("%s", p + 1);
5417       } else {
5418         st->print("%s", buf);
5419       }
5420     } else {
5421         // The library name is probably truncated. Let's omit the library name.
5422         // See also JDK-8147512.
5423     }
5424     if (os::dll_address_to_function_name(addr, buf, sizeof(buf), &offset)) {
5425       st->print("::%s + 0x%x", buf, offset);
5426     }
5427     st->cr();
5428     result = true;
5429   }
5430   return result;
5431 }
5432 
5433 static jint initSock() {
5434   WSADATA wsadata;
5435 
5436   if (WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5437     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5438                 ::GetLastError());
5439     return JNI_ERR;
5440   }
5441   return JNI_OK;
5442 }
5443 
5444 struct hostent* os::get_host_by_name(char* name) {
5445   return (struct hostent*)gethostbyname(name);
5446 }
5447 
5448 int os::socket_close(int fd) {
5449   return ::closesocket(fd);
5450 }
5451 
5452 int os::socket(int domain, int type, int protocol) {
5453   return ::socket(domain, type, protocol);
5454 }
5455 
5456 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5457   return ::connect(fd, him, len);
5458 }
5459 
5460 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5461   return ::recv(fd, buf, (int)nBytes, flags);
5462 }
5463 
5464 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5465   return ::send(fd, buf, (int)nBytes, flags);
5466 }
5467 
5468 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5469   return ::send(fd, buf, (int)nBytes, flags);
5470 }
5471 
5472 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5473 #if defined(IA32)
5474   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5475 #elif defined (AMD64)
5476   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5477 #endif
5478 
5479 // returns true if thread could be suspended,
5480 // false otherwise
5481 static bool do_suspend(HANDLE* h) {
5482   if (h != NULL) {
5483     if (SuspendThread(*h) != ~0) {
5484       return true;
5485     }
5486   }
5487   return false;
5488 }
5489 
5490 // resume the thread
5491 // calling resume on an active thread is a no-op
5492 static void do_resume(HANDLE* h) {
5493   if (h != NULL) {
5494     ResumeThread(*h);
5495   }
5496 }
5497 
5498 // retrieve a suspend/resume context capable handle
5499 // from the tid. Caller validates handle return value.
5500 void get_thread_handle_for_extended_context(HANDLE* h,
5501                                             OSThread::thread_id_t tid) {
5502   if (h != NULL) {
5503     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5504   }
5505 }
5506 
5507 // Thread sampling implementation
5508 //
5509 void os::SuspendedThreadTask::internal_do_task() {
5510   CONTEXT    ctxt;
5511   HANDLE     h = NULL;
5512 
5513   // get context capable handle for thread
5514   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5515 
5516   // sanity
5517   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5518     return;
5519   }
5520 
5521   // suspend the thread
5522   if (do_suspend(&h)) {
5523     ctxt.ContextFlags = sampling_context_flags;
5524     // get thread context
5525     GetThreadContext(h, &ctxt);
5526     SuspendedThreadTaskContext context(_thread, &ctxt);
5527     // pass context to Thread Sampling impl
5528     do_task(context);
5529     // resume thread
5530     do_resume(&h);
5531   }
5532 
5533   // close handle
5534   CloseHandle(h);
5535 }
5536 
5537 bool os::start_debugging(char *buf, int buflen) {
5538   int len = (int)strlen(buf);
5539   char *p = &buf[len];
5540 
5541   jio_snprintf(p, buflen-len,
5542              "\n\n"
5543              "Do you want to debug the problem?\n\n"
5544              "To debug, attach Visual Studio to process %d; then switch to thread 0x%x\n"
5545              "Select 'Yes' to launch Visual Studio automatically (PATH must include msdev)\n"
5546              "Otherwise, select 'No' to abort...",
5547              os::current_process_id(), os::current_thread_id());
5548 
5549   bool yes = os::message_box("Unexpected Error", buf);
5550 
5551   if (yes) {
5552     // os::breakpoint() calls DebugBreak(), which causes a breakpoint
5553     // exception. If VM is running inside a debugger, the debugger will
5554     // catch the exception. Otherwise, the breakpoint exception will reach
5555     // the default windows exception handler, which can spawn a debugger and
5556     // automatically attach to the dying VM.
5557     os::breakpoint();
5558     yes = false;
5559   }
5560   return yes;
5561 }
5562 
5563 void* os::get_default_process_handle() {
5564   return (void*)GetModuleHandle(NULL);
5565 }
5566 
5567 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5568 // which is used to find statically linked in agents.
5569 // Additionally for windows, takes into account __stdcall names.
5570 // Parameters:
5571 //            sym_name: Symbol in library we are looking for
5572 //            lib_name: Name of library to look in, NULL for shared libs.
5573 //            is_absolute_path == true if lib_name is absolute path to agent
5574 //                                     such as "C:/a/b/L.dll"
5575 //            == false if only the base name of the library is passed in
5576 //               such as "L"
5577 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5578                                     bool is_absolute_path) {
5579   char *agent_entry_name;
5580   size_t len;
5581   size_t name_len;
5582   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5583   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5584   const char *start;
5585 
5586   if (lib_name != NULL) {
5587     len = name_len = strlen(lib_name);
5588     if (is_absolute_path) {
5589       // Need to strip path, prefix and suffix
5590       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5591         lib_name = ++start;
5592       } else {
5593         // Need to check for drive prefix
5594         if ((start = strchr(lib_name, ':')) != NULL) {
5595           lib_name = ++start;
5596         }
5597       }
5598       if (len <= (prefix_len + suffix_len)) {
5599         return NULL;
5600       }
5601       lib_name += prefix_len;
5602       name_len = strlen(lib_name) - suffix_len;
5603     }
5604   }
5605   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5606   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5607   if (agent_entry_name == NULL) {
5608     return NULL;
5609   }
5610   if (lib_name != NULL) {
5611     const char *p = strrchr(sym_name, '@');
5612     if (p != NULL && p != sym_name) {
5613       // sym_name == _Agent_OnLoad@XX
5614       strncpy(agent_entry_name, sym_name, (p - sym_name));
5615       agent_entry_name[(p-sym_name)] = '\0';
5616       // agent_entry_name == _Agent_OnLoad
5617       strcat(agent_entry_name, "_");
5618       strncat(agent_entry_name, lib_name, name_len);
5619       strcat(agent_entry_name, p);
5620       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5621     } else {
5622       strcpy(agent_entry_name, sym_name);
5623       strcat(agent_entry_name, "_");
5624       strncat(agent_entry_name, lib_name, name_len);
5625     }
5626   } else {
5627     strcpy(agent_entry_name, sym_name);
5628   }
5629   return agent_entry_name;
5630 }
5631 
5632 #ifndef PRODUCT
5633 
5634 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5635 // contiguous memory block at a particular address.
5636 // The test first tries to find a good approximate address to allocate at by using the same
5637 // method to allocate some memory at any address. The test then tries to allocate memory in
5638 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5639 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5640 // the previously allocated memory is available for allocation. The only actual failure
5641 // that is reported is when the test tries to allocate at a particular location but gets a
5642 // different valid one. A NULL return value at this point is not considered an error but may
5643 // be legitimate.
5644 void TestReserveMemorySpecial_test() {
5645   if (!UseLargePages) {
5646     return;
5647   }
5648   // save current value of globals
5649   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5650   bool old_use_numa_interleaving = UseNUMAInterleaving;
5651 
5652   // set globals to make sure we hit the correct code path
5653   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5654 
5655   // do an allocation at an address selected by the OS to get a good one.
5656   const size_t large_allocation_size = os::large_page_size() * 4;
5657   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5658   if (result == NULL) {
5659   } else {
5660     os::release_memory_special(result, large_allocation_size);
5661 
5662     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5663     // we managed to get it once.
5664     const size_t expected_allocation_size = os::large_page_size();
5665     char* expected_location = result + os::large_page_size();
5666     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5667     if (actual_location == NULL) {
5668     } else {
5669       // release memory
5670       os::release_memory_special(actual_location, expected_allocation_size);
5671       // only now check, after releasing any memory to avoid any leaks.
5672       assert(actual_location == expected_location,
5673              "Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
5674              expected_location, expected_allocation_size, actual_location);
5675     }
5676   }
5677 
5678   // restore globals
5679   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5680   UseNUMAInterleaving = old_use_numa_interleaving;
5681 }
5682 #endif // PRODUCT
5683 
5684 /*
5685   All the defined signal names for Windows.
5686 
5687   NOTE that not all of these names are accepted by FindSignal!
5688 
5689   For various reasons some of these may be rejected at runtime.
5690 
5691   Here are the names currently accepted by a user of sun.misc.Signal with
5692   1.4.1 (ignoring potential interaction with use of chaining, etc):
5693 
5694      (LIST TBD)
5695 
5696 */
5697 int os::get_signal_number(const char* name) {
5698   static const struct {
5699     char* name;
5700     int   number;
5701   } siglabels [] =
5702     // derived from version 6.0 VC98/include/signal.h
5703   {"ABRT",      SIGABRT,        // abnormal termination triggered by abort cl
5704   "FPE",        SIGFPE,         // floating point exception
5705   "SEGV",       SIGSEGV,        // segment violation
5706   "INT",        SIGINT,         // interrupt
5707   "TERM",       SIGTERM,        // software term signal from kill
5708   "BREAK",      SIGBREAK,       // Ctrl-Break sequence
5709   "ILL",        SIGILL};        // illegal instruction
5710   for (unsigned i = 0; i < ARRAY_SIZE(siglabels); ++i) {
5711     if (strcmp(name, siglabels[i].name) == 0) {
5712       return siglabels[i].number;
5713     }
5714   }
5715   return -1;
5716 }
5717 
5718 // Fast current thread access
5719 
5720 int os::win32::_thread_ptr_offset = 0;
5721 
5722 static void call_wrapper_dummy() {}
5723 
5724 // We need to call the os_exception_wrapper once so that it sets
5725 // up the offset from FS of the thread pointer.
5726 void os::win32::initialize_thread_ptr_offset() {
5727   os::os_exception_wrapper((java_call_t)call_wrapper_dummy,
5728                            NULL, NULL, NULL, NULL);
5729 }