1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/codeHeapState.hpp"
  32 #include "code/dependencyContext.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "compiler/compileLog.hpp"
  35 #include "compiler/compilerOracle.hpp"
  36 #include "compiler/directivesParser.hpp"
  37 #include "interpreter/linkResolver.hpp"
  38 #include "jfr/jfrEvents.hpp"
  39 #include "logging/log.hpp"
  40 #include "logging/logStream.hpp"
  41 #include "memory/allocation.inline.hpp"
  42 #include "memory/resourceArea.hpp"
  43 #include "oops/methodData.hpp"
  44 #include "oops/method.inline.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "prims/nativeLookup.hpp"
  47 #include "prims/whitebox.hpp"
  48 #include "runtime/arguments.hpp"
  49 #include "runtime/atomic.hpp"
  50 #include "runtime/compilationPolicy.hpp"
  51 #include "runtime/handles.inline.hpp"
  52 #include "runtime/init.hpp"
  53 #include "runtime/interfaceSupport.inline.hpp"
  54 #include "runtime/javaCalls.hpp"
  55 #include "runtime/jniHandles.inline.hpp"
  56 #include "runtime/os.hpp"
  57 #include "runtime/safepointVerifiers.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/sweeper.hpp"
  60 #include "runtime/timerTrace.hpp"
  61 #include "runtime/vframe.inline.hpp"
  62 #include "utilities/debug.hpp"
  63 #include "utilities/dtrace.hpp"
  64 #include "utilities/events.hpp"
  65 #include "utilities/formatBuffer.hpp"
  66 #include "utilities/macros.hpp"
  67 #ifdef COMPILER1
  68 #include "c1/c1_Compiler.hpp"
  69 #endif
  70 #if INCLUDE_JVMCI
  71 #include "jvmci/jvmciCompiler.hpp"
  72 #include "jvmci/jvmciRuntime.hpp"
  73 #include "jvmci/jvmciJavaClasses.hpp"
  74 #include "runtime/vframe.hpp"
  75 #endif
  76 #ifdef COMPILER2
  77 #include "opto/c2compiler.hpp"
  78 #endif
  79 
  80 #ifdef DTRACE_ENABLED
  81 
  82 // Only bother with this argument setup if dtrace is available
  83 
  84 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)             \
  85   {                                                                      \
  86     Symbol* klass_name = (method)->klass_name();                         \
  87     Symbol* name = (method)->name();                                     \
  88     Symbol* signature = (method)->signature();                           \
  89     HOTSPOT_METHOD_COMPILE_BEGIN(                                        \
  90       (char *) comp_name, strlen(comp_name),                             \
  91       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
  92       (char *) name->bytes(), name->utf8_length(),                       \
  93       (char *) signature->bytes(), signature->utf8_length());            \
  94   }
  95 
  96 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)      \
  97   {                                                                      \
  98     Symbol* klass_name = (method)->klass_name();                         \
  99     Symbol* name = (method)->name();                                     \
 100     Symbol* signature = (method)->signature();                           \
 101     HOTSPOT_METHOD_COMPILE_END(                                          \
 102       (char *) comp_name, strlen(comp_name),                             \
 103       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
 104       (char *) name->bytes(), name->utf8_length(),                       \
 105       (char *) signature->bytes(), signature->utf8_length(), (success)); \
 106   }
 107 
 108 #else //  ndef DTRACE_ENABLED
 109 
 110 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)
 111 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)
 112 
 113 #endif // ndef DTRACE_ENABLED
 114 
 115 bool CompileBroker::_initialized = false;
 116 volatile bool CompileBroker::_should_block = false;
 117 volatile int  CompileBroker::_print_compilation_warning = 0;
 118 volatile jint CompileBroker::_should_compile_new_jobs = run_compilation;
 119 
 120 // The installed compiler(s)
 121 AbstractCompiler* CompileBroker::_compilers[2];
 122 
 123 // The maximum numbers of compiler threads to be determined during startup.
 124 int CompileBroker::_c1_count = 0;
 125 int CompileBroker::_c2_count = 0;
 126 
 127 // An array of compiler names as Java String objects
 128 jobject* CompileBroker::_compiler1_objects = NULL;
 129 jobject* CompileBroker::_compiler2_objects = NULL;
 130 
 131 CompileLog** CompileBroker::_compiler1_logs = NULL;
 132 CompileLog** CompileBroker::_compiler2_logs = NULL;
 133 
 134 // These counters are used to assign an unique ID to each compilation.
 135 volatile jint CompileBroker::_compilation_id     = 0;
 136 volatile jint CompileBroker::_osr_compilation_id = 0;
 137 
 138 // Debugging information
 139 int  CompileBroker::_last_compile_type     = no_compile;
 140 int  CompileBroker::_last_compile_level    = CompLevel_none;
 141 char CompileBroker::_last_method_compiled[CompileBroker::name_buffer_length];
 142 
 143 // Performance counters
 144 PerfCounter* CompileBroker::_perf_total_compilation = NULL;
 145 PerfCounter* CompileBroker::_perf_osr_compilation = NULL;
 146 PerfCounter* CompileBroker::_perf_standard_compilation = NULL;
 147 
 148 PerfCounter* CompileBroker::_perf_total_bailout_count = NULL;
 149 PerfCounter* CompileBroker::_perf_total_invalidated_count = NULL;
 150 PerfCounter* CompileBroker::_perf_total_compile_count = NULL;
 151 PerfCounter* CompileBroker::_perf_total_osr_compile_count = NULL;
 152 PerfCounter* CompileBroker::_perf_total_standard_compile_count = NULL;
 153 
 154 PerfCounter* CompileBroker::_perf_sum_osr_bytes_compiled = NULL;
 155 PerfCounter* CompileBroker::_perf_sum_standard_bytes_compiled = NULL;
 156 PerfCounter* CompileBroker::_perf_sum_nmethod_size = NULL;
 157 PerfCounter* CompileBroker::_perf_sum_nmethod_code_size = NULL;
 158 
 159 PerfStringVariable* CompileBroker::_perf_last_method = NULL;
 160 PerfStringVariable* CompileBroker::_perf_last_failed_method = NULL;
 161 PerfStringVariable* CompileBroker::_perf_last_invalidated_method = NULL;
 162 PerfVariable*       CompileBroker::_perf_last_compile_type = NULL;
 163 PerfVariable*       CompileBroker::_perf_last_compile_size = NULL;
 164 PerfVariable*       CompileBroker::_perf_last_failed_type = NULL;
 165 PerfVariable*       CompileBroker::_perf_last_invalidated_type = NULL;
 166 
 167 // Timers and counters for generating statistics
 168 elapsedTimer CompileBroker::_t_total_compilation;
 169 elapsedTimer CompileBroker::_t_osr_compilation;
 170 elapsedTimer CompileBroker::_t_standard_compilation;
 171 elapsedTimer CompileBroker::_t_invalidated_compilation;
 172 elapsedTimer CompileBroker::_t_bailedout_compilation;
 173 
 174 int CompileBroker::_total_bailout_count            = 0;
 175 int CompileBroker::_total_invalidated_count        = 0;
 176 int CompileBroker::_total_compile_count            = 0;
 177 int CompileBroker::_total_osr_compile_count        = 0;
 178 int CompileBroker::_total_standard_compile_count   = 0;
 179 int CompileBroker::_total_compiler_stopped_count   = 0;
 180 int CompileBroker::_total_compiler_restarted_count = 0;
 181 
 182 int CompileBroker::_sum_osr_bytes_compiled         = 0;
 183 int CompileBroker::_sum_standard_bytes_compiled    = 0;
 184 int CompileBroker::_sum_nmethod_size               = 0;
 185 int CompileBroker::_sum_nmethod_code_size          = 0;
 186 
 187 long CompileBroker::_peak_compilation_time         = 0;
 188 
 189 CompileQueue* CompileBroker::_c2_compile_queue     = NULL;
 190 CompileQueue* CompileBroker::_c1_compile_queue     = NULL;
 191 
 192 
 193 
 194 class CompilationLog : public StringEventLog {
 195  public:
 196   CompilationLog() : StringEventLog("Compilation events") {
 197   }
 198 
 199   void log_compile(JavaThread* thread, CompileTask* task) {
 200     StringLogMessage lm;
 201     stringStream sstr = lm.stream();
 202     // msg.time_stamp().update_to(tty->time_stamp().ticks());
 203     task->print(&sstr, NULL, true, false);
 204     log(thread, "%s", (const char*)lm);
 205   }
 206 
 207   void log_nmethod(JavaThread* thread, nmethod* nm) {
 208     log(thread, "nmethod %d%s " INTPTR_FORMAT " code [" INTPTR_FORMAT ", " INTPTR_FORMAT "]",
 209         nm->compile_id(), nm->is_osr_method() ? "%" : "",
 210         p2i(nm), p2i(nm->code_begin()), p2i(nm->code_end()));
 211   }
 212 
 213   void log_failure(JavaThread* thread, CompileTask* task, const char* reason, const char* retry_message) {
 214     StringLogMessage lm;
 215     lm.print("%4d   COMPILE SKIPPED: %s", task->compile_id(), reason);
 216     if (retry_message != NULL) {
 217       lm.append(" (%s)", retry_message);
 218     }
 219     lm.print("\n");
 220     log(thread, "%s", (const char*)lm);
 221   }
 222 
 223   void log_metaspace_failure(const char* reason) {
 224     ResourceMark rm;
 225     StringLogMessage lm;
 226     lm.print("%4d   COMPILE PROFILING SKIPPED: %s", -1, reason);
 227     lm.print("\n");
 228     log(JavaThread::current(), "%s", (const char*)lm);
 229   }
 230 };
 231 
 232 static CompilationLog* _compilation_log = NULL;
 233 
 234 bool compileBroker_init() {
 235   if (LogEvents) {
 236     _compilation_log = new CompilationLog();
 237   }
 238 
 239   // init directives stack, adding default directive
 240   DirectivesStack::init();
 241 
 242   if (DirectivesParser::has_file()) {
 243     return DirectivesParser::parse_from_flag();
 244   } else if (CompilerDirectivesPrint) {
 245     // Print default directive even when no other was added
 246     DirectivesStack::print(tty);
 247   }
 248 
 249   return true;
 250 }
 251 
 252 CompileTaskWrapper::CompileTaskWrapper(CompileTask* task) {
 253   CompilerThread* thread = CompilerThread::current();
 254   thread->set_task(task);
 255 #if INCLUDE_JVMCI
 256   if (task->is_blocking() && CompileBroker::compiler(task->comp_level())->is_jvmci()) {
 257     task->set_jvmci_compiler_thread(thread);
 258   }
 259 #endif
 260   CompileLog*     log  = thread->log();
 261   if (log != NULL && !task->is_unloaded())  task->log_task_start(log);
 262 }
 263 
 264 CompileTaskWrapper::~CompileTaskWrapper() {
 265   CompilerThread* thread = CompilerThread::current();
 266   CompileTask* task = thread->task();
 267   CompileLog*  log  = thread->log();
 268   if (log != NULL && !task->is_unloaded())  task->log_task_done(log);
 269   thread->set_task(NULL);
 270   task->set_code_handle(NULL);
 271   thread->set_env(NULL);
 272   if (task->is_blocking()) {
 273     bool free_task = false;
 274     {
 275       MutexLocker notifier(task->lock(), thread);
 276       task->mark_complete();
 277 #if INCLUDE_JVMCI
 278       if (CompileBroker::compiler(task->comp_level())->is_jvmci()) {
 279         if (!task->has_waiter()) {
 280           // The waiting thread timed out and thus did not free the task.
 281           free_task = true;
 282         }
 283         task->set_jvmci_compiler_thread(NULL);
 284       }
 285 #endif
 286       if (!free_task) {
 287         // Notify the waiting thread that the compilation has completed
 288         // so that it can free the task.
 289         task->lock()->notify_all();
 290       }
 291     }
 292     if (free_task) {
 293       // The task can only be freed once the task lock is released.
 294       CompileTask::free(task);
 295     }
 296   } else {
 297     task->mark_complete();
 298 
 299     // By convention, the compiling thread is responsible for
 300     // recycling a non-blocking CompileTask.
 301     CompileTask::free(task);
 302   }
 303 }
 304 
 305 /**
 306  * Check if a CompilerThread can be removed and update count if requested.
 307  */
 308 static bool can_remove(CompilerThread *ct, bool do_it) {
 309   assert(UseDynamicNumberOfCompilerThreads, "or shouldn't be here");
 310   if (!ReduceNumberOfCompilerThreads) return false;
 311 
 312   AbstractCompiler *compiler = ct->compiler();
 313   int compiler_count = compiler->num_compiler_threads();
 314   bool c1 = compiler->is_c1();
 315 
 316   // Keep at least 1 compiler thread of each type.
 317   if (compiler_count < 2) return false;
 318 
 319   // Keep thread alive for at least some time.
 320   if (ct->idle_time_millis() < (c1 ? 500 : 100)) return false;
 321 
 322   // We only allow the last compiler thread of each type to get removed.
 323   jobject last_compiler = c1 ? CompileBroker::compiler1_object(compiler_count - 1)
 324                              : CompileBroker::compiler2_object(compiler_count - 1);
 325   if (oopDesc::equals(ct->threadObj(), JNIHandles::resolve_non_null(last_compiler))) {
 326     if (do_it) {
 327       assert_locked_or_safepoint(CompileThread_lock); // Update must be consistent.
 328       compiler->set_num_compiler_threads(compiler_count - 1);
 329     }
 330     return true;
 331   }
 332   return false;
 333 }
 334 
 335 /**
 336  * Add a CompileTask to a CompileQueue.
 337  */
 338 void CompileQueue::add(CompileTask* task) {
 339   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 340 
 341   task->set_next(NULL);
 342   task->set_prev(NULL);
 343 
 344   if (_last == NULL) {
 345     // The compile queue is empty.
 346     assert(_first == NULL, "queue is empty");
 347     _first = task;
 348     _last = task;
 349   } else {
 350     // Append the task to the queue.
 351     assert(_last->next() == NULL, "not last");
 352     _last->set_next(task);
 353     task->set_prev(_last);
 354     _last = task;
 355   }
 356   ++_size;
 357 
 358   // Mark the method as being in the compile queue.
 359   task->method()->set_queued_for_compilation();
 360 
 361   if (CIPrintCompileQueue) {
 362     print_tty();
 363   }
 364 
 365   if (LogCompilation && xtty != NULL) {
 366     task->log_task_queued();
 367   }
 368 
 369   // Notify CompilerThreads that a task is available.
 370   MethodCompileQueue_lock->notify_all();
 371 }
 372 
 373 /**
 374  * Empties compilation queue by putting all compilation tasks onto
 375  * a freelist. Furthermore, the method wakes up all threads that are
 376  * waiting on a compilation task to finish. This can happen if background
 377  * compilation is disabled.
 378  */
 379 void CompileQueue::free_all() {
 380   MutexLocker mu(MethodCompileQueue_lock);
 381   CompileTask* next = _first;
 382 
 383   // Iterate over all tasks in the compile queue
 384   while (next != NULL) {
 385     CompileTask* current = next;
 386     next = current->next();
 387     {
 388       // Wake up thread that blocks on the compile task.
 389       MutexLocker ct_lock(current->lock());
 390       current->lock()->notify();
 391     }
 392     // Put the task back on the freelist.
 393     CompileTask::free(current);
 394   }
 395   _first = NULL;
 396 
 397   // Wake up all threads that block on the queue.
 398   MethodCompileQueue_lock->notify_all();
 399 }
 400 
 401 /**
 402  * Get the next CompileTask from a CompileQueue
 403  */
 404 CompileTask* CompileQueue::get() {
 405   // save methods from RedefineClasses across safepoint
 406   // across MethodCompileQueue_lock below.
 407   methodHandle save_method;
 408   methodHandle save_hot_method;
 409 
 410   MutexLocker locker(MethodCompileQueue_lock);
 411   // If _first is NULL we have no more compile jobs. There are two reasons for
 412   // having no compile jobs: First, we compiled everything we wanted. Second,
 413   // we ran out of code cache so compilation has been disabled. In the latter
 414   // case we perform code cache sweeps to free memory such that we can re-enable
 415   // compilation.
 416   while (_first == NULL) {
 417     // Exit loop if compilation is disabled forever
 418     if (CompileBroker::is_compilation_disabled_forever()) {
 419       return NULL;
 420     }
 421 
 422     // If there are no compilation tasks and we can compile new jobs
 423     // (i.e., there is enough free space in the code cache) there is
 424     // no need to invoke the sweeper. As a result, the hotness of methods
 425     // remains unchanged. This behavior is desired, since we want to keep
 426     // the stable state, i.e., we do not want to evict methods from the
 427     // code cache if it is unnecessary.
 428     // We need a timed wait here, since compiler threads can exit if compilation
 429     // is disabled forever. We use 5 seconds wait time; the exiting of compiler threads
 430     // is not critical and we do not want idle compiler threads to wake up too often.
 431     MethodCompileQueue_lock->wait(!Mutex::_no_safepoint_check_flag, 5*1000);
 432 
 433     if (UseDynamicNumberOfCompilerThreads && _first == NULL) {
 434       // Still nothing to compile. Give caller a chance to stop this thread.
 435       if (can_remove(CompilerThread::current(), false)) return NULL;
 436     }
 437   }
 438 
 439   if (CompileBroker::is_compilation_disabled_forever()) {
 440     return NULL;
 441   }
 442 
 443   CompileTask* task;
 444   {
 445     NoSafepointVerifier nsv;
 446     task = CompilationPolicy::policy()->select_task(this);
 447     if (task != NULL) {
 448       task = task->select_for_compilation();
 449     }
 450   }
 451 
 452   if (task != NULL) {
 453     // Save method pointers across unlock safepoint.  The task is removed from
 454     // the compilation queue, which is walked during RedefineClasses.
 455     save_method = methodHandle(task->method());
 456     save_hot_method = methodHandle(task->hot_method());
 457 
 458     remove(task);
 459     purge_stale_tasks(); // may temporarily release MCQ lock
 460   }
 461   return task;
 462 }
 463 
 464 // Clean & deallocate stale compile tasks.
 465 // Temporarily releases MethodCompileQueue lock.
 466 void CompileQueue::purge_stale_tasks() {
 467   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 468   if (_first_stale != NULL) {
 469     // Stale tasks are purged when MCQ lock is released,
 470     // but _first_stale updates are protected by MCQ lock.
 471     // Once task processing starts and MCQ lock is released,
 472     // other compiler threads can reuse _first_stale.
 473     CompileTask* head = _first_stale;
 474     _first_stale = NULL;
 475     {
 476       MutexUnlocker ul(MethodCompileQueue_lock);
 477       for (CompileTask* task = head; task != NULL; ) {
 478         CompileTask* next_task = task->next();
 479         CompileTaskWrapper ctw(task); // Frees the task
 480         task->set_failure_reason("stale task");
 481         task = next_task;
 482       }
 483     }
 484   }
 485 }
 486 
 487 void CompileQueue::remove(CompileTask* task) {
 488   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 489   if (task->prev() != NULL) {
 490     task->prev()->set_next(task->next());
 491   } else {
 492     // max is the first element
 493     assert(task == _first, "Sanity");
 494     _first = task->next();
 495   }
 496 
 497   if (task->next() != NULL) {
 498     task->next()->set_prev(task->prev());
 499   } else {
 500     // max is the last element
 501     assert(task == _last, "Sanity");
 502     _last = task->prev();
 503   }
 504   --_size;
 505 }
 506 
 507 void CompileQueue::remove_and_mark_stale(CompileTask* task) {
 508   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 509   remove(task);
 510 
 511   // Enqueue the task for reclamation (should be done outside MCQ lock)
 512   task->set_next(_first_stale);
 513   task->set_prev(NULL);
 514   _first_stale = task;
 515 }
 516 
 517 // methods in the compile queue need to be marked as used on the stack
 518 // so that they don't get reclaimed by Redefine Classes
 519 void CompileQueue::mark_on_stack() {
 520   CompileTask* task = _first;
 521   while (task != NULL) {
 522     task->mark_on_stack();
 523     task = task->next();
 524   }
 525 }
 526 
 527 
 528 CompileQueue* CompileBroker::compile_queue(int comp_level) {
 529   if (is_c2_compile(comp_level)) return _c2_compile_queue;
 530   if (is_c1_compile(comp_level)) return _c1_compile_queue;
 531   return NULL;
 532 }
 533 
 534 void CompileBroker::print_compile_queues(outputStream* st) {
 535   st->print_cr("Current compiles: ");
 536 
 537   char buf[2000];
 538   int buflen = sizeof(buf);
 539   Threads::print_threads_compiling(st, buf, buflen, /* short_form = */ true);
 540 
 541   st->cr();
 542   if (_c1_compile_queue != NULL) {
 543     _c1_compile_queue->print(st);
 544   }
 545   if (_c2_compile_queue != NULL) {
 546     _c2_compile_queue->print(st);
 547   }
 548 }
 549 
 550 void CompileQueue::print(outputStream* st) {
 551   assert_locked_or_safepoint(MethodCompileQueue_lock);
 552   st->print_cr("%s:", name());
 553   CompileTask* task = _first;
 554   if (task == NULL) {
 555     st->print_cr("Empty");
 556   } else {
 557     while (task != NULL) {
 558       task->print(st, NULL, true, true);
 559       task = task->next();
 560     }
 561   }
 562   st->cr();
 563 }
 564 
 565 void CompileQueue::print_tty() {
 566   ttyLocker ttyl;
 567   print(tty);
 568 }
 569 
 570 CompilerCounters::CompilerCounters() {
 571   _current_method[0] = '\0';
 572   _compile_type = CompileBroker::no_compile;
 573 }
 574 
 575 // ------------------------------------------------------------------
 576 // CompileBroker::compilation_init
 577 //
 578 // Initialize the Compilation object
 579 void CompileBroker::compilation_init_phase1(TRAPS) {
 580   _last_method_compiled[0] = '\0';
 581 
 582   // No need to initialize compilation system if we do not use it.
 583   if (!UseCompiler) {
 584     return;
 585   }
 586   // Set the interface to the current compiler(s).
 587   _c1_count = CompilationPolicy::policy()->compiler_count(CompLevel_simple);
 588   _c2_count = CompilationPolicy::policy()->compiler_count(CompLevel_full_optimization);
 589 
 590 #if INCLUDE_JVMCI
 591   if (EnableJVMCI) {
 592     // This is creating a JVMCICompiler singleton.
 593     JVMCICompiler* jvmci = new JVMCICompiler();
 594 
 595     if (UseJVMCICompiler) {
 596       _compilers[1] = jvmci;
 597       if (FLAG_IS_DEFAULT(JVMCIThreads)) {
 598         if (BootstrapJVMCI) {
 599           // JVMCI will bootstrap so give it more threads
 600           _c2_count = MIN2(32, os::active_processor_count());
 601         }
 602       } else {
 603         _c2_count = JVMCIThreads;
 604       }
 605       if (FLAG_IS_DEFAULT(JVMCIHostThreads)) {
 606       } else {
 607         _c1_count = JVMCIHostThreads;
 608       }
 609     }
 610   }
 611 #endif // INCLUDE_JVMCI
 612 
 613 #ifdef COMPILER1
 614   if (_c1_count > 0) {
 615     _compilers[0] = new Compiler();
 616   }
 617 #endif // COMPILER1
 618 
 619 #ifdef COMPILER2
 620   if (true JVMCI_ONLY( && !UseJVMCICompiler)) {
 621     if (_c2_count > 0) {
 622       _compilers[1] = new C2Compiler();
 623     }
 624   }
 625 #endif // COMPILER2
 626 
 627   // Start the compiler thread(s) and the sweeper thread
 628   init_compiler_sweeper_threads();
 629   // totalTime performance counter is always created as it is required
 630   // by the implementation of java.lang.management.CompilationMBean.
 631   {
 632     EXCEPTION_MARK;
 633     _perf_total_compilation =
 634                  PerfDataManager::create_counter(JAVA_CI, "totalTime",
 635                                                  PerfData::U_Ticks, CHECK);
 636   }
 637 
 638   if (UsePerfData) {
 639 
 640     EXCEPTION_MARK;
 641 
 642     // create the jvmstat performance counters
 643     _perf_osr_compilation =
 644                  PerfDataManager::create_counter(SUN_CI, "osrTime",
 645                                                  PerfData::U_Ticks, CHECK);
 646 
 647     _perf_standard_compilation =
 648                  PerfDataManager::create_counter(SUN_CI, "standardTime",
 649                                                  PerfData::U_Ticks, CHECK);
 650 
 651     _perf_total_bailout_count =
 652                  PerfDataManager::create_counter(SUN_CI, "totalBailouts",
 653                                                  PerfData::U_Events, CHECK);
 654 
 655     _perf_total_invalidated_count =
 656                  PerfDataManager::create_counter(SUN_CI, "totalInvalidates",
 657                                                  PerfData::U_Events, CHECK);
 658 
 659     _perf_total_compile_count =
 660                  PerfDataManager::create_counter(SUN_CI, "totalCompiles",
 661                                                  PerfData::U_Events, CHECK);
 662     _perf_total_osr_compile_count =
 663                  PerfDataManager::create_counter(SUN_CI, "osrCompiles",
 664                                                  PerfData::U_Events, CHECK);
 665 
 666     _perf_total_standard_compile_count =
 667                  PerfDataManager::create_counter(SUN_CI, "standardCompiles",
 668                                                  PerfData::U_Events, CHECK);
 669 
 670     _perf_sum_osr_bytes_compiled =
 671                  PerfDataManager::create_counter(SUN_CI, "osrBytes",
 672                                                  PerfData::U_Bytes, CHECK);
 673 
 674     _perf_sum_standard_bytes_compiled =
 675                  PerfDataManager::create_counter(SUN_CI, "standardBytes",
 676                                                  PerfData::U_Bytes, CHECK);
 677 
 678     _perf_sum_nmethod_size =
 679                  PerfDataManager::create_counter(SUN_CI, "nmethodSize",
 680                                                  PerfData::U_Bytes, CHECK);
 681 
 682     _perf_sum_nmethod_code_size =
 683                  PerfDataManager::create_counter(SUN_CI, "nmethodCodeSize",
 684                                                  PerfData::U_Bytes, CHECK);
 685 
 686     _perf_last_method =
 687                  PerfDataManager::create_string_variable(SUN_CI, "lastMethod",
 688                                        CompilerCounters::cmname_buffer_length,
 689                                        "", CHECK);
 690 
 691     _perf_last_failed_method =
 692             PerfDataManager::create_string_variable(SUN_CI, "lastFailedMethod",
 693                                        CompilerCounters::cmname_buffer_length,
 694                                        "", CHECK);
 695 
 696     _perf_last_invalidated_method =
 697         PerfDataManager::create_string_variable(SUN_CI, "lastInvalidatedMethod",
 698                                      CompilerCounters::cmname_buffer_length,
 699                                      "", CHECK);
 700 
 701     _perf_last_compile_type =
 702              PerfDataManager::create_variable(SUN_CI, "lastType",
 703                                               PerfData::U_None,
 704                                               (jlong)CompileBroker::no_compile,
 705                                               CHECK);
 706 
 707     _perf_last_compile_size =
 708              PerfDataManager::create_variable(SUN_CI, "lastSize",
 709                                               PerfData::U_Bytes,
 710                                               (jlong)CompileBroker::no_compile,
 711                                               CHECK);
 712 
 713 
 714     _perf_last_failed_type =
 715              PerfDataManager::create_variable(SUN_CI, "lastFailedType",
 716                                               PerfData::U_None,
 717                                               (jlong)CompileBroker::no_compile,
 718                                               CHECK);
 719 
 720     _perf_last_invalidated_type =
 721          PerfDataManager::create_variable(SUN_CI, "lastInvalidatedType",
 722                                           PerfData::U_None,
 723                                           (jlong)CompileBroker::no_compile,
 724                                           CHECK);
 725   }
 726 }
 727 
 728 // Completes compiler initialization. Compilation requests submitted
 729 // prior to this will be silently ignored.
 730 void CompileBroker::compilation_init_phase2() {
 731   _initialized = true;
 732 }
 733 
 734 Handle CompileBroker::create_thread_oop(const char* name, TRAPS) {
 735   Handle string = java_lang_String::create_from_str(name, CHECK_NH);
 736   Handle thread_group(THREAD, Universe::system_thread_group());
 737   return JavaCalls::construct_new_instance(
 738                        SystemDictionary::Thread_klass(),
 739                        vmSymbols::threadgroup_string_void_signature(),
 740                        thread_group,
 741                        string,
 742                        CHECK_NH);
 743 }
 744 
 745 
 746 JavaThread* CompileBroker::make_thread(jobject thread_handle, CompileQueue* queue, AbstractCompiler* comp, TRAPS) {
 747   JavaThread* thread = NULL;
 748   {
 749     MutexLocker mu(Threads_lock, THREAD);
 750     if (comp != NULL) {
 751       if (!InjectCompilerCreationFailure || comp->num_compiler_threads() == 0) {
 752         CompilerCounters* counters = new CompilerCounters();
 753         thread = new CompilerThread(queue, counters);
 754       }
 755     } else {
 756       thread = new CodeCacheSweeperThread();
 757     }
 758     // At this point the new CompilerThread data-races with this startup
 759     // thread (which I believe is the primoridal thread and NOT the VM
 760     // thread).  This means Java bytecodes being executed at startup can
 761     // queue compile jobs which will run at whatever default priority the
 762     // newly created CompilerThread runs at.
 763 
 764 
 765     // At this point it may be possible that no osthread was created for the
 766     // JavaThread due to lack of memory. We would have to throw an exception
 767     // in that case. However, since this must work and we do not allow
 768     // exceptions anyway, check and abort if this fails. But first release the
 769     // lock.
 770 
 771     if (thread != NULL && thread->osthread() != NULL) {
 772 
 773       java_lang_Thread::set_thread(JNIHandles::resolve_non_null(thread_handle), thread);
 774 
 775       // Note that this only sets the JavaThread _priority field, which by
 776       // definition is limited to Java priorities and not OS priorities.
 777       // The os-priority is set in the CompilerThread startup code itself
 778 
 779       java_lang_Thread::set_priority(JNIHandles::resolve_non_null(thread_handle), NearMaxPriority);
 780 
 781       // Note that we cannot call os::set_priority because it expects Java
 782       // priorities and we are *explicitly* using OS priorities so that it's
 783       // possible to set the compiler thread priority higher than any Java
 784       // thread.
 785 
 786       int native_prio = CompilerThreadPriority;
 787       if (native_prio == -1) {
 788         if (UseCriticalCompilerThreadPriority) {
 789           native_prio = os::java_to_os_priority[CriticalPriority];
 790         } else {
 791           native_prio = os::java_to_os_priority[NearMaxPriority];
 792         }
 793       }
 794       os::set_native_priority(thread, native_prio);
 795 
 796       java_lang_Thread::set_daemon(JNIHandles::resolve_non_null(thread_handle));
 797 
 798       thread->set_threadObj(JNIHandles::resolve_non_null(thread_handle));
 799       if (comp != NULL) {
 800         thread->as_CompilerThread()->set_compiler(comp);
 801       }
 802       Threads::add(thread);
 803       Thread::start(thread);
 804     }
 805   }
 806 
 807   // First release lock before aborting VM.
 808   if (thread == NULL || thread->osthread() == NULL) {
 809     if (UseDynamicNumberOfCompilerThreads && comp != NULL && comp->num_compiler_threads() > 0) {
 810       if (thread != NULL) {
 811         thread->smr_delete();
 812       }
 813       return NULL;
 814     }
 815     vm_exit_during_initialization("java.lang.OutOfMemoryError",
 816                                   os::native_thread_creation_failed_msg());
 817   }
 818 
 819   // Let go of Threads_lock before yielding
 820   os::naked_yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS)
 821 
 822   return thread;
 823 }
 824 
 825 
 826 void CompileBroker::init_compiler_sweeper_threads() {
 827   EXCEPTION_MARK;
 828 #if !defined(ZERO)
 829   assert(_c2_count > 0 || _c1_count > 0, "No compilers?");
 830 #endif // !ZERO
 831   // Initialize the compilation queue
 832   if (_c2_count > 0) {
 833     const char* name = JVMCI_ONLY(UseJVMCICompiler ? "JVMCI compile queue" :) "C2 compile queue";
 834     _c2_compile_queue  = new CompileQueue(name);
 835     _compiler2_objects = NEW_C_HEAP_ARRAY(jobject, _c2_count, mtCompiler);
 836     _compiler2_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c2_count, mtCompiler);
 837   }
 838   if (_c1_count > 0) {
 839     _c1_compile_queue  = new CompileQueue("C1 compile queue");
 840     _compiler1_objects = NEW_C_HEAP_ARRAY(jobject, _c1_count, mtCompiler);
 841     _compiler1_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c1_count, mtCompiler);
 842   }
 843 
 844   char name_buffer[256];
 845 
 846   for (int i = 0; i < _c2_count; i++) {
 847     // Create a name for our thread.
 848     sprintf(name_buffer, "%s CompilerThread%d", _compilers[1]->name(), i);
 849     Handle thread_oop = create_thread_oop(name_buffer, CHECK);
 850     jobject thread_handle = JNIHandles::make_global(thread_oop);
 851     _compiler2_objects[i] = thread_handle;
 852     _compiler2_logs[i] = NULL;
 853 
 854     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
 855       JavaThread *ct = make_thread(thread_handle, _c2_compile_queue, _compilers[1], CHECK);
 856       assert(ct != NULL, "should have been handled for initial thread");
 857       _compilers[1]->set_num_compiler_threads(i + 1);
 858       if (TraceCompilerThreads) {
 859         ResourceMark rm;
 860         MutexLocker mu(Threads_lock);
 861         tty->print_cr("Added initial compiler thread %s", ct->get_thread_name());
 862       }
 863     }
 864   }
 865 
 866   for (int i = 0; i < _c1_count; i++) {
 867     // Create a name for our thread.
 868     sprintf(name_buffer, "C1 CompilerThread%d", i);
 869     Handle thread_oop = create_thread_oop(name_buffer, CHECK);
 870     jobject thread_handle = JNIHandles::make_global(thread_oop);
 871     _compiler1_objects[i] = thread_handle;
 872     _compiler1_logs[i] = NULL;
 873 
 874     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
 875       JavaThread *ct = make_thread(thread_handle, _c1_compile_queue, _compilers[0], CHECK);
 876       assert(ct != NULL, "should have been handled for initial thread");
 877       _compilers[0]->set_num_compiler_threads(i + 1);
 878       if (TraceCompilerThreads) {
 879         ResourceMark rm;
 880         MutexLocker mu(Threads_lock);
 881         tty->print_cr("Added initial compiler thread %s", ct->get_thread_name());
 882       }
 883     }
 884   }
 885 
 886   if (UsePerfData) {
 887     PerfDataManager::create_constant(SUN_CI, "threads", PerfData::U_Bytes, _c1_count + _c2_count, CHECK);
 888   }
 889 
 890   if (MethodFlushing) {
 891     // Initialize the sweeper thread
 892     Handle thread_oop = create_thread_oop("Sweeper thread", CHECK);
 893     jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop());
 894     make_thread(thread_handle, NULL, NULL, CHECK);
 895   }
 896 }
 897 
 898 void CompileBroker::possibly_add_compiler_threads() {
 899   EXCEPTION_MARK;
 900 
 901   julong available_memory = os::available_memory();
 902   // If SegmentedCodeCache is off, both values refer to the single heap (with type CodeBlobType::All).
 903   size_t available_cc_np  = CodeCache::unallocated_capacity(CodeBlobType::MethodNonProfiled),
 904          available_cc_p   = CodeCache::unallocated_capacity(CodeBlobType::MethodProfiled);
 905 
 906   // Only do attempt to start additional threads if the lock is free.
 907   if (!CompileThread_lock->try_lock()) return;
 908 
 909   if (_c2_compile_queue != NULL) {
 910     int old_c2_count = _compilers[1]->num_compiler_threads();
 911     int new_c2_count = MIN4(_c2_count,
 912         _c2_compile_queue->size() / 2,
 913         (int)(available_memory / (200*M)),
 914         (int)(available_cc_np / (128*K)));
 915 
 916     for (int i = old_c2_count; i < new_c2_count; i++) {
 917       JavaThread *ct = make_thread(compiler2_object(i), _c2_compile_queue, _compilers[1], CHECK);
 918       if (ct == NULL) break;
 919       _compilers[1]->set_num_compiler_threads(i + 1);
 920       if (TraceCompilerThreads) {
 921         ResourceMark rm;
 922         MutexLocker mu(Threads_lock);
 923         tty->print_cr("Added compiler thread %s (available memory: %dMB, available non-profiled code cache: %dMB)",
 924                       ct->get_thread_name(), (int)(available_memory/M), (int)(available_cc_np/M));
 925       }
 926     }
 927   }
 928 
 929   if (_c1_compile_queue != NULL) {
 930     int old_c1_count = _compilers[0]->num_compiler_threads();
 931     int new_c1_count = MIN4(_c1_count,
 932         _c1_compile_queue->size() / 4,
 933         (int)(available_memory / (100*M)),
 934         (int)(available_cc_p / (128*K)));
 935 
 936     for (int i = old_c1_count; i < new_c1_count; i++) {
 937       JavaThread *ct = make_thread(compiler1_object(i), _c1_compile_queue, _compilers[0], CHECK);
 938       if (ct == NULL) break;
 939       _compilers[0]->set_num_compiler_threads(i + 1);
 940       if (TraceCompilerThreads) {
 941         ResourceMark rm;
 942         MutexLocker mu(Threads_lock);
 943         tty->print_cr("Added compiler thread %s (available memory: %dMB, available profiled code cache: %dMB)",
 944                       ct->get_thread_name(), (int)(available_memory/M), (int)(available_cc_p/M));
 945       }
 946     }
 947   }
 948 
 949   CompileThread_lock->unlock();
 950 }
 951 
 952 
 953 /**
 954  * Set the methods on the stack as on_stack so that redefine classes doesn't
 955  * reclaim them. This method is executed at a safepoint.
 956  */
 957 void CompileBroker::mark_on_stack() {
 958   assert(SafepointSynchronize::is_at_safepoint(), "sanity check");
 959   // Since we are at a safepoint, we do not need a lock to access
 960   // the compile queues.
 961   if (_c2_compile_queue != NULL) {
 962     _c2_compile_queue->mark_on_stack();
 963   }
 964   if (_c1_compile_queue != NULL) {
 965     _c1_compile_queue->mark_on_stack();
 966   }
 967 }
 968 
 969 // ------------------------------------------------------------------
 970 // CompileBroker::compile_method
 971 //
 972 // Request compilation of a method.
 973 void CompileBroker::compile_method_base(const methodHandle& method,
 974                                         int osr_bci,
 975                                         int comp_level,
 976                                         const methodHandle& hot_method,
 977                                         int hot_count,
 978                                         CompileTask::CompileReason compile_reason,
 979                                         bool blocking,
 980                                         Thread* thread) {
 981   guarantee(!method->is_abstract(), "cannot compile abstract methods");
 982   assert(method->method_holder()->is_instance_klass(),
 983          "sanity check");
 984   assert(!method->method_holder()->is_not_initialized(),
 985          "method holder must be initialized");
 986   assert(!method->is_method_handle_intrinsic(), "do not enqueue these guys");
 987 
 988   if (CIPrintRequests) {
 989     tty->print("request: ");
 990     method->print_short_name(tty);
 991     if (osr_bci != InvocationEntryBci) {
 992       tty->print(" osr_bci: %d", osr_bci);
 993     }
 994     tty->print(" level: %d comment: %s count: %d", comp_level, CompileTask::reason_name(compile_reason), hot_count);
 995     if (!hot_method.is_null()) {
 996       tty->print(" hot: ");
 997       if (hot_method() != method()) {
 998           hot_method->print_short_name(tty);
 999       } else {
1000         tty->print("yes");
1001       }
1002     }
1003     tty->cr();
1004   }
1005 
1006   // A request has been made for compilation.  Before we do any
1007   // real work, check to see if the method has been compiled
1008   // in the meantime with a definitive result.
1009   if (compilation_is_complete(method, osr_bci, comp_level)) {
1010     return;
1011   }
1012 
1013 #ifndef PRODUCT
1014   if (osr_bci != -1 && !FLAG_IS_DEFAULT(OSROnlyBCI)) {
1015     if ((OSROnlyBCI > 0) ? (OSROnlyBCI != osr_bci) : (-OSROnlyBCI == osr_bci)) {
1016       // Positive OSROnlyBCI means only compile that bci.  Negative means don't compile that BCI.
1017       return;
1018     }
1019   }
1020 #endif
1021 
1022   // If this method is already in the compile queue, then
1023   // we do not block the current thread.
1024   if (compilation_is_in_queue(method)) {
1025     // We may want to decay our counter a bit here to prevent
1026     // multiple denied requests for compilation.  This is an
1027     // open compilation policy issue. Note: The other possibility,
1028     // in the case that this is a blocking compile request, is to have
1029     // all subsequent blocking requesters wait for completion of
1030     // ongoing compiles. Note that in this case we'll need a protocol
1031     // for freeing the associated compile tasks. [Or we could have
1032     // a single static monitor on which all these waiters sleep.]
1033     return;
1034   }
1035 
1036   if (TieredCompilation) {
1037     // Tiered policy requires MethodCounters to exist before adding a method to
1038     // the queue. Create if we don't have them yet.
1039     method->get_method_counters(thread);
1040   }
1041 
1042   // Outputs from the following MutexLocker block:
1043   CompileTask* task     = NULL;
1044   CompileQueue* queue  = compile_queue(comp_level);
1045 
1046   // Acquire our lock.
1047   {
1048     MutexLocker locker(MethodCompileQueue_lock, thread);
1049 
1050     // Make sure the method has not slipped into the queues since
1051     // last we checked; note that those checks were "fast bail-outs".
1052     // Here we need to be more careful, see 14012000 below.
1053     if (compilation_is_in_queue(method)) {
1054       return;
1055     }
1056 
1057     // We need to check again to see if the compilation has
1058     // completed.  A previous compilation may have registered
1059     // some result.
1060     if (compilation_is_complete(method, osr_bci, comp_level)) {
1061       return;
1062     }
1063 
1064     // We now know that this compilation is not pending, complete,
1065     // or prohibited.  Assign a compile_id to this compilation
1066     // and check to see if it is in our [Start..Stop) range.
1067     int compile_id = assign_compile_id(method, osr_bci);
1068     if (compile_id == 0) {
1069       // The compilation falls outside the allowed range.
1070       return;
1071     }
1072 
1073 #if INCLUDE_JVMCI
1074     if (UseJVMCICompiler) {
1075       if (blocking) {
1076         // Don't allow blocking compiles for requests triggered by JVMCI.
1077         if (thread->is_Compiler_thread()) {
1078           blocking = false;
1079         }
1080 
1081         // Don't allow blocking compiles if inside a class initializer or while performing class loading
1082         vframeStream vfst((JavaThread*) thread);
1083         for (; !vfst.at_end(); vfst.next()) {
1084           if (vfst.method()->is_static_initializer() ||
1085               (vfst.method()->method_holder()->is_subclass_of(SystemDictionary::ClassLoader_klass()) &&
1086                   vfst.method()->name() == vmSymbols::loadClass_name())) {
1087             blocking = false;
1088             break;
1089           }
1090         }
1091 
1092         // Don't allow blocking compilation requests to JVMCI
1093         // if JVMCI itself is not yet initialized
1094         if (!JVMCIRuntime::is_HotSpotJVMCIRuntime_initialized() && compiler(comp_level)->is_jvmci()) {
1095           blocking = false;
1096         }
1097 
1098         // Don't allow blocking compilation requests if we are in JVMCIRuntime::shutdown
1099         // to avoid deadlock between compiler thread(s) and threads run at shutdown
1100         // such as the DestroyJavaVM thread.
1101         if (JVMCIRuntime::shutdown_called()) {
1102           blocking = false;
1103         }
1104       }
1105     }
1106 #endif // INCLUDE_JVMCI
1107 
1108     // We will enter the compilation in the queue.
1109     // 14012000: Note that this sets the queued_for_compile bits in
1110     // the target method. We can now reason that a method cannot be
1111     // queued for compilation more than once, as follows:
1112     // Before a thread queues a task for compilation, it first acquires
1113     // the compile queue lock, then checks if the method's queued bits
1114     // are set or it has already been compiled. Thus there can not be two
1115     // instances of a compilation task for the same method on the
1116     // compilation queue. Consider now the case where the compilation
1117     // thread has already removed a task for that method from the queue
1118     // and is in the midst of compiling it. In this case, the
1119     // queued_for_compile bits must be set in the method (and these
1120     // will be visible to the current thread, since the bits were set
1121     // under protection of the compile queue lock, which we hold now.
1122     // When the compilation completes, the compiler thread first sets
1123     // the compilation result and then clears the queued_for_compile
1124     // bits. Neither of these actions are protected by a barrier (or done
1125     // under the protection of a lock), so the only guarantee we have
1126     // (on machines with TSO (Total Store Order)) is that these values
1127     // will update in that order. As a result, the only combinations of
1128     // these bits that the current thread will see are, in temporal order:
1129     // <RESULT, QUEUE> :
1130     //     <0, 1> : in compile queue, but not yet compiled
1131     //     <1, 1> : compiled but queue bit not cleared
1132     //     <1, 0> : compiled and queue bit cleared
1133     // Because we first check the queue bits then check the result bits,
1134     // we are assured that we cannot introduce a duplicate task.
1135     // Note that if we did the tests in the reverse order (i.e. check
1136     // result then check queued bit), we could get the result bit before
1137     // the compilation completed, and the queue bit after the compilation
1138     // completed, and end up introducing a "duplicate" (redundant) task.
1139     // In that case, the compiler thread should first check if a method
1140     // has already been compiled before trying to compile it.
1141     // NOTE: in the event that there are multiple compiler threads and
1142     // there is de-optimization/recompilation, things will get hairy,
1143     // and in that case it's best to protect both the testing (here) of
1144     // these bits, and their updating (here and elsewhere) under a
1145     // common lock.
1146     task = create_compile_task(queue,
1147                                compile_id, method,
1148                                osr_bci, comp_level,
1149                                hot_method, hot_count, compile_reason,
1150                                blocking);
1151   }
1152 
1153   if (blocking) {
1154     wait_for_completion(task);
1155   }
1156 }
1157 
1158 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1159                                        int comp_level,
1160                                        const methodHandle& hot_method, int hot_count,
1161                                        CompileTask::CompileReason compile_reason,
1162                                        Thread* THREAD) {
1163   // Do nothing if compilebroker is not initalized or compiles are submitted on level none
1164   if (!_initialized || comp_level == CompLevel_none) {
1165     return NULL;
1166   }
1167 
1168   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
1169   assert(comp != NULL, "Ensure we have a compiler");
1170 
1171   DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, comp);
1172   nmethod* nm = CompileBroker::compile_method(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, directive, THREAD);
1173   DirectivesStack::release(directive);
1174   return nm;
1175 }
1176 
1177 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1178                                          int comp_level,
1179                                          const methodHandle& hot_method, int hot_count,
1180                                          CompileTask::CompileReason compile_reason,
1181                                          DirectiveSet* directive,
1182                                          Thread* THREAD) {
1183 
1184   // make sure arguments make sense
1185   assert(method->method_holder()->is_instance_klass(), "not an instance method");
1186   assert(osr_bci == InvocationEntryBci || (0 <= osr_bci && osr_bci < method->code_size()), "bci out of range");
1187   assert(!method->is_abstract() && (osr_bci == InvocationEntryBci || !method->is_native()), "cannot compile abstract/native methods");
1188   assert(!method->method_holder()->is_not_initialized(), "method holder must be initialized");
1189   assert(!TieredCompilation || comp_level <= TieredStopAtLevel, "Invalid compilation level");
1190   // allow any levels for WhiteBox
1191   assert(WhiteBoxAPI || TieredCompilation || comp_level == CompLevel_highest_tier, "only CompLevel_highest_tier must be used in non-tiered");
1192   // return quickly if possible
1193 
1194   // lock, make sure that the compilation
1195   // isn't prohibited in a straightforward way.
1196   AbstractCompiler* comp = CompileBroker::compiler(comp_level);
1197   if (comp == NULL || !comp->can_compile_method(method) ||
1198       compilation_is_prohibited(method, osr_bci, comp_level, directive->ExcludeOption)) {
1199     return NULL;
1200   }
1201 
1202 #if INCLUDE_JVMCI
1203   if (comp->is_jvmci() && !JVMCIRuntime::can_initialize_JVMCI()) {
1204     return NULL;
1205   }
1206 #endif
1207 
1208   if (osr_bci == InvocationEntryBci) {
1209     // standard compilation
1210     CompiledMethod* method_code = method->code();
1211     if (method_code != NULL && method_code->is_nmethod()) {
1212       if (compilation_is_complete(method, osr_bci, comp_level)) {
1213         return (nmethod*) method_code;
1214       }
1215     }
1216     if (method->is_not_compilable(comp_level)) {
1217       return NULL;
1218     }
1219   } else {
1220     // osr compilation
1221 #ifndef TIERED
1222     // seems like an assert of dubious value
1223     assert(comp_level == CompLevel_highest_tier,
1224            "all OSR compiles are assumed to be at a single compilation level");
1225 #endif // TIERED
1226     // We accept a higher level osr method
1227     nmethod* nm = method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1228     if (nm != NULL) return nm;
1229     if (method->is_not_osr_compilable(comp_level)) return NULL;
1230   }
1231 
1232   assert(!HAS_PENDING_EXCEPTION, "No exception should be present");
1233   // some prerequisites that are compiler specific
1234   if (comp->is_c2()) {
1235     method->constants()->resolve_string_constants(CHECK_AND_CLEAR_NULL);
1236     // Resolve all classes seen in the signature of the method
1237     // we are compiling.
1238     Method::load_signature_classes(method, CHECK_AND_CLEAR_NULL);
1239   }
1240 
1241   // If the method is native, do the lookup in the thread requesting
1242   // the compilation. Native lookups can load code, which is not
1243   // permitted during compilation.
1244   //
1245   // Note: A native method implies non-osr compilation which is
1246   //       checked with an assertion at the entry of this method.
1247   if (method->is_native() && !method->is_method_handle_intrinsic()) {
1248     bool in_base_library;
1249     address adr = NativeLookup::lookup(method, in_base_library, THREAD);
1250     if (HAS_PENDING_EXCEPTION) {
1251       // In case of an exception looking up the method, we just forget
1252       // about it. The interpreter will kick-in and throw the exception.
1253       method->set_not_compilable(); // implies is_not_osr_compilable()
1254       CLEAR_PENDING_EXCEPTION;
1255       return NULL;
1256     }
1257     assert(method->has_native_function(), "must have native code by now");
1258   }
1259 
1260   // RedefineClasses() has replaced this method; just return
1261   if (method->is_old()) {
1262     return NULL;
1263   }
1264 
1265   // JVMTI -- post_compile_event requires jmethod_id() that may require
1266   // a lock the compiling thread can not acquire. Prefetch it here.
1267   if (JvmtiExport::should_post_compiled_method_load()) {
1268     method->jmethod_id();
1269   }
1270 
1271   // do the compilation
1272   if (method->is_native()) {
1273     if (!PreferInterpreterNativeStubs || method->is_method_handle_intrinsic()) {
1274       // The following native methods:
1275       //
1276       // java.lang.Float.intBitsToFloat
1277       // java.lang.Float.floatToRawIntBits
1278       // java.lang.Double.longBitsToDouble
1279       // java.lang.Double.doubleToRawLongBits
1280       //
1281       // are called through the interpreter even if interpreter native stubs
1282       // are not preferred (i.e., calling through adapter handlers is preferred).
1283       // The reason is that on x86_32 signaling NaNs (sNaNs) are not preserved
1284       // if the version of the methods from the native libraries is called.
1285       // As the interpreter and the C2-intrinsified version of the methods preserves
1286       // sNaNs, that would result in an inconsistent way of handling of sNaNs.
1287       if ((UseSSE >= 1 &&
1288           (method->intrinsic_id() == vmIntrinsics::_intBitsToFloat ||
1289            method->intrinsic_id() == vmIntrinsics::_floatToRawIntBits)) ||
1290           (UseSSE >= 2 &&
1291            (method->intrinsic_id() == vmIntrinsics::_longBitsToDouble ||
1292             method->intrinsic_id() == vmIntrinsics::_doubleToRawLongBits))) {
1293         return NULL;
1294       }
1295 
1296       // To properly handle the appendix argument for out-of-line calls we are using a small trampoline that
1297       // pops off the appendix argument and jumps to the target (see gen_special_dispatch in SharedRuntime).
1298       //
1299       // Since normal compiled-to-compiled calls are not able to handle such a thing we MUST generate an adapter
1300       // in this case.  If we can't generate one and use it we can not execute the out-of-line method handle calls.
1301       AdapterHandlerLibrary::create_native_wrapper(method);
1302     } else {
1303       return NULL;
1304     }
1305   } else {
1306     // If the compiler is shut off due to code cache getting full
1307     // fail out now so blocking compiles dont hang the java thread
1308     if (!should_compile_new_jobs()) {
1309       CompilationPolicy::policy()->delay_compilation(method());
1310       return NULL;
1311     }
1312     bool is_blocking = !directive->BackgroundCompilationOption || ReplayCompiles;
1313     compile_method_base(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, is_blocking, THREAD);
1314   }
1315 
1316   // return requested nmethod
1317   // We accept a higher level osr method
1318   if (osr_bci == InvocationEntryBci) {
1319     CompiledMethod* code = method->code();
1320     if (code == NULL) {
1321       return (nmethod*) code;
1322     } else {
1323       return code->as_nmethod_or_null();
1324     }
1325   }
1326   return method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1327 }
1328 
1329 
1330 // ------------------------------------------------------------------
1331 // CompileBroker::compilation_is_complete
1332 //
1333 // See if compilation of this method is already complete.
1334 bool CompileBroker::compilation_is_complete(const methodHandle& method,
1335                                             int                 osr_bci,
1336                                             int                 comp_level) {
1337   bool is_osr = (osr_bci != standard_entry_bci);
1338   if (is_osr) {
1339     if (method->is_not_osr_compilable(comp_level)) {
1340       return true;
1341     } else {
1342       nmethod* result = method->lookup_osr_nmethod_for(osr_bci, comp_level, true);
1343       return (result != NULL);
1344     }
1345   } else {
1346     if (method->is_not_compilable(comp_level)) {
1347       return true;
1348     } else {
1349       CompiledMethod* result = method->code();
1350       if (result == NULL) return false;
1351       return comp_level == result->comp_level();
1352     }
1353   }
1354 }
1355 
1356 
1357 /**
1358  * See if this compilation is already requested.
1359  *
1360  * Implementation note: there is only a single "is in queue" bit
1361  * for each method.  This means that the check below is overly
1362  * conservative in the sense that an osr compilation in the queue
1363  * will block a normal compilation from entering the queue (and vice
1364  * versa).  This can be remedied by a full queue search to disambiguate
1365  * cases.  If it is deemed profitable, this may be done.
1366  */
1367 bool CompileBroker::compilation_is_in_queue(const methodHandle& method) {
1368   return method->queued_for_compilation();
1369 }
1370 
1371 // ------------------------------------------------------------------
1372 // CompileBroker::compilation_is_prohibited
1373 //
1374 // See if this compilation is not allowed.
1375 bool CompileBroker::compilation_is_prohibited(const methodHandle& method, int osr_bci, int comp_level, bool excluded) {
1376   bool is_native = method->is_native();
1377   // Some compilers may not support the compilation of natives.
1378   AbstractCompiler *comp = compiler(comp_level);
1379   if (is_native &&
1380       (!CICompileNatives || comp == NULL || !comp->supports_native())) {
1381     method->set_not_compilable_quietly(comp_level);
1382     return true;
1383   }
1384 
1385   bool is_osr = (osr_bci != standard_entry_bci);
1386   // Some compilers may not support on stack replacement.
1387   if (is_osr &&
1388       (!CICompileOSR || comp == NULL || !comp->supports_osr())) {
1389     method->set_not_osr_compilable(comp_level);
1390     return true;
1391   }
1392 
1393   // The method may be explicitly excluded by the user.
1394   double scale;
1395   if (excluded || (CompilerOracle::has_option_value(method, "CompileThresholdScaling", scale) && scale == 0)) {
1396     bool quietly = CompilerOracle::should_exclude_quietly();
1397     if (PrintCompilation && !quietly) {
1398       // This does not happen quietly...
1399       ResourceMark rm;
1400       tty->print("### Excluding %s:%s",
1401                  method->is_native() ? "generation of native wrapper" : "compile",
1402                  (method->is_static() ? " static" : ""));
1403       method->print_short_name(tty);
1404       tty->cr();
1405     }
1406     method->set_not_compilable(comp_level, !quietly, "excluded by CompileCommand");
1407   }
1408 
1409   return false;
1410 }
1411 
1412 /**
1413  * Generate serialized IDs for compilation requests. If certain debugging flags are used
1414  * and the ID is not within the specified range, the method is not compiled and 0 is returned.
1415  * The function also allows to generate separate compilation IDs for OSR compilations.
1416  */
1417 int CompileBroker::assign_compile_id(const methodHandle& method, int osr_bci) {
1418 #ifdef ASSERT
1419   bool is_osr = (osr_bci != standard_entry_bci);
1420   int id;
1421   if (method->is_native()) {
1422     assert(!is_osr, "can't be osr");
1423     // Adapters, native wrappers and method handle intrinsics
1424     // should be generated always.
1425     return Atomic::add(1, &_compilation_id);
1426   } else if (CICountOSR && is_osr) {
1427     id = Atomic::add(1, &_osr_compilation_id);
1428     if (CIStartOSR <= id && id < CIStopOSR) {
1429       return id;
1430     }
1431   } else {
1432     id = Atomic::add(1, &_compilation_id);
1433     if (CIStart <= id && id < CIStop) {
1434       return id;
1435     }
1436   }
1437 
1438   // Method was not in the appropriate compilation range.
1439   method->set_not_compilable_quietly();
1440   return 0;
1441 #else
1442   // CICountOSR is a develop flag and set to 'false' by default. In a product built,
1443   // only _compilation_id is incremented.
1444   return Atomic::add(1, &_compilation_id);
1445 #endif
1446 }
1447 
1448 // ------------------------------------------------------------------
1449 // CompileBroker::assign_compile_id_unlocked
1450 //
1451 // Public wrapper for assign_compile_id that acquires the needed locks
1452 uint CompileBroker::assign_compile_id_unlocked(Thread* thread, const methodHandle& method, int osr_bci) {
1453   MutexLocker locker(MethodCompileQueue_lock, thread);
1454   return assign_compile_id(method, osr_bci);
1455 }
1456 
1457 // ------------------------------------------------------------------
1458 // CompileBroker::preload_classes
1459 void CompileBroker::preload_classes(const methodHandle& method, TRAPS) {
1460   // Move this code over from c1_Compiler.cpp
1461   ShouldNotReachHere();
1462 }
1463 
1464 
1465 // ------------------------------------------------------------------
1466 // CompileBroker::create_compile_task
1467 //
1468 // Create a CompileTask object representing the current request for
1469 // compilation.  Add this task to the queue.
1470 CompileTask* CompileBroker::create_compile_task(CompileQueue*       queue,
1471                                                 int                 compile_id,
1472                                                 const methodHandle& method,
1473                                                 int                 osr_bci,
1474                                                 int                 comp_level,
1475                                                 const methodHandle& hot_method,
1476                                                 int                 hot_count,
1477                                                 CompileTask::CompileReason compile_reason,
1478                                                 bool                blocking) {
1479   CompileTask* new_task = CompileTask::allocate();
1480   new_task->initialize(compile_id, method, osr_bci, comp_level,
1481                        hot_method, hot_count, compile_reason,
1482                        blocking);
1483   queue->add(new_task);
1484   return new_task;
1485 }
1486 
1487 #if INCLUDE_JVMCI
1488 // The number of milliseconds to wait before checking if
1489 // JVMCI compilation has made progress.
1490 static const long JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE = 1000;
1491 
1492 // The number of JVMCI compilation progress checks that must fail
1493 // before unblocking a thread waiting for a blocking compilation.
1494 static const int JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS = 10;
1495 
1496 /**
1497  * Waits for a JVMCI compiler to complete a given task. This thread
1498  * waits until either the task completes or it sees no JVMCI compilation
1499  * progress for N consecutive milliseconds where N is
1500  * JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE *
1501  * JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS.
1502  *
1503  * @return true if this thread needs to free/recycle the task
1504  */
1505 bool CompileBroker::wait_for_jvmci_completion(JVMCICompiler* jvmci, CompileTask* task, JavaThread* thread) {
1506   MutexLocker waiter(task->lock(), thread);
1507   int progress_wait_attempts = 0;
1508   int methods_compiled = jvmci->methods_compiled();
1509   while (!task->is_complete() && !is_compilation_disabled_forever() &&
1510          task->lock()->wait(!Mutex::_no_safepoint_check_flag, JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE)) {
1511     CompilerThread* jvmci_compiler_thread = task->jvmci_compiler_thread();
1512 
1513     bool progress;
1514     if (jvmci_compiler_thread != NULL) {
1515       // If the JVMCI compiler thread is not blocked or suspended, we deem it to be making progress.
1516       progress = jvmci_compiler_thread->thread_state() != _thread_blocked &&
1517         !jvmci_compiler_thread->is_external_suspend();
1518     } else {
1519       // Still waiting on JVMCI compiler queue. This thread may be holding a lock
1520       // that all JVMCI compiler threads are blocked on. We use the counter for
1521       // successful JVMCI compilations to determine whether JVMCI compilation
1522       // is still making progress through the JVMCI compiler queue.
1523       progress = jvmci->methods_compiled() != methods_compiled;
1524     }
1525 
1526     if (!progress) {
1527       if (++progress_wait_attempts == JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS) {
1528         if (PrintCompilation) {
1529           task->print(tty, "wait for blocking compilation timed out");
1530         }
1531         break;
1532       }
1533     } else {
1534       progress_wait_attempts = 0;
1535       if (jvmci_compiler_thread == NULL) {
1536         methods_compiled = jvmci->methods_compiled();
1537       }
1538     }
1539   }
1540   task->clear_waiter();
1541   return task->is_complete();
1542 }
1543 #endif
1544 
1545 /**
1546  *  Wait for the compilation task to complete.
1547  */
1548 void CompileBroker::wait_for_completion(CompileTask* task) {
1549   if (CIPrintCompileQueue) {
1550     ttyLocker ttyl;
1551     tty->print_cr("BLOCKING FOR COMPILE");
1552   }
1553 
1554   assert(task->is_blocking(), "can only wait on blocking task");
1555 
1556   JavaThread* thread = JavaThread::current();
1557   thread->set_blocked_on_compilation(true);
1558 
1559   methodHandle method(thread, task->method());
1560   bool free_task;
1561 #if INCLUDE_JVMCI
1562   AbstractCompiler* comp = compiler(task->comp_level());
1563   if (comp->is_jvmci()) {
1564     free_task = wait_for_jvmci_completion((JVMCICompiler*) comp, task, thread);
1565   } else
1566 #endif
1567   {
1568     MutexLocker waiter(task->lock(), thread);
1569     free_task = true;
1570     while (!task->is_complete() && !is_compilation_disabled_forever()) {
1571       task->lock()->wait();
1572     }
1573   }
1574 
1575   thread->set_blocked_on_compilation(false);
1576   if (free_task) {
1577     if (is_compilation_disabled_forever()) {
1578       CompileTask::free(task);
1579       return;
1580     }
1581 
1582     // It is harmless to check this status without the lock, because
1583     // completion is a stable property (until the task object is recycled).
1584     assert(task->is_complete(), "Compilation should have completed");
1585     assert(task->code_handle() == NULL, "must be reset");
1586 
1587     // By convention, the waiter is responsible for recycling a
1588     // blocking CompileTask. Since there is only one waiter ever
1589     // waiting on a CompileTask, we know that no one else will
1590     // be using this CompileTask; we can free it.
1591     CompileTask::free(task);
1592   }
1593 }
1594 
1595 /**
1596  * Initialize compiler thread(s) + compiler object(s). The postcondition
1597  * of this function is that the compiler runtimes are initialized and that
1598  * compiler threads can start compiling.
1599  */
1600 bool CompileBroker::init_compiler_runtime() {
1601   CompilerThread* thread = CompilerThread::current();
1602   AbstractCompiler* comp = thread->compiler();
1603   // Final sanity check - the compiler object must exist
1604   guarantee(comp != NULL, "Compiler object must exist");
1605 
1606   int system_dictionary_modification_counter;
1607   {
1608     MutexLocker locker(Compile_lock, thread);
1609     system_dictionary_modification_counter = SystemDictionary::number_of_modifications();
1610   }
1611 
1612   {
1613     // Must switch to native to allocate ci_env
1614     ThreadToNativeFromVM ttn(thread);
1615     ciEnv ci_env(NULL, system_dictionary_modification_counter);
1616     // Cache Jvmti state
1617     ci_env.cache_jvmti_state();
1618     // Cache DTrace flags
1619     ci_env.cache_dtrace_flags();
1620 
1621     // Switch back to VM state to do compiler initialization
1622     ThreadInVMfromNative tv(thread);
1623     ResetNoHandleMark rnhm;
1624 
1625     // Perform per-thread and global initializations
1626     comp->initialize();
1627   }
1628 
1629   if (comp->is_failed()) {
1630     disable_compilation_forever();
1631     // If compiler initialization failed, no compiler thread that is specific to a
1632     // particular compiler runtime will ever start to compile methods.
1633     shutdown_compiler_runtime(comp, thread);
1634     return false;
1635   }
1636 
1637   // C1 specific check
1638   if (comp->is_c1() && (thread->get_buffer_blob() == NULL)) {
1639     warning("Initialization of %s thread failed (no space to run compilers)", thread->name());
1640     return false;
1641   }
1642 
1643   return true;
1644 }
1645 
1646 /**
1647  * If C1 and/or C2 initialization failed, we shut down all compilation.
1648  * We do this to keep things simple. This can be changed if it ever turns
1649  * out to be a problem.
1650  */
1651 void CompileBroker::shutdown_compiler_runtime(AbstractCompiler* comp, CompilerThread* thread) {
1652   // Free buffer blob, if allocated
1653   if (thread->get_buffer_blob() != NULL) {
1654     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1655     CodeCache::free(thread->get_buffer_blob());
1656   }
1657 
1658   if (comp->should_perform_shutdown()) {
1659     // There are two reasons for shutting down the compiler
1660     // 1) compiler runtime initialization failed
1661     // 2) The code cache is full and the following flag is set: -XX:-UseCodeCacheFlushing
1662     warning("%s initialization failed. Shutting down all compilers", comp->name());
1663 
1664     // Only one thread per compiler runtime object enters here
1665     // Set state to shut down
1666     comp->set_shut_down();
1667 
1668     // Delete all queued compilation tasks to make compiler threads exit faster.
1669     if (_c1_compile_queue != NULL) {
1670       _c1_compile_queue->free_all();
1671     }
1672 
1673     if (_c2_compile_queue != NULL) {
1674       _c2_compile_queue->free_all();
1675     }
1676 
1677     // Set flags so that we continue execution with using interpreter only.
1678     UseCompiler    = false;
1679     UseInterpreter = true;
1680 
1681     // We could delete compiler runtimes also. However, there are references to
1682     // the compiler runtime(s) (e.g.,  nmethod::is_compiled_by_c1()) which then
1683     // fail. This can be done later if necessary.
1684   }
1685 }
1686 
1687 /**
1688  * Helper function to create new or reuse old CompileLog.
1689  */
1690 CompileLog* CompileBroker::get_log(CompilerThread* ct) {
1691   if (!LogCompilation) return NULL;
1692 
1693   AbstractCompiler *compiler = ct->compiler();
1694   bool c1 = compiler->is_c1();
1695   jobject* compiler_objects = c1 ? _compiler1_objects : _compiler2_objects;
1696   assert(compiler_objects != NULL, "must be initialized at this point");
1697   CompileLog** logs = c1 ? _compiler1_logs : _compiler2_logs;
1698   assert(logs != NULL, "must be initialized at this point");
1699   int count = c1 ? _c1_count : _c2_count;
1700 
1701   // Find Compiler number by its threadObj.
1702   oop compiler_obj = ct->threadObj();
1703   int compiler_number = 0;
1704   bool found = false;
1705   for (; compiler_number < count; compiler_number++) {
1706     if (oopDesc::equals(JNIHandles::resolve_non_null(compiler_objects[compiler_number]), compiler_obj)) {
1707       found = true;
1708       break;
1709     }
1710   }
1711   assert(found, "Compiler must exist at this point");
1712 
1713   // Determine pointer for this thread's log.
1714   CompileLog** log_ptr = &logs[compiler_number];
1715 
1716   // Return old one if it exists.
1717   CompileLog* log = *log_ptr;
1718   if (log != NULL) {
1719     ct->init_log(log);
1720     return log;
1721   }
1722 
1723   // Create a new one and remember it.
1724   init_compiler_thread_log();
1725   log = ct->log();
1726   *log_ptr = log;
1727   return log;
1728 }
1729 
1730 // ------------------------------------------------------------------
1731 // CompileBroker::compiler_thread_loop
1732 //
1733 // The main loop run by a CompilerThread.
1734 void CompileBroker::compiler_thread_loop() {
1735   CompilerThread* thread = CompilerThread::current();
1736   CompileQueue* queue = thread->queue();
1737   // For the thread that initializes the ciObjectFactory
1738   // this resource mark holds all the shared objects
1739   ResourceMark rm;
1740 
1741   // First thread to get here will initialize the compiler interface
1742 
1743   {
1744     ASSERT_IN_VM;
1745     MutexLocker only_one (CompileThread_lock, thread);
1746     if (!ciObjectFactory::is_initialized()) {
1747       ciObjectFactory::initialize();
1748     }
1749   }
1750 
1751   // Open a log.
1752   CompileLog* log = get_log(thread);
1753   if (log != NULL) {
1754     log->begin_elem("start_compile_thread name='%s' thread='" UINTX_FORMAT "' process='%d'",
1755                     thread->name(),
1756                     os::current_thread_id(),
1757                     os::current_process_id());
1758     log->stamp();
1759     log->end_elem();
1760   }
1761 
1762   // If compiler thread/runtime initialization fails, exit the compiler thread
1763   if (!init_compiler_runtime()) {
1764     return;
1765   }
1766 
1767   thread->start_idle_timer();
1768 
1769   // Poll for new compilation tasks as long as the JVM runs. Compilation
1770   // should only be disabled if something went wrong while initializing the
1771   // compiler runtimes. This, in turn, should not happen. The only known case
1772   // when compiler runtime initialization fails is if there is not enough free
1773   // space in the code cache to generate the necessary stubs, etc.
1774   while (!is_compilation_disabled_forever()) {
1775     // We need this HandleMark to avoid leaking VM handles.
1776     HandleMark hm(thread);
1777 
1778     CompileTask* task = queue->get();
1779     if (task == NULL) {
1780       if (UseDynamicNumberOfCompilerThreads) {
1781         // Access compiler_count under lock to enforce consistency.
1782         MutexLocker only_one(CompileThread_lock);
1783         if (can_remove(thread, true)) {
1784           if (TraceCompilerThreads) {
1785             tty->print_cr("Removing compiler thread %s after " JLONG_FORMAT " ms idle time",
1786                           thread->name(), thread->idle_time_millis());
1787           }
1788           // Free buffer blob, if allocated
1789           if (thread->get_buffer_blob() != NULL) {
1790             MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1791             CodeCache::free(thread->get_buffer_blob());
1792           }
1793           return; // Stop this thread.
1794         }
1795       }
1796     } else {
1797       // Assign the task to the current thread.  Mark this compilation
1798       // thread as active for the profiler.
1799       // CompileTaskWrapper also keeps the Method* from being deallocated if redefinition
1800       // occurs after fetching the compile task off the queue.
1801       CompileTaskWrapper ctw(task);
1802       nmethodLocker result_handle;  // (handle for the nmethod produced by this task)
1803       task->set_code_handle(&result_handle);
1804       methodHandle method(thread, task->method());
1805 
1806       // Never compile a method if breakpoints are present in it
1807       if (method()->number_of_breakpoints() == 0) {
1808         // Compile the method.
1809         if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) {
1810           invoke_compiler_on_method(task);
1811           thread->start_idle_timer();
1812         } else {
1813           // After compilation is disabled, remove remaining methods from queue
1814           method->clear_queued_for_compilation();
1815           task->set_failure_reason("compilation is disabled");
1816         }
1817       }
1818 
1819       if (UseDynamicNumberOfCompilerThreads) {
1820         possibly_add_compiler_threads();
1821       }
1822     }
1823   }
1824 
1825   // Shut down compiler runtime
1826   shutdown_compiler_runtime(thread->compiler(), thread);
1827 }
1828 
1829 // ------------------------------------------------------------------
1830 // CompileBroker::init_compiler_thread_log
1831 //
1832 // Set up state required by +LogCompilation.
1833 void CompileBroker::init_compiler_thread_log() {
1834     CompilerThread* thread = CompilerThread::current();
1835     char  file_name[4*K];
1836     FILE* fp = NULL;
1837     intx thread_id = os::current_thread_id();
1838     for (int try_temp_dir = 1; try_temp_dir >= 0; try_temp_dir--) {
1839       const char* dir = (try_temp_dir ? os::get_temp_directory() : NULL);
1840       if (dir == NULL) {
1841         jio_snprintf(file_name, sizeof(file_name), "hs_c" UINTX_FORMAT "_pid%u.log",
1842                      thread_id, os::current_process_id());
1843       } else {
1844         jio_snprintf(file_name, sizeof(file_name),
1845                      "%s%shs_c" UINTX_FORMAT "_pid%u.log", dir,
1846                      os::file_separator(), thread_id, os::current_process_id());
1847       }
1848 
1849       fp = fopen(file_name, "wt");
1850       if (fp != NULL) {
1851         if (LogCompilation && Verbose) {
1852           tty->print_cr("Opening compilation log %s", file_name);
1853         }
1854         CompileLog* log = new(ResourceObj::C_HEAP, mtCompiler) CompileLog(file_name, fp, thread_id);
1855         if (log == NULL) {
1856           fclose(fp);
1857           return;
1858         }
1859         thread->init_log(log);
1860 
1861         if (xtty != NULL) {
1862           ttyLocker ttyl;
1863           // Record any per thread log files
1864           xtty->elem("thread_logfile thread='" INTX_FORMAT "' filename='%s'", thread_id, file_name);
1865         }
1866         return;
1867       }
1868     }
1869     warning("Cannot open log file: %s", file_name);
1870 }
1871 
1872 void CompileBroker::log_metaspace_failure() {
1873   const char* message = "some methods may not be compiled because metaspace "
1874                         "is out of memory";
1875   if (_compilation_log != NULL) {
1876     _compilation_log->log_metaspace_failure(message);
1877   }
1878   if (PrintCompilation) {
1879     tty->print_cr("COMPILE PROFILING SKIPPED: %s", message);
1880   }
1881 }
1882 
1883 
1884 // ------------------------------------------------------------------
1885 // CompileBroker::set_should_block
1886 //
1887 // Set _should_block.
1888 // Call this from the VM, with Threads_lock held and a safepoint requested.
1889 void CompileBroker::set_should_block() {
1890   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
1891   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint already");
1892 #ifndef PRODUCT
1893   if (PrintCompilation && (Verbose || WizardMode))
1894     tty->print_cr("notifying compiler thread pool to block");
1895 #endif
1896   _should_block = true;
1897 }
1898 
1899 // ------------------------------------------------------------------
1900 // CompileBroker::maybe_block
1901 //
1902 // Call this from the compiler at convenient points, to poll for _should_block.
1903 void CompileBroker::maybe_block() {
1904   if (_should_block) {
1905 #ifndef PRODUCT
1906     if (PrintCompilation && (Verbose || WizardMode))
1907       tty->print_cr("compiler thread " INTPTR_FORMAT " poll detects block request", p2i(Thread::current()));
1908 #endif
1909     ThreadInVMfromNative tivfn(JavaThread::current());
1910   }
1911 }
1912 
1913 // wrapper for CodeCache::print_summary()
1914 static void codecache_print(bool detailed)
1915 {
1916   ResourceMark rm;
1917   stringStream s;
1918   // Dump code cache  into a buffer before locking the tty,
1919   {
1920     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1921     CodeCache::print_summary(&s, detailed);
1922   }
1923   ttyLocker ttyl;
1924   tty->print("%s", s.as_string());
1925 }
1926 
1927 // wrapper for CodeCache::print_summary() using outputStream
1928 static void codecache_print(outputStream* out, bool detailed) {
1929   ResourceMark rm;
1930   stringStream s;
1931 
1932   // Dump code cache into a buffer
1933   {
1934     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1935     CodeCache::print_summary(&s, detailed);
1936   }
1937 
1938   char* remaining_log = s.as_string();
1939   while (*remaining_log != '\0') {
1940     char* eol = strchr(remaining_log, '\n');
1941     if (eol == NULL) {
1942       out->print_cr("%s", remaining_log);
1943       remaining_log = remaining_log + strlen(remaining_log);
1944     } else {
1945       *eol = '\0';
1946       out->print_cr("%s", remaining_log);
1947       remaining_log = eol + 1;
1948     }
1949   }
1950 }
1951 
1952 void CompileBroker::post_compile(CompilerThread* thread, CompileTask* task, bool success, ciEnv* ci_env,
1953                                  int compilable, const char* failure_reason) {
1954   if (success) {
1955     task->mark_success();
1956     if (ci_env != NULL) {
1957       task->set_num_inlined_bytecodes(ci_env->num_inlined_bytecodes());
1958     }
1959     if (_compilation_log != NULL) {
1960       nmethod* code = task->code();
1961       if (code != NULL) {
1962         _compilation_log->log_nmethod(thread, code);
1963       }
1964     }
1965   } else if (AbortVMOnCompilationFailure) {
1966     if (compilable == ciEnv::MethodCompilable_not_at_tier) {
1967       fatal("Not compilable at tier %d: %s", task->comp_level(), failure_reason);
1968     }
1969     if (compilable == ciEnv::MethodCompilable_never) {
1970       fatal("Never compilable: %s", failure_reason);
1971     }
1972   }
1973   // simulate crash during compilation
1974   assert(task->compile_id() != CICrashAt, "just as planned");
1975 }
1976 
1977 static void post_compilation_event(EventCompilation* event, CompileTask* task) {
1978   assert(event != NULL, "invariant");
1979   assert(event->should_commit(), "invariant");
1980   event->set_method(task->method());
1981   event->set_compileId(task->compile_id());
1982   event->set_compileLevel(task->comp_level());
1983   event->set_succeded(task->is_success());
1984   event->set_isOsr(task->osr_bci() != CompileBroker::standard_entry_bci);
1985   event->set_codeSize((task->code() == NULL) ? 0 : task->code()->total_size());
1986   event->set_inlinedBytes(task->num_inlined_bytecodes());
1987   event->commit();
1988 }
1989 
1990 int DirectivesStack::_depth = 0;
1991 CompilerDirectives* DirectivesStack::_top = NULL;
1992 CompilerDirectives* DirectivesStack::_bottom = NULL;
1993 
1994 // ------------------------------------------------------------------
1995 // CompileBroker::invoke_compiler_on_method
1996 //
1997 // Compile a method.
1998 //
1999 void CompileBroker::invoke_compiler_on_method(CompileTask* task) {
2000   task->print_ul();
2001   if (PrintCompilation) {
2002     ResourceMark rm;
2003     task->print_tty();
2004   }
2005   elapsedTimer time;
2006 
2007   CompilerThread* thread = CompilerThread::current();
2008   ResourceMark rm(thread);
2009 
2010   if (LogEvents) {
2011     _compilation_log->log_compile(thread, task);
2012   }
2013 
2014   // Common flags.
2015   uint compile_id = task->compile_id();
2016   int osr_bci = task->osr_bci();
2017   bool is_osr = (osr_bci != standard_entry_bci);
2018   bool should_log = (thread->log() != NULL);
2019   bool should_break = false;
2020   const int task_level = task->comp_level();
2021   AbstractCompiler* comp = task->compiler();
2022 
2023   DirectiveSet* directive;
2024   {
2025     // create the handle inside it's own block so it can't
2026     // accidentally be referenced once the thread transitions to
2027     // native.  The NoHandleMark before the transition should catch
2028     // any cases where this occurs in the future.
2029     methodHandle method(thread, task->method());
2030     assert(!method->is_native(), "no longer compile natives");
2031 
2032     // Look up matching directives
2033     directive = DirectivesStack::getMatchingDirective(method, comp);
2034 
2035     // Save information about this method in case of failure.
2036     set_last_compile(thread, method, is_osr, task_level);
2037 
2038     DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, compiler_name(task_level));
2039   }
2040 
2041   should_break = directive->BreakAtExecuteOption || task->check_break_at_flags();
2042   if (should_log && !directive->LogOption) {
2043     should_log = false;
2044   }
2045 
2046   // Allocate a new set of JNI handles.
2047   push_jni_handle_block();
2048   Method* target_handle = task->method();
2049   int compilable = ciEnv::MethodCompilable;
2050   const char* failure_reason = NULL;
2051   bool failure_reason_on_C_heap = false;
2052   const char* retry_message = NULL;
2053 
2054   int system_dictionary_modification_counter;
2055   {
2056     MutexLocker locker(Compile_lock, thread);
2057     system_dictionary_modification_counter = SystemDictionary::number_of_modifications();
2058   }
2059 
2060 #if INCLUDE_JVMCI
2061   if (UseJVMCICompiler && comp != NULL && comp->is_jvmci()) {
2062     JVMCICompiler* jvmci = (JVMCICompiler*) comp;
2063 
2064     TraceTime t1("compilation", &time);
2065     EventCompilation event;
2066 
2067     // Skip redefined methods
2068     if (target_handle->is_old()) {
2069         failure_reason = "redefined method";
2070         retry_message = "not retryable";
2071         compilable = ciEnv::MethodCompilable_never;
2072     } else {
2073         JVMCIEnv env(task, system_dictionary_modification_counter);
2074         methodHandle method(thread, target_handle);
2075         jvmci->compile_method(method, osr_bci, &env);
2076 
2077         failure_reason = env.failure_reason();
2078         failure_reason_on_C_heap = env.failure_reason_on_C_heap();
2079         if (!env.retryable()) {
2080           retry_message = "not retryable";
2081           compilable = ciEnv::MethodCompilable_not_at_tier;
2082         }
2083     }
2084     post_compile(thread, task, task->code() != NULL, NULL, compilable, failure_reason);
2085     if (event.should_commit()) {
2086       post_compilation_event(&event, task);
2087     }
2088 
2089   } else
2090 #endif // INCLUDE_JVMCI
2091   {
2092     NoHandleMark  nhm;
2093     ThreadToNativeFromVM ttn(thread);
2094 
2095     ciEnv ci_env(task, system_dictionary_modification_counter);
2096     if (should_break) {
2097       ci_env.set_break_at_compile(true);
2098     }
2099     if (should_log) {
2100       ci_env.set_log(thread->log());
2101     }
2102     assert(thread->env() == &ci_env, "set by ci_env");
2103     // The thread-env() field is cleared in ~CompileTaskWrapper.
2104 
2105     // Cache Jvmti state
2106     ci_env.cache_jvmti_state();
2107 
2108     // Cache DTrace flags
2109     ci_env.cache_dtrace_flags();
2110 
2111     ciMethod* target = ci_env.get_method_from_handle(target_handle);
2112 
2113     TraceTime t1("compilation", &time);
2114     EventCompilation event;
2115 
2116     if (comp == NULL) {
2117       ci_env.record_method_not_compilable("no compiler", !TieredCompilation);
2118     } else {
2119       if (WhiteBoxAPI && WhiteBox::compilation_locked) {
2120         MonitorLockerEx locker(Compilation_lock, Mutex::_no_safepoint_check_flag);
2121         while (WhiteBox::compilation_locked) {
2122           locker.wait(Mutex::_no_safepoint_check_flag);
2123         }
2124       }
2125       comp->compile_method(&ci_env, target, osr_bci, directive);
2126     }
2127 
2128     if (!ci_env.failing() && task->code() == NULL) {
2129       //assert(false, "compiler should always document failure");
2130       // The compiler elected, without comment, not to register a result.
2131       // Do not attempt further compilations of this method.
2132       ci_env.record_method_not_compilable("compile failed", !TieredCompilation);
2133     }
2134 
2135     // Copy this bit to the enclosing block:
2136     compilable = ci_env.compilable();
2137 
2138     if (ci_env.failing()) {
2139       failure_reason = ci_env.failure_reason();
2140       retry_message = ci_env.retry_message();
2141       ci_env.report_failure(failure_reason);
2142     }
2143 
2144     post_compile(thread, task, !ci_env.failing(), &ci_env, compilable, failure_reason);
2145     if (event.should_commit()) {
2146       post_compilation_event(&event, task);
2147     }
2148   }
2149   // Remove the JNI handle block after the ciEnv destructor has run in
2150   // the previous block.
2151   pop_jni_handle_block();
2152 
2153   if (failure_reason != NULL) {
2154     task->set_failure_reason(failure_reason, failure_reason_on_C_heap);
2155     if (_compilation_log != NULL) {
2156       _compilation_log->log_failure(thread, task, failure_reason, retry_message);
2157     }
2158     if (PrintCompilation) {
2159       FormatBufferResource msg = retry_message != NULL ?
2160         FormatBufferResource("COMPILE SKIPPED: %s (%s)", failure_reason, retry_message) :
2161         FormatBufferResource("COMPILE SKIPPED: %s",      failure_reason);
2162       task->print(tty, msg);
2163     }
2164   }
2165 
2166   methodHandle method(thread, task->method());
2167 
2168   DTRACE_METHOD_COMPILE_END_PROBE(method, compiler_name(task_level), task->is_success());
2169 
2170   collect_statistics(thread, time, task);
2171 
2172   nmethod* nm = task->code();
2173   if (nm != NULL) {
2174     nm->maybe_print_nmethod(directive);
2175   }
2176   DirectivesStack::release(directive);
2177 
2178   if (PrintCompilation && PrintCompilation2) {
2179     tty->print("%7d ", (int) tty->time_stamp().milliseconds());  // print timestamp
2180     tty->print("%4d ", compile_id);    // print compilation number
2181     tty->print("%s ", (is_osr ? "%" : " "));
2182     if (task->code() != NULL) {
2183       tty->print("size: %d(%d) ", task->code()->total_size(), task->code()->insts_size());
2184     }
2185     tty->print_cr("time: %d inlined: %d bytes", (int)time.milliseconds(), task->num_inlined_bytecodes());
2186   }
2187 
2188   Log(compilation, codecache) log;
2189   if (log.is_debug()) {
2190     LogStream ls(log.debug());
2191     codecache_print(&ls, /* detailed= */ false);
2192   }
2193   if (PrintCodeCacheOnCompilation) {
2194     codecache_print(/* detailed= */ false);
2195   }
2196   // Disable compilation, if required.
2197   switch (compilable) {
2198   case ciEnv::MethodCompilable_never:
2199     if (is_osr)
2200       method->set_not_osr_compilable_quietly();
2201     else
2202       method->set_not_compilable_quietly();
2203     break;
2204   case ciEnv::MethodCompilable_not_at_tier:
2205     if (is_osr)
2206       method->set_not_osr_compilable_quietly(task_level);
2207     else
2208       method->set_not_compilable_quietly(task_level);
2209     break;
2210   }
2211 
2212   // Note that the queued_for_compilation bits are cleared without
2213   // protection of a mutex. [They were set by the requester thread,
2214   // when adding the task to the compile queue -- at which time the
2215   // compile queue lock was held. Subsequently, we acquired the compile
2216   // queue lock to get this task off the compile queue; thus (to belabour
2217   // the point somewhat) our clearing of the bits must be occurring
2218   // only after the setting of the bits. See also 14012000 above.
2219   method->clear_queued_for_compilation();
2220 }
2221 
2222 /**
2223  * The CodeCache is full. Print warning and disable compilation.
2224  * Schedule code cache cleaning so compilation can continue later.
2225  * This function needs to be called only from CodeCache::allocate(),
2226  * since we currently handle a full code cache uniformly.
2227  */
2228 void CompileBroker::handle_full_code_cache(int code_blob_type) {
2229   UseInterpreter = true;
2230   if (UseCompiler || AlwaysCompileLoopMethods ) {
2231     if (xtty != NULL) {
2232       ResourceMark rm;
2233       stringStream s;
2234       // Dump code cache state into a buffer before locking the tty,
2235       // because log_state() will use locks causing lock conflicts.
2236       CodeCache::log_state(&s);
2237       // Lock to prevent tearing
2238       ttyLocker ttyl;
2239       xtty->begin_elem("code_cache_full");
2240       xtty->print("%s", s.as_string());
2241       xtty->stamp();
2242       xtty->end_elem();
2243     }
2244 
2245 #ifndef PRODUCT
2246     if (ExitOnFullCodeCache) {
2247       codecache_print(/* detailed= */ true);
2248       before_exit(JavaThread::current());
2249       exit_globals(); // will delete tty
2250       vm_direct_exit(1);
2251     }
2252 #endif
2253     if (UseCodeCacheFlushing) {
2254       // Since code cache is full, immediately stop new compiles
2255       if (CompileBroker::set_should_compile_new_jobs(CompileBroker::stop_compilation)) {
2256         NMethodSweeper::log_sweep("disable_compiler");
2257       }
2258     } else {
2259       disable_compilation_forever();
2260     }
2261 
2262     CodeCache::report_codemem_full(code_blob_type, should_print_compiler_warning());
2263   }
2264 }
2265 
2266 // ------------------------------------------------------------------
2267 // CompileBroker::set_last_compile
2268 //
2269 // Record this compilation for debugging purposes.
2270 void CompileBroker::set_last_compile(CompilerThread* thread, const methodHandle& method, bool is_osr, int comp_level) {
2271   ResourceMark rm;
2272   char* method_name = method->name()->as_C_string();
2273   strncpy(_last_method_compiled, method_name, CompileBroker::name_buffer_length);
2274   _last_method_compiled[CompileBroker::name_buffer_length - 1] = '\0'; // ensure null terminated
2275   char current_method[CompilerCounters::cmname_buffer_length];
2276   size_t maxLen = CompilerCounters::cmname_buffer_length;
2277 
2278   if (UsePerfData) {
2279     const char* class_name = method->method_holder()->name()->as_C_string();
2280 
2281     size_t s1len = strlen(class_name);
2282     size_t s2len = strlen(method_name);
2283 
2284     // check if we need to truncate the string
2285     if (s1len + s2len + 2 > maxLen) {
2286 
2287       // the strategy is to lop off the leading characters of the
2288       // class name and the trailing characters of the method name.
2289 
2290       if (s2len + 2 > maxLen) {
2291         // lop of the entire class name string, let snprintf handle
2292         // truncation of the method name.
2293         class_name += s1len; // null string
2294       }
2295       else {
2296         // lop off the extra characters from the front of the class name
2297         class_name += ((s1len + s2len + 2) - maxLen);
2298       }
2299     }
2300 
2301     jio_snprintf(current_method, maxLen, "%s %s", class_name, method_name);
2302   }
2303 
2304   if (CICountOSR && is_osr) {
2305     _last_compile_type = osr_compile;
2306   } else {
2307     _last_compile_type = normal_compile;
2308   }
2309   _last_compile_level = comp_level;
2310 
2311   if (UsePerfData) {
2312     CompilerCounters* counters = thread->counters();
2313     counters->set_current_method(current_method);
2314     counters->set_compile_type((jlong)_last_compile_type);
2315   }
2316 }
2317 
2318 
2319 // ------------------------------------------------------------------
2320 // CompileBroker::push_jni_handle_block
2321 //
2322 // Push on a new block of JNI handles.
2323 void CompileBroker::push_jni_handle_block() {
2324   JavaThread* thread = JavaThread::current();
2325 
2326   // Allocate a new block for JNI handles.
2327   // Inlined code from jni_PushLocalFrame()
2328   JNIHandleBlock* java_handles = thread->active_handles();
2329   JNIHandleBlock* compile_handles = JNIHandleBlock::allocate_block(thread);
2330   assert(compile_handles != NULL && java_handles != NULL, "should not be NULL");
2331   compile_handles->set_pop_frame_link(java_handles);  // make sure java handles get gc'd.
2332   thread->set_active_handles(compile_handles);
2333 }
2334 
2335 
2336 // ------------------------------------------------------------------
2337 // CompileBroker::pop_jni_handle_block
2338 //
2339 // Pop off the current block of JNI handles.
2340 void CompileBroker::pop_jni_handle_block() {
2341   JavaThread* thread = JavaThread::current();
2342 
2343   // Release our JNI handle block
2344   JNIHandleBlock* compile_handles = thread->active_handles();
2345   JNIHandleBlock* java_handles = compile_handles->pop_frame_link();
2346   thread->set_active_handles(java_handles);
2347   compile_handles->set_pop_frame_link(NULL);
2348   JNIHandleBlock::release_block(compile_handles, thread); // may block
2349 }
2350 
2351 // ------------------------------------------------------------------
2352 // CompileBroker::collect_statistics
2353 //
2354 // Collect statistics about the compilation.
2355 
2356 void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time, CompileTask* task) {
2357   bool success = task->is_success();
2358   methodHandle method (thread, task->method());
2359   uint compile_id = task->compile_id();
2360   bool is_osr = (task->osr_bci() != standard_entry_bci);
2361   nmethod* code = task->code();
2362   CompilerCounters* counters = thread->counters();
2363 
2364   assert(code == NULL || code->is_locked_by_vm(), "will survive the MutexLocker");
2365   MutexLocker locker(CompileStatistics_lock);
2366 
2367   // _perf variables are production performance counters which are
2368   // updated regardless of the setting of the CITime and CITimeEach flags
2369   //
2370 
2371   // account all time, including bailouts and failures in this counter;
2372   // C1 and C2 counters are counting both successful and unsuccessful compiles
2373   _t_total_compilation.add(time);
2374 
2375   if (!success) {
2376     _total_bailout_count++;
2377     if (UsePerfData) {
2378       _perf_last_failed_method->set_value(counters->current_method());
2379       _perf_last_failed_type->set_value(counters->compile_type());
2380       _perf_total_bailout_count->inc();
2381     }
2382     _t_bailedout_compilation.add(time);
2383   } else if (code == NULL) {
2384     if (UsePerfData) {
2385       _perf_last_invalidated_method->set_value(counters->current_method());
2386       _perf_last_invalidated_type->set_value(counters->compile_type());
2387       _perf_total_invalidated_count->inc();
2388     }
2389     _total_invalidated_count++;
2390     _t_invalidated_compilation.add(time);
2391   } else {
2392     // Compilation succeeded
2393 
2394     // update compilation ticks - used by the implementation of
2395     // java.lang.management.CompilationMBean
2396     _perf_total_compilation->inc(time.ticks());
2397     _peak_compilation_time = time.milliseconds() > _peak_compilation_time ? time.milliseconds() : _peak_compilation_time;
2398 
2399     if (CITime) {
2400       int bytes_compiled = method->code_size() + task->num_inlined_bytecodes();
2401       if (is_osr) {
2402         _t_osr_compilation.add(time);
2403         _sum_osr_bytes_compiled += bytes_compiled;
2404       } else {
2405         _t_standard_compilation.add(time);
2406         _sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes();
2407       }
2408 
2409 #if INCLUDE_JVMCI
2410       AbstractCompiler* comp = compiler(task->comp_level());
2411       if (comp) {
2412         CompilerStatistics* stats = comp->stats();
2413         if (stats) {
2414           if (is_osr) {
2415             stats->_osr.update(time, bytes_compiled);
2416           } else {
2417             stats->_standard.update(time, bytes_compiled);
2418           }
2419           stats->_nmethods_size += code->total_size();
2420           stats->_nmethods_code_size += code->insts_size();
2421         } else { // if (!stats)
2422           assert(false, "Compiler statistics object must exist");
2423         }
2424       } else { // if (!comp)
2425         assert(false, "Compiler object must exist");
2426       }
2427 #endif // INCLUDE_JVMCI
2428     }
2429 
2430     if (UsePerfData) {
2431       // save the name of the last method compiled
2432       _perf_last_method->set_value(counters->current_method());
2433       _perf_last_compile_type->set_value(counters->compile_type());
2434       _perf_last_compile_size->set_value(method->code_size() +
2435                                          task->num_inlined_bytecodes());
2436       if (is_osr) {
2437         _perf_osr_compilation->inc(time.ticks());
2438         _perf_sum_osr_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2439       } else {
2440         _perf_standard_compilation->inc(time.ticks());
2441         _perf_sum_standard_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2442       }
2443     }
2444 
2445     if (CITimeEach) {
2446       float bytes_per_sec = 1.0 * (method->code_size() + task->num_inlined_bytecodes()) / time.seconds();
2447       tty->print_cr("%3d   seconds: %f bytes/sec : %f (bytes %d + %d inlined)",
2448                     compile_id, time.seconds(), bytes_per_sec, method->code_size(), task->num_inlined_bytecodes());
2449     }
2450 
2451     // Collect counts of successful compilations
2452     _sum_nmethod_size      += code->total_size();
2453     _sum_nmethod_code_size += code->insts_size();
2454     _total_compile_count++;
2455 
2456     if (UsePerfData) {
2457       _perf_sum_nmethod_size->inc(     code->total_size());
2458       _perf_sum_nmethod_code_size->inc(code->insts_size());
2459       _perf_total_compile_count->inc();
2460     }
2461 
2462     if (is_osr) {
2463       if (UsePerfData) _perf_total_osr_compile_count->inc();
2464       _total_osr_compile_count++;
2465     } else {
2466       if (UsePerfData) _perf_total_standard_compile_count->inc();
2467       _total_standard_compile_count++;
2468     }
2469   }
2470   // set the current method for the thread to null
2471   if (UsePerfData) counters->set_current_method("");
2472 }
2473 
2474 const char* CompileBroker::compiler_name(int comp_level) {
2475   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
2476   if (comp == NULL) {
2477     return "no compiler";
2478   } else {
2479     return (comp->name());
2480   }
2481 }
2482 
2483 #if INCLUDE_JVMCI
2484 void CompileBroker::print_times(AbstractCompiler* comp) {
2485   CompilerStatistics* stats = comp->stats();
2486   if (stats) {
2487     tty->print_cr("  %s {speed: %d bytes/s; standard: %6.3f s, %d bytes, %d methods; osr: %6.3f s, %d bytes, %d methods; nmethods_size: %d bytes; nmethods_code_size: %d bytes}",
2488                 comp->name(), stats->bytes_per_second(),
2489                 stats->_standard._time.seconds(), stats->_standard._bytes, stats->_standard._count,
2490                 stats->_osr._time.seconds(), stats->_osr._bytes, stats->_osr._count,
2491                 stats->_nmethods_size, stats->_nmethods_code_size);
2492   } else { // if (!stats)
2493     assert(false, "Compiler statistics object must exist");
2494   }
2495   comp->print_timers();
2496 }
2497 #endif // INCLUDE_JVMCI
2498 
2499 void CompileBroker::print_times(bool per_compiler, bool aggregate) {
2500 #if INCLUDE_JVMCI
2501   elapsedTimer standard_compilation;
2502   elapsedTimer total_compilation;
2503   elapsedTimer osr_compilation;
2504 
2505   int standard_bytes_compiled = 0;
2506   int osr_bytes_compiled = 0;
2507 
2508   int standard_compile_count = 0;
2509   int osr_compile_count = 0;
2510   int total_compile_count = 0;
2511 
2512   int nmethods_size = 0;
2513   int nmethods_code_size = 0;
2514   bool printedHeader = false;
2515 
2516   for (unsigned int i = 0; i < sizeof(_compilers) / sizeof(AbstractCompiler*); i++) {
2517     AbstractCompiler* comp = _compilers[i];
2518     if (comp != NULL) {
2519       if (per_compiler && aggregate && !printedHeader) {
2520         printedHeader = true;
2521         tty->cr();
2522         tty->print_cr("Individual compiler times (for compiled methods only)");
2523         tty->print_cr("------------------------------------------------");
2524         tty->cr();
2525       }
2526       CompilerStatistics* stats = comp->stats();
2527 
2528       if (stats) {
2529         standard_compilation.add(stats->_standard._time);
2530         osr_compilation.add(stats->_osr._time);
2531 
2532         standard_bytes_compiled += stats->_standard._bytes;
2533         osr_bytes_compiled += stats->_osr._bytes;
2534 
2535         standard_compile_count += stats->_standard._count;
2536         osr_compile_count += stats->_osr._count;
2537 
2538         nmethods_size += stats->_nmethods_size;
2539         nmethods_code_size += stats->_nmethods_code_size;
2540       } else { // if (!stats)
2541         assert(false, "Compiler statistics object must exist");
2542       }
2543 
2544       if (per_compiler) {
2545         print_times(comp);
2546       }
2547     }
2548   }
2549   total_compile_count = osr_compile_count + standard_compile_count;
2550   total_compilation.add(osr_compilation);
2551   total_compilation.add(standard_compilation);
2552 
2553   // In hosted mode, print the JVMCI compiler specific counters manually.
2554   if (!UseJVMCICompiler) {
2555     JVMCICompiler::print_compilation_timers();
2556   }
2557 #else // INCLUDE_JVMCI
2558   elapsedTimer standard_compilation = CompileBroker::_t_standard_compilation;
2559   elapsedTimer osr_compilation = CompileBroker::_t_osr_compilation;
2560   elapsedTimer total_compilation = CompileBroker::_t_total_compilation;
2561 
2562   int standard_bytes_compiled = CompileBroker::_sum_standard_bytes_compiled;
2563   int osr_bytes_compiled = CompileBroker::_sum_osr_bytes_compiled;
2564 
2565   int standard_compile_count = CompileBroker::_total_standard_compile_count;
2566   int osr_compile_count = CompileBroker::_total_osr_compile_count;
2567   int total_compile_count = CompileBroker::_total_compile_count;
2568 
2569   int nmethods_size = CompileBroker::_sum_nmethod_code_size;
2570   int nmethods_code_size = CompileBroker::_sum_nmethod_size;
2571 #endif // INCLUDE_JVMCI
2572 
2573   if (!aggregate) {
2574     return;
2575   }
2576   tty->cr();
2577   tty->print_cr("Accumulated compiler times");
2578   tty->print_cr("----------------------------------------------------------");
2579                //0000000000111111111122222222223333333333444444444455555555556666666666
2580                //0123456789012345678901234567890123456789012345678901234567890123456789
2581   tty->print_cr("  Total compilation time   : %7.3f s", total_compilation.seconds());
2582   tty->print_cr("    Standard compilation   : %7.3f s, Average : %2.3f s",
2583                 standard_compilation.seconds(),
2584                 standard_compilation.seconds() / standard_compile_count);
2585   tty->print_cr("    Bailed out compilation : %7.3f s, Average : %2.3f s",
2586                 CompileBroker::_t_bailedout_compilation.seconds(),
2587                 CompileBroker::_t_bailedout_compilation.seconds() / CompileBroker::_total_bailout_count);
2588   tty->print_cr("    On stack replacement   : %7.3f s, Average : %2.3f s",
2589                 osr_compilation.seconds(),
2590                 osr_compilation.seconds() / osr_compile_count);
2591   tty->print_cr("    Invalidated            : %7.3f s, Average : %2.3f s",
2592                 CompileBroker::_t_invalidated_compilation.seconds(),
2593                 CompileBroker::_t_invalidated_compilation.seconds() / CompileBroker::_total_invalidated_count);
2594 
2595   AbstractCompiler *comp = compiler(CompLevel_simple);
2596   if (comp != NULL) {
2597     tty->cr();
2598     comp->print_timers();
2599   }
2600   comp = compiler(CompLevel_full_optimization);
2601   if (comp != NULL) {
2602     tty->cr();
2603     comp->print_timers();
2604   }
2605   tty->cr();
2606   tty->print_cr("  Total compiled methods    : %8d methods", total_compile_count);
2607   tty->print_cr("    Standard compilation    : %8d methods", standard_compile_count);
2608   tty->print_cr("    On stack replacement    : %8d methods", osr_compile_count);
2609   int tcb = osr_bytes_compiled + standard_bytes_compiled;
2610   tty->print_cr("  Total compiled bytecodes  : %8d bytes", tcb);
2611   tty->print_cr("    Standard compilation    : %8d bytes", standard_bytes_compiled);
2612   tty->print_cr("    On stack replacement    : %8d bytes", osr_bytes_compiled);
2613   double tcs = total_compilation.seconds();
2614   int bps = tcs == 0.0 ? 0 : (int)(tcb / tcs);
2615   tty->print_cr("  Average compilation speed : %8d bytes/s", bps);
2616   tty->cr();
2617   tty->print_cr("  nmethod code size         : %8d bytes", nmethods_code_size);
2618   tty->print_cr("  nmethod total size        : %8d bytes", nmethods_size);
2619 }
2620 
2621 // Debugging output for failure
2622 void CompileBroker::print_last_compile() {
2623   if (_last_compile_level != CompLevel_none &&
2624       compiler(_last_compile_level) != NULL &&
2625       _last_compile_type != no_compile) {
2626     if (_last_compile_type == osr_compile) {
2627       tty->print_cr("Last parse:  [osr]%d+++(%d) %s",
2628                     _osr_compilation_id, _last_compile_level, _last_method_compiled);
2629     } else {
2630       tty->print_cr("Last parse:  %d+++(%d) %s",
2631                     _compilation_id, _last_compile_level, _last_method_compiled);
2632     }
2633   }
2634 }
2635 
2636 // Print general/accumulated JIT information.
2637 void CompileBroker::print_info(outputStream *out) {
2638   if (out == NULL) out = tty;
2639   out->cr();
2640   out->print_cr("======================");
2641   out->print_cr("   General JIT info   ");
2642   out->print_cr("======================");
2643   out->cr();
2644   out->print_cr("            JIT is : %7s",     should_compile_new_jobs() ? "on" : "off");
2645   out->print_cr("  Compiler threads : %7d",     (int)CICompilerCount);
2646   out->cr();
2647   out->print_cr("CodeCache overview");
2648   out->print_cr("--------------------------------------------------------");
2649   out->cr();
2650   out->print_cr("         Reserved size : " SIZE_FORMAT_W(7) " KB", CodeCache::max_capacity() / K);
2651   out->print_cr("        Committed size : " SIZE_FORMAT_W(7) " KB", CodeCache::capacity() / K);
2652   out->print_cr("  Unallocated capacity : " SIZE_FORMAT_W(7) " KB", CodeCache::unallocated_capacity() / K);
2653   out->cr();
2654 
2655   out->cr();
2656   out->print_cr("CodeCache cleaning overview");
2657   out->print_cr("--------------------------------------------------------");
2658   out->cr();
2659   NMethodSweeper::print(out);
2660   out->print_cr("--------------------------------------------------------");
2661   out->cr();
2662 }
2663 
2664 // Note: tty_lock must not be held upon entry to this function.
2665 //       Print functions called from herein do "micro-locking" on tty_lock.
2666 //       That's a tradeoff which keeps together important blocks of output.
2667 //       At the same time, continuous tty_lock hold time is kept in check,
2668 //       preventing concurrently printing threads from stalling a long time.
2669 void CompileBroker::print_heapinfo(outputStream* out, const char* function, const char* granularity) {
2670   TimeStamp ts_total;
2671   TimeStamp ts_global;
2672   TimeStamp ts;
2673 
2674   bool allFun = !strcmp(function, "all");
2675   bool aggregate = !strcmp(function, "aggregate") || !strcmp(function, "analyze") || allFun;
2676   bool usedSpace = !strcmp(function, "UsedSpace") || allFun;
2677   bool freeSpace = !strcmp(function, "FreeSpace") || allFun;
2678   bool methodCount = !strcmp(function, "MethodCount") || allFun;
2679   bool methodSpace = !strcmp(function, "MethodSpace") || allFun;
2680   bool methodAge = !strcmp(function, "MethodAge") || allFun;
2681   bool methodNames = !strcmp(function, "MethodNames") || allFun;
2682   bool discard = !strcmp(function, "discard") || allFun;
2683 
2684   if (out == NULL) {
2685     out = tty;
2686   }
2687 
2688   if (!(aggregate || usedSpace || freeSpace || methodCount || methodSpace || methodAge || methodNames || discard)) {
2689     out->print_cr("\n__ CodeHeapStateAnalytics: Function %s is not supported", function);
2690     out->cr();
2691     return;
2692   }
2693 
2694   ts_total.update(); // record starting point
2695 
2696   if (aggregate) {
2697     print_info(out);
2698   }
2699 
2700   // We hold the CodeHeapStateAnalytics_lock all the time, from here until we leave this function.
2701   // That prevents another thread from destroying our view on the CodeHeap.
2702   // When we request individual parts of the analysis via the jcmd interface, it is possible
2703   // that in between another thread (another jcmd user or the vm running into CodeCache OOM)
2704   // updated the aggregated data. That's a tolerable tradeoff because we can't hold a lock
2705   // across user interaction.
2706   // Acquire this lock before acquiring the CodeCache_lock.
2707   // CodeHeapStateAnalytics_lock could be held by a concurrent thread for a long time,
2708   // leading to an unnecessarily long hold time of the CodeCache_lock.
2709   ts.update(); // record starting point
2710   MutexLockerEx mu1(CodeHeapStateAnalytics_lock, Mutex::_no_safepoint_check_flag);
2711   out->print_cr("\n__ CodeHeapStateAnalytics lock wait took %10.3f seconds _________\n", ts.seconds());
2712 
2713   // If we serve an "allFun" call, it is beneficial to hold the CodeCache_lock
2714   // for the entire duration of aggregation and printing. That makes sure
2715   // we see a consistent picture and do not run into issues caused by
2716   // the CodeHeap being altered concurrently.
2717   Monitor* global_lock   = allFun ? CodeCache_lock : NULL;
2718   Monitor* function_lock = allFun ? NULL : CodeCache_lock;
2719   ts_global.update(); // record starting point
2720   MutexLockerEx mu2(global_lock, Mutex::_no_safepoint_check_flag);
2721   if (global_lock != NULL) {
2722     out->print_cr("\n__ CodeCache (global) lock wait took %10.3f seconds _________\n", ts_global.seconds());
2723     ts_global.update(); // record starting point
2724   }
2725 
2726   if (aggregate) {
2727     ts.update(); // record starting point
2728     MutexLockerEx mu3(function_lock, Mutex::_no_safepoint_check_flag);
2729     if (function_lock != NULL) {
2730       out->print_cr("\n__ CodeCache (function) lock wait took %10.3f seconds _________\n", ts.seconds());
2731     }
2732 
2733     ts.update(); // record starting point
2734     CodeCache::aggregate(out, granularity);
2735     if (function_lock != NULL) {
2736       out->print_cr("\n__ CodeCache (function) lock hold took %10.3f seconds _________\n", ts.seconds());
2737     }
2738   }
2739 
2740   if (usedSpace) CodeCache::print_usedSpace(out);
2741   if (freeSpace) CodeCache::print_freeSpace(out);
2742   if (methodCount) CodeCache::print_count(out);
2743   if (methodSpace) CodeCache::print_space(out);
2744   if (methodAge) CodeCache::print_age(out);
2745   if (methodNames) {
2746     // print_names() has shown to be sensitive to concurrent CodeHeap modifications.
2747     // Therefore, request  the CodeCache_lock before calling...
2748     MutexLockerEx mu3(function_lock, Mutex::_no_safepoint_check_flag);
2749     CodeCache::print_names(out);
2750   }
2751   if (discard) CodeCache::discard(out);
2752 
2753   if (global_lock != NULL) {
2754     out->print_cr("\n__ CodeCache (global) lock hold took %10.3f seconds _________\n", ts_global.seconds());
2755   }
2756   out->print_cr("\n__ CodeHeapStateAnalytics total duration %10.3f seconds _________\n", ts_total.seconds());
2757 }