1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP
  27 
  28 #include "gc_implementation/shared/gSpaceCounters.hpp"
  29 #include "gc_implementation/shared/gcStats.hpp"
  30 #include "gc_implementation/shared/generationCounters.hpp"
  31 #include "memory/freeBlockDictionary.hpp"
  32 #include "memory/generation.hpp"
  33 #include "runtime/mutexLocker.hpp"
  34 #include "runtime/virtualspace.hpp"
  35 #include "services/memoryService.hpp"
  36 #include "utilities/bitMap.inline.hpp"
  37 #include "utilities/stack.inline.hpp"
  38 #include "utilities/taskqueue.hpp"
  39 #include "utilities/yieldingWorkgroup.hpp"
  40 
  41 // ConcurrentMarkSweepGeneration is in support of a concurrent
  42 // mark-sweep old generation in the Detlefs-Printezis--Boehm-Demers-Schenker
  43 // style. We assume, for now, that this generation is always the
  44 // seniormost generation and for simplicity
  45 // in the first implementation, that this generation is a single compactible
  46 // space. Neither of these restrictions appears essential, and will be
  47 // relaxed in the future when more time is available to implement the
  48 // greater generality (and there's a need for it).
  49 //
  50 // Concurrent mode failures are currently handled by
  51 // means of a sliding mark-compact.
  52 
  53 class CMSAdaptiveSizePolicy;
  54 class CMSConcMarkingTask;
  55 class CMSGCAdaptivePolicyCounters;
  56 class ConcurrentMarkSweepGeneration;
  57 class ConcurrentMarkSweepPolicy;
  58 class ConcurrentMarkSweepThread;
  59 class CompactibleFreeListSpace;
  60 class FreeChunk;
  61 class PromotionInfo;
  62 class ScanMarkedObjectsAgainCarefullyClosure;
  63 class TenuredGeneration;
  64 
  65 // A generic CMS bit map. It's the basis for both the CMS marking bit map
  66 // as well as for the mod union table (in each case only a subset of the
  67 // methods are used). This is essentially a wrapper around the BitMap class,
  68 // with one bit per (1<<_shifter) HeapWords. (i.e. for the marking bit map,
  69 // we have _shifter == 0. and for the mod union table we have
  70 // shifter == CardTableModRefBS::card_shift - LogHeapWordSize.)
  71 // XXX 64-bit issues in BitMap?
  72 class CMSBitMap VALUE_OBJ_CLASS_SPEC {
  73   friend class VMStructs;
  74 
  75   HeapWord* _bmStartWord;   // base address of range covered by map
  76   size_t    _bmWordSize;    // map size (in #HeapWords covered)
  77   const int _shifter;       // shifts to convert HeapWord to bit position
  78   VirtualSpace _virtual_space; // underlying the bit map
  79   BitMap    _bm;            // the bit map itself
  80  public:
  81   Mutex* const _lock;       // mutex protecting _bm;
  82 
  83  public:
  84   // constructor
  85   CMSBitMap(int shifter, int mutex_rank, const char* mutex_name);
  86 
  87   // allocates the actual storage for the map
  88   bool allocate(MemRegion mr);
  89   // field getter
  90   Mutex* lock() const { return _lock; }
  91   // locking verifier convenience function
  92   void assert_locked() const PRODUCT_RETURN;
  93 
  94   // inquiries
  95   HeapWord* startWord()   const { return _bmStartWord; }
  96   size_t    sizeInWords() const { return _bmWordSize;  }
  97   size_t    sizeInBits()  const { return _bm.size();   }
  98   // the following is one past the last word in space
  99   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
 100 
 101   // reading marks
 102   bool isMarked(HeapWord* addr) const;
 103   bool par_isMarked(HeapWord* addr) const; // do not lock checks
 104   bool isUnmarked(HeapWord* addr) const;
 105   bool isAllClear() const;
 106 
 107   // writing marks
 108   void mark(HeapWord* addr);
 109   // For marking by parallel GC threads;
 110   // returns true if we did, false if another thread did
 111   bool par_mark(HeapWord* addr);
 112 
 113   void mark_range(MemRegion mr);
 114   void par_mark_range(MemRegion mr);
 115   void mark_large_range(MemRegion mr);
 116   void par_mark_large_range(MemRegion mr);
 117   void par_clear(HeapWord* addr); // For unmarking by parallel GC threads.
 118   void clear_range(MemRegion mr);
 119   void par_clear_range(MemRegion mr);
 120   void clear_large_range(MemRegion mr);
 121   void par_clear_large_range(MemRegion mr);
 122   void clear_all();
 123   void clear_all_incrementally();  // Not yet implemented!!
 124 
 125   NOT_PRODUCT(
 126     // checks the memory region for validity
 127     void region_invariant(MemRegion mr);
 128   )
 129 
 130   // iteration
 131   void iterate(BitMapClosure* cl) {
 132     _bm.iterate(cl);
 133   }
 134   void iterate(BitMapClosure* cl, HeapWord* left, HeapWord* right);
 135   void dirty_range_iterate_clear(MemRegionClosure* cl);
 136   void dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl);
 137 
 138   // auxiliary support for iteration
 139   HeapWord* getNextMarkedWordAddress(HeapWord* addr) const;
 140   HeapWord* getNextMarkedWordAddress(HeapWord* start_addr,
 141                                             HeapWord* end_addr) const;
 142   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr) const;
 143   HeapWord* getNextUnmarkedWordAddress(HeapWord* start_addr,
 144                                               HeapWord* end_addr) const;
 145   MemRegion getAndClearMarkedRegion(HeapWord* addr);
 146   MemRegion getAndClearMarkedRegion(HeapWord* start_addr,
 147                                            HeapWord* end_addr);
 148 
 149   // conversion utilities
 150   HeapWord* offsetToHeapWord(size_t offset) const;
 151   size_t    heapWordToOffset(HeapWord* addr) const;
 152   size_t    heapWordDiffToOffsetDiff(size_t diff) const;
 153 
 154   void print_on_error(outputStream* st, const char* prefix) const;
 155 
 156   // debugging
 157   // is this address range covered by the bit-map?
 158   NOT_PRODUCT(
 159     bool covers(MemRegion mr) const;
 160     bool covers(HeapWord* start, size_t size = 0) const;
 161   )
 162   void verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) PRODUCT_RETURN;
 163 };
 164 
 165 // Represents a marking stack used by the CMS collector.
 166 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
 167 class CMSMarkStack: public CHeapObj<mtGC>  {
 168   //
 169   friend class CMSCollector;   // to get at expasion stats further below
 170   //
 171 
 172   VirtualSpace _virtual_space;  // space for the stack
 173   oop*   _base;      // bottom of stack
 174   size_t _index;     // one more than last occupied index
 175   size_t _capacity;  // max #elements
 176   Mutex  _par_lock;  // an advisory lock used in case of parallel access
 177   NOT_PRODUCT(size_t _max_depth;)  // max depth plumbed during run
 178 
 179  protected:
 180   size_t _hit_limit;      // we hit max stack size limit
 181   size_t _failed_double;  // we failed expansion before hitting limit
 182 
 183  public:
 184   CMSMarkStack():
 185     _par_lock(Mutex::event, "CMSMarkStack._par_lock", true),
 186     _hit_limit(0),
 187     _failed_double(0) {}
 188 
 189   bool allocate(size_t size);
 190 
 191   size_t capacity() const { return _capacity; }
 192 
 193   oop pop() {
 194     if (!isEmpty()) {
 195       return _base[--_index] ;
 196     }
 197     return NULL;
 198   }
 199 
 200   bool push(oop ptr) {
 201     if (isFull()) {
 202       return false;
 203     } else {
 204       _base[_index++] = ptr;
 205       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
 206       return true;
 207     }
 208   }
 209 
 210   bool isEmpty() const { return _index == 0; }
 211   bool isFull()  const {
 212     assert(_index <= _capacity, "buffer overflow");
 213     return _index == _capacity;
 214   }
 215 
 216   size_t length() { return _index; }
 217 
 218   // "Parallel versions" of some of the above
 219   oop par_pop() {
 220     // lock and pop
 221     MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
 222     return pop();
 223   }
 224 
 225   bool par_push(oop ptr) {
 226     // lock and push
 227     MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
 228     return push(ptr);
 229   }
 230 
 231   // Forcibly reset the stack, losing all of its contents.
 232   void reset() {
 233     _index = 0;
 234   }
 235 
 236   // Expand the stack, typically in response to an overflow condition
 237   void expand();
 238 
 239   // Compute the least valued stack element.
 240   oop least_value(HeapWord* low) {
 241      oop least = (oop)low;
 242      for (size_t i = 0; i < _index; i++) {
 243        least = MIN2(least, _base[i]);
 244      }
 245      return least;
 246   }
 247 
 248   // Exposed here to allow stack expansion in || case
 249   Mutex* par_lock() { return &_par_lock; }
 250 };
 251 
 252 class CardTableRS;
 253 class CMSParGCThreadState;
 254 
 255 class ModUnionClosure: public MemRegionClosure {
 256  protected:
 257   CMSBitMap* _t;
 258  public:
 259   ModUnionClosure(CMSBitMap* t): _t(t) { }
 260   void do_MemRegion(MemRegion mr);
 261 };
 262 
 263 class ModUnionClosurePar: public ModUnionClosure {
 264  public:
 265   ModUnionClosurePar(CMSBitMap* t): ModUnionClosure(t) { }
 266   void do_MemRegion(MemRegion mr);
 267 };
 268 
 269 // Survivor Chunk Array in support of parallelization of
 270 // Survivor Space rescan.
 271 class ChunkArray: public CHeapObj<mtGC> {
 272   size_t _index;
 273   size_t _capacity;
 274   size_t _overflows;
 275   HeapWord** _array;   // storage for array
 276 
 277  public:
 278   ChunkArray() : _index(0), _capacity(0), _overflows(0), _array(NULL) {}
 279   ChunkArray(HeapWord** a, size_t c):
 280     _index(0), _capacity(c), _overflows(0), _array(a) {}
 281 
 282   HeapWord** array() { return _array; }
 283   void set_array(HeapWord** a) { _array = a; }
 284 
 285   size_t capacity() { return _capacity; }
 286   void set_capacity(size_t c) { _capacity = c; }
 287 
 288   size_t end() {
 289     assert(_index <= capacity(),
 290            err_msg("_index (" SIZE_FORMAT ") > _capacity (" SIZE_FORMAT "): out of bounds",
 291                    _index, _capacity));
 292     return _index;
 293   }  // exclusive
 294 
 295   HeapWord* nth(size_t n) {
 296     assert(n < end(), "Out of bounds access");
 297     return _array[n];
 298   }
 299 
 300   void reset() {
 301     _index = 0;
 302     if (_overflows > 0 && PrintCMSStatistics > 1) {
 303       warning("CMS: ChunkArray[" SIZE_FORMAT "] overflowed " SIZE_FORMAT " times",
 304               _capacity, _overflows);
 305     }
 306     _overflows = 0;
 307   }
 308 
 309   void record_sample(HeapWord* p, size_t sz) {
 310     // For now we do not do anything with the size
 311     if (_index < _capacity) {
 312       _array[_index++] = p;
 313     } else {
 314       ++_overflows;
 315       assert(_index == _capacity,
 316              err_msg("_index (" SIZE_FORMAT ") > _capacity (" SIZE_FORMAT
 317                      "): out of bounds at overflow#" SIZE_FORMAT,
 318                      _index, _capacity, _overflows));
 319     }
 320   }
 321 };
 322 
 323 //
 324 // Timing, allocation and promotion statistics for gc scheduling and incremental
 325 // mode pacing.  Most statistics are exponential averages.
 326 //
 327 class CMSStats VALUE_OBJ_CLASS_SPEC {
 328  private:
 329   ConcurrentMarkSweepGeneration* const _cms_gen;   // The cms (old) gen.
 330 
 331   // The following are exponential averages with factor alpha:
 332   //   avg = (100 - alpha) * avg + alpha * cur_sample
 333   //
 334   //   The durations measure:  end_time[n] - start_time[n]
 335   //   The periods measure:    start_time[n] - start_time[n-1]
 336   //
 337   // The cms period and duration include only concurrent collections; time spent
 338   // in foreground cms collections due to System.gc() or because of a failure to
 339   // keep up are not included.
 340   //
 341   // There are 3 alphas to "bootstrap" the statistics.  The _saved_alpha is the
 342   // real value, but is used only after the first period.  A value of 100 is
 343   // used for the first sample so it gets the entire weight.
 344   unsigned int _saved_alpha; // 0-100
 345   unsigned int _gc0_alpha;
 346   unsigned int _cms_alpha;
 347 
 348   double _gc0_duration;
 349   double _gc0_period;
 350   size_t _gc0_promoted;         // bytes promoted per gc0
 351   double _cms_duration;
 352   double _cms_duration_pre_sweep; // time from initiation to start of sweep
 353   double _cms_duration_per_mb;
 354   double _cms_period;
 355   size_t _cms_allocated;        // bytes of direct allocation per gc0 period
 356 
 357   // Timers.
 358   elapsedTimer _cms_timer;
 359   TimeStamp    _gc0_begin_time;
 360   TimeStamp    _cms_begin_time;
 361   TimeStamp    _cms_end_time;
 362 
 363   // Snapshots of the amount used in the CMS generation.
 364   size_t _cms_used_at_gc0_begin;
 365   size_t _cms_used_at_gc0_end;
 366   size_t _cms_used_at_cms_begin;
 367 
 368   // Used to prevent the duty cycle from being reduced in the middle of a cms
 369   // cycle.
 370   bool _allow_duty_cycle_reduction;
 371 
 372   enum {
 373     _GC0_VALID = 0x1,
 374     _CMS_VALID = 0x2,
 375     _ALL_VALID = _GC0_VALID | _CMS_VALID
 376   };
 377 
 378   unsigned int _valid_bits;
 379 
 380   unsigned int _icms_duty_cycle;        // icms duty cycle (0-100).
 381 
 382  protected:
 383 
 384   // Return a duty cycle that avoids wild oscillations, by limiting the amount
 385   // of change between old_duty_cycle and new_duty_cycle (the latter is treated
 386   // as a recommended value).
 387   static unsigned int icms_damped_duty_cycle(unsigned int old_duty_cycle,
 388                                              unsigned int new_duty_cycle);
 389   unsigned int icms_update_duty_cycle_impl();
 390 
 391   // In support of adjusting of cms trigger ratios based on history
 392   // of concurrent mode failure.
 393   double cms_free_adjustment_factor(size_t free) const;
 394   void   adjust_cms_free_adjustment_factor(bool fail, size_t free);
 395 
 396  public:
 397   CMSStats(ConcurrentMarkSweepGeneration* cms_gen,
 398            unsigned int alpha = CMSExpAvgFactor);
 399 
 400   // Whether or not the statistics contain valid data; higher level statistics
 401   // cannot be called until this returns true (they require at least one young
 402   // gen and one cms cycle to have completed).
 403   bool valid() const;
 404 
 405   // Record statistics.
 406   void record_gc0_begin();
 407   void record_gc0_end(size_t cms_gen_bytes_used);
 408   void record_cms_begin();
 409   void record_cms_end();
 410 
 411   // Allow management of the cms timer, which must be stopped/started around
 412   // yield points.
 413   elapsedTimer& cms_timer()     { return _cms_timer; }
 414   void start_cms_timer()        { _cms_timer.start(); }
 415   void stop_cms_timer()         { _cms_timer.stop(); }
 416 
 417   // Basic statistics; units are seconds or bytes.
 418   double gc0_period() const     { return _gc0_period; }
 419   double gc0_duration() const   { return _gc0_duration; }
 420   size_t gc0_promoted() const   { return _gc0_promoted; }
 421   double cms_period() const          { return _cms_period; }
 422   double cms_duration() const        { return _cms_duration; }
 423   double cms_duration_per_mb() const { return _cms_duration_per_mb; }
 424   size_t cms_allocated() const       { return _cms_allocated; }
 425 
 426   size_t cms_used_at_gc0_end() const { return _cms_used_at_gc0_end;}
 427 
 428   // Seconds since the last background cms cycle began or ended.
 429   double cms_time_since_begin() const;
 430   double cms_time_since_end() const;
 431 
 432   // Higher level statistics--caller must check that valid() returns true before
 433   // calling.
 434 
 435   // Returns bytes promoted per second of wall clock time.
 436   double promotion_rate() const;
 437 
 438   // Returns bytes directly allocated per second of wall clock time.
 439   double cms_allocation_rate() const;
 440 
 441   // Rate at which space in the cms generation is being consumed (sum of the
 442   // above two).
 443   double cms_consumption_rate() const;
 444 
 445   // Returns an estimate of the number of seconds until the cms generation will
 446   // fill up, assuming no collection work is done.
 447   double time_until_cms_gen_full() const;
 448 
 449   // Returns an estimate of the number of seconds remaining until
 450   // the cms generation collection should start.
 451   double time_until_cms_start() const;
 452 
 453   // End of higher level statistics.
 454 
 455   // Returns the cms incremental mode duty cycle, as a percentage (0-100).
 456   unsigned int icms_duty_cycle() const { return _icms_duty_cycle; }
 457 
 458   // Update the duty cycle and return the new value.
 459   unsigned int icms_update_duty_cycle();
 460 
 461   // Debugging.
 462   void print_on(outputStream* st) const PRODUCT_RETURN;
 463   void print() const { print_on(gclog_or_tty); }
 464 };
 465 
 466 // A closure related to weak references processing which
 467 // we embed in the CMSCollector, since we need to pass
 468 // it to the reference processor for secondary filtering
 469 // of references based on reachability of referent;
 470 // see role of _is_alive_non_header closure in the
 471 // ReferenceProcessor class.
 472 // For objects in the CMS generation, this closure checks
 473 // if the object is "live" (reachable). Used in weak
 474 // reference processing.
 475 class CMSIsAliveClosure: public BoolObjectClosure {
 476   const MemRegion  _span;
 477   const CMSBitMap* _bit_map;
 478 
 479   friend class CMSCollector;
 480  public:
 481   CMSIsAliveClosure(MemRegion span,
 482                     CMSBitMap* bit_map):
 483     _span(span),
 484     _bit_map(bit_map) {
 485     assert(!span.is_empty(), "Empty span could spell trouble");
 486   }
 487 
 488   void do_object(oop obj) {
 489     assert(false, "not to be invoked");
 490   }
 491 
 492   bool do_object_b(oop obj);
 493 };
 494 
 495 
 496 // Implements AbstractRefProcTaskExecutor for CMS.
 497 class CMSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
 498 public:
 499 
 500   CMSRefProcTaskExecutor(CMSCollector& collector)
 501     : _collector(collector)
 502   { }
 503 
 504   // Executes a task using worker threads.
 505   virtual void execute(ProcessTask& task);
 506   virtual void execute(EnqueueTask& task);
 507 private:
 508   CMSCollector& _collector;
 509 };
 510 
 511 
 512 class CMSCollector: public CHeapObj<mtGC> {
 513   friend class VMStructs;
 514   friend class ConcurrentMarkSweepThread;
 515   friend class ConcurrentMarkSweepGeneration;
 516   friend class CompactibleFreeListSpace;
 517   friend class CMSParRemarkTask;
 518   friend class CMSConcMarkingTask;
 519   friend class CMSRefProcTaskProxy;
 520   friend class CMSRefProcTaskExecutor;
 521   friend class ScanMarkedObjectsAgainCarefullyClosure;  // for sampling eden
 522   friend class SurvivorSpacePrecleanClosure;            // --- ditto -------
 523   friend class PushOrMarkClosure;             // to access _restart_addr
 524   friend class Par_PushOrMarkClosure;             // to access _restart_addr
 525   friend class MarkFromRootsClosure;          //  -- ditto --
 526                                               // ... and for clearing cards
 527   friend class Par_MarkFromRootsClosure;      //  to access _restart_addr
 528                                               // ... and for clearing cards
 529   friend class Par_ConcMarkingClosure;        //  to access _restart_addr etc.
 530   friend class MarkFromRootsVerifyClosure;    // to access _restart_addr
 531   friend class PushAndMarkVerifyClosure;      //  -- ditto --
 532   friend class MarkRefsIntoAndScanClosure;    // to access _overflow_list
 533   friend class PushAndMarkClosure;            //  -- ditto --
 534   friend class Par_PushAndMarkClosure;        //  -- ditto --
 535   friend class CMSKeepAliveClosure;           //  -- ditto --
 536   friend class CMSDrainMarkingStackClosure;   //  -- ditto --
 537   friend class CMSInnerParMarkAndPushClosure; //  -- ditto --
 538   NOT_PRODUCT(friend class ScanMarkedObjectsAgainClosure;) //  assertion on _overflow_list
 539   friend class ReleaseForegroundGC;  // to access _foregroundGCShouldWait
 540   friend class VM_CMS_Operation;
 541   friend class VM_CMS_Initial_Mark;
 542   friend class VM_CMS_Final_Remark;
 543   friend class TraceCMSMemoryManagerStats;
 544 
 545  private:
 546   jlong _time_of_last_gc;
 547   void update_time_of_last_gc(jlong now) {
 548     _time_of_last_gc = now;
 549   }
 550 
 551   OopTaskQueueSet* _task_queues;
 552 
 553   // Overflow list of grey objects, threaded through mark-word
 554   // Manipulated with CAS in the parallel/multi-threaded case.
 555   oop _overflow_list;
 556   // The following array-pair keeps track of mark words
 557   // displaced for accomodating overflow list above.
 558   // This code will likely be revisited under RFE#4922830.
 559   Stack<oop, mtGC>     _preserved_oop_stack;
 560   Stack<markOop, mtGC> _preserved_mark_stack;
 561 
 562   int*             _hash_seed;
 563 
 564   // In support of multi-threaded concurrent phases
 565   YieldingFlexibleWorkGang* _conc_workers;
 566 
 567   // Performance Counters
 568   CollectorCounters* _gc_counters;
 569 
 570   // Initialization Errors
 571   bool _completed_initialization;
 572 
 573   // In support of ExplicitGCInvokesConcurrent
 574   static   bool _full_gc_requested;
 575   unsigned int  _collection_count_start;
 576 
 577   // Should we unload classes this concurrent cycle?
 578   bool _should_unload_classes;
 579   unsigned int  _concurrent_cycles_since_last_unload;
 580   unsigned int concurrent_cycles_since_last_unload() const {
 581     return _concurrent_cycles_since_last_unload;
 582   }
 583   // Did we (allow) unload classes in the previous concurrent cycle?
 584   bool unloaded_classes_last_cycle() const {
 585     return concurrent_cycles_since_last_unload() == 0;
 586   }
 587   // Root scanning options for perm gen
 588   int _roots_scanning_options;
 589   int roots_scanning_options() const      { return _roots_scanning_options; }
 590   void add_root_scanning_option(int o)    { _roots_scanning_options |= o;   }
 591   void remove_root_scanning_option(int o) { _roots_scanning_options &= ~o;  }
 592 
 593   // Verification support
 594   CMSBitMap     _verification_mark_bm;
 595   void verify_after_remark_work_1();
 596   void verify_after_remark_work_2();
 597 
 598   // true if any verification flag is on.
 599   bool _verifying;
 600   bool verifying() const { return _verifying; }
 601   void set_verifying(bool v) { _verifying = v; }
 602 
 603   // Collector policy
 604   ConcurrentMarkSweepPolicy* _collector_policy;
 605   ConcurrentMarkSweepPolicy* collector_policy() { return _collector_policy; }
 606 
 607   void set_did_compact(bool v);
 608 
 609   // XXX Move these to CMSStats ??? FIX ME !!!
 610   elapsedTimer _inter_sweep_timer;   // time between sweeps
 611   elapsedTimer _intra_sweep_timer;   // time _in_ sweeps
 612   // padded decaying average estimates of the above
 613   AdaptivePaddedAverage _inter_sweep_estimate;
 614   AdaptivePaddedAverage _intra_sweep_estimate;
 615 
 616  protected:
 617   ConcurrentMarkSweepGeneration* _cmsGen;  // old gen (CMS)
 618   MemRegion                      _span;    // span covering above two
 619   CardTableRS*                   _ct;      // card table
 620 
 621   // CMS marking support structures
 622   CMSBitMap     _markBitMap;
 623   CMSBitMap     _modUnionTable;
 624   CMSMarkStack  _markStack;
 625 
 626   HeapWord*     _restart_addr; // in support of marking stack overflow
 627   void          lower_restart_addr(HeapWord* low);
 628 
 629   // Counters in support of marking stack / work queue overflow handling:
 630   // a non-zero value indicates certain types of overflow events during
 631   // the current CMS cycle and could lead to stack resizing efforts at
 632   // an opportune future time.
 633   size_t        _ser_pmc_preclean_ovflw;
 634   size_t        _ser_pmc_remark_ovflw;
 635   size_t        _par_pmc_remark_ovflw;
 636   size_t        _ser_kac_preclean_ovflw;
 637   size_t        _ser_kac_ovflw;
 638   size_t        _par_kac_ovflw;
 639   NOT_PRODUCT(ssize_t _num_par_pushes;)
 640 
 641   // ("Weak") Reference processing support
 642   ReferenceProcessor*            _ref_processor;
 643   CMSIsAliveClosure              _is_alive_closure;
 644       // keep this textually after _markBitMap and _span; c'tor dependency
 645 
 646   ConcurrentMarkSweepThread*     _cmsThread;   // the thread doing the work
 647   ModUnionClosure    _modUnionClosure;
 648   ModUnionClosurePar _modUnionClosurePar;
 649 
 650   // CMS abstract state machine
 651   // initial_state: Idling
 652   // next_state(Idling)            = {Marking}
 653   // next_state(Marking)           = {Precleaning, Sweeping}
 654   // next_state(Precleaning)       = {AbortablePreclean, FinalMarking}
 655   // next_state(AbortablePreclean) = {FinalMarking}
 656   // next_state(FinalMarking)      = {Sweeping}
 657   // next_state(Sweeping)          = {Resizing}
 658   // next_state(Resizing)          = {Resetting}
 659   // next_state(Resetting)         = {Idling}
 660   // The numeric values below are chosen so that:
 661   // . _collectorState <= Idling ==  post-sweep && pre-mark
 662   // . _collectorState in (Idling, Sweeping) == {initial,final}marking ||
 663   //                                            precleaning || abortablePrecleanb
 664  public:
 665   enum CollectorState {
 666     Resizing            = 0,
 667     Resetting           = 1,
 668     Idling              = 2,
 669     InitialMarking      = 3,
 670     Marking             = 4,
 671     Precleaning         = 5,
 672     AbortablePreclean   = 6,
 673     FinalMarking        = 7,
 674     Sweeping            = 8
 675   };
 676  protected:
 677   static CollectorState _collectorState;
 678 
 679   // State related to prologue/epilogue invocation for my generations
 680   bool _between_prologue_and_epilogue;
 681 
 682   // Signalling/State related to coordination between fore- and backgroud GC
 683   // Note: When the baton has been passed from background GC to foreground GC,
 684   // _foregroundGCIsActive is true and _foregroundGCShouldWait is false.
 685   static bool _foregroundGCIsActive;    // true iff foreground collector is active or
 686                                  // wants to go active
 687   static bool _foregroundGCShouldWait;  // true iff background GC is active and has not
 688                                  // yet passed the baton to the foreground GC
 689 
 690   // Support for CMSScheduleRemark (abortable preclean)
 691   bool _abort_preclean;
 692   bool _start_sampling;
 693 
 694   int    _numYields;
 695   size_t _numDirtyCards;
 696   size_t _sweep_count;
 697   // number of full gc's since the last concurrent gc.
 698   uint   _full_gcs_since_conc_gc;
 699 
 700   // occupancy used for bootstrapping stats
 701   double _bootstrap_occupancy;
 702 
 703   // timer
 704   elapsedTimer _timer;
 705 
 706   // Timing, allocation and promotion statistics, used for scheduling.
 707   CMSStats      _stats;
 708 
 709   // Allocation limits installed in the young gen, used only in
 710   // CMSIncrementalMode.  When an allocation in the young gen would cross one of
 711   // these limits, the cms generation is notified and the cms thread is started
 712   // or stopped, respectively.
 713   HeapWord*     _icms_start_limit;
 714   HeapWord*     _icms_stop_limit;
 715 
 716   enum CMS_op_type {
 717     CMS_op_checkpointRootsInitial,
 718     CMS_op_checkpointRootsFinal
 719   };
 720 
 721   void do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause);
 722   bool stop_world_and_do(CMS_op_type op);
 723 
 724   OopTaskQueueSet* task_queues() { return _task_queues; }
 725   int*             hash_seed(int i) { return &_hash_seed[i]; }
 726   YieldingFlexibleWorkGang* conc_workers() { return _conc_workers; }
 727 
 728   // Support for parallelizing Eden rescan in CMS remark phase
 729   void sample_eden(); // ... sample Eden space top
 730 
 731  private:
 732   // Support for parallelizing young gen rescan in CMS remark phase
 733   Generation* _young_gen;  // the younger gen
 734   HeapWord** _top_addr;    // ... Top of Eden
 735   HeapWord** _end_addr;    // ... End of Eden
 736   HeapWord** _eden_chunk_array; // ... Eden partitioning array
 737   size_t     _eden_chunk_index; // ... top (exclusive) of array
 738   size_t     _eden_chunk_capacity;  // ... max entries in array
 739 
 740   // Support for parallelizing survivor space rescan
 741   HeapWord** _survivor_chunk_array;
 742   size_t     _survivor_chunk_index;
 743   size_t     _survivor_chunk_capacity;
 744   size_t*    _cursor;
 745   ChunkArray* _survivor_plab_array;
 746 
 747   // Support for marking stack overflow handling
 748   bool take_from_overflow_list(size_t num, CMSMarkStack* to_stack);
 749   bool par_take_from_overflow_list(size_t num,
 750                                    OopTaskQueue* to_work_q,
 751                                    int no_of_gc_threads);
 752   void push_on_overflow_list(oop p);
 753   void par_push_on_overflow_list(oop p);
 754   // the following is, obviously, not, in general, "MT-stable"
 755   bool overflow_list_is_empty() const;
 756 
 757   void preserve_mark_if_necessary(oop p);
 758   void par_preserve_mark_if_necessary(oop p);
 759   void preserve_mark_work(oop p, markOop m);
 760   void restore_preserved_marks_if_any();
 761   NOT_PRODUCT(bool no_preserved_marks() const;)
 762   // in support of testing overflow code
 763   NOT_PRODUCT(int _overflow_counter;)
 764   NOT_PRODUCT(bool simulate_overflow();)       // sequential
 765   NOT_PRODUCT(bool par_simulate_overflow();)   // MT version
 766 
 767   // CMS work methods
 768   void checkpointRootsInitialWork(bool asynch); // initial checkpoint work
 769 
 770   // a return value of false indicates failure due to stack overflow
 771   bool markFromRootsWork(bool asynch);  // concurrent marking work
 772 
 773  public:   // FIX ME!!! only for testing
 774   bool do_marking_st(bool asynch);      // single-threaded marking
 775   bool do_marking_mt(bool asynch);      // multi-threaded  marking
 776 
 777  private:
 778 
 779   // concurrent precleaning work
 780   size_t preclean_mod_union_table(ConcurrentMarkSweepGeneration* gen,
 781                                   ScanMarkedObjectsAgainCarefullyClosure* cl);
 782   size_t preclean_card_table(ConcurrentMarkSweepGeneration* gen,
 783                              ScanMarkedObjectsAgainCarefullyClosure* cl);
 784   // Does precleaning work, returning a quantity indicative of
 785   // the amount of "useful work" done.
 786   size_t preclean_work(bool clean_refs, bool clean_survivors);
 787   void preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock);
 788   void abortable_preclean(); // Preclean while looking for possible abort
 789   void initialize_sequential_subtasks_for_young_gen_rescan(int i);
 790   // Helper function for above; merge-sorts the per-thread plab samples
 791   void merge_survivor_plab_arrays(ContiguousSpace* surv, int no_of_gc_threads);
 792   // Resets (i.e. clears) the per-thread plab sample vectors
 793   void reset_survivor_plab_arrays();
 794 
 795   // final (second) checkpoint work
 796   void checkpointRootsFinalWork(bool asynch, bool clear_all_soft_refs,
 797                                 bool init_mark_was_synchronous);
 798   // work routine for parallel version of remark
 799   void do_remark_parallel();
 800   // work routine for non-parallel version of remark
 801   void do_remark_non_parallel();
 802   // reference processing work routine (during second checkpoint)
 803   void refProcessingWork(bool asynch, bool clear_all_soft_refs);
 804 
 805   // concurrent sweeping work
 806   void sweepWork(ConcurrentMarkSweepGeneration* gen, bool asynch);
 807 
 808   // (concurrent) resetting of support data structures
 809   void reset(bool asynch);
 810 
 811   // Clear _expansion_cause fields of constituent generations
 812   void clear_expansion_cause();
 813 
 814   // An auxilliary method used to record the ends of
 815   // used regions of each generation to limit the extent of sweep
 816   void save_sweep_limits();
 817 
 818   // A work method used by foreground collection to determine
 819   // what type of collection (compacting or not, continuing or fresh)
 820   // it should do.
 821   void decide_foreground_collection_type(bool clear_all_soft_refs,
 822     bool* should_compact, bool* should_start_over);
 823 
 824   // A work method used by the foreground collector to do
 825   // a mark-sweep-compact.
 826   void do_compaction_work(bool clear_all_soft_refs);
 827 
 828   // A work method used by the foreground collector to do
 829   // a mark-sweep, after taking over from a possibly on-going
 830   // concurrent mark-sweep collection.
 831   void do_mark_sweep_work(bool clear_all_soft_refs,
 832     CollectorState first_state, bool should_start_over);
 833 
 834   // If the backgrould GC is active, acquire control from the background
 835   // GC and do the collection.
 836   void acquire_control_and_collect(bool   full, bool clear_all_soft_refs);
 837 
 838   // For synchronizing passing of control from background to foreground
 839   // GC.  waitForForegroundGC() is called by the background
 840   // collector.  It if had to wait for a foreground collection,
 841   // it returns true and the background collection should assume
 842   // that the collection was finished by the foreground
 843   // collector.
 844   bool waitForForegroundGC();
 845 
 846   // Incremental mode triggering:  recompute the icms duty cycle and set the
 847   // allocation limits in the young gen.
 848   void icms_update_allocation_limits();
 849 
 850   size_t block_size_using_printezis_bits(HeapWord* addr) const;
 851   size_t block_size_if_printezis_bits(HeapWord* addr) const;
 852   HeapWord* next_card_start_after_block(HeapWord* addr) const;
 853 
 854   void setup_cms_unloading_and_verification_state();
 855  public:
 856   CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 857                CardTableRS*                   ct,
 858                ConcurrentMarkSweepPolicy*     cp);
 859   ConcurrentMarkSweepThread* cmsThread() { return _cmsThread; }
 860 
 861   ReferenceProcessor* ref_processor() { return _ref_processor; }
 862   void ref_processor_init();
 863 
 864   Mutex* bitMapLock()        const { return _markBitMap.lock();    }
 865   static CollectorState abstract_state() { return _collectorState;  }
 866 
 867   bool should_abort_preclean() const; // Whether preclean should be aborted.
 868   size_t get_eden_used() const;
 869   size_t get_eden_capacity() const;
 870 
 871   ConcurrentMarkSweepGeneration* cmsGen() { return _cmsGen; }
 872 
 873   // locking checks
 874   NOT_PRODUCT(static bool have_cms_token();)
 875 
 876   // XXXPERM bool should_collect(bool full, size_t size, bool tlab);
 877   bool shouldConcurrentCollect();
 878 
 879   void collect(bool   full,
 880                bool   clear_all_soft_refs,
 881                size_t size,
 882                bool   tlab);
 883   void collect_in_background(bool clear_all_soft_refs);
 884   void collect_in_foreground(bool clear_all_soft_refs);
 885 
 886   // In support of ExplicitGCInvokesConcurrent
 887   static void request_full_gc(unsigned int full_gc_count);
 888   // Should we unload classes in a particular concurrent cycle?
 889   bool should_unload_classes() const {
 890     return _should_unload_classes;
 891   }
 892   void update_should_unload_classes();
 893 
 894   void direct_allocated(HeapWord* start, size_t size);
 895 
 896   // Object is dead if not marked and current phase is sweeping.
 897   bool is_dead_obj(oop obj) const;
 898 
 899   // After a promotion (of "start"), do any necessary marking.
 900   // If "par", then it's being done by a parallel GC thread.
 901   // The last two args indicate if we need precise marking
 902   // and if so the size of the object so it can be dirtied
 903   // in its entirety.
 904   void promoted(bool par, HeapWord* start,
 905                 bool is_obj_array, size_t obj_size);
 906 
 907   HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
 908                                      size_t word_size);
 909 
 910   void getFreelistLocks() const;
 911   void releaseFreelistLocks() const;
 912   bool haveFreelistLocks() const;
 913 
 914   // Adjust size of underlying generation
 915   void compute_new_size();
 916 
 917   // GC prologue and epilogue
 918   void gc_prologue(bool full);
 919   void gc_epilogue(bool full);
 920 
 921   jlong time_of_last_gc(jlong now) {
 922     if (_collectorState <= Idling) {
 923       // gc not in progress
 924       return _time_of_last_gc;
 925     } else {
 926       // collection in progress
 927       return now;
 928     }
 929   }
 930 
 931   // Support for parallel remark of survivor space
 932   void* get_data_recorder(int thr_num);
 933 
 934   CMSBitMap* markBitMap()  { return &_markBitMap; }
 935   void directAllocated(HeapWord* start, size_t size);
 936 
 937   // main CMS steps and related support
 938   void checkpointRootsInitial(bool asynch);
 939   bool markFromRoots(bool asynch);  // a return value of false indicates failure
 940                                     // due to stack overflow
 941   void preclean();
 942   void checkpointRootsFinal(bool asynch, bool clear_all_soft_refs,
 943                             bool init_mark_was_synchronous);
 944   void sweep(bool asynch);
 945 
 946   // Check that the currently executing thread is the expected
 947   // one (foreground collector or background collector).
 948   static void check_correct_thread_executing() PRODUCT_RETURN;
 949   // XXXPERM void print_statistics()           PRODUCT_RETURN;
 950 
 951   bool is_cms_reachable(HeapWord* addr);
 952 
 953   // Performance Counter Support
 954   CollectorCounters* counters()    { return _gc_counters; }
 955 
 956   // timer stuff
 957   void    startTimer() { assert(!_timer.is_active(), "Error"); _timer.start();   }
 958   void    stopTimer()  { assert( _timer.is_active(), "Error"); _timer.stop();    }
 959   void    resetTimer() { assert(!_timer.is_active(), "Error"); _timer.reset();   }
 960   double  timerValue() { assert(!_timer.is_active(), "Error"); return _timer.seconds(); }
 961 
 962   int  yields()          { return _numYields; }
 963   void resetYields()     { _numYields = 0;    }
 964   void incrementYields() { _numYields++;      }
 965   void resetNumDirtyCards()               { _numDirtyCards = 0; }
 966   void incrementNumDirtyCards(size_t num) { _numDirtyCards += num; }
 967   size_t  numDirtyCards()                 { return _numDirtyCards; }
 968 
 969   static bool foregroundGCShouldWait() { return _foregroundGCShouldWait; }
 970   static void set_foregroundGCShouldWait(bool v) { _foregroundGCShouldWait = v; }
 971   static bool foregroundGCIsActive() { return _foregroundGCIsActive; }
 972   static void set_foregroundGCIsActive(bool v) { _foregroundGCIsActive = v; }
 973   size_t sweep_count() const             { return _sweep_count; }
 974   void   increment_sweep_count()         { _sweep_count++; }
 975 
 976   // Timers/stats for gc scheduling and incremental mode pacing.
 977   CMSStats& stats() { return _stats; }
 978 
 979   // Convenience methods that check whether CMSIncrementalMode is enabled and
 980   // forward to the corresponding methods in ConcurrentMarkSweepThread.
 981   static void start_icms();
 982   static void stop_icms();    // Called at the end of the cms cycle.
 983   static void disable_icms(); // Called before a foreground collection.
 984   static void enable_icms();  // Called after a foreground collection.
 985   void icms_wait();          // Called at yield points.
 986 
 987   // Adaptive size policy
 988   CMSAdaptiveSizePolicy* size_policy();
 989   CMSGCAdaptivePolicyCounters* gc_adaptive_policy_counters();
 990 
 991   static void print_on_error(outputStream* st);
 992 
 993   // debugging
 994   void verify();
 995   bool verify_after_remark(bool silent = VerifySilently);
 996   void verify_ok_to_terminate() const PRODUCT_RETURN;
 997   void verify_work_stacks_empty() const PRODUCT_RETURN;
 998   void verify_overflow_empty() const PRODUCT_RETURN;
 999 
1000   // convenience methods in support of debugging
1001   static const size_t skip_header_HeapWords() PRODUCT_RETURN0;
1002   HeapWord* block_start(const void* p) const PRODUCT_RETURN0;
1003 
1004   // accessors
1005   CMSMarkStack* verification_mark_stack() { return &_markStack; }
1006   CMSBitMap*    verification_mark_bm()    { return &_verification_mark_bm; }
1007 
1008   // Initialization errors
1009   bool completed_initialization() { return _completed_initialization; }
1010 };
1011 
1012 class CMSExpansionCause : public AllStatic  {
1013  public:
1014   enum Cause {
1015     _no_expansion,
1016     _satisfy_free_ratio,
1017     _satisfy_promotion,
1018     _satisfy_allocation,
1019     _allocate_par_lab,
1020     _allocate_par_spooling_space,
1021     _adaptive_size_policy
1022   };
1023   // Return a string describing the cause of the expansion.
1024   static const char* to_string(CMSExpansionCause::Cause cause);
1025 };
1026 
1027 class ConcurrentMarkSweepGeneration: public CardGeneration {
1028   friend class VMStructs;
1029   friend class ConcurrentMarkSweepThread;
1030   friend class ConcurrentMarkSweep;
1031   friend class CMSCollector;
1032  protected:
1033   static CMSCollector*       _collector; // the collector that collects us
1034   CompactibleFreeListSpace*  _cmsSpace;  // underlying space (only one for now)
1035 
1036   // Performance Counters
1037   GenerationCounters*      _gen_counters;
1038   GSpaceCounters*          _space_counters;
1039 
1040   // Words directly allocated, used by CMSStats.
1041   size_t _direct_allocated_words;
1042 
1043   // Non-product stat counters
1044   NOT_PRODUCT(
1045     size_t _numObjectsPromoted;
1046     size_t _numWordsPromoted;
1047     size_t _numObjectsAllocated;
1048     size_t _numWordsAllocated;
1049   )
1050 
1051   // Used for sizing decisions
1052   bool _incremental_collection_failed;
1053   bool incremental_collection_failed() {
1054     return _incremental_collection_failed;
1055   }
1056   void set_incremental_collection_failed() {
1057     _incremental_collection_failed = true;
1058   }
1059   void clear_incremental_collection_failed() {
1060     _incremental_collection_failed = false;
1061   }
1062 
1063   // accessors
1064   void set_expansion_cause(CMSExpansionCause::Cause v) { _expansion_cause = v;}
1065   CMSExpansionCause::Cause expansion_cause() const { return _expansion_cause; }
1066 
1067  private:
1068   // For parallel young-gen GC support.
1069   CMSParGCThreadState** _par_gc_thread_states;
1070 
1071   // Reason generation was expanded
1072   CMSExpansionCause::Cause _expansion_cause;
1073 
1074   // In support of MinChunkSize being larger than min object size
1075   const double _dilatation_factor;
1076 
1077   enum CollectionTypes {
1078     Concurrent_collection_type          = 0,
1079     MS_foreground_collection_type       = 1,
1080     MSC_foreground_collection_type      = 2,
1081     Unknown_collection_type             = 3
1082   };
1083 
1084   CollectionTypes _debug_collection_type;
1085 
1086   // True if a compactiing collection was done.
1087   bool _did_compact;
1088   bool did_compact() { return _did_compact; }
1089 
1090   // Fraction of current occupancy at which to start a CMS collection which
1091   // will collect this generation (at least).
1092   double _initiating_occupancy;
1093 
1094  protected:
1095   // Shrink generation by specified size (returns false if unable to shrink)
1096   void shrink_free_list_by(size_t bytes);
1097 
1098   // Update statistics for GC
1099   virtual void update_gc_stats(int level, bool full);
1100 
1101   // Maximum available space in the generation (including uncommitted)
1102   // space.
1103   size_t max_available() const;
1104 
1105   // getter and initializer for _initiating_occupancy field.
1106   double initiating_occupancy() const { return _initiating_occupancy; }
1107   void   init_initiating_occupancy(intx io, uintx tr);
1108 
1109  public:
1110   ConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
1111                                 int level, CardTableRS* ct,
1112                                 bool use_adaptive_freelists,
1113                                 FreeBlockDictionary<FreeChunk>::DictionaryChoice);
1114 
1115   // Accessors
1116   CMSCollector* collector() const { return _collector; }
1117   static void set_collector(CMSCollector* collector) {
1118     assert(_collector == NULL, "already set");
1119     _collector = collector;
1120   }
1121   CompactibleFreeListSpace*  cmsSpace() const { return _cmsSpace;  }
1122 
1123   Mutex* freelistLock() const;
1124 
1125   virtual Generation::Name kind() { return Generation::ConcurrentMarkSweep; }
1126 
1127   // Adaptive size policy
1128   CMSAdaptiveSizePolicy* size_policy();
1129 
1130   void set_did_compact(bool v) { _did_compact = v; }
1131 
1132   bool refs_discovery_is_atomic() const { return false; }
1133   bool refs_discovery_is_mt()     const {
1134     // Note: CMS does MT-discovery during the parallel-remark
1135     // phases. Use ReferenceProcessorMTMutator to make refs
1136     // discovery MT-safe during such phases or other parallel
1137     // discovery phases in the future. This may all go away
1138     // if/when we decide that refs discovery is sufficiently
1139     // rare that the cost of the CAS's involved is in the
1140     // noise. That's a measurement that should be done, and
1141     // the code simplified if that turns out to be the case.
1142     return ConcGCThreads > 1;
1143   }
1144 
1145   // Override
1146   virtual void ref_processor_init();
1147 
1148   // Grow generation by specified size (returns false if unable to grow)
1149   bool grow_by(size_t bytes);
1150   // Grow generation to reserved size.
1151   bool grow_to_reserved();
1152 
1153   void clear_expansion_cause() { _expansion_cause = CMSExpansionCause::_no_expansion; }
1154 
1155   // Space enquiries
1156   size_t capacity() const;
1157   size_t used() const;
1158   size_t free() const;
1159   double occupancy() const { return ((double)used())/((double)capacity()); }
1160   size_t contiguous_available() const;
1161   size_t unsafe_max_alloc_nogc() const;
1162 
1163   // over-rides
1164   MemRegion used_region() const;
1165   MemRegion used_region_at_save_marks() const;
1166 
1167   // Does a "full" (forced) collection invoked on this generation collect
1168   // all younger generations as well? Note that the second conjunct is a
1169   // hack to allow the collection of the younger gen first if the flag is
1170   // set. This is better than using th policy's should_collect_gen0_first()
1171   // since that causes us to do an extra unnecessary pair of restart-&-stop-world.
1172   virtual bool full_collects_younger_generations() const {
1173     return UseCMSCompactAtFullCollection && !CollectGen0First;
1174   }
1175 
1176   void space_iterate(SpaceClosure* blk, bool usedOnly = false);
1177 
1178   // Support for compaction
1179   CompactibleSpace* first_compaction_space() const;
1180   // Adjust quantites in the generation affected by
1181   // the compaction.
1182   void reset_after_compaction();
1183 
1184   // Allocation support
1185   HeapWord* allocate(size_t size, bool tlab);
1186   HeapWord* have_lock_and_allocate(size_t size, bool tlab);
1187   oop       promote(oop obj, size_t obj_size);
1188   HeapWord* par_allocate(size_t size, bool tlab) {
1189     return allocate(size, tlab);
1190   }
1191 
1192   // Incremental mode triggering.
1193   HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
1194                                      size_t word_size);
1195 
1196   // Used by CMSStats to track direct allocation.  The value is sampled and
1197   // reset after each young gen collection.
1198   size_t direct_allocated_words() const { return _direct_allocated_words; }
1199   void reset_direct_allocated_words()   { _direct_allocated_words = 0; }
1200 
1201   // Overrides for parallel promotion.
1202   virtual oop par_promote(int thread_num,
1203                           oop obj, markOop m, size_t word_sz);
1204   // This one should not be called for CMS.
1205   virtual void par_promote_alloc_undo(int thread_num,
1206                                       HeapWord* obj, size_t word_sz);
1207   virtual void par_promote_alloc_done(int thread_num);
1208   virtual void par_oop_since_save_marks_iterate_done(int thread_num);
1209 
1210   virtual bool promotion_attempt_is_safe(size_t promotion_in_bytes) const;
1211 
1212   // Inform this (non-young) generation that a promotion failure was
1213   // encountered during a collection of a younger generation that
1214   // promotes into this generation.
1215   virtual void promotion_failure_occurred();
1216 
1217   bool should_collect(bool full, size_t size, bool tlab);
1218   virtual bool should_concurrent_collect() const;
1219   virtual bool is_too_full() const;
1220   void collect(bool   full,
1221                bool   clear_all_soft_refs,
1222                size_t size,
1223                bool   tlab);
1224 
1225   HeapWord* expand_and_allocate(size_t word_size,
1226                                 bool tlab,
1227                                 bool parallel = false);
1228 
1229   // GC prologue and epilogue
1230   void gc_prologue(bool full);
1231   void gc_prologue_work(bool full, bool registerClosure,
1232                         ModUnionClosure* modUnionClosure);
1233   void gc_epilogue(bool full);
1234   void gc_epilogue_work(bool full);
1235 
1236   // Time since last GC of this generation
1237   jlong time_of_last_gc(jlong now) {
1238     return collector()->time_of_last_gc(now);
1239   }
1240   void update_time_of_last_gc(jlong now) {
1241     collector()-> update_time_of_last_gc(now);
1242   }
1243 
1244   // Allocation failure
1245   void expand(size_t bytes, size_t expand_bytes,
1246     CMSExpansionCause::Cause cause);
1247   virtual bool expand(size_t bytes, size_t expand_bytes);
1248   void shrink(size_t bytes);
1249   void shrink_by(size_t bytes);
1250   HeapWord* expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz);
1251   bool expand_and_ensure_spooling_space(PromotionInfo* promo);
1252 
1253   // Iteration support and related enquiries
1254   void save_marks();
1255   bool no_allocs_since_save_marks();
1256   void object_iterate_since_last_GC(ObjectClosure* cl);
1257   void younger_refs_iterate(OopsInGenClosure* cl);
1258 
1259   // Iteration support specific to CMS generations
1260   void save_sweep_limit();
1261 
1262   // More iteration support
1263   virtual void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
1264   virtual void oop_iterate(ExtendedOopClosure* cl);
1265   virtual void safe_object_iterate(ObjectClosure* cl);
1266   virtual void object_iterate(ObjectClosure* cl);
1267 
1268   // Need to declare the full complement of closures, whether we'll
1269   // override them or not, or get message from the compiler:
1270   //   oop_since_save_marks_iterate_nv hides virtual function...
1271   #define CMS_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
1272     void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
1273   ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DECL)
1274 
1275   // Smart allocation  XXX -- move to CFLSpace?
1276   void setNearLargestChunk();
1277   bool isNearLargestChunk(HeapWord* addr);
1278 
1279   // Get the chunk at the end of the space.  Delagates to
1280   // the space.
1281   FreeChunk* find_chunk_at_end();
1282 
1283   void post_compact();
1284 
1285   // Debugging
1286   void prepare_for_verify();
1287   void verify();
1288   void print_statistics()               PRODUCT_RETURN;
1289 
1290   // Performance Counters support
1291   virtual void update_counters();
1292   virtual void update_counters(size_t used);
1293   void initialize_performance_counters();
1294   CollectorCounters* counters()  { return collector()->counters(); }
1295 
1296   // Support for parallel remark of survivor space
1297   void* get_data_recorder(int thr_num) {
1298     //Delegate to collector
1299     return collector()->get_data_recorder(thr_num);
1300   }
1301 
1302   // Printing
1303   const char* name() const;
1304   virtual const char* short_name() const { return "CMS"; }
1305   void        print() const;
1306   void printOccupancy(const char* s);
1307   bool must_be_youngest() const { return false; }
1308   bool must_be_oldest()   const { return true; }
1309 
1310   // Resize the generation after a compacting GC.  The
1311   // generation can be treated as a contiguous space
1312   // after the compaction.
1313   virtual void compute_new_size();
1314   // Resize the generation after a non-compacting
1315   // collection.
1316   void compute_new_size_free_list();
1317 
1318   CollectionTypes debug_collection_type() { return _debug_collection_type; }
1319   void rotate_debug_collection_type();
1320 };
1321 
1322 class ASConcurrentMarkSweepGeneration : public ConcurrentMarkSweepGeneration {
1323 
1324   // Return the size policy from the heap's collector
1325   // policy casted to CMSAdaptiveSizePolicy*.
1326   CMSAdaptiveSizePolicy* cms_size_policy() const;
1327 
1328   // Resize the generation based on the adaptive size
1329   // policy.
1330   void resize(size_t cur_promo, size_t desired_promo);
1331 
1332   // Return the GC counters from the collector policy
1333   CMSGCAdaptivePolicyCounters* gc_adaptive_policy_counters();
1334 
1335   virtual void shrink_by(size_t bytes);
1336 
1337  public:
1338   ASConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
1339                                   int level, CardTableRS* ct,
1340                                   bool use_adaptive_freelists,
1341                                   FreeBlockDictionary<FreeChunk>::DictionaryChoice
1342                                     dictionaryChoice) :
1343     ConcurrentMarkSweepGeneration(rs, initial_byte_size, level, ct,
1344       use_adaptive_freelists, dictionaryChoice) {}
1345 
1346   virtual const char* short_name() const { return "ASCMS"; }
1347   virtual Generation::Name kind() { return Generation::ASConcurrentMarkSweep; }
1348 
1349   virtual void update_counters();
1350   virtual void update_counters(size_t used);
1351 };
1352 
1353 //
1354 // Closures of various sorts used by CMS to accomplish its work
1355 //
1356 
1357 // This closure is used to check that a certain set of oops is empty.
1358 class FalseClosure: public OopClosure {
1359  public:
1360   void do_oop(oop* p)       { guarantee(false, "Should be an empty set"); }
1361   void do_oop(narrowOop* p) { guarantee(false, "Should be an empty set"); }
1362 };
1363 
1364 // This closure is used to do concurrent marking from the roots
1365 // following the first checkpoint.
1366 class MarkFromRootsClosure: public BitMapClosure {
1367   CMSCollector*  _collector;
1368   MemRegion      _span;
1369   CMSBitMap*     _bitMap;
1370   CMSBitMap*     _mut;
1371   CMSMarkStack*  _markStack;
1372   bool           _yield;
1373   int            _skipBits;
1374   HeapWord*      _finger;
1375   HeapWord*      _threshold;
1376   DEBUG_ONLY(bool _verifying;)
1377 
1378  public:
1379   MarkFromRootsClosure(CMSCollector* collector, MemRegion span,
1380                        CMSBitMap* bitMap,
1381                        CMSMarkStack*  markStack,
1382                        bool should_yield, bool verifying = false);
1383   bool do_bit(size_t offset);
1384   void reset(HeapWord* addr);
1385   inline void do_yield_check();
1386 
1387  private:
1388   void scanOopsInOop(HeapWord* ptr);
1389   void do_yield_work();
1390 };
1391 
1392 // This closure is used to do concurrent multi-threaded
1393 // marking from the roots following the first checkpoint.
1394 // XXX This should really be a subclass of The serial version
1395 // above, but i have not had the time to refactor things cleanly.
1396 // That willbe done for Dolphin.
1397 class Par_MarkFromRootsClosure: public BitMapClosure {
1398   CMSCollector*  _collector;
1399   MemRegion      _whole_span;
1400   MemRegion      _span;
1401   CMSBitMap*     _bit_map;
1402   CMSBitMap*     _mut;
1403   OopTaskQueue*  _work_queue;
1404   CMSMarkStack*  _overflow_stack;
1405   bool           _yield;
1406   int            _skip_bits;
1407   HeapWord*      _finger;
1408   HeapWord*      _threshold;
1409   CMSConcMarkingTask* _task;
1410  public:
1411   Par_MarkFromRootsClosure(CMSConcMarkingTask* task, CMSCollector* collector,
1412                        MemRegion span,
1413                        CMSBitMap* bit_map,
1414                        OopTaskQueue* work_queue,
1415                        CMSMarkStack*  overflow_stack,
1416                        bool should_yield);
1417   bool do_bit(size_t offset);
1418   inline void do_yield_check();
1419 
1420  private:
1421   void scan_oops_in_oop(HeapWord* ptr);
1422   void do_yield_work();
1423   bool get_work_from_overflow_stack();
1424 };
1425 
1426 // The following closures are used to do certain kinds of verification of
1427 // CMS marking.
1428 class PushAndMarkVerifyClosure: public CMSOopClosure {
1429   CMSCollector*    _collector;
1430   MemRegion        _span;
1431   CMSBitMap*       _verification_bm;
1432   CMSBitMap*       _cms_bm;
1433   CMSMarkStack*    _mark_stack;
1434  protected:
1435   void do_oop(oop p);
1436   template <class T> inline void do_oop_work(T *p) {
1437     oop obj = oopDesc::load_decode_heap_oop(p);
1438     do_oop(obj);
1439   }
1440  public:
1441   PushAndMarkVerifyClosure(CMSCollector* cms_collector,
1442                            MemRegion span,
1443                            CMSBitMap* verification_bm,
1444                            CMSBitMap* cms_bm,
1445                            CMSMarkStack*  mark_stack);
1446   void do_oop(oop* p);
1447   void do_oop(narrowOop* p);
1448 
1449   // Deal with a stack overflow condition
1450   void handle_stack_overflow(HeapWord* lost);
1451 };
1452 
1453 class MarkFromRootsVerifyClosure: public BitMapClosure {
1454   CMSCollector*  _collector;
1455   MemRegion      _span;
1456   CMSBitMap*     _verification_bm;
1457   CMSBitMap*     _cms_bm;
1458   CMSMarkStack*  _mark_stack;
1459   HeapWord*      _finger;
1460   PushAndMarkVerifyClosure _pam_verify_closure;
1461  public:
1462   MarkFromRootsVerifyClosure(CMSCollector* collector, MemRegion span,
1463                              CMSBitMap* verification_bm,
1464                              CMSBitMap* cms_bm,
1465                              CMSMarkStack*  mark_stack);
1466   bool do_bit(size_t offset);
1467   void reset(HeapWord* addr);
1468 };
1469 
1470 
1471 // This closure is used to check that a certain set of bits is
1472 // "empty" (i.e. the bit vector doesn't have any 1-bits).
1473 class FalseBitMapClosure: public BitMapClosure {
1474  public:
1475   bool do_bit(size_t offset) {
1476     guarantee(false, "Should not have a 1 bit");
1477     return true;
1478   }
1479 };
1480 
1481 // This closure is used during the second checkpointing phase
1482 // to rescan the marked objects on the dirty cards in the mod
1483 // union table and the card table proper. It's invoked via
1484 // MarkFromDirtyCardsClosure below. It uses either
1485 // [Par_]MarkRefsIntoAndScanClosure (Par_ in the parallel case)
1486 // declared in genOopClosures.hpp to accomplish some of its work.
1487 // In the parallel case the bitMap is shared, so access to
1488 // it needs to be suitably synchronized for updates by embedded
1489 // closures that update it; however, this closure itself only
1490 // reads the bit_map and because it is idempotent, is immune to
1491 // reading stale values.
1492 class ScanMarkedObjectsAgainClosure: public UpwardsObjectClosure {
1493   #ifdef ASSERT
1494     CMSCollector*          _collector;
1495     MemRegion              _span;
1496     union {
1497       CMSMarkStack*        _mark_stack;
1498       OopTaskQueue*        _work_queue;
1499     };
1500   #endif // ASSERT
1501   bool                       _parallel;
1502   CMSBitMap*                 _bit_map;
1503   union {
1504     MarkRefsIntoAndScanClosure*     _scan_closure;
1505     Par_MarkRefsIntoAndScanClosure* _par_scan_closure;
1506   };
1507 
1508  public:
1509   ScanMarkedObjectsAgainClosure(CMSCollector* collector,
1510                                 MemRegion span,
1511                                 ReferenceProcessor* rp,
1512                                 CMSBitMap* bit_map,
1513                                 CMSMarkStack*  mark_stack,
1514                                 MarkRefsIntoAndScanClosure* cl):
1515     #ifdef ASSERT
1516       _collector(collector),
1517       _span(span),
1518       _mark_stack(mark_stack),
1519     #endif // ASSERT
1520     _parallel(false),
1521     _bit_map(bit_map),
1522     _scan_closure(cl) { }
1523 
1524   ScanMarkedObjectsAgainClosure(CMSCollector* collector,
1525                                 MemRegion span,
1526                                 ReferenceProcessor* rp,
1527                                 CMSBitMap* bit_map,
1528                                 OopTaskQueue* work_queue,
1529                                 Par_MarkRefsIntoAndScanClosure* cl):
1530     #ifdef ASSERT
1531       _collector(collector),
1532       _span(span),
1533       _work_queue(work_queue),
1534     #endif // ASSERT
1535     _parallel(true),
1536     _bit_map(bit_map),
1537     _par_scan_closure(cl) { }
1538 
1539   void do_object(oop obj) {
1540     guarantee(false, "Call do_object_b(oop, MemRegion) instead");
1541   }
1542   bool do_object_b(oop obj) {
1543     guarantee(false, "Call do_object_b(oop, MemRegion) form instead");
1544     return false;
1545   }
1546   bool do_object_bm(oop p, MemRegion mr);
1547 };
1548 
1549 // This closure is used during the second checkpointing phase
1550 // to rescan the marked objects on the dirty cards in the mod
1551 // union table and the card table proper. It invokes
1552 // ScanMarkedObjectsAgainClosure above to accomplish much of its work.
1553 // In the parallel case, the bit map is shared and requires
1554 // synchronized access.
1555 class MarkFromDirtyCardsClosure: public MemRegionClosure {
1556   CompactibleFreeListSpace*      _space;
1557   ScanMarkedObjectsAgainClosure  _scan_cl;
1558   size_t                         _num_dirty_cards;
1559 
1560  public:
1561   MarkFromDirtyCardsClosure(CMSCollector* collector,
1562                             MemRegion span,
1563                             CompactibleFreeListSpace* space,
1564                             CMSBitMap* bit_map,
1565                             CMSMarkStack* mark_stack,
1566                             MarkRefsIntoAndScanClosure* cl):
1567     _space(space),
1568     _num_dirty_cards(0),
1569     _scan_cl(collector, span, collector->ref_processor(), bit_map,
1570                  mark_stack, cl) { }
1571 
1572   MarkFromDirtyCardsClosure(CMSCollector* collector,
1573                             MemRegion span,
1574                             CompactibleFreeListSpace* space,
1575                             CMSBitMap* bit_map,
1576                             OopTaskQueue* work_queue,
1577                             Par_MarkRefsIntoAndScanClosure* cl):
1578     _space(space),
1579     _num_dirty_cards(0),
1580     _scan_cl(collector, span, collector->ref_processor(), bit_map,
1581              work_queue, cl) { }
1582 
1583   void do_MemRegion(MemRegion mr);
1584   void set_space(CompactibleFreeListSpace* space) { _space = space; }
1585   size_t num_dirty_cards() { return _num_dirty_cards; }
1586 };
1587 
1588 // This closure is used in the non-product build to check
1589 // that there are no MemRegions with a certain property.
1590 class FalseMemRegionClosure: public MemRegionClosure {
1591   void do_MemRegion(MemRegion mr) {
1592     guarantee(!mr.is_empty(), "Shouldn't be empty");
1593     guarantee(false, "Should never be here");
1594   }
1595 };
1596 
1597 // This closure is used during the precleaning phase
1598 // to "carefully" rescan marked objects on dirty cards.
1599 // It uses MarkRefsIntoAndScanClosure declared in genOopClosures.hpp
1600 // to accomplish some of its work.
1601 class ScanMarkedObjectsAgainCarefullyClosure: public ObjectClosureCareful {
1602   CMSCollector*                  _collector;
1603   MemRegion                      _span;
1604   bool                           _yield;
1605   Mutex*                         _freelistLock;
1606   CMSBitMap*                     _bitMap;
1607   CMSMarkStack*                  _markStack;
1608   MarkRefsIntoAndScanClosure*    _scanningClosure;
1609 
1610  public:
1611   ScanMarkedObjectsAgainCarefullyClosure(CMSCollector* collector,
1612                                          MemRegion     span,
1613                                          CMSBitMap* bitMap,
1614                                          CMSMarkStack*  markStack,
1615                                          MarkRefsIntoAndScanClosure* cl,
1616                                          bool should_yield):
1617     _collector(collector),
1618     _span(span),
1619     _yield(should_yield),
1620     _bitMap(bitMap),
1621     _markStack(markStack),
1622     _scanningClosure(cl) {
1623   }
1624 
1625   void do_object(oop p) {
1626     guarantee(false, "call do_object_careful instead");
1627   }
1628 
1629   size_t      do_object_careful(oop p) {
1630     guarantee(false, "Unexpected caller");
1631     return 0;
1632   }
1633 
1634   size_t      do_object_careful_m(oop p, MemRegion mr);
1635 
1636   void setFreelistLock(Mutex* m) {
1637     _freelistLock = m;
1638     _scanningClosure->set_freelistLock(m);
1639   }
1640 
1641  private:
1642   inline bool do_yield_check();
1643 
1644   void do_yield_work();
1645 };
1646 
1647 class SurvivorSpacePrecleanClosure: public ObjectClosureCareful {
1648   CMSCollector*                  _collector;
1649   MemRegion                      _span;
1650   bool                           _yield;
1651   CMSBitMap*                     _bit_map;
1652   CMSMarkStack*                  _mark_stack;
1653   PushAndMarkClosure*            _scanning_closure;
1654   unsigned int                   _before_count;
1655 
1656  public:
1657   SurvivorSpacePrecleanClosure(CMSCollector* collector,
1658                                MemRegion     span,
1659                                CMSBitMap*    bit_map,
1660                                CMSMarkStack* mark_stack,
1661                                PushAndMarkClosure* cl,
1662                                unsigned int  before_count,
1663                                bool          should_yield):
1664     _collector(collector),
1665     _span(span),
1666     _yield(should_yield),
1667     _bit_map(bit_map),
1668     _mark_stack(mark_stack),
1669     _scanning_closure(cl),
1670     _before_count(before_count)
1671   { }
1672 
1673   void do_object(oop p) {
1674     guarantee(false, "call do_object_careful instead");
1675   }
1676 
1677   size_t      do_object_careful(oop p);
1678 
1679   size_t      do_object_careful_m(oop p, MemRegion mr) {
1680     guarantee(false, "Unexpected caller");
1681     return 0;
1682   }
1683 
1684  private:
1685   inline void do_yield_check();
1686   void do_yield_work();
1687 };
1688 
1689 // This closure is used to accomplish the sweeping work
1690 // after the second checkpoint but before the concurrent reset
1691 // phase.
1692 //
1693 // Terminology
1694 //   left hand chunk (LHC) - block of one or more chunks currently being
1695 //     coalesced.  The LHC is available for coalescing with a new chunk.
1696 //   right hand chunk (RHC) - block that is currently being swept that is
1697 //     free or garbage that can be coalesced with the LHC.
1698 // _inFreeRange is true if there is currently a LHC
1699 // _lastFreeRangeCoalesced is true if the LHC consists of more than one chunk.
1700 // _freeRangeInFreeLists is true if the LHC is in the free lists.
1701 // _freeFinger is the address of the current LHC
1702 class SweepClosure: public BlkClosureCareful {
1703   CMSCollector*                  _collector;  // collector doing the work
1704   ConcurrentMarkSweepGeneration* _g;    // Generation being swept
1705   CompactibleFreeListSpace*      _sp;   // Space being swept
1706   HeapWord*                      _limit;// the address at or above which the sweep should stop
1707                                         // because we do not expect newly garbage blocks
1708                                         // eligible for sweeping past that address.
1709   Mutex*                         _freelistLock; // Free list lock (in space)
1710   CMSBitMap*                     _bitMap;       // Marking bit map (in
1711                                                 // generation)
1712   bool                           _inFreeRange;  // Indicates if we are in the
1713                                                 // midst of a free run
1714   bool                           _freeRangeInFreeLists;
1715                                         // Often, we have just found
1716                                         // a free chunk and started
1717                                         // a new free range; we do not
1718                                         // eagerly remove this chunk from
1719                                         // the free lists unless there is
1720                                         // a possibility of coalescing.
1721                                         // When true, this flag indicates
1722                                         // that the _freeFinger below
1723                                         // points to a potentially free chunk
1724                                         // that may still be in the free lists
1725   bool                           _lastFreeRangeCoalesced;
1726                                         // free range contains chunks
1727                                         // coalesced
1728   bool                           _yield;
1729                                         // Whether sweeping should be
1730                                         // done with yields. For instance
1731                                         // when done by the foreground
1732                                         // collector we shouldn't yield.
1733   HeapWord*                      _freeFinger;   // When _inFreeRange is set, the
1734                                                 // pointer to the "left hand
1735                                                 // chunk"
1736   size_t                         _freeRangeSize;
1737                                         // When _inFreeRange is set, this
1738                                         // indicates the accumulated size
1739                                         // of the "left hand chunk"
1740   NOT_PRODUCT(
1741     size_t                       _numObjectsFreed;
1742     size_t                       _numWordsFreed;
1743     size_t                       _numObjectsLive;
1744     size_t                       _numWordsLive;
1745     size_t                       _numObjectsAlreadyFree;
1746     size_t                       _numWordsAlreadyFree;
1747     FreeChunk*                   _last_fc;
1748   )
1749  private:
1750   // Code that is common to a free chunk or garbage when
1751   // encountered during sweeping.
1752   void do_post_free_or_garbage_chunk(FreeChunk *fc, size_t chunkSize);
1753   // Process a free chunk during sweeping.
1754   void do_already_free_chunk(FreeChunk *fc);
1755   // Work method called when processing an already free or a
1756   // freshly garbage chunk to do a lookahead and possibly a
1757   // premptive flush if crossing over _limit.
1758   void lookahead_and_flush(FreeChunk* fc, size_t chunkSize);
1759   // Process a garbage chunk during sweeping.
1760   size_t do_garbage_chunk(FreeChunk *fc);
1761   // Process a live chunk during sweeping.
1762   size_t do_live_chunk(FreeChunk* fc);
1763 
1764   // Accessors.
1765   HeapWord* freeFinger() const          { return _freeFinger; }
1766   void set_freeFinger(HeapWord* v)      { _freeFinger = v; }
1767   bool inFreeRange()    const           { return _inFreeRange; }
1768   void set_inFreeRange(bool v)          { _inFreeRange = v; }
1769   bool lastFreeRangeCoalesced() const    { return _lastFreeRangeCoalesced; }
1770   void set_lastFreeRangeCoalesced(bool v) { _lastFreeRangeCoalesced = v; }
1771   bool freeRangeInFreeLists() const     { return _freeRangeInFreeLists; }
1772   void set_freeRangeInFreeLists(bool v) { _freeRangeInFreeLists = v; }
1773 
1774   // Initialize a free range.
1775   void initialize_free_range(HeapWord* freeFinger, bool freeRangeInFreeLists);
1776   // Return this chunk to the free lists.
1777   void flush_cur_free_chunk(HeapWord* chunk, size_t size);
1778 
1779   // Check if we should yield and do so when necessary.
1780   inline void do_yield_check(HeapWord* addr);
1781 
1782   // Yield
1783   void do_yield_work(HeapWord* addr);
1784 
1785   // Debugging/Printing
1786   void print_free_block_coalesced(FreeChunk* fc) const;
1787 
1788  public:
1789   SweepClosure(CMSCollector* collector, ConcurrentMarkSweepGeneration* g,
1790                CMSBitMap* bitMap, bool should_yield);
1791   ~SweepClosure() PRODUCT_RETURN;
1792 
1793   size_t       do_blk_careful(HeapWord* addr);
1794   void         print() const { print_on(tty); }
1795   void         print_on(outputStream *st) const;
1796 };
1797 
1798 // Closures related to weak references processing
1799 
1800 // During CMS' weak reference processing, this is a
1801 // work-routine/closure used to complete transitive
1802 // marking of objects as live after a certain point
1803 // in which an initial set has been completely accumulated.
1804 // This closure is currently used both during the final
1805 // remark stop-world phase, as well as during the concurrent
1806 // precleaning of the discovered reference lists.
1807 class CMSDrainMarkingStackClosure: public VoidClosure {
1808   CMSCollector*        _collector;
1809   MemRegion            _span;
1810   CMSMarkStack*        _mark_stack;
1811   CMSBitMap*           _bit_map;
1812   CMSKeepAliveClosure* _keep_alive;
1813   bool                 _concurrent_precleaning;
1814  public:
1815   CMSDrainMarkingStackClosure(CMSCollector* collector, MemRegion span,
1816                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
1817                       CMSKeepAliveClosure* keep_alive,
1818                       bool cpc):
1819     _collector(collector),
1820     _span(span),
1821     _bit_map(bit_map),
1822     _mark_stack(mark_stack),
1823     _keep_alive(keep_alive),
1824     _concurrent_precleaning(cpc) {
1825     assert(_concurrent_precleaning == _keep_alive->concurrent_precleaning(),
1826            "Mismatch");
1827   }
1828 
1829   void do_void();
1830 };
1831 
1832 // A parallel version of CMSDrainMarkingStackClosure above.
1833 class CMSParDrainMarkingStackClosure: public VoidClosure {
1834   CMSCollector*           _collector;
1835   MemRegion               _span;
1836   OopTaskQueue*           _work_queue;
1837   CMSBitMap*              _bit_map;
1838   CMSInnerParMarkAndPushClosure _mark_and_push;
1839 
1840  public:
1841   CMSParDrainMarkingStackClosure(CMSCollector* collector,
1842                                  MemRegion span, CMSBitMap* bit_map,
1843                                  OopTaskQueue* work_queue):
1844     _collector(collector),
1845     _span(span),
1846     _bit_map(bit_map),
1847     _work_queue(work_queue),
1848     _mark_and_push(collector, span, bit_map, work_queue) { }
1849 
1850  public:
1851   void trim_queue(uint max);
1852   void do_void();
1853 };
1854 
1855 // Allow yielding or short-circuiting of reference list
1856 // prelceaning work.
1857 class CMSPrecleanRefsYieldClosure: public YieldClosure {
1858   CMSCollector* _collector;
1859   void do_yield_work();
1860  public:
1861   CMSPrecleanRefsYieldClosure(CMSCollector* collector):
1862     _collector(collector) {}
1863   virtual bool should_return();
1864 };
1865 
1866 
1867 // Convenience class that locks free list locks for given CMS collector
1868 class FreelistLocker: public StackObj {
1869  private:
1870   CMSCollector* _collector;
1871  public:
1872   FreelistLocker(CMSCollector* collector):
1873     _collector(collector) {
1874     _collector->getFreelistLocks();
1875   }
1876 
1877   ~FreelistLocker() {
1878     _collector->releaseFreelistLocks();
1879   }
1880 };
1881 
1882 // Mark all dead objects in a given space.
1883 class MarkDeadObjectsClosure: public BlkClosure {
1884   const CMSCollector*             _collector;
1885   const CompactibleFreeListSpace* _sp;
1886   CMSBitMap*                      _live_bit_map;
1887   CMSBitMap*                      _dead_bit_map;
1888 public:
1889   MarkDeadObjectsClosure(const CMSCollector* collector,
1890                          const CompactibleFreeListSpace* sp,
1891                          CMSBitMap *live_bit_map,
1892                          CMSBitMap *dead_bit_map) :
1893     _collector(collector),
1894     _sp(sp),
1895     _live_bit_map(live_bit_map),
1896     _dead_bit_map(dead_bit_map) {}
1897   size_t do_blk(HeapWord* addr);
1898 };
1899 
1900 class TraceCMSMemoryManagerStats : public TraceMemoryManagerStats {
1901 
1902  public:
1903   TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause);
1904 };
1905 
1906 
1907 #endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CONCURRENTMARKSWEEPGENERATION_HPP