1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/collectorCounters.hpp"
  27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  28 #include "gc_implementation/shared/spaceDecorator.hpp"
  29 #include "memory/defNewGeneration.inline.hpp"
  30 #include "memory/gcLocker.inline.hpp"
  31 #include "memory/genCollectedHeap.hpp"
  32 #include "memory/genOopClosures.inline.hpp"
  33 #include "memory/genRemSet.hpp"
  34 #include "memory/generationSpec.hpp"
  35 #include "memory/iterator.hpp"
  36 #include "memory/referencePolicy.hpp"
  37 #include "memory/space.inline.hpp"
  38 #include "oops/instanceRefKlass.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "runtime/java.hpp"
  41 #include "runtime/thread.inline.hpp"
  42 #include "utilities/copy.hpp"
  43 #include "utilities/stack.inline.hpp"
  44 
  45 //
  46 // DefNewGeneration functions.
  47 
  48 // Methods of protected closure types.
  49 
  50 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
  51   assert(g->level() == 0, "Optimized for youngest gen.");
  52 }
  53 void DefNewGeneration::IsAliveClosure::do_object(oop p) {
  54   assert(false, "Do not call.");
  55 }
  56 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
  57   return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
  58 }
  59 
  60 DefNewGeneration::KeepAliveClosure::
  61 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
  62   GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
  63   assert(rs->rs_kind() == GenRemSet::CardTable, "Wrong rem set kind.");
  64   _rs = (CardTableRS*)rs;
  65 }
  66 
  67 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  68 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  69 
  70 
  71 DefNewGeneration::FastKeepAliveClosure::
  72 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
  73   DefNewGeneration::KeepAliveClosure(cl) {
  74   _boundary = g->reserved().end();
  75 }
  76 
  77 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  78 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  79 
  80 DefNewGeneration::EvacuateFollowersClosure::
  81 EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
  82                          ScanClosure* cur, ScanClosure* older) :
  83   _gch(gch), _level(level),
  84   _scan_cur_or_nonheap(cur), _scan_older(older)
  85 {}
  86 
  87 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
  88   do {
  89     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
  90                                        _scan_older);
  91   } while (!_gch->no_allocs_since_save_marks(_level));
  92 }
  93 
  94 DefNewGeneration::FastEvacuateFollowersClosure::
  95 FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
  96                              DefNewGeneration* gen,
  97                              FastScanClosure* cur, FastScanClosure* older) :
  98   _gch(gch), _level(level), _gen(gen),
  99   _scan_cur_or_nonheap(cur), _scan_older(older)
 100 {}
 101 
 102 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
 103   do {
 104     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
 105                                        _scan_older);
 106   } while (!_gch->no_allocs_since_save_marks(_level));
 107   guarantee(_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
 108 }
 109 
 110 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
 111     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 112 {
 113   assert(_g->level() == 0, "Optimized for youngest generation");
 114   _boundary = _g->reserved().end();
 115 }
 116 
 117 void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
 118 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
 119 
 120 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
 121     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 122 {
 123   assert(_g->level() == 0, "Optimized for youngest generation");
 124   _boundary = _g->reserved().end();
 125 }
 126 
 127 void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
 128 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
 129 
 130 void KlassScanClosure::do_klass(Klass* klass) {
 131 #ifndef PRODUCT
 132   if (TraceScavenge) {
 133     ResourceMark rm;
 134     gclog_or_tty->print_cr("KlassScanClosure::do_klass %p, %s, dirty: %s",
 135                            klass,
 136                            klass->external_name(),
 137                            klass->has_modified_oops() ? "true" : "false");
 138   }
 139 #endif
 140 
 141   // If the klass has not been dirtied we know that there's
 142   // no references into  the young gen and we can skip it.
 143   if (klass->has_modified_oops()) {
 144     if (_accumulate_modified_oops) {
 145       klass->accumulate_modified_oops();
 146     }
 147 
 148     // Clear this state since we're going to scavenge all the metadata.
 149     klass->clear_modified_oops();
 150 
 151     // Tell the closure which Klass is being scanned so that it can be dirtied
 152     // if oops are left pointing into the young gen.
 153     _scavenge_closure->set_scanned_klass(klass);
 154 
 155     klass->oops_do(_scavenge_closure);
 156 
 157     _scavenge_closure->set_scanned_klass(NULL);
 158   }
 159 }
 160 
 161 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
 162   _g(g)
 163 {
 164   assert(_g->level() == 0, "Optimized for youngest generation");
 165   _boundary = _g->reserved().end();
 166 }
 167 
 168 void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
 169 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
 170 
 171 void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
 172 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
 173 
 174 KlassScanClosure::KlassScanClosure(OopsInKlassOrGenClosure* scavenge_closure,
 175                                    KlassRemSet* klass_rem_set)
 176     : _scavenge_closure(scavenge_closure),
 177       _accumulate_modified_oops(klass_rem_set->accumulate_modified_oops()) {}
 178 
 179 
 180 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
 181                                    size_t initial_size,
 182                                    int level,
 183                                    const char* policy)
 184   : Generation(rs, initial_size, level),
 185     _promo_failure_drain_in_progress(false),
 186     _should_allocate_from_space(false)
 187 {
 188   MemRegion cmr((HeapWord*)_virtual_space.low(),
 189                 (HeapWord*)_virtual_space.high());
 190   Universe::heap()->barrier_set()->resize_covered_region(cmr);
 191 
 192   if (GenCollectedHeap::heap()->collector_policy()->has_soft_ended_eden()) {
 193     _eden_space = new ConcEdenSpace(this);
 194   } else {
 195     _eden_space = new EdenSpace(this);
 196   }
 197   _from_space = new ContiguousSpace();
 198   _to_space   = new ContiguousSpace();
 199 
 200   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
 201     vm_exit_during_initialization("Could not allocate a new gen space");
 202 
 203   // Compute the maximum eden and survivor space sizes. These sizes
 204   // are computed assuming the entire reserved space is committed.
 205   // These values are exported as performance counters.
 206   uintx alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
 207   uintx size = _virtual_space.reserved_size();
 208   _max_survivor_size = compute_survivor_size(size, alignment);
 209   _max_eden_size = size - (2*_max_survivor_size);
 210 
 211   // allocate the performance counters
 212 
 213   // Generation counters -- generation 0, 3 subspaces
 214   _gen_counters = new GenerationCounters("new", 0, 3, &_virtual_space);
 215   _gc_counters = new CollectorCounters(policy, 0);
 216 
 217   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
 218                                       _gen_counters);
 219   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
 220                                       _gen_counters);
 221   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
 222                                     _gen_counters);
 223 
 224   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
 225   update_counters();
 226   _next_gen = NULL;
 227   _tenuring_threshold = MaxTenuringThreshold;
 228   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
 229 }
 230 
 231 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
 232                                                 bool clear_space,
 233                                                 bool mangle_space) {
 234   uintx alignment =
 235     GenCollectedHeap::heap()->collector_policy()->min_alignment();
 236 
 237   // If the spaces are being cleared (only done at heap initialization
 238   // currently), the survivor spaces need not be empty.
 239   // Otherwise, no care is taken for used areas in the survivor spaces
 240   // so check.
 241   assert(clear_space || (to()->is_empty() && from()->is_empty()),
 242     "Initialization of the survivor spaces assumes these are empty");
 243 
 244   // Compute sizes
 245   uintx size = _virtual_space.committed_size();
 246   uintx survivor_size = compute_survivor_size(size, alignment);
 247   uintx eden_size = size - (2*survivor_size);
 248   assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 249 
 250   if (eden_size < minimum_eden_size) {
 251     // May happen due to 64Kb rounding, if so adjust eden size back up
 252     minimum_eden_size = align_size_up(minimum_eden_size, alignment);
 253     uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
 254     uintx unaligned_survivor_size =
 255       align_size_down(maximum_survivor_size, alignment);
 256     survivor_size = MAX2(unaligned_survivor_size, alignment);
 257     eden_size = size - (2*survivor_size);
 258     assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 259     assert(eden_size >= minimum_eden_size, "just checking");
 260   }
 261 
 262   char *eden_start = _virtual_space.low();
 263   char *from_start = eden_start + eden_size;
 264   char *to_start   = from_start + survivor_size;
 265   char *to_end     = to_start   + survivor_size;
 266 
 267   assert(to_end == _virtual_space.high(), "just checking");
 268   assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
 269   assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
 270   assert(Space::is_aligned((HeapWord*)to_start),   "checking alignment");
 271 
 272   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
 273   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
 274   MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
 275 
 276   // A minimum eden size implies that there is a part of eden that
 277   // is being used and that affects the initialization of any
 278   // newly formed eden.
 279   bool live_in_eden = minimum_eden_size > 0;
 280 
 281   // If not clearing the spaces, do some checking to verify that
 282   // the space are already mangled.
 283   if (!clear_space) {
 284     // Must check mangling before the spaces are reshaped.  Otherwise,
 285     // the bottom or end of one space may have moved into another
 286     // a failure of the check may not correctly indicate which space
 287     // is not properly mangled.
 288     if (ZapUnusedHeapArea) {
 289       HeapWord* limit = (HeapWord*) _virtual_space.high();
 290       eden()->check_mangled_unused_area(limit);
 291       from()->check_mangled_unused_area(limit);
 292         to()->check_mangled_unused_area(limit);
 293     }
 294   }
 295 
 296   // Reset the spaces for their new regions.
 297   eden()->initialize(edenMR,
 298                      clear_space && !live_in_eden,
 299                      SpaceDecorator::Mangle);
 300   // If clear_space and live_in_eden, we will not have cleared any
 301   // portion of eden above its top. This can cause newly
 302   // expanded space not to be mangled if using ZapUnusedHeapArea.
 303   // We explicitly do such mangling here.
 304   if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
 305     eden()->mangle_unused_area();
 306   }
 307   from()->initialize(fromMR, clear_space, mangle_space);
 308   to()->initialize(toMR, clear_space, mangle_space);
 309 
 310   // Set next compaction spaces.
 311   eden()->set_next_compaction_space(from());
 312   // The to-space is normally empty before a compaction so need
 313   // not be considered.  The exception is during promotion
 314   // failure handling when to-space can contain live objects.
 315   from()->set_next_compaction_space(NULL);
 316 }
 317 
 318 void DefNewGeneration::swap_spaces() {
 319   ContiguousSpace* s = from();
 320   _from_space        = to();
 321   _to_space          = s;
 322   eden()->set_next_compaction_space(from());
 323   // The to-space is normally empty before a compaction so need
 324   // not be considered.  The exception is during promotion
 325   // failure handling when to-space can contain live objects.
 326   from()->set_next_compaction_space(NULL);
 327 
 328   if (UsePerfData) {
 329     CSpaceCounters* c = _from_counters;
 330     _from_counters = _to_counters;
 331     _to_counters = c;
 332   }
 333 }
 334 
 335 bool DefNewGeneration::expand(size_t bytes) {
 336   MutexLocker x(ExpandHeap_lock);
 337   HeapWord* prev_high = (HeapWord*) _virtual_space.high();
 338   bool success = _virtual_space.expand_by(bytes);
 339   if (success && ZapUnusedHeapArea) {
 340     // Mangle newly committed space immediately because it
 341     // can be done here more simply that after the new
 342     // spaces have been computed.
 343     HeapWord* new_high = (HeapWord*) _virtual_space.high();
 344     MemRegion mangle_region(prev_high, new_high);
 345     SpaceMangler::mangle_region(mangle_region);
 346   }
 347 
 348   // Do not attempt an expand-to-the reserve size.  The
 349   // request should properly observe the maximum size of
 350   // the generation so an expand-to-reserve should be
 351   // unnecessary.  Also a second call to expand-to-reserve
 352   // value potentially can cause an undue expansion.
 353   // For example if the first expand fail for unknown reasons,
 354   // but the second succeeds and expands the heap to its maximum
 355   // value.
 356   if (GC_locker::is_active()) {
 357     if (PrintGC && Verbose) {
 358       gclog_or_tty->print_cr("Garbage collection disabled, "
 359         "expanded heap instead");
 360     }
 361   }
 362 
 363   return success;
 364 }
 365 
 366 
 367 void DefNewGeneration::compute_new_size() {
 368   // This is called after a gc that includes the following generation
 369   // (which is required to exist.)  So from-space will normally be empty.
 370   // Note that we check both spaces, since if scavenge failed they revert roles.
 371   // If not we bail out (otherwise we would have to relocate the objects)
 372   if (!from()->is_empty() || !to()->is_empty()) {
 373     return;
 374   }
 375 
 376   int next_level = level() + 1;
 377   GenCollectedHeap* gch = GenCollectedHeap::heap();
 378   assert(next_level < gch->_n_gens,
 379          "DefNewGeneration cannot be an oldest gen");
 380 
 381   Generation* next_gen = gch->_gens[next_level];
 382   size_t old_size = next_gen->capacity();
 383   size_t new_size_before = _virtual_space.committed_size();
 384   size_t min_new_size = spec()->init_size();
 385   size_t max_new_size = reserved().byte_size();
 386   assert(min_new_size <= new_size_before &&
 387          new_size_before <= max_new_size,
 388          "just checking");
 389   // All space sizes must be multiples of Generation::GenGrain.
 390   size_t alignment = Generation::GenGrain;
 391 
 392   // Compute desired new generation size based on NewRatio and
 393   // NewSizeThreadIncrease
 394   size_t desired_new_size = old_size/NewRatio;
 395   int threads_count = Threads::number_of_non_daemon_threads();
 396   size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
 397   desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
 398 
 399   // Adjust new generation size
 400   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
 401   assert(desired_new_size <= max_new_size, "just checking");
 402 
 403   bool changed = false;
 404   if (desired_new_size > new_size_before) {
 405     size_t change = desired_new_size - new_size_before;
 406     assert(change % alignment == 0, "just checking");
 407     if (expand(change)) {
 408        changed = true;
 409     }
 410     // If the heap failed to expand to the desired size,
 411     // "changed" will be false.  If the expansion failed
 412     // (and at this point it was expected to succeed),
 413     // ignore the failure (leaving "changed" as false).
 414   }
 415   if (desired_new_size < new_size_before && eden()->is_empty()) {
 416     // bail out of shrinking if objects in eden
 417     size_t change = new_size_before - desired_new_size;
 418     assert(change % alignment == 0, "just checking");
 419     _virtual_space.shrink_by(change);
 420     changed = true;
 421   }
 422   if (changed) {
 423     // The spaces have already been mangled at this point but
 424     // may not have been cleared (set top = bottom) and should be.
 425     // Mangling was done when the heap was being expanded.
 426     compute_space_boundaries(eden()->used(),
 427                              SpaceDecorator::Clear,
 428                              SpaceDecorator::DontMangle);
 429     MemRegion cmr((HeapWord*)_virtual_space.low(),
 430                   (HeapWord*)_virtual_space.high());
 431     Universe::heap()->barrier_set()->resize_covered_region(cmr);
 432     if (Verbose && PrintGC) {
 433       size_t new_size_after  = _virtual_space.committed_size();
 434       size_t eden_size_after = eden()->capacity();
 435       size_t survivor_size_after = from()->capacity();
 436       gclog_or_tty->print("New generation size " SIZE_FORMAT "K->"
 437         SIZE_FORMAT "K [eden="
 438         SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
 439         new_size_before/K, new_size_after/K,
 440         eden_size_after/K, survivor_size_after/K);
 441       if (WizardMode) {
 442         gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
 443           thread_increase_size/K, threads_count);
 444       }
 445       gclog_or_tty->cr();
 446     }
 447   }
 448 }
 449 
 450 void DefNewGeneration::object_iterate_since_last_GC(ObjectClosure* cl) {
 451   // $$$ This may be wrong in case of "scavenge failure"?
 452   eden()->object_iterate(cl);
 453 }
 454 
 455 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
 456   assert(false, "NYI -- are you sure you want to call this?");
 457 }
 458 
 459 
 460 size_t DefNewGeneration::capacity() const {
 461   return eden()->capacity()
 462        + from()->capacity();  // to() is only used during scavenge
 463 }
 464 
 465 
 466 size_t DefNewGeneration::used() const {
 467   return eden()->used()
 468        + from()->used();      // to() is only used during scavenge
 469 }
 470 
 471 
 472 size_t DefNewGeneration::free() const {
 473   return eden()->free()
 474        + from()->free();      // to() is only used during scavenge
 475 }
 476 
 477 size_t DefNewGeneration::max_capacity() const {
 478   const size_t alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
 479   const size_t reserved_bytes = reserved().byte_size();
 480   return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
 481 }
 482 
 483 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
 484   return eden()->free();
 485 }
 486 
 487 size_t DefNewGeneration::capacity_before_gc() const {
 488   return eden()->capacity();
 489 }
 490 
 491 size_t DefNewGeneration::contiguous_available() const {
 492   return eden()->free();
 493 }
 494 
 495 
 496 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
 497 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
 498 
 499 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
 500   eden()->object_iterate(blk);
 501   from()->object_iterate(blk);
 502 }
 503 
 504 
 505 void DefNewGeneration::space_iterate(SpaceClosure* blk,
 506                                      bool usedOnly) {
 507   blk->do_space(eden());
 508   blk->do_space(from());
 509   blk->do_space(to());
 510 }
 511 
 512 // The last collection bailed out, we are running out of heap space,
 513 // so we try to allocate the from-space, too.
 514 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
 515   HeapWord* result = NULL;
 516   if (Verbose && PrintGCDetails) {
 517     gclog_or_tty->print("DefNewGeneration::allocate_from_space(%u):"
 518                         "  will_fail: %s"
 519                         "  heap_lock: %s"
 520                         "  free: " SIZE_FORMAT,
 521                         size,
 522                         GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
 523                           "true" : "false",
 524                         Heap_lock->is_locked() ? "locked" : "unlocked",
 525                         from()->free());
 526   }
 527   if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
 528     if (Heap_lock->owned_by_self() ||
 529         (SafepointSynchronize::is_at_safepoint() &&
 530          Thread::current()->is_VM_thread())) {
 531       // If the Heap_lock is not locked by this thread, this will be called
 532       // again later with the Heap_lock held.
 533       result = from()->allocate(size);
 534     } else if (PrintGC && Verbose) {
 535       gclog_or_tty->print_cr("  Heap_lock is not owned by self");
 536     }
 537   } else if (PrintGC && Verbose) {
 538     gclog_or_tty->print_cr("  should_allocate_from_space: NOT");
 539   }
 540   if (PrintGC && Verbose) {
 541     gclog_or_tty->print_cr("  returns %s", result == NULL ? "NULL" : "object");
 542   }
 543   return result;
 544 }
 545 
 546 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
 547                                                 bool   is_tlab,
 548                                                 bool   parallel) {
 549   // We don't attempt to expand the young generation (but perhaps we should.)
 550   return allocate(size, is_tlab);
 551 }
 552 
 553 void DefNewGeneration::adjust_desired_tenuring_threshold() {
 554   // Set the desired survivor size to half the real survivor space
 555   _tenuring_threshold =
 556     age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
 557 }
 558 
 559 void DefNewGeneration::collect(bool   full,
 560                                bool   clear_all_soft_refs,
 561                                size_t size,
 562                                bool   is_tlab) {
 563   assert(full || size > 0, "otherwise we don't want to collect");
 564   GenCollectedHeap* gch = GenCollectedHeap::heap();
 565   _next_gen = gch->next_gen(this);
 566   assert(_next_gen != NULL,
 567     "This must be the youngest gen, and not the only gen");
 568 
 569   // If the next generation is too full to accomodate promotion
 570   // from this generation, pass on collection; let the next generation
 571   // do it.
 572   if (!collection_attempt_is_safe()) {
 573     if (Verbose && PrintGCDetails) {
 574       gclog_or_tty->print(" :: Collection attempt not safe :: ");
 575     }
 576     gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
 577     return;
 578   }
 579   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 580 
 581   init_assuming_no_promotion_failure();
 582 
 583   TraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, gclog_or_tty);
 584   // Capture heap used before collection (for printing).
 585   size_t gch_prev_used = gch->used();
 586 
 587   SpecializationStats::clear();
 588 
 589   // These can be shared for all code paths
 590   IsAliveClosure is_alive(this);
 591   ScanWeakRefClosure scan_weak_ref(this);
 592 
 593   age_table()->clear();
 594   to()->clear(SpaceDecorator::Mangle);
 595 
 596   gch->rem_set()->prepare_for_younger_refs_iterate(false);
 597 
 598   assert(gch->no_allocs_since_save_marks(0),
 599          "save marks have not been newly set.");
 600 
 601   // Not very pretty.
 602   CollectorPolicy* cp = gch->collector_policy();
 603 
 604   FastScanClosure fsc_with_no_gc_barrier(this, false);
 605   FastScanClosure fsc_with_gc_barrier(this, true);
 606 
 607   KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier,
 608                                       gch->rem_set()->klass_rem_set());
 609 
 610   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
 611   FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
 612                                                   &fsc_with_no_gc_barrier,
 613                                                   &fsc_with_gc_barrier);
 614 
 615   assert(gch->no_allocs_since_save_marks(0),
 616          "save marks have not been newly set.");
 617 
 618   int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
 619 
 620   gch->gen_process_strong_roots(_level,
 621                                 true,  // Process younger gens, if any,
 622                                        // as strong roots.
 623                                 true,  // activate StrongRootsScope
 624                                 true,  // is scavenging
 625                                 SharedHeap::ScanningOption(so),
 626                                 &fsc_with_no_gc_barrier,
 627                                 true,   // walk *all* scavengable nmethods
 628                                 &fsc_with_gc_barrier,
 629                                 &klass_scan_closure);
 630 
 631   // "evacuate followers".
 632   evacuate_followers.do_void();
 633 
 634   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
 635   ReferenceProcessor* rp = ref_processor();
 636   rp->setup_policy(clear_all_soft_refs);
 637   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
 638                                     NULL);
 639   if (!promotion_failed()) {
 640     // Swap the survivor spaces.
 641     eden()->clear(SpaceDecorator::Mangle);
 642     from()->clear(SpaceDecorator::Mangle);
 643     if (ZapUnusedHeapArea) {
 644       // This is now done here because of the piece-meal mangling which
 645       // can check for valid mangling at intermediate points in the
 646       // collection(s).  When a minor collection fails to collect
 647       // sufficient space resizing of the young generation can occur
 648       // an redistribute the spaces in the young generation.  Mangle
 649       // here so that unzapped regions don't get distributed to
 650       // other spaces.
 651       to()->mangle_unused_area();
 652     }
 653     swap_spaces();
 654 
 655     assert(to()->is_empty(), "to space should be empty now");
 656 
 657     adjust_desired_tenuring_threshold();
 658 
 659     // A successful scavenge should restart the GC time limit count which is
 660     // for full GC's.
 661     AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
 662     size_policy->reset_gc_overhead_limit_count();
 663     if (PrintGC && !PrintGCDetails) {
 664       gch->print_heap_change(gch_prev_used);
 665     }
 666     assert(!gch->incremental_collection_failed(), "Should be clear");
 667   } else {
 668     assert(_promo_failure_scan_stack.is_empty(), "post condition");
 669     _promo_failure_scan_stack.clear(true); // Clear cached segments.
 670 
 671     remove_forwarding_pointers();
 672     if (PrintGCDetails) {
 673       gclog_or_tty->print(" (promotion failed) ");
 674     }
 675     // Add to-space to the list of space to compact
 676     // when a promotion failure has occurred.  In that
 677     // case there can be live objects in to-space
 678     // as a result of a partial evacuation of eden
 679     // and from-space.
 680     swap_spaces();   // For uniformity wrt ParNewGeneration.
 681     from()->set_next_compaction_space(to());
 682     gch->set_incremental_collection_failed();
 683 
 684     // Inform the next generation that a promotion failure occurred.
 685     _next_gen->promotion_failure_occurred();
 686 
 687     // Reset the PromotionFailureALot counters.
 688     NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
 689   }
 690   // set new iteration safe limit for the survivor spaces
 691   from()->set_concurrent_iteration_safe_limit(from()->top());
 692   to()->set_concurrent_iteration_safe_limit(to()->top());
 693   SpecializationStats::print();
 694 
 695   // We need to use a monotonically non-deccreasing time in ms
 696   // or we will see time-warp warnings and os::javaTimeMillis()
 697   // does not guarantee monotonicity.
 698   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 699   update_time_of_last_gc(now);
 700 }
 701 
 702 class RemoveForwardPointerClosure: public ObjectClosure {
 703 public:
 704   void do_object(oop obj) {
 705     obj->init_mark();
 706   }
 707 };
 708 
 709 void DefNewGeneration::init_assuming_no_promotion_failure() {
 710   _promotion_failed = false;
 711   from()->set_next_compaction_space(NULL);
 712 }
 713 
 714 void DefNewGeneration::remove_forwarding_pointers() {
 715   RemoveForwardPointerClosure rspc;
 716   eden()->object_iterate(&rspc);
 717   from()->object_iterate(&rspc);
 718 
 719   // Now restore saved marks, if any.
 720   assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
 721          "should be the same");
 722   while (!_objs_with_preserved_marks.is_empty()) {
 723     oop obj   = _objs_with_preserved_marks.pop();
 724     markOop m = _preserved_marks_of_objs.pop();
 725     obj->set_mark(m);
 726   }
 727   _objs_with_preserved_marks.clear(true);
 728   _preserved_marks_of_objs.clear(true);
 729 }
 730 
 731 void DefNewGeneration::preserve_mark(oop obj, markOop m) {
 732   assert(promotion_failed() && m->must_be_preserved_for_promotion_failure(obj),
 733          "Oversaving!");
 734   _objs_with_preserved_marks.push(obj);
 735   _preserved_marks_of_objs.push(m);
 736 }
 737 
 738 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
 739   if (m->must_be_preserved_for_promotion_failure(obj)) {
 740     preserve_mark(obj, m);
 741   }
 742 }
 743 
 744 void DefNewGeneration::handle_promotion_failure(oop old) {
 745   if (PrintPromotionFailure && !_promotion_failed) {
 746     gclog_or_tty->print(" (promotion failure size = " SIZE_FORMAT ") ",
 747                         old->size());
 748   }
 749   _promotion_failed = true;
 750   preserve_mark_if_necessary(old, old->mark());
 751   // forward to self
 752   old->forward_to(old);
 753 
 754   _promo_failure_scan_stack.push(old);
 755 
 756   if (!_promo_failure_drain_in_progress) {
 757     // prevent recursion in copy_to_survivor_space()
 758     _promo_failure_drain_in_progress = true;
 759     drain_promo_failure_scan_stack();
 760     _promo_failure_drain_in_progress = false;
 761   }
 762 }
 763 
 764 oop DefNewGeneration::copy_to_survivor_space(oop old) {
 765   assert(is_in_reserved(old) && !old->is_forwarded(),
 766          "shouldn't be scavenging this oop");
 767   size_t s = old->size();
 768   oop obj = NULL;
 769 
 770   // Try allocating obj in to-space (unless too old)
 771   if (old->age() < tenuring_threshold()) {
 772     obj = (oop) to()->allocate(s);
 773   }
 774 
 775   // Otherwise try allocating obj tenured
 776   if (obj == NULL) {
 777     obj = _next_gen->promote(old, s);
 778     if (obj == NULL) {
 779       handle_promotion_failure(old);
 780       return old;
 781     }
 782   } else {
 783     // Prefetch beyond obj
 784     const intx interval = PrefetchCopyIntervalInBytes;
 785     Prefetch::write(obj, interval);
 786 
 787     // Copy obj
 788     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
 789 
 790     // Increment age if obj still in new generation
 791     obj->incr_age();
 792     age_table()->add(obj, s);
 793   }
 794 
 795   // Done, insert forward pointer to obj in this header
 796   old->forward_to(obj);
 797 
 798   return obj;
 799 }
 800 
 801 void DefNewGeneration::drain_promo_failure_scan_stack() {
 802   while (!_promo_failure_scan_stack.is_empty()) {
 803      oop obj = _promo_failure_scan_stack.pop();
 804      obj->oop_iterate(_promo_failure_scan_stack_closure);
 805   }
 806 }
 807 
 808 void DefNewGeneration::save_marks() {
 809   eden()->set_saved_mark();
 810   to()->set_saved_mark();
 811   from()->set_saved_mark();
 812 }
 813 
 814 
 815 void DefNewGeneration::reset_saved_marks() {
 816   eden()->reset_saved_mark();
 817   to()->reset_saved_mark();
 818   from()->reset_saved_mark();
 819 }
 820 
 821 
 822 bool DefNewGeneration::no_allocs_since_save_marks() {
 823   assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
 824   assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
 825   return to()->saved_mark_at_top();
 826 }
 827 
 828 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
 829                                                                 \
 830 void DefNewGeneration::                                         \
 831 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
 832   cl->set_generation(this);                                     \
 833   eden()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 834   to()->oop_since_save_marks_iterate##nv_suffix(cl);            \
 835   from()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 836   cl->reset_generation();                                       \
 837   save_marks();                                                 \
 838 }
 839 
 840 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
 841 
 842 #undef DefNew_SINCE_SAVE_MARKS_DEFN
 843 
 844 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
 845                                          size_t max_alloc_words) {
 846   if (requestor == this || _promotion_failed) return;
 847   assert(requestor->level() > level(), "DefNewGeneration must be youngest");
 848 
 849   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
 850   if (to_space->top() > to_space->bottom()) {
 851     trace("to_space not empty when contribute_scratch called");
 852   }
 853   */
 854 
 855   ContiguousSpace* to_space = to();
 856   assert(to_space->end() >= to_space->top(), "pointers out of order");
 857   size_t free_words = pointer_delta(to_space->end(), to_space->top());
 858   if (free_words >= MinFreeScratchWords) {
 859     ScratchBlock* sb = (ScratchBlock*)to_space->top();
 860     sb->num_words = free_words;
 861     sb->next = list;
 862     list = sb;
 863   }
 864 }
 865 
 866 void DefNewGeneration::reset_scratch() {
 867   // If contributing scratch in to_space, mangle all of
 868   // to_space if ZapUnusedHeapArea.  This is needed because
 869   // top is not maintained while using to-space as scratch.
 870   if (ZapUnusedHeapArea) {
 871     to()->mangle_unused_area_complete();
 872   }
 873 }
 874 
 875 bool DefNewGeneration::collection_attempt_is_safe() {
 876   if (!to()->is_empty()) {
 877     if (Verbose && PrintGCDetails) {
 878       gclog_or_tty->print(" :: to is not empty :: ");
 879     }
 880     return false;
 881   }
 882   if (_next_gen == NULL) {
 883     GenCollectedHeap* gch = GenCollectedHeap::heap();
 884     _next_gen = gch->next_gen(this);
 885     assert(_next_gen != NULL,
 886            "This must be the youngest gen, and not the only gen");
 887   }
 888   return _next_gen->promotion_attempt_is_safe(used());
 889 }
 890 
 891 void DefNewGeneration::gc_epilogue(bool full) {
 892   DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
 893 
 894   assert(!GC_locker::is_active(), "We should not be executing here");
 895   // Check if the heap is approaching full after a collection has
 896   // been done.  Generally the young generation is empty at
 897   // a minimum at the end of a collection.  If it is not, then
 898   // the heap is approaching full.
 899   GenCollectedHeap* gch = GenCollectedHeap::heap();
 900   if (full) {
 901     DEBUG_ONLY(seen_incremental_collection_failed = false;)
 902     if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
 903       if (Verbose && PrintGCDetails) {
 904         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
 905                             GCCause::to_string(gch->gc_cause()));
 906       }
 907       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
 908       set_should_allocate_from_space(); // we seem to be running out of space
 909     } else {
 910       if (Verbose && PrintGCDetails) {
 911         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
 912                             GCCause::to_string(gch->gc_cause()));
 913       }
 914       gch->clear_incremental_collection_failed(); // We just did a full collection
 915       clear_should_allocate_from_space(); // if set
 916     }
 917   } else {
 918 #ifdef ASSERT
 919     // It is possible that incremental_collection_failed() == true
 920     // here, because an attempted scavenge did not succeed. The policy
 921     // is normally expected to cause a full collection which should
 922     // clear that condition, so we should not be here twice in a row
 923     // with incremental_collection_failed() == true without having done
 924     // a full collection in between.
 925     if (!seen_incremental_collection_failed &&
 926         gch->incremental_collection_failed()) {
 927       if (Verbose && PrintGCDetails) {
 928         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
 929                             GCCause::to_string(gch->gc_cause()));
 930       }
 931       seen_incremental_collection_failed = true;
 932     } else if (seen_incremental_collection_failed) {
 933       if (Verbose && PrintGCDetails) {
 934         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
 935                             GCCause::to_string(gch->gc_cause()));
 936       }
 937       assert(gch->gc_cause() == GCCause::_scavenge_alot ||
 938              (gch->gc_cause() == GCCause::_java_lang_system_gc && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
 939              !gch->incremental_collection_failed(),
 940              "Twice in a row");
 941       seen_incremental_collection_failed = false;
 942     }
 943 #endif // ASSERT
 944   }
 945 
 946   if (ZapUnusedHeapArea) {
 947     eden()->check_mangled_unused_area_complete();
 948     from()->check_mangled_unused_area_complete();
 949     to()->check_mangled_unused_area_complete();
 950   }
 951 
 952   if (!CleanChunkPoolAsync) {
 953     Chunk::clean_chunk_pool();
 954   }
 955 
 956   // update the generation and space performance counters
 957   update_counters();
 958   gch->collector_policy()->counters()->update_counters();
 959 }
 960 
 961 void DefNewGeneration::record_spaces_top() {
 962   assert(ZapUnusedHeapArea, "Not mangling unused space");
 963   eden()->set_top_for_allocations();
 964   to()->set_top_for_allocations();
 965   from()->set_top_for_allocations();
 966 }
 967 
 968 
 969 void DefNewGeneration::update_counters() {
 970   if (UsePerfData) {
 971     _eden_counters->update_all();
 972     _from_counters->update_all();
 973     _to_counters->update_all();
 974     _gen_counters->update_all();
 975   }
 976 }
 977 
 978 void DefNewGeneration::verify() {
 979   eden()->verify();
 980   from()->verify();
 981     to()->verify();
 982 }
 983 
 984 void DefNewGeneration::print_on(outputStream* st) const {
 985   Generation::print_on(st);
 986   st->print("  eden");
 987   eden()->print_on(st);
 988   st->print("  from");
 989   from()->print_on(st);
 990   st->print("  to  ");
 991   to()->print_on(st);
 992 }
 993 
 994 
 995 const char* DefNewGeneration::name() const {
 996   return "def new generation";
 997 }
 998 
 999 // Moved from inline file as they are not called inline
1000 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
1001   return eden();
1002 }
1003 
1004 HeapWord* DefNewGeneration::allocate(size_t word_size,
1005                                      bool is_tlab) {
1006   // This is the slow-path allocation for the DefNewGeneration.
1007   // Most allocations are fast-path in compiled code.
1008   // We try to allocate from the eden.  If that works, we are happy.
1009   // Note that since DefNewGeneration supports lock-free allocation, we
1010   // have to use it here, as well.
1011   HeapWord* result = eden()->par_allocate(word_size);
1012   if (result != NULL) {
1013     if (CMSEdenChunksRecordAlways && _next_gen) {
1014       _next_gen->sample_eden_chunk();
1015     }
1016     return result;
1017   }
1018   do {
1019     HeapWord* old_limit = eden()->soft_end();
1020     if (old_limit < eden()->end()) {
1021       // Tell the next generation we reached a limit.
1022       HeapWord* new_limit =
1023         next_gen()->allocation_limit_reached(eden(), eden()->top(), word_size);
1024       if (new_limit != NULL) {
1025         Atomic::cmpxchg_ptr(new_limit, eden()->soft_end_addr(), old_limit);
1026       } else {
1027         assert(eden()->soft_end() == eden()->end(),
1028                "invalid state after allocation_limit_reached returned null");
1029       }
1030     } else {
1031       // The allocation failed and the soft limit is equal to the hard limit,
1032       // there are no reasons to do an attempt to allocate
1033       assert(old_limit == eden()->end(), "sanity check");
1034       break;
1035     }
1036     // Try to allocate until succeeded or the soft limit can't be adjusted
1037     result = eden()->par_allocate(word_size);
1038   } while (result == NULL);
1039 
1040   // If the eden is full and the last collection bailed out, we are running
1041   // out of heap space, and we try to allocate the from-space, too.
1042   // allocate_from_space can't be inlined because that would introduce a
1043   // circular dependency at compile time.
1044   if (result == NULL) {
1045     result = allocate_from_space(word_size);
1046   } else if (CMSEdenChunksRecordAlways && _next_gen) {
1047     _next_gen->sample_eden_chunk();
1048   }
1049   return result;
1050 }
1051 
1052 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
1053                                          bool is_tlab) {
1054   HeapWord* res = eden()->par_allocate(word_size);
1055   if (CMSEdenChunksRecordAlways && _next_gen) {
1056     _next_gen->sample_eden_chunk();
1057   }
1058   return res;
1059 }
1060 
1061 void DefNewGeneration::gc_prologue(bool full) {
1062   // Ensure that _end and _soft_end are the same in eden space.
1063   eden()->set_soft_end(eden()->end());
1064 }
1065 
1066 size_t DefNewGeneration::tlab_capacity() const {
1067   return eden()->capacity();
1068 }
1069 
1070 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
1071   return unsafe_max_alloc_nogc();
1072 }