1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/callGenerator.hpp"
  34 #include "opto/castnode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/countbitsnode.hpp"
  38 #include "opto/intrinsicnode.hpp"
  39 #include "opto/idealKit.hpp"
  40 #include "opto/mathexactnode.hpp"
  41 #include "opto/movenode.hpp"
  42 #include "opto/mulnode.hpp"
  43 #include "opto/narrowptrnode.hpp"
  44 #include "opto/opaquenode.hpp"
  45 #include "opto/parse.hpp"
  46 #include "opto/runtime.hpp"
  47 #include "opto/subnode.hpp"
  48 #include "prims/nativeLookup.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "trace/traceMacros.hpp"
  51 
  52 class LibraryIntrinsic : public InlineCallGenerator {
  53   // Extend the set of intrinsics known to the runtime:
  54  public:
  55  private:
  56   bool             _is_virtual;
  57   bool             _does_virtual_dispatch;
  58   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  59   int8_t           _last_predicate; // Last generated predicate
  60   vmIntrinsics::ID _intrinsic_id;
  61 
  62  public:
  63   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  64     : InlineCallGenerator(m),
  65       _is_virtual(is_virtual),
  66       _does_virtual_dispatch(does_virtual_dispatch),
  67       _predicates_count((int8_t)predicates_count),
  68       _last_predicate((int8_t)-1),
  69       _intrinsic_id(id)
  70   {
  71   }
  72   virtual bool is_intrinsic() const { return true; }
  73   virtual bool is_virtual()   const { return _is_virtual; }
  74   virtual bool is_predicated() const { return _predicates_count > 0; }
  75   virtual int  predicates_count() const { return _predicates_count; }
  76   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  77   virtual JVMState* generate(JVMState* jvms);
  78   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  79   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  80 };
  81 
  82 
  83 // Local helper class for LibraryIntrinsic:
  84 class LibraryCallKit : public GraphKit {
  85  private:
  86   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  87   Node*             _result;        // the result node, if any
  88   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  89 
  90   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  91 
  92  public:
  93   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  94     : GraphKit(jvms),
  95       _intrinsic(intrinsic),
  96       _result(NULL)
  97   {
  98     // Check if this is a root compile.  In that case we don't have a caller.
  99     if (!jvms->has_method()) {
 100       _reexecute_sp = sp();
 101     } else {
 102       // Find out how many arguments the interpreter needs when deoptimizing
 103       // and save the stack pointer value so it can used by uncommon_trap.
 104       // We find the argument count by looking at the declared signature.
 105       bool ignored_will_link;
 106       ciSignature* declared_signature = NULL;
 107       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 108       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 109       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 110     }
 111   }
 112 
 113   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 114 
 115   ciMethod*         caller()    const    { return jvms()->method(); }
 116   int               bci()       const    { return jvms()->bci(); }
 117   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 118   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 119   ciMethod*         callee()    const    { return _intrinsic->method(); }
 120 
 121   bool  try_to_inline(int predicate);
 122   Node* try_to_predicate(int predicate);
 123 
 124   void push_result() {
 125     // Push the result onto the stack.
 126     if (!stopped() && result() != NULL) {
 127       BasicType bt = result()->bottom_type()->basic_type();
 128       push_node(bt, result());
 129     }
 130   }
 131 
 132  private:
 133   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 134     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 135   }
 136 
 137   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 138   void  set_result(RegionNode* region, PhiNode* value);
 139   Node*     result() { return _result; }
 140 
 141   virtual int reexecute_sp() { return _reexecute_sp; }
 142 
 143   // Helper functions to inline natives
 144   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 145   Node* generate_slow_guard(Node* test, RegionNode* region);
 146   Node* generate_fair_guard(Node* test, RegionNode* region);
 147   Node* generate_negative_guard(Node* index, RegionNode* region,
 148                                 // resulting CastII of index:
 149                                 Node* *pos_index = NULL);
 150   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 151                              Node* array_length,
 152                              RegionNode* region);
 153   Node* generate_current_thread(Node* &tls_output);
 154   Node* load_mirror_from_klass(Node* klass);
 155   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 156                                       RegionNode* region, int null_path,
 157                                       int offset);
 158   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 159                                RegionNode* region, int null_path) {
 160     int offset = java_lang_Class::klass_offset_in_bytes();
 161     return load_klass_from_mirror_common(mirror, never_see_null,
 162                                          region, null_path,
 163                                          offset);
 164   }
 165   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 166                                      RegionNode* region, int null_path) {
 167     int offset = java_lang_Class::array_klass_offset_in_bytes();
 168     return load_klass_from_mirror_common(mirror, never_see_null,
 169                                          region, null_path,
 170                                          offset);
 171   }
 172   Node* generate_access_flags_guard(Node* kls,
 173                                     int modifier_mask, int modifier_bits,
 174                                     RegionNode* region);
 175   Node* generate_interface_guard(Node* kls, RegionNode* region);
 176   Node* generate_array_guard(Node* kls, RegionNode* region) {
 177     return generate_array_guard_common(kls, region, false, false);
 178   }
 179   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 180     return generate_array_guard_common(kls, region, false, true);
 181   }
 182   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 183     return generate_array_guard_common(kls, region, true, false);
 184   }
 185   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 186     return generate_array_guard_common(kls, region, true, true);
 187   }
 188   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 189                                     bool obj_array, bool not_array);
 190   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 191   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 192                                      bool is_virtual = false, bool is_static = false);
 193   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 194     return generate_method_call(method_id, false, true);
 195   }
 196   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 197     return generate_method_call(method_id, true, false);
 198   }
 199   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 200 
 201   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 202   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 203   bool inline_string_compareTo();
 204   bool inline_string_indexOf();
 205   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 206   bool inline_string_equals();
 207   Node* round_double_node(Node* n);
 208   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 209   bool inline_math_native(vmIntrinsics::ID id);
 210   bool inline_trig(vmIntrinsics::ID id);
 211   bool inline_math(vmIntrinsics::ID id);
 212   template <typename OverflowOp>
 213   bool inline_math_overflow(Node* arg1, Node* arg2);
 214   void inline_math_mathExact(Node* math, Node* test);
 215   bool inline_math_addExactI(bool is_increment);
 216   bool inline_math_addExactL(bool is_increment);
 217   bool inline_math_multiplyExactI();
 218   bool inline_math_multiplyExactL();
 219   bool inline_math_negateExactI();
 220   bool inline_math_negateExactL();
 221   bool inline_math_subtractExactI(bool is_decrement);
 222   bool inline_math_subtractExactL(bool is_decrement);
 223   bool inline_exp();
 224   bool inline_pow();
 225   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 226   bool inline_min_max(vmIntrinsics::ID id);
 227   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 228   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 229   int classify_unsafe_addr(Node* &base, Node* &offset);
 230   Node* make_unsafe_address(Node* base, Node* offset);
 231   // Helper for inline_unsafe_access.
 232   // Generates the guards that check whether the result of
 233   // Unsafe.getObject should be recorded in an SATB log buffer.
 234   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 235   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 236   static bool klass_needs_init_guard(Node* kls);
 237   bool inline_unsafe_allocate();
 238   bool inline_unsafe_copyMemory();
 239   bool inline_native_currentThread();
 240 #ifdef TRACE_HAVE_INTRINSICS
 241   bool inline_native_classID();
 242   bool inline_native_threadID();
 243 #endif
 244   bool inline_native_time_funcs(address method, const char* funcName);
 245   bool inline_native_isInterrupted();
 246   bool inline_native_Class_query(vmIntrinsics::ID id);
 247   bool inline_native_subtype_check();
 248 
 249   bool inline_native_newArray();
 250   bool inline_native_getLength();
 251   bool inline_array_copyOf(bool is_copyOfRange);
 252   bool inline_array_equals();
 253   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 254   bool inline_native_clone(bool is_virtual);
 255   bool inline_native_Reflection_getCallerClass();
 256   // Helper function for inlining native object hash method
 257   bool inline_native_hashcode(bool is_virtual, bool is_static);
 258   bool inline_native_getClass();
 259 
 260   // Helper functions for inlining arraycopy
 261   bool inline_arraycopy();
 262   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 263                                                 RegionNode* slow_region);
 264   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 265   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 266   bool inline_unsafe_ordered_store(BasicType type);
 267   bool inline_unsafe_fence(vmIntrinsics::ID id);
 268   bool inline_fp_conversions(vmIntrinsics::ID id);
 269   bool inline_number_methods(vmIntrinsics::ID id);
 270   bool inline_reference_get();
 271   bool inline_Class_cast();
 272   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 273   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 274   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 275   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 276   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 277   bool inline_sha_implCompress(vmIntrinsics::ID id);
 278   bool inline_digestBase_implCompressMB(int predicate);
 279   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 280                                  bool long_state, address stubAddr, const char *stubName,
 281                                  Node* src_start, Node* ofs, Node* limit);
 282   Node* get_state_from_sha_object(Node *sha_object);
 283   Node* get_state_from_sha5_object(Node *sha_object);
 284   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 285   bool inline_encodeISOArray();
 286   bool inline_updateCRC32();
 287   bool inline_updateBytesCRC32();
 288   bool inline_updateByteBufferCRC32();
 289   bool inline_multiplyToLen();
 290 
 291   bool inline_profileBoolean();
 292 };
 293 
 294 
 295 //---------------------------make_vm_intrinsic----------------------------
 296 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 297   vmIntrinsics::ID id = m->intrinsic_id();
 298   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 299 
 300   ccstr disable_intr = NULL;
 301 
 302   if ((DisableIntrinsic[0] != '\0'
 303        && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) ||
 304       (method_has_option_value("DisableIntrinsic", disable_intr)
 305        && strstr(disable_intr, vmIntrinsics::name_at(id)) != NULL)) {
 306     // disabled by a user request on the command line:
 307     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 308     return NULL;
 309   }
 310 
 311   if (!m->is_loaded()) {
 312     // do not attempt to inline unloaded methods
 313     return NULL;
 314   }
 315 
 316   // Only a few intrinsics implement a virtual dispatch.
 317   // They are expensive calls which are also frequently overridden.
 318   if (is_virtual) {
 319     switch (id) {
 320     case vmIntrinsics::_hashCode:
 321     case vmIntrinsics::_clone:
 322       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 323       break;
 324     default:
 325       return NULL;
 326     }
 327   }
 328 
 329   // -XX:-InlineNatives disables nearly all intrinsics:
 330   if (!InlineNatives) {
 331     switch (id) {
 332     case vmIntrinsics::_indexOf:
 333     case vmIntrinsics::_compareTo:
 334     case vmIntrinsics::_equals:
 335     case vmIntrinsics::_equalsC:
 336     case vmIntrinsics::_getAndAddInt:
 337     case vmIntrinsics::_getAndAddLong:
 338     case vmIntrinsics::_getAndSetInt:
 339     case vmIntrinsics::_getAndSetLong:
 340     case vmIntrinsics::_getAndSetObject:
 341     case vmIntrinsics::_loadFence:
 342     case vmIntrinsics::_storeFence:
 343     case vmIntrinsics::_fullFence:
 344       break;  // InlineNatives does not control String.compareTo
 345     case vmIntrinsics::_Reference_get:
 346       break;  // InlineNatives does not control Reference.get
 347     default:
 348       return NULL;
 349     }
 350   }
 351 
 352   int predicates = 0;
 353   bool does_virtual_dispatch = false;
 354 
 355   switch (id) {
 356   case vmIntrinsics::_compareTo:
 357     if (!SpecialStringCompareTo)  return NULL;
 358     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 359     break;
 360   case vmIntrinsics::_indexOf:
 361     if (!SpecialStringIndexOf)  return NULL;
 362     break;
 363   case vmIntrinsics::_equals:
 364     if (!SpecialStringEquals)  return NULL;
 365     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 366     break;
 367   case vmIntrinsics::_equalsC:
 368     if (!SpecialArraysEquals)  return NULL;
 369     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 370     break;
 371   case vmIntrinsics::_arraycopy:
 372     if (!InlineArrayCopy)  return NULL;
 373     break;
 374   case vmIntrinsics::_copyMemory:
 375     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 376     if (!InlineArrayCopy)  return NULL;
 377     break;
 378   case vmIntrinsics::_hashCode:
 379     if (!InlineObjectHash)  return NULL;
 380     does_virtual_dispatch = true;
 381     break;
 382   case vmIntrinsics::_clone:
 383     does_virtual_dispatch = true;
 384   case vmIntrinsics::_copyOf:
 385   case vmIntrinsics::_copyOfRange:
 386     if (!InlineObjectCopy)  return NULL;
 387     // These also use the arraycopy intrinsic mechanism:
 388     if (!InlineArrayCopy)  return NULL;
 389     break;
 390   case vmIntrinsics::_encodeISOArray:
 391     if (!SpecialEncodeISOArray)  return NULL;
 392     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 393     break;
 394   case vmIntrinsics::_checkIndex:
 395     // We do not intrinsify this.  The optimizer does fine with it.
 396     return NULL;
 397 
 398   case vmIntrinsics::_getCallerClass:
 399     if (!InlineReflectionGetCallerClass)  return NULL;
 400     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 401     break;
 402 
 403   case vmIntrinsics::_bitCount_i:
 404     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 405     break;
 406 
 407   case vmIntrinsics::_bitCount_l:
 408     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 409     break;
 410 
 411   case vmIntrinsics::_numberOfLeadingZeros_i:
 412     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 413     break;
 414 
 415   case vmIntrinsics::_numberOfLeadingZeros_l:
 416     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 417     break;
 418 
 419   case vmIntrinsics::_numberOfTrailingZeros_i:
 420     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 421     break;
 422 
 423   case vmIntrinsics::_numberOfTrailingZeros_l:
 424     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 425     break;
 426 
 427   case vmIntrinsics::_reverseBytes_c:
 428     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 429     break;
 430   case vmIntrinsics::_reverseBytes_s:
 431     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 432     break;
 433   case vmIntrinsics::_reverseBytes_i:
 434     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 435     break;
 436   case vmIntrinsics::_reverseBytes_l:
 437     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 438     break;
 439 
 440   case vmIntrinsics::_Reference_get:
 441     // Use the intrinsic version of Reference.get() so that the value in
 442     // the referent field can be registered by the G1 pre-barrier code.
 443     // Also add memory barrier to prevent commoning reads from this field
 444     // across safepoint since GC can change it value.
 445     break;
 446 
 447   case vmIntrinsics::_compareAndSwapObject:
 448 #ifdef _LP64
 449     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 450 #endif
 451     break;
 452 
 453   case vmIntrinsics::_compareAndSwapLong:
 454     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 455     break;
 456 
 457   case vmIntrinsics::_getAndAddInt:
 458     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 459     break;
 460 
 461   case vmIntrinsics::_getAndAddLong:
 462     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 463     break;
 464 
 465   case vmIntrinsics::_getAndSetInt:
 466     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 467     break;
 468 
 469   case vmIntrinsics::_getAndSetLong:
 470     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 471     break;
 472 
 473   case vmIntrinsics::_getAndSetObject:
 474 #ifdef _LP64
 475     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 476     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 477     break;
 478 #else
 479     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 480     break;
 481 #endif
 482 
 483   case vmIntrinsics::_aescrypt_encryptBlock:
 484   case vmIntrinsics::_aescrypt_decryptBlock:
 485     if (!UseAESIntrinsics) return NULL;
 486     break;
 487 
 488   case vmIntrinsics::_multiplyToLen:
 489     if (!UseMultiplyToLenIntrinsic) return NULL;
 490     break;
 491 
 492   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 493   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 494     if (!UseAESIntrinsics) return NULL;
 495     // these two require the predicated logic
 496     predicates = 1;
 497     break;
 498 
 499   case vmIntrinsics::_sha_implCompress:
 500     if (!UseSHA1Intrinsics) return NULL;
 501     break;
 502 
 503   case vmIntrinsics::_sha2_implCompress:
 504     if (!UseSHA256Intrinsics) return NULL;
 505     break;
 506 
 507   case vmIntrinsics::_sha5_implCompress:
 508     if (!UseSHA512Intrinsics) return NULL;
 509     break;
 510 
 511   case vmIntrinsics::_digestBase_implCompressMB:
 512     if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) return NULL;
 513     predicates = 3;
 514     break;
 515 
 516   case vmIntrinsics::_updateCRC32:
 517   case vmIntrinsics::_updateBytesCRC32:
 518   case vmIntrinsics::_updateByteBufferCRC32:
 519     if (!UseCRC32Intrinsics) return NULL;
 520     break;
 521 
 522   case vmIntrinsics::_incrementExactI:
 523   case vmIntrinsics::_addExactI:
 524     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
 525     break;
 526   case vmIntrinsics::_incrementExactL:
 527   case vmIntrinsics::_addExactL:
 528     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
 529     break;
 530   case vmIntrinsics::_decrementExactI:
 531   case vmIntrinsics::_subtractExactI:
 532     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 533     break;
 534   case vmIntrinsics::_decrementExactL:
 535   case vmIntrinsics::_subtractExactL:
 536     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 537     break;
 538   case vmIntrinsics::_negateExactI:
 539     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 540     break;
 541   case vmIntrinsics::_negateExactL:
 542     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 543     break;
 544   case vmIntrinsics::_multiplyExactI:
 545     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
 546     break;
 547   case vmIntrinsics::_multiplyExactL:
 548     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
 549     break;
 550 
 551  default:
 552     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 553     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 554     break;
 555   }
 556 
 557   // -XX:-InlineClassNatives disables natives from the Class class.
 558   // The flag applies to all reflective calls, notably Array.newArray
 559   // (visible to Java programmers as Array.newInstance).
 560   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 561       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 562     if (!InlineClassNatives)  return NULL;
 563   }
 564 
 565   // -XX:-InlineThreadNatives disables natives from the Thread class.
 566   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 567     if (!InlineThreadNatives)  return NULL;
 568   }
 569 
 570   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 571   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 572       m->holder()->name() == ciSymbol::java_lang_Float() ||
 573       m->holder()->name() == ciSymbol::java_lang_Double()) {
 574     if (!InlineMathNatives)  return NULL;
 575   }
 576 
 577   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 578   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 579     if (!InlineUnsafeOps)  return NULL;
 580   }
 581 
 582   return new LibraryIntrinsic(m, is_virtual, predicates, does_virtual_dispatch, (vmIntrinsics::ID) id);
 583 }
 584 
 585 //----------------------register_library_intrinsics-----------------------
 586 // Initialize this file's data structures, for each Compile instance.
 587 void Compile::register_library_intrinsics() {
 588   // Nothing to do here.
 589 }
 590 
 591 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 592   LibraryCallKit kit(jvms, this);
 593   Compile* C = kit.C;
 594   int nodes = C->unique();
 595 #ifndef PRODUCT
 596   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 597     char buf[1000];
 598     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 599     tty->print_cr("Intrinsic %s", str);
 600   }
 601 #endif
 602   ciMethod* callee = kit.callee();
 603   const int bci    = kit.bci();
 604 
 605   // Try to inline the intrinsic.
 606   if (kit.try_to_inline(_last_predicate)) {
 607     if (C->print_intrinsics() || C->print_inlining()) {
 608       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 609     }
 610     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 611     if (C->log()) {
 612       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 613                      vmIntrinsics::name_at(intrinsic_id()),
 614                      (is_virtual() ? " virtual='1'" : ""),
 615                      C->unique() - nodes);
 616     }
 617     // Push the result from the inlined method onto the stack.
 618     kit.push_result();
 619     C->print_inlining_update(this);
 620     return kit.transfer_exceptions_into_jvms();
 621   }
 622 
 623   // The intrinsic bailed out
 624   if (C->print_intrinsics() || C->print_inlining()) {
 625     if (jvms->has_method()) {
 626       // Not a root compile.
 627       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 628       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 629     } else {
 630       // Root compile
 631       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 632                vmIntrinsics::name_at(intrinsic_id()),
 633                (is_virtual() ? " (virtual)" : ""), bci);
 634     }
 635   }
 636   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 637   C->print_inlining_update(this);
 638   return NULL;
 639 }
 640 
 641 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 642   LibraryCallKit kit(jvms, this);
 643   Compile* C = kit.C;
 644   int nodes = C->unique();
 645   _last_predicate = predicate;
 646 #ifndef PRODUCT
 647   assert(is_predicated() && predicate < predicates_count(), "sanity");
 648   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 649     char buf[1000];
 650     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 651     tty->print_cr("Predicate for intrinsic %s", str);
 652   }
 653 #endif
 654   ciMethod* callee = kit.callee();
 655   const int bci    = kit.bci();
 656 
 657   Node* slow_ctl = kit.try_to_predicate(predicate);
 658   if (!kit.failing()) {
 659     if (C->print_intrinsics() || C->print_inlining()) {
 660       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 661     }
 662     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 663     if (C->log()) {
 664       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 665                      vmIntrinsics::name_at(intrinsic_id()),
 666                      (is_virtual() ? " virtual='1'" : ""),
 667                      C->unique() - nodes);
 668     }
 669     return slow_ctl; // Could be NULL if the check folds.
 670   }
 671 
 672   // The intrinsic bailed out
 673   if (C->print_intrinsics() || C->print_inlining()) {
 674     if (jvms->has_method()) {
 675       // Not a root compile.
 676       const char* msg = "failed to generate predicate for intrinsic";
 677       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 678     } else {
 679       // Root compile
 680       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 681                                         vmIntrinsics::name_at(intrinsic_id()),
 682                                         (is_virtual() ? " (virtual)" : ""), bci);
 683     }
 684   }
 685   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 686   return NULL;
 687 }
 688 
 689 bool LibraryCallKit::try_to_inline(int predicate) {
 690   // Handle symbolic names for otherwise undistinguished boolean switches:
 691   const bool is_store       = true;
 692   const bool is_native_ptr  = true;
 693   const bool is_static      = true;
 694   const bool is_volatile    = true;
 695 
 696   if (!jvms()->has_method()) {
 697     // Root JVMState has a null method.
 698     assert(map()->memory()->Opcode() == Op_Parm, "");
 699     // Insert the memory aliasing node
 700     set_all_memory(reset_memory());
 701   }
 702   assert(merged_memory(), "");
 703 
 704 
 705   switch (intrinsic_id()) {
 706   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 707   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 708   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 709 
 710   case vmIntrinsics::_dsin:
 711   case vmIntrinsics::_dcos:
 712   case vmIntrinsics::_dtan:
 713   case vmIntrinsics::_dabs:
 714   case vmIntrinsics::_datan2:
 715   case vmIntrinsics::_dsqrt:
 716   case vmIntrinsics::_dexp:
 717   case vmIntrinsics::_dlog:
 718   case vmIntrinsics::_dlog10:
 719   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 720 
 721   case vmIntrinsics::_min:
 722   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 723 
 724   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 725   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 726   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 727   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 728   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 729   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 730   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 731   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 732   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 733   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 734   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 735   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 736 
 737   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 738 
 739   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 740   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 741   case vmIntrinsics::_equals:                   return inline_string_equals();
 742 
 743   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 744   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 745   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 746   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 747   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 748   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 749   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 750   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 751   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 752 
 753   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 754   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 755   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 756   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 757   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 758   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 759   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 760   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 761   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 762 
 763   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 764   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 765   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 766   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 767   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 768   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 769   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 770   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 771 
 772   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 773   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 774   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 775   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 776   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 777   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 778   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 779   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 780 
 781   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 782   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 783   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 784   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 785   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 786   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 787   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 788   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 789   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 790 
 791   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 792   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 793   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 794   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 795   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 796   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 797   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 798   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 799   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 800 
 801   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 802   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 803   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 804 
 805   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 806   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 807   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 808 
 809   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 810   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 811   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 812   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 813   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 814 
 815   case vmIntrinsics::_loadFence:
 816   case vmIntrinsics::_storeFence:
 817   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 818 
 819   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 820   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 821 
 822 #ifdef TRACE_HAVE_INTRINSICS
 823   case vmIntrinsics::_classID:                  return inline_native_classID();
 824   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 825   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 826 #endif
 827   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 828   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 829   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 830   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 831   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 832   case vmIntrinsics::_getLength:                return inline_native_getLength();
 833   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 834   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 835   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 836   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 837 
 838   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 839 
 840   case vmIntrinsics::_isInstance:
 841   case vmIntrinsics::_getModifiers:
 842   case vmIntrinsics::_isInterface:
 843   case vmIntrinsics::_isArray:
 844   case vmIntrinsics::_isPrimitive:
 845   case vmIntrinsics::_getSuperclass:
 846   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 847 
 848   case vmIntrinsics::_floatToRawIntBits:
 849   case vmIntrinsics::_floatToIntBits:
 850   case vmIntrinsics::_intBitsToFloat:
 851   case vmIntrinsics::_doubleToRawLongBits:
 852   case vmIntrinsics::_doubleToLongBits:
 853   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 854 
 855   case vmIntrinsics::_numberOfLeadingZeros_i:
 856   case vmIntrinsics::_numberOfLeadingZeros_l:
 857   case vmIntrinsics::_numberOfTrailingZeros_i:
 858   case vmIntrinsics::_numberOfTrailingZeros_l:
 859   case vmIntrinsics::_bitCount_i:
 860   case vmIntrinsics::_bitCount_l:
 861   case vmIntrinsics::_reverseBytes_i:
 862   case vmIntrinsics::_reverseBytes_l:
 863   case vmIntrinsics::_reverseBytes_s:
 864   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 865 
 866   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 867 
 868   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 869 
 870   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 871 
 872   case vmIntrinsics::_aescrypt_encryptBlock:
 873   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 874 
 875   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 876   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 877     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 878 
 879   case vmIntrinsics::_sha_implCompress:
 880   case vmIntrinsics::_sha2_implCompress:
 881   case vmIntrinsics::_sha5_implCompress:
 882     return inline_sha_implCompress(intrinsic_id());
 883 
 884   case vmIntrinsics::_digestBase_implCompressMB:
 885     return inline_digestBase_implCompressMB(predicate);
 886 
 887   case vmIntrinsics::_multiplyToLen:
 888     return inline_multiplyToLen();
 889 
 890   case vmIntrinsics::_encodeISOArray:
 891     return inline_encodeISOArray();
 892 
 893   case vmIntrinsics::_updateCRC32:
 894     return inline_updateCRC32();
 895   case vmIntrinsics::_updateBytesCRC32:
 896     return inline_updateBytesCRC32();
 897   case vmIntrinsics::_updateByteBufferCRC32:
 898     return inline_updateByteBufferCRC32();
 899 
 900   case vmIntrinsics::_profileBoolean:
 901     return inline_profileBoolean();
 902 
 903   default:
 904     // If you get here, it may be that someone has added a new intrinsic
 905     // to the list in vmSymbols.hpp without implementing it here.
 906 #ifndef PRODUCT
 907     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 908       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 909                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 910     }
 911 #endif
 912     return false;
 913   }
 914 }
 915 
 916 Node* LibraryCallKit::try_to_predicate(int predicate) {
 917   if (!jvms()->has_method()) {
 918     // Root JVMState has a null method.
 919     assert(map()->memory()->Opcode() == Op_Parm, "");
 920     // Insert the memory aliasing node
 921     set_all_memory(reset_memory());
 922   }
 923   assert(merged_memory(), "");
 924 
 925   switch (intrinsic_id()) {
 926   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 927     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 928   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 929     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 930   case vmIntrinsics::_digestBase_implCompressMB:
 931     return inline_digestBase_implCompressMB_predicate(predicate);
 932 
 933   default:
 934     // If you get here, it may be that someone has added a new intrinsic
 935     // to the list in vmSymbols.hpp without implementing it here.
 936 #ifndef PRODUCT
 937     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 938       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 939                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 940     }
 941 #endif
 942     Node* slow_ctl = control();
 943     set_control(top()); // No fast path instrinsic
 944     return slow_ctl;
 945   }
 946 }
 947 
 948 //------------------------------set_result-------------------------------
 949 // Helper function for finishing intrinsics.
 950 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 951   record_for_igvn(region);
 952   set_control(_gvn.transform(region));
 953   set_result( _gvn.transform(value));
 954   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 955 }
 956 
 957 //------------------------------generate_guard---------------------------
 958 // Helper function for generating guarded fast-slow graph structures.
 959 // The given 'test', if true, guards a slow path.  If the test fails
 960 // then a fast path can be taken.  (We generally hope it fails.)
 961 // In all cases, GraphKit::control() is updated to the fast path.
 962 // The returned value represents the control for the slow path.
 963 // The return value is never 'top'; it is either a valid control
 964 // or NULL if it is obvious that the slow path can never be taken.
 965 // Also, if region and the slow control are not NULL, the slow edge
 966 // is appended to the region.
 967 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 968   if (stopped()) {
 969     // Already short circuited.
 970     return NULL;
 971   }
 972 
 973   // Build an if node and its projections.
 974   // If test is true we take the slow path, which we assume is uncommon.
 975   if (_gvn.type(test) == TypeInt::ZERO) {
 976     // The slow branch is never taken.  No need to build this guard.
 977     return NULL;
 978   }
 979 
 980   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 981 
 982   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 983   if (if_slow == top()) {
 984     // The slow branch is never taken.  No need to build this guard.
 985     return NULL;
 986   }
 987 
 988   if (region != NULL)
 989     region->add_req(if_slow);
 990 
 991   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 992   set_control(if_fast);
 993 
 994   return if_slow;
 995 }
 996 
 997 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 998   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 999 }
1000 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
1001   return generate_guard(test, region, PROB_FAIR);
1002 }
1003 
1004 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
1005                                                      Node* *pos_index) {
1006   if (stopped())
1007     return NULL;                // already stopped
1008   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
1009     return NULL;                // index is already adequately typed
1010   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
1011   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1012   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
1013   if (is_neg != NULL && pos_index != NULL) {
1014     // Emulate effect of Parse::adjust_map_after_if.
1015     Node* ccast = new CastIINode(index, TypeInt::POS);
1016     ccast->set_req(0, control());
1017     (*pos_index) = _gvn.transform(ccast);
1018   }
1019   return is_neg;
1020 }
1021 
1022 // Make sure that 'position' is a valid limit index, in [0..length].
1023 // There are two equivalent plans for checking this:
1024 //   A. (offset + copyLength)  unsigned<=  arrayLength
1025 //   B. offset  <=  (arrayLength - copyLength)
1026 // We require that all of the values above, except for the sum and
1027 // difference, are already known to be non-negative.
1028 // Plan A is robust in the face of overflow, if offset and copyLength
1029 // are both hugely positive.
1030 //
1031 // Plan B is less direct and intuitive, but it does not overflow at
1032 // all, since the difference of two non-negatives is always
1033 // representable.  Whenever Java methods must perform the equivalent
1034 // check they generally use Plan B instead of Plan A.
1035 // For the moment we use Plan A.
1036 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1037                                                   Node* subseq_length,
1038                                                   Node* array_length,
1039                                                   RegionNode* region) {
1040   if (stopped())
1041     return NULL;                // already stopped
1042   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1043   if (zero_offset && subseq_length->eqv_uncast(array_length))
1044     return NULL;                // common case of whole-array copy
1045   Node* last = subseq_length;
1046   if (!zero_offset)             // last += offset
1047     last = _gvn.transform(new AddINode(last, offset));
1048   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
1049   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1050   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1051   return is_over;
1052 }
1053 
1054 
1055 //--------------------------generate_current_thread--------------------
1056 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1057   ciKlass*    thread_klass = env()->Thread_klass();
1058   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1059   Node* thread = _gvn.transform(new ThreadLocalNode());
1060   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1061   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1062   tls_output = thread;
1063   return threadObj;
1064 }
1065 
1066 
1067 //------------------------------make_string_method_node------------------------
1068 // Helper method for String intrinsic functions. This version is called
1069 // with str1 and str2 pointing to String object nodes.
1070 //
1071 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1072   Node* no_ctrl = NULL;
1073 
1074   // Get start addr of string
1075   Node* str1_value   = load_String_value(no_ctrl, str1);
1076   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1077   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1078 
1079   // Get length of string 1
1080   Node* str1_len  = load_String_length(no_ctrl, str1);
1081 
1082   Node* str2_value   = load_String_value(no_ctrl, str2);
1083   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1084   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1085 
1086   Node* str2_len = NULL;
1087   Node* result = NULL;
1088 
1089   switch (opcode) {
1090   case Op_StrIndexOf:
1091     // Get length of string 2
1092     str2_len = load_String_length(no_ctrl, str2);
1093 
1094     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1095                                 str1_start, str1_len, str2_start, str2_len);
1096     break;
1097   case Op_StrComp:
1098     // Get length of string 2
1099     str2_len = load_String_length(no_ctrl, str2);
1100 
1101     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1102                              str1_start, str1_len, str2_start, str2_len);
1103     break;
1104   case Op_StrEquals:
1105     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1106                                str1_start, str2_start, str1_len);
1107     break;
1108   default:
1109     ShouldNotReachHere();
1110     return NULL;
1111   }
1112 
1113   // All these intrinsics have checks.
1114   C->set_has_split_ifs(true); // Has chance for split-if optimization
1115 
1116   return _gvn.transform(result);
1117 }
1118 
1119 // Helper method for String intrinsic functions. This version is called
1120 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1121 // to Int nodes containing the lenghts of str1 and str2.
1122 //
1123 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1124   Node* result = NULL;
1125   switch (opcode) {
1126   case Op_StrIndexOf:
1127     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1128                                 str1_start, cnt1, str2_start, cnt2);
1129     break;
1130   case Op_StrComp:
1131     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1132                              str1_start, cnt1, str2_start, cnt2);
1133     break;
1134   case Op_StrEquals:
1135     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1136                                str1_start, str2_start, cnt1);
1137     break;
1138   default:
1139     ShouldNotReachHere();
1140     return NULL;
1141   }
1142 
1143   // All these intrinsics have checks.
1144   C->set_has_split_ifs(true); // Has chance for split-if optimization
1145 
1146   return _gvn.transform(result);
1147 }
1148 
1149 //------------------------------inline_string_compareTo------------------------
1150 // public int java.lang.String.compareTo(String anotherString);
1151 bool LibraryCallKit::inline_string_compareTo() {
1152   Node* receiver = null_check(argument(0));
1153   Node* arg      = null_check(argument(1));
1154   if (stopped()) {
1155     return true;
1156   }
1157   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1158   return true;
1159 }
1160 
1161 //------------------------------inline_string_equals------------------------
1162 bool LibraryCallKit::inline_string_equals() {
1163   Node* receiver = null_check_receiver();
1164   // NOTE: Do not null check argument for String.equals() because spec
1165   // allows to specify NULL as argument.
1166   Node* argument = this->argument(1);
1167   if (stopped()) {
1168     return true;
1169   }
1170 
1171   // paths (plus control) merge
1172   RegionNode* region = new RegionNode(5);
1173   Node* phi = new PhiNode(region, TypeInt::BOOL);
1174 
1175   // does source == target string?
1176   Node* cmp = _gvn.transform(new CmpPNode(receiver, argument));
1177   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1178 
1179   Node* if_eq = generate_slow_guard(bol, NULL);
1180   if (if_eq != NULL) {
1181     // receiver == argument
1182     phi->init_req(2, intcon(1));
1183     region->init_req(2, if_eq);
1184   }
1185 
1186   // get String klass for instanceOf
1187   ciInstanceKlass* klass = env()->String_klass();
1188 
1189   if (!stopped()) {
1190     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1191     Node* cmp  = _gvn.transform(new CmpINode(inst, intcon(1)));
1192     Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1193 
1194     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1195     //instanceOf == true, fallthrough
1196 
1197     if (inst_false != NULL) {
1198       phi->init_req(3, intcon(0));
1199       region->init_req(3, inst_false);
1200     }
1201   }
1202 
1203   if (!stopped()) {
1204     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1205 
1206     // Properly cast the argument to String
1207     argument = _gvn.transform(new CheckCastPPNode(control(), argument, string_type));
1208     // This path is taken only when argument's type is String:NotNull.
1209     argument = cast_not_null(argument, false);
1210 
1211     Node* no_ctrl = NULL;
1212 
1213     // Get start addr of receiver
1214     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1215     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1216     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1217 
1218     // Get length of receiver
1219     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1220 
1221     // Get start addr of argument
1222     Node* argument_val    = load_String_value(no_ctrl, argument);
1223     Node* argument_offset = load_String_offset(no_ctrl, argument);
1224     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1225 
1226     // Get length of argument
1227     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1228 
1229     // Check for receiver count != argument count
1230     Node* cmp = _gvn.transform(new CmpINode(receiver_cnt, argument_cnt));
1231     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1232     Node* if_ne = generate_slow_guard(bol, NULL);
1233     if (if_ne != NULL) {
1234       phi->init_req(4, intcon(0));
1235       region->init_req(4, if_ne);
1236     }
1237 
1238     // Check for count == 0 is done by assembler code for StrEquals.
1239 
1240     if (!stopped()) {
1241       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1242       phi->init_req(1, equals);
1243       region->init_req(1, control());
1244     }
1245   }
1246 
1247   // post merge
1248   set_control(_gvn.transform(region));
1249   record_for_igvn(region);
1250 
1251   set_result(_gvn.transform(phi));
1252   return true;
1253 }
1254 
1255 //------------------------------inline_array_equals----------------------------
1256 bool LibraryCallKit::inline_array_equals() {
1257   Node* arg1 = argument(0);
1258   Node* arg2 = argument(1);
1259   set_result(_gvn.transform(new AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1260   return true;
1261 }
1262 
1263 // Java version of String.indexOf(constant string)
1264 // class StringDecl {
1265 //   StringDecl(char[] ca) {
1266 //     offset = 0;
1267 //     count = ca.length;
1268 //     value = ca;
1269 //   }
1270 //   int offset;
1271 //   int count;
1272 //   char[] value;
1273 // }
1274 //
1275 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1276 //                             int targetOffset, int cache_i, int md2) {
1277 //   int cache = cache_i;
1278 //   int sourceOffset = string_object.offset;
1279 //   int sourceCount = string_object.count;
1280 //   int targetCount = target_object.length;
1281 //
1282 //   int targetCountLess1 = targetCount - 1;
1283 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1284 //
1285 //   char[] source = string_object.value;
1286 //   char[] target = target_object;
1287 //   int lastChar = target[targetCountLess1];
1288 //
1289 //  outer_loop:
1290 //   for (int i = sourceOffset; i < sourceEnd; ) {
1291 //     int src = source[i + targetCountLess1];
1292 //     if (src == lastChar) {
1293 //       // With random strings and a 4-character alphabet,
1294 //       // reverse matching at this point sets up 0.8% fewer
1295 //       // frames, but (paradoxically) makes 0.3% more probes.
1296 //       // Since those probes are nearer the lastChar probe,
1297 //       // there is may be a net D$ win with reverse matching.
1298 //       // But, reversing loop inhibits unroll of inner loop
1299 //       // for unknown reason.  So, does running outer loop from
1300 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1301 //       for (int j = 0; j < targetCountLess1; j++) {
1302 //         if (target[targetOffset + j] != source[i+j]) {
1303 //           if ((cache & (1 << source[i+j])) == 0) {
1304 //             if (md2 < j+1) {
1305 //               i += j+1;
1306 //               continue outer_loop;
1307 //             }
1308 //           }
1309 //           i += md2;
1310 //           continue outer_loop;
1311 //         }
1312 //       }
1313 //       return i - sourceOffset;
1314 //     }
1315 //     if ((cache & (1 << src)) == 0) {
1316 //       i += targetCountLess1;
1317 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1318 //     i++;
1319 //   }
1320 //   return -1;
1321 // }
1322 
1323 //------------------------------string_indexOf------------------------
1324 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1325                                      jint cache_i, jint md2_i) {
1326 
1327   Node* no_ctrl  = NULL;
1328   float likely   = PROB_LIKELY(0.9);
1329   float unlikely = PROB_UNLIKELY(0.9);
1330 
1331   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1332 
1333   Node* source        = load_String_value(no_ctrl, string_object);
1334   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1335   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1336 
1337   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1338   jint target_length = target_array->length();
1339   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1340   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1341 
1342   // String.value field is known to be @Stable.
1343   if (UseImplicitStableValues) {
1344     target = cast_array_to_stable(target, target_type);
1345   }
1346 
1347   IdealKit kit(this, false, true);
1348 #define __ kit.
1349   Node* zero             = __ ConI(0);
1350   Node* one              = __ ConI(1);
1351   Node* cache            = __ ConI(cache_i);
1352   Node* md2              = __ ConI(md2_i);
1353   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1354   Node* targetCountLess1 = __ ConI(target_length - 1);
1355   Node* targetOffset     = __ ConI(targetOffset_i);
1356   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1357 
1358   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1359   Node* outer_loop = __ make_label(2 /* goto */);
1360   Node* return_    = __ make_label(1);
1361 
1362   __ set(rtn,__ ConI(-1));
1363   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1364        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1365        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1366        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1367        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1368          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1369               Node* tpj = __ AddI(targetOffset, __ value(j));
1370               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1371               Node* ipj  = __ AddI(__ value(i), __ value(j));
1372               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1373               __ if_then(targ, BoolTest::ne, src2); {
1374                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1375                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1376                     __ increment(i, __ AddI(__ value(j), one));
1377                     __ goto_(outer_loop);
1378                   } __ end_if(); __ dead(j);
1379                 }__ end_if(); __ dead(j);
1380                 __ increment(i, md2);
1381                 __ goto_(outer_loop);
1382               }__ end_if();
1383               __ increment(j, one);
1384          }__ end_loop(); __ dead(j);
1385          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1386          __ goto_(return_);
1387        }__ end_if();
1388        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1389          __ increment(i, targetCountLess1);
1390        }__ end_if();
1391        __ increment(i, one);
1392        __ bind(outer_loop);
1393   }__ end_loop(); __ dead(i);
1394   __ bind(return_);
1395 
1396   // Final sync IdealKit and GraphKit.
1397   final_sync(kit);
1398   Node* result = __ value(rtn);
1399 #undef __
1400   C->set_has_loops(true);
1401   return result;
1402 }
1403 
1404 //------------------------------inline_string_indexOf------------------------
1405 bool LibraryCallKit::inline_string_indexOf() {
1406   Node* receiver = argument(0);
1407   Node* arg      = argument(1);
1408 
1409   Node* result;
1410   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1411       UseSSE42Intrinsics) {
1412     // Generate SSE4.2 version of indexOf
1413     // We currently only have match rules that use SSE4.2
1414 
1415     receiver = null_check(receiver);
1416     arg      = null_check(arg);
1417     if (stopped()) {
1418       return true;
1419     }
1420 
1421     // Make the merge point
1422     RegionNode* result_rgn = new RegionNode(4);
1423     Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1424     Node* no_ctrl  = NULL;
1425 
1426     // Get start addr of source string
1427     Node* source = load_String_value(no_ctrl, receiver);
1428     Node* source_offset = load_String_offset(no_ctrl, receiver);
1429     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1430 
1431     // Get length of source string
1432     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1433 
1434     // Get start addr of substring
1435     Node* substr = load_String_value(no_ctrl, arg);
1436     Node* substr_offset = load_String_offset(no_ctrl, arg);
1437     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1438 
1439     // Get length of source string
1440     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1441 
1442     // Check for substr count > string count
1443     Node* cmp = _gvn.transform(new CmpINode(substr_cnt, source_cnt));
1444     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1445     Node* if_gt = generate_slow_guard(bol, NULL);
1446     if (if_gt != NULL) {
1447       result_phi->init_req(2, intcon(-1));
1448       result_rgn->init_req(2, if_gt);
1449     }
1450 
1451     if (!stopped()) {
1452       // Check for substr count == 0
1453       cmp = _gvn.transform(new CmpINode(substr_cnt, intcon(0)));
1454       bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1455       Node* if_zero = generate_slow_guard(bol, NULL);
1456       if (if_zero != NULL) {
1457         result_phi->init_req(3, intcon(0));
1458         result_rgn->init_req(3, if_zero);
1459       }
1460     }
1461 
1462     if (!stopped()) {
1463       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1464       result_phi->init_req(1, result);
1465       result_rgn->init_req(1, control());
1466     }
1467     set_control(_gvn.transform(result_rgn));
1468     record_for_igvn(result_rgn);
1469     result = _gvn.transform(result_phi);
1470 
1471   } else { // Use LibraryCallKit::string_indexOf
1472     // don't intrinsify if argument isn't a constant string.
1473     if (!arg->is_Con()) {
1474      return false;
1475     }
1476     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1477     if (str_type == NULL) {
1478       return false;
1479     }
1480     ciInstanceKlass* klass = env()->String_klass();
1481     ciObject* str_const = str_type->const_oop();
1482     if (str_const == NULL || str_const->klass() != klass) {
1483       return false;
1484     }
1485     ciInstance* str = str_const->as_instance();
1486     assert(str != NULL, "must be instance");
1487 
1488     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1489     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1490 
1491     int o;
1492     int c;
1493     if (java_lang_String::has_offset_field()) {
1494       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1495       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1496     } else {
1497       o = 0;
1498       c = pat->length();
1499     }
1500 
1501     // constant strings have no offset and count == length which
1502     // simplifies the resulting code somewhat so lets optimize for that.
1503     if (o != 0 || c != pat->length()) {
1504      return false;
1505     }
1506 
1507     receiver = null_check(receiver, T_OBJECT);
1508     // NOTE: No null check on the argument is needed since it's a constant String oop.
1509     if (stopped()) {
1510       return true;
1511     }
1512 
1513     // The null string as a pattern always returns 0 (match at beginning of string)
1514     if (c == 0) {
1515       set_result(intcon(0));
1516       return true;
1517     }
1518 
1519     // Generate default indexOf
1520     jchar lastChar = pat->char_at(o + (c - 1));
1521     int cache = 0;
1522     int i;
1523     for (i = 0; i < c - 1; i++) {
1524       assert(i < pat->length(), "out of range");
1525       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1526     }
1527 
1528     int md2 = c;
1529     for (i = 0; i < c - 1; i++) {
1530       assert(i < pat->length(), "out of range");
1531       if (pat->char_at(o + i) == lastChar) {
1532         md2 = (c - 1) - i;
1533       }
1534     }
1535 
1536     result = string_indexOf(receiver, pat, o, cache, md2);
1537   }
1538   set_result(result);
1539   return true;
1540 }
1541 
1542 //--------------------------round_double_node--------------------------------
1543 // Round a double node if necessary.
1544 Node* LibraryCallKit::round_double_node(Node* n) {
1545   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1546     n = _gvn.transform(new RoundDoubleNode(0, n));
1547   return n;
1548 }
1549 
1550 //------------------------------inline_math-----------------------------------
1551 // public static double Math.abs(double)
1552 // public static double Math.sqrt(double)
1553 // public static double Math.log(double)
1554 // public static double Math.log10(double)
1555 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1556   Node* arg = round_double_node(argument(0));
1557   Node* n;
1558   switch (id) {
1559   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1560   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1561   case vmIntrinsics::_dlog:   n = new LogDNode(C, control(),   arg);  break;
1562   case vmIntrinsics::_dlog10: n = new Log10DNode(C, control(), arg);  break;
1563   default:  fatal_unexpected_iid(id);  break;
1564   }
1565   set_result(_gvn.transform(n));
1566   return true;
1567 }
1568 
1569 //------------------------------inline_trig----------------------------------
1570 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1571 // argument reduction which will turn into a fast/slow diamond.
1572 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1573   Node* arg = round_double_node(argument(0));
1574   Node* n = NULL;
1575 
1576   switch (id) {
1577   case vmIntrinsics::_dsin:  n = new SinDNode(C, control(), arg);  break;
1578   case vmIntrinsics::_dcos:  n = new CosDNode(C, control(), arg);  break;
1579   case vmIntrinsics::_dtan:  n = new TanDNode(C, control(), arg);  break;
1580   default:  fatal_unexpected_iid(id);  break;
1581   }
1582   n = _gvn.transform(n);
1583 
1584   // Rounding required?  Check for argument reduction!
1585   if (Matcher::strict_fp_requires_explicit_rounding) {
1586     static const double     pi_4 =  0.7853981633974483;
1587     static const double neg_pi_4 = -0.7853981633974483;
1588     // pi/2 in 80-bit extended precision
1589     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1590     // -pi/2 in 80-bit extended precision
1591     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1592     // Cutoff value for using this argument reduction technique
1593     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1594     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1595 
1596     // Pseudocode for sin:
1597     // if (x <= Math.PI / 4.0) {
1598     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1599     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1600     // } else {
1601     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1602     // }
1603     // return StrictMath.sin(x);
1604 
1605     // Pseudocode for cos:
1606     // if (x <= Math.PI / 4.0) {
1607     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1608     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1609     // } else {
1610     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1611     // }
1612     // return StrictMath.cos(x);
1613 
1614     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1615     // requires a special machine instruction to load it.  Instead we'll try
1616     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1617     // probably do the math inside the SIN encoding.
1618 
1619     // Make the merge point
1620     RegionNode* r = new RegionNode(3);
1621     Node* phi = new PhiNode(r, Type::DOUBLE);
1622 
1623     // Flatten arg so we need only 1 test
1624     Node *abs = _gvn.transform(new AbsDNode(arg));
1625     // Node for PI/4 constant
1626     Node *pi4 = makecon(TypeD::make(pi_4));
1627     // Check PI/4 : abs(arg)
1628     Node *cmp = _gvn.transform(new CmpDNode(pi4,abs));
1629     // Check: If PI/4 < abs(arg) then go slow
1630     Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt ));
1631     // Branch either way
1632     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1633     set_control(opt_iff(r,iff));
1634 
1635     // Set fast path result
1636     phi->init_req(2, n);
1637 
1638     // Slow path - non-blocking leaf call
1639     Node* call = NULL;
1640     switch (id) {
1641     case vmIntrinsics::_dsin:
1642       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1643                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1644                                "Sin", NULL, arg, top());
1645       break;
1646     case vmIntrinsics::_dcos:
1647       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1648                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1649                                "Cos", NULL, arg, top());
1650       break;
1651     case vmIntrinsics::_dtan:
1652       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1653                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1654                                "Tan", NULL, arg, top());
1655       break;
1656     }
1657     assert(control()->in(0) == call, "");
1658     Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1659     r->init_req(1, control());
1660     phi->init_req(1, slow_result);
1661 
1662     // Post-merge
1663     set_control(_gvn.transform(r));
1664     record_for_igvn(r);
1665     n = _gvn.transform(phi);
1666 
1667     C->set_has_split_ifs(true); // Has chance for split-if optimization
1668   }
1669   set_result(n);
1670   return true;
1671 }
1672 
1673 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1674   //-------------------
1675   //result=(result.isNaN())? funcAddr():result;
1676   // Check: If isNaN() by checking result!=result? then either trap
1677   // or go to runtime
1678   Node* cmpisnan = _gvn.transform(new CmpDNode(result, result));
1679   // Build the boolean node
1680   Node* bolisnum = _gvn.transform(new BoolNode(cmpisnan, BoolTest::eq));
1681 
1682   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1683     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1684       // The pow or exp intrinsic returned a NaN, which requires a call
1685       // to the runtime.  Recompile with the runtime call.
1686       uncommon_trap(Deoptimization::Reason_intrinsic,
1687                     Deoptimization::Action_make_not_entrant);
1688     }
1689     return result;
1690   } else {
1691     // If this inlining ever returned NaN in the past, we compile a call
1692     // to the runtime to properly handle corner cases
1693 
1694     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1695     Node* if_slow = _gvn.transform(new IfFalseNode(iff));
1696     Node* if_fast = _gvn.transform(new IfTrueNode(iff));
1697 
1698     if (!if_slow->is_top()) {
1699       RegionNode* result_region = new RegionNode(3);
1700       PhiNode*    result_val = new PhiNode(result_region, Type::DOUBLE);
1701 
1702       result_region->init_req(1, if_fast);
1703       result_val->init_req(1, result);
1704 
1705       set_control(if_slow);
1706 
1707       const TypePtr* no_memory_effects = NULL;
1708       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1709                                    no_memory_effects,
1710                                    x, top(), y, y ? top() : NULL);
1711       Node* value = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+0));
1712 #ifdef ASSERT
1713       Node* value_top = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+1));
1714       assert(value_top == top(), "second value must be top");
1715 #endif
1716 
1717       result_region->init_req(2, control());
1718       result_val->init_req(2, value);
1719       set_control(_gvn.transform(result_region));
1720       return _gvn.transform(result_val);
1721     } else {
1722       return result;
1723     }
1724   }
1725 }
1726 
1727 //------------------------------inline_exp-------------------------------------
1728 // Inline exp instructions, if possible.  The Intel hardware only misses
1729 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1730 bool LibraryCallKit::inline_exp() {
1731   Node* arg = round_double_node(argument(0));
1732   Node* n   = _gvn.transform(new ExpDNode(C, control(), arg));
1733 
1734   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1735   set_result(n);
1736 
1737   C->set_has_split_ifs(true); // Has chance for split-if optimization
1738   return true;
1739 }
1740 
1741 //------------------------------inline_pow-------------------------------------
1742 // Inline power instructions, if possible.
1743 bool LibraryCallKit::inline_pow() {
1744   // Pseudocode for pow
1745   // if (y == 2) {
1746   //   return x * x;
1747   // } else {
1748   //   if (x <= 0.0) {
1749   //     long longy = (long)y;
1750   //     if ((double)longy == y) { // if y is long
1751   //       if (y + 1 == y) longy = 0; // huge number: even
1752   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1753   //     } else {
1754   //       result = NaN;
1755   //     }
1756   //   } else {
1757   //     result = DPow(x,y);
1758   //   }
1759   //   if (result != result)?  {
1760   //     result = uncommon_trap() or runtime_call();
1761   //   }
1762   //   return result;
1763   // }
1764 
1765   Node* x = round_double_node(argument(0));
1766   Node* y = round_double_node(argument(2));
1767 
1768   Node* result = NULL;
1769 
1770   Node*   const_two_node = makecon(TypeD::make(2.0));
1771   Node*   cmp_node       = _gvn.transform(new CmpDNode(y, const_two_node));
1772   Node*   bool_node      = _gvn.transform(new BoolNode(cmp_node, BoolTest::eq));
1773   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1774   Node*   if_true        = _gvn.transform(new IfTrueNode(if_node));
1775   Node*   if_false       = _gvn.transform(new IfFalseNode(if_node));
1776 
1777   RegionNode* region_node = new RegionNode(3);
1778   region_node->init_req(1, if_true);
1779 
1780   Node* phi_node = new PhiNode(region_node, Type::DOUBLE);
1781   // special case for x^y where y == 2, we can convert it to x * x
1782   phi_node->init_req(1, _gvn.transform(new MulDNode(x, x)));
1783 
1784   // set control to if_false since we will now process the false branch
1785   set_control(if_false);
1786 
1787   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1788     // Short form: skip the fancy tests and just check for NaN result.
1789     result = _gvn.transform(new PowDNode(C, control(), x, y));
1790   } else {
1791     // If this inlining ever returned NaN in the past, include all
1792     // checks + call to the runtime.
1793 
1794     // Set the merge point for If node with condition of (x <= 0.0)
1795     // There are four possible paths to region node and phi node
1796     RegionNode *r = new RegionNode(4);
1797     Node *phi = new PhiNode(r, Type::DOUBLE);
1798 
1799     // Build the first if node: if (x <= 0.0)
1800     // Node for 0 constant
1801     Node *zeronode = makecon(TypeD::ZERO);
1802     // Check x:0
1803     Node *cmp = _gvn.transform(new CmpDNode(x, zeronode));
1804     // Check: If (x<=0) then go complex path
1805     Node *bol1 = _gvn.transform(new BoolNode( cmp, BoolTest::le ));
1806     // Branch either way
1807     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1808     // Fast path taken; set region slot 3
1809     Node *fast_taken = _gvn.transform(new IfFalseNode(if1));
1810     r->init_req(3,fast_taken); // Capture fast-control
1811 
1812     // Fast path not-taken, i.e. slow path
1813     Node *complex_path = _gvn.transform(new IfTrueNode(if1));
1814 
1815     // Set fast path result
1816     Node *fast_result = _gvn.transform(new PowDNode(C, control(), x, y));
1817     phi->init_req(3, fast_result);
1818 
1819     // Complex path
1820     // Build the second if node (if y is long)
1821     // Node for (long)y
1822     Node *longy = _gvn.transform(new ConvD2LNode(y));
1823     // Node for (double)((long) y)
1824     Node *doublelongy= _gvn.transform(new ConvL2DNode(longy));
1825     // Check (double)((long) y) : y
1826     Node *cmplongy= _gvn.transform(new CmpDNode(doublelongy, y));
1827     // Check if (y isn't long) then go to slow path
1828 
1829     Node *bol2 = _gvn.transform(new BoolNode( cmplongy, BoolTest::ne ));
1830     // Branch either way
1831     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1832     Node* ylong_path = _gvn.transform(new IfFalseNode(if2));
1833 
1834     Node *slow_path = _gvn.transform(new IfTrueNode(if2));
1835 
1836     // Calculate DPow(abs(x), y)*(1 & (long)y)
1837     // Node for constant 1
1838     Node *conone = longcon(1);
1839     // 1& (long)y
1840     Node *signnode= _gvn.transform(new AndLNode(conone, longy));
1841 
1842     // A huge number is always even. Detect a huge number by checking
1843     // if y + 1 == y and set integer to be tested for parity to 0.
1844     // Required for corner case:
1845     // (long)9.223372036854776E18 = max_jlong
1846     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1847     // max_jlong is odd but 9.223372036854776E18 is even
1848     Node* yplus1 = _gvn.transform(new AddDNode(y, makecon(TypeD::make(1))));
1849     Node *cmpyplus1= _gvn.transform(new CmpDNode(yplus1, y));
1850     Node *bolyplus1 = _gvn.transform(new BoolNode( cmpyplus1, BoolTest::eq ));
1851     Node* correctedsign = NULL;
1852     if (ConditionalMoveLimit != 0) {
1853       correctedsign = _gvn.transform(CMoveNode::make(NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1854     } else {
1855       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1856       RegionNode *r = new RegionNode(3);
1857       Node *phi = new PhiNode(r, TypeLong::LONG);
1858       r->init_req(1, _gvn.transform(new IfFalseNode(ifyplus1)));
1859       r->init_req(2, _gvn.transform(new IfTrueNode(ifyplus1)));
1860       phi->init_req(1, signnode);
1861       phi->init_req(2, longcon(0));
1862       correctedsign = _gvn.transform(phi);
1863       ylong_path = _gvn.transform(r);
1864       record_for_igvn(r);
1865     }
1866 
1867     // zero node
1868     Node *conzero = longcon(0);
1869     // Check (1&(long)y)==0?
1870     Node *cmpeq1 = _gvn.transform(new CmpLNode(correctedsign, conzero));
1871     // Check if (1&(long)y)!=0?, if so the result is negative
1872     Node *bol3 = _gvn.transform(new BoolNode( cmpeq1, BoolTest::ne ));
1873     // abs(x)
1874     Node *absx=_gvn.transform(new AbsDNode(x));
1875     // abs(x)^y
1876     Node *absxpowy = _gvn.transform(new PowDNode(C, control(), absx, y));
1877     // -abs(x)^y
1878     Node *negabsxpowy = _gvn.transform(new NegDNode (absxpowy));
1879     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1880     Node *signresult = NULL;
1881     if (ConditionalMoveLimit != 0) {
1882       signresult = _gvn.transform(CMoveNode::make(NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1883     } else {
1884       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1885       RegionNode *r = new RegionNode(3);
1886       Node *phi = new PhiNode(r, Type::DOUBLE);
1887       r->init_req(1, _gvn.transform(new IfFalseNode(ifyeven)));
1888       r->init_req(2, _gvn.transform(new IfTrueNode(ifyeven)));
1889       phi->init_req(1, absxpowy);
1890       phi->init_req(2, negabsxpowy);
1891       signresult = _gvn.transform(phi);
1892       ylong_path = _gvn.transform(r);
1893       record_for_igvn(r);
1894     }
1895     // Set complex path fast result
1896     r->init_req(2, ylong_path);
1897     phi->init_req(2, signresult);
1898 
1899     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1900     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1901     r->init_req(1,slow_path);
1902     phi->init_req(1,slow_result);
1903 
1904     // Post merge
1905     set_control(_gvn.transform(r));
1906     record_for_igvn(r);
1907     result = _gvn.transform(phi);
1908   }
1909 
1910   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1911 
1912   // control from finish_pow_exp is now input to the region node
1913   region_node->set_req(2, control());
1914   // the result from finish_pow_exp is now input to the phi node
1915   phi_node->init_req(2, result);
1916   set_control(_gvn.transform(region_node));
1917   record_for_igvn(region_node);
1918   set_result(_gvn.transform(phi_node));
1919 
1920   C->set_has_split_ifs(true); // Has chance for split-if optimization
1921   return true;
1922 }
1923 
1924 //------------------------------runtime_math-----------------------------
1925 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1926   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1927          "must be (DD)D or (D)D type");
1928 
1929   // Inputs
1930   Node* a = round_double_node(argument(0));
1931   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1932 
1933   const TypePtr* no_memory_effects = NULL;
1934   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1935                                  no_memory_effects,
1936                                  a, top(), b, b ? top() : NULL);
1937   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1938 #ifdef ASSERT
1939   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1940   assert(value_top == top(), "second value must be top");
1941 #endif
1942 
1943   set_result(value);
1944   return true;
1945 }
1946 
1947 //------------------------------inline_math_native-----------------------------
1948 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1949 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1950   switch (id) {
1951     // These intrinsics are not properly supported on all hardware
1952   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1953     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1954   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1955     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1956   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1957     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1958 
1959   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1960     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1961   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1962     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1963 
1964     // These intrinsics are supported on all hardware
1965   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1966   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1967 
1968   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1969     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1970   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1971     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1972 #undef FN_PTR
1973 
1974    // These intrinsics are not yet correctly implemented
1975   case vmIntrinsics::_datan2:
1976     return false;
1977 
1978   default:
1979     fatal_unexpected_iid(id);
1980     return false;
1981   }
1982 }
1983 
1984 static bool is_simple_name(Node* n) {
1985   return (n->req() == 1         // constant
1986           || (n->is_Type() && n->as_Type()->type()->singleton())
1987           || n->is_Proj()       // parameter or return value
1988           || n->is_Phi()        // local of some sort
1989           );
1990 }
1991 
1992 //----------------------------inline_min_max-----------------------------------
1993 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1994   set_result(generate_min_max(id, argument(0), argument(1)));
1995   return true;
1996 }
1997 
1998 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1999   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
2000   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2001   Node* fast_path = _gvn.transform( new IfFalseNode(check));
2002   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
2003 
2004   {
2005     PreserveJVMState pjvms(this);
2006     PreserveReexecuteState preexecs(this);
2007     jvms()->set_should_reexecute(true);
2008 
2009     set_control(slow_path);
2010     set_i_o(i_o());
2011 
2012     uncommon_trap(Deoptimization::Reason_intrinsic,
2013                   Deoptimization::Action_none);
2014   }
2015 
2016   set_control(fast_path);
2017   set_result(math);
2018 }
2019 
2020 template <typename OverflowOp>
2021 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2022   typedef typename OverflowOp::MathOp MathOp;
2023 
2024   MathOp* mathOp = new MathOp(arg1, arg2);
2025   Node* operation = _gvn.transform( mathOp );
2026   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
2027   inline_math_mathExact(operation, ofcheck);
2028   return true;
2029 }
2030 
2031 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2032   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2033 }
2034 
2035 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2036   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2037 }
2038 
2039 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2040   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2041 }
2042 
2043 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2044   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2045 }
2046 
2047 bool LibraryCallKit::inline_math_negateExactI() {
2048   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2049 }
2050 
2051 bool LibraryCallKit::inline_math_negateExactL() {
2052   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2053 }
2054 
2055 bool LibraryCallKit::inline_math_multiplyExactI() {
2056   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2057 }
2058 
2059 bool LibraryCallKit::inline_math_multiplyExactL() {
2060   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2061 }
2062 
2063 Node*
2064 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2065   // These are the candidate return value:
2066   Node* xvalue = x0;
2067   Node* yvalue = y0;
2068 
2069   if (xvalue == yvalue) {
2070     return xvalue;
2071   }
2072 
2073   bool want_max = (id == vmIntrinsics::_max);
2074 
2075   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2076   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2077   if (txvalue == NULL || tyvalue == NULL)  return top();
2078   // This is not really necessary, but it is consistent with a
2079   // hypothetical MaxINode::Value method:
2080   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2081 
2082   // %%% This folding logic should (ideally) be in a different place.
2083   // Some should be inside IfNode, and there to be a more reliable
2084   // transformation of ?: style patterns into cmoves.  We also want
2085   // more powerful optimizations around cmove and min/max.
2086 
2087   // Try to find a dominating comparison of these guys.
2088   // It can simplify the index computation for Arrays.copyOf
2089   // and similar uses of System.arraycopy.
2090   // First, compute the normalized version of CmpI(x, y).
2091   int   cmp_op = Op_CmpI;
2092   Node* xkey = xvalue;
2093   Node* ykey = yvalue;
2094   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
2095   if (ideal_cmpxy->is_Cmp()) {
2096     // E.g., if we have CmpI(length - offset, count),
2097     // it might idealize to CmpI(length, count + offset)
2098     cmp_op = ideal_cmpxy->Opcode();
2099     xkey = ideal_cmpxy->in(1);
2100     ykey = ideal_cmpxy->in(2);
2101   }
2102 
2103   // Start by locating any relevant comparisons.
2104   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2105   Node* cmpxy = NULL;
2106   Node* cmpyx = NULL;
2107   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2108     Node* cmp = start_from->fast_out(k);
2109     if (cmp->outcnt() > 0 &&            // must have prior uses
2110         cmp->in(0) == NULL &&           // must be context-independent
2111         cmp->Opcode() == cmp_op) {      // right kind of compare
2112       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2113       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2114     }
2115   }
2116 
2117   const int NCMPS = 2;
2118   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2119   int cmpn;
2120   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2121     if (cmps[cmpn] != NULL)  break;     // find a result
2122   }
2123   if (cmpn < NCMPS) {
2124     // Look for a dominating test that tells us the min and max.
2125     int depth = 0;                // Limit search depth for speed
2126     Node* dom = control();
2127     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2128       if (++depth >= 100)  break;
2129       Node* ifproj = dom;
2130       if (!ifproj->is_Proj())  continue;
2131       Node* iff = ifproj->in(0);
2132       if (!iff->is_If())  continue;
2133       Node* bol = iff->in(1);
2134       if (!bol->is_Bool())  continue;
2135       Node* cmp = bol->in(1);
2136       if (cmp == NULL)  continue;
2137       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2138         if (cmps[cmpn] == cmp)  break;
2139       if (cmpn == NCMPS)  continue;
2140       BoolTest::mask btest = bol->as_Bool()->_test._test;
2141       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2142       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2143       // At this point, we know that 'x btest y' is true.
2144       switch (btest) {
2145       case BoolTest::eq:
2146         // They are proven equal, so we can collapse the min/max.
2147         // Either value is the answer.  Choose the simpler.
2148         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2149           return yvalue;
2150         return xvalue;
2151       case BoolTest::lt:          // x < y
2152       case BoolTest::le:          // x <= y
2153         return (want_max ? yvalue : xvalue);
2154       case BoolTest::gt:          // x > y
2155       case BoolTest::ge:          // x >= y
2156         return (want_max ? xvalue : yvalue);
2157       }
2158     }
2159   }
2160 
2161   // We failed to find a dominating test.
2162   // Let's pick a test that might GVN with prior tests.
2163   Node*          best_bol   = NULL;
2164   BoolTest::mask best_btest = BoolTest::illegal;
2165   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2166     Node* cmp = cmps[cmpn];
2167     if (cmp == NULL)  continue;
2168     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2169       Node* bol = cmp->fast_out(j);
2170       if (!bol->is_Bool())  continue;
2171       BoolTest::mask btest = bol->as_Bool()->_test._test;
2172       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2173       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2174       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2175         best_bol   = bol->as_Bool();
2176         best_btest = btest;
2177       }
2178     }
2179   }
2180 
2181   Node* answer_if_true  = NULL;
2182   Node* answer_if_false = NULL;
2183   switch (best_btest) {
2184   default:
2185     if (cmpxy == NULL)
2186       cmpxy = ideal_cmpxy;
2187     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2188     // and fall through:
2189   case BoolTest::lt:          // x < y
2190   case BoolTest::le:          // x <= y
2191     answer_if_true  = (want_max ? yvalue : xvalue);
2192     answer_if_false = (want_max ? xvalue : yvalue);
2193     break;
2194   case BoolTest::gt:          // x > y
2195   case BoolTest::ge:          // x >= y
2196     answer_if_true  = (want_max ? xvalue : yvalue);
2197     answer_if_false = (want_max ? yvalue : xvalue);
2198     break;
2199   }
2200 
2201   jint hi, lo;
2202   if (want_max) {
2203     // We can sharpen the minimum.
2204     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2205     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2206   } else {
2207     // We can sharpen the maximum.
2208     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2209     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2210   }
2211 
2212   // Use a flow-free graph structure, to avoid creating excess control edges
2213   // which could hinder other optimizations.
2214   // Since Math.min/max is often used with arraycopy, we want
2215   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2216   Node* cmov = CMoveNode::make(NULL, best_bol,
2217                                answer_if_false, answer_if_true,
2218                                TypeInt::make(lo, hi, widen));
2219 
2220   return _gvn.transform(cmov);
2221 
2222   /*
2223   // This is not as desirable as it may seem, since Min and Max
2224   // nodes do not have a full set of optimizations.
2225   // And they would interfere, anyway, with 'if' optimizations
2226   // and with CMoveI canonical forms.
2227   switch (id) {
2228   case vmIntrinsics::_min:
2229     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2230   case vmIntrinsics::_max:
2231     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2232   default:
2233     ShouldNotReachHere();
2234   }
2235   */
2236 }
2237 
2238 inline int
2239 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2240   const TypePtr* base_type = TypePtr::NULL_PTR;
2241   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2242   if (base_type == NULL) {
2243     // Unknown type.
2244     return Type::AnyPtr;
2245   } else if (base_type == TypePtr::NULL_PTR) {
2246     // Since this is a NULL+long form, we have to switch to a rawptr.
2247     base   = _gvn.transform(new CastX2PNode(offset));
2248     offset = MakeConX(0);
2249     return Type::RawPtr;
2250   } else if (base_type->base() == Type::RawPtr) {
2251     return Type::RawPtr;
2252   } else if (base_type->isa_oopptr()) {
2253     // Base is never null => always a heap address.
2254     if (base_type->ptr() == TypePtr::NotNull) {
2255       return Type::OopPtr;
2256     }
2257     // Offset is small => always a heap address.
2258     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2259     if (offset_type != NULL &&
2260         base_type->offset() == 0 &&     // (should always be?)
2261         offset_type->_lo >= 0 &&
2262         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2263       return Type::OopPtr;
2264     }
2265     // Otherwise, it might either be oop+off or NULL+addr.
2266     return Type::AnyPtr;
2267   } else {
2268     // No information:
2269     return Type::AnyPtr;
2270   }
2271 }
2272 
2273 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2274   int kind = classify_unsafe_addr(base, offset);
2275   if (kind == Type::RawPtr) {
2276     return basic_plus_adr(top(), base, offset);
2277   } else {
2278     return basic_plus_adr(base, offset);
2279   }
2280 }
2281 
2282 //--------------------------inline_number_methods-----------------------------
2283 // inline int     Integer.numberOfLeadingZeros(int)
2284 // inline int        Long.numberOfLeadingZeros(long)
2285 //
2286 // inline int     Integer.numberOfTrailingZeros(int)
2287 // inline int        Long.numberOfTrailingZeros(long)
2288 //
2289 // inline int     Integer.bitCount(int)
2290 // inline int        Long.bitCount(long)
2291 //
2292 // inline char  Character.reverseBytes(char)
2293 // inline short     Short.reverseBytes(short)
2294 // inline int     Integer.reverseBytes(int)
2295 // inline long       Long.reverseBytes(long)
2296 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2297   Node* arg = argument(0);
2298   Node* n;
2299   switch (id) {
2300   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2301   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2302   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2303   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2304   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2305   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2306   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2307   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2308   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2309   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2310   default:  fatal_unexpected_iid(id);  break;
2311   }
2312   set_result(_gvn.transform(n));
2313   return true;
2314 }
2315 
2316 //----------------------------inline_unsafe_access----------------------------
2317 
2318 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2319 
2320 // Helper that guards and inserts a pre-barrier.
2321 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2322                                         Node* pre_val, bool need_mem_bar) {
2323   // We could be accessing the referent field of a reference object. If so, when G1
2324   // is enabled, we need to log the value in the referent field in an SATB buffer.
2325   // This routine performs some compile time filters and generates suitable
2326   // runtime filters that guard the pre-barrier code.
2327   // Also add memory barrier for non volatile load from the referent field
2328   // to prevent commoning of loads across safepoint.
2329   if (!UseG1GC && !need_mem_bar)
2330     return;
2331 
2332   // Some compile time checks.
2333 
2334   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2335   const TypeX* otype = offset->find_intptr_t_type();
2336   if (otype != NULL && otype->is_con() &&
2337       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2338     // Constant offset but not the reference_offset so just return
2339     return;
2340   }
2341 
2342   // We only need to generate the runtime guards for instances.
2343   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2344   if (btype != NULL) {
2345     if (btype->isa_aryptr()) {
2346       // Array type so nothing to do
2347       return;
2348     }
2349 
2350     const TypeInstPtr* itype = btype->isa_instptr();
2351     if (itype != NULL) {
2352       // Can the klass of base_oop be statically determined to be
2353       // _not_ a sub-class of Reference and _not_ Object?
2354       ciKlass* klass = itype->klass();
2355       if ( klass->is_loaded() &&
2356           !klass->is_subtype_of(env()->Reference_klass()) &&
2357           !env()->Object_klass()->is_subtype_of(klass)) {
2358         return;
2359       }
2360     }
2361   }
2362 
2363   // The compile time filters did not reject base_oop/offset so
2364   // we need to generate the following runtime filters
2365   //
2366   // if (offset == java_lang_ref_Reference::_reference_offset) {
2367   //   if (instance_of(base, java.lang.ref.Reference)) {
2368   //     pre_barrier(_, pre_val, ...);
2369   //   }
2370   // }
2371 
2372   float likely   = PROB_LIKELY(  0.999);
2373   float unlikely = PROB_UNLIKELY(0.999);
2374 
2375   IdealKit ideal(this);
2376 #define __ ideal.
2377 
2378   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2379 
2380   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2381       // Update graphKit memory and control from IdealKit.
2382       sync_kit(ideal);
2383 
2384       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2385       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2386 
2387       // Update IdealKit memory and control from graphKit.
2388       __ sync_kit(this);
2389 
2390       Node* one = __ ConI(1);
2391       // is_instof == 0 if base_oop == NULL
2392       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2393 
2394         // Update graphKit from IdeakKit.
2395         sync_kit(ideal);
2396 
2397         // Use the pre-barrier to record the value in the referent field
2398         pre_barrier(false /* do_load */,
2399                     __ ctrl(),
2400                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2401                     pre_val /* pre_val */,
2402                     T_OBJECT);
2403         if (need_mem_bar) {
2404           // Add memory barrier to prevent commoning reads from this field
2405           // across safepoint since GC can change its value.
2406           insert_mem_bar(Op_MemBarCPUOrder);
2407         }
2408         // Update IdealKit from graphKit.
2409         __ sync_kit(this);
2410 
2411       } __ end_if(); // _ref_type != ref_none
2412   } __ end_if(); // offset == referent_offset
2413 
2414   // Final sync IdealKit and GraphKit.
2415   final_sync(ideal);
2416 #undef __
2417 }
2418 
2419 
2420 // Interpret Unsafe.fieldOffset cookies correctly:
2421 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2422 
2423 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2424   // Attempt to infer a sharper value type from the offset and base type.
2425   ciKlass* sharpened_klass = NULL;
2426 
2427   // See if it is an instance field, with an object type.
2428   if (alias_type->field() != NULL) {
2429     assert(!is_native_ptr, "native pointer op cannot use a java address");
2430     if (alias_type->field()->type()->is_klass()) {
2431       sharpened_klass = alias_type->field()->type()->as_klass();
2432     }
2433   }
2434 
2435   // See if it is a narrow oop array.
2436   if (adr_type->isa_aryptr()) {
2437     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2438       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2439       if (elem_type != NULL) {
2440         sharpened_klass = elem_type->klass();
2441       }
2442     }
2443   }
2444 
2445   // The sharpened class might be unloaded if there is no class loader
2446   // contraint in place.
2447   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2448     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2449 
2450 #ifndef PRODUCT
2451     if (C->print_intrinsics() || C->print_inlining()) {
2452       tty->print("  from base type: ");  adr_type->dump();
2453       tty->print("  sharpened value: ");  tjp->dump();
2454     }
2455 #endif
2456     // Sharpen the value type.
2457     return tjp;
2458   }
2459   return NULL;
2460 }
2461 
2462 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2463   if (callee()->is_static())  return false;  // caller must have the capability!
2464 
2465 #ifndef PRODUCT
2466   {
2467     ResourceMark rm;
2468     // Check the signatures.
2469     ciSignature* sig = callee()->signature();
2470 #ifdef ASSERT
2471     if (!is_store) {
2472       // Object getObject(Object base, int/long offset), etc.
2473       BasicType rtype = sig->return_type()->basic_type();
2474       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2475           rtype = T_ADDRESS;  // it is really a C void*
2476       assert(rtype == type, "getter must return the expected value");
2477       if (!is_native_ptr) {
2478         assert(sig->count() == 2, "oop getter has 2 arguments");
2479         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2480         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2481       } else {
2482         assert(sig->count() == 1, "native getter has 1 argument");
2483         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2484       }
2485     } else {
2486       // void putObject(Object base, int/long offset, Object x), etc.
2487       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2488       if (!is_native_ptr) {
2489         assert(sig->count() == 3, "oop putter has 3 arguments");
2490         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2491         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2492       } else {
2493         assert(sig->count() == 2, "native putter has 2 arguments");
2494         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2495       }
2496       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2497       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2498         vtype = T_ADDRESS;  // it is really a C void*
2499       assert(vtype == type, "putter must accept the expected value");
2500     }
2501 #endif // ASSERT
2502  }
2503 #endif //PRODUCT
2504 
2505   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2506 
2507   Node* receiver = argument(0);  // type: oop
2508 
2509   // Build address expression.
2510   Node* adr;
2511   Node* heap_base_oop = top();
2512   Node* offset = top();
2513   Node* val;
2514 
2515   if (!is_native_ptr) {
2516     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2517     Node* base = argument(1);  // type: oop
2518     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2519     offset = argument(2);  // type: long
2520     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2521     // to be plain byte offsets, which are also the same as those accepted
2522     // by oopDesc::field_base.
2523     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2524            "fieldOffset must be byte-scaled");
2525     // 32-bit machines ignore the high half!
2526     offset = ConvL2X(offset);
2527     adr = make_unsafe_address(base, offset);
2528     heap_base_oop = base;
2529     val = is_store ? argument(4) : NULL;
2530   } else {
2531     Node* ptr = argument(1);  // type: long
2532     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2533     adr = make_unsafe_address(NULL, ptr);
2534     val = is_store ? argument(3) : NULL;
2535   }
2536 
2537   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2538 
2539   // First guess at the value type.
2540   const Type *value_type = Type::get_const_basic_type(type);
2541 
2542   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2543   // there was not enough information to nail it down.
2544   Compile::AliasType* alias_type = C->alias_type(adr_type);
2545   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2546 
2547   // We will need memory barriers unless we can determine a unique
2548   // alias category for this reference.  (Note:  If for some reason
2549   // the barriers get omitted and the unsafe reference begins to "pollute"
2550   // the alias analysis of the rest of the graph, either Compile::can_alias
2551   // or Compile::must_alias will throw a diagnostic assert.)
2552   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2553 
2554   // If we are reading the value of the referent field of a Reference
2555   // object (either by using Unsafe directly or through reflection)
2556   // then, if G1 is enabled, we need to record the referent in an
2557   // SATB log buffer using the pre-barrier mechanism.
2558   // Also we need to add memory barrier to prevent commoning reads
2559   // from this field across safepoint since GC can change its value.
2560   bool need_read_barrier = !is_native_ptr && !is_store &&
2561                            offset != top() && heap_base_oop != top();
2562 
2563   if (!is_store && type == T_OBJECT) {
2564     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2565     if (tjp != NULL) {
2566       value_type = tjp;
2567     }
2568   }
2569 
2570   receiver = null_check(receiver);
2571   if (stopped()) {
2572     return true;
2573   }
2574   // Heap pointers get a null-check from the interpreter,
2575   // as a courtesy.  However, this is not guaranteed by Unsafe,
2576   // and it is not possible to fully distinguish unintended nulls
2577   // from intended ones in this API.
2578 
2579   if (is_volatile) {
2580     // We need to emit leading and trailing CPU membars (see below) in
2581     // addition to memory membars when is_volatile. This is a little
2582     // too strong, but avoids the need to insert per-alias-type
2583     // volatile membars (for stores; compare Parse::do_put_xxx), which
2584     // we cannot do effectively here because we probably only have a
2585     // rough approximation of type.
2586     need_mem_bar = true;
2587     // For Stores, place a memory ordering barrier now.
2588     if (is_store) {
2589       insert_mem_bar(Op_MemBarRelease);
2590     } else {
2591       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2592         insert_mem_bar(Op_MemBarVolatile);
2593       }
2594     }
2595   }
2596 
2597   // Memory barrier to prevent normal and 'unsafe' accesses from
2598   // bypassing each other.  Happens after null checks, so the
2599   // exception paths do not take memory state from the memory barrier,
2600   // so there's no problems making a strong assert about mixing users
2601   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2602   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2603   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2604 
2605   if (!is_store) {
2606     MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
2607     Node* p = make_load(control(), adr, value_type, type, adr_type, mo, is_volatile);
2608     // load value
2609     switch (type) {
2610     case T_BOOLEAN:
2611     case T_CHAR:
2612     case T_BYTE:
2613     case T_SHORT:
2614     case T_INT:
2615     case T_LONG:
2616     case T_FLOAT:
2617     case T_DOUBLE:
2618       break;
2619     case T_OBJECT:
2620       if (need_read_barrier) {
2621         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2622       }
2623       break;
2624     case T_ADDRESS:
2625       // Cast to an int type.
2626       p = _gvn.transform(new CastP2XNode(NULL, p));
2627       p = ConvX2UL(p);
2628       break;
2629     default:
2630       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2631       break;
2632     }
2633     // The load node has the control of the preceding MemBarCPUOrder.  All
2634     // following nodes will have the control of the MemBarCPUOrder inserted at
2635     // the end of this method.  So, pushing the load onto the stack at a later
2636     // point is fine.
2637     set_result(p);
2638   } else {
2639     // place effect of store into memory
2640     switch (type) {
2641     case T_DOUBLE:
2642       val = dstore_rounding(val);
2643       break;
2644     case T_ADDRESS:
2645       // Repackage the long as a pointer.
2646       val = ConvL2X(val);
2647       val = _gvn.transform(new CastX2PNode(val));
2648       break;
2649     }
2650 
2651     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2652     if (type != T_OBJECT ) {
2653       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
2654     } else {
2655       // Possibly an oop being stored to Java heap or native memory
2656       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2657         // oop to Java heap.
2658         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2659       } else {
2660         // We can't tell at compile time if we are storing in the Java heap or outside
2661         // of it. So we need to emit code to conditionally do the proper type of
2662         // store.
2663 
2664         IdealKit ideal(this);
2665 #define __ ideal.
2666         // QQQ who knows what probability is here??
2667         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2668           // Sync IdealKit and graphKit.
2669           sync_kit(ideal);
2670           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2671           // Update IdealKit memory.
2672           __ sync_kit(this);
2673         } __ else_(); {
2674           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
2675         } __ end_if();
2676         // Final sync IdealKit and GraphKit.
2677         final_sync(ideal);
2678 #undef __
2679       }
2680     }
2681   }
2682 
2683   if (is_volatile) {
2684     if (!is_store) {
2685       insert_mem_bar(Op_MemBarAcquire);
2686     } else {
2687       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2688         insert_mem_bar(Op_MemBarVolatile);
2689       }
2690     }
2691   }
2692 
2693   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2694 
2695   return true;
2696 }
2697 
2698 //----------------------------inline_unsafe_load_store----------------------------
2699 // This method serves a couple of different customers (depending on LoadStoreKind):
2700 //
2701 // LS_cmpxchg:
2702 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2703 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2704 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2705 //
2706 // LS_xadd:
2707 //   public int  getAndAddInt( Object o, long offset, int  delta)
2708 //   public long getAndAddLong(Object o, long offset, long delta)
2709 //
2710 // LS_xchg:
2711 //   int    getAndSet(Object o, long offset, int    newValue)
2712 //   long   getAndSet(Object o, long offset, long   newValue)
2713 //   Object getAndSet(Object o, long offset, Object newValue)
2714 //
2715 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2716   // This basic scheme here is the same as inline_unsafe_access, but
2717   // differs in enough details that combining them would make the code
2718   // overly confusing.  (This is a true fact! I originally combined
2719   // them, but even I was confused by it!) As much code/comments as
2720   // possible are retained from inline_unsafe_access though to make
2721   // the correspondences clearer. - dl
2722 
2723   if (callee()->is_static())  return false;  // caller must have the capability!
2724 
2725 #ifndef PRODUCT
2726   BasicType rtype;
2727   {
2728     ResourceMark rm;
2729     // Check the signatures.
2730     ciSignature* sig = callee()->signature();
2731     rtype = sig->return_type()->basic_type();
2732     if (kind == LS_xadd || kind == LS_xchg) {
2733       // Check the signatures.
2734 #ifdef ASSERT
2735       assert(rtype == type, "get and set must return the expected type");
2736       assert(sig->count() == 3, "get and set has 3 arguments");
2737       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2738       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2739       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2740 #endif // ASSERT
2741     } else if (kind == LS_cmpxchg) {
2742       // Check the signatures.
2743 #ifdef ASSERT
2744       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2745       assert(sig->count() == 4, "CAS has 4 arguments");
2746       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2747       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2748 #endif // ASSERT
2749     } else {
2750       ShouldNotReachHere();
2751     }
2752   }
2753 #endif //PRODUCT
2754 
2755   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2756 
2757   // Get arguments:
2758   Node* receiver = NULL;
2759   Node* base     = NULL;
2760   Node* offset   = NULL;
2761   Node* oldval   = NULL;
2762   Node* newval   = NULL;
2763   if (kind == LS_cmpxchg) {
2764     const bool two_slot_type = type2size[type] == 2;
2765     receiver = argument(0);  // type: oop
2766     base     = argument(1);  // type: oop
2767     offset   = argument(2);  // type: long
2768     oldval   = argument(4);  // type: oop, int, or long
2769     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2770   } else if (kind == LS_xadd || kind == LS_xchg){
2771     receiver = argument(0);  // type: oop
2772     base     = argument(1);  // type: oop
2773     offset   = argument(2);  // type: long
2774     oldval   = NULL;
2775     newval   = argument(4);  // type: oop, int, or long
2776   }
2777 
2778   // Null check receiver.
2779   receiver = null_check(receiver);
2780   if (stopped()) {
2781     return true;
2782   }
2783 
2784   // Build field offset expression.
2785   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2786   // to be plain byte offsets, which are also the same as those accepted
2787   // by oopDesc::field_base.
2788   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2789   // 32-bit machines ignore the high half of long offsets
2790   offset = ConvL2X(offset);
2791   Node* adr = make_unsafe_address(base, offset);
2792   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2793 
2794   // For CAS, unlike inline_unsafe_access, there seems no point in
2795   // trying to refine types. Just use the coarse types here.
2796   const Type *value_type = Type::get_const_basic_type(type);
2797   Compile::AliasType* alias_type = C->alias_type(adr_type);
2798   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2799 
2800   if (kind == LS_xchg && type == T_OBJECT) {
2801     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2802     if (tjp != NULL) {
2803       value_type = tjp;
2804     }
2805   }
2806 
2807   int alias_idx = C->get_alias_index(adr_type);
2808 
2809   // Memory-model-wise, a LoadStore acts like a little synchronized
2810   // block, so needs barriers on each side.  These don't translate
2811   // into actual barriers on most machines, but we still need rest of
2812   // compiler to respect ordering.
2813 
2814   insert_mem_bar(Op_MemBarRelease);
2815   insert_mem_bar(Op_MemBarCPUOrder);
2816 
2817   // 4984716: MemBars must be inserted before this
2818   //          memory node in order to avoid a false
2819   //          dependency which will confuse the scheduler.
2820   Node *mem = memory(alias_idx);
2821 
2822   // For now, we handle only those cases that actually exist: ints,
2823   // longs, and Object. Adding others should be straightforward.
2824   Node* load_store;
2825   switch(type) {
2826   case T_INT:
2827     if (kind == LS_xadd) {
2828       load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2829     } else if (kind == LS_xchg) {
2830       load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2831     } else if (kind == LS_cmpxchg) {
2832       load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval));
2833     } else {
2834       ShouldNotReachHere();
2835     }
2836     break;
2837   case T_LONG:
2838     if (kind == LS_xadd) {
2839       load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2840     } else if (kind == LS_xchg) {
2841       load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2842     } else if (kind == LS_cmpxchg) {
2843       load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2844     } else {
2845       ShouldNotReachHere();
2846     }
2847     break;
2848   case T_OBJECT:
2849     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2850     // could be delayed during Parse (for example, in adjust_map_after_if()).
2851     // Execute transformation here to avoid barrier generation in such case.
2852     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2853       newval = _gvn.makecon(TypePtr::NULL_PTR);
2854 
2855     // Reference stores need a store barrier.
2856     if (kind == LS_xchg) {
2857       // If pre-barrier must execute before the oop store, old value will require do_load here.
2858       if (!can_move_pre_barrier()) {
2859         pre_barrier(true /* do_load*/,
2860                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2861                     NULL /* pre_val*/,
2862                     T_OBJECT);
2863       } // Else move pre_barrier to use load_store value, see below.
2864     } else if (kind == LS_cmpxchg) {
2865       // Same as for newval above:
2866       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2867         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2868       }
2869       // The only known value which might get overwritten is oldval.
2870       pre_barrier(false /* do_load */,
2871                   control(), NULL, NULL, max_juint, NULL, NULL,
2872                   oldval /* pre_val */,
2873                   T_OBJECT);
2874     } else {
2875       ShouldNotReachHere();
2876     }
2877 
2878 #ifdef _LP64
2879     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2880       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2881       if (kind == LS_xchg) {
2882         load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr,
2883                                                        newval_enc, adr_type, value_type->make_narrowoop()));
2884       } else {
2885         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2886         Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2887         load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr,
2888                                                                 newval_enc, oldval_enc));
2889       }
2890     } else
2891 #endif
2892     {
2893       if (kind == LS_xchg) {
2894         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2895       } else {
2896         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2897         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2898       }
2899     }
2900     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2901     break;
2902   default:
2903     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2904     break;
2905   }
2906 
2907   // SCMemProjNodes represent the memory state of a LoadStore. Their
2908   // main role is to prevent LoadStore nodes from being optimized away
2909   // when their results aren't used.
2910   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
2911   set_memory(proj, alias_idx);
2912 
2913   if (type == T_OBJECT && kind == LS_xchg) {
2914 #ifdef _LP64
2915     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2916       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
2917     }
2918 #endif
2919     if (can_move_pre_barrier()) {
2920       // Don't need to load pre_val. The old value is returned by load_store.
2921       // The pre_barrier can execute after the xchg as long as no safepoint
2922       // gets inserted between them.
2923       pre_barrier(false /* do_load */,
2924                   control(), NULL, NULL, max_juint, NULL, NULL,
2925                   load_store /* pre_val */,
2926                   T_OBJECT);
2927     }
2928   }
2929 
2930   // Add the trailing membar surrounding the access
2931   insert_mem_bar(Op_MemBarCPUOrder);
2932   insert_mem_bar(Op_MemBarAcquire);
2933 
2934   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2935   set_result(load_store);
2936   return true;
2937 }
2938 
2939 //----------------------------inline_unsafe_ordered_store----------------------
2940 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
2941 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
2942 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
2943 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2944   // This is another variant of inline_unsafe_access, differing in
2945   // that it always issues store-store ("release") barrier and ensures
2946   // store-atomicity (which only matters for "long").
2947 
2948   if (callee()->is_static())  return false;  // caller must have the capability!
2949 
2950 #ifndef PRODUCT
2951   {
2952     ResourceMark rm;
2953     // Check the signatures.
2954     ciSignature* sig = callee()->signature();
2955 #ifdef ASSERT
2956     BasicType rtype = sig->return_type()->basic_type();
2957     assert(rtype == T_VOID, "must return void");
2958     assert(sig->count() == 3, "has 3 arguments");
2959     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2960     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2961 #endif // ASSERT
2962   }
2963 #endif //PRODUCT
2964 
2965   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2966 
2967   // Get arguments:
2968   Node* receiver = argument(0);  // type: oop
2969   Node* base     = argument(1);  // type: oop
2970   Node* offset   = argument(2);  // type: long
2971   Node* val      = argument(4);  // type: oop, int, or long
2972 
2973   // Null check receiver.
2974   receiver = null_check(receiver);
2975   if (stopped()) {
2976     return true;
2977   }
2978 
2979   // Build field offset expression.
2980   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2981   // 32-bit machines ignore the high half of long offsets
2982   offset = ConvL2X(offset);
2983   Node* adr = make_unsafe_address(base, offset);
2984   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2985   const Type *value_type = Type::get_const_basic_type(type);
2986   Compile::AliasType* alias_type = C->alias_type(adr_type);
2987 
2988   insert_mem_bar(Op_MemBarRelease);
2989   insert_mem_bar(Op_MemBarCPUOrder);
2990   // Ensure that the store is atomic for longs:
2991   const bool require_atomic_access = true;
2992   Node* store;
2993   if (type == T_OBJECT) // reference stores need a store barrier.
2994     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
2995   else {
2996     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
2997   }
2998   insert_mem_bar(Op_MemBarCPUOrder);
2999   return true;
3000 }
3001 
3002 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3003   // Regardless of form, don't allow previous ld/st to move down,
3004   // then issue acquire, release, or volatile mem_bar.
3005   insert_mem_bar(Op_MemBarCPUOrder);
3006   switch(id) {
3007     case vmIntrinsics::_loadFence:
3008       insert_mem_bar(Op_LoadFence);
3009       return true;
3010     case vmIntrinsics::_storeFence:
3011       insert_mem_bar(Op_StoreFence);
3012       return true;
3013     case vmIntrinsics::_fullFence:
3014       insert_mem_bar(Op_MemBarVolatile);
3015       return true;
3016     default:
3017       fatal_unexpected_iid(id);
3018       return false;
3019   }
3020 }
3021 
3022 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3023   if (!kls->is_Con()) {
3024     return true;
3025   }
3026   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3027   if (klsptr == NULL) {
3028     return true;
3029   }
3030   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3031   // don't need a guard for a klass that is already initialized
3032   return !ik->is_initialized();
3033 }
3034 
3035 //----------------------------inline_unsafe_allocate---------------------------
3036 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3037 bool LibraryCallKit::inline_unsafe_allocate() {
3038   if (callee()->is_static())  return false;  // caller must have the capability!
3039 
3040   null_check_receiver();  // null-check, then ignore
3041   Node* cls = null_check(argument(1));
3042   if (stopped())  return true;
3043 
3044   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3045   kls = null_check(kls);
3046   if (stopped())  return true;  // argument was like int.class
3047 
3048   Node* test = NULL;
3049   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3050     // Note:  The argument might still be an illegal value like
3051     // Serializable.class or Object[].class.   The runtime will handle it.
3052     // But we must make an explicit check for initialization.
3053     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3054     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3055     // can generate code to load it as unsigned byte.
3056     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3057     Node* bits = intcon(InstanceKlass::fully_initialized);
3058     test = _gvn.transform(new SubINode(inst, bits));
3059     // The 'test' is non-zero if we need to take a slow path.
3060   }
3061 
3062   Node* obj = new_instance(kls, test);
3063   set_result(obj);
3064   return true;
3065 }
3066 
3067 #ifdef TRACE_HAVE_INTRINSICS
3068 /*
3069  * oop -> myklass
3070  * myklass->trace_id |= USED
3071  * return myklass->trace_id & ~0x3
3072  */
3073 bool LibraryCallKit::inline_native_classID() {
3074   null_check_receiver();  // null-check, then ignore
3075   Node* cls = null_check(argument(1), T_OBJECT);
3076   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3077   kls = null_check(kls, T_OBJECT);
3078   ByteSize offset = TRACE_ID_OFFSET;
3079   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3080   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3081   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3082   Node* andl = _gvn.transform(new AndLNode(tvalue, bits));
3083   Node* clsused = longcon(0x01l); // set the class bit
3084   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
3085 
3086   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3087   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3088   set_result(andl);
3089   return true;
3090 }
3091 
3092 bool LibraryCallKit::inline_native_threadID() {
3093   Node* tls_ptr = NULL;
3094   Node* cur_thr = generate_current_thread(tls_ptr);
3095   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3096   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3097   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3098 
3099   Node* threadid = NULL;
3100   size_t thread_id_size = OSThread::thread_id_size();
3101   if (thread_id_size == (size_t) BytesPerLong) {
3102     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3103   } else if (thread_id_size == (size_t) BytesPerInt) {
3104     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3105   } else {
3106     ShouldNotReachHere();
3107   }
3108   set_result(threadid);
3109   return true;
3110 }
3111 #endif
3112 
3113 //------------------------inline_native_time_funcs--------------
3114 // inline code for System.currentTimeMillis() and System.nanoTime()
3115 // these have the same type and signature
3116 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3117   const TypeFunc* tf = OptoRuntime::void_long_Type();
3118   const TypePtr* no_memory_effects = NULL;
3119   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3120   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3121 #ifdef ASSERT
3122   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3123   assert(value_top == top(), "second value must be top");
3124 #endif
3125   set_result(value);
3126   return true;
3127 }
3128 
3129 //------------------------inline_native_currentThread------------------
3130 bool LibraryCallKit::inline_native_currentThread() {
3131   Node* junk = NULL;
3132   set_result(generate_current_thread(junk));
3133   return true;
3134 }
3135 
3136 //------------------------inline_native_isInterrupted------------------
3137 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3138 bool LibraryCallKit::inline_native_isInterrupted() {
3139   // Add a fast path to t.isInterrupted(clear_int):
3140   //   (t == Thread.current() &&
3141   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3142   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3143   // So, in the common case that the interrupt bit is false,
3144   // we avoid making a call into the VM.  Even if the interrupt bit
3145   // is true, if the clear_int argument is false, we avoid the VM call.
3146   // However, if the receiver is not currentThread, we must call the VM,
3147   // because there must be some locking done around the operation.
3148 
3149   // We only go to the fast case code if we pass two guards.
3150   // Paths which do not pass are accumulated in the slow_region.
3151 
3152   enum {
3153     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3154     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3155     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3156     PATH_LIMIT
3157   };
3158 
3159   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3160   // out of the function.
3161   insert_mem_bar(Op_MemBarCPUOrder);
3162 
3163   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3164   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3165 
3166   RegionNode* slow_region = new RegionNode(1);
3167   record_for_igvn(slow_region);
3168 
3169   // (a) Receiving thread must be the current thread.
3170   Node* rec_thr = argument(0);
3171   Node* tls_ptr = NULL;
3172   Node* cur_thr = generate_current_thread(tls_ptr);
3173   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3174   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3175 
3176   generate_slow_guard(bol_thr, slow_region);
3177 
3178   // (b) Interrupt bit on TLS must be false.
3179   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3180   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3181   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3182 
3183   // Set the control input on the field _interrupted read to prevent it floating up.
3184   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3185   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3186   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3187 
3188   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3189 
3190   // First fast path:  if (!TLS._interrupted) return false;
3191   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3192   result_rgn->init_req(no_int_result_path, false_bit);
3193   result_val->init_req(no_int_result_path, intcon(0));
3194 
3195   // drop through to next case
3196   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3197 
3198 #ifndef TARGET_OS_FAMILY_windows
3199   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3200   Node* clr_arg = argument(1);
3201   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3202   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3203   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3204 
3205   // Second fast path:  ... else if (!clear_int) return true;
3206   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3207   result_rgn->init_req(no_clear_result_path, false_arg);
3208   result_val->init_req(no_clear_result_path, intcon(1));
3209 
3210   // drop through to next case
3211   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3212 #else
3213   // To return true on Windows you must read the _interrupted field
3214   // and check the the event state i.e. take the slow path.
3215 #endif // TARGET_OS_FAMILY_windows
3216 
3217   // (d) Otherwise, go to the slow path.
3218   slow_region->add_req(control());
3219   set_control( _gvn.transform(slow_region));
3220 
3221   if (stopped()) {
3222     // There is no slow path.
3223     result_rgn->init_req(slow_result_path, top());
3224     result_val->init_req(slow_result_path, top());
3225   } else {
3226     // non-virtual because it is a private non-static
3227     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3228 
3229     Node* slow_val = set_results_for_java_call(slow_call);
3230     // this->control() comes from set_results_for_java_call
3231 
3232     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3233     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3234 
3235     // These two phis are pre-filled with copies of of the fast IO and Memory
3236     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3237     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3238 
3239     result_rgn->init_req(slow_result_path, control());
3240     result_io ->init_req(slow_result_path, i_o());
3241     result_mem->init_req(slow_result_path, reset_memory());
3242     result_val->init_req(slow_result_path, slow_val);
3243 
3244     set_all_memory(_gvn.transform(result_mem));
3245     set_i_o(       _gvn.transform(result_io));
3246   }
3247 
3248   C->set_has_split_ifs(true); // Has chance for split-if optimization
3249   set_result(result_rgn, result_val);
3250   return true;
3251 }
3252 
3253 //---------------------------load_mirror_from_klass----------------------------
3254 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3255 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3256   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3257   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3258 }
3259 
3260 //-----------------------load_klass_from_mirror_common-------------------------
3261 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3262 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3263 // and branch to the given path on the region.
3264 // If never_see_null, take an uncommon trap on null, so we can optimistically
3265 // compile for the non-null case.
3266 // If the region is NULL, force never_see_null = true.
3267 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3268                                                     bool never_see_null,
3269                                                     RegionNode* region,
3270                                                     int null_path,
3271                                                     int offset) {
3272   if (region == NULL)  never_see_null = true;
3273   Node* p = basic_plus_adr(mirror, offset);
3274   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3275   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3276   Node* null_ctl = top();
3277   kls = null_check_oop(kls, &null_ctl, never_see_null);
3278   if (region != NULL) {
3279     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3280     region->init_req(null_path, null_ctl);
3281   } else {
3282     assert(null_ctl == top(), "no loose ends");
3283   }
3284   return kls;
3285 }
3286 
3287 //--------------------(inline_native_Class_query helpers)---------------------
3288 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3289 // Fall through if (mods & mask) == bits, take the guard otherwise.
3290 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3291   // Branch around if the given klass has the given modifier bit set.
3292   // Like generate_guard, adds a new path onto the region.
3293   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3294   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3295   Node* mask = intcon(modifier_mask);
3296   Node* bits = intcon(modifier_bits);
3297   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3298   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3299   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3300   return generate_fair_guard(bol, region);
3301 }
3302 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3303   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3304 }
3305 
3306 //-------------------------inline_native_Class_query-------------------
3307 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3308   const Type* return_type = TypeInt::BOOL;
3309   Node* prim_return_value = top();  // what happens if it's a primitive class?
3310   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3311   bool expect_prim = false;     // most of these guys expect to work on refs
3312 
3313   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3314 
3315   Node* mirror = argument(0);
3316   Node* obj    = top();
3317 
3318   switch (id) {
3319   case vmIntrinsics::_isInstance:
3320     // nothing is an instance of a primitive type
3321     prim_return_value = intcon(0);
3322     obj = argument(1);
3323     break;
3324   case vmIntrinsics::_getModifiers:
3325     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3326     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3327     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3328     break;
3329   case vmIntrinsics::_isInterface:
3330     prim_return_value = intcon(0);
3331     break;
3332   case vmIntrinsics::_isArray:
3333     prim_return_value = intcon(0);
3334     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3335     break;
3336   case vmIntrinsics::_isPrimitive:
3337     prim_return_value = intcon(1);
3338     expect_prim = true;  // obviously
3339     break;
3340   case vmIntrinsics::_getSuperclass:
3341     prim_return_value = null();
3342     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3343     break;
3344   case vmIntrinsics::_getClassAccessFlags:
3345     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3346     return_type = TypeInt::INT;  // not bool!  6297094
3347     break;
3348   default:
3349     fatal_unexpected_iid(id);
3350     break;
3351   }
3352 
3353   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3354   if (mirror_con == NULL)  return false;  // cannot happen?
3355 
3356 #ifndef PRODUCT
3357   if (C->print_intrinsics() || C->print_inlining()) {
3358     ciType* k = mirror_con->java_mirror_type();
3359     if (k) {
3360       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3361       k->print_name();
3362       tty->cr();
3363     }
3364   }
3365 #endif
3366 
3367   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3368   RegionNode* region = new RegionNode(PATH_LIMIT);
3369   record_for_igvn(region);
3370   PhiNode* phi = new PhiNode(region, return_type);
3371 
3372   // The mirror will never be null of Reflection.getClassAccessFlags, however
3373   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3374   // if it is. See bug 4774291.
3375 
3376   // For Reflection.getClassAccessFlags(), the null check occurs in
3377   // the wrong place; see inline_unsafe_access(), above, for a similar
3378   // situation.
3379   mirror = null_check(mirror);
3380   // If mirror or obj is dead, only null-path is taken.
3381   if (stopped())  return true;
3382 
3383   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3384 
3385   // Now load the mirror's klass metaobject, and null-check it.
3386   // Side-effects region with the control path if the klass is null.
3387   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3388   // If kls is null, we have a primitive mirror.
3389   phi->init_req(_prim_path, prim_return_value);
3390   if (stopped()) { set_result(region, phi); return true; }
3391   bool safe_for_replace = (region->in(_prim_path) == top());
3392 
3393   Node* p;  // handy temp
3394   Node* null_ctl;
3395 
3396   // Now that we have the non-null klass, we can perform the real query.
3397   // For constant classes, the query will constant-fold in LoadNode::Value.
3398   Node* query_value = top();
3399   switch (id) {
3400   case vmIntrinsics::_isInstance:
3401     // nothing is an instance of a primitive type
3402     query_value = gen_instanceof(obj, kls, safe_for_replace);
3403     break;
3404 
3405   case vmIntrinsics::_getModifiers:
3406     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3407     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3408     break;
3409 
3410   case vmIntrinsics::_isInterface:
3411     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3412     if (generate_interface_guard(kls, region) != NULL)
3413       // A guard was added.  If the guard is taken, it was an interface.
3414       phi->add_req(intcon(1));
3415     // If we fall through, it's a plain class.
3416     query_value = intcon(0);
3417     break;
3418 
3419   case vmIntrinsics::_isArray:
3420     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3421     if (generate_array_guard(kls, region) != NULL)
3422       // A guard was added.  If the guard is taken, it was an array.
3423       phi->add_req(intcon(1));
3424     // If we fall through, it's a plain class.
3425     query_value = intcon(0);
3426     break;
3427 
3428   case vmIntrinsics::_isPrimitive:
3429     query_value = intcon(0); // "normal" path produces false
3430     break;
3431 
3432   case vmIntrinsics::_getSuperclass:
3433     // The rules here are somewhat unfortunate, but we can still do better
3434     // with random logic than with a JNI call.
3435     // Interfaces store null or Object as _super, but must report null.
3436     // Arrays store an intermediate super as _super, but must report Object.
3437     // Other types can report the actual _super.
3438     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3439     if (generate_interface_guard(kls, region) != NULL)
3440       // A guard was added.  If the guard is taken, it was an interface.
3441       phi->add_req(null());
3442     if (generate_array_guard(kls, region) != NULL)
3443       // A guard was added.  If the guard is taken, it was an array.
3444       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3445     // If we fall through, it's a plain class.  Get its _super.
3446     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3447     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3448     null_ctl = top();
3449     kls = null_check_oop(kls, &null_ctl);
3450     if (null_ctl != top()) {
3451       // If the guard is taken, Object.superClass is null (both klass and mirror).
3452       region->add_req(null_ctl);
3453       phi   ->add_req(null());
3454     }
3455     if (!stopped()) {
3456       query_value = load_mirror_from_klass(kls);
3457     }
3458     break;
3459 
3460   case vmIntrinsics::_getClassAccessFlags:
3461     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3462     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3463     break;
3464 
3465   default:
3466     fatal_unexpected_iid(id);
3467     break;
3468   }
3469 
3470   // Fall-through is the normal case of a query to a real class.
3471   phi->init_req(1, query_value);
3472   region->init_req(1, control());
3473 
3474   C->set_has_split_ifs(true); // Has chance for split-if optimization
3475   set_result(region, phi);
3476   return true;
3477 }
3478 
3479 //-------------------------inline_Class_cast-------------------
3480 bool LibraryCallKit::inline_Class_cast() {
3481   Node* mirror = argument(0); // Class
3482   Node* obj    = argument(1);
3483   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3484   if (mirror_con == NULL) {
3485     return false;  // dead path (mirror->is_top()).
3486   }
3487   if (obj == NULL || obj->is_top()) {
3488     return false;  // dead path
3489   }
3490   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3491 
3492   // First, see if Class.cast() can be folded statically.
3493   // java_mirror_type() returns non-null for compile-time Class constants.
3494   ciType* tm = mirror_con->java_mirror_type();
3495   if (tm != NULL && tm->is_klass() &&
3496       tp != NULL && tp->klass() != NULL) {
3497     if (!tp->klass()->is_loaded()) {
3498       // Don't use intrinsic when class is not loaded.
3499       return false;
3500     } else {
3501       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3502       if (static_res == Compile::SSC_always_true) {
3503         // isInstance() is true - fold the code.
3504         set_result(obj);
3505         return true;
3506       } else if (static_res == Compile::SSC_always_false) {
3507         // Don't use intrinsic, have to throw ClassCastException.
3508         // If the reference is null, the non-intrinsic bytecode will
3509         // be optimized appropriately.
3510         return false;
3511       }
3512     }
3513   }
3514 
3515   // Bailout intrinsic and do normal inlining if exception path is frequent.
3516   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3517     return false;
3518   }
3519 
3520   // Generate dynamic checks.
3521   // Class.cast() is java implementation of _checkcast bytecode.
3522   // Do checkcast (Parse::do_checkcast()) optimizations here.
3523 
3524   mirror = null_check(mirror);
3525   // If mirror is dead, only null-path is taken.
3526   if (stopped()) {
3527     return true;
3528   }
3529 
3530   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3531   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3532   RegionNode* region = new RegionNode(PATH_LIMIT);
3533   record_for_igvn(region);
3534 
3535   // Now load the mirror's klass metaobject, and null-check it.
3536   // If kls is null, we have a primitive mirror and
3537   // nothing is an instance of a primitive type.
3538   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3539 
3540   Node* res = top();
3541   if (!stopped()) {
3542     Node* bad_type_ctrl = top();
3543     // Do checkcast optimizations.
3544     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3545     region->init_req(_bad_type_path, bad_type_ctrl);
3546   }
3547   if (region->in(_prim_path) != top() ||
3548       region->in(_bad_type_path) != top()) {
3549     // Let Interpreter throw ClassCastException.
3550     PreserveJVMState pjvms(this);
3551     set_control(_gvn.transform(region));
3552     uncommon_trap(Deoptimization::Reason_intrinsic,
3553                   Deoptimization::Action_maybe_recompile);
3554   }
3555   if (!stopped()) {
3556     set_result(res);
3557   }
3558   return true;
3559 }
3560 
3561 
3562 //--------------------------inline_native_subtype_check------------------------
3563 // This intrinsic takes the JNI calls out of the heart of
3564 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3565 bool LibraryCallKit::inline_native_subtype_check() {
3566   // Pull both arguments off the stack.
3567   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3568   args[0] = argument(0);
3569   args[1] = argument(1);
3570   Node* klasses[2];             // corresponding Klasses: superk, subk
3571   klasses[0] = klasses[1] = top();
3572 
3573   enum {
3574     // A full decision tree on {superc is prim, subc is prim}:
3575     _prim_0_path = 1,           // {P,N} => false
3576                                 // {P,P} & superc!=subc => false
3577     _prim_same_path,            // {P,P} & superc==subc => true
3578     _prim_1_path,               // {N,P} => false
3579     _ref_subtype_path,          // {N,N} & subtype check wins => true
3580     _both_ref_path,             // {N,N} & subtype check loses => false
3581     PATH_LIMIT
3582   };
3583 
3584   RegionNode* region = new RegionNode(PATH_LIMIT);
3585   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3586   record_for_igvn(region);
3587 
3588   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3589   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3590   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3591 
3592   // First null-check both mirrors and load each mirror's klass metaobject.
3593   int which_arg;
3594   for (which_arg = 0; which_arg <= 1; which_arg++) {
3595     Node* arg = args[which_arg];
3596     arg = null_check(arg);
3597     if (stopped())  break;
3598     args[which_arg] = arg;
3599 
3600     Node* p = basic_plus_adr(arg, class_klass_offset);
3601     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3602     klasses[which_arg] = _gvn.transform(kls);
3603   }
3604 
3605   // Having loaded both klasses, test each for null.
3606   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3607   for (which_arg = 0; which_arg <= 1; which_arg++) {
3608     Node* kls = klasses[which_arg];
3609     Node* null_ctl = top();
3610     kls = null_check_oop(kls, &null_ctl, never_see_null);
3611     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3612     region->init_req(prim_path, null_ctl);
3613     if (stopped())  break;
3614     klasses[which_arg] = kls;
3615   }
3616 
3617   if (!stopped()) {
3618     // now we have two reference types, in klasses[0..1]
3619     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3620     Node* superk = klasses[0];  // the receiver
3621     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3622     // now we have a successful reference subtype check
3623     region->set_req(_ref_subtype_path, control());
3624   }
3625 
3626   // If both operands are primitive (both klasses null), then
3627   // we must return true when they are identical primitives.
3628   // It is convenient to test this after the first null klass check.
3629   set_control(region->in(_prim_0_path)); // go back to first null check
3630   if (!stopped()) {
3631     // Since superc is primitive, make a guard for the superc==subc case.
3632     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3633     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3634     generate_guard(bol_eq, region, PROB_FAIR);
3635     if (region->req() == PATH_LIMIT+1) {
3636       // A guard was added.  If the added guard is taken, superc==subc.
3637       region->swap_edges(PATH_LIMIT, _prim_same_path);
3638       region->del_req(PATH_LIMIT);
3639     }
3640     region->set_req(_prim_0_path, control()); // Not equal after all.
3641   }
3642 
3643   // these are the only paths that produce 'true':
3644   phi->set_req(_prim_same_path,   intcon(1));
3645   phi->set_req(_ref_subtype_path, intcon(1));
3646 
3647   // pull together the cases:
3648   assert(region->req() == PATH_LIMIT, "sane region");
3649   for (uint i = 1; i < region->req(); i++) {
3650     Node* ctl = region->in(i);
3651     if (ctl == NULL || ctl == top()) {
3652       region->set_req(i, top());
3653       phi   ->set_req(i, top());
3654     } else if (phi->in(i) == NULL) {
3655       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3656     }
3657   }
3658 
3659   set_control(_gvn.transform(region));
3660   set_result(_gvn.transform(phi));
3661   return true;
3662 }
3663 
3664 //---------------------generate_array_guard_common------------------------
3665 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3666                                                   bool obj_array, bool not_array) {
3667   // If obj_array/non_array==false/false:
3668   // Branch around if the given klass is in fact an array (either obj or prim).
3669   // If obj_array/non_array==false/true:
3670   // Branch around if the given klass is not an array klass of any kind.
3671   // If obj_array/non_array==true/true:
3672   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3673   // If obj_array/non_array==true/false:
3674   // Branch around if the kls is an oop array (Object[] or subtype)
3675   //
3676   // Like generate_guard, adds a new path onto the region.
3677   jint  layout_con = 0;
3678   Node* layout_val = get_layout_helper(kls, layout_con);
3679   if (layout_val == NULL) {
3680     bool query = (obj_array
3681                   ? Klass::layout_helper_is_objArray(layout_con)
3682                   : Klass::layout_helper_is_array(layout_con));
3683     if (query == not_array) {
3684       return NULL;                       // never a branch
3685     } else {                             // always a branch
3686       Node* always_branch = control();
3687       if (region != NULL)
3688         region->add_req(always_branch);
3689       set_control(top());
3690       return always_branch;
3691     }
3692   }
3693   // Now test the correct condition.
3694   jint  nval = (obj_array
3695                 ? ((jint)Klass::_lh_array_tag_type_value
3696                    <<    Klass::_lh_array_tag_shift)
3697                 : Klass::_lh_neutral_value);
3698   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3699   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3700   // invert the test if we are looking for a non-array
3701   if (not_array)  btest = BoolTest(btest).negate();
3702   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3703   return generate_fair_guard(bol, region);
3704 }
3705 
3706 
3707 //-----------------------inline_native_newArray--------------------------
3708 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3709 bool LibraryCallKit::inline_native_newArray() {
3710   Node* mirror    = argument(0);
3711   Node* count_val = argument(1);
3712 
3713   mirror = null_check(mirror);
3714   // If mirror or obj is dead, only null-path is taken.
3715   if (stopped())  return true;
3716 
3717   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3718   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3719   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3720   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3721   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3722 
3723   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3724   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3725                                                   result_reg, _slow_path);
3726   Node* normal_ctl   = control();
3727   Node* no_array_ctl = result_reg->in(_slow_path);
3728 
3729   // Generate code for the slow case.  We make a call to newArray().
3730   set_control(no_array_ctl);
3731   if (!stopped()) {
3732     // Either the input type is void.class, or else the
3733     // array klass has not yet been cached.  Either the
3734     // ensuing call will throw an exception, or else it
3735     // will cache the array klass for next time.
3736     PreserveJVMState pjvms(this);
3737     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3738     Node* slow_result = set_results_for_java_call(slow_call);
3739     // this->control() comes from set_results_for_java_call
3740     result_reg->set_req(_slow_path, control());
3741     result_val->set_req(_slow_path, slow_result);
3742     result_io ->set_req(_slow_path, i_o());
3743     result_mem->set_req(_slow_path, reset_memory());
3744   }
3745 
3746   set_control(normal_ctl);
3747   if (!stopped()) {
3748     // Normal case:  The array type has been cached in the java.lang.Class.
3749     // The following call works fine even if the array type is polymorphic.
3750     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3751     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3752     result_reg->init_req(_normal_path, control());
3753     result_val->init_req(_normal_path, obj);
3754     result_io ->init_req(_normal_path, i_o());
3755     result_mem->init_req(_normal_path, reset_memory());
3756   }
3757 
3758   // Return the combined state.
3759   set_i_o(        _gvn.transform(result_io)  );
3760   set_all_memory( _gvn.transform(result_mem));
3761 
3762   C->set_has_split_ifs(true); // Has chance for split-if optimization
3763   set_result(result_reg, result_val);
3764   return true;
3765 }
3766 
3767 //----------------------inline_native_getLength--------------------------
3768 // public static native int java.lang.reflect.Array.getLength(Object array);
3769 bool LibraryCallKit::inline_native_getLength() {
3770   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3771 
3772   Node* array = null_check(argument(0));
3773   // If array is dead, only null-path is taken.
3774   if (stopped())  return true;
3775 
3776   // Deoptimize if it is a non-array.
3777   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3778 
3779   if (non_array != NULL) {
3780     PreserveJVMState pjvms(this);
3781     set_control(non_array);
3782     uncommon_trap(Deoptimization::Reason_intrinsic,
3783                   Deoptimization::Action_maybe_recompile);
3784   }
3785 
3786   // If control is dead, only non-array-path is taken.
3787   if (stopped())  return true;
3788 
3789   // The works fine even if the array type is polymorphic.
3790   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3791   Node* result = load_array_length(array);
3792 
3793   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3794   set_result(result);
3795   return true;
3796 }
3797 
3798 //------------------------inline_array_copyOf----------------------------
3799 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3800 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3801 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3802   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3803 
3804   // Get the arguments.
3805   Node* original          = argument(0);
3806   Node* start             = is_copyOfRange? argument(1): intcon(0);
3807   Node* end               = is_copyOfRange? argument(2): argument(1);
3808   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3809 
3810   Node* newcopy;
3811 
3812   // Set the original stack and the reexecute bit for the interpreter to reexecute
3813   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3814   { PreserveReexecuteState preexecs(this);
3815     jvms()->set_should_reexecute(true);
3816 
3817     array_type_mirror = null_check(array_type_mirror);
3818     original          = null_check(original);
3819 
3820     // Check if a null path was taken unconditionally.
3821     if (stopped())  return true;
3822 
3823     Node* orig_length = load_array_length(original);
3824 
3825     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3826     klass_node = null_check(klass_node);
3827 
3828     RegionNode* bailout = new RegionNode(1);
3829     record_for_igvn(bailout);
3830 
3831     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3832     // Bail out if that is so.
3833     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3834     if (not_objArray != NULL) {
3835       // Improve the klass node's type from the new optimistic assumption:
3836       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3837       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3838       Node* cast = new CastPPNode(klass_node, akls);
3839       cast->init_req(0, control());
3840       klass_node = _gvn.transform(cast);
3841     }
3842 
3843     // Bail out if either start or end is negative.
3844     generate_negative_guard(start, bailout, &start);
3845     generate_negative_guard(end,   bailout, &end);
3846 
3847     Node* length = end;
3848     if (_gvn.type(start) != TypeInt::ZERO) {
3849       length = _gvn.transform(new SubINode(end, start));
3850     }
3851 
3852     // Bail out if length is negative.
3853     // Without this the new_array would throw
3854     // NegativeArraySizeException but IllegalArgumentException is what
3855     // should be thrown
3856     generate_negative_guard(length, bailout, &length);
3857 
3858     if (bailout->req() > 1) {
3859       PreserveJVMState pjvms(this);
3860       set_control(_gvn.transform(bailout));
3861       uncommon_trap(Deoptimization::Reason_intrinsic,
3862                     Deoptimization::Action_maybe_recompile);
3863     }
3864 
3865     if (!stopped()) {
3866       // How many elements will we copy from the original?
3867       // The answer is MinI(orig_length - start, length).
3868       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3869       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3870 
3871       newcopy = new_array(klass_node, length, 0);  // no arguments to push
3872 
3873       // Generate a direct call to the right arraycopy function(s).
3874       // We know the copy is disjoint but we might not know if the
3875       // oop stores need checking.
3876       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3877       // This will fail a store-check if x contains any non-nulls.
3878 
3879       Node* alloc = tightly_coupled_allocation(newcopy, NULL);
3880 
3881       ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, alloc != NULL,
3882                                               load_object_klass(original), klass_node);
3883       if (!is_copyOfRange) {
3884         ac->set_copyof();
3885       } else {
3886         ac->set_copyofrange();
3887       }
3888       Node* n = _gvn.transform(ac);
3889       assert(n == ac, "cannot disappear");
3890       ac->connect_outputs(this);
3891     }
3892   } // original reexecute is set back here
3893 
3894   C->set_has_split_ifs(true); // Has chance for split-if optimization
3895   if (!stopped()) {
3896     set_result(newcopy);
3897   }
3898   return true;
3899 }
3900 
3901 
3902 //----------------------generate_virtual_guard---------------------------
3903 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3904 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3905                                              RegionNode* slow_region) {
3906   ciMethod* method = callee();
3907   int vtable_index = method->vtable_index();
3908   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3909          err_msg_res("bad index %d", vtable_index));
3910   // Get the Method* out of the appropriate vtable entry.
3911   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3912                      vtable_index*vtableEntry::size()) * wordSize +
3913                      vtableEntry::method_offset_in_bytes();
3914   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3915   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3916 
3917   // Compare the target method with the expected method (e.g., Object.hashCode).
3918   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3919 
3920   Node* native_call = makecon(native_call_addr);
3921   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
3922   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
3923 
3924   return generate_slow_guard(test_native, slow_region);
3925 }
3926 
3927 //-----------------------generate_method_call----------------------------
3928 // Use generate_method_call to make a slow-call to the real
3929 // method if the fast path fails.  An alternative would be to
3930 // use a stub like OptoRuntime::slow_arraycopy_Java.
3931 // This only works for expanding the current library call,
3932 // not another intrinsic.  (E.g., don't use this for making an
3933 // arraycopy call inside of the copyOf intrinsic.)
3934 CallJavaNode*
3935 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3936   // When compiling the intrinsic method itself, do not use this technique.
3937   guarantee(callee() != C->method(), "cannot make slow-call to self");
3938 
3939   ciMethod* method = callee();
3940   // ensure the JVMS we have will be correct for this call
3941   guarantee(method_id == method->intrinsic_id(), "must match");
3942 
3943   const TypeFunc* tf = TypeFunc::make(method);
3944   CallJavaNode* slow_call;
3945   if (is_static) {
3946     assert(!is_virtual, "");
3947     slow_call = new CallStaticJavaNode(C, tf,
3948                            SharedRuntime::get_resolve_static_call_stub(),
3949                            method, bci());
3950   } else if (is_virtual) {
3951     null_check_receiver();
3952     int vtable_index = Method::invalid_vtable_index;
3953     if (UseInlineCaches) {
3954       // Suppress the vtable call
3955     } else {
3956       // hashCode and clone are not a miranda methods,
3957       // so the vtable index is fixed.
3958       // No need to use the linkResolver to get it.
3959        vtable_index = method->vtable_index();
3960        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3961               err_msg_res("bad index %d", vtable_index));
3962     }
3963     slow_call = new CallDynamicJavaNode(tf,
3964                           SharedRuntime::get_resolve_virtual_call_stub(),
3965                           method, vtable_index, bci());
3966   } else {  // neither virtual nor static:  opt_virtual
3967     null_check_receiver();
3968     slow_call = new CallStaticJavaNode(C, tf,
3969                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3970                                 method, bci());
3971     slow_call->set_optimized_virtual(true);
3972   }
3973   set_arguments_for_java_call(slow_call);
3974   set_edges_for_java_call(slow_call);
3975   return slow_call;
3976 }
3977 
3978 
3979 /**
3980  * Build special case code for calls to hashCode on an object. This call may
3981  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
3982  * slightly different code.
3983  */
3984 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3985   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3986   assert(!(is_virtual && is_static), "either virtual, special, or static");
3987 
3988   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3989 
3990   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3991   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
3992   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3993   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3994   Node* obj = NULL;
3995   if (!is_static) {
3996     // Check for hashing null object
3997     obj = null_check_receiver();
3998     if (stopped())  return true;        // unconditionally null
3999     result_reg->init_req(_null_path, top());
4000     result_val->init_req(_null_path, top());
4001   } else {
4002     // Do a null check, and return zero if null.
4003     // System.identityHashCode(null) == 0
4004     obj = argument(0);
4005     Node* null_ctl = top();
4006     obj = null_check_oop(obj, &null_ctl);
4007     result_reg->init_req(_null_path, null_ctl);
4008     result_val->init_req(_null_path, _gvn.intcon(0));
4009   }
4010 
4011   // Unconditionally null?  Then return right away.
4012   if (stopped()) {
4013     set_control( result_reg->in(_null_path));
4014     if (!stopped())
4015       set_result(result_val->in(_null_path));
4016     return true;
4017   }
4018 
4019   // We only go to the fast case code if we pass a number of guards.  The
4020   // paths which do not pass are accumulated in the slow_region.
4021   RegionNode* slow_region = new RegionNode(1);
4022   record_for_igvn(slow_region);
4023 
4024   // If this is a virtual call, we generate a funny guard.  We pull out
4025   // the vtable entry corresponding to hashCode() from the target object.
4026   // If the target method which we are calling happens to be the native
4027   // Object hashCode() method, we pass the guard.  We do not need this
4028   // guard for non-virtual calls -- the caller is known to be the native
4029   // Object hashCode().
4030   if (is_virtual) {
4031     // After null check, get the object's klass.
4032     Node* obj_klass = load_object_klass(obj);
4033     generate_virtual_guard(obj_klass, slow_region);
4034   }
4035 
4036   // Get the header out of the object, use LoadMarkNode when available
4037   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4038   // The control of the load must be NULL. Otherwise, the load can move before
4039   // the null check after castPP removal.
4040   Node* no_ctrl = NULL;
4041   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4042 
4043   // Test the header to see if it is unlocked.
4044   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4045   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4046   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4047   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4048   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4049 
4050   generate_slow_guard(test_unlocked, slow_region);
4051 
4052   // Get the hash value and check to see that it has been properly assigned.
4053   // We depend on hash_mask being at most 32 bits and avoid the use of
4054   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4055   // vm: see markOop.hpp.
4056   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4057   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4058   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4059   // This hack lets the hash bits live anywhere in the mark object now, as long
4060   // as the shift drops the relevant bits into the low 32 bits.  Note that
4061   // Java spec says that HashCode is an int so there's no point in capturing
4062   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4063   hshifted_header      = ConvX2I(hshifted_header);
4064   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4065 
4066   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4067   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4068   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4069 
4070   generate_slow_guard(test_assigned, slow_region);
4071 
4072   Node* init_mem = reset_memory();
4073   // fill in the rest of the null path:
4074   result_io ->init_req(_null_path, i_o());
4075   result_mem->init_req(_null_path, init_mem);
4076 
4077   result_val->init_req(_fast_path, hash_val);
4078   result_reg->init_req(_fast_path, control());
4079   result_io ->init_req(_fast_path, i_o());
4080   result_mem->init_req(_fast_path, init_mem);
4081 
4082   // Generate code for the slow case.  We make a call to hashCode().
4083   set_control(_gvn.transform(slow_region));
4084   if (!stopped()) {
4085     // No need for PreserveJVMState, because we're using up the present state.
4086     set_all_memory(init_mem);
4087     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4088     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4089     Node* slow_result = set_results_for_java_call(slow_call);
4090     // this->control() comes from set_results_for_java_call
4091     result_reg->init_req(_slow_path, control());
4092     result_val->init_req(_slow_path, slow_result);
4093     result_io  ->set_req(_slow_path, i_o());
4094     result_mem ->set_req(_slow_path, reset_memory());
4095   }
4096 
4097   // Return the combined state.
4098   set_i_o(        _gvn.transform(result_io)  );
4099   set_all_memory( _gvn.transform(result_mem));
4100 
4101   set_result(result_reg, result_val);
4102   return true;
4103 }
4104 
4105 //---------------------------inline_native_getClass----------------------------
4106 // public final native Class<?> java.lang.Object.getClass();
4107 //
4108 // Build special case code for calls to getClass on an object.
4109 bool LibraryCallKit::inline_native_getClass() {
4110   Node* obj = null_check_receiver();
4111   if (stopped())  return true;
4112   set_result(load_mirror_from_klass(load_object_klass(obj)));
4113   return true;
4114 }
4115 
4116 //-----------------inline_native_Reflection_getCallerClass---------------------
4117 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4118 //
4119 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4120 //
4121 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4122 // in that it must skip particular security frames and checks for
4123 // caller sensitive methods.
4124 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4125 #ifndef PRODUCT
4126   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4127     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4128   }
4129 #endif
4130 
4131   if (!jvms()->has_method()) {
4132 #ifndef PRODUCT
4133     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4134       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4135     }
4136 #endif
4137     return false;
4138   }
4139 
4140   // Walk back up the JVM state to find the caller at the required
4141   // depth.
4142   JVMState* caller_jvms = jvms();
4143 
4144   // Cf. JVM_GetCallerClass
4145   // NOTE: Start the loop at depth 1 because the current JVM state does
4146   // not include the Reflection.getCallerClass() frame.
4147   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4148     ciMethod* m = caller_jvms->method();
4149     switch (n) {
4150     case 0:
4151       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4152       break;
4153     case 1:
4154       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4155       if (!m->caller_sensitive()) {
4156 #ifndef PRODUCT
4157         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4158           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4159         }
4160 #endif
4161         return false;  // bail-out; let JVM_GetCallerClass do the work
4162       }
4163       break;
4164     default:
4165       if (!m->is_ignored_by_security_stack_walk()) {
4166         // We have reached the desired frame; return the holder class.
4167         // Acquire method holder as java.lang.Class and push as constant.
4168         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4169         ciInstance* caller_mirror = caller_klass->java_mirror();
4170         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4171 
4172 #ifndef PRODUCT
4173         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4174           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4175           tty->print_cr("  JVM state at this point:");
4176           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4177             ciMethod* m = jvms()->of_depth(i)->method();
4178             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4179           }
4180         }
4181 #endif
4182         return true;
4183       }
4184       break;
4185     }
4186   }
4187 
4188 #ifndef PRODUCT
4189   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4190     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4191     tty->print_cr("  JVM state at this point:");
4192     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4193       ciMethod* m = jvms()->of_depth(i)->method();
4194       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4195     }
4196   }
4197 #endif
4198 
4199   return false;  // bail-out; let JVM_GetCallerClass do the work
4200 }
4201 
4202 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4203   Node* arg = argument(0);
4204   Node* result;
4205 
4206   switch (id) {
4207   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4208   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4209   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4210   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4211 
4212   case vmIntrinsics::_doubleToLongBits: {
4213     // two paths (plus control) merge in a wood
4214     RegionNode *r = new RegionNode(3);
4215     Node *phi = new PhiNode(r, TypeLong::LONG);
4216 
4217     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4218     // Build the boolean node
4219     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4220 
4221     // Branch either way.
4222     // NaN case is less traveled, which makes all the difference.
4223     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4224     Node *opt_isnan = _gvn.transform(ifisnan);
4225     assert( opt_isnan->is_If(), "Expect an IfNode");
4226     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4227     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4228 
4229     set_control(iftrue);
4230 
4231     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4232     Node *slow_result = longcon(nan_bits); // return NaN
4233     phi->init_req(1, _gvn.transform( slow_result ));
4234     r->init_req(1, iftrue);
4235 
4236     // Else fall through
4237     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4238     set_control(iffalse);
4239 
4240     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4241     r->init_req(2, iffalse);
4242 
4243     // Post merge
4244     set_control(_gvn.transform(r));
4245     record_for_igvn(r);
4246 
4247     C->set_has_split_ifs(true); // Has chance for split-if optimization
4248     result = phi;
4249     assert(result->bottom_type()->isa_long(), "must be");
4250     break;
4251   }
4252 
4253   case vmIntrinsics::_floatToIntBits: {
4254     // two paths (plus control) merge in a wood
4255     RegionNode *r = new RegionNode(3);
4256     Node *phi = new PhiNode(r, TypeInt::INT);
4257 
4258     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4259     // Build the boolean node
4260     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4261 
4262     // Branch either way.
4263     // NaN case is less traveled, which makes all the difference.
4264     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4265     Node *opt_isnan = _gvn.transform(ifisnan);
4266     assert( opt_isnan->is_If(), "Expect an IfNode");
4267     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4268     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4269 
4270     set_control(iftrue);
4271 
4272     static const jint nan_bits = 0x7fc00000;
4273     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4274     phi->init_req(1, _gvn.transform( slow_result ));
4275     r->init_req(1, iftrue);
4276 
4277     // Else fall through
4278     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4279     set_control(iffalse);
4280 
4281     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4282     r->init_req(2, iffalse);
4283 
4284     // Post merge
4285     set_control(_gvn.transform(r));
4286     record_for_igvn(r);
4287 
4288     C->set_has_split_ifs(true); // Has chance for split-if optimization
4289     result = phi;
4290     assert(result->bottom_type()->isa_int(), "must be");
4291     break;
4292   }
4293 
4294   default:
4295     fatal_unexpected_iid(id);
4296     break;
4297   }
4298   set_result(_gvn.transform(result));
4299   return true;
4300 }
4301 
4302 #ifdef _LP64
4303 #define XTOP ,top() /*additional argument*/
4304 #else  //_LP64
4305 #define XTOP        /*no additional argument*/
4306 #endif //_LP64
4307 
4308 //----------------------inline_unsafe_copyMemory-------------------------
4309 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4310 bool LibraryCallKit::inline_unsafe_copyMemory() {
4311   if (callee()->is_static())  return false;  // caller must have the capability!
4312   null_check_receiver();  // null-check receiver
4313   if (stopped())  return true;
4314 
4315   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4316 
4317   Node* src_ptr =         argument(1);   // type: oop
4318   Node* src_off = ConvL2X(argument(2));  // type: long
4319   Node* dst_ptr =         argument(4);   // type: oop
4320   Node* dst_off = ConvL2X(argument(5));  // type: long
4321   Node* size    = ConvL2X(argument(7));  // type: long
4322 
4323   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4324          "fieldOffset must be byte-scaled");
4325 
4326   Node* src = make_unsafe_address(src_ptr, src_off);
4327   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4328 
4329   // Conservatively insert a memory barrier on all memory slices.
4330   // Do not let writes of the copy source or destination float below the copy.
4331   insert_mem_bar(Op_MemBarCPUOrder);
4332 
4333   // Call it.  Note that the length argument is not scaled.
4334   make_runtime_call(RC_LEAF|RC_NO_FP,
4335                     OptoRuntime::fast_arraycopy_Type(),
4336                     StubRoutines::unsafe_arraycopy(),
4337                     "unsafe_arraycopy",
4338                     TypeRawPtr::BOTTOM,
4339                     src, dst, size XTOP);
4340 
4341   // Do not let reads of the copy destination float above the copy.
4342   insert_mem_bar(Op_MemBarCPUOrder);
4343 
4344   return true;
4345 }
4346 
4347 //------------------------clone_coping-----------------------------------
4348 // Helper function for inline_native_clone.
4349 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4350   assert(obj_size != NULL, "");
4351   Node* raw_obj = alloc_obj->in(1);
4352   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4353 
4354   AllocateNode* alloc = NULL;
4355   if (ReduceBulkZeroing) {
4356     // We will be completely responsible for initializing this object -
4357     // mark Initialize node as complete.
4358     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4359     // The object was just allocated - there should be no any stores!
4360     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4361     // Mark as complete_with_arraycopy so that on AllocateNode
4362     // expansion, we know this AllocateNode is initialized by an array
4363     // copy and a StoreStore barrier exists after the array copy.
4364     alloc->initialization()->set_complete_with_arraycopy();
4365   }
4366 
4367   // Copy the fastest available way.
4368   // TODO: generate fields copies for small objects instead.
4369   Node* src  = obj;
4370   Node* dest = alloc_obj;
4371   Node* size = _gvn.transform(obj_size);
4372 
4373   // Exclude the header but include array length to copy by 8 bytes words.
4374   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4375   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4376                             instanceOopDesc::base_offset_in_bytes();
4377   // base_off:
4378   // 8  - 32-bit VM
4379   // 12 - 64-bit VM, compressed klass
4380   // 16 - 64-bit VM, normal klass
4381   if (base_off % BytesPerLong != 0) {
4382     assert(UseCompressedClassPointers, "");
4383     if (is_array) {
4384       // Exclude length to copy by 8 bytes words.
4385       base_off += sizeof(int);
4386     } else {
4387       // Include klass to copy by 8 bytes words.
4388       base_off = instanceOopDesc::klass_offset_in_bytes();
4389     }
4390     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4391   }
4392   src  = basic_plus_adr(src,  base_off);
4393   dest = basic_plus_adr(dest, base_off);
4394 
4395   // Compute the length also, if needed:
4396   Node* countx = size;
4397   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4398   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4399 
4400   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4401 
4402   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false);
4403   ac->set_clonebasic();
4404   Node* n = _gvn.transform(ac);
4405   if (n == ac) {
4406     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4407   } else {
4408     set_all_memory(n);
4409   }
4410 
4411   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4412   if (card_mark) {
4413     assert(!is_array, "");
4414     // Put in store barrier for any and all oops we are sticking
4415     // into this object.  (We could avoid this if we could prove
4416     // that the object type contains no oop fields at all.)
4417     Node* no_particular_value = NULL;
4418     Node* no_particular_field = NULL;
4419     int raw_adr_idx = Compile::AliasIdxRaw;
4420     post_barrier(control(),
4421                  memory(raw_adr_type),
4422                  alloc_obj,
4423                  no_particular_field,
4424                  raw_adr_idx,
4425                  no_particular_value,
4426                  T_OBJECT,
4427                  false);
4428   }
4429 
4430   // Do not let reads from the cloned object float above the arraycopy.
4431   if (alloc != NULL) {
4432     // Do not let stores that initialize this object be reordered with
4433     // a subsequent store that would make this object accessible by
4434     // other threads.
4435     // Record what AllocateNode this StoreStore protects so that
4436     // escape analysis can go from the MemBarStoreStoreNode to the
4437     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4438     // based on the escape status of the AllocateNode.
4439     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4440   } else {
4441     insert_mem_bar(Op_MemBarCPUOrder);
4442   }
4443 }
4444 
4445 //------------------------inline_native_clone----------------------------
4446 // protected native Object java.lang.Object.clone();
4447 //
4448 // Here are the simple edge cases:
4449 //  null receiver => normal trap
4450 //  virtual and clone was overridden => slow path to out-of-line clone
4451 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4452 //
4453 // The general case has two steps, allocation and copying.
4454 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4455 //
4456 // Copying also has two cases, oop arrays and everything else.
4457 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4458 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4459 //
4460 // These steps fold up nicely if and when the cloned object's klass
4461 // can be sharply typed as an object array, a type array, or an instance.
4462 //
4463 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4464   PhiNode* result_val;
4465 
4466   // Set the reexecute bit for the interpreter to reexecute
4467   // the bytecode that invokes Object.clone if deoptimization happens.
4468   { PreserveReexecuteState preexecs(this);
4469     jvms()->set_should_reexecute(true);
4470 
4471     Node* obj = null_check_receiver();
4472     if (stopped())  return true;
4473 
4474     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4475 
4476     // If we are going to clone an instance, we need its exact type to
4477     // know the number and types of fields to convert the clone to
4478     // loads/stores. Maybe a speculative type can help us.
4479     if (!obj_type->klass_is_exact() &&
4480         obj_type->speculative_type() != NULL &&
4481         obj_type->speculative_type()->is_instance_klass()) {
4482       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4483       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4484           !spec_ik->has_injected_fields()) {
4485         ciKlass* k = obj_type->klass();
4486         if (!k->is_instance_klass() ||
4487             k->as_instance_klass()->is_interface() ||
4488             k->as_instance_klass()->has_subklass()) {
4489           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4490         }
4491       }
4492     }
4493 
4494     Node* obj_klass = load_object_klass(obj);
4495     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4496     const TypeOopPtr*   toop   = ((tklass != NULL)
4497                                 ? tklass->as_instance_type()
4498                                 : TypeInstPtr::NOTNULL);
4499 
4500     // Conservatively insert a memory barrier on all memory slices.
4501     // Do not let writes into the original float below the clone.
4502     insert_mem_bar(Op_MemBarCPUOrder);
4503 
4504     // paths into result_reg:
4505     enum {
4506       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4507       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4508       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4509       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4510       PATH_LIMIT
4511     };
4512     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4513     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4514     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4515     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4516     record_for_igvn(result_reg);
4517 
4518     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4519     int raw_adr_idx = Compile::AliasIdxRaw;
4520 
4521     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4522     if (array_ctl != NULL) {
4523       // It's an array.
4524       PreserveJVMState pjvms(this);
4525       set_control(array_ctl);
4526       Node* obj_length = load_array_length(obj);
4527       Node* obj_size  = NULL;
4528       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4529 
4530       if (!use_ReduceInitialCardMarks()) {
4531         // If it is an oop array, it requires very special treatment,
4532         // because card marking is required on each card of the array.
4533         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4534         if (is_obja != NULL) {
4535           PreserveJVMState pjvms2(this);
4536           set_control(is_obja);
4537           // Generate a direct call to the right arraycopy function(s).
4538           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4539           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL);
4540           ac->set_cloneoop();
4541           Node* n = _gvn.transform(ac);
4542           assert(n == ac, "cannot disappear");
4543           ac->connect_outputs(this);
4544 
4545           result_reg->init_req(_objArray_path, control());
4546           result_val->init_req(_objArray_path, alloc_obj);
4547           result_i_o ->set_req(_objArray_path, i_o());
4548           result_mem ->set_req(_objArray_path, reset_memory());
4549         }
4550       }
4551       // Otherwise, there are no card marks to worry about.
4552       // (We can dispense with card marks if we know the allocation
4553       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4554       //  causes the non-eden paths to take compensating steps to
4555       //  simulate a fresh allocation, so that no further
4556       //  card marks are required in compiled code to initialize
4557       //  the object.)
4558 
4559       if (!stopped()) {
4560         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4561 
4562         // Present the results of the copy.
4563         result_reg->init_req(_array_path, control());
4564         result_val->init_req(_array_path, alloc_obj);
4565         result_i_o ->set_req(_array_path, i_o());
4566         result_mem ->set_req(_array_path, reset_memory());
4567       }
4568     }
4569 
4570     // We only go to the instance fast case code if we pass a number of guards.
4571     // The paths which do not pass are accumulated in the slow_region.
4572     RegionNode* slow_region = new RegionNode(1);
4573     record_for_igvn(slow_region);
4574     if (!stopped()) {
4575       // It's an instance (we did array above).  Make the slow-path tests.
4576       // If this is a virtual call, we generate a funny guard.  We grab
4577       // the vtable entry corresponding to clone() from the target object.
4578       // If the target method which we are calling happens to be the
4579       // Object clone() method, we pass the guard.  We do not need this
4580       // guard for non-virtual calls; the caller is known to be the native
4581       // Object clone().
4582       if (is_virtual) {
4583         generate_virtual_guard(obj_klass, slow_region);
4584       }
4585 
4586       // The object must be cloneable and must not have a finalizer.
4587       // Both of these conditions may be checked in a single test.
4588       // We could optimize the cloneable test further, but we don't care.
4589       generate_access_flags_guard(obj_klass,
4590                                   // Test both conditions:
4591                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4592                                   // Must be cloneable but not finalizer:
4593                                   JVM_ACC_IS_CLONEABLE,
4594                                   slow_region);
4595     }
4596 
4597     if (!stopped()) {
4598       // It's an instance, and it passed the slow-path tests.
4599       PreserveJVMState pjvms(this);
4600       Node* obj_size  = NULL;
4601       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4602       // is reexecuted if deoptimization occurs and there could be problems when merging
4603       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4604       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4605 
4606       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4607 
4608       // Present the results of the slow call.
4609       result_reg->init_req(_instance_path, control());
4610       result_val->init_req(_instance_path, alloc_obj);
4611       result_i_o ->set_req(_instance_path, i_o());
4612       result_mem ->set_req(_instance_path, reset_memory());
4613     }
4614 
4615     // Generate code for the slow case.  We make a call to clone().
4616     set_control(_gvn.transform(slow_region));
4617     if (!stopped()) {
4618       PreserveJVMState pjvms(this);
4619       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4620       Node* slow_result = set_results_for_java_call(slow_call);
4621       // this->control() comes from set_results_for_java_call
4622       result_reg->init_req(_slow_path, control());
4623       result_val->init_req(_slow_path, slow_result);
4624       result_i_o ->set_req(_slow_path, i_o());
4625       result_mem ->set_req(_slow_path, reset_memory());
4626     }
4627 
4628     // Return the combined state.
4629     set_control(    _gvn.transform(result_reg));
4630     set_i_o(        _gvn.transform(result_i_o));
4631     set_all_memory( _gvn.transform(result_mem));
4632   } // original reexecute is set back here
4633 
4634   set_result(_gvn.transform(result_val));
4635   return true;
4636 }
4637 
4638 //------------------------------inline_arraycopy-----------------------
4639 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4640 //                                                      Object dest, int destPos,
4641 //                                                      int length);
4642 bool LibraryCallKit::inline_arraycopy() {
4643   // Get the arguments.
4644   Node* src         = argument(0);  // type: oop
4645   Node* src_offset  = argument(1);  // type: int
4646   Node* dest        = argument(2);  // type: oop
4647   Node* dest_offset = argument(3);  // type: int
4648   Node* length      = argument(4);  // type: int
4649 
4650   // The following tests must be performed
4651   // (1) src and dest are arrays.
4652   // (2) src and dest arrays must have elements of the same BasicType
4653   // (3) src and dest must not be null.
4654   // (4) src_offset must not be negative.
4655   // (5) dest_offset must not be negative.
4656   // (6) length must not be negative.
4657   // (7) src_offset + length must not exceed length of src.
4658   // (8) dest_offset + length must not exceed length of dest.
4659   // (9) each element of an oop array must be assignable
4660 
4661   // (3) src and dest must not be null.
4662   // always do this here because we need the JVM state for uncommon traps
4663   src  = null_check(src,  T_ARRAY);
4664   dest = null_check(dest, T_ARRAY);
4665 
4666   // Check for allocation before we add nodes that would confuse
4667   // tightly_coupled_allocation()
4668   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4669 
4670   ciMethod* trap_method = method();
4671   int trap_bci = bci();
4672   SafePointNode* sfpt = NULL;
4673   if (alloc != NULL) {
4674     // The JVM state for uncommon traps between the allocation and
4675     // arraycopy is set to the state before the allocation: if the
4676     // initialization is performed by the array copy, we don't want to
4677     // go back to the interpreter with an unitialized array.
4678     JVMState* old_jvms = alloc->jvms();
4679     JVMState* jvms = old_jvms->clone_shallow(C);
4680     uint size = alloc->req();
4681     sfpt = new SafePointNode(size, jvms);
4682     jvms->set_map(sfpt);
4683     for (uint i = 0; i < size; i++) {
4684       sfpt->init_req(i, alloc->in(i));
4685     }
4686     // re-push array length for deoptimization
4687     sfpt->ins_req(jvms->stkoff() + jvms->sp(), alloc->in(AllocateNode::ALength));
4688     jvms->set_sp(jvms->sp()+1);
4689     jvms->set_monoff(jvms->monoff()+1);
4690     jvms->set_scloff(jvms->scloff()+1);
4691     jvms->set_endoff(jvms->endoff()+1);
4692     jvms->set_should_reexecute(true);
4693 
4694     sfpt->set_i_o(map()->i_o());
4695     sfpt->set_memory(map()->memory());
4696 
4697     trap_method = jvms->method();
4698     trap_bci = jvms->bci();
4699   }
4700 
4701   bool validated = false;
4702 
4703   const Type* src_type  = _gvn.type(src);
4704   const Type* dest_type = _gvn.type(dest);
4705   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4706   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4707 
4708   // Do we have the type of src?
4709   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4710   // Do we have the type of dest?
4711   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4712   // Is the type for src from speculation?
4713   bool src_spec = false;
4714   // Is the type for dest from speculation?
4715   bool dest_spec = false;
4716 
4717   if (!has_src || !has_dest) {
4718     // We don't have sufficient type information, let's see if
4719     // speculative types can help. We need to have types for both src
4720     // and dest so that it pays off.
4721 
4722     // Do we already have or could we have type information for src
4723     bool could_have_src = has_src;
4724     // Do we already have or could we have type information for dest
4725     bool could_have_dest = has_dest;
4726 
4727     ciKlass* src_k = NULL;
4728     if (!has_src) {
4729       src_k = src_type->speculative_type_not_null();
4730       if (src_k != NULL && src_k->is_array_klass()) {
4731         could_have_src = true;
4732       }
4733     }
4734 
4735     ciKlass* dest_k = NULL;
4736     if (!has_dest) {
4737       dest_k = dest_type->speculative_type_not_null();
4738       if (dest_k != NULL && dest_k->is_array_klass()) {
4739         could_have_dest = true;
4740       }
4741     }
4742 
4743     if (could_have_src && could_have_dest) {
4744       // This is going to pay off so emit the required guards
4745       if (!has_src) {
4746         src = maybe_cast_profiled_obj(src, src_k, true, sfpt);
4747         src_type  = _gvn.type(src);
4748         top_src  = src_type->isa_aryptr();
4749         has_src = (top_src != NULL && top_src->klass() != NULL);
4750         src_spec = true;
4751       }
4752       if (!has_dest) {
4753         dest = maybe_cast_profiled_obj(dest, dest_k, true);
4754         dest_type  = _gvn.type(dest);
4755         top_dest  = dest_type->isa_aryptr();
4756         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4757         dest_spec = true;
4758       }
4759     }
4760   }
4761 
4762   if (has_src && has_dest) {
4763     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
4764     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4765     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4766     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4767 
4768     if (src_elem == dest_elem && src_elem == T_OBJECT) {
4769       // If both arrays are object arrays then having the exact types
4770       // for both will remove the need for a subtype check at runtime
4771       // before the call and may make it possible to pick a faster copy
4772       // routine (without a subtype check on every element)
4773       // Do we have the exact type of src?
4774       bool could_have_src = src_spec;
4775       // Do we have the exact type of dest?
4776       bool could_have_dest = dest_spec;
4777       ciKlass* src_k = top_src->klass();
4778       ciKlass* dest_k = top_dest->klass();
4779       if (!src_spec) {
4780         src_k = src_type->speculative_type_not_null();
4781         if (src_k != NULL && src_k->is_array_klass()) {
4782           could_have_src = true;
4783         }
4784       }
4785       if (!dest_spec) {
4786         dest_k = dest_type->speculative_type_not_null();
4787         if (dest_k != NULL && dest_k->is_array_klass()) {
4788           could_have_dest = true;
4789         }
4790       }
4791       if (could_have_src && could_have_dest) {
4792         // If we can have both exact types, emit the missing guards
4793         if (could_have_src && !src_spec) {
4794           src = maybe_cast_profiled_obj(src, src_k, true, sfpt);
4795         }
4796         if (could_have_dest && !dest_spec) {
4797           dest = maybe_cast_profiled_obj(dest, dest_k, true);
4798         }
4799       }
4800     }
4801   }
4802 
4803   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && !src->is_top() && !dest->is_top()) {
4804     // validate arguments: enables transformation the ArrayCopyNode
4805     validated = true;
4806 
4807     RegionNode* slow_region = new RegionNode(1);
4808     record_for_igvn(slow_region);
4809 
4810     // (1) src and dest are arrays.
4811     generate_non_array_guard(load_object_klass(src), slow_region);
4812     generate_non_array_guard(load_object_klass(dest), slow_region);
4813 
4814     // (2) src and dest arrays must have elements of the same BasicType
4815     // done at macro expansion or at Ideal transformation time
4816 
4817     // (4) src_offset must not be negative.
4818     generate_negative_guard(src_offset, slow_region);
4819 
4820     // (5) dest_offset must not be negative.
4821     generate_negative_guard(dest_offset, slow_region);
4822 
4823     // (7) src_offset + length must not exceed length of src.
4824     generate_limit_guard(src_offset, length,
4825                          load_array_length(src),
4826                          slow_region);
4827 
4828     // (8) dest_offset + length must not exceed length of dest.
4829     generate_limit_guard(dest_offset, length,
4830                          load_array_length(dest),
4831                          slow_region);
4832 
4833     // (9) each element of an oop array must be assignable
4834     Node* src_klass  = load_object_klass(src);
4835     Node* dest_klass = load_object_klass(dest);
4836     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4837 
4838     if (not_subtype_ctrl != top()) {
4839       if (sfpt != NULL) {
4840         GraphKit kit(sfpt->jvms());
4841         PreserveJVMState pjvms(&kit);
4842         kit.set_control(not_subtype_ctrl);
4843         kit.uncommon_trap(Deoptimization::Reason_intrinsic,
4844                           Deoptimization::Action_make_not_entrant);
4845         assert(kit.stopped(), "Should be stopped");
4846       } else {
4847         PreserveJVMState pjvms(this);
4848         set_control(not_subtype_ctrl);
4849         uncommon_trap(Deoptimization::Reason_intrinsic,
4850                       Deoptimization::Action_make_not_entrant);
4851         assert(stopped(), "Should be stopped");
4852       }
4853     }
4854     if (sfpt != NULL) {
4855       GraphKit kit(sfpt->jvms());
4856       kit.set_control(_gvn.transform(slow_region));
4857       kit.uncommon_trap(Deoptimization::Reason_intrinsic,
4858                         Deoptimization::Action_make_not_entrant);
4859       assert(kit.stopped(), "Should be stopped");
4860     } else {
4861       PreserveJVMState pjvms(this);
4862       set_control(_gvn.transform(slow_region));
4863       uncommon_trap(Deoptimization::Reason_intrinsic,
4864                     Deoptimization::Action_make_not_entrant);
4865       assert(stopped(), "Should be stopped");
4866     }
4867   }
4868 
4869   if (stopped()) {
4870     return true;
4871   }
4872 
4873   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL,
4874                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
4875                                           // so the compiler has a chance to eliminate them: during macro expansion,
4876                                           // we have to set their control (CastPP nodes are eliminated).
4877                                           load_object_klass(src), load_object_klass(dest),
4878                                           load_array_length(src), load_array_length(dest));
4879 
4880   ac->set_arraycopy(validated);
4881 
4882   Node* n = _gvn.transform(ac);
4883   if (n == ac) {
4884     ac->connect_outputs(this);
4885   } else {
4886     assert(validated, "shouldn't transform if all arguments not validated");
4887     set_all_memory(n);
4888   }
4889 
4890   return true;
4891 }
4892 
4893 
4894 // Helper function which determines if an arraycopy immediately follows
4895 // an allocation, with no intervening tests or other escapes for the object.
4896 AllocateArrayNode*
4897 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4898                                            RegionNode* slow_region) {
4899   if (stopped())             return NULL;  // no fast path
4900   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4901 
4902   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4903   if (alloc == NULL)  return NULL;
4904 
4905   Node* rawmem = memory(Compile::AliasIdxRaw);
4906   // Is the allocation's memory state untouched?
4907   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4908     // Bail out if there have been raw-memory effects since the allocation.
4909     // (Example:  There might have been a call or safepoint.)
4910     return NULL;
4911   }
4912   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4913   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4914     return NULL;
4915   }
4916 
4917   // There must be no unexpected observers of this allocation.
4918   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4919     Node* obs = ptr->fast_out(i);
4920     if (obs != this->map()) {
4921       return NULL;
4922     }
4923   }
4924 
4925   // This arraycopy must unconditionally follow the allocation of the ptr.
4926   Node* alloc_ctl = ptr->in(0);
4927   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
4928 
4929   Node* ctl = control();
4930   while (ctl != alloc_ctl) {
4931     // There may be guards which feed into the slow_region.
4932     // Any other control flow means that we might not get a chance
4933     // to finish initializing the allocated object.
4934     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
4935       IfNode* iff = ctl->in(0)->as_If();
4936       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
4937       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
4938       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
4939         ctl = iff->in(0);       // This test feeds the known slow_region.
4940         continue;
4941       }
4942       // One more try:  Various low-level checks bottom out in
4943       // uncommon traps.  If the debug-info of the trap omits
4944       // any reference to the allocation, as we've already
4945       // observed, then there can be no objection to the trap.
4946       bool found_trap = false;
4947       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
4948         Node* obs = not_ctl->fast_out(j);
4949         if (obs->in(0) == not_ctl && obs->is_Call() &&
4950             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
4951           found_trap = true; break;
4952         }
4953       }
4954       if (found_trap) {
4955         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
4956         continue;
4957       }
4958     }
4959     return NULL;
4960   }
4961 
4962   // If we get this far, we have an allocation which immediately
4963   // precedes the arraycopy, and we can take over zeroing the new object.
4964   // The arraycopy will finish the initialization, and provide
4965   // a new control state to which we will anchor the destination pointer.
4966 
4967   return alloc;
4968 }
4969 
4970 //-------------inline_encodeISOArray-----------------------------------
4971 // encode char[] to byte[] in ISO_8859_1
4972 bool LibraryCallKit::inline_encodeISOArray() {
4973   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
4974   // no receiver since it is static method
4975   Node *src         = argument(0);
4976   Node *src_offset  = argument(1);
4977   Node *dst         = argument(2);
4978   Node *dst_offset  = argument(3);
4979   Node *length      = argument(4);
4980 
4981   const Type* src_type = src->Value(&_gvn);
4982   const Type* dst_type = dst->Value(&_gvn);
4983   const TypeAryPtr* top_src = src_type->isa_aryptr();
4984   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
4985   if (top_src  == NULL || top_src->klass()  == NULL ||
4986       top_dest == NULL || top_dest->klass() == NULL) {
4987     // failed array check
4988     return false;
4989   }
4990 
4991   // Figure out the size and type of the elements we will be copying.
4992   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
4993   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
4994   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
4995     return false;
4996   }
4997   Node* src_start = array_element_address(src, src_offset, src_elem);
4998   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
4999   // 'src_start' points to src array + scaled offset
5000   // 'dst_start' points to dst array + scaled offset
5001 
5002   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5003   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5004   enc = _gvn.transform(enc);
5005   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5006   set_memory(res_mem, mtype);
5007   set_result(enc);
5008   return true;
5009 }
5010 
5011 //-------------inline_multiplyToLen-----------------------------------
5012 bool LibraryCallKit::inline_multiplyToLen() {
5013   assert(UseMultiplyToLenIntrinsic, "not implementated on this platform");
5014 
5015   address stubAddr = StubRoutines::multiplyToLen();
5016   if (stubAddr == NULL) {
5017     return false; // Intrinsic's stub is not implemented on this platform
5018   }
5019   const char* stubName = "multiplyToLen";
5020 
5021   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5022 
5023   Node* x    = argument(1);
5024   Node* xlen = argument(2);
5025   Node* y    = argument(3);
5026   Node* ylen = argument(4);
5027   Node* z    = argument(5);
5028 
5029   const Type* x_type = x->Value(&_gvn);
5030   const Type* y_type = y->Value(&_gvn);
5031   const TypeAryPtr* top_x = x_type->isa_aryptr();
5032   const TypeAryPtr* top_y = y_type->isa_aryptr();
5033   if (top_x  == NULL || top_x->klass()  == NULL ||
5034       top_y == NULL || top_y->klass() == NULL) {
5035     // failed array check
5036     return false;
5037   }
5038 
5039   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5040   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5041   if (x_elem != T_INT || y_elem != T_INT) {
5042     return false;
5043   }
5044 
5045   // Set the original stack and the reexecute bit for the interpreter to reexecute
5046   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5047   // on the return from z array allocation in runtime.
5048   { PreserveReexecuteState preexecs(this);
5049     jvms()->set_should_reexecute(true);
5050 
5051     Node* x_start = array_element_address(x, intcon(0), x_elem);
5052     Node* y_start = array_element_address(y, intcon(0), y_elem);
5053     // 'x_start' points to x array + scaled xlen
5054     // 'y_start' points to y array + scaled ylen
5055 
5056     // Allocate the result array
5057     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5058     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5059     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5060 
5061     IdealKit ideal(this);
5062 
5063 #define __ ideal.
5064      Node* one = __ ConI(1);
5065      Node* zero = __ ConI(0);
5066      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5067      __ set(need_alloc, zero);
5068      __ set(z_alloc, z);
5069      __ if_then(z, BoolTest::eq, null()); {
5070        __ increment (need_alloc, one);
5071      } __ else_(); {
5072        // Update graphKit memory and control from IdealKit.
5073        sync_kit(ideal);
5074        Node* zlen_arg = load_array_length(z);
5075        // Update IdealKit memory and control from graphKit.
5076        __ sync_kit(this);
5077        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5078          __ increment (need_alloc, one);
5079        } __ end_if();
5080      } __ end_if();
5081 
5082      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5083        // Update graphKit memory and control from IdealKit.
5084        sync_kit(ideal);
5085        Node * narr = new_array(klass_node, zlen, 1);
5086        // Update IdealKit memory and control from graphKit.
5087        __ sync_kit(this);
5088        __ set(z_alloc, narr);
5089      } __ end_if();
5090 
5091      sync_kit(ideal);
5092      z = __ value(z_alloc);
5093      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5094      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5095      // Final sync IdealKit and GraphKit.
5096      final_sync(ideal);
5097 #undef __
5098 
5099     Node* z_start = array_element_address(z, intcon(0), T_INT);
5100 
5101     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5102                                    OptoRuntime::multiplyToLen_Type(),
5103                                    stubAddr, stubName, TypePtr::BOTTOM,
5104                                    x_start, xlen, y_start, ylen, z_start, zlen);
5105   } // original reexecute is set back here
5106 
5107   C->set_has_split_ifs(true); // Has chance for split-if optimization
5108   set_result(z);
5109   return true;
5110 }
5111 
5112 
5113 /**
5114  * Calculate CRC32 for byte.
5115  * int java.util.zip.CRC32.update(int crc, int b)
5116  */
5117 bool LibraryCallKit::inline_updateCRC32() {
5118   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5119   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5120   // no receiver since it is static method
5121   Node* crc  = argument(0); // type: int
5122   Node* b    = argument(1); // type: int
5123 
5124   /*
5125    *    int c = ~ crc;
5126    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5127    *    b = b ^ (c >>> 8);
5128    *    crc = ~b;
5129    */
5130 
5131   Node* M1 = intcon(-1);
5132   crc = _gvn.transform(new XorINode(crc, M1));
5133   Node* result = _gvn.transform(new XorINode(crc, b));
5134   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5135 
5136   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5137   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5138   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5139   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5140 
5141   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5142   result = _gvn.transform(new XorINode(crc, result));
5143   result = _gvn.transform(new XorINode(result, M1));
5144   set_result(result);
5145   return true;
5146 }
5147 
5148 /**
5149  * Calculate CRC32 for byte[] array.
5150  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5151  */
5152 bool LibraryCallKit::inline_updateBytesCRC32() {
5153   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5154   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5155   // no receiver since it is static method
5156   Node* crc     = argument(0); // type: int
5157   Node* src     = argument(1); // type: oop
5158   Node* offset  = argument(2); // type: int
5159   Node* length  = argument(3); // type: int
5160 
5161   const Type* src_type = src->Value(&_gvn);
5162   const TypeAryPtr* top_src = src_type->isa_aryptr();
5163   if (top_src  == NULL || top_src->klass()  == NULL) {
5164     // failed array check
5165     return false;
5166   }
5167 
5168   // Figure out the size and type of the elements we will be copying.
5169   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5170   if (src_elem != T_BYTE) {
5171     return false;
5172   }
5173 
5174   // 'src_start' points to src array + scaled offset
5175   Node* src_start = array_element_address(src, offset, src_elem);
5176 
5177   // We assume that range check is done by caller.
5178   // TODO: generate range check (offset+length < src.length) in debug VM.
5179 
5180   // Call the stub.
5181   address stubAddr = StubRoutines::updateBytesCRC32();
5182   const char *stubName = "updateBytesCRC32";
5183 
5184   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5185                                  stubAddr, stubName, TypePtr::BOTTOM,
5186                                  crc, src_start, length);
5187   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5188   set_result(result);
5189   return true;
5190 }
5191 
5192 /**
5193  * Calculate CRC32 for ByteBuffer.
5194  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5195  */
5196 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5197   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5198   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5199   // no receiver since it is static method
5200   Node* crc     = argument(0); // type: int
5201   Node* src     = argument(1); // type: long
5202   Node* offset  = argument(3); // type: int
5203   Node* length  = argument(4); // type: int
5204 
5205   src = ConvL2X(src);  // adjust Java long to machine word
5206   Node* base = _gvn.transform(new CastX2PNode(src));
5207   offset = ConvI2X(offset);
5208 
5209   // 'src_start' points to src array + scaled offset
5210   Node* src_start = basic_plus_adr(top(), base, offset);
5211 
5212   // Call the stub.
5213   address stubAddr = StubRoutines::updateBytesCRC32();
5214   const char *stubName = "updateBytesCRC32";
5215 
5216   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5217                                  stubAddr, stubName, TypePtr::BOTTOM,
5218                                  crc, src_start, length);
5219   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5220   set_result(result);
5221   return true;
5222 }
5223 
5224 //----------------------------inline_reference_get----------------------------
5225 // public T java.lang.ref.Reference.get();
5226 bool LibraryCallKit::inline_reference_get() {
5227   const int referent_offset = java_lang_ref_Reference::referent_offset;
5228   guarantee(referent_offset > 0, "should have already been set");
5229 
5230   // Get the argument:
5231   Node* reference_obj = null_check_receiver();
5232   if (stopped()) return true;
5233 
5234   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5235 
5236   ciInstanceKlass* klass = env()->Object_klass();
5237   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5238 
5239   Node* no_ctrl = NULL;
5240   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5241 
5242   // Use the pre-barrier to record the value in the referent field
5243   pre_barrier(false /* do_load */,
5244               control(),
5245               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5246               result /* pre_val */,
5247               T_OBJECT);
5248 
5249   // Add memory barrier to prevent commoning reads from this field
5250   // across safepoint since GC can change its value.
5251   insert_mem_bar(Op_MemBarCPUOrder);
5252 
5253   set_result(result);
5254   return true;
5255 }
5256 
5257 
5258 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5259                                               bool is_exact=true, bool is_static=false) {
5260 
5261   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5262   assert(tinst != NULL, "obj is null");
5263   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5264   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5265 
5266   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5267                                                                           ciSymbol::make(fieldTypeString),
5268                                                                           is_static);
5269   if (field == NULL) return (Node *) NULL;
5270   assert (field != NULL, "undefined field");
5271 
5272   // Next code  copied from Parse::do_get_xxx():
5273 
5274   // Compute address and memory type.
5275   int offset  = field->offset_in_bytes();
5276   bool is_vol = field->is_volatile();
5277   ciType* field_klass = field->type();
5278   assert(field_klass->is_loaded(), "should be loaded");
5279   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5280   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5281   BasicType bt = field->layout_type();
5282 
5283   // Build the resultant type of the load
5284   const Type *type;
5285   if (bt == T_OBJECT) {
5286     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5287   } else {
5288     type = Type::get_const_basic_type(bt);
5289   }
5290 
5291   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
5292     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
5293   }
5294   // Build the load.
5295   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
5296   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, is_vol);
5297   // If reference is volatile, prevent following memory ops from
5298   // floating up past the volatile read.  Also prevents commoning
5299   // another volatile read.
5300   if (is_vol) {
5301     // Memory barrier includes bogus read of value to force load BEFORE membar
5302     insert_mem_bar(Op_MemBarAcquire, loadedField);
5303   }
5304   return loadedField;
5305 }
5306 
5307 
5308 //------------------------------inline_aescrypt_Block-----------------------
5309 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5310   address stubAddr;
5311   const char *stubName;
5312   assert(UseAES, "need AES instruction support");
5313 
5314   switch(id) {
5315   case vmIntrinsics::_aescrypt_encryptBlock:
5316     stubAddr = StubRoutines::aescrypt_encryptBlock();
5317     stubName = "aescrypt_encryptBlock";
5318     break;
5319   case vmIntrinsics::_aescrypt_decryptBlock:
5320     stubAddr = StubRoutines::aescrypt_decryptBlock();
5321     stubName = "aescrypt_decryptBlock";
5322     break;
5323   }
5324   if (stubAddr == NULL) return false;
5325 
5326   Node* aescrypt_object = argument(0);
5327   Node* src             = argument(1);
5328   Node* src_offset      = argument(2);
5329   Node* dest            = argument(3);
5330   Node* dest_offset     = argument(4);
5331 
5332   // (1) src and dest are arrays.
5333   const Type* src_type = src->Value(&_gvn);
5334   const Type* dest_type = dest->Value(&_gvn);
5335   const TypeAryPtr* top_src = src_type->isa_aryptr();
5336   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5337   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5338 
5339   // for the quick and dirty code we will skip all the checks.
5340   // we are just trying to get the call to be generated.
5341   Node* src_start  = src;
5342   Node* dest_start = dest;
5343   if (src_offset != NULL || dest_offset != NULL) {
5344     assert(src_offset != NULL && dest_offset != NULL, "");
5345     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5346     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5347   }
5348 
5349   // now need to get the start of its expanded key array
5350   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5351   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5352   if (k_start == NULL) return false;
5353 
5354   if (Matcher::pass_original_key_for_aes()) {
5355     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5356     // compatibility issues between Java key expansion and SPARC crypto instructions
5357     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5358     if (original_k_start == NULL) return false;
5359 
5360     // Call the stub.
5361     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5362                       stubAddr, stubName, TypePtr::BOTTOM,
5363                       src_start, dest_start, k_start, original_k_start);
5364   } else {
5365     // Call the stub.
5366     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5367                       stubAddr, stubName, TypePtr::BOTTOM,
5368                       src_start, dest_start, k_start);
5369   }
5370 
5371   return true;
5372 }
5373 
5374 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5375 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5376   address stubAddr;
5377   const char *stubName;
5378 
5379   assert(UseAES, "need AES instruction support");
5380 
5381   switch(id) {
5382   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5383     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5384     stubName = "cipherBlockChaining_encryptAESCrypt";
5385     break;
5386   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5387     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5388     stubName = "cipherBlockChaining_decryptAESCrypt";
5389     break;
5390   }
5391   if (stubAddr == NULL) return false;
5392 
5393   Node* cipherBlockChaining_object = argument(0);
5394   Node* src                        = argument(1);
5395   Node* src_offset                 = argument(2);
5396   Node* len                        = argument(3);
5397   Node* dest                       = argument(4);
5398   Node* dest_offset                = argument(5);
5399 
5400   // (1) src and dest are arrays.
5401   const Type* src_type = src->Value(&_gvn);
5402   const Type* dest_type = dest->Value(&_gvn);
5403   const TypeAryPtr* top_src = src_type->isa_aryptr();
5404   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5405   assert (top_src  != NULL && top_src->klass()  != NULL
5406           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5407 
5408   // checks are the responsibility of the caller
5409   Node* src_start  = src;
5410   Node* dest_start = dest;
5411   if (src_offset != NULL || dest_offset != NULL) {
5412     assert(src_offset != NULL && dest_offset != NULL, "");
5413     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5414     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5415   }
5416 
5417   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5418   // (because of the predicated logic executed earlier).
5419   // so we cast it here safely.
5420   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5421 
5422   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5423   if (embeddedCipherObj == NULL) return false;
5424 
5425   // cast it to what we know it will be at runtime
5426   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5427   assert(tinst != NULL, "CBC obj is null");
5428   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5429   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5430   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
5431 
5432   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5433   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5434   const TypeOopPtr* xtype = aklass->as_instance_type();
5435   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
5436   aescrypt_object = _gvn.transform(aescrypt_object);
5437 
5438   // we need to get the start of the aescrypt_object's expanded key array
5439   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5440   if (k_start == NULL) return false;
5441 
5442   // similarly, get the start address of the r vector
5443   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5444   if (objRvec == NULL) return false;
5445   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5446 
5447   Node* cbcCrypt;
5448   if (Matcher::pass_original_key_for_aes()) {
5449     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5450     // compatibility issues between Java key expansion and SPARC crypto instructions
5451     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5452     if (original_k_start == NULL) return false;
5453 
5454     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
5455     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5456                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5457                                  stubAddr, stubName, TypePtr::BOTTOM,
5458                                  src_start, dest_start, k_start, r_start, len, original_k_start);
5459   } else {
5460     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5461     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5462                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5463                                  stubAddr, stubName, TypePtr::BOTTOM,
5464                                  src_start, dest_start, k_start, r_start, len);
5465   }
5466 
5467   // return cipher length (int)
5468   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
5469   set_result(retvalue);
5470   return true;
5471 }
5472 
5473 //------------------------------get_key_start_from_aescrypt_object-----------------------
5474 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
5475   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
5476   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5477   if (objAESCryptKey == NULL) return (Node *) NULL;
5478 
5479   // now have the array, need to get the start address of the K array
5480   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
5481   return k_start;
5482 }
5483 
5484 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
5485 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
5486   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
5487   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5488   if (objAESCryptKey == NULL) return (Node *) NULL;
5489 
5490   // now have the array, need to get the start address of the lastKey array
5491   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
5492   return original_k_start;
5493 }
5494 
5495 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
5496 // Return node representing slow path of predicate check.
5497 // the pseudo code we want to emulate with this predicate is:
5498 // for encryption:
5499 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
5500 // for decryption:
5501 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
5502 //    note cipher==plain is more conservative than the original java code but that's OK
5503 //
5504 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
5505   // The receiver was checked for NULL already.
5506   Node* objCBC = argument(0);
5507 
5508   // Load embeddedCipher field of CipherBlockChaining object.
5509   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5510 
5511   // get AESCrypt klass for instanceOf check
5512   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
5513   // will have same classloader as CipherBlockChaining object
5514   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
5515   assert(tinst != NULL, "CBCobj is null");
5516   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
5517 
5518   // we want to do an instanceof comparison against the AESCrypt class
5519   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5520   if (!klass_AESCrypt->is_loaded()) {
5521     // if AESCrypt is not even loaded, we never take the intrinsic fast path
5522     Node* ctrl = control();
5523     set_control(top()); // no regular fast path
5524     return ctrl;
5525   }
5526   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5527 
5528   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
5529   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
5530   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
5531 
5532   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5533 
5534   // for encryption, we are done
5535   if (!decrypting)
5536     return instof_false;  // even if it is NULL
5537 
5538   // for decryption, we need to add a further check to avoid
5539   // taking the intrinsic path when cipher and plain are the same
5540   // see the original java code for why.
5541   RegionNode* region = new RegionNode(3);
5542   region->init_req(1, instof_false);
5543   Node* src = argument(1);
5544   Node* dest = argument(4);
5545   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
5546   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
5547   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
5548   region->init_req(2, src_dest_conjoint);
5549 
5550   record_for_igvn(region);
5551   return _gvn.transform(region);
5552 }
5553 
5554 //------------------------------inline_sha_implCompress-----------------------
5555 //
5556 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
5557 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
5558 //
5559 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
5560 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
5561 //
5562 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
5563 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
5564 //
5565 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
5566   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
5567 
5568   Node* sha_obj = argument(0);
5569   Node* src     = argument(1); // type oop
5570   Node* ofs     = argument(2); // type int
5571 
5572   const Type* src_type = src->Value(&_gvn);
5573   const TypeAryPtr* top_src = src_type->isa_aryptr();
5574   if (top_src  == NULL || top_src->klass()  == NULL) {
5575     // failed array check
5576     return false;
5577   }
5578   // Figure out the size and type of the elements we will be copying.
5579   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5580   if (src_elem != T_BYTE) {
5581     return false;
5582   }
5583   // 'src_start' points to src array + offset
5584   Node* src_start = array_element_address(src, ofs, src_elem);
5585   Node* state = NULL;
5586   address stubAddr;
5587   const char *stubName;
5588 
5589   switch(id) {
5590   case vmIntrinsics::_sha_implCompress:
5591     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
5592     state = get_state_from_sha_object(sha_obj);
5593     stubAddr = StubRoutines::sha1_implCompress();
5594     stubName = "sha1_implCompress";
5595     break;
5596   case vmIntrinsics::_sha2_implCompress:
5597     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
5598     state = get_state_from_sha_object(sha_obj);
5599     stubAddr = StubRoutines::sha256_implCompress();
5600     stubName = "sha256_implCompress";
5601     break;
5602   case vmIntrinsics::_sha5_implCompress:
5603     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
5604     state = get_state_from_sha5_object(sha_obj);
5605     stubAddr = StubRoutines::sha512_implCompress();
5606     stubName = "sha512_implCompress";
5607     break;
5608   default:
5609     fatal_unexpected_iid(id);
5610     return false;
5611   }
5612   if (state == NULL) return false;
5613 
5614   // Call the stub.
5615   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
5616                                  stubAddr, stubName, TypePtr::BOTTOM,
5617                                  src_start, state);
5618 
5619   return true;
5620 }
5621 
5622 //------------------------------inline_digestBase_implCompressMB-----------------------
5623 //
5624 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
5625 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
5626 //
5627 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
5628   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
5629          "need SHA1/SHA256/SHA512 instruction support");
5630   assert((uint)predicate < 3, "sanity");
5631   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
5632 
5633   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
5634   Node* src            = argument(1); // byte[] array
5635   Node* ofs            = argument(2); // type int
5636   Node* limit          = argument(3); // type int
5637 
5638   const Type* src_type = src->Value(&_gvn);
5639   const TypeAryPtr* top_src = src_type->isa_aryptr();
5640   if (top_src  == NULL || top_src->klass()  == NULL) {
5641     // failed array check
5642     return false;
5643   }
5644   // Figure out the size and type of the elements we will be copying.
5645   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5646   if (src_elem != T_BYTE) {
5647     return false;
5648   }
5649   // 'src_start' points to src array + offset
5650   Node* src_start = array_element_address(src, ofs, src_elem);
5651 
5652   const char* klass_SHA_name = NULL;
5653   const char* stub_name = NULL;
5654   address     stub_addr = NULL;
5655   bool        long_state = false;
5656 
5657   switch (predicate) {
5658   case 0:
5659     if (UseSHA1Intrinsics) {
5660       klass_SHA_name = "sun/security/provider/SHA";
5661       stub_name = "sha1_implCompressMB";
5662       stub_addr = StubRoutines::sha1_implCompressMB();
5663     }
5664     break;
5665   case 1:
5666     if (UseSHA256Intrinsics) {
5667       klass_SHA_name = "sun/security/provider/SHA2";
5668       stub_name = "sha256_implCompressMB";
5669       stub_addr = StubRoutines::sha256_implCompressMB();
5670     }
5671     break;
5672   case 2:
5673     if (UseSHA512Intrinsics) {
5674       klass_SHA_name = "sun/security/provider/SHA5";
5675       stub_name = "sha512_implCompressMB";
5676       stub_addr = StubRoutines::sha512_implCompressMB();
5677       long_state = true;
5678     }
5679     break;
5680   default:
5681     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
5682   }
5683   if (klass_SHA_name != NULL) {
5684     // get DigestBase klass to lookup for SHA klass
5685     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
5686     assert(tinst != NULL, "digestBase_obj is not instance???");
5687     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
5688 
5689     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
5690     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
5691     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
5692     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
5693   }
5694   return false;
5695 }
5696 //------------------------------inline_sha_implCompressMB-----------------------
5697 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
5698                                                bool long_state, address stubAddr, const char *stubName,
5699                                                Node* src_start, Node* ofs, Node* limit) {
5700   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
5701   const TypeOopPtr* xtype = aklass->as_instance_type();
5702   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
5703   sha_obj = _gvn.transform(sha_obj);
5704 
5705   Node* state;
5706   if (long_state) {
5707     state = get_state_from_sha5_object(sha_obj);
5708   } else {
5709     state = get_state_from_sha_object(sha_obj);
5710   }
5711   if (state == NULL) return false;
5712 
5713   // Call the stub.
5714   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5715                                  OptoRuntime::digestBase_implCompressMB_Type(),
5716                                  stubAddr, stubName, TypePtr::BOTTOM,
5717                                  src_start, state, ofs, limit);
5718   // return ofs (int)
5719   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5720   set_result(result);
5721 
5722   return true;
5723 }
5724 
5725 //------------------------------get_state_from_sha_object-----------------------
5726 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
5727   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
5728   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
5729   if (sha_state == NULL) return (Node *) NULL;
5730 
5731   // now have the array, need to get the start address of the state array
5732   Node* state = array_element_address(sha_state, intcon(0), T_INT);
5733   return state;
5734 }
5735 
5736 //------------------------------get_state_from_sha5_object-----------------------
5737 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
5738   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
5739   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
5740   if (sha_state == NULL) return (Node *) NULL;
5741 
5742   // now have the array, need to get the start address of the state array
5743   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
5744   return state;
5745 }
5746 
5747 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
5748 // Return node representing slow path of predicate check.
5749 // the pseudo code we want to emulate with this predicate is:
5750 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
5751 //
5752 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
5753   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
5754          "need SHA1/SHA256/SHA512 instruction support");
5755   assert((uint)predicate < 3, "sanity");
5756 
5757   // The receiver was checked for NULL already.
5758   Node* digestBaseObj = argument(0);
5759 
5760   // get DigestBase klass for instanceOf check
5761   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
5762   assert(tinst != NULL, "digestBaseObj is null");
5763   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
5764 
5765   const char* klass_SHA_name = NULL;
5766   switch (predicate) {
5767   case 0:
5768     if (UseSHA1Intrinsics) {
5769       // we want to do an instanceof comparison against the SHA class
5770       klass_SHA_name = "sun/security/provider/SHA";
5771     }
5772     break;
5773   case 1:
5774     if (UseSHA256Intrinsics) {
5775       // we want to do an instanceof comparison against the SHA2 class
5776       klass_SHA_name = "sun/security/provider/SHA2";
5777     }
5778     break;
5779   case 2:
5780     if (UseSHA512Intrinsics) {
5781       // we want to do an instanceof comparison against the SHA5 class
5782       klass_SHA_name = "sun/security/provider/SHA5";
5783     }
5784     break;
5785   default:
5786     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
5787   }
5788 
5789   ciKlass* klass_SHA = NULL;
5790   if (klass_SHA_name != NULL) {
5791     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
5792   }
5793   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
5794     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
5795     Node* ctrl = control();
5796     set_control(top()); // no intrinsic path
5797     return ctrl;
5798   }
5799   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
5800 
5801   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
5802   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
5803   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
5804   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5805 
5806   return instof_false;  // even if it is NULL
5807 }
5808 
5809 bool LibraryCallKit::inline_profileBoolean() {
5810   Node* counts = argument(1);
5811   const TypeAryPtr* ary = NULL;
5812   ciArray* aobj = NULL;
5813   if (counts->is_Con()
5814       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
5815       && (aobj = ary->const_oop()->as_array()) != NULL
5816       && (aobj->length() == 2)) {
5817     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
5818     jint false_cnt = aobj->element_value(0).as_int();
5819     jint  true_cnt = aobj->element_value(1).as_int();
5820 
5821     method()->set_injected_profile(true);
5822 
5823     if (C->log() != NULL) {
5824       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
5825                      false_cnt, true_cnt);
5826     }
5827 
5828     if (false_cnt + true_cnt == 0) {
5829       // According to profile, never executed.
5830       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
5831                           Deoptimization::Action_reinterpret);
5832       return true;
5833     }
5834     // Stop profiling.
5835     // MethodHandleImpl::profileBoolean() has profiling logic in it's bytecode.
5836     // By replacing method's body with profile data (represented as ProfileBooleanNode
5837     // on IR level) we effectively disable profiling.
5838     // It enables full speed execution once optimized code is generated.
5839     Node* profile = _gvn.transform(new ProfileBooleanNode(argument(0), false_cnt, true_cnt));
5840     C->record_for_igvn(profile);
5841     set_result(profile);
5842     return true;
5843   } else {
5844     // Continue profiling.
5845     // Profile data isn't available at the moment. So, execute method's bytecode version.
5846     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
5847     // is compiled and counters aren't available since corresponding MethodHandle
5848     // isn't a compile-time constant.
5849     return false;
5850   }
5851 }