1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/gcLocker.hpp"
  33 #include "memory/oopFactory.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/instanceKlass.hpp"
  36 #include "oops/instanceMirrorKlass.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "oops/typeArrayKlass.hpp"
  39 #include "opto/matcher.hpp"
  40 #include "opto/node.hpp"
  41 #include "opto/opcodes.hpp"
  42 #include "opto/type.hpp"
  43 
  44 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  45 
  46 // Portions of code courtesy of Clifford Click
  47 
  48 // Optimization - Graph Style
  49 
  50 // Dictionary of types shared among compilations.
  51 Dict* Type::_shared_type_dict = NULL;
  52 
  53 // Array which maps compiler types to Basic Types
  54 Type::TypeInfo Type::_type_info[Type::lastype] = {
  55   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  56   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  57   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  58   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  59   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  60   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  61   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  62   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  63   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  64   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  65 
  66 #ifdef SPARC
  67   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  68   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
  69   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  70   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  71 #elif defined(PPC64)
  72   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  73   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  74   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  75   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  76 #else // all other
  77   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  78   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  79   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  80   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  81 #endif
  82   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  83   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
  84   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  85   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
  86   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
  87   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
  88   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
  89   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
  90   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
  91   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
  92   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
  93   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
  94   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
  95   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
  96   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
  97   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
  98   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
  99   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 100 };
 101 
 102 // Map ideal registers (machine types) to ideal types
 103 const Type *Type::mreg2type[_last_machine_leaf];
 104 
 105 // Map basic types to canonical Type* pointers.
 106 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 107 
 108 // Map basic types to constant-zero Types.
 109 const Type* Type::            _zero_type[T_CONFLICT+1];
 110 
 111 // Map basic types to array-body alias types.
 112 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 113 
 114 //=============================================================================
 115 // Convenience common pre-built types.
 116 const Type *Type::ABIO;         // State-of-machine only
 117 const Type *Type::BOTTOM;       // All values
 118 const Type *Type::CONTROL;      // Control only
 119 const Type *Type::DOUBLE;       // All doubles
 120 const Type *Type::FLOAT;        // All floats
 121 const Type *Type::HALF;         // Placeholder half of doublewide type
 122 const Type *Type::MEMORY;       // Abstract store only
 123 const Type *Type::RETURN_ADDRESS;
 124 const Type *Type::TOP;          // No values in set
 125 
 126 //------------------------------get_const_type---------------------------
 127 const Type* Type::get_const_type(ciType* type) {
 128   if (type == NULL) {
 129     return NULL;
 130   } else if (type->is_primitive_type()) {
 131     return get_const_basic_type(type->basic_type());
 132   } else {
 133     return TypeOopPtr::make_from_klass(type->as_klass());
 134   }
 135 }
 136 
 137 //---------------------------array_element_basic_type---------------------------------
 138 // Mapping to the array element's basic type.
 139 BasicType Type::array_element_basic_type() const {
 140   BasicType bt = basic_type();
 141   if (bt == T_INT) {
 142     if (this == TypeInt::INT)   return T_INT;
 143     if (this == TypeInt::CHAR)  return T_CHAR;
 144     if (this == TypeInt::BYTE)  return T_BYTE;
 145     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 146     if (this == TypeInt::SHORT) return T_SHORT;
 147     return T_VOID;
 148   }
 149   return bt;
 150 }
 151 
 152 //---------------------------get_typeflow_type---------------------------------
 153 // Import a type produced by ciTypeFlow.
 154 const Type* Type::get_typeflow_type(ciType* type) {
 155   switch (type->basic_type()) {
 156 
 157   case ciTypeFlow::StateVector::T_BOTTOM:
 158     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 159     return Type::BOTTOM;
 160 
 161   case ciTypeFlow::StateVector::T_TOP:
 162     assert(type == ciTypeFlow::StateVector::top_type(), "");
 163     return Type::TOP;
 164 
 165   case ciTypeFlow::StateVector::T_NULL:
 166     assert(type == ciTypeFlow::StateVector::null_type(), "");
 167     return TypePtr::NULL_PTR;
 168 
 169   case ciTypeFlow::StateVector::T_LONG2:
 170     // The ciTypeFlow pass pushes a long, then the half.
 171     // We do the same.
 172     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 173     return TypeInt::TOP;
 174 
 175   case ciTypeFlow::StateVector::T_DOUBLE2:
 176     // The ciTypeFlow pass pushes double, then the half.
 177     // Our convention is the same.
 178     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 179     return Type::TOP;
 180 
 181   case T_ADDRESS:
 182     assert(type->is_return_address(), "");
 183     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 184 
 185   default:
 186     // make sure we did not mix up the cases:
 187     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 188     assert(type != ciTypeFlow::StateVector::top_type(), "");
 189     assert(type != ciTypeFlow::StateVector::null_type(), "");
 190     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 191     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 192     assert(!type->is_return_address(), "");
 193 
 194     return Type::get_const_type(type);
 195   }
 196 }
 197 
 198 
 199 //-----------------------make_from_constant------------------------------------
 200 const Type* Type::make_from_constant(ciConstant constant,
 201                                      bool require_constant, bool is_autobox_cache) {
 202   switch (constant.basic_type()) {
 203   case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 204   case T_CHAR:     return TypeInt::make(constant.as_char());
 205   case T_BYTE:     return TypeInt::make(constant.as_byte());
 206   case T_SHORT:    return TypeInt::make(constant.as_short());
 207   case T_INT:      return TypeInt::make(constant.as_int());
 208   case T_LONG:     return TypeLong::make(constant.as_long());
 209   case T_FLOAT:    return TypeF::make(constant.as_float());
 210   case T_DOUBLE:   return TypeD::make(constant.as_double());
 211   case T_ARRAY:
 212   case T_OBJECT:
 213     {
 214       // cases:
 215       //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 216       //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 217       // An oop is not scavengable if it is in the perm gen.
 218       ciObject* oop_constant = constant.as_object();
 219       if (oop_constant->is_null_object()) {
 220         return Type::get_zero_type(T_OBJECT);
 221       } else if (require_constant || oop_constant->should_be_constant()) {
 222         return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
 223       }
 224     }
 225   }
 226   // Fall through to failure
 227   return NULL;
 228 }
 229 
 230 
 231 //------------------------------make-------------------------------------------
 232 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 233 // and look for an existing copy in the type dictionary.
 234 const Type *Type::make( enum TYPES t ) {
 235   return (new Type(t))->hashcons();
 236 }
 237 
 238 //------------------------------cmp--------------------------------------------
 239 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 240   if( t1->_base != t2->_base )
 241     return 1;                   // Missed badly
 242   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 243   return !t1->eq(t2);           // Return ZERO if equal
 244 }
 245 
 246 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 247   if (!include_speculative) {
 248     return remove_speculative();
 249   }
 250   return this;
 251 }
 252 
 253 //------------------------------hash-------------------------------------------
 254 int Type::uhash( const Type *const t ) {
 255   return t->hash();
 256 }
 257 
 258 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 259 
 260 //--------------------------Initialize_shared----------------------------------
 261 void Type::Initialize_shared(Compile* current) {
 262   // This method does not need to be locked because the first system
 263   // compilations (stub compilations) occur serially.  If they are
 264   // changed to proceed in parallel, then this section will need
 265   // locking.
 266 
 267   Arena* save = current->type_arena();
 268   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 269 
 270   current->set_type_arena(shared_type_arena);
 271   _shared_type_dict =
 272     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 273                                   shared_type_arena, 128 );
 274   current->set_type_dict(_shared_type_dict);
 275 
 276   // Make shared pre-built types.
 277   CONTROL = make(Control);      // Control only
 278   TOP     = make(Top);          // No values in set
 279   MEMORY  = make(Memory);       // Abstract store only
 280   ABIO    = make(Abio);         // State-of-machine only
 281   RETURN_ADDRESS=make(Return_Address);
 282   FLOAT   = make(FloatBot);     // All floats
 283   DOUBLE  = make(DoubleBot);    // All doubles
 284   BOTTOM  = make(Bottom);       // Everything
 285   HALF    = make(Half);         // Placeholder half of doublewide type
 286 
 287   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 288   TypeF::ONE  = TypeF::make(1.0); // Float 1
 289 
 290   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 291   TypeD::ONE  = TypeD::make(1.0); // Double 1
 292 
 293   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 294   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 295   TypeInt::ONE     = TypeInt::make( 1);  //  1
 296   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 297   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 298   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 299   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 300   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 301   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 302   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 303   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 304   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 305   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 306   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 307   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 308   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 309   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 310   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 311   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 312   // CmpL is overloaded both as the bytecode computation returning
 313   // a trinary (-1,0,+1) integer result AND as an efficient long
 314   // compare returning optimizer ideal-type flags.
 315   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 316   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 317   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 318   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 319   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 320 
 321   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 322   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 323   TypeLong::ONE     = TypeLong::make( 1);        //  1
 324   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 325   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 326   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 327   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 328   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 329 
 330   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 331   fboth[0] = Type::CONTROL;
 332   fboth[1] = Type::CONTROL;
 333   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 334 
 335   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 336   ffalse[0] = Type::CONTROL;
 337   ffalse[1] = Type::TOP;
 338   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 339 
 340   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 341   fneither[0] = Type::TOP;
 342   fneither[1] = Type::TOP;
 343   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 344 
 345   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 346   ftrue[0] = Type::TOP;
 347   ftrue[1] = Type::CONTROL;
 348   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 349 
 350   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 351   floop[0] = Type::CONTROL;
 352   floop[1] = TypeInt::INT;
 353   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 354 
 355   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
 356   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
 357   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
 358 
 359   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 360   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 361 
 362   const Type **fmembar = TypeTuple::fields(0);
 363   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 364 
 365   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 366   fsc[0] = TypeInt::CC;
 367   fsc[1] = Type::MEMORY;
 368   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 369 
 370   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 371   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 372   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 373   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 374                                            false, 0, oopDesc::mark_offset_in_bytes());
 375   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 376                                            false, 0, oopDesc::klass_offset_in_bytes());
 377   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 378 
 379   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
 380 
 381   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 382   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 383 
 384   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 385 
 386   mreg2type[Op_Node] = Type::BOTTOM;
 387   mreg2type[Op_Set ] = 0;
 388   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 389   mreg2type[Op_RegI] = TypeInt::INT;
 390   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 391   mreg2type[Op_RegF] = Type::FLOAT;
 392   mreg2type[Op_RegD] = Type::DOUBLE;
 393   mreg2type[Op_RegL] = TypeLong::LONG;
 394   mreg2type[Op_RegFlags] = TypeInt::CC;
 395 
 396   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 397 
 398   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 399 
 400 #ifdef _LP64
 401   if (UseCompressedOops) {
 402     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 403     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 404   } else
 405 #endif
 406   {
 407     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 408     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 409   }
 410   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 411   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 412   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 413   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 414   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 415   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 416   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 417 
 418   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 419   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 420   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 421   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 422   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 423   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 424   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 425   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 426   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 427   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 428   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 429   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 430 
 431   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 432   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 433 
 434   const Type **fi2c = TypeTuple::fields(2);
 435   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 436   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 437   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 438 
 439   const Type **intpair = TypeTuple::fields(2);
 440   intpair[0] = TypeInt::INT;
 441   intpair[1] = TypeInt::INT;
 442   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 443 
 444   const Type **longpair = TypeTuple::fields(2);
 445   longpair[0] = TypeLong::LONG;
 446   longpair[1] = TypeLong::LONG;
 447   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 448 
 449   const Type **intccpair = TypeTuple::fields(2);
 450   intccpair[0] = TypeInt::INT;
 451   intccpair[1] = TypeInt::CC;
 452   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 453 
 454   const Type **longccpair = TypeTuple::fields(2);
 455   longccpair[0] = TypeLong::LONG;
 456   longccpair[1] = TypeInt::CC;
 457   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 458 
 459   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 460   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 461   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 462   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 463   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 464   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 465   _const_basic_type[T_INT]         = TypeInt::INT;
 466   _const_basic_type[T_LONG]        = TypeLong::LONG;
 467   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 468   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 469   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 470   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 471   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 472   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 473   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 474 
 475   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 476   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 477   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 478   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 479   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 480   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 481   _zero_type[T_INT]         = TypeInt::ZERO;
 482   _zero_type[T_LONG]        = TypeLong::ZERO;
 483   _zero_type[T_FLOAT]       = TypeF::ZERO;
 484   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 485   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 486   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 487   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 488   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 489 
 490   // get_zero_type() should not happen for T_CONFLICT
 491   _zero_type[T_CONFLICT]= NULL;
 492 
 493   // Vector predefined types, it needs initialized _const_basic_type[].
 494   if (Matcher::vector_size_supported(T_BYTE,4)) {
 495     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 496   }
 497   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 498     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 499   }
 500   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 501     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 502   }
 503   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 504     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 505   }
 506   mreg2type[Op_VecS] = TypeVect::VECTS;
 507   mreg2type[Op_VecD] = TypeVect::VECTD;
 508   mreg2type[Op_VecX] = TypeVect::VECTX;
 509   mreg2type[Op_VecY] = TypeVect::VECTY;
 510 
 511   // Restore working type arena.
 512   current->set_type_arena(save);
 513   current->set_type_dict(NULL);
 514 }
 515 
 516 //------------------------------Initialize-------------------------------------
 517 void Type::Initialize(Compile* current) {
 518   assert(current->type_arena() != NULL, "must have created type arena");
 519 
 520   if (_shared_type_dict == NULL) {
 521     Initialize_shared(current);
 522   }
 523 
 524   Arena* type_arena = current->type_arena();
 525 
 526   // Create the hash-cons'ing dictionary with top-level storage allocation
 527   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 528   current->set_type_dict(tdic);
 529 
 530   // Transfer the shared types.
 531   DictI i(_shared_type_dict);
 532   for( ; i.test(); ++i ) {
 533     Type* t = (Type*)i._value;
 534     tdic->Insert(t,t);  // New Type, insert into Type table
 535   }
 536 }
 537 
 538 //------------------------------hashcons---------------------------------------
 539 // Do the hash-cons trick.  If the Type already exists in the type table,
 540 // delete the current Type and return the existing Type.  Otherwise stick the
 541 // current Type in the Type table.
 542 const Type *Type::hashcons(void) {
 543   debug_only(base());           // Check the assertion in Type::base().
 544   // Look up the Type in the Type dictionary
 545   Dict *tdic = type_dict();
 546   Type* old = (Type*)(tdic->Insert(this, this, false));
 547   if( old ) {                   // Pre-existing Type?
 548     if( old != this )           // Yes, this guy is not the pre-existing?
 549       delete this;              // Yes, Nuke this guy
 550     assert( old->_dual, "" );
 551     return old;                 // Return pre-existing
 552   }
 553 
 554   // Every type has a dual (to make my lattice symmetric).
 555   // Since we just discovered a new Type, compute its dual right now.
 556   assert( !_dual, "" );         // No dual yet
 557   _dual = xdual();              // Compute the dual
 558   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 559     _dual = this;
 560     return this;
 561   }
 562   assert( !_dual->_dual, "" );  // No reverse dual yet
 563   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 564   // New Type, insert into Type table
 565   tdic->Insert((void*)_dual,(void*)_dual);
 566   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 567 #ifdef ASSERT
 568   Type *dual_dual = (Type*)_dual->xdual();
 569   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 570   delete dual_dual;
 571 #endif
 572   return this;                  // Return new Type
 573 }
 574 
 575 //------------------------------eq---------------------------------------------
 576 // Structural equality check for Type representations
 577 bool Type::eq( const Type * ) const {
 578   return true;                  // Nothing else can go wrong
 579 }
 580 
 581 //------------------------------hash-------------------------------------------
 582 // Type-specific hashing function.
 583 int Type::hash(void) const {
 584   return _base;
 585 }
 586 
 587 //------------------------------is_finite--------------------------------------
 588 // Has a finite value
 589 bool Type::is_finite() const {
 590   return false;
 591 }
 592 
 593 //------------------------------is_nan-----------------------------------------
 594 // Is not a number (NaN)
 595 bool Type::is_nan()    const {
 596   return false;
 597 }
 598 
 599 //----------------------interface_vs_oop---------------------------------------
 600 #ifdef ASSERT
 601 bool Type::interface_vs_oop_helper(const Type *t) const {
 602   bool result = false;
 603 
 604   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 605   const TypePtr*    t_ptr =    t->make_ptr();
 606   if( this_ptr == NULL || t_ptr == NULL )
 607     return result;
 608 
 609   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 610   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 611   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 612     bool this_interface = this_inst->klass()->is_interface();
 613     bool    t_interface =    t_inst->klass()->is_interface();
 614     result = this_interface ^ t_interface;
 615   }
 616 
 617   return result;
 618 }
 619 
 620 bool Type::interface_vs_oop(const Type *t) const {
 621   if (interface_vs_oop_helper(t)) {
 622     return true;
 623   }
 624   // Now check the speculative parts as well
 625   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 626   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 627   if (this_spec != NULL && t_spec != NULL) {
 628     if (this_spec->interface_vs_oop_helper(t_spec)) {
 629       return true;
 630     }
 631     return false;
 632   }
 633   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 634     return true;
 635   }
 636   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 637     return true;
 638   }
 639   return false;
 640 }
 641 
 642 #endif
 643 
 644 //------------------------------meet-------------------------------------------
 645 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 646 // commutative and the lattice is symmetric.
 647 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 648   if (isa_narrowoop() && t->isa_narrowoop()) {
 649     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 650     return result->make_narrowoop();
 651   }
 652   if (isa_narrowklass() && t->isa_narrowklass()) {
 653     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 654     return result->make_narrowklass();
 655   }
 656 
 657   const Type *this_t = maybe_remove_speculative(include_speculative);
 658   t = t->maybe_remove_speculative(include_speculative);
 659 
 660   const Type *mt = this_t->xmeet(t);
 661   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 662   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 663 #ifdef ASSERT
 664   assert(mt == t->xmeet(this_t), "meet not commutative");
 665   const Type* dual_join = mt->_dual;
 666   const Type *t2t    = dual_join->xmeet(t->_dual);
 667   const Type *t2this = dual_join->xmeet(this_t->_dual);
 668 
 669   // Interface meet Oop is Not Symmetric:
 670   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 671   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 672 
 673   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 674     tty->print_cr("=== Meet Not Symmetric ===");
 675     tty->print("t   =                   ");              t->dump(); tty->cr();
 676     tty->print("this=                   ");         this_t->dump(); tty->cr();
 677     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 678 
 679     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 680     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 681     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 682 
 683     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 684     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 685 
 686     fatal("meet not symmetric" );
 687   }
 688 #endif
 689   return mt;
 690 }
 691 
 692 //------------------------------xmeet------------------------------------------
 693 // Compute the MEET of two types.  It returns a new Type object.
 694 const Type *Type::xmeet( const Type *t ) const {
 695   // Perform a fast test for common case; meeting the same types together.
 696   if( this == t ) return this;  // Meeting same type-rep?
 697 
 698   // Meeting TOP with anything?
 699   if( _base == Top ) return t;
 700 
 701   // Meeting BOTTOM with anything?
 702   if( _base == Bottom ) return BOTTOM;
 703 
 704   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 705   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 706   switch (t->base()) {  // Switch on original type
 707 
 708   // Cut in half the number of cases I must handle.  Only need cases for when
 709   // the given enum "t->type" is less than or equal to the local enum "type".
 710   case FloatCon:
 711   case DoubleCon:
 712   case Int:
 713   case Long:
 714     return t->xmeet(this);
 715 
 716   case OopPtr:
 717     return t->xmeet(this);
 718 
 719   case InstPtr:
 720     return t->xmeet(this);
 721 
 722   case MetadataPtr:
 723   case KlassPtr:
 724     return t->xmeet(this);
 725 
 726   case AryPtr:
 727     return t->xmeet(this);
 728 
 729   case NarrowOop:
 730     return t->xmeet(this);
 731 
 732   case NarrowKlass:
 733     return t->xmeet(this);
 734 
 735   case Bad:                     // Type check
 736   default:                      // Bogus type not in lattice
 737     typerr(t);
 738     return Type::BOTTOM;
 739 
 740   case Bottom:                  // Ye Olde Default
 741     return t;
 742 
 743   case FloatTop:
 744     if( _base == FloatTop ) return this;
 745   case FloatBot:                // Float
 746     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 747     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 748     typerr(t);
 749     return Type::BOTTOM;
 750 
 751   case DoubleTop:
 752     if( _base == DoubleTop ) return this;
 753   case DoubleBot:               // Double
 754     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 755     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 756     typerr(t);
 757     return Type::BOTTOM;
 758 
 759   // These next few cases must match exactly or it is a compile-time error.
 760   case Control:                 // Control of code
 761   case Abio:                    // State of world outside of program
 762   case Memory:
 763     if( _base == t->_base )  return this;
 764     typerr(t);
 765     return Type::BOTTOM;
 766 
 767   case Top:                     // Top of the lattice
 768     return this;
 769   }
 770 
 771   // The type is unchanged
 772   return this;
 773 }
 774 
 775 //-----------------------------filter------------------------------------------
 776 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
 777   const Type* ft = join_helper(kills, include_speculative);
 778   if (ft->empty())
 779     return Type::TOP;           // Canonical empty value
 780   return ft;
 781 }
 782 
 783 //------------------------------xdual------------------------------------------
 784 // Compute dual right now.
 785 const Type::TYPES Type::dual_type[Type::lastype] = {
 786   Bad,          // Bad
 787   Control,      // Control
 788   Bottom,       // Top
 789   Bad,          // Int - handled in v-call
 790   Bad,          // Long - handled in v-call
 791   Half,         // Half
 792   Bad,          // NarrowOop - handled in v-call
 793   Bad,          // NarrowKlass - handled in v-call
 794 
 795   Bad,          // Tuple - handled in v-call
 796   Bad,          // Array - handled in v-call
 797   Bad,          // VectorS - handled in v-call
 798   Bad,          // VectorD - handled in v-call
 799   Bad,          // VectorX - handled in v-call
 800   Bad,          // VectorY - handled in v-call
 801 
 802   Bad,          // AnyPtr - handled in v-call
 803   Bad,          // RawPtr - handled in v-call
 804   Bad,          // OopPtr - handled in v-call
 805   Bad,          // InstPtr - handled in v-call
 806   Bad,          // AryPtr - handled in v-call
 807 
 808   Bad,          //  MetadataPtr - handled in v-call
 809   Bad,          // KlassPtr - handled in v-call
 810 
 811   Bad,          // Function - handled in v-call
 812   Abio,         // Abio
 813   Return_Address,// Return_Address
 814   Memory,       // Memory
 815   FloatBot,     // FloatTop
 816   FloatCon,     // FloatCon
 817   FloatTop,     // FloatBot
 818   DoubleBot,    // DoubleTop
 819   DoubleCon,    // DoubleCon
 820   DoubleTop,    // DoubleBot
 821   Top           // Bottom
 822 };
 823 
 824 const Type *Type::xdual() const {
 825   // Note: the base() accessor asserts the sanity of _base.
 826   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
 827   return new Type(_type_info[_base].dual_type);
 828 }
 829 
 830 //------------------------------has_memory-------------------------------------
 831 bool Type::has_memory() const {
 832   Type::TYPES tx = base();
 833   if (tx == Memory) return true;
 834   if (tx == Tuple) {
 835     const TypeTuple *t = is_tuple();
 836     for (uint i=0; i < t->cnt(); i++) {
 837       tx = t->field_at(i)->base();
 838       if (tx == Memory)  return true;
 839     }
 840   }
 841   return false;
 842 }
 843 
 844 #ifndef PRODUCT
 845 //------------------------------dump2------------------------------------------
 846 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
 847   st->print("%s", _type_info[_base].msg);
 848 }
 849 
 850 //------------------------------dump-------------------------------------------
 851 void Type::dump_on(outputStream *st) const {
 852   ResourceMark rm;
 853   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
 854   dump2(d,1, st);
 855   if (is_ptr_to_narrowoop()) {
 856     st->print(" [narrow]");
 857   } else if (is_ptr_to_narrowklass()) {
 858     st->print(" [narrowklass]");
 859   }
 860 }
 861 #endif
 862 
 863 //------------------------------singleton--------------------------------------
 864 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 865 // constants (Ldi nodes).  Singletons are integer, float or double constants.
 866 bool Type::singleton(void) const {
 867   return _base == Top || _base == Half;
 868 }
 869 
 870 //------------------------------empty------------------------------------------
 871 // TRUE if Type is a type with no values, FALSE otherwise.
 872 bool Type::empty(void) const {
 873   switch (_base) {
 874   case DoubleTop:
 875   case FloatTop:
 876   case Top:
 877     return true;
 878 
 879   case Half:
 880   case Abio:
 881   case Return_Address:
 882   case Memory:
 883   case Bottom:
 884   case FloatBot:
 885   case DoubleBot:
 886     return false;  // never a singleton, therefore never empty
 887   }
 888 
 889   ShouldNotReachHere();
 890   return false;
 891 }
 892 
 893 //------------------------------dump_stats-------------------------------------
 894 // Dump collected statistics to stderr
 895 #ifndef PRODUCT
 896 void Type::dump_stats() {
 897   tty->print("Types made: %d\n", type_dict()->Size());
 898 }
 899 #endif
 900 
 901 //------------------------------typerr-----------------------------------------
 902 void Type::typerr( const Type *t ) const {
 903 #ifndef PRODUCT
 904   tty->print("\nError mixing types: ");
 905   dump();
 906   tty->print(" and ");
 907   t->dump();
 908   tty->print("\n");
 909 #endif
 910   ShouldNotReachHere();
 911 }
 912 
 913 
 914 //=============================================================================
 915 // Convenience common pre-built types.
 916 const TypeF *TypeF::ZERO;       // Floating point zero
 917 const TypeF *TypeF::ONE;        // Floating point one
 918 
 919 //------------------------------make-------------------------------------------
 920 // Create a float constant
 921 const TypeF *TypeF::make(float f) {
 922   return (TypeF*)(new TypeF(f))->hashcons();
 923 }
 924 
 925 //------------------------------meet-------------------------------------------
 926 // Compute the MEET of two types.  It returns a new Type object.
 927 const Type *TypeF::xmeet( const Type *t ) const {
 928   // Perform a fast test for common case; meeting the same types together.
 929   if( this == t ) return this;  // Meeting same type-rep?
 930 
 931   // Current "this->_base" is FloatCon
 932   switch (t->base()) {          // Switch on original type
 933   case AnyPtr:                  // Mixing with oops happens when javac
 934   case RawPtr:                  // reuses local variables
 935   case OopPtr:
 936   case InstPtr:
 937   case AryPtr:
 938   case MetadataPtr:
 939   case KlassPtr:
 940   case NarrowOop:
 941   case NarrowKlass:
 942   case Int:
 943   case Long:
 944   case DoubleTop:
 945   case DoubleCon:
 946   case DoubleBot:
 947   case Bottom:                  // Ye Olde Default
 948     return Type::BOTTOM;
 949 
 950   case FloatBot:
 951     return t;
 952 
 953   default:                      // All else is a mistake
 954     typerr(t);
 955 
 956   case FloatCon:                // Float-constant vs Float-constant?
 957     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
 958                                 // must compare bitwise as positive zero, negative zero and NaN have
 959                                 // all the same representation in C++
 960       return FLOAT;             // Return generic float
 961                                 // Equal constants
 962   case Top:
 963   case FloatTop:
 964     break;                      // Return the float constant
 965   }
 966   return this;                  // Return the float constant
 967 }
 968 
 969 //------------------------------xdual------------------------------------------
 970 // Dual: symmetric
 971 const Type *TypeF::xdual() const {
 972   return this;
 973 }
 974 
 975 //------------------------------eq---------------------------------------------
 976 // Structural equality check for Type representations
 977 bool TypeF::eq( const Type *t ) const {
 978   if( g_isnan(_f) ||
 979       g_isnan(t->getf()) ) {
 980     // One or both are NANs.  If both are NANs return true, else false.
 981     return (g_isnan(_f) && g_isnan(t->getf()));
 982   }
 983   if (_f == t->getf()) {
 984     // (NaN is impossible at this point, since it is not equal even to itself)
 985     if (_f == 0.0) {
 986       // difference between positive and negative zero
 987       if (jint_cast(_f) != jint_cast(t->getf()))  return false;
 988     }
 989     return true;
 990   }
 991   return false;
 992 }
 993 
 994 //------------------------------hash-------------------------------------------
 995 // Type-specific hashing function.
 996 int TypeF::hash(void) const {
 997   return *(int*)(&_f);
 998 }
 999 
1000 //------------------------------is_finite--------------------------------------
1001 // Has a finite value
1002 bool TypeF::is_finite() const {
1003   return g_isfinite(getf()) != 0;
1004 }
1005 
1006 //------------------------------is_nan-----------------------------------------
1007 // Is not a number (NaN)
1008 bool TypeF::is_nan()    const {
1009   return g_isnan(getf()) != 0;
1010 }
1011 
1012 //------------------------------dump2------------------------------------------
1013 // Dump float constant Type
1014 #ifndef PRODUCT
1015 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1016   Type::dump2(d,depth, st);
1017   st->print("%f", _f);
1018 }
1019 #endif
1020 
1021 //------------------------------singleton--------------------------------------
1022 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1023 // constants (Ldi nodes).  Singletons are integer, float or double constants
1024 // or a single symbol.
1025 bool TypeF::singleton(void) const {
1026   return true;                  // Always a singleton
1027 }
1028 
1029 bool TypeF::empty(void) const {
1030   return false;                 // always exactly a singleton
1031 }
1032 
1033 //=============================================================================
1034 // Convenience common pre-built types.
1035 const TypeD *TypeD::ZERO;       // Floating point zero
1036 const TypeD *TypeD::ONE;        // Floating point one
1037 
1038 //------------------------------make-------------------------------------------
1039 const TypeD *TypeD::make(double d) {
1040   return (TypeD*)(new TypeD(d))->hashcons();
1041 }
1042 
1043 //------------------------------meet-------------------------------------------
1044 // Compute the MEET of two types.  It returns a new Type object.
1045 const Type *TypeD::xmeet( const Type *t ) const {
1046   // Perform a fast test for common case; meeting the same types together.
1047   if( this == t ) return this;  // Meeting same type-rep?
1048 
1049   // Current "this->_base" is DoubleCon
1050   switch (t->base()) {          // Switch on original type
1051   case AnyPtr:                  // Mixing with oops happens when javac
1052   case RawPtr:                  // reuses local variables
1053   case OopPtr:
1054   case InstPtr:
1055   case AryPtr:
1056   case MetadataPtr:
1057   case KlassPtr:
1058   case NarrowOop:
1059   case NarrowKlass:
1060   case Int:
1061   case Long:
1062   case FloatTop:
1063   case FloatCon:
1064   case FloatBot:
1065   case Bottom:                  // Ye Olde Default
1066     return Type::BOTTOM;
1067 
1068   case DoubleBot:
1069     return t;
1070 
1071   default:                      // All else is a mistake
1072     typerr(t);
1073 
1074   case DoubleCon:               // Double-constant vs Double-constant?
1075     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1076       return DOUBLE;            // Return generic double
1077   case Top:
1078   case DoubleTop:
1079     break;
1080   }
1081   return this;                  // Return the double constant
1082 }
1083 
1084 //------------------------------xdual------------------------------------------
1085 // Dual: symmetric
1086 const Type *TypeD::xdual() const {
1087   return this;
1088 }
1089 
1090 //------------------------------eq---------------------------------------------
1091 // Structural equality check for Type representations
1092 bool TypeD::eq( const Type *t ) const {
1093   if( g_isnan(_d) ||
1094       g_isnan(t->getd()) ) {
1095     // One or both are NANs.  If both are NANs return true, else false.
1096     return (g_isnan(_d) && g_isnan(t->getd()));
1097   }
1098   if (_d == t->getd()) {
1099     // (NaN is impossible at this point, since it is not equal even to itself)
1100     if (_d == 0.0) {
1101       // difference between positive and negative zero
1102       if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
1103     }
1104     return true;
1105   }
1106   return false;
1107 }
1108 
1109 //------------------------------hash-------------------------------------------
1110 // Type-specific hashing function.
1111 int TypeD::hash(void) const {
1112   return *(int*)(&_d);
1113 }
1114 
1115 //------------------------------is_finite--------------------------------------
1116 // Has a finite value
1117 bool TypeD::is_finite() const {
1118   return g_isfinite(getd()) != 0;
1119 }
1120 
1121 //------------------------------is_nan-----------------------------------------
1122 // Is not a number (NaN)
1123 bool TypeD::is_nan()    const {
1124   return g_isnan(getd()) != 0;
1125 }
1126 
1127 //------------------------------dump2------------------------------------------
1128 // Dump double constant Type
1129 #ifndef PRODUCT
1130 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1131   Type::dump2(d,depth,st);
1132   st->print("%f", _d);
1133 }
1134 #endif
1135 
1136 //------------------------------singleton--------------------------------------
1137 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1138 // constants (Ldi nodes).  Singletons are integer, float or double constants
1139 // or a single symbol.
1140 bool TypeD::singleton(void) const {
1141   return true;                  // Always a singleton
1142 }
1143 
1144 bool TypeD::empty(void) const {
1145   return false;                 // always exactly a singleton
1146 }
1147 
1148 //=============================================================================
1149 // Convience common pre-built types.
1150 const TypeInt *TypeInt::MINUS_1;// -1
1151 const TypeInt *TypeInt::ZERO;   // 0
1152 const TypeInt *TypeInt::ONE;    // 1
1153 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1154 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1155 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1156 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1157 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1158 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1159 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1160 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1161 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1162 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1163 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1164 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1165 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1166 const TypeInt *TypeInt::INT;    // 32-bit integers
1167 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1168 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1169 
1170 //------------------------------TypeInt----------------------------------------
1171 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1172 }
1173 
1174 //------------------------------make-------------------------------------------
1175 const TypeInt *TypeInt::make( jint lo ) {
1176   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1177 }
1178 
1179 static int normalize_int_widen( jint lo, jint hi, int w ) {
1180   // Certain normalizations keep us sane when comparing types.
1181   // The 'SMALLINT' covers constants and also CC and its relatives.
1182   if (lo <= hi) {
1183     if ((juint)(hi - lo) <= SMALLINT)  w = Type::WidenMin;
1184     if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1185   } else {
1186     if ((juint)(lo - hi) <= SMALLINT)  w = Type::WidenMin;
1187     if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1188   }
1189   return w;
1190 }
1191 
1192 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1193   w = normalize_int_widen(lo, hi, w);
1194   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1195 }
1196 
1197 //------------------------------meet-------------------------------------------
1198 // Compute the MEET of two types.  It returns a new Type representation object
1199 // with reference count equal to the number of Types pointing at it.
1200 // Caller should wrap a Types around it.
1201 const Type *TypeInt::xmeet( const Type *t ) const {
1202   // Perform a fast test for common case; meeting the same types together.
1203   if( this == t ) return this;  // Meeting same type?
1204 
1205   // Currently "this->_base" is a TypeInt
1206   switch (t->base()) {          // Switch on original type
1207   case AnyPtr:                  // Mixing with oops happens when javac
1208   case RawPtr:                  // reuses local variables
1209   case OopPtr:
1210   case InstPtr:
1211   case AryPtr:
1212   case MetadataPtr:
1213   case KlassPtr:
1214   case NarrowOop:
1215   case NarrowKlass:
1216   case Long:
1217   case FloatTop:
1218   case FloatCon:
1219   case FloatBot:
1220   case DoubleTop:
1221   case DoubleCon:
1222   case DoubleBot:
1223   case Bottom:                  // Ye Olde Default
1224     return Type::BOTTOM;
1225   default:                      // All else is a mistake
1226     typerr(t);
1227   case Top:                     // No change
1228     return this;
1229   case Int:                     // Int vs Int?
1230     break;
1231   }
1232 
1233   // Expand covered set
1234   const TypeInt *r = t->is_int();
1235   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1236 }
1237 
1238 //------------------------------xdual------------------------------------------
1239 // Dual: reverse hi & lo; flip widen
1240 const Type *TypeInt::xdual() const {
1241   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1242   return new TypeInt(_hi,_lo,w);
1243 }
1244 
1245 //------------------------------widen------------------------------------------
1246 // Only happens for optimistic top-down optimizations.
1247 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1248   // Coming from TOP or such; no widening
1249   if( old->base() != Int ) return this;
1250   const TypeInt *ot = old->is_int();
1251 
1252   // If new guy is equal to old guy, no widening
1253   if( _lo == ot->_lo && _hi == ot->_hi )
1254     return old;
1255 
1256   // If new guy contains old, then we widened
1257   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1258     // New contains old
1259     // If new guy is already wider than old, no widening
1260     if( _widen > ot->_widen ) return this;
1261     // If old guy was a constant, do not bother
1262     if (ot->_lo == ot->_hi)  return this;
1263     // Now widen new guy.
1264     // Check for widening too far
1265     if (_widen == WidenMax) {
1266       int max = max_jint;
1267       int min = min_jint;
1268       if (limit->isa_int()) {
1269         max = limit->is_int()->_hi;
1270         min = limit->is_int()->_lo;
1271       }
1272       if (min < _lo && _hi < max) {
1273         // If neither endpoint is extremal yet, push out the endpoint
1274         // which is closer to its respective limit.
1275         if (_lo >= 0 ||                 // easy common case
1276             (juint)(_lo - min) >= (juint)(max - _hi)) {
1277           // Try to widen to an unsigned range type of 31 bits:
1278           return make(_lo, max, WidenMax);
1279         } else {
1280           return make(min, _hi, WidenMax);
1281         }
1282       }
1283       return TypeInt::INT;
1284     }
1285     // Returned widened new guy
1286     return make(_lo,_hi,_widen+1);
1287   }
1288 
1289   // If old guy contains new, then we probably widened too far & dropped to
1290   // bottom.  Return the wider fellow.
1291   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1292     return old;
1293 
1294   //fatal("Integer value range is not subset");
1295   //return this;
1296   return TypeInt::INT;
1297 }
1298 
1299 //------------------------------narrow---------------------------------------
1300 // Only happens for pessimistic optimizations.
1301 const Type *TypeInt::narrow( const Type *old ) const {
1302   if (_lo >= _hi)  return this;   // already narrow enough
1303   if (old == NULL)  return this;
1304   const TypeInt* ot = old->isa_int();
1305   if (ot == NULL)  return this;
1306   jint olo = ot->_lo;
1307   jint ohi = ot->_hi;
1308 
1309   // If new guy is equal to old guy, no narrowing
1310   if (_lo == olo && _hi == ohi)  return old;
1311 
1312   // If old guy was maximum range, allow the narrowing
1313   if (olo == min_jint && ohi == max_jint)  return this;
1314 
1315   if (_lo < olo || _hi > ohi)
1316     return this;                // doesn't narrow; pretty wierd
1317 
1318   // The new type narrows the old type, so look for a "death march".
1319   // See comments on PhaseTransform::saturate.
1320   juint nrange = _hi - _lo;
1321   juint orange = ohi - olo;
1322   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1323     // Use the new type only if the range shrinks a lot.
1324     // We do not want the optimizer computing 2^31 point by point.
1325     return old;
1326   }
1327 
1328   return this;
1329 }
1330 
1331 //-----------------------------filter------------------------------------------
1332 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1333   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1334   if (ft == NULL || ft->empty())
1335     return Type::TOP;           // Canonical empty value
1336   if (ft->_widen < this->_widen) {
1337     // Do not allow the value of kill->_widen to affect the outcome.
1338     // The widen bits must be allowed to run freely through the graph.
1339     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1340   }
1341   return ft;
1342 }
1343 
1344 //------------------------------eq---------------------------------------------
1345 // Structural equality check for Type representations
1346 bool TypeInt::eq( const Type *t ) const {
1347   const TypeInt *r = t->is_int(); // Handy access
1348   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1349 }
1350 
1351 //------------------------------hash-------------------------------------------
1352 // Type-specific hashing function.
1353 int TypeInt::hash(void) const {
1354   return _lo+_hi+_widen+(int)Type::Int;
1355 }
1356 
1357 //------------------------------is_finite--------------------------------------
1358 // Has a finite value
1359 bool TypeInt::is_finite() const {
1360   return true;
1361 }
1362 
1363 //------------------------------dump2------------------------------------------
1364 // Dump TypeInt
1365 #ifndef PRODUCT
1366 static const char* intname(char* buf, jint n) {
1367   if (n == min_jint)
1368     return "min";
1369   else if (n < min_jint + 10000)
1370     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1371   else if (n == max_jint)
1372     return "max";
1373   else if (n > max_jint - 10000)
1374     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1375   else
1376     sprintf(buf, INT32_FORMAT, n);
1377   return buf;
1378 }
1379 
1380 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1381   char buf[40], buf2[40];
1382   if (_lo == min_jint && _hi == max_jint)
1383     st->print("int");
1384   else if (is_con())
1385     st->print("int:%s", intname(buf, get_con()));
1386   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1387     st->print("bool");
1388   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1389     st->print("byte");
1390   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1391     st->print("char");
1392   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1393     st->print("short");
1394   else if (_hi == max_jint)
1395     st->print("int:>=%s", intname(buf, _lo));
1396   else if (_lo == min_jint)
1397     st->print("int:<=%s", intname(buf, _hi));
1398   else
1399     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1400 
1401   if (_widen != 0 && this != TypeInt::INT)
1402     st->print(":%.*s", _widen, "wwww");
1403 }
1404 #endif
1405 
1406 //------------------------------singleton--------------------------------------
1407 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1408 // constants.
1409 bool TypeInt::singleton(void) const {
1410   return _lo >= _hi;
1411 }
1412 
1413 bool TypeInt::empty(void) const {
1414   return _lo > _hi;
1415 }
1416 
1417 //=============================================================================
1418 // Convenience common pre-built types.
1419 const TypeLong *TypeLong::MINUS_1;// -1
1420 const TypeLong *TypeLong::ZERO; // 0
1421 const TypeLong *TypeLong::ONE;  // 1
1422 const TypeLong *TypeLong::POS;  // >=0
1423 const TypeLong *TypeLong::LONG; // 64-bit integers
1424 const TypeLong *TypeLong::INT;  // 32-bit subrange
1425 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1426 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1427 
1428 //------------------------------TypeLong---------------------------------------
1429 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1430 }
1431 
1432 //------------------------------make-------------------------------------------
1433 const TypeLong *TypeLong::make( jlong lo ) {
1434   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1435 }
1436 
1437 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1438   // Certain normalizations keep us sane when comparing types.
1439   // The 'SMALLINT' covers constants.
1440   if (lo <= hi) {
1441     if ((julong)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
1442     if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1443   } else {
1444     if ((julong)(lo - hi) <= SMALLINT)   w = Type::WidenMin;
1445     if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1446   }
1447   return w;
1448 }
1449 
1450 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1451   w = normalize_long_widen(lo, hi, w);
1452   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1453 }
1454 
1455 
1456 //------------------------------meet-------------------------------------------
1457 // Compute the MEET of two types.  It returns a new Type representation object
1458 // with reference count equal to the number of Types pointing at it.
1459 // Caller should wrap a Types around it.
1460 const Type *TypeLong::xmeet( const Type *t ) const {
1461   // Perform a fast test for common case; meeting the same types together.
1462   if( this == t ) return this;  // Meeting same type?
1463 
1464   // Currently "this->_base" is a TypeLong
1465   switch (t->base()) {          // Switch on original type
1466   case AnyPtr:                  // Mixing with oops happens when javac
1467   case RawPtr:                  // reuses local variables
1468   case OopPtr:
1469   case InstPtr:
1470   case AryPtr:
1471   case MetadataPtr:
1472   case KlassPtr:
1473   case NarrowOop:
1474   case NarrowKlass:
1475   case Int:
1476   case FloatTop:
1477   case FloatCon:
1478   case FloatBot:
1479   case DoubleTop:
1480   case DoubleCon:
1481   case DoubleBot:
1482   case Bottom:                  // Ye Olde Default
1483     return Type::BOTTOM;
1484   default:                      // All else is a mistake
1485     typerr(t);
1486   case Top:                     // No change
1487     return this;
1488   case Long:                    // Long vs Long?
1489     break;
1490   }
1491 
1492   // Expand covered set
1493   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1494   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1495 }
1496 
1497 //------------------------------xdual------------------------------------------
1498 // Dual: reverse hi & lo; flip widen
1499 const Type *TypeLong::xdual() const {
1500   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1501   return new TypeLong(_hi,_lo,w);
1502 }
1503 
1504 //------------------------------widen------------------------------------------
1505 // Only happens for optimistic top-down optimizations.
1506 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1507   // Coming from TOP or such; no widening
1508   if( old->base() != Long ) return this;
1509   const TypeLong *ot = old->is_long();
1510 
1511   // If new guy is equal to old guy, no widening
1512   if( _lo == ot->_lo && _hi == ot->_hi )
1513     return old;
1514 
1515   // If new guy contains old, then we widened
1516   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1517     // New contains old
1518     // If new guy is already wider than old, no widening
1519     if( _widen > ot->_widen ) return this;
1520     // If old guy was a constant, do not bother
1521     if (ot->_lo == ot->_hi)  return this;
1522     // Now widen new guy.
1523     // Check for widening too far
1524     if (_widen == WidenMax) {
1525       jlong max = max_jlong;
1526       jlong min = min_jlong;
1527       if (limit->isa_long()) {
1528         max = limit->is_long()->_hi;
1529         min = limit->is_long()->_lo;
1530       }
1531       if (min < _lo && _hi < max) {
1532         // If neither endpoint is extremal yet, push out the endpoint
1533         // which is closer to its respective limit.
1534         if (_lo >= 0 ||                 // easy common case
1535             (julong)(_lo - min) >= (julong)(max - _hi)) {
1536           // Try to widen to an unsigned range type of 32/63 bits:
1537           if (max >= max_juint && _hi < max_juint)
1538             return make(_lo, max_juint, WidenMax);
1539           else
1540             return make(_lo, max, WidenMax);
1541         } else {
1542           return make(min, _hi, WidenMax);
1543         }
1544       }
1545       return TypeLong::LONG;
1546     }
1547     // Returned widened new guy
1548     return make(_lo,_hi,_widen+1);
1549   }
1550 
1551   // If old guy contains new, then we probably widened too far & dropped to
1552   // bottom.  Return the wider fellow.
1553   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1554     return old;
1555 
1556   //  fatal("Long value range is not subset");
1557   // return this;
1558   return TypeLong::LONG;
1559 }
1560 
1561 //------------------------------narrow----------------------------------------
1562 // Only happens for pessimistic optimizations.
1563 const Type *TypeLong::narrow( const Type *old ) const {
1564   if (_lo >= _hi)  return this;   // already narrow enough
1565   if (old == NULL)  return this;
1566   const TypeLong* ot = old->isa_long();
1567   if (ot == NULL)  return this;
1568   jlong olo = ot->_lo;
1569   jlong ohi = ot->_hi;
1570 
1571   // If new guy is equal to old guy, no narrowing
1572   if (_lo == olo && _hi == ohi)  return old;
1573 
1574   // If old guy was maximum range, allow the narrowing
1575   if (olo == min_jlong && ohi == max_jlong)  return this;
1576 
1577   if (_lo < olo || _hi > ohi)
1578     return this;                // doesn't narrow; pretty wierd
1579 
1580   // The new type narrows the old type, so look for a "death march".
1581   // See comments on PhaseTransform::saturate.
1582   julong nrange = _hi - _lo;
1583   julong orange = ohi - olo;
1584   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1585     // Use the new type only if the range shrinks a lot.
1586     // We do not want the optimizer computing 2^31 point by point.
1587     return old;
1588   }
1589 
1590   return this;
1591 }
1592 
1593 //-----------------------------filter------------------------------------------
1594 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1595   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1596   if (ft == NULL || ft->empty())
1597     return Type::TOP;           // Canonical empty value
1598   if (ft->_widen < this->_widen) {
1599     // Do not allow the value of kill->_widen to affect the outcome.
1600     // The widen bits must be allowed to run freely through the graph.
1601     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1602   }
1603   return ft;
1604 }
1605 
1606 //------------------------------eq---------------------------------------------
1607 // Structural equality check for Type representations
1608 bool TypeLong::eq( const Type *t ) const {
1609   const TypeLong *r = t->is_long(); // Handy access
1610   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1611 }
1612 
1613 //------------------------------hash-------------------------------------------
1614 // Type-specific hashing function.
1615 int TypeLong::hash(void) const {
1616   return (int)(_lo+_hi+_widen+(int)Type::Long);
1617 }
1618 
1619 //------------------------------is_finite--------------------------------------
1620 // Has a finite value
1621 bool TypeLong::is_finite() const {
1622   return true;
1623 }
1624 
1625 //------------------------------dump2------------------------------------------
1626 // Dump TypeLong
1627 #ifndef PRODUCT
1628 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1629   if (n > x) {
1630     if (n >= x + 10000)  return NULL;
1631     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1632   } else if (n < x) {
1633     if (n <= x - 10000)  return NULL;
1634     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1635   } else {
1636     return xname;
1637   }
1638   return buf;
1639 }
1640 
1641 static const char* longname(char* buf, jlong n) {
1642   const char* str;
1643   if (n == min_jlong)
1644     return "min";
1645   else if (n < min_jlong + 10000)
1646     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1647   else if (n == max_jlong)
1648     return "max";
1649   else if (n > max_jlong - 10000)
1650     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1651   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1652     return str;
1653   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1654     return str;
1655   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1656     return str;
1657   else
1658     sprintf(buf, JLONG_FORMAT, n);
1659   return buf;
1660 }
1661 
1662 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1663   char buf[80], buf2[80];
1664   if (_lo == min_jlong && _hi == max_jlong)
1665     st->print("long");
1666   else if (is_con())
1667     st->print("long:%s", longname(buf, get_con()));
1668   else if (_hi == max_jlong)
1669     st->print("long:>=%s", longname(buf, _lo));
1670   else if (_lo == min_jlong)
1671     st->print("long:<=%s", longname(buf, _hi));
1672   else
1673     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1674 
1675   if (_widen != 0 && this != TypeLong::LONG)
1676     st->print(":%.*s", _widen, "wwww");
1677 }
1678 #endif
1679 
1680 //------------------------------singleton--------------------------------------
1681 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1682 // constants
1683 bool TypeLong::singleton(void) const {
1684   return _lo >= _hi;
1685 }
1686 
1687 bool TypeLong::empty(void) const {
1688   return _lo > _hi;
1689 }
1690 
1691 //=============================================================================
1692 // Convenience common pre-built types.
1693 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1694 const TypeTuple *TypeTuple::IFFALSE;
1695 const TypeTuple *TypeTuple::IFTRUE;
1696 const TypeTuple *TypeTuple::IFNEITHER;
1697 const TypeTuple *TypeTuple::LOOPBODY;
1698 const TypeTuple *TypeTuple::MEMBAR;
1699 const TypeTuple *TypeTuple::STORECONDITIONAL;
1700 const TypeTuple *TypeTuple::START_I2C;
1701 const TypeTuple *TypeTuple::INT_PAIR;
1702 const TypeTuple *TypeTuple::LONG_PAIR;
1703 const TypeTuple *TypeTuple::INT_CC_PAIR;
1704 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1705 
1706 
1707 //------------------------------make-------------------------------------------
1708 // Make a TypeTuple from the range of a method signature
1709 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1710   ciType* return_type = sig->return_type();
1711   uint arg_cnt = return_type->size();
1712   const Type **field_array = fields(arg_cnt);
1713   switch (return_type->basic_type()) {
1714   case T_LONG:
1715     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1716     field_array[TypeFunc::Parms+1] = Type::HALF;
1717     break;
1718   case T_DOUBLE:
1719     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1720     field_array[TypeFunc::Parms+1] = Type::HALF;
1721     break;
1722   case T_OBJECT:
1723   case T_ARRAY:
1724   case T_BOOLEAN:
1725   case T_CHAR:
1726   case T_FLOAT:
1727   case T_BYTE:
1728   case T_SHORT:
1729   case T_INT:
1730     field_array[TypeFunc::Parms] = get_const_type(return_type);
1731     break;
1732   case T_VOID:
1733     break;
1734   default:
1735     ShouldNotReachHere();
1736   }
1737   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1738 }
1739 
1740 // Make a TypeTuple from the domain of a method signature
1741 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1742   uint arg_cnt = sig->size();
1743 
1744   uint pos = TypeFunc::Parms;
1745   const Type **field_array;
1746   if (recv != NULL) {
1747     arg_cnt++;
1748     field_array = fields(arg_cnt);
1749     // Use get_const_type here because it respects UseUniqueSubclasses:
1750     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
1751   } else {
1752     field_array = fields(arg_cnt);
1753   }
1754 
1755   int i = 0;
1756   while (pos < TypeFunc::Parms + arg_cnt) {
1757     ciType* type = sig->type_at(i);
1758 
1759     switch (type->basic_type()) {
1760     case T_LONG:
1761       field_array[pos++] = TypeLong::LONG;
1762       field_array[pos++] = Type::HALF;
1763       break;
1764     case T_DOUBLE:
1765       field_array[pos++] = Type::DOUBLE;
1766       field_array[pos++] = Type::HALF;
1767       break;
1768     case T_OBJECT:
1769     case T_ARRAY:
1770     case T_BOOLEAN:
1771     case T_CHAR:
1772     case T_FLOAT:
1773     case T_BYTE:
1774     case T_SHORT:
1775     case T_INT:
1776       field_array[pos++] = get_const_type(type);
1777       break;
1778     default:
1779       ShouldNotReachHere();
1780     }
1781     i++;
1782   }
1783 
1784   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1785 }
1786 
1787 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1788   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1789 }
1790 
1791 //------------------------------fields-----------------------------------------
1792 // Subroutine call type with space allocated for argument types
1793 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
1794 const Type **TypeTuple::fields( uint arg_cnt ) {
1795   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1796   flds[TypeFunc::Control  ] = Type::CONTROL;
1797   flds[TypeFunc::I_O      ] = Type::ABIO;
1798   flds[TypeFunc::Memory   ] = Type::MEMORY;
1799   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1800   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1801 
1802   return flds;
1803 }
1804 
1805 //------------------------------meet-------------------------------------------
1806 // Compute the MEET of two types.  It returns a new Type object.
1807 const Type *TypeTuple::xmeet( const Type *t ) const {
1808   // Perform a fast test for common case; meeting the same types together.
1809   if( this == t ) return this;  // Meeting same type-rep?
1810 
1811   // Current "this->_base" is Tuple
1812   switch (t->base()) {          // switch on original type
1813 
1814   case Bottom:                  // Ye Olde Default
1815     return t;
1816 
1817   default:                      // All else is a mistake
1818     typerr(t);
1819 
1820   case Tuple: {                 // Meeting 2 signatures?
1821     const TypeTuple *x = t->is_tuple();
1822     assert( _cnt == x->_cnt, "" );
1823     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1824     for( uint i=0; i<_cnt; i++ )
1825       fields[i] = field_at(i)->xmeet( x->field_at(i) );
1826     return TypeTuple::make(_cnt,fields);
1827   }
1828   case Top:
1829     break;
1830   }
1831   return this;                  // Return the double constant
1832 }
1833 
1834 //------------------------------xdual------------------------------------------
1835 // Dual: compute field-by-field dual
1836 const Type *TypeTuple::xdual() const {
1837   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1838   for( uint i=0; i<_cnt; i++ )
1839     fields[i] = _fields[i]->dual();
1840   return new TypeTuple(_cnt,fields);
1841 }
1842 
1843 //------------------------------eq---------------------------------------------
1844 // Structural equality check for Type representations
1845 bool TypeTuple::eq( const Type *t ) const {
1846   const TypeTuple *s = (const TypeTuple *)t;
1847   if (_cnt != s->_cnt)  return false;  // Unequal field counts
1848   for (uint i = 0; i < _cnt; i++)
1849     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1850       return false;             // Missed
1851   return true;
1852 }
1853 
1854 //------------------------------hash-------------------------------------------
1855 // Type-specific hashing function.
1856 int TypeTuple::hash(void) const {
1857   intptr_t sum = _cnt;
1858   for( uint i=0; i<_cnt; i++ )
1859     sum += (intptr_t)_fields[i];     // Hash on pointers directly
1860   return sum;
1861 }
1862 
1863 //------------------------------dump2------------------------------------------
1864 // Dump signature Type
1865 #ifndef PRODUCT
1866 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1867   st->print("{");
1868   if( !depth || d[this] ) {     // Check for recursive print
1869     st->print("...}");
1870     return;
1871   }
1872   d.Insert((void*)this, (void*)this);   // Stop recursion
1873   if( _cnt ) {
1874     uint i;
1875     for( i=0; i<_cnt-1; i++ ) {
1876       st->print("%d:", i);
1877       _fields[i]->dump2(d, depth-1, st);
1878       st->print(", ");
1879     }
1880     st->print("%d:", i);
1881     _fields[i]->dump2(d, depth-1, st);
1882   }
1883   st->print("}");
1884 }
1885 #endif
1886 
1887 //------------------------------singleton--------------------------------------
1888 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1889 // constants (Ldi nodes).  Singletons are integer, float or double constants
1890 // or a single symbol.
1891 bool TypeTuple::singleton(void) const {
1892   return false;                 // Never a singleton
1893 }
1894 
1895 bool TypeTuple::empty(void) const {
1896   for( uint i=0; i<_cnt; i++ ) {
1897     if (_fields[i]->empty())  return true;
1898   }
1899   return false;
1900 }
1901 
1902 //=============================================================================
1903 // Convenience common pre-built types.
1904 
1905 inline const TypeInt* normalize_array_size(const TypeInt* size) {
1906   // Certain normalizations keep us sane when comparing types.
1907   // We do not want arrayOop variables to differ only by the wideness
1908   // of their index types.  Pick minimum wideness, since that is the
1909   // forced wideness of small ranges anyway.
1910   if (size->_widen != Type::WidenMin)
1911     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
1912   else
1913     return size;
1914 }
1915 
1916 //------------------------------make-------------------------------------------
1917 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
1918   if (UseCompressedOops && elem->isa_oopptr()) {
1919     elem = elem->make_narrowoop();
1920   }
1921   size = normalize_array_size(size);
1922   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
1923 }
1924 
1925 //------------------------------meet-------------------------------------------
1926 // Compute the MEET of two types.  It returns a new Type object.
1927 const Type *TypeAry::xmeet( const Type *t ) const {
1928   // Perform a fast test for common case; meeting the same types together.
1929   if( this == t ) return this;  // Meeting same type-rep?
1930 
1931   // Current "this->_base" is Ary
1932   switch (t->base()) {          // switch on original type
1933 
1934   case Bottom:                  // Ye Olde Default
1935     return t;
1936 
1937   default:                      // All else is a mistake
1938     typerr(t);
1939 
1940   case Array: {                 // Meeting 2 arrays?
1941     const TypeAry *a = t->is_ary();
1942     return TypeAry::make(_elem->meet_speculative(a->_elem),
1943                          _size->xmeet(a->_size)->is_int(),
1944                          _stable & a->_stable);
1945   }
1946   case Top:
1947     break;
1948   }
1949   return this;                  // Return the double constant
1950 }
1951 
1952 //------------------------------xdual------------------------------------------
1953 // Dual: compute field-by-field dual
1954 const Type *TypeAry::xdual() const {
1955   const TypeInt* size_dual = _size->dual()->is_int();
1956   size_dual = normalize_array_size(size_dual);
1957   return new TypeAry(_elem->dual(), size_dual, !_stable);
1958 }
1959 
1960 //------------------------------eq---------------------------------------------
1961 // Structural equality check for Type representations
1962 bool TypeAry::eq( const Type *t ) const {
1963   const TypeAry *a = (const TypeAry*)t;
1964   return _elem == a->_elem &&
1965     _stable == a->_stable &&
1966     _size == a->_size;
1967 }
1968 
1969 //------------------------------hash-------------------------------------------
1970 // Type-specific hashing function.
1971 int TypeAry::hash(void) const {
1972   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
1973 }
1974 
1975 /**
1976  * Return same type without a speculative part in the element
1977  */
1978 const Type* TypeAry::remove_speculative() const {
1979   return make(_elem->remove_speculative(), _size, _stable);
1980 }
1981 
1982 /**
1983  * Return same type with cleaned up speculative part of element
1984  */
1985 const Type* TypeAry::cleanup_speculative() const {
1986   return make(_elem->cleanup_speculative(), _size, _stable);
1987 }
1988 
1989 /**
1990  * Return same type but with a different inline depth (used for speculation)
1991  *
1992  * @param depth  depth to meet with
1993  */
1994 const TypePtr* TypePtr::with_inline_depth(int depth) const {
1995   if (!UseInlineDepthForSpeculativeTypes) {
1996     return this;
1997   }
1998   return make(AnyPtr, _ptr, _offset, _speculative, depth);
1999 }
2000 
2001 //----------------------interface_vs_oop---------------------------------------
2002 #ifdef ASSERT
2003 bool TypeAry::interface_vs_oop(const Type *t) const {
2004   const TypeAry* t_ary = t->is_ary();
2005   if (t_ary) {
2006     return _elem->interface_vs_oop(t_ary->_elem);
2007   }
2008   return false;
2009 }
2010 #endif
2011 
2012 //------------------------------dump2------------------------------------------
2013 #ifndef PRODUCT
2014 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2015   if (_stable)  st->print("stable:");
2016   _elem->dump2(d, depth, st);
2017   st->print("[");
2018   _size->dump2(d, depth, st);
2019   st->print("]");
2020 }
2021 #endif
2022 
2023 //------------------------------singleton--------------------------------------
2024 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2025 // constants (Ldi nodes).  Singletons are integer, float or double constants
2026 // or a single symbol.
2027 bool TypeAry::singleton(void) const {
2028   return false;                 // Never a singleton
2029 }
2030 
2031 bool TypeAry::empty(void) const {
2032   return _elem->empty() || _size->empty();
2033 }
2034 
2035 //--------------------------ary_must_be_exact----------------------------------
2036 bool TypeAry::ary_must_be_exact() const {
2037   if (!UseExactTypes)       return false;
2038   // This logic looks at the element type of an array, and returns true
2039   // if the element type is either a primitive or a final instance class.
2040   // In such cases, an array built on this ary must have no subclasses.
2041   if (_elem == BOTTOM)      return false;  // general array not exact
2042   if (_elem == TOP   )      return false;  // inverted general array not exact
2043   const TypeOopPtr*  toop = NULL;
2044   if (UseCompressedOops && _elem->isa_narrowoop()) {
2045     toop = _elem->make_ptr()->isa_oopptr();
2046   } else {
2047     toop = _elem->isa_oopptr();
2048   }
2049   if (!toop)                return true;   // a primitive type, like int
2050   ciKlass* tklass = toop->klass();
2051   if (tklass == NULL)       return false;  // unloaded class
2052   if (!tklass->is_loaded()) return false;  // unloaded class
2053   const TypeInstPtr* tinst;
2054   if (_elem->isa_narrowoop())
2055     tinst = _elem->make_ptr()->isa_instptr();
2056   else
2057     tinst = _elem->isa_instptr();
2058   if (tinst)
2059     return tklass->as_instance_klass()->is_final();
2060   const TypeAryPtr*  tap;
2061   if (_elem->isa_narrowoop())
2062     tap = _elem->make_ptr()->isa_aryptr();
2063   else
2064     tap = _elem->isa_aryptr();
2065   if (tap)
2066     return tap->ary()->ary_must_be_exact();
2067   return false;
2068 }
2069 
2070 //==============================TypeVect=======================================
2071 // Convenience common pre-built types.
2072 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2073 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2074 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2075 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2076 
2077 //------------------------------make-------------------------------------------
2078 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2079   BasicType elem_bt = elem->array_element_basic_type();
2080   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2081   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2082   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2083   int size = length * type2aelembytes(elem_bt);
2084   switch (Matcher::vector_ideal_reg(size)) {
2085   case Op_VecS:
2086     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2087   case Op_RegL:
2088   case Op_VecD:
2089   case Op_RegD:
2090     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2091   case Op_VecX:
2092     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2093   case Op_VecY:
2094     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2095   }
2096  ShouldNotReachHere();
2097   return NULL;
2098 }
2099 
2100 //------------------------------meet-------------------------------------------
2101 // Compute the MEET of two types.  It returns a new Type object.
2102 const Type *TypeVect::xmeet( const Type *t ) const {
2103   // Perform a fast test for common case; meeting the same types together.
2104   if( this == t ) return this;  // Meeting same type-rep?
2105 
2106   // Current "this->_base" is Vector
2107   switch (t->base()) {          // switch on original type
2108 
2109   case Bottom:                  // Ye Olde Default
2110     return t;
2111 
2112   default:                      // All else is a mistake
2113     typerr(t);
2114 
2115   case VectorS:
2116   case VectorD:
2117   case VectorX:
2118   case VectorY: {                // Meeting 2 vectors?
2119     const TypeVect* v = t->is_vect();
2120     assert(  base() == v->base(), "");
2121     assert(length() == v->length(), "");
2122     assert(element_basic_type() == v->element_basic_type(), "");
2123     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2124   }
2125   case Top:
2126     break;
2127   }
2128   return this;
2129 }
2130 
2131 //------------------------------xdual------------------------------------------
2132 // Dual: compute field-by-field dual
2133 const Type *TypeVect::xdual() const {
2134   return new TypeVect(base(), _elem->dual(), _length);
2135 }
2136 
2137 //------------------------------eq---------------------------------------------
2138 // Structural equality check for Type representations
2139 bool TypeVect::eq(const Type *t) const {
2140   const TypeVect *v = t->is_vect();
2141   return (_elem == v->_elem) && (_length == v->_length);
2142 }
2143 
2144 //------------------------------hash-------------------------------------------
2145 // Type-specific hashing function.
2146 int TypeVect::hash(void) const {
2147   return (intptr_t)_elem + (intptr_t)_length;
2148 }
2149 
2150 //------------------------------singleton--------------------------------------
2151 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2152 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2153 // constant value (when vector is created with Replicate code).
2154 bool TypeVect::singleton(void) const {
2155 // There is no Con node for vectors yet.
2156 //  return _elem->singleton();
2157   return false;
2158 }
2159 
2160 bool TypeVect::empty(void) const {
2161   return _elem->empty();
2162 }
2163 
2164 //------------------------------dump2------------------------------------------
2165 #ifndef PRODUCT
2166 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2167   switch (base()) {
2168   case VectorS:
2169     st->print("vectors["); break;
2170   case VectorD:
2171     st->print("vectord["); break;
2172   case VectorX:
2173     st->print("vectorx["); break;
2174   case VectorY:
2175     st->print("vectory["); break;
2176   default:
2177     ShouldNotReachHere();
2178   }
2179   st->print("%d]:{", _length);
2180   _elem->dump2(d, depth, st);
2181   st->print("}");
2182 }
2183 #endif
2184 
2185 
2186 //=============================================================================
2187 // Convenience common pre-built types.
2188 const TypePtr *TypePtr::NULL_PTR;
2189 const TypePtr *TypePtr::NOTNULL;
2190 const TypePtr *TypePtr::BOTTOM;
2191 
2192 //------------------------------meet-------------------------------------------
2193 // Meet over the PTR enum
2194 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2195   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2196   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2197   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2198   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2199   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2200   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2201   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2202 };
2203 
2204 //------------------------------make-------------------------------------------
2205 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2206   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2207 }
2208 
2209 //------------------------------cast_to_ptr_type-------------------------------
2210 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2211   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2212   if( ptr == _ptr ) return this;
2213   return make(_base, ptr, _offset, _speculative, _inline_depth);
2214 }
2215 
2216 //------------------------------get_con----------------------------------------
2217 intptr_t TypePtr::get_con() const {
2218   assert( _ptr == Null, "" );
2219   return _offset;
2220 }
2221 
2222 //------------------------------meet-------------------------------------------
2223 // Compute the MEET of two types.  It returns a new Type object.
2224 const Type *TypePtr::xmeet(const Type *t) const {
2225   const Type* res = xmeet_helper(t);
2226   if (res->isa_ptr() == NULL) {
2227     return res;
2228   }
2229 
2230   const TypePtr* res_ptr = res->is_ptr();
2231   if (res_ptr->speculative() != NULL) {
2232     // type->speculative() == NULL means that speculation is no better
2233     // than type, i.e. type->speculative() == type. So there are 2
2234     // ways to represent the fact that we have no useful speculative
2235     // data and we should use a single one to be able to test for
2236     // equality between types. Check whether type->speculative() ==
2237     // type and set speculative to NULL if it is the case.
2238     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2239       return res_ptr->remove_speculative();
2240     }
2241   }
2242 
2243   return res;
2244 }
2245 
2246 const Type *TypePtr::xmeet_helper(const Type *t) const {
2247   // Perform a fast test for common case; meeting the same types together.
2248   if( this == t ) return this;  // Meeting same type-rep?
2249 
2250   // Current "this->_base" is AnyPtr
2251   switch (t->base()) {          // switch on original type
2252   case Int:                     // Mixing ints & oops happens when javac
2253   case Long:                    // reuses local variables
2254   case FloatTop:
2255   case FloatCon:
2256   case FloatBot:
2257   case DoubleTop:
2258   case DoubleCon:
2259   case DoubleBot:
2260   case NarrowOop:
2261   case NarrowKlass:
2262   case Bottom:                  // Ye Olde Default
2263     return Type::BOTTOM;
2264   case Top:
2265     return this;
2266 
2267   case AnyPtr: {                // Meeting to AnyPtrs
2268     const TypePtr *tp = t->is_ptr();
2269     const TypePtr* speculative = xmeet_speculative(tp);
2270     int depth = meet_inline_depth(tp->inline_depth());
2271     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2272   }
2273   case RawPtr:                  // For these, flip the call around to cut down
2274   case OopPtr:
2275   case InstPtr:                 // on the cases I have to handle.
2276   case AryPtr:
2277   case MetadataPtr:
2278   case KlassPtr:
2279     return t->xmeet(this);      // Call in reverse direction
2280   default:                      // All else is a mistake
2281     typerr(t);
2282 
2283   }
2284   return this;
2285 }
2286 
2287 //------------------------------meet_offset------------------------------------
2288 int TypePtr::meet_offset( int offset ) const {
2289   // Either is 'TOP' offset?  Return the other offset!
2290   if( _offset == OffsetTop ) return offset;
2291   if( offset == OffsetTop ) return _offset;
2292   // If either is different, return 'BOTTOM' offset
2293   if( _offset != offset ) return OffsetBot;
2294   return _offset;
2295 }
2296 
2297 //------------------------------dual_offset------------------------------------
2298 int TypePtr::dual_offset( ) const {
2299   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2300   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2301   return _offset;               // Map everything else into self
2302 }
2303 
2304 //------------------------------xdual------------------------------------------
2305 // Dual: compute field-by-field dual
2306 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2307   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2308 };
2309 const Type *TypePtr::xdual() const {
2310   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2311 }
2312 
2313 //------------------------------xadd_offset------------------------------------
2314 int TypePtr::xadd_offset( intptr_t offset ) const {
2315   // Adding to 'TOP' offset?  Return 'TOP'!
2316   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2317   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2318   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2319   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2320   offset += (intptr_t)_offset;
2321   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2322 
2323   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2324   // It is possible to construct a negative offset during PhaseCCP
2325 
2326   return (int)offset;        // Sum valid offsets
2327 }
2328 
2329 //------------------------------add_offset-------------------------------------
2330 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2331   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2332 }
2333 
2334 //------------------------------eq---------------------------------------------
2335 // Structural equality check for Type representations
2336 bool TypePtr::eq( const Type *t ) const {
2337   const TypePtr *a = (const TypePtr*)t;
2338   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2339 }
2340 
2341 //------------------------------hash-------------------------------------------
2342 // Type-specific hashing function.
2343 int TypePtr::hash(void) const {
2344   return _ptr + _offset + hash_speculative() + _inline_depth;
2345 ;
2346 }
2347 
2348 /**
2349  * Return same type without a speculative part
2350  */
2351 const Type* TypePtr::remove_speculative() const {
2352   if (_speculative == NULL) {
2353     return this;
2354   }
2355   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2356   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2357 }
2358 
2359 /**
2360  * Return same type but drop speculative part if we know we won't use
2361  * it
2362  */
2363 const Type* TypePtr::cleanup_speculative() const {
2364   if (speculative() == NULL) {
2365     return this;
2366   }
2367   const Type* no_spec = remove_speculative();
2368   // If this is NULL_PTR then we don't need the speculative type
2369   // (with_inline_depth in case the current type inline depth is
2370   // InlineDepthTop)
2371   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2372     return no_spec;
2373   }
2374   if (above_centerline(speculative()->ptr())) {
2375     return no_spec;
2376   }
2377   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2378   // If the speculative may be null and is an inexact klass then it
2379   // doesn't help
2380   if (speculative()->maybe_null() && (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2381     return no_spec;
2382   }
2383   return this;
2384 }
2385 
2386 /**
2387  * dual of the speculative part of the type
2388  */
2389 const TypePtr* TypePtr::dual_speculative() const {
2390   if (_speculative == NULL) {
2391     return NULL;
2392   }
2393   return _speculative->dual()->is_ptr();
2394 }
2395 
2396 /**
2397  * meet of the speculative parts of 2 types
2398  *
2399  * @param other  type to meet with
2400  */
2401 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2402   bool this_has_spec = (_speculative != NULL);
2403   bool other_has_spec = (other->speculative() != NULL);
2404 
2405   if (!this_has_spec && !other_has_spec) {
2406     return NULL;
2407   }
2408 
2409   // If we are at a point where control flow meets and one branch has
2410   // a speculative type and the other has not, we meet the speculative
2411   // type of one branch with the actual type of the other. If the
2412   // actual type is exact and the speculative is as well, then the
2413   // result is a speculative type which is exact and we can continue
2414   // speculation further.
2415   const TypePtr* this_spec = _speculative;
2416   const TypePtr* other_spec = other->speculative();
2417 
2418   if (!this_has_spec) {
2419     this_spec = this;
2420   }
2421 
2422   if (!other_has_spec) {
2423     other_spec = other;
2424   }
2425 
2426   return this_spec->meet(other_spec)->is_ptr();
2427 }
2428 
2429 /**
2430  * dual of the inline depth for this type (used for speculation)
2431  */
2432 int TypePtr::dual_inline_depth() const {
2433   return -inline_depth();
2434 }
2435 
2436 /**
2437  * meet of 2 inline depths (used for speculation)
2438  *
2439  * @param depth  depth to meet with
2440  */
2441 int TypePtr::meet_inline_depth(int depth) const {
2442   return MAX2(inline_depth(), depth);
2443 }
2444 
2445 /**
2446  * Are the speculative parts of 2 types equal?
2447  *
2448  * @param other  type to compare this one to
2449  */
2450 bool TypePtr::eq_speculative(const TypePtr* other) const {
2451   if (_speculative == NULL || other->speculative() == NULL) {
2452     return _speculative == other->speculative();
2453   }
2454 
2455   if (_speculative->base() != other->speculative()->base()) {
2456     return false;
2457   }
2458 
2459   return _speculative->eq(other->speculative());
2460 }
2461 
2462 /**
2463  * Hash of the speculative part of the type
2464  */
2465 int TypePtr::hash_speculative() const {
2466   if (_speculative == NULL) {
2467     return 0;
2468   }
2469 
2470   return _speculative->hash();
2471 }
2472 
2473 /**
2474  * add offset to the speculative part of the type
2475  *
2476  * @param offset  offset to add
2477  */
2478 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2479   if (_speculative == NULL) {
2480     return NULL;
2481   }
2482   return _speculative->add_offset(offset)->is_ptr();
2483 }
2484 
2485 /**
2486  * return exact klass from the speculative type if there's one
2487  */
2488 ciKlass* TypePtr::speculative_type() const {
2489   if (_speculative != NULL && _speculative->isa_oopptr()) {
2490     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2491     if (speculative->klass_is_exact()) {
2492       return speculative->klass();
2493     }
2494   }
2495   return NULL;
2496 }
2497 
2498 /**
2499  * return true if speculative type may be null
2500  */
2501 bool TypePtr::speculative_maybe_null() const {
2502   if (_speculative != NULL) {
2503     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2504     return speculative->maybe_null();
2505   }
2506   return true;
2507 }
2508 
2509 /**
2510  * Same as TypePtr::speculative_type() but return the klass only if
2511  * the speculative tells us is not null
2512  */
2513 ciKlass* TypePtr::speculative_type_not_null() const {
2514   if (speculative_maybe_null()) {
2515     return NULL;
2516   }
2517   return speculative_type();
2518 }
2519 
2520 /**
2521  * Check whether new profiling would improve speculative type
2522  *
2523  * @param   exact_kls    class from profiling
2524  * @param   inline_depth inlining depth of profile point
2525  *
2526  * @return  true if type profile is valuable
2527  */
2528 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2529   // no profiling?
2530   if (exact_kls == NULL) {
2531     return false;
2532   }
2533   // no speculative type or non exact speculative type?
2534   if (speculative_type() == NULL) {
2535     return true;
2536   }
2537   // If the node already has an exact speculative type keep it,
2538   // unless it was provided by profiling that is at a deeper
2539   // inlining level. Profiling at a higher inlining depth is
2540   // expected to be less accurate.
2541   if (_speculative->inline_depth() == InlineDepthBottom) {
2542     return false;
2543   }
2544   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2545   return inline_depth < _speculative->inline_depth();
2546 }
2547 
2548 /**
2549  * Check whether new profiling would improve ptr (= tells us it is non
2550  * null)
2551  *
2552  * @param   maybe_null true if profiling tells the ptr may be null
2553  *
2554  * @return  true if ptr profile is valuable
2555  */
2556 bool TypePtr::would_improve_ptr(bool maybe_null) const {
2557   // profiling doesn't tell us anything useful
2558   if (maybe_null) {
2559     return false;
2560   }
2561   // We already know this is not be null
2562   if (!this->maybe_null()) {
2563     return false;
2564   }
2565   // We already know the speculative type cannot be null
2566   if (!speculative_maybe_null()) {
2567     return false;
2568   }
2569   return true;
2570 }
2571 
2572 //------------------------------dump2------------------------------------------
2573 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2574   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2575 };
2576 
2577 #ifndef PRODUCT
2578 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2579   if( _ptr == Null ) st->print("NULL");
2580   else st->print("%s *", ptr_msg[_ptr]);
2581   if( _offset == OffsetTop ) st->print("+top");
2582   else if( _offset == OffsetBot ) st->print("+bot");
2583   else if( _offset ) st->print("+%d", _offset);
2584   dump_inline_depth(st);
2585   dump_speculative(st);
2586 }
2587 
2588 /**
2589  *dump the speculative part of the type
2590  */
2591 void TypePtr::dump_speculative(outputStream *st) const {
2592   if (_speculative != NULL) {
2593     st->print(" (speculative=");
2594     _speculative->dump_on(st);
2595     st->print(")");
2596   }
2597 }
2598 
2599 /**
2600  *dump the inline depth of the type
2601  */
2602 void TypePtr::dump_inline_depth(outputStream *st) const {
2603   if (_inline_depth != InlineDepthBottom) {
2604     if (_inline_depth == InlineDepthTop) {
2605       st->print(" (inline_depth=InlineDepthTop)");
2606     } else {
2607       st->print(" (inline_depth=%d)", _inline_depth);
2608     }
2609   }
2610 }
2611 #endif
2612 
2613 //------------------------------singleton--------------------------------------
2614 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2615 // constants
2616 bool TypePtr::singleton(void) const {
2617   // TopPTR, Null, AnyNull, Constant are all singletons
2618   return (_offset != OffsetBot) && !below_centerline(_ptr);
2619 }
2620 
2621 bool TypePtr::empty(void) const {
2622   return (_offset == OffsetTop) || above_centerline(_ptr);
2623 }
2624 
2625 //=============================================================================
2626 // Convenience common pre-built types.
2627 const TypeRawPtr *TypeRawPtr::BOTTOM;
2628 const TypeRawPtr *TypeRawPtr::NOTNULL;
2629 
2630 //------------------------------make-------------------------------------------
2631 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2632   assert( ptr != Constant, "what is the constant?" );
2633   assert( ptr != Null, "Use TypePtr for NULL" );
2634   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2635 }
2636 
2637 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2638   assert( bits, "Use TypePtr for NULL" );
2639   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2640 }
2641 
2642 //------------------------------cast_to_ptr_type-------------------------------
2643 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2644   assert( ptr != Constant, "what is the constant?" );
2645   assert( ptr != Null, "Use TypePtr for NULL" );
2646   assert( _bits==0, "Why cast a constant address?");
2647   if( ptr == _ptr ) return this;
2648   return make(ptr);
2649 }
2650 
2651 //------------------------------get_con----------------------------------------
2652 intptr_t TypeRawPtr::get_con() const {
2653   assert( _ptr == Null || _ptr == Constant, "" );
2654   return (intptr_t)_bits;
2655 }
2656 
2657 //------------------------------meet-------------------------------------------
2658 // Compute the MEET of two types.  It returns a new Type object.
2659 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2660   // Perform a fast test for common case; meeting the same types together.
2661   if( this == t ) return this;  // Meeting same type-rep?
2662 
2663   // Current "this->_base" is RawPtr
2664   switch( t->base() ) {         // switch on original type
2665   case Bottom:                  // Ye Olde Default
2666     return t;
2667   case Top:
2668     return this;
2669   case AnyPtr:                  // Meeting to AnyPtrs
2670     break;
2671   case RawPtr: {                // might be top, bot, any/not or constant
2672     enum PTR tptr = t->is_ptr()->ptr();
2673     enum PTR ptr = meet_ptr( tptr );
2674     if( ptr == Constant ) {     // Cannot be equal constants, so...
2675       if( tptr == Constant && _ptr != Constant)  return t;
2676       if( _ptr == Constant && tptr != Constant)  return this;
2677       ptr = NotNull;            // Fall down in lattice
2678     }
2679     return make( ptr );
2680   }
2681 
2682   case OopPtr:
2683   case InstPtr:
2684   case AryPtr:
2685   case MetadataPtr:
2686   case KlassPtr:
2687     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2688   default:                      // All else is a mistake
2689     typerr(t);
2690   }
2691 
2692   // Found an AnyPtr type vs self-RawPtr type
2693   const TypePtr *tp = t->is_ptr();
2694   switch (tp->ptr()) {
2695   case TypePtr::TopPTR:  return this;
2696   case TypePtr::BotPTR:  return t;
2697   case TypePtr::Null:
2698     if( _ptr == TypePtr::TopPTR ) return t;
2699     return TypeRawPtr::BOTTOM;
2700   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
2701   case TypePtr::AnyNull:
2702     if( _ptr == TypePtr::Constant) return this;
2703     return make( meet_ptr(TypePtr::AnyNull) );
2704   default: ShouldNotReachHere();
2705   }
2706   return this;
2707 }
2708 
2709 //------------------------------xdual------------------------------------------
2710 // Dual: compute field-by-field dual
2711 const Type *TypeRawPtr::xdual() const {
2712   return new TypeRawPtr( dual_ptr(), _bits );
2713 }
2714 
2715 //------------------------------add_offset-------------------------------------
2716 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2717   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2718   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2719   if( offset == 0 ) return this; // No change
2720   switch (_ptr) {
2721   case TypePtr::TopPTR:
2722   case TypePtr::BotPTR:
2723   case TypePtr::NotNull:
2724     return this;
2725   case TypePtr::Null:
2726   case TypePtr::Constant: {
2727     address bits = _bits+offset;
2728     if ( bits == 0 ) return TypePtr::NULL_PTR;
2729     return make( bits );
2730   }
2731   default:  ShouldNotReachHere();
2732   }
2733   return NULL;                  // Lint noise
2734 }
2735 
2736 //------------------------------eq---------------------------------------------
2737 // Structural equality check for Type representations
2738 bool TypeRawPtr::eq( const Type *t ) const {
2739   const TypeRawPtr *a = (const TypeRawPtr*)t;
2740   return _bits == a->_bits && TypePtr::eq(t);
2741 }
2742 
2743 //------------------------------hash-------------------------------------------
2744 // Type-specific hashing function.
2745 int TypeRawPtr::hash(void) const {
2746   return (intptr_t)_bits + TypePtr::hash();
2747 }
2748 
2749 //------------------------------dump2------------------------------------------
2750 #ifndef PRODUCT
2751 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2752   if( _ptr == Constant )
2753     st->print(INTPTR_FORMAT, _bits);
2754   else
2755     st->print("rawptr:%s", ptr_msg[_ptr]);
2756 }
2757 #endif
2758 
2759 //=============================================================================
2760 // Convenience common pre-built type.
2761 const TypeOopPtr *TypeOopPtr::BOTTOM;
2762 
2763 //------------------------------TypeOopPtr-------------------------------------
2764 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
2765                        int instance_id, const TypePtr* speculative, int inline_depth)
2766   : TypePtr(t, ptr, offset, speculative, inline_depth),
2767     _const_oop(o), _klass(k),
2768     _klass_is_exact(xk),
2769     _is_ptr_to_narrowoop(false),
2770     _is_ptr_to_narrowklass(false),
2771     _is_ptr_to_boxed_value(false),
2772     _instance_id(instance_id) {
2773   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2774       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2775     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2776   }
2777 #ifdef _LP64
2778   if (_offset != 0) {
2779     if (_offset == oopDesc::klass_offset_in_bytes()) {
2780       _is_ptr_to_narrowklass = UseCompressedClassPointers;
2781     } else if (klass() == NULL) {
2782       // Array with unknown body type
2783       assert(this->isa_aryptr(), "only arrays without klass");
2784       _is_ptr_to_narrowoop = UseCompressedOops;
2785     } else if (this->isa_aryptr()) {
2786       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
2787                              _offset != arrayOopDesc::length_offset_in_bytes());
2788     } else if (klass()->is_instance_klass()) {
2789       ciInstanceKlass* ik = klass()->as_instance_klass();
2790       ciField* field = NULL;
2791       if (this->isa_klassptr()) {
2792         // Perm objects don't use compressed references
2793       } else if (_offset == OffsetBot || _offset == OffsetTop) {
2794         // unsafe access
2795         _is_ptr_to_narrowoop = UseCompressedOops;
2796       } else { // exclude unsafe ops
2797         assert(this->isa_instptr(), "must be an instance ptr.");
2798 
2799         if (klass() == ciEnv::current()->Class_klass() &&
2800             (_offset == java_lang_Class::klass_offset_in_bytes() ||
2801              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2802           // Special hidden fields from the Class.
2803           assert(this->isa_instptr(), "must be an instance ptr.");
2804           _is_ptr_to_narrowoop = false;
2805         } else if (klass() == ciEnv::current()->Class_klass() &&
2806                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
2807           // Static fields
2808           assert(o != NULL, "must be constant");
2809           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
2810           ciField* field = k->get_field_by_offset(_offset, true);
2811           assert(field != NULL, "missing field");
2812           BasicType basic_elem_type = field->layout_type();
2813           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2814                                                        basic_elem_type == T_ARRAY);
2815         } else {
2816           // Instance fields which contains a compressed oop references.
2817           field = ik->get_field_by_offset(_offset, false);
2818           if (field != NULL) {
2819             BasicType basic_elem_type = field->layout_type();
2820             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2821                                                          basic_elem_type == T_ARRAY);
2822           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
2823             // Compile::find_alias_type() cast exactness on all types to verify
2824             // that it does not affect alias type.
2825             _is_ptr_to_narrowoop = UseCompressedOops;
2826           } else {
2827             // Type for the copy start in LibraryCallKit::inline_native_clone().
2828             _is_ptr_to_narrowoop = UseCompressedOops;
2829           }
2830         }
2831       }
2832     }
2833   }
2834 #endif
2835 }
2836 
2837 //------------------------------make-------------------------------------------
2838 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
2839                                      const TypePtr* speculative, int inline_depth) {
2840   assert(ptr != Constant, "no constant generic pointers");
2841   ciKlass*  k = Compile::current()->env()->Object_klass();
2842   bool      xk = false;
2843   ciObject* o = NULL;
2844   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
2845 }
2846 
2847 
2848 //------------------------------cast_to_ptr_type-------------------------------
2849 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
2850   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
2851   if( ptr == _ptr ) return this;
2852   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
2853 }
2854 
2855 //-----------------------------cast_to_instance_id----------------------------
2856 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
2857   // There are no instances of a general oop.
2858   // Return self unchanged.
2859   return this;
2860 }
2861 
2862 //-----------------------------cast_to_exactness-------------------------------
2863 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
2864   // There is no such thing as an exact general oop.
2865   // Return self unchanged.
2866   return this;
2867 }
2868 
2869 
2870 //------------------------------as_klass_type----------------------------------
2871 // Return the klass type corresponding to this instance or array type.
2872 // It is the type that is loaded from an object of this type.
2873 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
2874   ciKlass* k = klass();
2875   bool    xk = klass_is_exact();
2876   if (k == NULL)
2877     return TypeKlassPtr::OBJECT;
2878   else
2879     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
2880 }
2881 
2882 //------------------------------meet-------------------------------------------
2883 // Compute the MEET of two types.  It returns a new Type object.
2884 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
2885   // Perform a fast test for common case; meeting the same types together.
2886   if( this == t ) return this;  // Meeting same type-rep?
2887 
2888   // Current "this->_base" is OopPtr
2889   switch (t->base()) {          // switch on original type
2890 
2891   case Int:                     // Mixing ints & oops happens when javac
2892   case Long:                    // reuses local variables
2893   case FloatTop:
2894   case FloatCon:
2895   case FloatBot:
2896   case DoubleTop:
2897   case DoubleCon:
2898   case DoubleBot:
2899   case NarrowOop:
2900   case NarrowKlass:
2901   case Bottom:                  // Ye Olde Default
2902     return Type::BOTTOM;
2903   case Top:
2904     return this;
2905 
2906   default:                      // All else is a mistake
2907     typerr(t);
2908 
2909   case RawPtr:
2910   case MetadataPtr:
2911   case KlassPtr:
2912     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2913 
2914   case AnyPtr: {
2915     // Found an AnyPtr type vs self-OopPtr type
2916     const TypePtr *tp = t->is_ptr();
2917     int offset = meet_offset(tp->offset());
2918     PTR ptr = meet_ptr(tp->ptr());
2919     const TypePtr* speculative = xmeet_speculative(tp);
2920     int depth = meet_inline_depth(tp->inline_depth());
2921     switch (tp->ptr()) {
2922     case Null:
2923       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
2924       // else fall through:
2925     case TopPTR:
2926     case AnyNull: {
2927       int instance_id = meet_instance_id(InstanceTop);
2928       return make(ptr, offset, instance_id, speculative, depth);
2929     }
2930     case BotPTR:
2931     case NotNull:
2932       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
2933     default: typerr(t);
2934     }
2935   }
2936 
2937   case OopPtr: {                 // Meeting to other OopPtrs
2938     const TypeOopPtr *tp = t->is_oopptr();
2939     int instance_id = meet_instance_id(tp->instance_id());
2940     const TypePtr* speculative = xmeet_speculative(tp);
2941     int depth = meet_inline_depth(tp->inline_depth());
2942     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
2943   }
2944 
2945   case InstPtr:                  // For these, flip the call around to cut down
2946   case AryPtr:
2947     return t->xmeet(this);      // Call in reverse direction
2948 
2949   } // End of switch
2950   return this;                  // Return the double constant
2951 }
2952 
2953 
2954 //------------------------------xdual------------------------------------------
2955 // Dual of a pure heap pointer.  No relevant klass or oop information.
2956 const Type *TypeOopPtr::xdual() const {
2957   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
2958   assert(const_oop() == NULL,             "no constants here");
2959   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
2960 }
2961 
2962 //--------------------------make_from_klass_common-----------------------------
2963 // Computes the element-type given a klass.
2964 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
2965   if (klass->is_instance_klass()) {
2966     Compile* C = Compile::current();
2967     Dependencies* deps = C->dependencies();
2968     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
2969     // Element is an instance
2970     bool klass_is_exact = false;
2971     if (klass->is_loaded()) {
2972       // Try to set klass_is_exact.
2973       ciInstanceKlass* ik = klass->as_instance_klass();
2974       klass_is_exact = ik->is_final();
2975       if (!klass_is_exact && klass_change
2976           && deps != NULL && UseUniqueSubclasses) {
2977         ciInstanceKlass* sub = ik->unique_concrete_subklass();
2978         if (sub != NULL) {
2979           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
2980           klass = ik = sub;
2981           klass_is_exact = sub->is_final();
2982         }
2983       }
2984       if (!klass_is_exact && try_for_exact
2985           && deps != NULL && UseExactTypes) {
2986         if (!ik->is_interface() && !ik->has_subklass()) {
2987           // Add a dependence; if concrete subclass added we need to recompile
2988           deps->assert_leaf_type(ik);
2989           klass_is_exact = true;
2990         }
2991       }
2992     }
2993     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
2994   } else if (klass->is_obj_array_klass()) {
2995     // Element is an object array. Recursively call ourself.
2996     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
2997     bool xk = etype->klass_is_exact();
2998     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2999     // We used to pass NotNull in here, asserting that the sub-arrays
3000     // are all not-null.  This is not true in generally, as code can
3001     // slam NULLs down in the subarrays.
3002     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
3003     return arr;
3004   } else if (klass->is_type_array_klass()) {
3005     // Element is an typeArray
3006     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3007     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3008     // We used to pass NotNull in here, asserting that the array pointer
3009     // is not-null. That was not true in general.
3010     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3011     return arr;
3012   } else {
3013     ShouldNotReachHere();
3014     return NULL;
3015   }
3016 }
3017 
3018 //------------------------------make_from_constant-----------------------------
3019 // Make a java pointer from an oop constant
3020 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
3021                                                  bool require_constant,
3022                                                  bool is_autobox_cache) {
3023   assert(!o->is_null_object(), "null object not yet handled here.");
3024   ciKlass* klass = o->klass();
3025   if (klass->is_instance_klass()) {
3026     // Element is an instance
3027     if (require_constant) {
3028       if (!o->can_be_constant())  return NULL;
3029     } else if (!o->should_be_constant()) {
3030       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
3031     }
3032     return TypeInstPtr::make(o);
3033   } else if (klass->is_obj_array_klass()) {
3034     // Element is an object array. Recursively call ourself.
3035     const TypeOopPtr *etype =
3036       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
3037     if (is_autobox_cache) {
3038       // The pointers in the autobox arrays are always non-null.
3039       etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
3040     }
3041     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3042     // We used to pass NotNull in here, asserting that the sub-arrays
3043     // are all not-null.  This is not true in generally, as code can
3044     // slam NULLs down in the subarrays.
3045     if (require_constant) {
3046       if (!o->can_be_constant())  return NULL;
3047     } else if (!o->should_be_constant()) {
3048       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3049     }
3050     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, InlineDepthBottom, is_autobox_cache);
3051     return arr;
3052   } else if (klass->is_type_array_klass()) {
3053     // Element is an typeArray
3054     const Type* etype =
3055       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3056     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3057     // We used to pass NotNull in here, asserting that the array pointer
3058     // is not-null. That was not true in general.
3059     if (require_constant) {
3060       if (!o->can_be_constant())  return NULL;
3061     } else if (!o->should_be_constant()) {
3062       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3063     }
3064     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3065     return arr;
3066   }
3067 
3068   fatal("unhandled object type");
3069   return NULL;
3070 }
3071 
3072 //------------------------------get_con----------------------------------------
3073 intptr_t TypeOopPtr::get_con() const {
3074   assert( _ptr == Null || _ptr == Constant, "" );
3075   assert( _offset >= 0, "" );
3076 
3077   if (_offset != 0) {
3078     // After being ported to the compiler interface, the compiler no longer
3079     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3080     // to a handle at compile time.  This handle is embedded in the generated
3081     // code and dereferenced at the time the nmethod is made.  Until that time,
3082     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3083     // have access to the addresses!).  This does not seem to currently happen,
3084     // but this assertion here is to help prevent its occurence.
3085     tty->print_cr("Found oop constant with non-zero offset");
3086     ShouldNotReachHere();
3087   }
3088 
3089   return (intptr_t)const_oop()->constant_encoding();
3090 }
3091 
3092 
3093 //-----------------------------filter------------------------------------------
3094 // Do not allow interface-vs.-noninterface joins to collapse to top.
3095 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3096 
3097   const Type* ft = join_helper(kills, include_speculative);
3098   const TypeInstPtr* ftip = ft->isa_instptr();
3099   const TypeInstPtr* ktip = kills->isa_instptr();
3100 
3101   if (ft->empty()) {
3102     // Check for evil case of 'this' being a class and 'kills' expecting an
3103     // interface.  This can happen because the bytecodes do not contain
3104     // enough type info to distinguish a Java-level interface variable
3105     // from a Java-level object variable.  If we meet 2 classes which
3106     // both implement interface I, but their meet is at 'j/l/O' which
3107     // doesn't implement I, we have no way to tell if the result should
3108     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3109     // into a Phi which "knows" it's an Interface type we'll have to
3110     // uplift the type.
3111     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
3112       return kills;             // Uplift to interface
3113 
3114     return Type::TOP;           // Canonical empty value
3115   }
3116 
3117   // If we have an interface-typed Phi or cast and we narrow to a class type,
3118   // the join should report back the class.  However, if we have a J/L/Object
3119   // class-typed Phi and an interface flows in, it's possible that the meet &
3120   // join report an interface back out.  This isn't possible but happens
3121   // because the type system doesn't interact well with interfaces.
3122   if (ftip != NULL && ktip != NULL &&
3123       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3124       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3125     assert(!ftip->klass_is_exact(), "interface could not be exact");
3126     return ktip->cast_to_ptr_type(ftip->ptr());
3127   }
3128 
3129   return ft;
3130 }
3131 
3132 //------------------------------eq---------------------------------------------
3133 // Structural equality check for Type representations
3134 bool TypeOopPtr::eq( const Type *t ) const {
3135   const TypeOopPtr *a = (const TypeOopPtr*)t;
3136   if (_klass_is_exact != a->_klass_is_exact ||
3137       _instance_id != a->_instance_id)  return false;
3138   ciObject* one = const_oop();
3139   ciObject* two = a->const_oop();
3140   if (one == NULL || two == NULL) {
3141     return (one == two) && TypePtr::eq(t);
3142   } else {
3143     return one->equals(two) && TypePtr::eq(t);
3144   }
3145 }
3146 
3147 //------------------------------hash-------------------------------------------
3148 // Type-specific hashing function.
3149 int TypeOopPtr::hash(void) const {
3150   return
3151     (const_oop() ? const_oop()->hash() : 0) +
3152     _klass_is_exact +
3153     _instance_id +
3154     TypePtr::hash();
3155 }
3156 
3157 //------------------------------dump2------------------------------------------
3158 #ifndef PRODUCT
3159 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3160   st->print("oopptr:%s", ptr_msg[_ptr]);
3161   if( _klass_is_exact ) st->print(":exact");
3162   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
3163   switch( _offset ) {
3164   case OffsetTop: st->print("+top"); break;
3165   case OffsetBot: st->print("+any"); break;
3166   case         0: break;
3167   default:        st->print("+%d",_offset); break;
3168   }
3169   if (_instance_id == InstanceTop)
3170     st->print(",iid=top");
3171   else if (_instance_id != InstanceBot)
3172     st->print(",iid=%d",_instance_id);
3173 
3174   dump_inline_depth(st);
3175   dump_speculative(st);
3176 }
3177 #endif
3178 
3179 //------------------------------singleton--------------------------------------
3180 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3181 // constants
3182 bool TypeOopPtr::singleton(void) const {
3183   // detune optimizer to not generate constant oop + constant offset as a constant!
3184   // TopPTR, Null, AnyNull, Constant are all singletons
3185   return (_offset == 0) && !below_centerline(_ptr);
3186 }
3187 
3188 //------------------------------add_offset-------------------------------------
3189 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3190   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3191 }
3192 
3193 /**
3194  * Return same type without a speculative part
3195  */
3196 const Type* TypeOopPtr::remove_speculative() const {
3197   if (_speculative == NULL) {
3198     return this;
3199   }
3200   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3201   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3202 }
3203 
3204 /**
3205  * Return same type but drop speculative part if we know we won't use
3206  * it
3207  */
3208 const Type* TypeOopPtr::cleanup_speculative() const {
3209   // If the klass is exact and the ptr is not null then there's
3210   // nothing that the speculative type can help us with
3211   if (klass_is_exact() && !maybe_null()) {
3212     return remove_speculative();
3213   }
3214   return TypePtr::cleanup_speculative();
3215 }
3216 
3217 /**
3218  * Return same type but with a different inline depth (used for speculation)
3219  *
3220  * @param depth  depth to meet with
3221  */
3222 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3223   if (!UseInlineDepthForSpeculativeTypes) {
3224     return this;
3225   }
3226   return make(_ptr, _offset, _instance_id, _speculative, depth);
3227 }
3228 
3229 //------------------------------meet_instance_id--------------------------------
3230 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3231   // Either is 'TOP' instance?  Return the other instance!
3232   if( _instance_id == InstanceTop ) return  instance_id;
3233   if(  instance_id == InstanceTop ) return _instance_id;
3234   // If either is different, return 'BOTTOM' instance
3235   if( _instance_id != instance_id ) return InstanceBot;
3236   return _instance_id;
3237 }
3238 
3239 //------------------------------dual_instance_id--------------------------------
3240 int TypeOopPtr::dual_instance_id( ) const {
3241   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3242   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3243   return _instance_id;              // Map everything else into self
3244 }
3245 
3246 /**
3247  * Check whether new profiling would improve speculative type
3248  *
3249  * @param   exact_kls    class from profiling
3250  * @param   inline_depth inlining depth of profile point
3251  *
3252  * @return  true if type profile is valuable
3253  */
3254 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3255   // no way to improve an already exact type
3256   if (klass_is_exact()) {
3257     return false;
3258   }
3259   return TypePtr::would_improve_type(exact_kls, inline_depth);
3260 }
3261 
3262 //=============================================================================
3263 // Convenience common pre-built types.
3264 const TypeInstPtr *TypeInstPtr::NOTNULL;
3265 const TypeInstPtr *TypeInstPtr::BOTTOM;
3266 const TypeInstPtr *TypeInstPtr::MIRROR;
3267 const TypeInstPtr *TypeInstPtr::MARK;
3268 const TypeInstPtr *TypeInstPtr::KLASS;
3269 
3270 //------------------------------TypeInstPtr-------------------------------------
3271 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off,
3272                          int instance_id, const TypePtr* speculative, int inline_depth)
3273   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth),
3274     _name(k->name()) {
3275    assert(k != NULL &&
3276           (k->is_loaded() || o == NULL),
3277           "cannot have constants with non-loaded klass");
3278 };
3279 
3280 //------------------------------make-------------------------------------------
3281 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3282                                      ciKlass* k,
3283                                      bool xk,
3284                                      ciObject* o,
3285                                      int offset,
3286                                      int instance_id,
3287                                      const TypePtr* speculative,
3288                                      int inline_depth) {
3289   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3290   // Either const_oop() is NULL or else ptr is Constant
3291   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3292           "constant pointers must have a value supplied" );
3293   // Ptr is never Null
3294   assert( ptr != Null, "NULL pointers are not typed" );
3295 
3296   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3297   if (!UseExactTypes)  xk = false;
3298   if (ptr == Constant) {
3299     // Note:  This case includes meta-object constants, such as methods.
3300     xk = true;
3301   } else if (k->is_loaded()) {
3302     ciInstanceKlass* ik = k->as_instance_klass();
3303     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3304     if (xk && ik->is_interface())  xk = false;  // no exact interface
3305   }
3306 
3307   // Now hash this baby
3308   TypeInstPtr *result =
3309     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3310 
3311   return result;
3312 }
3313 
3314 /**
3315  *  Create constant type for a constant boxed value
3316  */
3317 const Type* TypeInstPtr::get_const_boxed_value() const {
3318   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3319   assert((const_oop() != NULL), "should be called only for constant object");
3320   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3321   BasicType bt = constant.basic_type();
3322   switch (bt) {
3323     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3324     case T_INT:      return TypeInt::make(constant.as_int());
3325     case T_CHAR:     return TypeInt::make(constant.as_char());
3326     case T_BYTE:     return TypeInt::make(constant.as_byte());
3327     case T_SHORT:    return TypeInt::make(constant.as_short());
3328     case T_FLOAT:    return TypeF::make(constant.as_float());
3329     case T_DOUBLE:   return TypeD::make(constant.as_double());
3330     case T_LONG:     return TypeLong::make(constant.as_long());
3331     default:         break;
3332   }
3333   fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
3334   return NULL;
3335 }
3336 
3337 //------------------------------cast_to_ptr_type-------------------------------
3338 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3339   if( ptr == _ptr ) return this;
3340   // Reconstruct _sig info here since not a problem with later lazy
3341   // construction, _sig will show up on demand.
3342   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3343 }
3344 
3345 
3346 //-----------------------------cast_to_exactness-------------------------------
3347 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3348   if( klass_is_exact == _klass_is_exact ) return this;
3349   if (!UseExactTypes)  return this;
3350   if (!_klass->is_loaded())  return this;
3351   ciInstanceKlass* ik = _klass->as_instance_klass();
3352   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3353   if( ik->is_interface() )              return this;  // cannot set xk
3354   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3355 }
3356 
3357 //-----------------------------cast_to_instance_id----------------------------
3358 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3359   if( instance_id == _instance_id ) return this;
3360   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3361 }
3362 
3363 //------------------------------xmeet_unloaded---------------------------------
3364 // Compute the MEET of two InstPtrs when at least one is unloaded.
3365 // Assume classes are different since called after check for same name/class-loader
3366 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3367     int off = meet_offset(tinst->offset());
3368     PTR ptr = meet_ptr(tinst->ptr());
3369     int instance_id = meet_instance_id(tinst->instance_id());
3370     const TypePtr* speculative = xmeet_speculative(tinst);
3371     int depth = meet_inline_depth(tinst->inline_depth());
3372 
3373     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3374     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3375     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3376       //
3377       // Meet unloaded class with java/lang/Object
3378       //
3379       // Meet
3380       //          |                     Unloaded Class
3381       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3382       //  ===================================================================
3383       //   TOP    | ..........................Unloaded......................|
3384       //  AnyNull |  U-AN    |................Unloaded......................|
3385       // Constant | ... O-NN .................................. |   O-BOT   |
3386       //  NotNull | ... O-NN .................................. |   O-BOT   |
3387       //  BOTTOM  | ........................Object-BOTTOM ..................|
3388       //
3389       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3390       //
3391       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3392       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3393       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3394       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3395         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3396         else                                      { return TypeInstPtr::NOTNULL; }
3397       }
3398       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3399 
3400       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3401     }
3402 
3403     // Both are unloaded, not the same class, not Object
3404     // Or meet unloaded with a different loaded class, not java/lang/Object
3405     if( ptr != TypePtr::BotPTR ) {
3406       return TypeInstPtr::NOTNULL;
3407     }
3408     return TypeInstPtr::BOTTOM;
3409 }
3410 
3411 
3412 //------------------------------meet-------------------------------------------
3413 // Compute the MEET of two types.  It returns a new Type object.
3414 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3415   // Perform a fast test for common case; meeting the same types together.
3416   if( this == t ) return this;  // Meeting same type-rep?
3417 
3418   // Current "this->_base" is Pointer
3419   switch (t->base()) {          // switch on original type
3420 
3421   case Int:                     // Mixing ints & oops happens when javac
3422   case Long:                    // reuses local variables
3423   case FloatTop:
3424   case FloatCon:
3425   case FloatBot:
3426   case DoubleTop:
3427   case DoubleCon:
3428   case DoubleBot:
3429   case NarrowOop:
3430   case NarrowKlass:
3431   case Bottom:                  // Ye Olde Default
3432     return Type::BOTTOM;
3433   case Top:
3434     return this;
3435 
3436   default:                      // All else is a mistake
3437     typerr(t);
3438 
3439   case MetadataPtr:
3440   case KlassPtr:
3441   case RawPtr: return TypePtr::BOTTOM;
3442 
3443   case AryPtr: {                // All arrays inherit from Object class
3444     const TypeAryPtr *tp = t->is_aryptr();
3445     int offset = meet_offset(tp->offset());
3446     PTR ptr = meet_ptr(tp->ptr());
3447     int instance_id = meet_instance_id(tp->instance_id());
3448     const TypePtr* speculative = xmeet_speculative(tp);
3449     int depth = meet_inline_depth(tp->inline_depth());
3450     switch (ptr) {
3451     case TopPTR:
3452     case AnyNull:                // Fall 'down' to dual of object klass
3453       // For instances when a subclass meets a superclass we fall
3454       // below the centerline when the superclass is exact. We need to
3455       // do the same here.
3456       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3457         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3458       } else {
3459         // cannot subclass, so the meet has to fall badly below the centerline
3460         ptr = NotNull;
3461         instance_id = InstanceBot;
3462         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3463       }
3464     case Constant:
3465     case NotNull:
3466     case BotPTR:                // Fall down to object klass
3467       // LCA is object_klass, but if we subclass from the top we can do better
3468       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3469         // If 'this' (InstPtr) is above the centerline and it is Object class
3470         // then we can subclass in the Java class hierarchy.
3471         // For instances when a subclass meets a superclass we fall
3472         // below the centerline when the superclass is exact. We need
3473         // to do the same here.
3474         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3475           // that is, tp's array type is a subtype of my klass
3476           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3477                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3478         }
3479       }
3480       // The other case cannot happen, since I cannot be a subtype of an array.
3481       // The meet falls down to Object class below centerline.
3482       if( ptr == Constant )
3483          ptr = NotNull;
3484       instance_id = InstanceBot;
3485       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3486     default: typerr(t);
3487     }
3488   }
3489 
3490   case OopPtr: {                // Meeting to OopPtrs
3491     // Found a OopPtr type vs self-InstPtr type
3492     const TypeOopPtr *tp = t->is_oopptr();
3493     int offset = meet_offset(tp->offset());
3494     PTR ptr = meet_ptr(tp->ptr());
3495     switch (tp->ptr()) {
3496     case TopPTR:
3497     case AnyNull: {
3498       int instance_id = meet_instance_id(InstanceTop);
3499       const TypePtr* speculative = xmeet_speculative(tp);
3500       int depth = meet_inline_depth(tp->inline_depth());
3501       return make(ptr, klass(), klass_is_exact(),
3502                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3503     }
3504     case NotNull:
3505     case BotPTR: {
3506       int instance_id = meet_instance_id(tp->instance_id());
3507       const TypePtr* speculative = xmeet_speculative(tp);
3508       int depth = meet_inline_depth(tp->inline_depth());
3509       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3510     }
3511     default: typerr(t);
3512     }
3513   }
3514 
3515   case AnyPtr: {                // Meeting to AnyPtrs
3516     // Found an AnyPtr type vs self-InstPtr type
3517     const TypePtr *tp = t->is_ptr();
3518     int offset = meet_offset(tp->offset());
3519     PTR ptr = meet_ptr(tp->ptr());
3520     int instance_id = meet_instance_id(InstanceTop);
3521     const TypePtr* speculative = xmeet_speculative(tp);
3522     int depth = meet_inline_depth(tp->inline_depth());
3523     switch (tp->ptr()) {
3524     case Null:
3525       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3526       // else fall through to AnyNull
3527     case TopPTR:
3528     case AnyNull: {
3529       return make(ptr, klass(), klass_is_exact(),
3530                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3531     }
3532     case NotNull:
3533     case BotPTR:
3534       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3535     default: typerr(t);
3536     }
3537   }
3538 
3539   /*
3540                  A-top         }
3541                /   |   \       }  Tops
3542            B-top A-any C-top   }
3543               | /  |  \ |      }  Any-nulls
3544            B-any   |   C-any   }
3545               |    |    |
3546            B-con A-con C-con   } constants; not comparable across classes
3547               |    |    |
3548            B-not   |   C-not   }
3549               | \  |  / |      }  not-nulls
3550            B-bot A-not C-bot   }
3551                \   |   /       }  Bottoms
3552                  A-bot         }
3553   */
3554 
3555   case InstPtr: {                // Meeting 2 Oops?
3556     // Found an InstPtr sub-type vs self-InstPtr type
3557     const TypeInstPtr *tinst = t->is_instptr();
3558     int off = meet_offset( tinst->offset() );
3559     PTR ptr = meet_ptr( tinst->ptr() );
3560     int instance_id = meet_instance_id(tinst->instance_id());
3561     const TypePtr* speculative = xmeet_speculative(tinst);
3562     int depth = meet_inline_depth(tinst->inline_depth());
3563 
3564     // Check for easy case; klasses are equal (and perhaps not loaded!)
3565     // If we have constants, then we created oops so classes are loaded
3566     // and we can handle the constants further down.  This case handles
3567     // both-not-loaded or both-loaded classes
3568     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3569       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3570     }
3571 
3572     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3573     ciKlass* tinst_klass = tinst->klass();
3574     ciKlass* this_klass  = this->klass();
3575     bool tinst_xk = tinst->klass_is_exact();
3576     bool this_xk  = this->klass_is_exact();
3577     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3578       // One of these classes has not been loaded
3579       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3580 #ifndef PRODUCT
3581       if( PrintOpto && Verbose ) {
3582         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3583         tty->print("  this == "); this->dump(); tty->cr();
3584         tty->print(" tinst == "); tinst->dump(); tty->cr();
3585       }
3586 #endif
3587       return unloaded_meet;
3588     }
3589 
3590     // Handle mixing oops and interfaces first.
3591     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3592                                         tinst_klass == ciEnv::current()->Object_klass())) {
3593       ciKlass *tmp = tinst_klass; // Swap interface around
3594       tinst_klass = this_klass;
3595       this_klass = tmp;
3596       bool tmp2 = tinst_xk;
3597       tinst_xk = this_xk;
3598       this_xk = tmp2;
3599     }
3600     if (tinst_klass->is_interface() &&
3601         !(this_klass->is_interface() ||
3602           // Treat java/lang/Object as an honorary interface,
3603           // because we need a bottom for the interface hierarchy.
3604           this_klass == ciEnv::current()->Object_klass())) {
3605       // Oop meets interface!
3606 
3607       // See if the oop subtypes (implements) interface.
3608       ciKlass *k;
3609       bool xk;
3610       if( this_klass->is_subtype_of( tinst_klass ) ) {
3611         // Oop indeed subtypes.  Now keep oop or interface depending
3612         // on whether we are both above the centerline or either is
3613         // below the centerline.  If we are on the centerline
3614         // (e.g., Constant vs. AnyNull interface), use the constant.
3615         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3616         // If we are keeping this_klass, keep its exactness too.
3617         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3618       } else {                  // Does not implement, fall to Object
3619         // Oop does not implement interface, so mixing falls to Object
3620         // just like the verifier does (if both are above the
3621         // centerline fall to interface)
3622         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3623         xk = above_centerline(ptr) ? tinst_xk : false;
3624         // Watch out for Constant vs. AnyNull interface.
3625         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3626         instance_id = InstanceBot;
3627       }
3628       ciObject* o = NULL;  // the Constant value, if any
3629       if (ptr == Constant) {
3630         // Find out which constant.
3631         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3632       }
3633       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
3634     }
3635 
3636     // Either oop vs oop or interface vs interface or interface vs Object
3637 
3638     // !!! Here's how the symmetry requirement breaks down into invariants:
3639     // If we split one up & one down AND they subtype, take the down man.
3640     // If we split one up & one down AND they do NOT subtype, "fall hard".
3641     // If both are up and they subtype, take the subtype class.
3642     // If both are up and they do NOT subtype, "fall hard".
3643     // If both are down and they subtype, take the supertype class.
3644     // If both are down and they do NOT subtype, "fall hard".
3645     // Constants treated as down.
3646 
3647     // Now, reorder the above list; observe that both-down+subtype is also
3648     // "fall hard"; "fall hard" becomes the default case:
3649     // If we split one up & one down AND they subtype, take the down man.
3650     // If both are up and they subtype, take the subtype class.
3651 
3652     // If both are down and they subtype, "fall hard".
3653     // If both are down and they do NOT subtype, "fall hard".
3654     // If both are up and they do NOT subtype, "fall hard".
3655     // If we split one up & one down AND they do NOT subtype, "fall hard".
3656 
3657     // If a proper subtype is exact, and we return it, we return it exactly.
3658     // If a proper supertype is exact, there can be no subtyping relationship!
3659     // If both types are equal to the subtype, exactness is and-ed below the
3660     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3661 
3662     // Check for subtyping:
3663     ciKlass *subtype = NULL;
3664     bool subtype_exact = false;
3665     if( tinst_klass->equals(this_klass) ) {
3666       subtype = this_klass;
3667       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3668     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3669       subtype = this_klass;     // Pick subtyping class
3670       subtype_exact = this_xk;
3671     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3672       subtype = tinst_klass;    // Pick subtyping class
3673       subtype_exact = tinst_xk;
3674     }
3675 
3676     if( subtype ) {
3677       if( above_centerline(ptr) ) { // both are up?
3678         this_klass = tinst_klass = subtype;
3679         this_xk = tinst_xk = subtype_exact;
3680       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3681         this_klass = tinst_klass; // tinst is down; keep down man
3682         this_xk = tinst_xk;
3683       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3684         tinst_klass = this_klass; // this is down; keep down man
3685         tinst_xk = this_xk;
3686       } else {
3687         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3688       }
3689     }
3690 
3691     // Check for classes now being equal
3692     if (tinst_klass->equals(this_klass)) {
3693       // If the klasses are equal, the constants may still differ.  Fall to
3694       // NotNull if they do (neither constant is NULL; that is a special case
3695       // handled elsewhere).
3696       ciObject* o = NULL;             // Assume not constant when done
3697       ciObject* this_oop  = const_oop();
3698       ciObject* tinst_oop = tinst->const_oop();
3699       if( ptr == Constant ) {
3700         if (this_oop != NULL && tinst_oop != NULL &&
3701             this_oop->equals(tinst_oop) )
3702           o = this_oop;
3703         else if (above_centerline(this ->_ptr))
3704           o = tinst_oop;
3705         else if (above_centerline(tinst ->_ptr))
3706           o = this_oop;
3707         else
3708           ptr = NotNull;
3709       }
3710       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
3711     } // Else classes are not equal
3712 
3713     // Since klasses are different, we require a LCA in the Java
3714     // class hierarchy - which means we have to fall to at least NotNull.
3715     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3716       ptr = NotNull;
3717 
3718     instance_id = InstanceBot;
3719 
3720     // Now we find the LCA of Java classes
3721     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3722     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
3723   } // End of case InstPtr
3724 
3725   } // End of switch
3726   return this;                  // Return the double constant
3727 }
3728 
3729 
3730 //------------------------java_mirror_type--------------------------------------
3731 ciType* TypeInstPtr::java_mirror_type() const {
3732   // must be a singleton type
3733   if( const_oop() == NULL )  return NULL;
3734 
3735   // must be of type java.lang.Class
3736   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3737 
3738   return const_oop()->as_instance()->java_mirror_type();
3739 }
3740 
3741 
3742 //------------------------------xdual------------------------------------------
3743 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3744 // inheritance mechanism.
3745 const Type *TypeInstPtr::xdual() const {
3746   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3747 }
3748 
3749 //------------------------------eq---------------------------------------------
3750 // Structural equality check for Type representations
3751 bool TypeInstPtr::eq( const Type *t ) const {
3752   const TypeInstPtr *p = t->is_instptr();
3753   return
3754     klass()->equals(p->klass()) &&
3755     TypeOopPtr::eq(p);          // Check sub-type stuff
3756 }
3757 
3758 //------------------------------hash-------------------------------------------
3759 // Type-specific hashing function.
3760 int TypeInstPtr::hash(void) const {
3761   int hash = klass()->hash() + TypeOopPtr::hash();
3762   return hash;
3763 }
3764 
3765 //------------------------------dump2------------------------------------------
3766 // Dump oop Type
3767 #ifndef PRODUCT
3768 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3769   // Print the name of the klass.
3770   klass()->print_name_on(st);
3771 
3772   switch( _ptr ) {
3773   case Constant:
3774     // TO DO: Make CI print the hex address of the underlying oop.
3775     if (WizardMode || Verbose) {
3776       const_oop()->print_oop(st);
3777     }
3778   case BotPTR:
3779     if (!WizardMode && !Verbose) {
3780       if( _klass_is_exact ) st->print(":exact");
3781       break;
3782     }
3783   case TopPTR:
3784   case AnyNull:
3785   case NotNull:
3786     st->print(":%s", ptr_msg[_ptr]);
3787     if( _klass_is_exact ) st->print(":exact");
3788     break;
3789   }
3790 
3791   if( _offset ) {               // Dump offset, if any
3792     if( _offset == OffsetBot )      st->print("+any");
3793     else if( _offset == OffsetTop ) st->print("+unknown");
3794     else st->print("+%d", _offset);
3795   }
3796 
3797   st->print(" *");
3798   if (_instance_id == InstanceTop)
3799     st->print(",iid=top");
3800   else if (_instance_id != InstanceBot)
3801     st->print(",iid=%d",_instance_id);
3802 
3803   dump_inline_depth(st);
3804   dump_speculative(st);
3805 }
3806 #endif
3807 
3808 //------------------------------add_offset-------------------------------------
3809 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
3810   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
3811               _instance_id, add_offset_speculative(offset), _inline_depth);
3812 }
3813 
3814 const Type *TypeInstPtr::remove_speculative() const {
3815   if (_speculative == NULL) {
3816     return this;
3817   }
3818   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3819   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
3820               _instance_id, NULL, _inline_depth);
3821 }
3822 
3823 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
3824   if (!UseInlineDepthForSpeculativeTypes) {
3825     return this;
3826   }
3827   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
3828 }
3829 
3830 //=============================================================================
3831 // Convenience common pre-built types.
3832 const TypeAryPtr *TypeAryPtr::RANGE;
3833 const TypeAryPtr *TypeAryPtr::OOPS;
3834 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
3835 const TypeAryPtr *TypeAryPtr::BYTES;
3836 const TypeAryPtr *TypeAryPtr::SHORTS;
3837 const TypeAryPtr *TypeAryPtr::CHARS;
3838 const TypeAryPtr *TypeAryPtr::INTS;
3839 const TypeAryPtr *TypeAryPtr::LONGS;
3840 const TypeAryPtr *TypeAryPtr::FLOATS;
3841 const TypeAryPtr *TypeAryPtr::DOUBLES;
3842 
3843 //------------------------------make-------------------------------------------
3844 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
3845                                    int instance_id, const TypePtr* speculative, int inline_depth) {
3846   assert(!(k == NULL && ary->_elem->isa_int()),
3847          "integral arrays must be pre-equipped with a class");
3848   if (!xk)  xk = ary->ary_must_be_exact();
3849   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3850   if (!UseExactTypes)  xk = (ptr == Constant);
3851   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
3852 }
3853 
3854 //------------------------------make-------------------------------------------
3855 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
3856                                    int instance_id, const TypePtr* speculative, int inline_depth,
3857                                    bool is_autobox_cache) {
3858   assert(!(k == NULL && ary->_elem->isa_int()),
3859          "integral arrays must be pre-equipped with a class");
3860   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
3861   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
3862   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3863   if (!UseExactTypes)  xk = (ptr == Constant);
3864   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
3865 }
3866 
3867 //------------------------------cast_to_ptr_type-------------------------------
3868 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
3869   if( ptr == _ptr ) return this;
3870   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3871 }
3872 
3873 
3874 //-----------------------------cast_to_exactness-------------------------------
3875 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
3876   if( klass_is_exact == _klass_is_exact ) return this;
3877   if (!UseExactTypes)  return this;
3878   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
3879   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
3880 }
3881 
3882 //-----------------------------cast_to_instance_id----------------------------
3883 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
3884   if( instance_id == _instance_id ) return this;
3885   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
3886 }
3887 
3888 //-----------------------------narrow_size_type-------------------------------
3889 // Local cache for arrayOopDesc::max_array_length(etype),
3890 // which is kind of slow (and cached elsewhere by other users).
3891 static jint max_array_length_cache[T_CONFLICT+1];
3892 static jint max_array_length(BasicType etype) {
3893   jint& cache = max_array_length_cache[etype];
3894   jint res = cache;
3895   if (res == 0) {
3896     switch (etype) {
3897     case T_NARROWOOP:
3898       etype = T_OBJECT;
3899       break;
3900     case T_NARROWKLASS:
3901     case T_CONFLICT:
3902     case T_ILLEGAL:
3903     case T_VOID:
3904       etype = T_BYTE;           // will produce conservatively high value
3905     }
3906     cache = res = arrayOopDesc::max_array_length(etype);
3907   }
3908   return res;
3909 }
3910 
3911 // Narrow the given size type to the index range for the given array base type.
3912 // Return NULL if the resulting int type becomes empty.
3913 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
3914   jint hi = size->_hi;
3915   jint lo = size->_lo;
3916   jint min_lo = 0;
3917   jint max_hi = max_array_length(elem()->basic_type());
3918   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
3919   bool chg = false;
3920   if (lo < min_lo) {
3921     lo = min_lo;
3922     if (size->is_con()) {
3923       hi = lo;
3924     }
3925     chg = true;
3926   }
3927   if (hi > max_hi) {
3928     hi = max_hi;
3929     if (size->is_con()) {
3930       lo = hi;
3931     }
3932     chg = true;
3933   }
3934   // Negative length arrays will produce weird intermediate dead fast-path code
3935   if (lo > hi)
3936     return TypeInt::ZERO;
3937   if (!chg)
3938     return size;
3939   return TypeInt::make(lo, hi, Type::WidenMin);
3940 }
3941 
3942 //-------------------------------cast_to_size----------------------------------
3943 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
3944   assert(new_size != NULL, "");
3945   new_size = narrow_size_type(new_size);
3946   if (new_size == size())  return this;
3947   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
3948   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3949 }
3950 
3951 
3952 //------------------------------cast_to_stable---------------------------------
3953 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
3954   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
3955     return this;
3956 
3957   const Type* elem = this->elem();
3958   const TypePtr* elem_ptr = elem->make_ptr();
3959 
3960   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
3961     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
3962     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
3963   }
3964 
3965   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
3966 
3967   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3968 }
3969 
3970 //-----------------------------stable_dimension--------------------------------
3971 int TypeAryPtr::stable_dimension() const {
3972   if (!is_stable())  return 0;
3973   int dim = 1;
3974   const TypePtr* elem_ptr = elem()->make_ptr();
3975   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
3976     dim += elem_ptr->is_aryptr()->stable_dimension();
3977   return dim;
3978 }
3979 
3980 //------------------------------eq---------------------------------------------
3981 // Structural equality check for Type representations
3982 bool TypeAryPtr::eq( const Type *t ) const {
3983   const TypeAryPtr *p = t->is_aryptr();
3984   return
3985     _ary == p->_ary &&  // Check array
3986     TypeOopPtr::eq(p);  // Check sub-parts
3987 }
3988 
3989 //------------------------------hash-------------------------------------------
3990 // Type-specific hashing function.
3991 int TypeAryPtr::hash(void) const {
3992   return (intptr_t)_ary + TypeOopPtr::hash();
3993 }
3994 
3995 //------------------------------meet-------------------------------------------
3996 // Compute the MEET of two types.  It returns a new Type object.
3997 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
3998   // Perform a fast test for common case; meeting the same types together.
3999   if( this == t ) return this;  // Meeting same type-rep?
4000   // Current "this->_base" is Pointer
4001   switch (t->base()) {          // switch on original type
4002 
4003   // Mixing ints & oops happens when javac reuses local variables
4004   case Int:
4005   case Long:
4006   case FloatTop:
4007   case FloatCon:
4008   case FloatBot:
4009   case DoubleTop:
4010   case DoubleCon:
4011   case DoubleBot:
4012   case NarrowOop:
4013   case NarrowKlass:
4014   case Bottom:                  // Ye Olde Default
4015     return Type::BOTTOM;
4016   case Top:
4017     return this;
4018 
4019   default:                      // All else is a mistake
4020     typerr(t);
4021 
4022   case OopPtr: {                // Meeting to OopPtrs
4023     // Found a OopPtr type vs self-AryPtr type
4024     const TypeOopPtr *tp = t->is_oopptr();
4025     int offset = meet_offset(tp->offset());
4026     PTR ptr = meet_ptr(tp->ptr());
4027     int depth = meet_inline_depth(tp->inline_depth());
4028     const TypePtr* speculative = xmeet_speculative(tp);
4029     switch (tp->ptr()) {
4030     case TopPTR:
4031     case AnyNull: {
4032       int instance_id = meet_instance_id(InstanceTop);
4033       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4034                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4035     }
4036     case BotPTR:
4037     case NotNull: {
4038       int instance_id = meet_instance_id(tp->instance_id());
4039       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4040     }
4041     default: ShouldNotReachHere();
4042     }
4043   }
4044 
4045   case AnyPtr: {                // Meeting two AnyPtrs
4046     // Found an AnyPtr type vs self-AryPtr type
4047     const TypePtr *tp = t->is_ptr();
4048     int offset = meet_offset(tp->offset());
4049     PTR ptr = meet_ptr(tp->ptr());
4050     const TypePtr* speculative = xmeet_speculative(tp);
4051     int depth = meet_inline_depth(tp->inline_depth());
4052     switch (tp->ptr()) {
4053     case TopPTR:
4054       return this;
4055     case BotPTR:
4056     case NotNull:
4057       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4058     case Null:
4059       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4060       // else fall through to AnyNull
4061     case AnyNull: {
4062       int instance_id = meet_instance_id(InstanceTop);
4063       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4064                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4065     }
4066     default: ShouldNotReachHere();
4067     }
4068   }
4069 
4070   case MetadataPtr:
4071   case KlassPtr:
4072   case RawPtr: return TypePtr::BOTTOM;
4073 
4074   case AryPtr: {                // Meeting 2 references?
4075     const TypeAryPtr *tap = t->is_aryptr();
4076     int off = meet_offset(tap->offset());
4077     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4078     PTR ptr = meet_ptr(tap->ptr());
4079     int instance_id = meet_instance_id(tap->instance_id());
4080     const TypePtr* speculative = xmeet_speculative(tap);
4081     int depth = meet_inline_depth(tap->inline_depth());
4082     ciKlass* lazy_klass = NULL;
4083     if (tary->_elem->isa_int()) {
4084       // Integral array element types have irrelevant lattice relations.
4085       // It is the klass that determines array layout, not the element type.
4086       if (_klass == NULL)
4087         lazy_klass = tap->_klass;
4088       else if (tap->_klass == NULL || tap->_klass == _klass) {
4089         lazy_klass = _klass;
4090       } else {
4091         // Something like byte[int+] meets char[int+].
4092         // This must fall to bottom, not (int[-128..65535])[int+].
4093         instance_id = InstanceBot;
4094         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4095       }
4096     } else // Non integral arrays.
4097       // Must fall to bottom if exact klasses in upper lattice
4098       // are not equal or super klass is exact.
4099       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4100           // meet with top[] and bottom[] are processed further down:
4101           tap->_klass != NULL  && this->_klass != NULL   &&
4102           // both are exact and not equal:
4103           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4104            // 'tap'  is exact and super or unrelated:
4105            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4106            // 'this' is exact and super or unrelated:
4107            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4108       tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4109       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot, speculative, depth);
4110     }
4111 
4112     bool xk = false;
4113     switch (tap->ptr()) {
4114     case AnyNull:
4115     case TopPTR:
4116       // Compute new klass on demand, do not use tap->_klass
4117       if (below_centerline(this->_ptr)) {
4118         xk = this->_klass_is_exact;
4119       } else {
4120         xk = (tap->_klass_is_exact | this->_klass_is_exact);
4121       }
4122       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
4123     case Constant: {
4124       ciObject* o = const_oop();
4125       if( _ptr == Constant ) {
4126         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4127           xk = (klass() == tap->klass());
4128           ptr = NotNull;
4129           o = NULL;
4130           instance_id = InstanceBot;
4131         } else {
4132           xk = true;
4133         }
4134       } else if(above_centerline(_ptr)) {
4135         o = tap->const_oop();
4136         xk = true;
4137       } else {
4138         // Only precise for identical arrays
4139         xk = this->_klass_is_exact && (klass() == tap->klass());
4140       }
4141       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4142     }
4143     case NotNull:
4144     case BotPTR:
4145       // Compute new klass on demand, do not use tap->_klass
4146       if (above_centerline(this->_ptr))
4147             xk = tap->_klass_is_exact;
4148       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4149               (klass() == tap->klass()); // Only precise for identical arrays
4150       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4151     default: ShouldNotReachHere();
4152     }
4153   }
4154 
4155   // All arrays inherit from Object class
4156   case InstPtr: {
4157     const TypeInstPtr *tp = t->is_instptr();
4158     int offset = meet_offset(tp->offset());
4159     PTR ptr = meet_ptr(tp->ptr());
4160     int instance_id = meet_instance_id(tp->instance_id());
4161     const TypePtr* speculative = xmeet_speculative(tp);
4162     int depth = meet_inline_depth(tp->inline_depth());
4163     switch (ptr) {
4164     case TopPTR:
4165     case AnyNull:                // Fall 'down' to dual of object klass
4166       // For instances when a subclass meets a superclass we fall
4167       // below the centerline when the superclass is exact. We need to
4168       // do the same here.
4169       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4170         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4171       } else {
4172         // cannot subclass, so the meet has to fall badly below the centerline
4173         ptr = NotNull;
4174         instance_id = InstanceBot;
4175         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4176       }
4177     case Constant:
4178     case NotNull:
4179     case BotPTR:                // Fall down to object klass
4180       // LCA is object_klass, but if we subclass from the top we can do better
4181       if (above_centerline(tp->ptr())) {
4182         // If 'tp'  is above the centerline and it is Object class
4183         // then we can subclass in the Java class hierarchy.
4184         // For instances when a subclass meets a superclass we fall
4185         // below the centerline when the superclass is exact. We need
4186         // to do the same here.
4187         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4188           // that is, my array type is a subtype of 'tp' klass
4189           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4190                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4191         }
4192       }
4193       // The other case cannot happen, since t cannot be a subtype of an array.
4194       // The meet falls down to Object class below centerline.
4195       if( ptr == Constant )
4196          ptr = NotNull;
4197       instance_id = InstanceBot;
4198       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4199     default: typerr(t);
4200     }
4201   }
4202   }
4203   return this;                  // Lint noise
4204 }
4205 
4206 //------------------------------xdual------------------------------------------
4207 // Dual: compute field-by-field dual
4208 const Type *TypeAryPtr::xdual() const {
4209   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4210 }
4211 
4212 //----------------------interface_vs_oop---------------------------------------
4213 #ifdef ASSERT
4214 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4215   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4216   if (t_aryptr) {
4217     return _ary->interface_vs_oop(t_aryptr->_ary);
4218   }
4219   return false;
4220 }
4221 #endif
4222 
4223 //------------------------------dump2------------------------------------------
4224 #ifndef PRODUCT
4225 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4226   _ary->dump2(d,depth,st);
4227   switch( _ptr ) {
4228   case Constant:
4229     const_oop()->print(st);
4230     break;
4231   case BotPTR:
4232     if (!WizardMode && !Verbose) {
4233       if( _klass_is_exact ) st->print(":exact");
4234       break;
4235     }
4236   case TopPTR:
4237   case AnyNull:
4238   case NotNull:
4239     st->print(":%s", ptr_msg[_ptr]);
4240     if( _klass_is_exact ) st->print(":exact");
4241     break;
4242   }
4243 
4244   if( _offset != 0 ) {
4245     int header_size = objArrayOopDesc::header_size() * wordSize;
4246     if( _offset == OffsetTop )       st->print("+undefined");
4247     else if( _offset == OffsetBot )  st->print("+any");
4248     else if( _offset < header_size ) st->print("+%d", _offset);
4249     else {
4250       BasicType basic_elem_type = elem()->basic_type();
4251       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4252       int elem_size = type2aelembytes(basic_elem_type);
4253       st->print("[%d]", (_offset - array_base)/elem_size);
4254     }
4255   }
4256   st->print(" *");
4257   if (_instance_id == InstanceTop)
4258     st->print(",iid=top");
4259   else if (_instance_id != InstanceBot)
4260     st->print(",iid=%d",_instance_id);
4261 
4262   dump_inline_depth(st);
4263   dump_speculative(st);
4264 }
4265 #endif
4266 
4267 bool TypeAryPtr::empty(void) const {
4268   if (_ary->empty())       return true;
4269   return TypeOopPtr::empty();
4270 }
4271 
4272 //------------------------------add_offset-------------------------------------
4273 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4274   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4275 }
4276 
4277 const Type *TypeAryPtr::remove_speculative() const {
4278   if (_speculative == NULL) {
4279     return this;
4280   }
4281   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4282   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
4283 }
4284 
4285 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4286   if (!UseInlineDepthForSpeculativeTypes) {
4287     return this;
4288   }
4289   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
4290 }
4291 
4292 //=============================================================================
4293 
4294 //------------------------------hash-------------------------------------------
4295 // Type-specific hashing function.
4296 int TypeNarrowPtr::hash(void) const {
4297   return _ptrtype->hash() + 7;
4298 }
4299 
4300 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4301   return _ptrtype->singleton();
4302 }
4303 
4304 bool TypeNarrowPtr::empty(void) const {
4305   return _ptrtype->empty();
4306 }
4307 
4308 intptr_t TypeNarrowPtr::get_con() const {
4309   return _ptrtype->get_con();
4310 }
4311 
4312 bool TypeNarrowPtr::eq( const Type *t ) const {
4313   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4314   if (tc != NULL) {
4315     if (_ptrtype->base() != tc->_ptrtype->base()) {
4316       return false;
4317     }
4318     return tc->_ptrtype->eq(_ptrtype);
4319   }
4320   return false;
4321 }
4322 
4323 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4324   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4325   return make_same_narrowptr(odual);
4326 }
4327 
4328 
4329 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4330   if (isa_same_narrowptr(kills)) {
4331     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4332     if (ft->empty())
4333       return Type::TOP;           // Canonical empty value
4334     if (ft->isa_ptr()) {
4335       return make_hash_same_narrowptr(ft->isa_ptr());
4336     }
4337     return ft;
4338   } else if (kills->isa_ptr()) {
4339     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4340     if (ft->empty())
4341       return Type::TOP;           // Canonical empty value
4342     return ft;
4343   } else {
4344     return Type::TOP;
4345   }
4346 }
4347 
4348 //------------------------------xmeet------------------------------------------
4349 // Compute the MEET of two types.  It returns a new Type object.
4350 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4351   // Perform a fast test for common case; meeting the same types together.
4352   if( this == t ) return this;  // Meeting same type-rep?
4353 
4354   if (t->base() == base()) {
4355     const Type* result = _ptrtype->xmeet(t->make_ptr());
4356     if (result->isa_ptr()) {
4357       return make_hash_same_narrowptr(result->is_ptr());
4358     }
4359     return result;
4360   }
4361 
4362   // Current "this->_base" is NarrowKlass or NarrowOop
4363   switch (t->base()) {          // switch on original type
4364 
4365   case Int:                     // Mixing ints & oops happens when javac
4366   case Long:                    // reuses local variables
4367   case FloatTop:
4368   case FloatCon:
4369   case FloatBot:
4370   case DoubleTop:
4371   case DoubleCon:
4372   case DoubleBot:
4373   case AnyPtr:
4374   case RawPtr:
4375   case OopPtr:
4376   case InstPtr:
4377   case AryPtr:
4378   case MetadataPtr:
4379   case KlassPtr:
4380   case NarrowOop:
4381   case NarrowKlass:
4382 
4383   case Bottom:                  // Ye Olde Default
4384     return Type::BOTTOM;
4385   case Top:
4386     return this;
4387 
4388   default:                      // All else is a mistake
4389     typerr(t);
4390 
4391   } // End of switch
4392 
4393   return this;
4394 }
4395 
4396 #ifndef PRODUCT
4397 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4398   _ptrtype->dump2(d, depth, st);
4399 }
4400 #endif
4401 
4402 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4403 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4404 
4405 
4406 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4407   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4408 }
4409 
4410 const Type* TypeNarrowOop::remove_speculative() const {
4411   return make(_ptrtype->remove_speculative()->is_ptr());
4412 }
4413 
4414 const Type* TypeNarrowOop::cleanup_speculative() const {
4415   return make(_ptrtype->cleanup_speculative()->is_ptr());
4416 }
4417 
4418 #ifndef PRODUCT
4419 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4420   st->print("narrowoop: ");
4421   TypeNarrowPtr::dump2(d, depth, st);
4422 }
4423 #endif
4424 
4425 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4426 
4427 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4428   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4429 }
4430 
4431 #ifndef PRODUCT
4432 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4433   st->print("narrowklass: ");
4434   TypeNarrowPtr::dump2(d, depth, st);
4435 }
4436 #endif
4437 
4438 
4439 //------------------------------eq---------------------------------------------
4440 // Structural equality check for Type representations
4441 bool TypeMetadataPtr::eq( const Type *t ) const {
4442   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4443   ciMetadata* one = metadata();
4444   ciMetadata* two = a->metadata();
4445   if (one == NULL || two == NULL) {
4446     return (one == two) && TypePtr::eq(t);
4447   } else {
4448     return one->equals(two) && TypePtr::eq(t);
4449   }
4450 }
4451 
4452 //------------------------------hash-------------------------------------------
4453 // Type-specific hashing function.
4454 int TypeMetadataPtr::hash(void) const {
4455   return
4456     (metadata() ? metadata()->hash() : 0) +
4457     TypePtr::hash();
4458 }
4459 
4460 //------------------------------singleton--------------------------------------
4461 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4462 // constants
4463 bool TypeMetadataPtr::singleton(void) const {
4464   // detune optimizer to not generate constant metadta + constant offset as a constant!
4465   // TopPTR, Null, AnyNull, Constant are all singletons
4466   return (_offset == 0) && !below_centerline(_ptr);
4467 }
4468 
4469 //------------------------------add_offset-------------------------------------
4470 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4471   return make( _ptr, _metadata, xadd_offset(offset));
4472 }
4473 
4474 //-----------------------------filter------------------------------------------
4475 // Do not allow interface-vs.-noninterface joins to collapse to top.
4476 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4477   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4478   if (ft == NULL || ft->empty())
4479     return Type::TOP;           // Canonical empty value
4480   return ft;
4481 }
4482 
4483  //------------------------------get_con----------------------------------------
4484 intptr_t TypeMetadataPtr::get_con() const {
4485   assert( _ptr == Null || _ptr == Constant, "" );
4486   assert( _offset >= 0, "" );
4487 
4488   if (_offset != 0) {
4489     // After being ported to the compiler interface, the compiler no longer
4490     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4491     // to a handle at compile time.  This handle is embedded in the generated
4492     // code and dereferenced at the time the nmethod is made.  Until that time,
4493     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4494     // have access to the addresses!).  This does not seem to currently happen,
4495     // but this assertion here is to help prevent its occurence.
4496     tty->print_cr("Found oop constant with non-zero offset");
4497     ShouldNotReachHere();
4498   }
4499 
4500   return (intptr_t)metadata()->constant_encoding();
4501 }
4502 
4503 //------------------------------cast_to_ptr_type-------------------------------
4504 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4505   if( ptr == _ptr ) return this;
4506   return make(ptr, metadata(), _offset);
4507 }
4508 
4509 //------------------------------meet-------------------------------------------
4510 // Compute the MEET of two types.  It returns a new Type object.
4511 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4512   // Perform a fast test for common case; meeting the same types together.
4513   if( this == t ) return this;  // Meeting same type-rep?
4514 
4515   // Current "this->_base" is OopPtr
4516   switch (t->base()) {          // switch on original type
4517 
4518   case Int:                     // Mixing ints & oops happens when javac
4519   case Long:                    // reuses local variables
4520   case FloatTop:
4521   case FloatCon:
4522   case FloatBot:
4523   case DoubleTop:
4524   case DoubleCon:
4525   case DoubleBot:
4526   case NarrowOop:
4527   case NarrowKlass:
4528   case Bottom:                  // Ye Olde Default
4529     return Type::BOTTOM;
4530   case Top:
4531     return this;
4532 
4533   default:                      // All else is a mistake
4534     typerr(t);
4535 
4536   case AnyPtr: {
4537     // Found an AnyPtr type vs self-OopPtr type
4538     const TypePtr *tp = t->is_ptr();
4539     int offset = meet_offset(tp->offset());
4540     PTR ptr = meet_ptr(tp->ptr());
4541     switch (tp->ptr()) {
4542     case Null:
4543       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4544       // else fall through:
4545     case TopPTR:
4546     case AnyNull: {
4547       return make(ptr, _metadata, offset);
4548     }
4549     case BotPTR:
4550     case NotNull:
4551       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4552     default: typerr(t);
4553     }
4554   }
4555 
4556   case RawPtr:
4557   case KlassPtr:
4558   case OopPtr:
4559   case InstPtr:
4560   case AryPtr:
4561     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4562 
4563   case MetadataPtr: {
4564     const TypeMetadataPtr *tp = t->is_metadataptr();
4565     int offset = meet_offset(tp->offset());
4566     PTR tptr = tp->ptr();
4567     PTR ptr = meet_ptr(tptr);
4568     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4569     if (tptr == TopPTR || _ptr == TopPTR ||
4570         metadata()->equals(tp->metadata())) {
4571       return make(ptr, md, offset);
4572     }
4573     // metadata is different
4574     if( ptr == Constant ) {  // Cannot be equal constants, so...
4575       if( tptr == Constant && _ptr != Constant)  return t;
4576       if( _ptr == Constant && tptr != Constant)  return this;
4577       ptr = NotNull;            // Fall down in lattice
4578     }
4579     return make(ptr, NULL, offset);
4580     break;
4581   }
4582   } // End of switch
4583   return this;                  // Return the double constant
4584 }
4585 
4586 
4587 //------------------------------xdual------------------------------------------
4588 // Dual of a pure metadata pointer.
4589 const Type *TypeMetadataPtr::xdual() const {
4590   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4591 }
4592 
4593 //------------------------------dump2------------------------------------------
4594 #ifndef PRODUCT
4595 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4596   st->print("metadataptr:%s", ptr_msg[_ptr]);
4597   if( metadata() ) st->print(INTPTR_FORMAT, metadata());
4598   switch( _offset ) {
4599   case OffsetTop: st->print("+top"); break;
4600   case OffsetBot: st->print("+any"); break;
4601   case         0: break;
4602   default:        st->print("+%d",_offset); break;
4603   }
4604 }
4605 #endif
4606 
4607 
4608 //=============================================================================
4609 // Convenience common pre-built type.
4610 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4611 
4612 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4613   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4614 }
4615 
4616 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4617   return make(Constant, m, 0);
4618 }
4619 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4620   return make(Constant, m, 0);
4621 }
4622 
4623 //------------------------------make-------------------------------------------
4624 // Create a meta data constant
4625 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4626   assert(m == NULL || !m->is_klass(), "wrong type");
4627   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4628 }
4629 
4630 
4631 //=============================================================================
4632 // Convenience common pre-built types.
4633 
4634 // Not-null object klass or below
4635 const TypeKlassPtr *TypeKlassPtr::OBJECT;
4636 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4637 
4638 //------------------------------TypeKlassPtr-----------------------------------
4639 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4640   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4641 }
4642 
4643 //------------------------------make-------------------------------------------
4644 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4645 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4646   assert( k != NULL, "Expect a non-NULL klass");
4647   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4648   TypeKlassPtr *r =
4649     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4650 
4651   return r;
4652 }
4653 
4654 //------------------------------eq---------------------------------------------
4655 // Structural equality check for Type representations
4656 bool TypeKlassPtr::eq( const Type *t ) const {
4657   const TypeKlassPtr *p = t->is_klassptr();
4658   return
4659     klass()->equals(p->klass()) &&
4660     TypePtr::eq(p);
4661 }
4662 
4663 //------------------------------hash-------------------------------------------
4664 // Type-specific hashing function.
4665 int TypeKlassPtr::hash(void) const {
4666   return klass()->hash() + TypePtr::hash();
4667 }
4668 
4669 //------------------------------singleton--------------------------------------
4670 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4671 // constants
4672 bool TypeKlassPtr::singleton(void) const {
4673   // detune optimizer to not generate constant klass + constant offset as a constant!
4674   // TopPTR, Null, AnyNull, Constant are all singletons
4675   return (_offset == 0) && !below_centerline(_ptr);
4676 }
4677 
4678 // Do not allow interface-vs.-noninterface joins to collapse to top.
4679 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
4680   // logic here mirrors the one from TypeOopPtr::filter. See comments
4681   // there.
4682   const Type* ft = join_helper(kills, include_speculative);
4683   const TypeKlassPtr* ftkp = ft->isa_klassptr();
4684   const TypeKlassPtr* ktkp = kills->isa_klassptr();
4685 
4686   if (ft->empty()) {
4687     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
4688       return kills;             // Uplift to interface
4689 
4690     return Type::TOP;           // Canonical empty value
4691   }
4692 
4693   // Interface klass type could be exact in opposite to interface type,
4694   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
4695   if (ftkp != NULL && ktkp != NULL &&
4696       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
4697       !ftkp->klass_is_exact() && // Keep exact interface klass
4698       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
4699     return ktkp->cast_to_ptr_type(ftkp->ptr());
4700   }
4701 
4702   return ft;
4703 }
4704 
4705 //----------------------compute_klass------------------------------------------
4706 // Compute the defining klass for this class
4707 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4708   // Compute _klass based on element type.
4709   ciKlass* k_ary = NULL;
4710   const TypeInstPtr *tinst;
4711   const TypeAryPtr *tary;
4712   const Type* el = elem();
4713   if (el->isa_narrowoop()) {
4714     el = el->make_ptr();
4715   }
4716 
4717   // Get element klass
4718   if ((tinst = el->isa_instptr()) != NULL) {
4719     // Compute array klass from element klass
4720     k_ary = ciObjArrayKlass::make(tinst->klass());
4721   } else if ((tary = el->isa_aryptr()) != NULL) {
4722     // Compute array klass from element klass
4723     ciKlass* k_elem = tary->klass();
4724     // If element type is something like bottom[], k_elem will be null.
4725     if (k_elem != NULL)
4726       k_ary = ciObjArrayKlass::make(k_elem);
4727   } else if ((el->base() == Type::Top) ||
4728              (el->base() == Type::Bottom)) {
4729     // element type of Bottom occurs from meet of basic type
4730     // and object; Top occurs when doing join on Bottom.
4731     // Leave k_ary at NULL.
4732   } else {
4733     // Cannot compute array klass directly from basic type,
4734     // since subtypes of TypeInt all have basic type T_INT.
4735 #ifdef ASSERT
4736     if (verify && el->isa_int()) {
4737       // Check simple cases when verifying klass.
4738       BasicType bt = T_ILLEGAL;
4739       if (el == TypeInt::BYTE) {
4740         bt = T_BYTE;
4741       } else if (el == TypeInt::SHORT) {
4742         bt = T_SHORT;
4743       } else if (el == TypeInt::CHAR) {
4744         bt = T_CHAR;
4745       } else if (el == TypeInt::INT) {
4746         bt = T_INT;
4747       } else {
4748         return _klass; // just return specified klass
4749       }
4750       return ciTypeArrayKlass::make(bt);
4751     }
4752 #endif
4753     assert(!el->isa_int(),
4754            "integral arrays must be pre-equipped with a class");
4755     // Compute array klass directly from basic type
4756     k_ary = ciTypeArrayKlass::make(el->basic_type());
4757   }
4758   return k_ary;
4759 }
4760 
4761 //------------------------------klass------------------------------------------
4762 // Return the defining klass for this class
4763 ciKlass* TypeAryPtr::klass() const {
4764   if( _klass ) return _klass;   // Return cached value, if possible
4765 
4766   // Oops, need to compute _klass and cache it
4767   ciKlass* k_ary = compute_klass();
4768 
4769   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
4770     // The _klass field acts as a cache of the underlying
4771     // ciKlass for this array type.  In order to set the field,
4772     // we need to cast away const-ness.
4773     //
4774     // IMPORTANT NOTE: we *never* set the _klass field for the
4775     // type TypeAryPtr::OOPS.  This Type is shared between all
4776     // active compilations.  However, the ciKlass which represents
4777     // this Type is *not* shared between compilations, so caching
4778     // this value would result in fetching a dangling pointer.
4779     //
4780     // Recomputing the underlying ciKlass for each request is
4781     // a bit less efficient than caching, but calls to
4782     // TypeAryPtr::OOPS->klass() are not common enough to matter.
4783     ((TypeAryPtr*)this)->_klass = k_ary;
4784     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
4785         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
4786       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
4787     }
4788   }
4789   return k_ary;
4790 }
4791 
4792 
4793 //------------------------------add_offset-------------------------------------
4794 // Access internals of klass object
4795 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
4796   return make( _ptr, klass(), xadd_offset(offset) );
4797 }
4798 
4799 //------------------------------cast_to_ptr_type-------------------------------
4800 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
4801   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
4802   if( ptr == _ptr ) return this;
4803   return make(ptr, _klass, _offset);
4804 }
4805 
4806 
4807 //-----------------------------cast_to_exactness-------------------------------
4808 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
4809   if( klass_is_exact == _klass_is_exact ) return this;
4810   if (!UseExactTypes)  return this;
4811   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
4812 }
4813 
4814 
4815 //-----------------------------as_instance_type--------------------------------
4816 // Corresponding type for an instance of the given class.
4817 // It will be NotNull, and exact if and only if the klass type is exact.
4818 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
4819   ciKlass* k = klass();
4820   bool    xk = klass_is_exact();
4821   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
4822   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
4823   guarantee(toop != NULL, "need type for given klass");
4824   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4825   return toop->cast_to_exactness(xk)->is_oopptr();
4826 }
4827 
4828 
4829 //------------------------------xmeet------------------------------------------
4830 // Compute the MEET of two types, return a new Type object.
4831 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
4832   // Perform a fast test for common case; meeting the same types together.
4833   if( this == t ) return this;  // Meeting same type-rep?
4834 
4835   // Current "this->_base" is Pointer
4836   switch (t->base()) {          // switch on original type
4837 
4838   case Int:                     // Mixing ints & oops happens when javac
4839   case Long:                    // reuses local variables
4840   case FloatTop:
4841   case FloatCon:
4842   case FloatBot:
4843   case DoubleTop:
4844   case DoubleCon:
4845   case DoubleBot:
4846   case NarrowOop:
4847   case NarrowKlass:
4848   case Bottom:                  // Ye Olde Default
4849     return Type::BOTTOM;
4850   case Top:
4851     return this;
4852 
4853   default:                      // All else is a mistake
4854     typerr(t);
4855 
4856   case AnyPtr: {                // Meeting to AnyPtrs
4857     // Found an AnyPtr type vs self-KlassPtr type
4858     const TypePtr *tp = t->is_ptr();
4859     int offset = meet_offset(tp->offset());
4860     PTR ptr = meet_ptr(tp->ptr());
4861     switch (tp->ptr()) {
4862     case TopPTR:
4863       return this;
4864     case Null:
4865       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4866     case AnyNull:
4867       return make( ptr, klass(), offset );
4868     case BotPTR:
4869     case NotNull:
4870       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4871     default: typerr(t);
4872     }
4873   }
4874 
4875   case RawPtr:
4876   case MetadataPtr:
4877   case OopPtr:
4878   case AryPtr:                  // Meet with AryPtr
4879   case InstPtr:                 // Meet with InstPtr
4880     return TypePtr::BOTTOM;
4881 
4882   //
4883   //             A-top         }
4884   //           /   |   \       }  Tops
4885   //       B-top A-any C-top   }
4886   //          | /  |  \ |      }  Any-nulls
4887   //       B-any   |   C-any   }
4888   //          |    |    |
4889   //       B-con A-con C-con   } constants; not comparable across classes
4890   //          |    |    |
4891   //       B-not   |   C-not   }
4892   //          | \  |  / |      }  not-nulls
4893   //       B-bot A-not C-bot   }
4894   //           \   |   /       }  Bottoms
4895   //             A-bot         }
4896   //
4897 
4898   case KlassPtr: {  // Meet two KlassPtr types
4899     const TypeKlassPtr *tkls = t->is_klassptr();
4900     int  off     = meet_offset(tkls->offset());
4901     PTR  ptr     = meet_ptr(tkls->ptr());
4902 
4903     // Check for easy case; klasses are equal (and perhaps not loaded!)
4904     // If we have constants, then we created oops so classes are loaded
4905     // and we can handle the constants further down.  This case handles
4906     // not-loaded classes
4907     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
4908       return make( ptr, klass(), off );
4909     }
4910 
4911     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4912     ciKlass* tkls_klass = tkls->klass();
4913     ciKlass* this_klass = this->klass();
4914     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
4915     assert( this_klass->is_loaded(), "This class should have been loaded.");
4916 
4917     // If 'this' type is above the centerline and is a superclass of the
4918     // other, we can treat 'this' as having the same type as the other.
4919     if ((above_centerline(this->ptr())) &&
4920         tkls_klass->is_subtype_of(this_klass)) {
4921       this_klass = tkls_klass;
4922     }
4923     // If 'tinst' type is above the centerline and is a superclass of the
4924     // other, we can treat 'tinst' as having the same type as the other.
4925     if ((above_centerline(tkls->ptr())) &&
4926         this_klass->is_subtype_of(tkls_klass)) {
4927       tkls_klass = this_klass;
4928     }
4929 
4930     // Check for classes now being equal
4931     if (tkls_klass->equals(this_klass)) {
4932       // If the klasses are equal, the constants may still differ.  Fall to
4933       // NotNull if they do (neither constant is NULL; that is a special case
4934       // handled elsewhere).
4935       if( ptr == Constant ) {
4936         if (this->_ptr == Constant && tkls->_ptr == Constant &&
4937             this->klass()->equals(tkls->klass()));
4938         else if (above_centerline(this->ptr()));
4939         else if (above_centerline(tkls->ptr()));
4940         else
4941           ptr = NotNull;
4942       }
4943       return make( ptr, this_klass, off );
4944     } // Else classes are not equal
4945 
4946     // Since klasses are different, we require the LCA in the Java
4947     // class hierarchy - which means we have to fall to at least NotNull.
4948     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4949       ptr = NotNull;
4950     // Now we find the LCA of Java classes
4951     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
4952     return   make( ptr, k, off );
4953   } // End of case KlassPtr
4954 
4955   } // End of switch
4956   return this;                  // Return the double constant
4957 }
4958 
4959 //------------------------------xdual------------------------------------------
4960 // Dual: compute field-by-field dual
4961 const Type    *TypeKlassPtr::xdual() const {
4962   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
4963 }
4964 
4965 //------------------------------get_con----------------------------------------
4966 intptr_t TypeKlassPtr::get_con() const {
4967   assert( _ptr == Null || _ptr == Constant, "" );
4968   assert( _offset >= 0, "" );
4969 
4970   if (_offset != 0) {
4971     // After being ported to the compiler interface, the compiler no longer
4972     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4973     // to a handle at compile time.  This handle is embedded in the generated
4974     // code and dereferenced at the time the nmethod is made.  Until that time,
4975     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4976     // have access to the addresses!).  This does not seem to currently happen,
4977     // but this assertion here is to help prevent its occurence.
4978     tty->print_cr("Found oop constant with non-zero offset");
4979     ShouldNotReachHere();
4980   }
4981 
4982   return (intptr_t)klass()->constant_encoding();
4983 }
4984 //------------------------------dump2------------------------------------------
4985 // Dump Klass Type
4986 #ifndef PRODUCT
4987 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4988   switch( _ptr ) {
4989   case Constant:
4990     st->print("precise ");
4991   case NotNull:
4992     {
4993       const char *name = klass()->name()->as_utf8();
4994       if( name ) {
4995         st->print("klass %s: " INTPTR_FORMAT, name, klass());
4996       } else {
4997         ShouldNotReachHere();
4998       }
4999     }
5000   case BotPTR:
5001     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5002   case TopPTR:
5003   case AnyNull:
5004     st->print(":%s", ptr_msg[_ptr]);
5005     if( _klass_is_exact ) st->print(":exact");
5006     break;
5007   }
5008 
5009   if( _offset ) {               // Dump offset, if any
5010     if( _offset == OffsetBot )      { st->print("+any"); }
5011     else if( _offset == OffsetTop ) { st->print("+unknown"); }
5012     else                            { st->print("+%d", _offset); }
5013   }
5014 
5015   st->print(" *");
5016 }
5017 #endif
5018 
5019 
5020 
5021 //=============================================================================
5022 // Convenience common pre-built types.
5023 
5024 //------------------------------make-------------------------------------------
5025 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
5026   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
5027 }
5028 
5029 //------------------------------make-------------------------------------------
5030 const TypeFunc *TypeFunc::make(ciMethod* method) {
5031   Compile* C = Compile::current();
5032   const TypeFunc* tf = C->last_tf(method); // check cache
5033   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5034   const TypeTuple *domain;
5035   if (method->is_static()) {
5036     domain = TypeTuple::make_domain(NULL, method->signature());
5037   } else {
5038     domain = TypeTuple::make_domain(method->holder(), method->signature());
5039   }
5040   const TypeTuple *range  = TypeTuple::make_range(method->signature());
5041   tf = TypeFunc::make(domain, range);
5042   C->set_last_tf(method, tf);  // fill cache
5043   return tf;
5044 }
5045 
5046 //------------------------------meet-------------------------------------------
5047 // Compute the MEET of two types.  It returns a new Type object.
5048 const Type *TypeFunc::xmeet( const Type *t ) const {
5049   // Perform a fast test for common case; meeting the same types together.
5050   if( this == t ) return this;  // Meeting same type-rep?
5051 
5052   // Current "this->_base" is Func
5053   switch (t->base()) {          // switch on original type
5054 
5055   case Bottom:                  // Ye Olde Default
5056     return t;
5057 
5058   default:                      // All else is a mistake
5059     typerr(t);
5060 
5061   case Top:
5062     break;
5063   }
5064   return this;                  // Return the double constant
5065 }
5066 
5067 //------------------------------xdual------------------------------------------
5068 // Dual: compute field-by-field dual
5069 const Type *TypeFunc::xdual() const {
5070   return this;
5071 }
5072 
5073 //------------------------------eq---------------------------------------------
5074 // Structural equality check for Type representations
5075 bool TypeFunc::eq( const Type *t ) const {
5076   const TypeFunc *a = (const TypeFunc*)t;
5077   return _domain == a->_domain &&
5078     _range == a->_range;
5079 }
5080 
5081 //------------------------------hash-------------------------------------------
5082 // Type-specific hashing function.
5083 int TypeFunc::hash(void) const {
5084   return (intptr_t)_domain + (intptr_t)_range;
5085 }
5086 
5087 //------------------------------dump2------------------------------------------
5088 // Dump Function Type
5089 #ifndef PRODUCT
5090 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5091   if( _range->cnt() <= Parms )
5092     st->print("void");
5093   else {
5094     uint i;
5095     for (i = Parms; i < _range->cnt()-1; i++) {
5096       _range->field_at(i)->dump2(d,depth,st);
5097       st->print("/");
5098     }
5099     _range->field_at(i)->dump2(d,depth,st);
5100   }
5101   st->print(" ");
5102   st->print("( ");
5103   if( !depth || d[this] ) {     // Check for recursive dump
5104     st->print("...)");
5105     return;
5106   }
5107   d.Insert((void*)this,(void*)this);    // Stop recursion
5108   if (Parms < _domain->cnt())
5109     _domain->field_at(Parms)->dump2(d,depth-1,st);
5110   for (uint i = Parms+1; i < _domain->cnt(); i++) {
5111     st->print(", ");
5112     _domain->field_at(i)->dump2(d,depth-1,st);
5113   }
5114   st->print(" )");
5115 }
5116 #endif
5117 
5118 //------------------------------singleton--------------------------------------
5119 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5120 // constants (Ldi nodes).  Singletons are integer, float or double constants
5121 // or a single symbol.
5122 bool TypeFunc::singleton(void) const {
5123   return false;                 // Never a singleton
5124 }
5125 
5126 bool TypeFunc::empty(void) const {
5127   return false;                 // Never empty
5128 }
5129 
5130 
5131 BasicType TypeFunc::return_type() const{
5132   if (range()->cnt() == TypeFunc::Parms) {
5133     return T_VOID;
5134   }
5135   return range()->field_at(TypeFunc::Parms)->basic_type();
5136 }