1 /*
   2  * Copyright (c) 2002, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc/shared/collectedHeap.hpp"
  28 #include "interpreter/bytecodeHistogram.hpp"
  29 #include "interpreter/bytecodeInterpreter.hpp"
  30 #include "interpreter/bytecodeInterpreter.inline.hpp"
  31 #include "interpreter/bytecodeInterpreterProfiling.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/interpreterRuntime.hpp"
  34 #include "logging/log.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/methodCounters.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "oops/objArrayOop.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "prims/jvmtiExport.hpp"
  41 #include "prims/jvmtiThreadState.hpp"
  42 #include "runtime/atomic.hpp"
  43 #include "runtime/biasedLocking.hpp"
  44 #include "runtime/frame.inline.hpp"
  45 #include "runtime/handles.inline.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/orderAccess.inline.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "runtime/threadCritical.hpp"
  50 #include "utilities/exceptions.hpp"
  51 
  52 // no precompiled headers
  53 #ifdef CC_INTERP
  54 
  55 /*
  56  * USELABELS - If using GCC, then use labels for the opcode dispatching
  57  * rather -then a switch statement. This improves performance because it
  58  * gives us the opportunity to have the instructions that calculate the
  59  * next opcode to jump to be intermixed with the rest of the instructions
  60  * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
  61  */
  62 #undef USELABELS
  63 #ifdef __GNUC__
  64 /*
  65    ASSERT signifies debugging. It is much easier to step thru bytecodes if we
  66    don't use the computed goto approach.
  67 */
  68 #ifndef ASSERT
  69 #define USELABELS
  70 #endif
  71 #endif
  72 
  73 #undef CASE
  74 #ifdef USELABELS
  75 #define CASE(opcode) opc ## opcode
  76 #define DEFAULT opc_default
  77 #else
  78 #define CASE(opcode) case Bytecodes:: opcode
  79 #define DEFAULT default
  80 #endif
  81 
  82 /*
  83  * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
  84  * opcode before going back to the top of the while loop, rather then having
  85  * the top of the while loop handle it. This provides a better opportunity
  86  * for instruction scheduling. Some compilers just do this prefetch
  87  * automatically. Some actually end up with worse performance if you
  88  * force the prefetch. Solaris gcc seems to do better, but cc does worse.
  89  */
  90 #undef PREFETCH_OPCCODE
  91 #define PREFETCH_OPCCODE
  92 
  93 /*
  94   Interpreter safepoint: it is expected that the interpreter will have no live
  95   handles of its own creation live at an interpreter safepoint. Therefore we
  96   run a HandleMarkCleaner and trash all handles allocated in the call chain
  97   since the JavaCalls::call_helper invocation that initiated the chain.
  98   There really shouldn't be any handles remaining to trash but this is cheap
  99   in relation to a safepoint.
 100 */
 101 #define SAFEPOINT                                                                 \
 102     {                                                                             \
 103        /* zap freed handles rather than GC'ing them */                            \
 104        HandleMarkCleaner __hmc(THREAD);                                           \
 105        CALL_VM(SafepointMechanism::block_if_requested(THREAD), handle_exception); \
 106     }
 107 
 108 /*
 109  * VM_JAVA_ERROR - Macro for throwing a java exception from
 110  * the interpreter loop. Should really be a CALL_VM but there
 111  * is no entry point to do the transition to vm so we just
 112  * do it by hand here.
 113  */
 114 #define VM_JAVA_ERROR_NO_JUMP(name, msg, note_a_trap)                             \
 115     DECACHE_STATE();                                                              \
 116     SET_LAST_JAVA_FRAME();                                                        \
 117     {                                                                             \
 118        InterpreterRuntime::note_a_trap(THREAD, istate->method(), BCI());          \
 119        ThreadInVMfromJava trans(THREAD);                                          \
 120        Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
 121     }                                                                             \
 122     RESET_LAST_JAVA_FRAME();                                                      \
 123     CACHE_STATE();
 124 
 125 // Normal throw of a java error.
 126 #define VM_JAVA_ERROR(name, msg, note_a_trap)                                     \
 127     VM_JAVA_ERROR_NO_JUMP(name, msg, note_a_trap)                                 \
 128     goto handle_exception;
 129 
 130 #ifdef PRODUCT
 131 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)
 132 #else
 133 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
 134 {                                                                                                    \
 135     BytecodeCounter::_counter_value++;                                                               \
 136     BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
 137     if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
 138     if (TraceBytecodes) {                                                                            \
 139       CALL_VM((void)InterpreterRuntime::trace_bytecode(THREAD, 0,                    \
 140                                         topOfStack[Interpreter::expr_index_at(1)],   \
 141                                         topOfStack[Interpreter::expr_index_at(2)]),  \
 142                                         handle_exception);                           \
 143     }                                                                                \
 144 }
 145 #endif
 146 
 147 #undef DEBUGGER_SINGLE_STEP_NOTIFY
 148 #ifdef VM_JVMTI
 149 /* NOTE: (kbr) This macro must be called AFTER the PC has been
 150    incremented. JvmtiExport::at_single_stepping_point() may cause a
 151    breakpoint opcode to get inserted at the current PC to allow the
 152    debugger to coalesce single-step events.
 153 
 154    As a result if we call at_single_stepping_point() we refetch opcode
 155    to get the current opcode. This will override any other prefetching
 156    that might have occurred.
 157 */
 158 #define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
 159 {                                                                                \
 160       if (_jvmti_interp_events) {                                                \
 161         if (JvmtiExport::should_post_single_step()) {                            \
 162           DECACHE_STATE();                                                       \
 163           SET_LAST_JAVA_FRAME();                                                 \
 164           ThreadInVMfromJava trans(THREAD);                                      \
 165           JvmtiExport::at_single_stepping_point(THREAD,                          \
 166                                           istate->method(),                      \
 167                                           pc);                                   \
 168           RESET_LAST_JAVA_FRAME();                                               \
 169           CACHE_STATE();                                                         \
 170           if (THREAD->pop_frame_pending() &&                                     \
 171               !THREAD->pop_frame_in_process()) {                                 \
 172             goto handle_Pop_Frame;                                               \
 173           }                                                                      \
 174           if (THREAD->jvmti_thread_state() &&                                    \
 175               THREAD->jvmti_thread_state()->is_earlyret_pending()) {             \
 176             goto handle_Early_Return;                                            \
 177           }                                                                      \
 178           opcode = *pc;                                                          \
 179         }                                                                        \
 180       }                                                                          \
 181 }
 182 #else
 183 #define DEBUGGER_SINGLE_STEP_NOTIFY()
 184 #endif
 185 
 186 /*
 187  * CONTINUE - Macro for executing the next opcode.
 188  */
 189 #undef CONTINUE
 190 #ifdef USELABELS
 191 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
 192 // initialization (which is is the initialization of the table pointer...)
 193 #define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
 194 #define CONTINUE {                              \
 195         opcode = *pc;                           \
 196         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 197         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 198         DISPATCH(opcode);                       \
 199     }
 200 #else
 201 #ifdef PREFETCH_OPCCODE
 202 #define CONTINUE {                              \
 203         opcode = *pc;                           \
 204         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 205         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 206         continue;                               \
 207     }
 208 #else
 209 #define CONTINUE {                              \
 210         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 211         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 212         continue;                               \
 213     }
 214 #endif
 215 #endif
 216 
 217 
 218 #define UPDATE_PC(opsize) {pc += opsize; }
 219 /*
 220  * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
 221  */
 222 #undef UPDATE_PC_AND_TOS
 223 #define UPDATE_PC_AND_TOS(opsize, stack) \
 224     {pc += opsize; MORE_STACK(stack); }
 225 
 226 /*
 227  * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
 228  * and executing the next opcode. It's somewhat similar to the combination
 229  * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
 230  */
 231 #undef UPDATE_PC_AND_TOS_AND_CONTINUE
 232 #ifdef USELABELS
 233 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 234         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 235         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 236         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 237         DISPATCH(opcode);                                       \
 238     }
 239 
 240 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 241         pc += opsize; opcode = *pc;                             \
 242         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 243         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 244         DISPATCH(opcode);                                       \
 245     }
 246 #else
 247 #ifdef PREFETCH_OPCCODE
 248 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 249         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 250         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 251         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 252         goto do_continue;                                       \
 253     }
 254 
 255 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 256         pc += opsize; opcode = *pc;                             \
 257         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 258         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 259         goto do_continue;                                       \
 260     }
 261 #else
 262 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
 263         pc += opsize; MORE_STACK(stack);                \
 264         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 265         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 266         goto do_continue;                               \
 267     }
 268 
 269 #define UPDATE_PC_AND_CONTINUE(opsize) {                \
 270         pc += opsize;                                   \
 271         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 272         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 273         goto do_continue;                               \
 274     }
 275 #endif /* PREFETCH_OPCCODE */
 276 #endif /* USELABELS */
 277 
 278 // About to call a new method, update the save the adjusted pc and return to frame manager
 279 #define UPDATE_PC_AND_RETURN(opsize)  \
 280    DECACHE_TOS();                     \
 281    istate->set_bcp(pc+opsize);        \
 282    return;
 283 
 284 
 285 #define METHOD istate->method()
 286 #define GET_METHOD_COUNTERS(res)    \
 287   res = METHOD->method_counters();  \
 288   if (res == NULL) {                \
 289     CALL_VM(res = InterpreterRuntime::build_method_counters(THREAD, METHOD), handle_exception); \
 290   }
 291 
 292 #define OSR_REQUEST(res, branch_pc) \
 293             CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
 294 /*
 295  * For those opcodes that need to have a GC point on a backwards branch
 296  */
 297 
 298 // Backedge counting is kind of strange. The asm interpreter will increment
 299 // the backedge counter as a separate counter but it does it's comparisons
 300 // to the sum (scaled) of invocation counter and backedge count to make
 301 // a decision. Seems kind of odd to sum them together like that
 302 
 303 // skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
 304 
 305 
 306 #define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
 307     if ((skip) <= 0) {                                                                              \
 308       MethodCounters* mcs;                                                                          \
 309       GET_METHOD_COUNTERS(mcs);                                                                     \
 310       if (UseLoopCounter) {                                                                         \
 311         bool do_OSR = UseOnStackReplacement;                                                        \
 312         mcs->backedge_counter()->increment();                                                       \
 313         if (ProfileInterpreter) {                                                                   \
 314           BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);                                   \
 315           /* Check for overflow against MDO count. */                                               \
 316           do_OSR = do_OSR                                                                           \
 317             && (mdo_last_branch_taken_count >= (uint)InvocationCounter::InterpreterBackwardBranchLimit)\
 318             /* When ProfileInterpreter is on, the backedge_count comes     */                       \
 319             /* from the methodDataOop, which value does not get reset on   */                       \
 320             /* the call to frequency_counter_overflow(). To avoid          */                       \
 321             /* excessive calls to the overflow routine while the method is */                       \
 322             /* being compiled, add a second test to make sure the overflow */                       \
 323             /* function is called only once every overflow_frequency.      */                       \
 324             && (!(mdo_last_branch_taken_count & 1023));                                             \
 325         } else {                                                                                    \
 326           /* check for overflow of backedge counter */                                              \
 327           do_OSR = do_OSR                                                                           \
 328             && mcs->invocation_counter()->reached_InvocationLimit(mcs->backedge_counter());         \
 329         }                                                                                           \
 330         if (do_OSR) {                                                                               \
 331           nmethod* osr_nmethod;                                                                     \
 332           OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
 333           if (osr_nmethod != NULL && osr_nmethod->is_in_use()) {                                    \
 334             intptr_t* buf;                                                                          \
 335             /* Call OSR migration with last java frame only, no checks. */                          \
 336             CALL_VM_NAKED_LJF(buf=SharedRuntime::OSR_migration_begin(THREAD));                      \
 337             istate->set_msg(do_osr);                                                                \
 338             istate->set_osr_buf((address)buf);                                                      \
 339             istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
 340             return;                                                                                 \
 341           }                                                                                         \
 342         }                                                                                           \
 343       }  /* UseCompiler ... */                                                                      \
 344       SAFEPOINT;                                                                                    \
 345     }
 346 
 347 /*
 348  * For those opcodes that need to have a GC point on a backwards branch
 349  */
 350 
 351 /*
 352  * Macros for caching and flushing the interpreter state. Some local
 353  * variables need to be flushed out to the frame before we do certain
 354  * things (like pushing frames or becomming gc safe) and some need to
 355  * be recached later (like after popping a frame). We could use one
 356  * macro to cache or decache everything, but this would be less then
 357  * optimal because we don't always need to cache or decache everything
 358  * because some things we know are already cached or decached.
 359  */
 360 #undef DECACHE_TOS
 361 #undef CACHE_TOS
 362 #undef CACHE_PREV_TOS
 363 #define DECACHE_TOS()    istate->set_stack(topOfStack);
 364 
 365 #define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
 366 
 367 #undef DECACHE_PC
 368 #undef CACHE_PC
 369 #define DECACHE_PC()    istate->set_bcp(pc);
 370 #define CACHE_PC()      pc = istate->bcp();
 371 #define CACHE_CP()      cp = istate->constants();
 372 #define CACHE_LOCALS()  locals = istate->locals();
 373 #undef CACHE_FRAME
 374 #define CACHE_FRAME()
 375 
 376 // BCI() returns the current bytecode-index.
 377 #undef  BCI
 378 #define BCI()           ((int)(intptr_t)(pc - (intptr_t)istate->method()->code_base()))
 379 
 380 /*
 381  * CHECK_NULL - Macro for throwing a NullPointerException if the object
 382  * passed is a null ref.
 383  * On some architectures/platforms it should be possible to do this implicitly
 384  */
 385 #undef CHECK_NULL
 386 #define CHECK_NULL(obj_)                                                                         \
 387         if ((obj_) == NULL) {                                                                    \
 388           VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), NULL, note_nullCheck_trap); \
 389         }                                                                                        \
 390         VERIFY_OOP(obj_)
 391 
 392 #define VMdoubleConstZero() 0.0
 393 #define VMdoubleConstOne() 1.0
 394 #define VMlongConstZero() (max_jlong-max_jlong)
 395 #define VMlongConstOne() ((max_jlong-max_jlong)+1)
 396 
 397 /*
 398  * Alignment
 399  */
 400 #define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
 401 
 402 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
 403 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
 404 
 405 // Reload interpreter state after calling the VM or a possible GC
 406 #define CACHE_STATE()   \
 407         CACHE_TOS();    \
 408         CACHE_PC();     \
 409         CACHE_CP();     \
 410         CACHE_LOCALS();
 411 
 412 // Call the VM with last java frame only.
 413 #define CALL_VM_NAKED_LJF(func)                                    \
 414         DECACHE_STATE();                                           \
 415         SET_LAST_JAVA_FRAME();                                     \
 416         func;                                                      \
 417         RESET_LAST_JAVA_FRAME();                                   \
 418         CACHE_STATE();
 419 
 420 // Call the VM. Don't check for pending exceptions.
 421 #define CALL_VM_NOCHECK(func)                                      \
 422         CALL_VM_NAKED_LJF(func)                                    \
 423         if (THREAD->pop_frame_pending() &&                         \
 424             !THREAD->pop_frame_in_process()) {                     \
 425           goto handle_Pop_Frame;                                   \
 426         }                                                          \
 427         if (THREAD->jvmti_thread_state() &&                        \
 428             THREAD->jvmti_thread_state()->is_earlyret_pending()) { \
 429           goto handle_Early_Return;                                \
 430         }
 431 
 432 // Call the VM and check for pending exceptions
 433 #define CALL_VM(func, label) {                                     \
 434           CALL_VM_NOCHECK(func);                                   \
 435           if (THREAD->has_pending_exception()) goto label;         \
 436         }
 437 
 438 /*
 439  * BytecodeInterpreter::run(interpreterState istate)
 440  * BytecodeInterpreter::runWithChecks(interpreterState istate)
 441  *
 442  * The real deal. This is where byte codes actually get interpreted.
 443  * Basically it's a big while loop that iterates until we return from
 444  * the method passed in.
 445  *
 446  * The runWithChecks is used if JVMTI is enabled.
 447  *
 448  */
 449 #if defined(VM_JVMTI)
 450 void
 451 BytecodeInterpreter::runWithChecks(interpreterState istate) {
 452 #else
 453 void
 454 BytecodeInterpreter::run(interpreterState istate) {
 455 #endif
 456 
 457   // In order to simplify some tests based on switches set at runtime
 458   // we invoke the interpreter a single time after switches are enabled
 459   // and set simpler to to test variables rather than method calls or complex
 460   // boolean expressions.
 461 
 462   static int initialized = 0;
 463   static int checkit = 0;
 464   static intptr_t* c_addr = NULL;
 465   static intptr_t  c_value;
 466 
 467   if (checkit && *c_addr != c_value) {
 468     os::breakpoint();
 469   }
 470 #ifdef VM_JVMTI
 471   static bool _jvmti_interp_events = 0;
 472 #endif
 473 
 474   static int _compiling;  // (UseCompiler || CountCompiledCalls)
 475 
 476 #ifdef ASSERT
 477   if (istate->_msg != initialize) {
 478     assert(labs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
 479     IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
 480   }
 481   // Verify linkages.
 482   interpreterState l = istate;
 483   do {
 484     assert(l == l->_self_link, "bad link");
 485     l = l->_prev_link;
 486   } while (l != NULL);
 487   // Screwups with stack management usually cause us to overwrite istate
 488   // save a copy so we can verify it.
 489   interpreterState orig = istate;
 490 #endif
 491 
 492   register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
 493   register address          pc = istate->bcp();
 494   register jubyte opcode;
 495   register intptr_t*        locals = istate->locals();
 496   register ConstantPoolCache*    cp = istate->constants(); // method()->constants()->cache()
 497 #ifdef LOTS_OF_REGS
 498   register JavaThread*      THREAD = istate->thread();
 499 #else
 500 #undef THREAD
 501 #define THREAD istate->thread()
 502 #endif
 503 
 504 #ifdef USELABELS
 505   const static void* const opclabels_data[256] = {
 506 /* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
 507 /* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
 508 /* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
 509 /* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
 510 
 511 /* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
 512 /* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
 513 /* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
 514 /* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
 515 
 516 /* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
 517 /* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
 518 /* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
 519 /* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
 520 
 521 /* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
 522 /* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
 523 /* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
 524 /* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
 525 
 526 /* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
 527 /* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
 528 /* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
 529 /* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
 530 
 531 /* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
 532 /* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
 533 /* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
 534 /* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
 535 
 536 /* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
 537 /* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
 538 /* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
 539 /* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
 540 
 541 /* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
 542 /* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
 543 /* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
 544 /* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
 545 
 546 /* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
 547 /* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
 548 /* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
 549 /* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
 550 
 551 /* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
 552 /* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
 553 /* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
 554 /* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
 555 
 556 /* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
 557 /* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
 558 /* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
 559 /* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
 560 
 561 /* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
 562 /* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
 563 /* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,&&opc_invokedynamic,&&opc_new,
 564 /* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
 565 
 566 /* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
 567 /* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
 568 /* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_default,
 569 /* 0xCC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 570 
 571 /* 0xD0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 572 /* 0xD4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 573 /* 0xD8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 574 /* 0xDC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 575 
 576 /* 0xE0 */ &&opc_default,     &&opc_default,        &&opc_default,         &&opc_default,
 577 /* 0xE4 */ &&opc_default,     &&opc_default,        &&opc_fast_aldc,    &&opc_fast_aldc_w,
 578 /* 0xE8 */ &&opc_return_register_finalizer,
 579                               &&opc_invokehandle,   &&opc_default,      &&opc_default,
 580 /* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,         &&opc_default,
 581 
 582 /* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 583 /* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 584 /* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 585 /* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
 586   };
 587   register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
 588 #endif /* USELABELS */
 589 
 590 #ifdef ASSERT
 591   // this will trigger a VERIFY_OOP on entry
 592   if (istate->msg() != initialize && ! METHOD->is_static()) {
 593     oop rcvr = LOCALS_OBJECT(0);
 594     VERIFY_OOP(rcvr);
 595   }
 596 #endif
 597 // #define HACK
 598 #ifdef HACK
 599   bool interesting = false;
 600 #endif // HACK
 601 
 602   /* QQQ this should be a stack method so we don't know actual direction */
 603   guarantee(istate->msg() == initialize ||
 604          topOfStack >= istate->stack_limit() &&
 605          topOfStack < istate->stack_base(),
 606          "Stack top out of range");
 607 
 608 #ifdef CC_INTERP_PROFILE
 609   // MethodData's last branch taken count.
 610   uint mdo_last_branch_taken_count = 0;
 611 #else
 612   const uint mdo_last_branch_taken_count = 0;
 613 #endif
 614 
 615   switch (istate->msg()) {
 616     case initialize: {
 617       if (initialized++) ShouldNotReachHere(); // Only one initialize call.
 618       _compiling = (UseCompiler || CountCompiledCalls);
 619 #ifdef VM_JVMTI
 620       _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
 621 #endif
 622       return;
 623     }
 624     break;
 625     case method_entry: {
 626       THREAD->set_do_not_unlock();
 627       // count invocations
 628       assert(initialized, "Interpreter not initialized");
 629       if (_compiling) {
 630         MethodCounters* mcs;
 631         GET_METHOD_COUNTERS(mcs);
 632 #if COMPILER2_OR_JVMCI
 633         if (ProfileInterpreter) {
 634           METHOD->increment_interpreter_invocation_count(THREAD);
 635         }
 636 #endif
 637         mcs->invocation_counter()->increment();
 638         if (mcs->invocation_counter()->reached_InvocationLimit(mcs->backedge_counter())) {
 639           CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
 640           // We no longer retry on a counter overflow.
 641         }
 642         // Get or create profile data. Check for pending (async) exceptions.
 643         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 644         SAFEPOINT;
 645       }
 646 
 647       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 648         // initialize
 649         os::breakpoint();
 650       }
 651 
 652 #ifdef HACK
 653       {
 654         ResourceMark rm;
 655         char *method_name = istate->method()->name_and_sig_as_C_string();
 656         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 657           tty->print_cr("entering: depth %d bci: %d",
 658                          (istate->_stack_base - istate->_stack),
 659                          istate->_bcp - istate->_method->code_base());
 660           interesting = true;
 661         }
 662       }
 663 #endif // HACK
 664 
 665       // Lock method if synchronized.
 666       if (METHOD->is_synchronized()) {
 667         // oop rcvr = locals[0].j.r;
 668         oop rcvr;
 669         if (METHOD->is_static()) {
 670           rcvr = METHOD->constants()->pool_holder()->java_mirror();
 671         } else {
 672           rcvr = LOCALS_OBJECT(0);
 673           VERIFY_OOP(rcvr);
 674         }
 675         // The initial monitor is ours for the taking.
 676         // Monitor not filled in frame manager any longer as this caused race condition with biased locking.
 677         BasicObjectLock* mon = &istate->monitor_base()[-1];
 678         mon->set_obj(rcvr);
 679         bool success = false;
 680         uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
 681         markOop mark = rcvr->mark();
 682         intptr_t hash = (intptr_t) markOopDesc::no_hash;
 683         // Implies UseBiasedLocking.
 684         if (mark->has_bias_pattern()) {
 685           uintptr_t thread_ident;
 686           uintptr_t anticipated_bias_locking_value;
 687           thread_ident = (uintptr_t)istate->thread();
 688           anticipated_bias_locking_value =
 689             (((uintptr_t)rcvr->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
 690             ~((uintptr_t) markOopDesc::age_mask_in_place);
 691 
 692           if (anticipated_bias_locking_value == 0) {
 693             // Already biased towards this thread, nothing to do.
 694             if (PrintBiasedLockingStatistics) {
 695               (* BiasedLocking::biased_lock_entry_count_addr())++;
 696             }
 697             success = true;
 698           } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
 699             // Try to revoke bias.
 700             markOop header = rcvr->klass()->prototype_header();
 701             if (hash != markOopDesc::no_hash) {
 702               header = header->copy_set_hash(hash);
 703             }
 704             if (Atomic::cmpxchg(header, rcvr->mark_addr(), mark) == mark) {
 705               if (PrintBiasedLockingStatistics)
 706                 (*BiasedLocking::revoked_lock_entry_count_addr())++;
 707             }
 708           } else if ((anticipated_bias_locking_value & epoch_mask_in_place) != 0) {
 709             // Try to rebias.
 710             markOop new_header = (markOop) ( (intptr_t) rcvr->klass()->prototype_header() | thread_ident);
 711             if (hash != markOopDesc::no_hash) {
 712               new_header = new_header->copy_set_hash(hash);
 713             }
 714             if (Atomic::cmpxchg(new_header, rcvr->mark_addr(), mark) == mark) {
 715               if (PrintBiasedLockingStatistics) {
 716                 (* BiasedLocking::rebiased_lock_entry_count_addr())++;
 717               }
 718             } else {
 719               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 720             }
 721             success = true;
 722           } else {
 723             // Try to bias towards thread in case object is anonymously biased.
 724             markOop header = (markOop) ((uintptr_t) mark &
 725                                         ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
 726                                          (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
 727             if (hash != markOopDesc::no_hash) {
 728               header = header->copy_set_hash(hash);
 729             }
 730             markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
 731             // Debugging hint.
 732             DEBUG_ONLY(mon->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
 733             if (Atomic::cmpxchg(new_header, rcvr->mark_addr(), header) == header) {
 734               if (PrintBiasedLockingStatistics) {
 735                 (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
 736               }
 737             } else {
 738               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 739             }
 740             success = true;
 741           }
 742         }
 743 
 744         // Traditional lightweight locking.
 745         if (!success) {
 746           markOop displaced = rcvr->mark()->set_unlocked();
 747           mon->lock()->set_displaced_header(displaced);
 748           bool call_vm = UseHeavyMonitors;
 749           if (call_vm || Atomic::cmpxchg((markOop)mon, rcvr->mark_addr(), displaced) != displaced) {
 750             // Is it simple recursive case?
 751             if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 752               mon->lock()->set_displaced_header(NULL);
 753             } else {
 754               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 755             }
 756           }
 757         }
 758       }
 759       THREAD->clr_do_not_unlock();
 760 
 761       // Notify jvmti
 762 #ifdef VM_JVMTI
 763       if (_jvmti_interp_events) {
 764         // Whenever JVMTI puts a thread in interp_only_mode, method
 765         // entry/exit events are sent for that thread to track stack depth.
 766         if (THREAD->is_interp_only_mode()) {
 767           CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
 768                   handle_exception);
 769         }
 770       }
 771 #endif /* VM_JVMTI */
 772 
 773       goto run;
 774     }
 775 
 776     case popping_frame: {
 777       // returned from a java call to pop the frame, restart the call
 778       // clear the message so we don't confuse ourselves later
 779       assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
 780       istate->set_msg(no_request);
 781       if (_compiling) {
 782         // Set MDX back to the ProfileData of the invoke bytecode that will be
 783         // restarted.
 784         SET_MDX(NULL);
 785         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 786       }
 787       THREAD->clr_pop_frame_in_process();
 788       goto run;
 789     }
 790 
 791     case method_resume: {
 792       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 793         // resume
 794         os::breakpoint();
 795       }
 796 #ifdef HACK
 797       {
 798         ResourceMark rm;
 799         char *method_name = istate->method()->name_and_sig_as_C_string();
 800         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 801           tty->print_cr("resume: depth %d bci: %d",
 802                          (istate->_stack_base - istate->_stack) ,
 803                          istate->_bcp - istate->_method->code_base());
 804           interesting = true;
 805         }
 806       }
 807 #endif // HACK
 808       // returned from a java call, continue executing.
 809       if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
 810         goto handle_Pop_Frame;
 811       }
 812       if (THREAD->jvmti_thread_state() &&
 813           THREAD->jvmti_thread_state()->is_earlyret_pending()) {
 814         goto handle_Early_Return;
 815       }
 816 
 817       if (THREAD->has_pending_exception()) goto handle_exception;
 818       // Update the pc by the saved amount of the invoke bytecode size
 819       UPDATE_PC(istate->bcp_advance());
 820 
 821       if (_compiling) {
 822         // Get or create profile data. Check for pending (async) exceptions.
 823         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 824       }
 825       goto run;
 826     }
 827 
 828     case deopt_resume2: {
 829       // Returned from an opcode that will reexecute. Deopt was
 830       // a result of a PopFrame request.
 831       //
 832 
 833       if (_compiling) {
 834         // Get or create profile data. Check for pending (async) exceptions.
 835         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 836       }
 837       goto run;
 838     }
 839 
 840     case deopt_resume: {
 841       // Returned from an opcode that has completed. The stack has
 842       // the result all we need to do is skip across the bytecode
 843       // and continue (assuming there is no exception pending)
 844       //
 845       // compute continuation length
 846       //
 847       // Note: it is possible to deopt at a return_register_finalizer opcode
 848       // because this requires entering the vm to do the registering. While the
 849       // opcode is complete we can't advance because there are no more opcodes
 850       // much like trying to deopt at a poll return. In that has we simply
 851       // get out of here
 852       //
 853       if ( Bytecodes::code_at(METHOD, pc) == Bytecodes::_return_register_finalizer) {
 854         // this will do the right thing even if an exception is pending.
 855         goto handle_return;
 856       }
 857       UPDATE_PC(Bytecodes::length_at(METHOD, pc));
 858       if (THREAD->has_pending_exception()) goto handle_exception;
 859 
 860       if (_compiling) {
 861         // Get or create profile data. Check for pending (async) exceptions.
 862         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 863       }
 864       goto run;
 865     }
 866     case got_monitors: {
 867       // continue locking now that we have a monitor to use
 868       // we expect to find newly allocated monitor at the "top" of the monitor stack.
 869       oop lockee = STACK_OBJECT(-1);
 870       VERIFY_OOP(lockee);
 871       // derefing's lockee ought to provoke implicit null check
 872       // find a free monitor
 873       BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
 874       assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
 875       entry->set_obj(lockee);
 876       bool success = false;
 877       uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
 878 
 879       markOop mark = lockee->mark();
 880       intptr_t hash = (intptr_t) markOopDesc::no_hash;
 881       // implies UseBiasedLocking
 882       if (mark->has_bias_pattern()) {
 883         uintptr_t thread_ident;
 884         uintptr_t anticipated_bias_locking_value;
 885         thread_ident = (uintptr_t)istate->thread();
 886         anticipated_bias_locking_value =
 887           (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
 888           ~((uintptr_t) markOopDesc::age_mask_in_place);
 889 
 890         if  (anticipated_bias_locking_value == 0) {
 891           // already biased towards this thread, nothing to do
 892           if (PrintBiasedLockingStatistics) {
 893             (* BiasedLocking::biased_lock_entry_count_addr())++;
 894           }
 895           success = true;
 896         } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
 897           // try revoke bias
 898           markOop header = lockee->klass()->prototype_header();
 899           if (hash != markOopDesc::no_hash) {
 900             header = header->copy_set_hash(hash);
 901           }
 902           if (Atomic::cmpxchg(header, lockee->mark_addr(), mark) == mark) {
 903             if (PrintBiasedLockingStatistics) {
 904               (*BiasedLocking::revoked_lock_entry_count_addr())++;
 905             }
 906           }
 907         } else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
 908           // try rebias
 909           markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
 910           if (hash != markOopDesc::no_hash) {
 911                 new_header = new_header->copy_set_hash(hash);
 912           }
 913           if (Atomic::cmpxchg(new_header, lockee->mark_addr(), mark) == mark) {
 914             if (PrintBiasedLockingStatistics) {
 915               (* BiasedLocking::rebiased_lock_entry_count_addr())++;
 916             }
 917           } else {
 918             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 919           }
 920           success = true;
 921         } else {
 922           // try to bias towards thread in case object is anonymously biased
 923           markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
 924                                                           (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
 925           if (hash != markOopDesc::no_hash) {
 926             header = header->copy_set_hash(hash);
 927           }
 928           markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
 929           // debugging hint
 930           DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
 931           if (Atomic::cmpxchg(new_header, lockee->mark_addr(), header) == header) {
 932             if (PrintBiasedLockingStatistics) {
 933               (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
 934             }
 935           } else {
 936             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 937           }
 938           success = true;
 939         }
 940       }
 941 
 942       // traditional lightweight locking
 943       if (!success) {
 944         markOop displaced = lockee->mark()->set_unlocked();
 945         entry->lock()->set_displaced_header(displaced);
 946         bool call_vm = UseHeavyMonitors;
 947         if (call_vm || Atomic::cmpxchg((markOop)entry, lockee->mark_addr(), displaced) != displaced) {
 948           // Is it simple recursive case?
 949           if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 950             entry->lock()->set_displaced_header(NULL);
 951           } else {
 952             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 953           }
 954         }
 955       }
 956       UPDATE_PC_AND_TOS(1, -1);
 957       goto run;
 958     }
 959     default: {
 960       fatal("Unexpected message from frame manager");
 961     }
 962   }
 963 
 964 run:
 965 
 966   DO_UPDATE_INSTRUCTION_COUNT(*pc)
 967   DEBUGGER_SINGLE_STEP_NOTIFY();
 968 #ifdef PREFETCH_OPCCODE
 969   opcode = *pc;  /* prefetch first opcode */
 970 #endif
 971 
 972 #ifndef USELABELS
 973   while (1)
 974 #endif
 975   {
 976 #ifndef PREFETCH_OPCCODE
 977       opcode = *pc;
 978 #endif
 979       // Seems like this happens twice per opcode. At worst this is only
 980       // need at entry to the loop.
 981       // DEBUGGER_SINGLE_STEP_NOTIFY();
 982       /* Using this labels avoids double breakpoints when quickening and
 983        * when returing from transition frames.
 984        */
 985   opcode_switch:
 986       assert(istate == orig, "Corrupted istate");
 987       /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
 988       assert(topOfStack >= istate->stack_limit(), "Stack overrun");
 989       assert(topOfStack < istate->stack_base(), "Stack underrun");
 990 
 991 #ifdef USELABELS
 992       DISPATCH(opcode);
 993 #else
 994       switch (opcode)
 995 #endif
 996       {
 997       CASE(_nop):
 998           UPDATE_PC_AND_CONTINUE(1);
 999 
1000           /* Push miscellaneous constants onto the stack. */
1001 
1002       CASE(_aconst_null):
1003           SET_STACK_OBJECT(NULL, 0);
1004           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1005 
1006 #undef  OPC_CONST_n
1007 #define OPC_CONST_n(opcode, const_type, value)                          \
1008       CASE(opcode):                                                     \
1009           SET_STACK_ ## const_type(value, 0);                           \
1010           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1011 
1012           OPC_CONST_n(_iconst_m1,   INT,       -1);
1013           OPC_CONST_n(_iconst_0,    INT,        0);
1014           OPC_CONST_n(_iconst_1,    INT,        1);
1015           OPC_CONST_n(_iconst_2,    INT,        2);
1016           OPC_CONST_n(_iconst_3,    INT,        3);
1017           OPC_CONST_n(_iconst_4,    INT,        4);
1018           OPC_CONST_n(_iconst_5,    INT,        5);
1019           OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
1020           OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
1021           OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
1022 
1023 #undef  OPC_CONST2_n
1024 #define OPC_CONST2_n(opcname, value, key, kind)                         \
1025       CASE(_##opcname):                                                 \
1026       {                                                                 \
1027           SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
1028           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1029       }
1030          OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
1031          OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
1032          OPC_CONST2_n(lconst_0, Zero, long, LONG);
1033          OPC_CONST2_n(lconst_1, One,  long, LONG);
1034 
1035          /* Load constant from constant pool: */
1036 
1037           /* Push a 1-byte signed integer value onto the stack. */
1038       CASE(_bipush):
1039           SET_STACK_INT((jbyte)(pc[1]), 0);
1040           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1041 
1042           /* Push a 2-byte signed integer constant onto the stack. */
1043       CASE(_sipush):
1044           SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
1045           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1046 
1047           /* load from local variable */
1048 
1049       CASE(_aload):
1050           VERIFY_OOP(LOCALS_OBJECT(pc[1]));
1051           SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
1052           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1053 
1054       CASE(_iload):
1055       CASE(_fload):
1056           SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
1057           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1058 
1059       CASE(_lload):
1060           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
1061           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1062 
1063       CASE(_dload):
1064           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
1065           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1066 
1067 #undef  OPC_LOAD_n
1068 #define OPC_LOAD_n(num)                                                 \
1069       CASE(_aload_##num):                                               \
1070           VERIFY_OOP(LOCALS_OBJECT(num));                               \
1071           SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
1072           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1073                                                                         \
1074       CASE(_iload_##num):                                               \
1075       CASE(_fload_##num):                                               \
1076           SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
1077           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1078                                                                         \
1079       CASE(_lload_##num):                                               \
1080           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
1081           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1082       CASE(_dload_##num):                                               \
1083           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
1084           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1085 
1086           OPC_LOAD_n(0);
1087           OPC_LOAD_n(1);
1088           OPC_LOAD_n(2);
1089           OPC_LOAD_n(3);
1090 
1091           /* store to a local variable */
1092 
1093       CASE(_astore):
1094           astore(topOfStack, -1, locals, pc[1]);
1095           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1096 
1097       CASE(_istore):
1098       CASE(_fstore):
1099           SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
1100           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1101 
1102       CASE(_lstore):
1103           SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
1104           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1105 
1106       CASE(_dstore):
1107           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
1108           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1109 
1110       CASE(_wide): {
1111           uint16_t reg = Bytes::get_Java_u2(pc + 2);
1112 
1113           opcode = pc[1];
1114 
1115           // Wide and it's sub-bytecode are counted as separate instructions. If we
1116           // don't account for this here, the bytecode trace skips the next bytecode.
1117           DO_UPDATE_INSTRUCTION_COUNT(opcode);
1118 
1119           switch(opcode) {
1120               case Bytecodes::_aload:
1121                   VERIFY_OOP(LOCALS_OBJECT(reg));
1122                   SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
1123                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1124 
1125               case Bytecodes::_iload:
1126               case Bytecodes::_fload:
1127                   SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
1128                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1129 
1130               case Bytecodes::_lload:
1131                   SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1132                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1133 
1134               case Bytecodes::_dload:
1135                   SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1136                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1137 
1138               case Bytecodes::_astore:
1139                   astore(topOfStack, -1, locals, reg);
1140                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1141 
1142               case Bytecodes::_istore:
1143               case Bytecodes::_fstore:
1144                   SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
1145                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1146 
1147               case Bytecodes::_lstore:
1148                   SET_LOCALS_LONG(STACK_LONG(-1), reg);
1149                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1150 
1151               case Bytecodes::_dstore:
1152                   SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
1153                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1154 
1155               case Bytecodes::_iinc: {
1156                   int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
1157                   // Be nice to see what this generates.... QQQ
1158                   SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
1159                   UPDATE_PC_AND_CONTINUE(6);
1160               }
1161               case Bytecodes::_ret:
1162                   // Profile ret.
1163                   BI_PROFILE_UPDATE_RET(/*bci=*/((int)(intptr_t)(LOCALS_ADDR(reg))));
1164                   // Now, update the pc.
1165                   pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
1166                   UPDATE_PC_AND_CONTINUE(0);
1167               default:
1168                   VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode", note_no_trap);
1169           }
1170       }
1171 
1172 
1173 #undef  OPC_STORE_n
1174 #define OPC_STORE_n(num)                                                \
1175       CASE(_astore_##num):                                              \
1176           astore(topOfStack, -1, locals, num);                          \
1177           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1178       CASE(_istore_##num):                                              \
1179       CASE(_fstore_##num):                                              \
1180           SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
1181           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1182 
1183           OPC_STORE_n(0);
1184           OPC_STORE_n(1);
1185           OPC_STORE_n(2);
1186           OPC_STORE_n(3);
1187 
1188 #undef  OPC_DSTORE_n
1189 #define OPC_DSTORE_n(num)                                               \
1190       CASE(_dstore_##num):                                              \
1191           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
1192           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1193       CASE(_lstore_##num):                                              \
1194           SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
1195           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1196 
1197           OPC_DSTORE_n(0);
1198           OPC_DSTORE_n(1);
1199           OPC_DSTORE_n(2);
1200           OPC_DSTORE_n(3);
1201 
1202           /* stack pop, dup, and insert opcodes */
1203 
1204 
1205       CASE(_pop):                /* Discard the top item on the stack */
1206           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1207 
1208 
1209       CASE(_pop2):               /* Discard the top 2 items on the stack */
1210           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1211 
1212 
1213       CASE(_dup):               /* Duplicate the top item on the stack */
1214           dup(topOfStack);
1215           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1216 
1217       CASE(_dup2):              /* Duplicate the top 2 items on the stack */
1218           dup2(topOfStack);
1219           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1220 
1221       CASE(_dup_x1):    /* insert top word two down */
1222           dup_x1(topOfStack);
1223           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1224 
1225       CASE(_dup_x2):    /* insert top word three down  */
1226           dup_x2(topOfStack);
1227           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1228 
1229       CASE(_dup2_x1):   /* insert top 2 slots three down */
1230           dup2_x1(topOfStack);
1231           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1232 
1233       CASE(_dup2_x2):   /* insert top 2 slots four down */
1234           dup2_x2(topOfStack);
1235           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1236 
1237       CASE(_swap): {        /* swap top two elements on the stack */
1238           swap(topOfStack);
1239           UPDATE_PC_AND_CONTINUE(1);
1240       }
1241 
1242           /* Perform various binary integer operations */
1243 
1244 #undef  OPC_INT_BINARY
1245 #define OPC_INT_BINARY(opcname, opname, test)                           \
1246       CASE(_i##opcname):                                                \
1247           if (test && (STACK_INT(-1) == 0)) {                           \
1248               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1249                             "/ by zero", note_div0Check_trap);          \
1250           }                                                             \
1251           SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
1252                                       STACK_INT(-1)),                   \
1253                                       -2);                              \
1254           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1255       CASE(_l##opcname):                                                \
1256       {                                                                 \
1257           if (test) {                                                   \
1258             jlong l1 = STACK_LONG(-1);                                  \
1259             if (VMlongEqz(l1)) {                                        \
1260               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1261                             "/ by long zero", note_div0Check_trap);     \
1262             }                                                           \
1263           }                                                             \
1264           /* First long at (-1,-2) next long at (-3,-4) */              \
1265           SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
1266                                         STACK_LONG(-1)),                \
1267                                         -3);                            \
1268           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1269       }
1270 
1271       OPC_INT_BINARY(add, Add, 0);
1272       OPC_INT_BINARY(sub, Sub, 0);
1273       OPC_INT_BINARY(mul, Mul, 0);
1274       OPC_INT_BINARY(and, And, 0);
1275       OPC_INT_BINARY(or,  Or,  0);
1276       OPC_INT_BINARY(xor, Xor, 0);
1277       OPC_INT_BINARY(div, Div, 1);
1278       OPC_INT_BINARY(rem, Rem, 1);
1279 
1280 
1281       /* Perform various binary floating number operations */
1282       /* On some machine/platforms/compilers div zero check can be implicit */
1283 
1284 #undef  OPC_FLOAT_BINARY
1285 #define OPC_FLOAT_BINARY(opcname, opname)                                  \
1286       CASE(_d##opcname): {                                                 \
1287           SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
1288                                             STACK_DOUBLE(-1)),             \
1289                                             -3);                           \
1290           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
1291       }                                                                    \
1292       CASE(_f##opcname):                                                   \
1293           SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
1294                                           STACK_FLOAT(-1)),                \
1295                                           -2);                             \
1296           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1297 
1298 
1299      OPC_FLOAT_BINARY(add, Add);
1300      OPC_FLOAT_BINARY(sub, Sub);
1301      OPC_FLOAT_BINARY(mul, Mul);
1302      OPC_FLOAT_BINARY(div, Div);
1303      OPC_FLOAT_BINARY(rem, Rem);
1304 
1305       /* Shift operations
1306        * Shift left int and long: ishl, lshl
1307        * Logical shift right int and long w/zero extension: iushr, lushr
1308        * Arithmetic shift right int and long w/sign extension: ishr, lshr
1309        */
1310 
1311 #undef  OPC_SHIFT_BINARY
1312 #define OPC_SHIFT_BINARY(opcname, opname)                               \
1313       CASE(_i##opcname):                                                \
1314          SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
1315                                      STACK_INT(-1)),                    \
1316                                      -2);                               \
1317          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1318       CASE(_l##opcname):                                                \
1319       {                                                                 \
1320          SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
1321                                        STACK_INT(-1)),                  \
1322                                        -2);                             \
1323          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1324       }
1325 
1326       OPC_SHIFT_BINARY(shl, Shl);
1327       OPC_SHIFT_BINARY(shr, Shr);
1328       OPC_SHIFT_BINARY(ushr, Ushr);
1329 
1330      /* Increment local variable by constant */
1331       CASE(_iinc):
1332       {
1333           // locals[pc[1]].j.i += (jbyte)(pc[2]);
1334           SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
1335           UPDATE_PC_AND_CONTINUE(3);
1336       }
1337 
1338      /* negate the value on the top of the stack */
1339 
1340       CASE(_ineg):
1341          SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
1342          UPDATE_PC_AND_CONTINUE(1);
1343 
1344       CASE(_fneg):
1345          SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
1346          UPDATE_PC_AND_CONTINUE(1);
1347 
1348       CASE(_lneg):
1349       {
1350          SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
1351          UPDATE_PC_AND_CONTINUE(1);
1352       }
1353 
1354       CASE(_dneg):
1355       {
1356          SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
1357          UPDATE_PC_AND_CONTINUE(1);
1358       }
1359 
1360       /* Conversion operations */
1361 
1362       CASE(_i2f):       /* convert top of stack int to float */
1363          SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
1364          UPDATE_PC_AND_CONTINUE(1);
1365 
1366       CASE(_i2l):       /* convert top of stack int to long */
1367       {
1368           // this is ugly QQQ
1369           jlong r = VMint2Long(STACK_INT(-1));
1370           MORE_STACK(-1); // Pop
1371           SET_STACK_LONG(r, 1);
1372 
1373           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1374       }
1375 
1376       CASE(_i2d):       /* convert top of stack int to double */
1377       {
1378           // this is ugly QQQ (why cast to jlong?? )
1379           jdouble r = (jlong)STACK_INT(-1);
1380           MORE_STACK(-1); // Pop
1381           SET_STACK_DOUBLE(r, 1);
1382 
1383           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1384       }
1385 
1386       CASE(_l2i):       /* convert top of stack long to int */
1387       {
1388           jint r = VMlong2Int(STACK_LONG(-1));
1389           MORE_STACK(-2); // Pop
1390           SET_STACK_INT(r, 0);
1391           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1392       }
1393 
1394       CASE(_l2f):   /* convert top of stack long to float */
1395       {
1396           jlong r = STACK_LONG(-1);
1397           MORE_STACK(-2); // Pop
1398           SET_STACK_FLOAT(VMlong2Float(r), 0);
1399           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1400       }
1401 
1402       CASE(_l2d):       /* convert top of stack long to double */
1403       {
1404           jlong r = STACK_LONG(-1);
1405           MORE_STACK(-2); // Pop
1406           SET_STACK_DOUBLE(VMlong2Double(r), 1);
1407           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1408       }
1409 
1410       CASE(_f2i):  /* Convert top of stack float to int */
1411           SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
1412           UPDATE_PC_AND_CONTINUE(1);
1413 
1414       CASE(_f2l):  /* convert top of stack float to long */
1415       {
1416           jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
1417           MORE_STACK(-1); // POP
1418           SET_STACK_LONG(r, 1);
1419           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1420       }
1421 
1422       CASE(_f2d):  /* convert top of stack float to double */
1423       {
1424           jfloat f;
1425           jdouble r;
1426           f = STACK_FLOAT(-1);
1427           r = (jdouble) f;
1428           MORE_STACK(-1); // POP
1429           SET_STACK_DOUBLE(r, 1);
1430           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1431       }
1432 
1433       CASE(_d2i): /* convert top of stack double to int */
1434       {
1435           jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
1436           MORE_STACK(-2);
1437           SET_STACK_INT(r1, 0);
1438           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1439       }
1440 
1441       CASE(_d2f): /* convert top of stack double to float */
1442       {
1443           jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
1444           MORE_STACK(-2);
1445           SET_STACK_FLOAT(r1, 0);
1446           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1447       }
1448 
1449       CASE(_d2l): /* convert top of stack double to long */
1450       {
1451           jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
1452           MORE_STACK(-2);
1453           SET_STACK_LONG(r1, 1);
1454           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1455       }
1456 
1457       CASE(_i2b):
1458           SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
1459           UPDATE_PC_AND_CONTINUE(1);
1460 
1461       CASE(_i2c):
1462           SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
1463           UPDATE_PC_AND_CONTINUE(1);
1464 
1465       CASE(_i2s):
1466           SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
1467           UPDATE_PC_AND_CONTINUE(1);
1468 
1469       /* comparison operators */
1470 
1471 
1472 #define COMPARISON_OP(name, comparison)                                      \
1473       CASE(_if_icmp##name): {                                                \
1474           const bool cmp = (STACK_INT(-2) comparison STACK_INT(-1));         \
1475           int skip = cmp                                                     \
1476                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1477           address branch_pc = pc;                                            \
1478           /* Profile branch. */                                              \
1479           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1480           UPDATE_PC_AND_TOS(skip, -2);                                       \
1481           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1482           CONTINUE;                                                          \
1483       }                                                                      \
1484       CASE(_if##name): {                                                     \
1485           const bool cmp = (STACK_INT(-1) comparison 0);                     \
1486           int skip = cmp                                                     \
1487                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1488           address branch_pc = pc;                                            \
1489           /* Profile branch. */                                              \
1490           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1491           UPDATE_PC_AND_TOS(skip, -1);                                       \
1492           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1493           CONTINUE;                                                          \
1494       }
1495 
1496 #define COMPARISON_OP2(name, comparison)                                     \
1497       COMPARISON_OP(name, comparison)                                        \
1498       CASE(_if_acmp##name): {                                                \
1499           const bool cmp = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1));   \
1500           int skip = cmp                                                     \
1501                        ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
1502           address branch_pc = pc;                                            \
1503           /* Profile branch. */                                              \
1504           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1505           UPDATE_PC_AND_TOS(skip, -2);                                       \
1506           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1507           CONTINUE;                                                          \
1508       }
1509 
1510 #define NULL_COMPARISON_NOT_OP(name)                                         \
1511       CASE(_if##name): {                                                     \
1512           const bool cmp = (!(STACK_OBJECT(-1) == NULL));                    \
1513           int skip = cmp                                                     \
1514                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1515           address branch_pc = pc;                                            \
1516           /* Profile branch. */                                              \
1517           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1518           UPDATE_PC_AND_TOS(skip, -1);                                       \
1519           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1520           CONTINUE;                                                          \
1521       }
1522 
1523 #define NULL_COMPARISON_OP(name)                                             \
1524       CASE(_if##name): {                                                     \
1525           const bool cmp = ((STACK_OBJECT(-1) == NULL));                     \
1526           int skip = cmp                                                     \
1527                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1528           address branch_pc = pc;                                            \
1529           /* Profile branch. */                                              \
1530           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1531           UPDATE_PC_AND_TOS(skip, -1);                                       \
1532           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1533           CONTINUE;                                                          \
1534       }
1535       COMPARISON_OP(lt, <);
1536       COMPARISON_OP(gt, >);
1537       COMPARISON_OP(le, <=);
1538       COMPARISON_OP(ge, >=);
1539       COMPARISON_OP2(eq, ==);  /* include ref comparison */
1540       COMPARISON_OP2(ne, !=);  /* include ref comparison */
1541       NULL_COMPARISON_OP(null);
1542       NULL_COMPARISON_NOT_OP(nonnull);
1543 
1544       /* Goto pc at specified offset in switch table. */
1545 
1546       CASE(_tableswitch): {
1547           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1548           int32_t  key  = STACK_INT(-1);
1549           int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
1550           int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
1551           int32_t  skip;
1552           key -= low;
1553           if (((uint32_t) key > (uint32_t)(high - low))) {
1554             key = -1;
1555             skip = Bytes::get_Java_u4((address)&lpc[0]);
1556           } else {
1557             skip = Bytes::get_Java_u4((address)&lpc[key + 3]);
1558           }
1559           // Profile switch.
1560           BI_PROFILE_UPDATE_SWITCH(/*switch_index=*/key);
1561           // Does this really need a full backedge check (osr)?
1562           address branch_pc = pc;
1563           UPDATE_PC_AND_TOS(skip, -1);
1564           DO_BACKEDGE_CHECKS(skip, branch_pc);
1565           CONTINUE;
1566       }
1567 
1568       /* Goto pc whose table entry matches specified key. */
1569 
1570       CASE(_lookupswitch): {
1571           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1572           int32_t  key  = STACK_INT(-1);
1573           int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
1574           // Remember index.
1575           int      index = -1;
1576           int      newindex = 0;
1577           int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
1578           while (--npairs >= 0) {
1579             lpc += 2;
1580             if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
1581               skip = Bytes::get_Java_u4((address)&lpc[1]);
1582               index = newindex;
1583               break;
1584             }
1585             newindex += 1;
1586           }
1587           // Profile switch.
1588           BI_PROFILE_UPDATE_SWITCH(/*switch_index=*/index);
1589           address branch_pc = pc;
1590           UPDATE_PC_AND_TOS(skip, -1);
1591           DO_BACKEDGE_CHECKS(skip, branch_pc);
1592           CONTINUE;
1593       }
1594 
1595       CASE(_fcmpl):
1596       CASE(_fcmpg):
1597       {
1598           SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
1599                                         STACK_FLOAT(-1),
1600                                         (opcode == Bytecodes::_fcmpl ? -1 : 1)),
1601                         -2);
1602           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1603       }
1604 
1605       CASE(_dcmpl):
1606       CASE(_dcmpg):
1607       {
1608           int r = VMdoubleCompare(STACK_DOUBLE(-3),
1609                                   STACK_DOUBLE(-1),
1610                                   (opcode == Bytecodes::_dcmpl ? -1 : 1));
1611           MORE_STACK(-4); // Pop
1612           SET_STACK_INT(r, 0);
1613           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1614       }
1615 
1616       CASE(_lcmp):
1617       {
1618           int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
1619           MORE_STACK(-4);
1620           SET_STACK_INT(r, 0);
1621           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1622       }
1623 
1624 
1625       /* Return from a method */
1626 
1627       CASE(_areturn):
1628       CASE(_ireturn):
1629       CASE(_freturn):
1630       {
1631           // Allow a safepoint before returning to frame manager.
1632           SAFEPOINT;
1633 
1634           goto handle_return;
1635       }
1636 
1637       CASE(_lreturn):
1638       CASE(_dreturn):
1639       {
1640           // Allow a safepoint before returning to frame manager.
1641           SAFEPOINT;
1642           goto handle_return;
1643       }
1644 
1645       CASE(_return_register_finalizer): {
1646 
1647           oop rcvr = LOCALS_OBJECT(0);
1648           VERIFY_OOP(rcvr);
1649           if (rcvr->klass()->has_finalizer()) {
1650             CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
1651           }
1652           goto handle_return;
1653       }
1654       CASE(_return): {
1655 
1656           // Allow a safepoint before returning to frame manager.
1657           SAFEPOINT;
1658           goto handle_return;
1659       }
1660 
1661       /* Array access byte-codes */
1662 
1663       /* Every array access byte-code starts out like this */
1664 //        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
1665 #define ARRAY_INTRO(arrayOff)                                                  \
1666       arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
1667       jint     index  = STACK_INT(arrayOff + 1);                               \
1668       char message[jintAsStringSize];                                          \
1669       CHECK_NULL(arrObj);                                                      \
1670       if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
1671           sprintf(message, "%d", index);                                       \
1672           VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
1673                         message, note_rangeCheck_trap);                        \
1674       }
1675 
1676       /* 32-bit loads. These handle conversion from < 32-bit types */
1677 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
1678       {                                                                               \
1679           ARRAY_INTRO(-2);                                                            \
1680           (void)extra;                                                                \
1681           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
1682                            -2);                                                       \
1683           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
1684       }
1685 
1686       /* 64-bit loads */
1687 #define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
1688       {                                                                                    \
1689           ARRAY_INTRO(-2);                                                                 \
1690           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
1691           (void)extra;                                                                     \
1692           UPDATE_PC_AND_CONTINUE(1);                                                       \
1693       }
1694 
1695       CASE(_iaload):
1696           ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
1697       CASE(_faload):
1698           ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1699       CASE(_aaload): {
1700           ARRAY_INTRO(-2);
1701           SET_STACK_OBJECT(((objArrayOop) arrObj)->obj_at(index), -2);
1702           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1703       }
1704       CASE(_baload):
1705           ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1706       CASE(_caload):
1707           ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
1708       CASE(_saload):
1709           ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1710       CASE(_laload):
1711           ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
1712       CASE(_daload):
1713           ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1714 
1715       /* 32-bit stores. These handle conversion to < 32-bit types */
1716 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
1717       {                                                                              \
1718           ARRAY_INTRO(-3);                                                           \
1719           (void)extra;                                                               \
1720           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1721           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
1722       }
1723 
1724       /* 64-bit stores */
1725 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
1726       {                                                                              \
1727           ARRAY_INTRO(-4);                                                           \
1728           (void)extra;                                                               \
1729           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1730           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
1731       }
1732 
1733       CASE(_iastore):
1734           ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
1735       CASE(_fastore):
1736           ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1737       /*
1738        * This one looks different because of the assignability check
1739        */
1740       CASE(_aastore): {
1741           oop rhsObject = STACK_OBJECT(-1);
1742           VERIFY_OOP(rhsObject);
1743           ARRAY_INTRO( -3);
1744           // arrObj, index are set
1745           if (rhsObject != NULL) {
1746             /* Check assignability of rhsObject into arrObj */
1747             Klass* rhsKlass = rhsObject->klass(); // EBX (subclass)
1748             Klass* elemKlass = ObjArrayKlass::cast(arrObj->klass())->element_klass(); // superklass EAX
1749             //
1750             // Check for compatibilty. This check must not GC!!
1751             // Seems way more expensive now that we must dispatch
1752             //
1753             if (rhsKlass != elemKlass && !rhsKlass->is_subtype_of(elemKlass)) { // ebx->is...
1754               // Decrement counter if subtype check failed.
1755               BI_PROFILE_SUBTYPECHECK_FAILED(rhsKlass);
1756               VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "", note_arrayCheck_trap);
1757             }
1758             // Profile checkcast with null_seen and receiver.
1759             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/false, rhsKlass);
1760           } else {
1761             // Profile checkcast with null_seen and receiver.
1762             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/true, NULL);
1763           }
1764           ((objArrayOop) arrObj)->obj_at_put(index, rhsObject);
1765           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1766       }
1767       CASE(_bastore): {
1768           ARRAY_INTRO(-3);
1769           int item = STACK_INT(-1);
1770           // if it is a T_BOOLEAN array, mask the stored value to 0/1
1771           if (arrObj->klass() == Universe::boolArrayKlassObj()) {
1772             item &= 1;
1773           } else {
1774             assert(arrObj->klass() == Universe::byteArrayKlassObj(),
1775                    "should be byte array otherwise");
1776           }
1777           ((typeArrayOop)arrObj)->byte_at_put(index, item);
1778           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1779       }
1780       CASE(_castore):
1781           ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
1782       CASE(_sastore):
1783           ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1784       CASE(_lastore):
1785           ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
1786       CASE(_dastore):
1787           ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1788 
1789       CASE(_arraylength):
1790       {
1791           arrayOop ary = (arrayOop) STACK_OBJECT(-1);
1792           CHECK_NULL(ary);
1793           SET_STACK_INT(ary->length(), -1);
1794           UPDATE_PC_AND_CONTINUE(1);
1795       }
1796 
1797       /* monitorenter and monitorexit for locking/unlocking an object */
1798 
1799       CASE(_monitorenter): {
1800         oop lockee = STACK_OBJECT(-1);
1801         // derefing's lockee ought to provoke implicit null check
1802         CHECK_NULL(lockee);
1803         // find a free monitor or one already allocated for this object
1804         // if we find a matching object then we need a new monitor
1805         // since this is recursive enter
1806         BasicObjectLock* limit = istate->monitor_base();
1807         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1808         BasicObjectLock* entry = NULL;
1809         while (most_recent != limit ) {
1810           if (most_recent->obj() == NULL) entry = most_recent;
1811           else if (most_recent->obj() == lockee) break;
1812           most_recent++;
1813         }
1814         if (entry != NULL) {
1815           entry->set_obj(lockee);
1816           int success = false;
1817           uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
1818 
1819           markOop mark = lockee->mark();
1820           intptr_t hash = (intptr_t) markOopDesc::no_hash;
1821           // implies UseBiasedLocking
1822           if (mark->has_bias_pattern()) {
1823             uintptr_t thread_ident;
1824             uintptr_t anticipated_bias_locking_value;
1825             thread_ident = (uintptr_t)istate->thread();
1826             anticipated_bias_locking_value =
1827               (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
1828               ~((uintptr_t) markOopDesc::age_mask_in_place);
1829 
1830             if  (anticipated_bias_locking_value == 0) {
1831               // already biased towards this thread, nothing to do
1832               if (PrintBiasedLockingStatistics) {
1833                 (* BiasedLocking::biased_lock_entry_count_addr())++;
1834               }
1835               success = true;
1836             }
1837             else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
1838               // try revoke bias
1839               markOop header = lockee->klass()->prototype_header();
1840               if (hash != markOopDesc::no_hash) {
1841                 header = header->copy_set_hash(hash);
1842               }
1843               if (Atomic::cmpxchg(header, lockee->mark_addr(), mark) == mark) {
1844                 if (PrintBiasedLockingStatistics)
1845                   (*BiasedLocking::revoked_lock_entry_count_addr())++;
1846               }
1847             }
1848             else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
1849               // try rebias
1850               markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
1851               if (hash != markOopDesc::no_hash) {
1852                 new_header = new_header->copy_set_hash(hash);
1853               }
1854               if (Atomic::cmpxchg(new_header, lockee->mark_addr(), mark) == mark) {
1855                 if (PrintBiasedLockingStatistics)
1856                   (* BiasedLocking::rebiased_lock_entry_count_addr())++;
1857               }
1858               else {
1859                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1860               }
1861               success = true;
1862             }
1863             else {
1864               // try to bias towards thread in case object is anonymously biased
1865               markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
1866                                                               (uintptr_t)markOopDesc::age_mask_in_place |
1867                                                               epoch_mask_in_place));
1868               if (hash != markOopDesc::no_hash) {
1869                 header = header->copy_set_hash(hash);
1870               }
1871               markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
1872               // debugging hint
1873               DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
1874               if (Atomic::cmpxchg(new_header, lockee->mark_addr(), header) == header) {
1875                 if (PrintBiasedLockingStatistics)
1876                   (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
1877               }
1878               else {
1879                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1880               }
1881               success = true;
1882             }
1883           }
1884 
1885           // traditional lightweight locking
1886           if (!success) {
1887             markOop displaced = lockee->mark()->set_unlocked();
1888             entry->lock()->set_displaced_header(displaced);
1889             bool call_vm = UseHeavyMonitors;
1890             if (call_vm || Atomic::cmpxchg((markOop)entry, lockee->mark_addr(), displaced) != displaced) {
1891               // Is it simple recursive case?
1892               if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
1893                 entry->lock()->set_displaced_header(NULL);
1894               } else {
1895                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1896               }
1897             }
1898           }
1899           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1900         } else {
1901           istate->set_msg(more_monitors);
1902           UPDATE_PC_AND_RETURN(0); // Re-execute
1903         }
1904       }
1905 
1906       CASE(_monitorexit): {
1907         oop lockee = STACK_OBJECT(-1);
1908         CHECK_NULL(lockee);
1909         // derefing's lockee ought to provoke implicit null check
1910         // find our monitor slot
1911         BasicObjectLock* limit = istate->monitor_base();
1912         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1913         while (most_recent != limit ) {
1914           if ((most_recent)->obj() == lockee) {
1915             BasicLock* lock = most_recent->lock();
1916             markOop header = lock->displaced_header();
1917             most_recent->set_obj(NULL);
1918             if (!lockee->mark()->has_bias_pattern()) {
1919               bool call_vm = UseHeavyMonitors;
1920               // If it isn't recursive we either must swap old header or call the runtime
1921               if (header != NULL || call_vm) {
1922                 markOop old_header = markOopDesc::encode(lock);
1923                 if (call_vm || lockee->cas_set_mark(header, old_header) != old_header) {
1924                   // restore object for the slow case
1925                   most_recent->set_obj(lockee);
1926                   CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
1927                 }
1928               }
1929             }
1930             UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1931           }
1932           most_recent++;
1933         }
1934         // Need to throw illegal monitor state exception
1935         CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
1936         ShouldNotReachHere();
1937       }
1938 
1939       /* All of the non-quick opcodes. */
1940 
1941       /* -Set clobbersCpIndex true if the quickened opcode clobbers the
1942        *  constant pool index in the instruction.
1943        */
1944       CASE(_getfield):
1945       CASE(_getstatic):
1946         {
1947           u2 index;
1948           ConstantPoolCacheEntry* cache;
1949           index = Bytes::get_native_u2(pc+1);
1950 
1951           // QQQ Need to make this as inlined as possible. Probably need to
1952           // split all the bytecode cases out so c++ compiler has a chance
1953           // for constant prop to fold everything possible away.
1954 
1955           cache = cp->entry_at(index);
1956           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1957             CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
1958                     handle_exception);
1959             cache = cp->entry_at(index);
1960           }
1961 
1962 #ifdef VM_JVMTI
1963           if (_jvmti_interp_events) {
1964             int *count_addr;
1965             oop obj;
1966             // Check to see if a field modification watch has been set
1967             // before we take the time to call into the VM.
1968             count_addr = (int *)JvmtiExport::get_field_access_count_addr();
1969             if ( *count_addr > 0 ) {
1970               if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1971                 obj = (oop)NULL;
1972               } else {
1973                 obj = (oop) STACK_OBJECT(-1);
1974                 VERIFY_OOP(obj);
1975               }
1976               CALL_VM(InterpreterRuntime::post_field_access(THREAD,
1977                                           obj,
1978                                           cache),
1979                                           handle_exception);
1980             }
1981           }
1982 #endif /* VM_JVMTI */
1983 
1984           oop obj;
1985           if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1986             Klass* k = cache->f1_as_klass();
1987             obj = k->java_mirror();
1988             MORE_STACK(1);  // Assume single slot push
1989           } else {
1990             obj = (oop) STACK_OBJECT(-1);
1991             CHECK_NULL(obj);
1992           }
1993 
1994           //
1995           // Now store the result on the stack
1996           //
1997           TosState tos_type = cache->flag_state();
1998           int field_offset = cache->f2_as_index();
1999           if (cache->is_volatile()) {
2000             if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2001               OrderAccess::fence();
2002             }
2003             if (tos_type == atos) {
2004               VERIFY_OOP(obj->obj_field_acquire(field_offset));
2005               SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
2006             } else if (tos_type == itos) {
2007               SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
2008             } else if (tos_type == ltos) {
2009               SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
2010               MORE_STACK(1);
2011             } else if (tos_type == btos || tos_type == ztos) {
2012               SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
2013             } else if (tos_type == ctos) {
2014               SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
2015             } else if (tos_type == stos) {
2016               SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
2017             } else if (tos_type == ftos) {
2018               SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
2019             } else {
2020               SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
2021               MORE_STACK(1);
2022             }
2023           } else {
2024             if (tos_type == atos) {
2025               VERIFY_OOP(obj->obj_field(field_offset));
2026               SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
2027             } else if (tos_type == itos) {
2028               SET_STACK_INT(obj->int_field(field_offset), -1);
2029             } else if (tos_type == ltos) {
2030               SET_STACK_LONG(obj->long_field(field_offset), 0);
2031               MORE_STACK(1);
2032             } else if (tos_type == btos || tos_type == ztos) {
2033               SET_STACK_INT(obj->byte_field(field_offset), -1);
2034             } else if (tos_type == ctos) {
2035               SET_STACK_INT(obj->char_field(field_offset), -1);
2036             } else if (tos_type == stos) {
2037               SET_STACK_INT(obj->short_field(field_offset), -1);
2038             } else if (tos_type == ftos) {
2039               SET_STACK_FLOAT(obj->float_field(field_offset), -1);
2040             } else {
2041               SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
2042               MORE_STACK(1);
2043             }
2044           }
2045 
2046           UPDATE_PC_AND_CONTINUE(3);
2047          }
2048 
2049       CASE(_putfield):
2050       CASE(_putstatic):
2051         {
2052           u2 index = Bytes::get_native_u2(pc+1);
2053           ConstantPoolCacheEntry* cache = cp->entry_at(index);
2054           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2055             CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2056                     handle_exception);
2057             cache = cp->entry_at(index);
2058           }
2059 
2060 #ifdef VM_JVMTI
2061           if (_jvmti_interp_events) {
2062             int *count_addr;
2063             oop obj;
2064             // Check to see if a field modification watch has been set
2065             // before we take the time to call into the VM.
2066             count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
2067             if ( *count_addr > 0 ) {
2068               if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2069                 obj = (oop)NULL;
2070               }
2071               else {
2072                 if (cache->is_long() || cache->is_double()) {
2073                   obj = (oop) STACK_OBJECT(-3);
2074                 } else {
2075                   obj = (oop) STACK_OBJECT(-2);
2076                 }
2077                 VERIFY_OOP(obj);
2078               }
2079 
2080               CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
2081                                           obj,
2082                                           cache,
2083                                           (jvalue *)STACK_SLOT(-1)),
2084                                           handle_exception);
2085             }
2086           }
2087 #endif /* VM_JVMTI */
2088 
2089           // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2090           // out so c++ compiler has a chance for constant prop to fold everything possible away.
2091 
2092           oop obj;
2093           int count;
2094           TosState tos_type = cache->flag_state();
2095 
2096           count = -1;
2097           if (tos_type == ltos || tos_type == dtos) {
2098             --count;
2099           }
2100           if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2101             Klass* k = cache->f1_as_klass();
2102             obj = k->java_mirror();
2103           } else {
2104             --count;
2105             obj = (oop) STACK_OBJECT(count);
2106             CHECK_NULL(obj);
2107           }
2108 
2109           //
2110           // Now store the result
2111           //
2112           int field_offset = cache->f2_as_index();
2113           if (cache->is_volatile()) {
2114             if (tos_type == itos) {
2115               obj->release_int_field_put(field_offset, STACK_INT(-1));
2116             } else if (tos_type == atos) {
2117               VERIFY_OOP(STACK_OBJECT(-1));
2118               obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
2119             } else if (tos_type == btos) {
2120               obj->release_byte_field_put(field_offset, STACK_INT(-1));
2121             } else if (tos_type == ztos) {
2122               int bool_field = STACK_INT(-1);  // only store LSB
2123               obj->release_byte_field_put(field_offset, (bool_field & 1));
2124             } else if (tos_type == ltos) {
2125               obj->release_long_field_put(field_offset, STACK_LONG(-1));
2126             } else if (tos_type == ctos) {
2127               obj->release_char_field_put(field_offset, STACK_INT(-1));
2128             } else if (tos_type == stos) {
2129               obj->release_short_field_put(field_offset, STACK_INT(-1));
2130             } else if (tos_type == ftos) {
2131               obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
2132             } else {
2133               obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
2134             }
2135             OrderAccess::storeload();
2136           } else {
2137             if (tos_type == itos) {
2138               obj->int_field_put(field_offset, STACK_INT(-1));
2139             } else if (tos_type == atos) {
2140               VERIFY_OOP(STACK_OBJECT(-1));
2141               obj->obj_field_put(field_offset, STACK_OBJECT(-1));
2142             } else if (tos_type == btos) {
2143               obj->byte_field_put(field_offset, STACK_INT(-1));
2144             } else if (tos_type == ztos) {
2145               int bool_field = STACK_INT(-1);  // only store LSB
2146               obj->byte_field_put(field_offset, (bool_field & 1));
2147             } else if (tos_type == ltos) {
2148               obj->long_field_put(field_offset, STACK_LONG(-1));
2149             } else if (tos_type == ctos) {
2150               obj->char_field_put(field_offset, STACK_INT(-1));
2151             } else if (tos_type == stos) {
2152               obj->short_field_put(field_offset, STACK_INT(-1));
2153             } else if (tos_type == ftos) {
2154               obj->float_field_put(field_offset, STACK_FLOAT(-1));
2155             } else {
2156               obj->double_field_put(field_offset, STACK_DOUBLE(-1));
2157             }
2158           }
2159 
2160           UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
2161         }
2162 
2163       CASE(_new): {
2164         u2 index = Bytes::get_Java_u2(pc+1);
2165         ConstantPool* constants = istate->method()->constants();
2166         if (!constants->tag_at(index).is_unresolved_klass()) {
2167           // Make sure klass is initialized and doesn't have a finalizer
2168           Klass* entry = constants->resolved_klass_at(index);
2169           InstanceKlass* ik = InstanceKlass::cast(entry);
2170           if (ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
2171             size_t obj_size = ik->size_helper();
2172             oop result = NULL;
2173             // If the TLAB isn't pre-zeroed then we'll have to do it
2174             bool need_zero = !ZeroTLAB;
2175             if (UseTLAB) {
2176               result = (oop) THREAD->tlab().allocate(obj_size);
2177             }
2178             // Disable non-TLAB-based fast-path, because profiling requires that all
2179             // allocations go through InterpreterRuntime::_new() if THREAD->tlab().allocate
2180             // returns NULL.
2181 #ifndef CC_INTERP_PROFILE
2182             if (result == NULL) {
2183               need_zero = true;
2184               // Try allocate in shared eden
2185             retry:
2186               HeapWord* compare_to = *Universe::heap()->top_addr();
2187               HeapWord* new_top = compare_to + obj_size;
2188               if (new_top <= *Universe::heap()->end_addr()) {
2189                 if (Atomic::cmpxchg(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
2190                   goto retry;
2191                 }
2192                 result = (oop) compare_to;
2193               }
2194             }
2195 #endif
2196             if (result != NULL) {
2197               // Initialize object (if nonzero size and need) and then the header
2198               if (need_zero ) {
2199                 HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
2200                 obj_size -= sizeof(oopDesc) / oopSize;
2201                 if (obj_size > 0 ) {
2202                   memset(to_zero, 0, obj_size * HeapWordSize);
2203                 }
2204               }
2205               if (UseBiasedLocking) {
2206                 result->set_mark(ik->prototype_header());
2207               } else {
2208                 result->set_mark(markOopDesc::prototype());
2209               }
2210               result->set_klass_gap(0);
2211               result->set_klass(ik);
2212               // Must prevent reordering of stores for object initialization
2213               // with stores that publish the new object.
2214               OrderAccess::storestore();
2215               SET_STACK_OBJECT(result, 0);
2216               UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2217             }
2218           }
2219         }
2220         // Slow case allocation
2221         CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
2222                 handle_exception);
2223         // Must prevent reordering of stores for object initialization
2224         // with stores that publish the new object.
2225         OrderAccess::storestore();
2226         SET_STACK_OBJECT(THREAD->vm_result(), 0);
2227         THREAD->set_vm_result(NULL);
2228         UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2229       }
2230       CASE(_anewarray): {
2231         u2 index = Bytes::get_Java_u2(pc+1);
2232         jint size = STACK_INT(-1);
2233         CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
2234                 handle_exception);
2235         // Must prevent reordering of stores for object initialization
2236         // with stores that publish the new object.
2237         OrderAccess::storestore();
2238         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2239         THREAD->set_vm_result(NULL);
2240         UPDATE_PC_AND_CONTINUE(3);
2241       }
2242       CASE(_multianewarray): {
2243         jint dims = *(pc+3);
2244         jint size = STACK_INT(-1);
2245         // stack grows down, dimensions are up!
2246         jint *dimarray =
2247                    (jint*)&topOfStack[dims * Interpreter::stackElementWords+
2248                                       Interpreter::stackElementWords-1];
2249         //adjust pointer to start of stack element
2250         CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
2251                 handle_exception);
2252         // Must prevent reordering of stores for object initialization
2253         // with stores that publish the new object.
2254         OrderAccess::storestore();
2255         SET_STACK_OBJECT(THREAD->vm_result(), -dims);
2256         THREAD->set_vm_result(NULL);
2257         UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
2258       }
2259       CASE(_checkcast):
2260           if (STACK_OBJECT(-1) != NULL) {
2261             VERIFY_OOP(STACK_OBJECT(-1));
2262             u2 index = Bytes::get_Java_u2(pc+1);
2263             // Constant pool may have actual klass or unresolved klass. If it is
2264             // unresolved we must resolve it.
2265             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2266               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2267             }
2268             Klass* klassOf = (Klass*) METHOD->constants()->resolved_klass_at(index);
2269             Klass* objKlass = STACK_OBJECT(-1)->klass(); // ebx
2270             //
2271             // Check for compatibilty. This check must not GC!!
2272             // Seems way more expensive now that we must dispatch.
2273             //
2274             if (objKlass != klassOf && !objKlass->is_subtype_of(klassOf)) {
2275               // Decrement counter at checkcast.
2276               BI_PROFILE_SUBTYPECHECK_FAILED(objKlass);
2277               ResourceMark rm(THREAD);
2278               char* message = SharedRuntime::generate_class_cast_message(
2279                 objKlass, klassOf);
2280               VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message, note_classCheck_trap);
2281             }
2282             // Profile checkcast with null_seen and receiver.
2283             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/false, objKlass);
2284           } else {
2285             // Profile checkcast with null_seen and receiver.
2286             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/true, NULL);
2287           }
2288           UPDATE_PC_AND_CONTINUE(3);
2289 
2290       CASE(_instanceof):
2291           if (STACK_OBJECT(-1) == NULL) {
2292             SET_STACK_INT(0, -1);
2293             // Profile instanceof with null_seen and receiver.
2294             BI_PROFILE_UPDATE_INSTANCEOF(/*null_seen=*/true, NULL);
2295           } else {
2296             VERIFY_OOP(STACK_OBJECT(-1));
2297             u2 index = Bytes::get_Java_u2(pc+1);
2298             // Constant pool may have actual klass or unresolved klass. If it is
2299             // unresolved we must resolve it.
2300             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2301               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2302             }
2303             Klass* klassOf = (Klass*) METHOD->constants()->resolved_klass_at(index);
2304             Klass* objKlass = STACK_OBJECT(-1)->klass();
2305             //
2306             // Check for compatibilty. This check must not GC!!
2307             // Seems way more expensive now that we must dispatch.
2308             //
2309             if ( objKlass == klassOf || objKlass->is_subtype_of(klassOf)) {
2310               SET_STACK_INT(1, -1);
2311             } else {
2312               SET_STACK_INT(0, -1);
2313               // Decrement counter at checkcast.
2314               BI_PROFILE_SUBTYPECHECK_FAILED(objKlass);
2315             }
2316             // Profile instanceof with null_seen and receiver.
2317             BI_PROFILE_UPDATE_INSTANCEOF(/*null_seen=*/false, objKlass);
2318           }
2319           UPDATE_PC_AND_CONTINUE(3);
2320 
2321       CASE(_ldc_w):
2322       CASE(_ldc):
2323         {
2324           u2 index;
2325           bool wide = false;
2326           int incr = 2; // frequent case
2327           if (opcode == Bytecodes::_ldc) {
2328             index = pc[1];
2329           } else {
2330             index = Bytes::get_Java_u2(pc+1);
2331             incr = 3;
2332             wide = true;
2333           }
2334 
2335           ConstantPool* constants = METHOD->constants();
2336           switch (constants->tag_at(index).value()) {
2337           case JVM_CONSTANT_Integer:
2338             SET_STACK_INT(constants->int_at(index), 0);
2339             break;
2340 
2341           case JVM_CONSTANT_Float:
2342             SET_STACK_FLOAT(constants->float_at(index), 0);
2343             break;
2344 
2345           case JVM_CONSTANT_String:
2346             {
2347               oop result = constants->resolved_references()->obj_at(index);
2348               if (result == NULL) {
2349                 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2350                 SET_STACK_OBJECT(THREAD->vm_result(), 0);
2351                 THREAD->set_vm_result(NULL);
2352               } else {
2353                 VERIFY_OOP(result);
2354                 SET_STACK_OBJECT(result, 0);
2355               }
2356             break;
2357             }
2358 
2359           case JVM_CONSTANT_Class:
2360           case JVM_CONSTANT_Value:
2361             VERIFY_OOP(constants->resolved_klass_at(index)->java_mirror());
2362             SET_STACK_OBJECT(constants->resolved_klass_at(index)->java_mirror(), 0);
2363             break;
2364 
2365           case JVM_CONSTANT_UnresolvedClass:
2366           case JVM_CONSTANT_UnresolvedClassInError:
2367           case JVM_CONSTANT_UnresolvedValue:
2368           case JVM_CONSTANT_UnresolvedValueInError:
2369             CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
2370             SET_STACK_OBJECT(THREAD->vm_result(), 0);
2371             THREAD->set_vm_result(NULL);
2372             break;
2373 
2374           case JVM_CONSTANT_Dynamic:
2375             {
2376               oop result = constants->resolved_references()->obj_at(index);
2377               if (result == NULL) {
2378                 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2379                 result = THREAD->vm_result();
2380               }
2381               VERIFY_OOP(result);
2382 
2383               jvalue value;
2384               BasicType type = java_lang_boxing_object::get_value(result, &value);
2385               switch (type) {
2386               case T_FLOAT:   SET_STACK_FLOAT(value.f, 0); break;
2387               case T_INT:     SET_STACK_INT(value.i, 0); break;
2388               case T_SHORT:   SET_STACK_INT(value.s, 0); break;
2389               case T_BYTE:    SET_STACK_INT(value.b, 0); break;
2390               case T_CHAR:    SET_STACK_INT(value.c, 0); break;
2391               case T_BOOLEAN: SET_STACK_INT(value.z, 0); break;
2392               default:  ShouldNotReachHere();
2393               }
2394 
2395               break;
2396             }
2397 
2398           default:  ShouldNotReachHere();
2399           }
2400           UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2401         }
2402 
2403       CASE(_ldc2_w):
2404         {
2405           u2 index = Bytes::get_Java_u2(pc+1);
2406 
2407           ConstantPool* constants = METHOD->constants();
2408           switch (constants->tag_at(index).value()) {
2409 
2410           case JVM_CONSTANT_Long:
2411              SET_STACK_LONG(constants->long_at(index), 1);
2412             break;
2413 
2414           case JVM_CONSTANT_Double:
2415              SET_STACK_DOUBLE(constants->double_at(index), 1);
2416             break;
2417 
2418           case JVM_CONSTANT_Dynamic:
2419             {
2420               oop result = constants->resolved_references()->obj_at(index);
2421               if (result == NULL) {
2422                 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2423                 result = THREAD->vm_result();
2424               }
2425               VERIFY_OOP(result);
2426 
2427               jvalue value;
2428               BasicType type = java_lang_boxing_object::get_value(result, &value);
2429               switch (type) {
2430               case T_DOUBLE: SET_STACK_DOUBLE(value.d, 1); break;
2431               case T_LONG:   SET_STACK_LONG(value.j, 1); break;
2432               default:  ShouldNotReachHere();
2433               }
2434 
2435               break;
2436             }
2437 
2438           default:  ShouldNotReachHere();
2439           }
2440           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
2441         }
2442 
2443       CASE(_fast_aldc_w):
2444       CASE(_fast_aldc): {
2445         u2 index;
2446         int incr;
2447         if (opcode == Bytecodes::_fast_aldc) {
2448           index = pc[1];
2449           incr = 2;
2450         } else {
2451           index = Bytes::get_native_u2(pc+1);
2452           incr = 3;
2453         }
2454 
2455         // We are resolved if the resolved_references array contains a non-null object (CallSite, etc.)
2456         // This kind of CP cache entry does not need to match the flags byte, because
2457         // there is a 1-1 relation between bytecode type and CP entry type.
2458         ConstantPool* constants = METHOD->constants();
2459         oop result = constants->resolved_references()->obj_at(index);
2460         if (result == NULL) {
2461           CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode),
2462                   handle_exception);
2463           result = THREAD->vm_result();
2464         }
2465         if (result == Universe::the_null_sentinel())
2466           result = NULL;
2467 
2468         VERIFY_OOP(result);
2469         SET_STACK_OBJECT(result, 0);
2470         UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2471       }
2472 
2473       CASE(_invokedynamic): {
2474 
2475         u4 index = Bytes::get_native_u4(pc+1);
2476         ConstantPoolCacheEntry* cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2477 
2478         // We are resolved if the resolved_references array contains a non-null object (CallSite, etc.)
2479         // This kind of CP cache entry does not need to match the flags byte, because
2480         // there is a 1-1 relation between bytecode type and CP entry type.
2481         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2482           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2483                   handle_exception);
2484           cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2485         }
2486 
2487         Method* method = cache->f1_as_method();
2488         if (VerifyOops) method->verify();
2489 
2490         if (cache->has_appendix()) {
2491           ConstantPool* constants = METHOD->constants();
2492           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2493           MORE_STACK(1);
2494         }
2495 
2496         istate->set_msg(call_method);
2497         istate->set_callee(method);
2498         istate->set_callee_entry_point(method->from_interpreted_entry());
2499         istate->set_bcp_advance(5);
2500 
2501         // Invokedynamic has got a call counter, just like an invokestatic -> increment!
2502         BI_PROFILE_UPDATE_CALL();
2503 
2504         UPDATE_PC_AND_RETURN(0); // I'll be back...
2505       }
2506 
2507       CASE(_invokehandle): {
2508 
2509         u2 index = Bytes::get_native_u2(pc+1);
2510         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2511 
2512         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2513           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2514                   handle_exception);
2515           cache = cp->entry_at(index);
2516         }
2517 
2518         Method* method = cache->f1_as_method();
2519         if (VerifyOops) method->verify();
2520 
2521         if (cache->has_appendix()) {
2522           ConstantPool* constants = METHOD->constants();
2523           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2524           MORE_STACK(1);
2525         }
2526 
2527         istate->set_msg(call_method);
2528         istate->set_callee(method);
2529         istate->set_callee_entry_point(method->from_interpreted_entry());
2530         istate->set_bcp_advance(3);
2531 
2532         // Invokehandle has got a call counter, just like a final call -> increment!
2533         BI_PROFILE_UPDATE_FINALCALL();
2534 
2535         UPDATE_PC_AND_RETURN(0); // I'll be back...
2536       }
2537 
2538       CASE(_invokeinterface): {
2539         u2 index = Bytes::get_native_u2(pc+1);
2540 
2541         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2542         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2543 
2544         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2545         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2546           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2547                   handle_exception);
2548           cache = cp->entry_at(index);
2549         }
2550 
2551         istate->set_msg(call_method);
2552 
2553         // Special case of invokeinterface called for virtual method of
2554         // java.lang.Object.  See cpCacheOop.cpp for details.
2555         // This code isn't produced by javac, but could be produced by
2556         // another compliant java compiler.
2557         if (cache->is_forced_virtual()) {
2558           Method* callee;
2559           CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2560           if (cache->is_vfinal()) {
2561             callee = cache->f2_as_vfinal_method();
2562             // Profile 'special case of invokeinterface' final call.
2563             BI_PROFILE_UPDATE_FINALCALL();
2564           } else {
2565             // Get receiver.
2566             int parms = cache->parameter_size();
2567             // Same comments as invokevirtual apply here.
2568             oop rcvr = STACK_OBJECT(-parms);
2569             VERIFY_OOP(rcvr);
2570             Klass* rcvrKlass = rcvr->klass();
2571             callee = (Method*) rcvrKlass->method_at_vtable(cache->f2_as_index());
2572             // Profile 'special case of invokeinterface' virtual call.
2573             BI_PROFILE_UPDATE_VIRTUALCALL(rcvrKlass);
2574           }
2575           istate->set_callee(callee);
2576           istate->set_callee_entry_point(callee->from_interpreted_entry());
2577 #ifdef VM_JVMTI
2578           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2579             istate->set_callee_entry_point(callee->interpreter_entry());
2580           }
2581 #endif /* VM_JVMTI */
2582           istate->set_bcp_advance(5);
2583           UPDATE_PC_AND_RETURN(0); // I'll be back...
2584         }
2585 
2586         // this could definitely be cleaned up QQQ
2587         Method* callee;
2588         Method *interface_method = cache->f2_as_interface_method();
2589         InstanceKlass* iclass = interface_method->method_holder();
2590 
2591         // get receiver
2592         int parms = cache->parameter_size();
2593         oop rcvr = STACK_OBJECT(-parms);
2594         CHECK_NULL(rcvr);
2595         InstanceKlass* int2 = (InstanceKlass*) rcvr->klass();
2596 
2597         // Receiver subtype check against resolved interface klass (REFC).
2598         {
2599           Klass* refc = cache->f1_as_klass();
2600           itableOffsetEntry* scan;
2601           for (scan = (itableOffsetEntry*) int2->start_of_itable();
2602                scan->interface_klass() != NULL;
2603                scan++) {
2604             if (scan->interface_klass() == refc) {
2605               break;
2606             }
2607           }
2608           // Check that the entry is non-null.  A null entry means
2609           // that the receiver class doesn't implement the
2610           // interface, and wasn't the same as when the caller was
2611           // compiled.
2612           if (scan->interface_klass() == NULL) {
2613             VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "", note_no_trap);
2614           }
2615         }
2616 
2617         itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
2618         int i;
2619         for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
2620           if (ki->interface_klass() == iclass) break;
2621         }
2622         // If the interface isn't found, this class doesn't implement this
2623         // interface.  The link resolver checks this but only for the first
2624         // time this interface is called.
2625         if (i == int2->itable_length()) {
2626           VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "", note_no_trap);
2627         }
2628         int mindex = interface_method->itable_index();
2629 
2630         itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
2631         callee = im[mindex].method();
2632         if (callee == NULL) {
2633           VM_JAVA_ERROR(vmSymbols::java_lang_AbstractMethodError(), "", note_no_trap);
2634         }
2635 
2636         // Profile virtual call.
2637         BI_PROFILE_UPDATE_VIRTUALCALL(rcvr->klass());
2638 
2639         istate->set_callee(callee);
2640         istate->set_callee_entry_point(callee->from_interpreted_entry());
2641 #ifdef VM_JVMTI
2642         if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2643           istate->set_callee_entry_point(callee->interpreter_entry());
2644         }
2645 #endif /* VM_JVMTI */
2646         istate->set_bcp_advance(5);
2647         UPDATE_PC_AND_RETURN(0); // I'll be back...
2648       }
2649 
2650       CASE(_invokevirtual):
2651       CASE(_invokespecial):
2652       CASE(_invokestatic): {
2653         u2 index = Bytes::get_native_u2(pc+1);
2654 
2655         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2656         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2657         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2658 
2659         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2660           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2661                   handle_exception);
2662           cache = cp->entry_at(index);
2663         }
2664 
2665         istate->set_msg(call_method);
2666         {
2667           Method* callee;
2668           if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
2669             CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2670             if (cache->is_vfinal()) {
2671               callee = cache->f2_as_vfinal_method();
2672               // Profile final call.
2673               BI_PROFILE_UPDATE_FINALCALL();
2674             } else {
2675               // get receiver
2676               int parms = cache->parameter_size();
2677               // this works but needs a resourcemark and seems to create a vtable on every call:
2678               // Method* callee = rcvr->klass()->vtable()->method_at(cache->f2_as_index());
2679               //
2680               // this fails with an assert
2681               // InstanceKlass* rcvrKlass = InstanceKlass::cast(STACK_OBJECT(-parms)->klass());
2682               // but this works
2683               oop rcvr = STACK_OBJECT(-parms);
2684               VERIFY_OOP(rcvr);
2685               Klass* rcvrKlass = rcvr->klass();
2686               /*
2687                 Executing this code in java.lang.String:
2688                     public String(char value[]) {
2689                           this.count = value.length;
2690                           this.value = (char[])value.clone();
2691                      }
2692 
2693                  a find on rcvr->klass() reports:
2694                  {type array char}{type array class}
2695                   - klass: {other class}
2696 
2697                   but using InstanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
2698                   because rcvr->klass()->is_instance_klass() == 0
2699                   However it seems to have a vtable in the right location. Huh?
2700                   Because vtables have the same offset for ArrayKlass and InstanceKlass.
2701               */
2702               callee = (Method*) rcvrKlass->method_at_vtable(cache->f2_as_index());
2703               // Profile virtual call.
2704               BI_PROFILE_UPDATE_VIRTUALCALL(rcvrKlass);
2705             }
2706           } else {
2707             if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
2708               CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2709             }
2710             callee = cache->f1_as_method();
2711 
2712             // Profile call.
2713             BI_PROFILE_UPDATE_CALL();
2714           }
2715 
2716           istate->set_callee(callee);
2717           istate->set_callee_entry_point(callee->from_interpreted_entry());
2718 #ifdef VM_JVMTI
2719           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2720             istate->set_callee_entry_point(callee->interpreter_entry());
2721           }
2722 #endif /* VM_JVMTI */
2723           istate->set_bcp_advance(3);
2724           UPDATE_PC_AND_RETURN(0); // I'll be back...
2725         }
2726       }
2727 
2728       /* Allocate memory for a new java object. */
2729 
2730       CASE(_newarray): {
2731         BasicType atype = (BasicType) *(pc+1);
2732         jint size = STACK_INT(-1);
2733         CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
2734                 handle_exception);
2735         // Must prevent reordering of stores for object initialization
2736         // with stores that publish the new object.
2737         OrderAccess::storestore();
2738         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2739         THREAD->set_vm_result(NULL);
2740 
2741         UPDATE_PC_AND_CONTINUE(2);
2742       }
2743 
2744       /* Throw an exception. */
2745 
2746       CASE(_athrow): {
2747           oop except_oop = STACK_OBJECT(-1);
2748           CHECK_NULL(except_oop);
2749           // set pending_exception so we use common code
2750           THREAD->set_pending_exception(except_oop, NULL, 0);
2751           goto handle_exception;
2752       }
2753 
2754       /* goto and jsr. They are exactly the same except jsr pushes
2755        * the address of the next instruction first.
2756        */
2757 
2758       CASE(_jsr): {
2759           /* push bytecode index on stack */
2760           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
2761           MORE_STACK(1);
2762           /* FALL THROUGH */
2763       }
2764 
2765       CASE(_goto):
2766       {
2767           int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
2768           // Profile jump.
2769           BI_PROFILE_UPDATE_JUMP();
2770           address branch_pc = pc;
2771           UPDATE_PC(offset);
2772           DO_BACKEDGE_CHECKS(offset, branch_pc);
2773           CONTINUE;
2774       }
2775 
2776       CASE(_jsr_w): {
2777           /* push return address on the stack */
2778           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
2779           MORE_STACK(1);
2780           /* FALL THROUGH */
2781       }
2782 
2783       CASE(_goto_w):
2784       {
2785           int32_t offset = Bytes::get_Java_u4(pc + 1);
2786           // Profile jump.
2787           BI_PROFILE_UPDATE_JUMP();
2788           address branch_pc = pc;
2789           UPDATE_PC(offset);
2790           DO_BACKEDGE_CHECKS(offset, branch_pc);
2791           CONTINUE;
2792       }
2793 
2794       /* return from a jsr or jsr_w */
2795 
2796       CASE(_ret): {
2797           // Profile ret.
2798           BI_PROFILE_UPDATE_RET(/*bci=*/((int)(intptr_t)(LOCALS_ADDR(pc[1]))));
2799           // Now, update the pc.
2800           pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
2801           UPDATE_PC_AND_CONTINUE(0);
2802       }
2803 
2804       /* debugger breakpoint */
2805 
2806       CASE(_breakpoint): {
2807           Bytecodes::Code original_bytecode;
2808           DECACHE_STATE();
2809           SET_LAST_JAVA_FRAME();
2810           original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
2811                               METHOD, pc);
2812           RESET_LAST_JAVA_FRAME();
2813           CACHE_STATE();
2814           if (THREAD->has_pending_exception()) goto handle_exception;
2815             CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
2816                                                     handle_exception);
2817 
2818           opcode = (jubyte)original_bytecode;
2819           goto opcode_switch;
2820       }
2821 
2822       DEFAULT:
2823           fatal("Unimplemented opcode %d = %s", opcode,
2824                 Bytecodes::name((Bytecodes::Code)opcode));
2825           goto finish;
2826 
2827       } /* switch(opc) */
2828 
2829 
2830 #ifdef USELABELS
2831     check_for_exception:
2832 #endif
2833     {
2834       if (!THREAD->has_pending_exception()) {
2835         CONTINUE;
2836       }
2837       /* We will be gcsafe soon, so flush our state. */
2838       DECACHE_PC();
2839       goto handle_exception;
2840     }
2841   do_continue: ;
2842 
2843   } /* while (1) interpreter loop */
2844 
2845 
2846   // An exception exists in the thread state see whether this activation can handle it
2847   handle_exception: {
2848 
2849     HandleMarkCleaner __hmc(THREAD);
2850     Handle except_oop(THREAD, THREAD->pending_exception());
2851     // Prevent any subsequent HandleMarkCleaner in the VM
2852     // from freeing the except_oop handle.
2853     HandleMark __hm(THREAD);
2854 
2855     THREAD->clear_pending_exception();
2856     assert(except_oop(), "No exception to process");
2857     intptr_t continuation_bci;
2858     // expression stack is emptied
2859     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2860     CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
2861             handle_exception);
2862 
2863     except_oop = Handle(THREAD, THREAD->vm_result());
2864     THREAD->set_vm_result(NULL);
2865     if (continuation_bci >= 0) {
2866       // Place exception on top of stack
2867       SET_STACK_OBJECT(except_oop(), 0);
2868       MORE_STACK(1);
2869       pc = METHOD->code_base() + continuation_bci;
2870       if (log_is_enabled(Info, exceptions)) {
2871         ResourceMark rm(THREAD);
2872         stringStream tempst;
2873         tempst.print("interpreter method <%s>\n"
2874                      " at bci %d, continuing at %d for thread " INTPTR_FORMAT,
2875                      METHOD->print_value_string(),
2876                      (int)(istate->bcp() - METHOD->code_base()),
2877                      (int)continuation_bci, p2i(THREAD));
2878         Exceptions::log_exception(except_oop, tempst);
2879       }
2880       // for AbortVMOnException flag
2881       Exceptions::debug_check_abort(except_oop);
2882 
2883       // Update profiling data.
2884       BI_PROFILE_ALIGN_TO_CURRENT_BCI();
2885       goto run;
2886     }
2887     if (log_is_enabled(Info, exceptions)) {
2888       ResourceMark rm;
2889       stringStream tempst;
2890       tempst.print("interpreter method <%s>\n"
2891              " at bci %d, unwinding for thread " INTPTR_FORMAT,
2892              METHOD->print_value_string(),
2893              (int)(istate->bcp() - METHOD->code_base()),
2894              p2i(THREAD));
2895       Exceptions::log_exception(except_oop, tempst);
2896     }
2897     // for AbortVMOnException flag
2898     Exceptions::debug_check_abort(except_oop);
2899 
2900     // No handler in this activation, unwind and try again
2901     THREAD->set_pending_exception(except_oop(), NULL, 0);
2902     goto handle_return;
2903   }  // handle_exception:
2904 
2905   // Return from an interpreter invocation with the result of the interpretation
2906   // on the top of the Java Stack (or a pending exception)
2907 
2908   handle_Pop_Frame: {
2909 
2910     // We don't really do anything special here except we must be aware
2911     // that we can get here without ever locking the method (if sync).
2912     // Also we skip the notification of the exit.
2913 
2914     istate->set_msg(popping_frame);
2915     // Clear pending so while the pop is in process
2916     // we don't start another one if a call_vm is done.
2917     THREAD->clr_pop_frame_pending();
2918     // Let interpreter (only) see the we're in the process of popping a frame
2919     THREAD->set_pop_frame_in_process();
2920 
2921     goto handle_return;
2922 
2923   } // handle_Pop_Frame
2924 
2925   // ForceEarlyReturn ends a method, and returns to the caller with a return value
2926   // given by the invoker of the early return.
2927   handle_Early_Return: {
2928 
2929     istate->set_msg(early_return);
2930 
2931     // Clear expression stack.
2932     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2933 
2934     JvmtiThreadState *ts = THREAD->jvmti_thread_state();
2935 
2936     // Push the value to be returned.
2937     switch (istate->method()->result_type()) {
2938       case T_BOOLEAN:
2939       case T_SHORT:
2940       case T_BYTE:
2941       case T_CHAR:
2942       case T_INT:
2943         SET_STACK_INT(ts->earlyret_value().i, 0);
2944         MORE_STACK(1);
2945         break;
2946       case T_LONG:
2947         SET_STACK_LONG(ts->earlyret_value().j, 1);
2948         MORE_STACK(2);
2949         break;
2950       case T_FLOAT:
2951         SET_STACK_FLOAT(ts->earlyret_value().f, 0);
2952         MORE_STACK(1);
2953         break;
2954       case T_DOUBLE:
2955         SET_STACK_DOUBLE(ts->earlyret_value().d, 1);
2956         MORE_STACK(2);
2957         break;
2958       case T_ARRAY:
2959       case T_OBJECT:
2960         SET_STACK_OBJECT(ts->earlyret_oop(), 0);
2961         MORE_STACK(1);
2962         break;
2963     }
2964 
2965     ts->clr_earlyret_value();
2966     ts->set_earlyret_oop(NULL);
2967     ts->clr_earlyret_pending();
2968 
2969     // Fall through to handle_return.
2970 
2971   } // handle_Early_Return
2972 
2973   handle_return: {
2974     // A storestore barrier is required to order initialization of
2975     // final fields with publishing the reference to the object that
2976     // holds the field. Without the barrier the value of final fields
2977     // can be observed to change.
2978     OrderAccess::storestore();
2979 
2980     DECACHE_STATE();
2981 
2982     bool suppress_error = istate->msg() == popping_frame || istate->msg() == early_return;
2983     bool suppress_exit_event = THREAD->has_pending_exception() || istate->msg() == popping_frame;
2984     Handle original_exception(THREAD, THREAD->pending_exception());
2985     Handle illegal_state_oop(THREAD, NULL);
2986 
2987     // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
2988     // in any following VM entries from freeing our live handles, but illegal_state_oop
2989     // isn't really allocated yet and so doesn't become live until later and
2990     // in unpredicatable places. Instead we must protect the places where we enter the
2991     // VM. It would be much simpler (and safer) if we could allocate a real handle with
2992     // a NULL oop in it and then overwrite the oop later as needed. This isn't
2993     // unfortunately isn't possible.
2994 
2995     THREAD->clear_pending_exception();
2996 
2997     //
2998     // As far as we are concerned we have returned. If we have a pending exception
2999     // that will be returned as this invocation's result. However if we get any
3000     // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
3001     // will be our final result (i.e. monitor exception trumps a pending exception).
3002     //
3003 
3004     // If we never locked the method (or really passed the point where we would have),
3005     // there is no need to unlock it (or look for other monitors), since that
3006     // could not have happened.
3007 
3008     if (THREAD->do_not_unlock()) {
3009 
3010       // Never locked, reset the flag now because obviously any caller must
3011       // have passed their point of locking for us to have gotten here.
3012 
3013       THREAD->clr_do_not_unlock();
3014     } else {
3015       // At this point we consider that we have returned. We now check that the
3016       // locks were properly block structured. If we find that they were not
3017       // used properly we will return with an illegal monitor exception.
3018       // The exception is checked by the caller not the callee since this
3019       // checking is considered to be part of the invocation and therefore
3020       // in the callers scope (JVM spec 8.13).
3021       //
3022       // Another weird thing to watch for is if the method was locked
3023       // recursively and then not exited properly. This means we must
3024       // examine all the entries in reverse time(and stack) order and
3025       // unlock as we find them. If we find the method monitor before
3026       // we are at the initial entry then we should throw an exception.
3027       // It is not clear the template based interpreter does this
3028       // correctly
3029 
3030       BasicObjectLock* base = istate->monitor_base();
3031       BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
3032       bool method_unlock_needed = METHOD->is_synchronized();
3033       // We know the initial monitor was used for the method don't check that
3034       // slot in the loop
3035       if (method_unlock_needed) base--;
3036 
3037       // Check all the monitors to see they are unlocked. Install exception if found to be locked.
3038       while (end < base) {
3039         oop lockee = end->obj();
3040         if (lockee != NULL) {
3041           BasicLock* lock = end->lock();
3042           markOop header = lock->displaced_header();
3043           end->set_obj(NULL);
3044 
3045           if (!lockee->mark()->has_bias_pattern()) {
3046             // If it isn't recursive we either must swap old header or call the runtime
3047             if (header != NULL) {
3048               markOop old_header = markOopDesc::encode(lock);
3049               if (lockee->cas_set_mark(header, old_header) != old_header) {
3050                 // restore object for the slow case
3051                 end->set_obj(lockee);
3052                 {
3053                   // Prevent any HandleMarkCleaner from freeing our live handles
3054                   HandleMark __hm(THREAD);
3055                   CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
3056                 }
3057               }
3058             }
3059           }
3060           // One error is plenty
3061           if (illegal_state_oop() == NULL && !suppress_error) {
3062             {
3063               // Prevent any HandleMarkCleaner from freeing our live handles
3064               HandleMark __hm(THREAD);
3065               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
3066             }
3067             assert(THREAD->has_pending_exception(), "Lost our exception!");
3068             illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3069             THREAD->clear_pending_exception();
3070           }
3071         }
3072         end++;
3073       }
3074       // Unlock the method if needed
3075       if (method_unlock_needed) {
3076         if (base->obj() == NULL) {
3077           // The method is already unlocked this is not good.
3078           if (illegal_state_oop() == NULL && !suppress_error) {
3079             {
3080               // Prevent any HandleMarkCleaner from freeing our live handles
3081               HandleMark __hm(THREAD);
3082               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
3083             }
3084             assert(THREAD->has_pending_exception(), "Lost our exception!");
3085             illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3086             THREAD->clear_pending_exception();
3087           }
3088         } else {
3089           //
3090           // The initial monitor is always used for the method
3091           // However if that slot is no longer the oop for the method it was unlocked
3092           // and reused by something that wasn't unlocked!
3093           //
3094           // deopt can come in with rcvr dead because c2 knows
3095           // its value is preserved in the monitor. So we can't use locals[0] at all
3096           // and must use first monitor slot.
3097           //
3098           oop rcvr = base->obj();
3099           if (rcvr == NULL) {
3100             if (!suppress_error) {
3101               VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "", note_nullCheck_trap);
3102               illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3103               THREAD->clear_pending_exception();
3104             }
3105           } else if (UseHeavyMonitors) {
3106             {
3107               // Prevent any HandleMarkCleaner from freeing our live handles.
3108               HandleMark __hm(THREAD);
3109               CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
3110             }
3111             if (THREAD->has_pending_exception()) {
3112               if (!suppress_error) illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3113               THREAD->clear_pending_exception();
3114             }
3115           } else {
3116             BasicLock* lock = base->lock();
3117             markOop header = lock->displaced_header();
3118             base->set_obj(NULL);
3119 
3120             if (!rcvr->mark()->has_bias_pattern()) {
3121               base->set_obj(NULL);
3122               // If it isn't recursive we either must swap old header or call the runtime
3123               if (header != NULL) {
3124                 markOop old_header = markOopDesc::encode(lock);
3125                 if (rcvr->cas_set_mark(header, old_header) != old_header) {
3126                   // restore object for the slow case
3127                   base->set_obj(rcvr);
3128                   {
3129                     // Prevent any HandleMarkCleaner from freeing our live handles
3130                     HandleMark __hm(THREAD);
3131                     CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
3132                   }
3133                   if (THREAD->has_pending_exception()) {
3134                     if (!suppress_error) illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3135                     THREAD->clear_pending_exception();
3136                   }
3137                 }
3138               }
3139             }
3140           }
3141         }
3142       }
3143     }
3144     // Clear the do_not_unlock flag now.
3145     THREAD->clr_do_not_unlock();
3146 
3147     //
3148     // Notify jvmti/jvmdi
3149     //
3150     // NOTE: we do not notify a method_exit if we have a pending exception,
3151     // including an exception we generate for unlocking checks.  In the former
3152     // case, JVMDI has already been notified by our call for the exception handler
3153     // and in both cases as far as JVMDI is concerned we have already returned.
3154     // If we notify it again JVMDI will be all confused about how many frames
3155     // are still on the stack (4340444).
3156     //
3157     // NOTE Further! It turns out the the JVMTI spec in fact expects to see
3158     // method_exit events whenever we leave an activation unless it was done
3159     // for popframe. This is nothing like jvmdi. However we are passing the
3160     // tests at the moment (apparently because they are jvmdi based) so rather
3161     // than change this code and possibly fail tests we will leave it alone
3162     // (with this note) in anticipation of changing the vm and the tests
3163     // simultaneously.
3164 
3165 
3166     //
3167     suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
3168 
3169 
3170 
3171 #ifdef VM_JVMTI
3172       if (_jvmti_interp_events) {
3173         // Whenever JVMTI puts a thread in interp_only_mode, method
3174         // entry/exit events are sent for that thread to track stack depth.
3175         if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
3176           {
3177             // Prevent any HandleMarkCleaner from freeing our live handles
3178             HandleMark __hm(THREAD);
3179             CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
3180           }
3181         }
3182       }
3183 #endif /* VM_JVMTI */
3184 
3185     //
3186     // See if we are returning any exception
3187     // A pending exception that was pending prior to a possible popping frame
3188     // overrides the popping frame.
3189     //
3190     assert(!suppress_error || (suppress_error && illegal_state_oop() == NULL), "Error was not suppressed");
3191     if (illegal_state_oop() != NULL || original_exception() != NULL) {
3192       // Inform the frame manager we have no result.
3193       istate->set_msg(throwing_exception);
3194       if (illegal_state_oop() != NULL)
3195         THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
3196       else
3197         THREAD->set_pending_exception(original_exception(), NULL, 0);
3198       UPDATE_PC_AND_RETURN(0);
3199     }
3200 
3201     if (istate->msg() == popping_frame) {
3202       // Make it simpler on the assembly code and set the message for the frame pop.
3203       // returns
3204       if (istate->prev() == NULL) {
3205         // We must be returning to a deoptimized frame (because popframe only happens between
3206         // two interpreted frames). We need to save the current arguments in C heap so that
3207         // the deoptimized frame when it restarts can copy the arguments to its expression
3208         // stack and re-execute the call. We also have to notify deoptimization that this
3209         // has occurred and to pick the preserved args copy them to the deoptimized frame's
3210         // java expression stack. Yuck.
3211         //
3212         THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
3213                                 LOCALS_SLOT(METHOD->size_of_parameters() - 1));
3214         THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
3215       }
3216     } else {
3217       istate->set_msg(return_from_method);
3218     }
3219 
3220     // Normal return
3221     // Advance the pc and return to frame manager
3222     UPDATE_PC_AND_RETURN(1);
3223   } /* handle_return: */
3224 
3225 // This is really a fatal error return
3226 
3227 finish:
3228   DECACHE_TOS();
3229   DECACHE_PC();
3230 
3231   return;
3232 }
3233 
3234 /*
3235  * All the code following this point is only produced once and is not present
3236  * in the JVMTI version of the interpreter
3237 */
3238 
3239 #ifndef VM_JVMTI
3240 
3241 // This constructor should only be used to contruct the object to signal
3242 // interpreter initialization. All other instances should be created by
3243 // the frame manager.
3244 BytecodeInterpreter::BytecodeInterpreter(messages msg) {
3245   if (msg != initialize) ShouldNotReachHere();
3246   _msg = msg;
3247   _self_link = this;
3248   _prev_link = NULL;
3249 }
3250 
3251 // Inline static functions for Java Stack and Local manipulation
3252 
3253 // The implementations are platform dependent. We have to worry about alignment
3254 // issues on some machines which can change on the same platform depending on
3255 // whether it is an LP64 machine also.
3256 address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
3257   return (address) tos[Interpreter::expr_index_at(-offset)];
3258 }
3259 
3260 jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
3261   return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
3262 }
3263 
3264 jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
3265   return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
3266 }
3267 
3268 oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
3269   return cast_to_oop(tos [Interpreter::expr_index_at(-offset)]);
3270 }
3271 
3272 jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
3273   return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
3274 }
3275 
3276 jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
3277   return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
3278 }
3279 
3280 // only used for value types
3281 void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
3282                                                         int offset) {
3283   *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3284 }
3285 
3286 void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
3287                                                        int offset) {
3288   *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3289 }
3290 
3291 void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
3292                                                          int offset) {
3293   *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3294 }
3295 
3296 void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
3297                                                           int offset) {
3298   *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3299 }
3300 
3301 // needs to be platform dep for the 32 bit platforms.
3302 void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
3303                                                           int offset) {
3304   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
3305 }
3306 
3307 void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
3308                                               address addr, int offset) {
3309   (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
3310                         ((VMJavaVal64*)addr)->d);
3311 }
3312 
3313 void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
3314                                                         int offset) {
3315   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3316   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
3317 }
3318 
3319 void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
3320                                             address addr, int offset) {
3321   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3322   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
3323                         ((VMJavaVal64*)addr)->l;
3324 }
3325 
3326 // Locals
3327 
3328 address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
3329   return (address)locals[Interpreter::local_index_at(-offset)];
3330 }
3331 jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
3332   return (jint)locals[Interpreter::local_index_at(-offset)];
3333 }
3334 jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
3335   return (jfloat)locals[Interpreter::local_index_at(-offset)];
3336 }
3337 oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
3338   return cast_to_oop(locals[Interpreter::local_index_at(-offset)]);
3339 }
3340 jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
3341   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
3342 }
3343 jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
3344   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
3345 }
3346 
3347 // Returns the address of locals value.
3348 address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
3349   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3350 }
3351 address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
3352   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3353 }
3354 
3355 // Used for local value or returnAddress
3356 void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
3357                                    address value, int offset) {
3358   *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
3359 }
3360 void BytecodeInterpreter::set_locals_int(intptr_t *locals,
3361                                    jint value, int offset) {
3362   *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
3363 }
3364 void BytecodeInterpreter::set_locals_float(intptr_t *locals,
3365                                    jfloat value, int offset) {
3366   *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
3367 }
3368 void BytecodeInterpreter::set_locals_object(intptr_t *locals,
3369                                    oop value, int offset) {
3370   *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
3371 }
3372 void BytecodeInterpreter::set_locals_double(intptr_t *locals,
3373                                    jdouble value, int offset) {
3374   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
3375 }
3376 void BytecodeInterpreter::set_locals_long(intptr_t *locals,
3377                                    jlong value, int offset) {
3378   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
3379 }
3380 void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
3381                                    address addr, int offset) {
3382   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
3383 }
3384 void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
3385                                    address addr, int offset) {
3386   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
3387 }
3388 
3389 void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
3390                           intptr_t* locals, int locals_offset) {
3391   intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
3392   locals[Interpreter::local_index_at(-locals_offset)] = value;
3393 }
3394 
3395 
3396 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
3397                                    int to_offset) {
3398   tos[Interpreter::expr_index_at(-to_offset)] =
3399                       (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
3400 }
3401 
3402 void BytecodeInterpreter::dup(intptr_t *tos) {
3403   copy_stack_slot(tos, -1, 0);
3404 }
3405 void BytecodeInterpreter::dup2(intptr_t *tos) {
3406   copy_stack_slot(tos, -2, 0);
3407   copy_stack_slot(tos, -1, 1);
3408 }
3409 
3410 void BytecodeInterpreter::dup_x1(intptr_t *tos) {
3411   /* insert top word two down */
3412   copy_stack_slot(tos, -1, 0);
3413   copy_stack_slot(tos, -2, -1);
3414   copy_stack_slot(tos, 0, -2);
3415 }
3416 
3417 void BytecodeInterpreter::dup_x2(intptr_t *tos) {
3418   /* insert top word three down  */
3419   copy_stack_slot(tos, -1, 0);
3420   copy_stack_slot(tos, -2, -1);
3421   copy_stack_slot(tos, -3, -2);
3422   copy_stack_slot(tos, 0, -3);
3423 }
3424 void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
3425   /* insert top 2 slots three down */
3426   copy_stack_slot(tos, -1, 1);
3427   copy_stack_slot(tos, -2, 0);
3428   copy_stack_slot(tos, -3, -1);
3429   copy_stack_slot(tos, 1, -2);
3430   copy_stack_slot(tos, 0, -3);
3431 }
3432 void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
3433   /* insert top 2 slots four down */
3434   copy_stack_slot(tos, -1, 1);
3435   copy_stack_slot(tos, -2, 0);
3436   copy_stack_slot(tos, -3, -1);
3437   copy_stack_slot(tos, -4, -2);
3438   copy_stack_slot(tos, 1, -3);
3439   copy_stack_slot(tos, 0, -4);
3440 }
3441 
3442 
3443 void BytecodeInterpreter::swap(intptr_t *tos) {
3444   // swap top two elements
3445   intptr_t val = tos[Interpreter::expr_index_at(1)];
3446   // Copy -2 entry to -1
3447   copy_stack_slot(tos, -2, -1);
3448   // Store saved -1 entry into -2
3449   tos[Interpreter::expr_index_at(2)] = val;
3450 }
3451 // --------------------------------------------------------------------------------
3452 // Non-product code
3453 #ifndef PRODUCT
3454 
3455 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
3456   switch (msg) {
3457      case BytecodeInterpreter::no_request:  return("no_request");
3458      case BytecodeInterpreter::initialize:  return("initialize");
3459      // status message to C++ interpreter
3460      case BytecodeInterpreter::method_entry:  return("method_entry");
3461      case BytecodeInterpreter::method_resume:  return("method_resume");
3462      case BytecodeInterpreter::got_monitors:  return("got_monitors");
3463      case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
3464      // requests to frame manager from C++ interpreter
3465      case BytecodeInterpreter::call_method:  return("call_method");
3466      case BytecodeInterpreter::return_from_method:  return("return_from_method");
3467      case BytecodeInterpreter::more_monitors:  return("more_monitors");
3468      case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
3469      case BytecodeInterpreter::popping_frame:  return("popping_frame");
3470      case BytecodeInterpreter::do_osr:  return("do_osr");
3471      // deopt
3472      case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
3473      case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
3474      default: return("BAD MSG");
3475   }
3476 }
3477 void
3478 BytecodeInterpreter::print() {
3479   tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
3480   tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
3481   tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
3482   tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
3483   {
3484     ResourceMark rm;
3485     char *method_name = _method->name_and_sig_as_C_string();
3486     tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
3487   }
3488   tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
3489   tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
3490   tty->print_cr("msg: %s", C_msg(this->_msg));
3491   tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
3492   tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
3493   tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
3494   tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
3495   tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
3496   tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
3497   tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) p2i(this->_oop_temp));
3498   tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
3499   tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
3500   tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
3501 #ifdef SPARC
3502   tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
3503   tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
3504   tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
3505   tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
3506 #endif
3507 #if !defined(ZERO) && defined(PPC)
3508   tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
3509 #endif // !ZERO
3510   tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
3511 }
3512 
3513 extern "C" {
3514   void PI(uintptr_t arg) {
3515     ((BytecodeInterpreter*)arg)->print();
3516   }
3517 }
3518 #endif // PRODUCT
3519 
3520 #endif // JVMTI
3521 #endif // CC_INTERP