1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/block.hpp"
  39 #include "opto/c2compiler.hpp"
  40 #include "opto/callGenerator.hpp"
  41 #include "opto/callnode.hpp"
  42 #include "opto/castnode.hpp"
  43 #include "opto/cfgnode.hpp"
  44 #include "opto/chaitin.hpp"
  45 #include "opto/compile.hpp"
  46 #include "opto/connode.hpp"
  47 #include "opto/convertnode.hpp"
  48 #include "opto/divnode.hpp"
  49 #include "opto/escape.hpp"
  50 #include "opto/idealGraphPrinter.hpp"
  51 #include "opto/loopnode.hpp"
  52 #include "opto/machnode.hpp"
  53 #include "opto/macro.hpp"
  54 #include "opto/matcher.hpp"
  55 #include "opto/mathexactnode.hpp"
  56 #include "opto/memnode.hpp"
  57 #include "opto/mulnode.hpp"
  58 #include "opto/narrowptrnode.hpp"
  59 #include "opto/node.hpp"
  60 #include "opto/opcodes.hpp"
  61 #include "opto/output.hpp"
  62 #include "opto/parse.hpp"
  63 #include "opto/phaseX.hpp"
  64 #include "opto/rootnode.hpp"
  65 #include "opto/runtime.hpp"
  66 #include "opto/stringopts.hpp"
  67 #include "opto/type.hpp"
  68 #include "opto/valuetypenode.hpp"
  69 #include "opto/vectornode.hpp"
  70 #include "runtime/arguments.hpp"
  71 #include "runtime/sharedRuntime.hpp"
  72 #include "runtime/signature.hpp"
  73 #include "runtime/stubRoutines.hpp"
  74 #include "runtime/timer.hpp"
  75 #include "utilities/align.hpp"
  76 #include "utilities/copy.hpp"
  77 
  78 
  79 // -------------------- Compile::mach_constant_base_node -----------------------
  80 // Constant table base node singleton.
  81 MachConstantBaseNode* Compile::mach_constant_base_node() {
  82   if (_mach_constant_base_node == NULL) {
  83     _mach_constant_base_node = new MachConstantBaseNode();
  84     _mach_constant_base_node->add_req(C->root());
  85   }
  86   return _mach_constant_base_node;
  87 }
  88 
  89 
  90 /// Support for intrinsics.
  91 
  92 // Return the index at which m must be inserted (or already exists).
  93 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  94 class IntrinsicDescPair {
  95  private:
  96   ciMethod* _m;
  97   bool _is_virtual;
  98  public:
  99   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
 100   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
 101     ciMethod* m= elt->method();
 102     ciMethod* key_m = key->_m;
 103     if (key_m < m)      return -1;
 104     else if (key_m > m) return 1;
 105     else {
 106       bool is_virtual = elt->is_virtual();
 107       bool key_virtual = key->_is_virtual;
 108       if (key_virtual < is_virtual)      return -1;
 109       else if (key_virtual > is_virtual) return 1;
 110       else                               return 0;
 111     }
 112   }
 113 };
 114 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 115 #ifdef ASSERT
 116   for (int i = 1; i < _intrinsics->length(); i++) {
 117     CallGenerator* cg1 = _intrinsics->at(i-1);
 118     CallGenerator* cg2 = _intrinsics->at(i);
 119     assert(cg1->method() != cg2->method()
 120            ? cg1->method()     < cg2->method()
 121            : cg1->is_virtual() < cg2->is_virtual(),
 122            "compiler intrinsics list must stay sorted");
 123   }
 124 #endif
 125   IntrinsicDescPair pair(m, is_virtual);
 126   return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 127 }
 128 
 129 void Compile::register_intrinsic(CallGenerator* cg) {
 130   if (_intrinsics == NULL) {
 131     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 132   }
 133   int len = _intrinsics->length();
 134   bool found = false;
 135   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 136   assert(!found, "registering twice");
 137   _intrinsics->insert_before(index, cg);
 138   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 139 }
 140 
 141 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 142   assert(m->is_loaded(), "don't try this on unloaded methods");
 143   if (_intrinsics != NULL) {
 144     bool found = false;
 145     int index = intrinsic_insertion_index(m, is_virtual, found);
 146      if (found) {
 147       return _intrinsics->at(index);
 148     }
 149   }
 150   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 151   if (m->intrinsic_id() != vmIntrinsics::_none &&
 152       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 153     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 154     if (cg != NULL) {
 155       // Save it for next time:
 156       register_intrinsic(cg);
 157       return cg;
 158     } else {
 159       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 160     }
 161   }
 162   return NULL;
 163 }
 164 
 165 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 166 // in library_call.cpp.
 167 
 168 
 169 #ifndef PRODUCT
 170 // statistics gathering...
 171 
 172 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 173 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 174 
 175 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 176   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 177   int oflags = _intrinsic_hist_flags[id];
 178   assert(flags != 0, "what happened?");
 179   if (is_virtual) {
 180     flags |= _intrinsic_virtual;
 181   }
 182   bool changed = (flags != oflags);
 183   if ((flags & _intrinsic_worked) != 0) {
 184     juint count = (_intrinsic_hist_count[id] += 1);
 185     if (count == 1) {
 186       changed = true;           // first time
 187     }
 188     // increment the overall count also:
 189     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 190   }
 191   if (changed) {
 192     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 193       // Something changed about the intrinsic's virtuality.
 194       if ((flags & _intrinsic_virtual) != 0) {
 195         // This is the first use of this intrinsic as a virtual call.
 196         if (oflags != 0) {
 197           // We already saw it as a non-virtual, so note both cases.
 198           flags |= _intrinsic_both;
 199         }
 200       } else if ((oflags & _intrinsic_both) == 0) {
 201         // This is the first use of this intrinsic as a non-virtual
 202         flags |= _intrinsic_both;
 203       }
 204     }
 205     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 206   }
 207   // update the overall flags also:
 208   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 209   return changed;
 210 }
 211 
 212 static char* format_flags(int flags, char* buf) {
 213   buf[0] = 0;
 214   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 215   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 216   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 217   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 218   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 219   if (buf[0] == 0)  strcat(buf, ",");
 220   assert(buf[0] == ',', "must be");
 221   return &buf[1];
 222 }
 223 
 224 void Compile::print_intrinsic_statistics() {
 225   char flagsbuf[100];
 226   ttyLocker ttyl;
 227   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 228   tty->print_cr("Compiler intrinsic usage:");
 229   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 230   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 231   #define PRINT_STAT_LINE(name, c, f) \
 232     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 233   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 234     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 235     int   flags = _intrinsic_hist_flags[id];
 236     juint count = _intrinsic_hist_count[id];
 237     if ((flags | count) != 0) {
 238       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 239     }
 240   }
 241   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 242   if (xtty != NULL)  xtty->tail("statistics");
 243 }
 244 
 245 void Compile::print_statistics() {
 246   { ttyLocker ttyl;
 247     if (xtty != NULL)  xtty->head("statistics type='opto'");
 248     Parse::print_statistics();
 249     PhaseCCP::print_statistics();
 250     PhaseRegAlloc::print_statistics();
 251     Scheduling::print_statistics();
 252     PhasePeephole::print_statistics();
 253     PhaseIdealLoop::print_statistics();
 254     if (xtty != NULL)  xtty->tail("statistics");
 255   }
 256   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 257     // put this under its own <statistics> element.
 258     print_intrinsic_statistics();
 259   }
 260 }
 261 #endif //PRODUCT
 262 
 263 // Support for bundling info
 264 Bundle* Compile::node_bundling(const Node *n) {
 265   assert(valid_bundle_info(n), "oob");
 266   return &_node_bundling_base[n->_idx];
 267 }
 268 
 269 bool Compile::valid_bundle_info(const Node *n) {
 270   return (_node_bundling_limit > n->_idx);
 271 }
 272 
 273 
 274 void Compile::gvn_replace_by(Node* n, Node* nn) {
 275   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 276     Node* use = n->last_out(i);
 277     bool is_in_table = initial_gvn()->hash_delete(use);
 278     uint uses_found = 0;
 279     for (uint j = 0; j < use->len(); j++) {
 280       if (use->in(j) == n) {
 281         if (j < use->req())
 282           use->set_req(j, nn);
 283         else
 284           use->set_prec(j, nn);
 285         uses_found++;
 286       }
 287     }
 288     if (is_in_table) {
 289       // reinsert into table
 290       initial_gvn()->hash_find_insert(use);
 291     }
 292     record_for_igvn(use);
 293     i -= uses_found;    // we deleted 1 or more copies of this edge
 294   }
 295 }
 296 
 297 
 298 static inline bool not_a_node(const Node* n) {
 299   if (n == NULL)                   return true;
 300   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 301   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 302   return false;
 303 }
 304 
 305 // Identify all nodes that are reachable from below, useful.
 306 // Use breadth-first pass that records state in a Unique_Node_List,
 307 // recursive traversal is slower.
 308 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 309   int estimated_worklist_size = live_nodes();
 310   useful.map( estimated_worklist_size, NULL );  // preallocate space
 311 
 312   // Initialize worklist
 313   if (root() != NULL)     { useful.push(root()); }
 314   // If 'top' is cached, declare it useful to preserve cached node
 315   if( cached_top_node() ) { useful.push(cached_top_node()); }
 316 
 317   // Push all useful nodes onto the list, breadthfirst
 318   for( uint next = 0; next < useful.size(); ++next ) {
 319     assert( next < unique(), "Unique useful nodes < total nodes");
 320     Node *n  = useful.at(next);
 321     uint max = n->len();
 322     for( uint i = 0; i < max; ++i ) {
 323       Node *m = n->in(i);
 324       if (not_a_node(m))  continue;
 325       useful.push(m);
 326     }
 327   }
 328 }
 329 
 330 // Update dead_node_list with any missing dead nodes using useful
 331 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 332 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 333   uint max_idx = unique();
 334   VectorSet& useful_node_set = useful.member_set();
 335 
 336   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 337     // If node with index node_idx is not in useful set,
 338     // mark it as dead in dead node list.
 339     if (! useful_node_set.test(node_idx) ) {
 340       record_dead_node(node_idx);
 341     }
 342   }
 343 }
 344 
 345 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 346   int shift = 0;
 347   for (int i = 0; i < inlines->length(); i++) {
 348     CallGenerator* cg = inlines->at(i);
 349     CallNode* call = cg->call_node();
 350     if (shift > 0) {
 351       inlines->at_put(i-shift, cg);
 352     }
 353     if (!useful.member(call)) {
 354       shift++;
 355     }
 356   }
 357   inlines->trunc_to(inlines->length()-shift);
 358 }
 359 
 360 // Disconnect all useless nodes by disconnecting those at the boundary.
 361 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 362   uint next = 0;
 363   while (next < useful.size()) {
 364     Node *n = useful.at(next++);
 365     if (n->is_SafePoint()) {
 366       // We're done with a parsing phase. Replaced nodes are not valid
 367       // beyond that point.
 368       n->as_SafePoint()->delete_replaced_nodes();
 369     }
 370     // Use raw traversal of out edges since this code removes out edges
 371     int max = n->outcnt();
 372     for (int j = 0; j < max; ++j) {
 373       Node* child = n->raw_out(j);
 374       if (! useful.member(child)) {
 375         assert(!child->is_top() || child != top(),
 376                "If top is cached in Compile object it is in useful list");
 377         // Only need to remove this out-edge to the useless node
 378         n->raw_del_out(j);
 379         --j;
 380         --max;
 381       }
 382     }
 383     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 384       record_for_igvn(n->unique_out());
 385     }
 386   }
 387   // Remove useless macro and predicate opaq nodes
 388   for (int i = C->macro_count()-1; i >= 0; i--) {
 389     Node* n = C->macro_node(i);
 390     if (!useful.member(n)) {
 391       remove_macro_node(n);
 392     }
 393   }
 394   // Remove useless CastII nodes with range check dependency
 395   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
 396     Node* cast = range_check_cast_node(i);
 397     if (!useful.member(cast)) {
 398       remove_range_check_cast(cast);
 399     }
 400   }
 401   // Remove useless expensive node
 402   for (int i = C->expensive_count()-1; i >= 0; i--) {
 403     Node* n = C->expensive_node(i);
 404     if (!useful.member(n)) {
 405       remove_expensive_node(n);
 406     }
 407   }
 408   // Remove useless value type nodes
 409   if (_value_type_nodes != NULL) {
 410     _value_type_nodes->remove_useless_nodes(useful.member_set());
 411   }
 412   // clean up the late inline lists
 413   remove_useless_late_inlines(&_string_late_inlines, useful);
 414   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 415   remove_useless_late_inlines(&_late_inlines, useful);
 416   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 417 }
 418 
 419 //------------------------------frame_size_in_words-----------------------------
 420 // frame_slots in units of words
 421 int Compile::frame_size_in_words() const {
 422   // shift is 0 in LP32 and 1 in LP64
 423   const int shift = (LogBytesPerWord - LogBytesPerInt);
 424   int words = _frame_slots >> shift;
 425   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 426   return words;
 427 }
 428 
 429 // To bang the stack of this compiled method we use the stack size
 430 // that the interpreter would need in case of a deoptimization. This
 431 // removes the need to bang the stack in the deoptimization blob which
 432 // in turn simplifies stack overflow handling.
 433 int Compile::bang_size_in_bytes() const {
 434   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
 435 }
 436 
 437 // ============================================================================
 438 //------------------------------CompileWrapper---------------------------------
 439 class CompileWrapper : public StackObj {
 440   Compile *const _compile;
 441  public:
 442   CompileWrapper(Compile* compile);
 443 
 444   ~CompileWrapper();
 445 };
 446 
 447 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 448   // the Compile* pointer is stored in the current ciEnv:
 449   ciEnv* env = compile->env();
 450   assert(env == ciEnv::current(), "must already be a ciEnv active");
 451   assert(env->compiler_data() == NULL, "compile already active?");
 452   env->set_compiler_data(compile);
 453   assert(compile == Compile::current(), "sanity");
 454 
 455   compile->set_type_dict(NULL);
 456   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 457   compile->clone_map().set_clone_idx(0);
 458   compile->set_type_hwm(NULL);
 459   compile->set_type_last_size(0);
 460   compile->set_last_tf(NULL, NULL);
 461   compile->set_indexSet_arena(NULL);
 462   compile->set_indexSet_free_block_list(NULL);
 463   compile->init_type_arena();
 464   Type::Initialize(compile);
 465   _compile->set_scratch_buffer_blob(NULL);
 466   _compile->begin_method();
 467   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 468 }
 469 CompileWrapper::~CompileWrapper() {
 470   _compile->end_method();
 471   if (_compile->scratch_buffer_blob() != NULL)
 472     BufferBlob::free(_compile->scratch_buffer_blob());
 473   _compile->env()->set_compiler_data(NULL);
 474 }
 475 
 476 
 477 //----------------------------print_compile_messages---------------------------
 478 void Compile::print_compile_messages() {
 479 #ifndef PRODUCT
 480   // Check if recompiling
 481   if (_subsume_loads == false && PrintOpto) {
 482     // Recompiling without allowing machine instructions to subsume loads
 483     tty->print_cr("*********************************************************");
 484     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 485     tty->print_cr("*********************************************************");
 486   }
 487   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 488     // Recompiling without escape analysis
 489     tty->print_cr("*********************************************************");
 490     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 491     tty->print_cr("*********************************************************");
 492   }
 493   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 494     // Recompiling without boxing elimination
 495     tty->print_cr("*********************************************************");
 496     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 497     tty->print_cr("*********************************************************");
 498   }
 499   if (C->directive()->BreakAtCompileOption) {
 500     // Open the debugger when compiling this method.
 501     tty->print("### Breaking when compiling: ");
 502     method()->print_short_name();
 503     tty->cr();
 504     BREAKPOINT;
 505   }
 506 
 507   if( PrintOpto ) {
 508     if (is_osr_compilation()) {
 509       tty->print("[OSR]%3d", _compile_id);
 510     } else {
 511       tty->print("%3d", _compile_id);
 512     }
 513   }
 514 #endif
 515 }
 516 
 517 
 518 //-----------------------init_scratch_buffer_blob------------------------------
 519 // Construct a temporary BufferBlob and cache it for this compile.
 520 void Compile::init_scratch_buffer_blob(int const_size) {
 521   // If there is already a scratch buffer blob allocated and the
 522   // constant section is big enough, use it.  Otherwise free the
 523   // current and allocate a new one.
 524   BufferBlob* blob = scratch_buffer_blob();
 525   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 526     // Use the current blob.
 527   } else {
 528     if (blob != NULL) {
 529       BufferBlob::free(blob);
 530     }
 531 
 532     ResourceMark rm;
 533     _scratch_const_size = const_size;
 534     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 535     blob = BufferBlob::create("Compile::scratch_buffer", size);
 536     // Record the buffer blob for next time.
 537     set_scratch_buffer_blob(blob);
 538     // Have we run out of code space?
 539     if (scratch_buffer_blob() == NULL) {
 540       // Let CompilerBroker disable further compilations.
 541       record_failure("Not enough space for scratch buffer in CodeCache");
 542       return;
 543     }
 544   }
 545 
 546   // Initialize the relocation buffers
 547   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 548   set_scratch_locs_memory(locs_buf);
 549 }
 550 
 551 
 552 //-----------------------scratch_emit_size-------------------------------------
 553 // Helper function that computes size by emitting code
 554 uint Compile::scratch_emit_size(const Node* n) {
 555   // Start scratch_emit_size section.
 556   set_in_scratch_emit_size(true);
 557 
 558   // Emit into a trash buffer and count bytes emitted.
 559   // This is a pretty expensive way to compute a size,
 560   // but it works well enough if seldom used.
 561   // All common fixed-size instructions are given a size
 562   // method by the AD file.
 563   // Note that the scratch buffer blob and locs memory are
 564   // allocated at the beginning of the compile task, and
 565   // may be shared by several calls to scratch_emit_size.
 566   // The allocation of the scratch buffer blob is particularly
 567   // expensive, since it has to grab the code cache lock.
 568   BufferBlob* blob = this->scratch_buffer_blob();
 569   assert(blob != NULL, "Initialize BufferBlob at start");
 570   assert(blob->size() > MAX_inst_size, "sanity");
 571   relocInfo* locs_buf = scratch_locs_memory();
 572   address blob_begin = blob->content_begin();
 573   address blob_end   = (address)locs_buf;
 574   assert(blob->contains(blob_end), "sanity");
 575   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 576   buf.initialize_consts_size(_scratch_const_size);
 577   buf.initialize_stubs_size(MAX_stubs_size);
 578   assert(locs_buf != NULL, "sanity");
 579   int lsize = MAX_locs_size / 3;
 580   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 581   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 582   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 583   // Mark as scratch buffer.
 584   buf.consts()->set_scratch_emit();
 585   buf.insts()->set_scratch_emit();
 586   buf.stubs()->set_scratch_emit();
 587 
 588   // Do the emission.
 589 
 590   Label fakeL; // Fake label for branch instructions.
 591   Label*   saveL = NULL;
 592   uint save_bnum = 0;
 593   bool is_branch = n->is_MachBranch();
 594   if (is_branch) {
 595     MacroAssembler masm(&buf);
 596     masm.bind(fakeL);
 597     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 598     n->as_MachBranch()->label_set(&fakeL, 0);
 599   }
 600   n->emit(buf, this->regalloc());
 601 
 602   // Emitting into the scratch buffer should not fail
 603   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
 604 
 605   if (is_branch) // Restore label.
 606     n->as_MachBranch()->label_set(saveL, save_bnum);
 607 
 608   // End scratch_emit_size section.
 609   set_in_scratch_emit_size(false);
 610 
 611   return buf.insts_size();
 612 }
 613 
 614 
 615 // ============================================================================
 616 //------------------------------Compile standard-------------------------------
 617 debug_only( int Compile::_debug_idx = 100000; )
 618 
 619 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 620 // the continuation bci for on stack replacement.
 621 
 622 
 623 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 624                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive)
 625                 : Phase(Compiler),
 626                   _env(ci_env),
 627                   _directive(directive),
 628                   _log(ci_env->log()),
 629                   _compile_id(ci_env->compile_id()),
 630                   _save_argument_registers(false),
 631                   _stub_name(NULL),
 632                   _stub_function(NULL),
 633                   _stub_entry_point(NULL),
 634                   _method(target),
 635                   _entry_bci(osr_bci),
 636                   _initial_gvn(NULL),
 637                   _for_igvn(NULL),
 638                   _warm_calls(NULL),
 639                   _subsume_loads(subsume_loads),
 640                   _do_escape_analysis(do_escape_analysis),
 641                   _eliminate_boxing(eliminate_boxing),
 642                   _failure_reason(NULL),
 643                   _code_buffer("Compile::Fill_buffer"),
 644                   _orig_pc_slot(0),
 645                   _orig_pc_slot_offset_in_bytes(0),
 646                   _has_method_handle_invokes(false),
 647                   _mach_constant_base_node(NULL),
 648                   _node_bundling_limit(0),
 649                   _node_bundling_base(NULL),
 650                   _java_calls(0),
 651                   _inner_loops(0),
 652                   _scratch_const_size(-1),
 653                   _in_scratch_emit_size(false),
 654                   _dead_node_list(comp_arena()),
 655                   _dead_node_count(0),
 656 #ifndef PRODUCT
 657                   _trace_opto_output(directive->TraceOptoOutputOption),
 658                   _in_dump_cnt(0),
 659                   _printer(IdealGraphPrinter::printer()),
 660 #endif
 661                   _congraph(NULL),
 662                   _comp_arena(mtCompiler),
 663                   _node_arena(mtCompiler),
 664                   _old_arena(mtCompiler),
 665                   _Compile_types(mtCompiler),
 666                   _replay_inline_data(NULL),
 667                   _late_inlines(comp_arena(), 2, 0, NULL),
 668                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 669                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 670                   _late_inlines_pos(0),
 671                   _number_of_mh_late_inlines(0),
 672                   _inlining_progress(false),
 673                   _inlining_incrementally(false),
 674                   _print_inlining_list(NULL),
 675                   _print_inlining_stream(NULL),
 676                   _print_inlining_idx(0),
 677                   _print_inlining_output(NULL),
 678                   _interpreter_frame_size(0),
 679                   _max_node_limit(MaxNodeLimit),
 680                   _has_reserved_stack_access(target->has_reserved_stack_access()) {
 681   C = this;
 682 #ifndef PRODUCT
 683   if (_printer != NULL) {
 684     _printer->set_compile(this);
 685   }
 686 #endif
 687   CompileWrapper cw(this);
 688 
 689   if (CITimeVerbose) {
 690     tty->print(" ");
 691     target->holder()->name()->print();
 692     tty->print(".");
 693     target->print_short_name();
 694     tty->print("  ");
 695   }
 696   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 697   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 698 
 699 #ifndef PRODUCT
 700   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 701   if (!print_opto_assembly) {
 702     bool print_assembly = directive->PrintAssemblyOption;
 703     if (print_assembly && !Disassembler::can_decode()) {
 704       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 705       print_opto_assembly = true;
 706     }
 707   }
 708   set_print_assembly(print_opto_assembly);
 709   set_parsed_irreducible_loop(false);
 710 
 711   if (directive->ReplayInlineOption) {
 712     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 713   }
 714 #endif
 715   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 716   set_print_intrinsics(directive->PrintIntrinsicsOption);
 717   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 718 
 719   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 720     // Make sure the method being compiled gets its own MDO,
 721     // so we can at least track the decompile_count().
 722     // Need MDO to record RTM code generation state.
 723     method()->ensure_method_data();
 724   }
 725 
 726   Init(::AliasLevel);
 727 
 728 
 729   print_compile_messages();
 730 
 731   _ilt = InlineTree::build_inline_tree_root();
 732 
 733   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 734   assert(num_alias_types() >= AliasIdxRaw, "");
 735 
 736 #define MINIMUM_NODE_HASH  1023
 737   // Node list that Iterative GVN will start with
 738   Unique_Node_List for_igvn(comp_arena());
 739   set_for_igvn(&for_igvn);
 740 
 741   // GVN that will be run immediately on new nodes
 742   uint estimated_size = method()->code_size()*4+64;
 743   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 744   PhaseGVN gvn(node_arena(), estimated_size);
 745   set_initial_gvn(&gvn);
 746 
 747   print_inlining_init();
 748   { // Scope for timing the parser
 749     TracePhase tp("parse", &timers[_t_parser]);
 750 
 751     // Put top into the hash table ASAP.
 752     initial_gvn()->transform_no_reclaim(top());
 753 
 754     // Set up tf(), start(), and find a CallGenerator.
 755     CallGenerator* cg = NULL;
 756     if (is_osr_compilation()) {
 757       const TypeTuple *domain = StartOSRNode::osr_domain();
 758       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 759       init_tf(TypeFunc::make(domain, range));
 760       StartNode* s = new StartOSRNode(root(), domain);
 761       initial_gvn()->set_type_bottom(s);
 762       init_start(s);
 763       cg = CallGenerator::for_osr(method(), entry_bci());
 764     } else {
 765       // Normal case.
 766       init_tf(TypeFunc::make(method()));
 767       StartNode* s = new StartNode(root(), tf()->domain_cc());
 768       initial_gvn()->set_type_bottom(s);
 769       init_start(s);
 770       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 771         // With java.lang.ref.reference.get() we must go through the
 772         // intrinsic when G1 is enabled - even when get() is the root
 773         // method of the compile - so that, if necessary, the value in
 774         // the referent field of the reference object gets recorded by
 775         // the pre-barrier code.
 776         // Specifically, if G1 is enabled, the value in the referent
 777         // field is recorded by the G1 SATB pre barrier. This will
 778         // result in the referent being marked live and the reference
 779         // object removed from the list of discovered references during
 780         // reference processing.
 781         cg = find_intrinsic(method(), false);
 782       }
 783       if (cg == NULL) {
 784         float past_uses = method()->interpreter_invocation_count();
 785         float expected_uses = past_uses;
 786         cg = CallGenerator::for_inline(method(), expected_uses);
 787       }
 788     }
 789     if (failing())  return;
 790     if (cg == NULL) {
 791       record_method_not_compilable("cannot parse method");
 792       return;
 793     }
 794     JVMState* jvms = build_start_state(start(), tf());
 795     if ((jvms = cg->generate(jvms)) == NULL) {
 796       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 797         record_method_not_compilable("method parse failed");
 798       }
 799       return;
 800     }
 801     GraphKit kit(jvms);
 802 
 803     if (!kit.stopped()) {
 804       // Accept return values, and transfer control we know not where.
 805       // This is done by a special, unique ReturnNode bound to root.
 806       return_values(kit.jvms());
 807     }
 808 
 809     if (kit.has_exceptions()) {
 810       // Any exceptions that escape from this call must be rethrown
 811       // to whatever caller is dynamically above us on the stack.
 812       // This is done by a special, unique RethrowNode bound to root.
 813       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 814     }
 815 
 816     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 817 
 818     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 819       inline_string_calls(true);
 820     }
 821 
 822     if (failing())  return;
 823 
 824     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 825 
 826     // Remove clutter produced by parsing.
 827     if (!failing()) {
 828       ResourceMark rm;
 829       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 830     }
 831   }
 832 
 833   // Note:  Large methods are capped off in do_one_bytecode().
 834   if (failing())  return;
 835 
 836   // After parsing, node notes are no longer automagic.
 837   // They must be propagated by register_new_node_with_optimizer(),
 838   // clone(), or the like.
 839   set_default_node_notes(NULL);
 840 
 841   for (;;) {
 842     int successes = Inline_Warm();
 843     if (failing())  return;
 844     if (successes == 0)  break;
 845   }
 846 
 847   // Drain the list.
 848   Finish_Warm();
 849 #ifndef PRODUCT
 850   if (_printer && _printer->should_print(1)) {
 851     _printer->print_inlining();
 852   }
 853 #endif
 854 
 855   if (failing())  return;
 856   NOT_PRODUCT( verify_graph_edges(); )
 857 
 858   // Now optimize
 859   Optimize();
 860   if (failing())  return;
 861   NOT_PRODUCT( verify_graph_edges(); )
 862 
 863 #ifndef PRODUCT
 864   if (PrintIdeal) {
 865     ttyLocker ttyl;  // keep the following output all in one block
 866     // This output goes directly to the tty, not the compiler log.
 867     // To enable tools to match it up with the compilation activity,
 868     // be sure to tag this tty output with the compile ID.
 869     if (xtty != NULL) {
 870       xtty->head("ideal compile_id='%d'%s", compile_id(),
 871                  is_osr_compilation()    ? " compile_kind='osr'" :
 872                  "");
 873     }
 874     root()->dump(9999);
 875     if (xtty != NULL) {
 876       xtty->tail("ideal");
 877     }
 878   }
 879 #endif
 880 
 881   NOT_PRODUCT( verify_barriers(); )
 882 
 883   // Dump compilation data to replay it.
 884   if (directive->DumpReplayOption) {
 885     env()->dump_replay_data(_compile_id);
 886   }
 887   if (directive->DumpInlineOption && (ilt() != NULL)) {
 888     env()->dump_inline_data(_compile_id);
 889   }
 890 
 891   // Now that we know the size of all the monitors we can add a fixed slot
 892   // for the original deopt pc.
 893 
 894   _orig_pc_slot =  fixed_slots();
 895   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 896   set_fixed_slots(next_slot);
 897 
 898   // Compute when to use implicit null checks. Used by matching trap based
 899   // nodes and NullCheck optimization.
 900   set_allowed_deopt_reasons();
 901 
 902   // Now generate code
 903   Code_Gen();
 904   if (failing())  return;
 905 
 906   // Check if we want to skip execution of all compiled code.
 907   {
 908 #ifndef PRODUCT
 909     if (OptoNoExecute) {
 910       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 911       return;
 912     }
 913 #endif
 914     TracePhase tp("install_code", &timers[_t_registerMethod]);
 915 
 916     if (is_osr_compilation()) {
 917       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 918       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 919     } else {
 920       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 921       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 922     }
 923 
 924     env()->register_method(_method, _entry_bci,
 925                            &_code_offsets,
 926                            _orig_pc_slot_offset_in_bytes,
 927                            code_buffer(),
 928                            frame_size_in_words(), _oop_map_set,
 929                            &_handler_table, &_inc_table,
 930                            compiler,
 931                            has_unsafe_access(),
 932                            SharedRuntime::is_wide_vector(max_vector_size()),
 933                            rtm_state()
 934                            );
 935 
 936     if (log() != NULL) // Print code cache state into compiler log
 937       log()->code_cache_state();
 938   }
 939 }
 940 
 941 //------------------------------Compile----------------------------------------
 942 // Compile a runtime stub
 943 Compile::Compile( ciEnv* ci_env,
 944                   TypeFunc_generator generator,
 945                   address stub_function,
 946                   const char *stub_name,
 947                   int is_fancy_jump,
 948                   bool pass_tls,
 949                   bool save_arg_registers,
 950                   bool return_pc,
 951                   DirectiveSet* directive)
 952   : Phase(Compiler),
 953     _env(ci_env),
 954     _directive(directive),
 955     _log(ci_env->log()),
 956     _compile_id(0),
 957     _save_argument_registers(save_arg_registers),
 958     _method(NULL),
 959     _stub_name(stub_name),
 960     _stub_function(stub_function),
 961     _stub_entry_point(NULL),
 962     _entry_bci(InvocationEntryBci),
 963     _initial_gvn(NULL),
 964     _for_igvn(NULL),
 965     _warm_calls(NULL),
 966     _orig_pc_slot(0),
 967     _orig_pc_slot_offset_in_bytes(0),
 968     _subsume_loads(true),
 969     _do_escape_analysis(false),
 970     _eliminate_boxing(false),
 971     _failure_reason(NULL),
 972     _code_buffer("Compile::Fill_buffer"),
 973     _has_method_handle_invokes(false),
 974     _mach_constant_base_node(NULL),
 975     _node_bundling_limit(0),
 976     _node_bundling_base(NULL),
 977     _java_calls(0),
 978     _inner_loops(0),
 979 #ifndef PRODUCT
 980     _trace_opto_output(directive->TraceOptoOutputOption),
 981     _in_dump_cnt(0),
 982     _printer(NULL),
 983 #endif
 984     _comp_arena(mtCompiler),
 985     _node_arena(mtCompiler),
 986     _old_arena(mtCompiler),
 987     _Compile_types(mtCompiler),
 988     _dead_node_list(comp_arena()),
 989     _dead_node_count(0),
 990     _congraph(NULL),
 991     _replay_inline_data(NULL),
 992     _number_of_mh_late_inlines(0),
 993     _inlining_progress(false),
 994     _inlining_incrementally(false),
 995     _print_inlining_list(NULL),
 996     _print_inlining_stream(NULL),
 997     _print_inlining_idx(0),
 998     _print_inlining_output(NULL),
 999     _allowed_reasons(0),
1000     _interpreter_frame_size(0),
1001     _max_node_limit(MaxNodeLimit),
1002     _has_reserved_stack_access(false) {
1003   C = this;
1004 
1005   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
1006   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
1007 
1008 #ifndef PRODUCT
1009   set_print_assembly(PrintFrameConverterAssembly);
1010   set_parsed_irreducible_loop(false);
1011 #endif
1012   set_has_irreducible_loop(false); // no loops
1013 
1014   CompileWrapper cw(this);
1015   Init(/*AliasLevel=*/ 0);
1016   init_tf((*generator)());
1017 
1018   {
1019     // The following is a dummy for the sake of GraphKit::gen_stub
1020     Unique_Node_List for_igvn(comp_arena());
1021     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1022     PhaseGVN gvn(Thread::current()->resource_area(),255);
1023     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1024     gvn.transform_no_reclaim(top());
1025 
1026     GraphKit kit;
1027     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1028   }
1029 
1030   NOT_PRODUCT( verify_graph_edges(); )
1031   Code_Gen();
1032   if (failing())  return;
1033 
1034 
1035   // Entry point will be accessed using compile->stub_entry_point();
1036   if (code_buffer() == NULL) {
1037     Matcher::soft_match_failure();
1038   } else {
1039     if (PrintAssembly && (WizardMode || Verbose))
1040       tty->print_cr("### Stub::%s", stub_name);
1041 
1042     if (!failing()) {
1043       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1044 
1045       // Make the NMethod
1046       // For now we mark the frame as never safe for profile stackwalking
1047       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1048                                                       code_buffer(),
1049                                                       CodeOffsets::frame_never_safe,
1050                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1051                                                       frame_size_in_words(),
1052                                                       _oop_map_set,
1053                                                       save_arg_registers);
1054       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1055 
1056       _stub_entry_point = rs->entry_point();
1057     }
1058   }
1059 }
1060 
1061 //------------------------------Init-------------------------------------------
1062 // Prepare for a single compilation
1063 void Compile::Init(int aliaslevel) {
1064   _unique  = 0;
1065   _regalloc = NULL;
1066 
1067   _tf      = NULL;  // filled in later
1068   _top     = NULL;  // cached later
1069   _matcher = NULL;  // filled in later
1070   _cfg     = NULL;  // filled in later
1071 
1072   set_24_bit_selection_and_mode(Use24BitFP, false);
1073 
1074   _node_note_array = NULL;
1075   _default_node_notes = NULL;
1076   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1077 
1078   _immutable_memory = NULL; // filled in at first inquiry
1079 
1080   // Globally visible Nodes
1081   // First set TOP to NULL to give safe behavior during creation of RootNode
1082   set_cached_top_node(NULL);
1083   set_root(new RootNode());
1084   // Now that you have a Root to point to, create the real TOP
1085   set_cached_top_node( new ConNode(Type::TOP) );
1086   set_recent_alloc(NULL, NULL);
1087 
1088   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1089   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1090   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1091   env()->set_dependencies(new Dependencies(env()));
1092 
1093   _fixed_slots = 0;
1094   set_has_split_ifs(false);
1095   set_has_loops(has_method() && method()->has_loops()); // first approximation
1096   set_has_stringbuilder(false);
1097   set_has_boxed_value(false);
1098   _trap_can_recompile = false;  // no traps emitted yet
1099   _major_progress = true; // start out assuming good things will happen
1100   set_has_unsafe_access(false);
1101   set_max_vector_size(0);
1102   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1103   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1104   set_decompile_count(0);
1105 
1106   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1107   set_num_loop_opts(LoopOptsCount);
1108   set_do_inlining(Inline);
1109   set_max_inline_size(MaxInlineSize);
1110   set_freq_inline_size(FreqInlineSize);
1111   set_do_scheduling(OptoScheduling);
1112   set_do_count_invocations(false);
1113   set_do_method_data_update(false);
1114 
1115   set_do_vector_loop(false);
1116 
1117   if (AllowVectorizeOnDemand) {
1118     if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
1119       set_do_vector_loop(true);
1120       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1121     } else if (has_method() && method()->name() != 0 &&
1122                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1123       set_do_vector_loop(true);
1124     }
1125   }
1126   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1127   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1128 
1129   set_age_code(has_method() && method()->profile_aging());
1130   set_rtm_state(NoRTM); // No RTM lock eliding by default
1131   _max_node_limit = _directive->MaxNodeLimitOption;
1132 
1133 #if INCLUDE_RTM_OPT
1134   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1135     int rtm_state = method()->method_data()->rtm_state();
1136     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1137       // Don't generate RTM lock eliding code.
1138       set_rtm_state(NoRTM);
1139     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1140       // Generate RTM lock eliding code without abort ratio calculation code.
1141       set_rtm_state(UseRTM);
1142     } else if (UseRTMDeopt) {
1143       // Generate RTM lock eliding code and include abort ratio calculation
1144       // code if UseRTMDeopt is on.
1145       set_rtm_state(ProfileRTM);
1146     }
1147   }
1148 #endif
1149   if (debug_info()->recording_non_safepoints()) {
1150     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1151                         (comp_arena(), 8, 0, NULL));
1152     set_default_node_notes(Node_Notes::make(this));
1153   }
1154 
1155   // // -- Initialize types before each compile --
1156   // // Update cached type information
1157   // if( _method && _method->constants() )
1158   //   Type::update_loaded_types(_method, _method->constants());
1159 
1160   // Init alias_type map.
1161   if (!_do_escape_analysis && aliaslevel == 3)
1162     aliaslevel = 2;  // No unique types without escape analysis
1163   _AliasLevel = aliaslevel;
1164   const int grow_ats = 16;
1165   _max_alias_types = grow_ats;
1166   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1167   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1168   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1169   {
1170     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1171   }
1172   // Initialize the first few types.
1173   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1174   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1175   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1176   _num_alias_types = AliasIdxRaw+1;
1177   // Zero out the alias type cache.
1178   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1179   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1180   probe_alias_cache(NULL)->_index = AliasIdxTop;
1181 
1182   _intrinsics = NULL;
1183   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1184   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1185   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1186   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1187   _value_type_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
1188   register_library_intrinsics();
1189 }
1190 
1191 //---------------------------init_start----------------------------------------
1192 // Install the StartNode on this compile object.
1193 void Compile::init_start(StartNode* s) {
1194   if (failing())
1195     return; // already failing
1196   assert(s == start(), "");
1197 }
1198 
1199 /**
1200  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1201  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1202  * the ideal graph.
1203  */
1204 StartNode* Compile::start() const {
1205   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1206   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1207     Node* start = root()->fast_out(i);
1208     if (start->is_Start()) {
1209       return start->as_Start();
1210     }
1211   }
1212   fatal("Did not find Start node!");
1213   return NULL;
1214 }
1215 
1216 //-------------------------------immutable_memory-------------------------------------
1217 // Access immutable memory
1218 Node* Compile::immutable_memory() {
1219   if (_immutable_memory != NULL) {
1220     return _immutable_memory;
1221   }
1222   StartNode* s = start();
1223   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1224     Node *p = s->fast_out(i);
1225     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1226       _immutable_memory = p;
1227       return _immutable_memory;
1228     }
1229   }
1230   ShouldNotReachHere();
1231   return NULL;
1232 }
1233 
1234 //----------------------set_cached_top_node------------------------------------
1235 // Install the cached top node, and make sure Node::is_top works correctly.
1236 void Compile::set_cached_top_node(Node* tn) {
1237   if (tn != NULL)  verify_top(tn);
1238   Node* old_top = _top;
1239   _top = tn;
1240   // Calling Node::setup_is_top allows the nodes the chance to adjust
1241   // their _out arrays.
1242   if (_top != NULL)     _top->setup_is_top();
1243   if (old_top != NULL)  old_top->setup_is_top();
1244   assert(_top == NULL || top()->is_top(), "");
1245 }
1246 
1247 #ifdef ASSERT
1248 uint Compile::count_live_nodes_by_graph_walk() {
1249   Unique_Node_List useful(comp_arena());
1250   // Get useful node list by walking the graph.
1251   identify_useful_nodes(useful);
1252   return useful.size();
1253 }
1254 
1255 void Compile::print_missing_nodes() {
1256 
1257   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1258   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1259     return;
1260   }
1261 
1262   // This is an expensive function. It is executed only when the user
1263   // specifies VerifyIdealNodeCount option or otherwise knows the
1264   // additional work that needs to be done to identify reachable nodes
1265   // by walking the flow graph and find the missing ones using
1266   // _dead_node_list.
1267 
1268   Unique_Node_List useful(comp_arena());
1269   // Get useful node list by walking the graph.
1270   identify_useful_nodes(useful);
1271 
1272   uint l_nodes = C->live_nodes();
1273   uint l_nodes_by_walk = useful.size();
1274 
1275   if (l_nodes != l_nodes_by_walk) {
1276     if (_log != NULL) {
1277       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1278       _log->stamp();
1279       _log->end_head();
1280     }
1281     VectorSet& useful_member_set = useful.member_set();
1282     int last_idx = l_nodes_by_walk;
1283     for (int i = 0; i < last_idx; i++) {
1284       if (useful_member_set.test(i)) {
1285         if (_dead_node_list.test(i)) {
1286           if (_log != NULL) {
1287             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1288           }
1289           if (PrintIdealNodeCount) {
1290             // Print the log message to tty
1291               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1292               useful.at(i)->dump();
1293           }
1294         }
1295       }
1296       else if (! _dead_node_list.test(i)) {
1297         if (_log != NULL) {
1298           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1299         }
1300         if (PrintIdealNodeCount) {
1301           // Print the log message to tty
1302           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1303         }
1304       }
1305     }
1306     if (_log != NULL) {
1307       _log->tail("mismatched_nodes");
1308     }
1309   }
1310 }
1311 void Compile::record_modified_node(Node* n) {
1312   if (_modified_nodes != NULL && !_inlining_incrementally &&
1313       n->outcnt() != 0 && !n->is_Con()) {
1314     _modified_nodes->push(n);
1315   }
1316 }
1317 
1318 void Compile::remove_modified_node(Node* n) {
1319   if (_modified_nodes != NULL) {
1320     _modified_nodes->remove(n);
1321   }
1322 }
1323 #endif
1324 
1325 #ifndef PRODUCT
1326 void Compile::verify_top(Node* tn) const {
1327   if (tn != NULL) {
1328     assert(tn->is_Con(), "top node must be a constant");
1329     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1330     assert(tn->in(0) != NULL, "must have live top node");
1331   }
1332 }
1333 #endif
1334 
1335 
1336 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1337 
1338 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1339   guarantee(arr != NULL, "");
1340   int num_blocks = arr->length();
1341   if (grow_by < num_blocks)  grow_by = num_blocks;
1342   int num_notes = grow_by * _node_notes_block_size;
1343   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1344   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1345   while (num_notes > 0) {
1346     arr->append(notes);
1347     notes     += _node_notes_block_size;
1348     num_notes -= _node_notes_block_size;
1349   }
1350   assert(num_notes == 0, "exact multiple, please");
1351 }
1352 
1353 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1354   if (source == NULL || dest == NULL)  return false;
1355 
1356   if (dest->is_Con())
1357     return false;               // Do not push debug info onto constants.
1358 
1359 #ifdef ASSERT
1360   // Leave a bread crumb trail pointing to the original node:
1361   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1362     dest->set_debug_orig(source);
1363   }
1364 #endif
1365 
1366   if (node_note_array() == NULL)
1367     return false;               // Not collecting any notes now.
1368 
1369   // This is a copy onto a pre-existing node, which may already have notes.
1370   // If both nodes have notes, do not overwrite any pre-existing notes.
1371   Node_Notes* source_notes = node_notes_at(source->_idx);
1372   if (source_notes == NULL || source_notes->is_clear())  return false;
1373   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1374   if (dest_notes == NULL || dest_notes->is_clear()) {
1375     return set_node_notes_at(dest->_idx, source_notes);
1376   }
1377 
1378   Node_Notes merged_notes = (*source_notes);
1379   // The order of operations here ensures that dest notes will win...
1380   merged_notes.update_from(dest_notes);
1381   return set_node_notes_at(dest->_idx, &merged_notes);
1382 }
1383 
1384 
1385 //--------------------------allow_range_check_smearing-------------------------
1386 // Gating condition for coalescing similar range checks.
1387 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1388 // single covering check that is at least as strong as any of them.
1389 // If the optimization succeeds, the simplified (strengthened) range check
1390 // will always succeed.  If it fails, we will deopt, and then give up
1391 // on the optimization.
1392 bool Compile::allow_range_check_smearing() const {
1393   // If this method has already thrown a range-check,
1394   // assume it was because we already tried range smearing
1395   // and it failed.
1396   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1397   return !already_trapped;
1398 }
1399 
1400 
1401 //------------------------------flatten_alias_type-----------------------------
1402 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1403   int offset = tj->offset();
1404   TypePtr::PTR ptr = tj->ptr();
1405 
1406   // Known instance (scalarizable allocation) alias only with itself.
1407   bool is_known_inst = tj->isa_oopptr() != NULL &&
1408                        tj->is_oopptr()->is_known_instance();
1409 
1410   // Process weird unsafe references.
1411   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1412     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1413     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1414     tj = TypeOopPtr::BOTTOM;
1415     ptr = tj->ptr();
1416     offset = tj->offset();
1417   }
1418 
1419   // Array pointers need some flattening
1420   const TypeAryPtr *ta = tj->isa_aryptr();
1421   if (ta && ta->is_stable()) {
1422     // Erase stability property for alias analysis.
1423     tj = ta = ta->cast_to_stable(false);
1424   }
1425   if( ta && is_known_inst ) {
1426     if ( offset != Type::OffsetBot &&
1427          offset > arrayOopDesc::length_offset_in_bytes() ) {
1428       offset = Type::OffsetBot; // Flatten constant access into array body only
1429       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, Type::Offset(offset), ta->field_offset(), ta->instance_id());
1430     }
1431   } else if( ta && _AliasLevel >= 2 ) {
1432     // For arrays indexed by constant indices, we flatten the alias
1433     // space to include all of the array body.  Only the header, klass
1434     // and array length can be accessed un-aliased.
1435     // For flattened value type array, each field has its own slice so
1436     // we must include the field offset.
1437     if( offset != Type::OffsetBot ) {
1438       if( ta->const_oop() ) { // MethodData* or Method*
1439         offset = Type::OffsetBot;   // Flatten constant access into array body
1440         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,Type::Offset(offset), ta->field_offset());
1441       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1442         // range is OK as-is.
1443         tj = ta = TypeAryPtr::RANGE;
1444       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1445         tj = TypeInstPtr::KLASS; // all klass loads look alike
1446         ta = TypeAryPtr::RANGE; // generic ignored junk
1447         ptr = TypePtr::BotPTR;
1448       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1449         tj = TypeInstPtr::MARK;
1450         ta = TypeAryPtr::RANGE; // generic ignored junk
1451         ptr = TypePtr::BotPTR;
1452       } else {                  // Random constant offset into array body
1453         offset = Type::OffsetBot;   // Flatten constant access into array body
1454         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,Type::Offset(offset), ta->field_offset());
1455       }
1456     }
1457     // Arrays of fixed size alias with arrays of unknown size.
1458     if (ta->size() != TypeInt::POS) {
1459       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1460       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,Type::Offset(offset), ta->field_offset());
1461     }
1462     // Arrays of known objects become arrays of unknown objects.
1463     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1464       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1465       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,Type::Offset(offset), ta->field_offset());
1466     }
1467     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1468       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1469       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,Type::Offset(offset), ta->field_offset());
1470     }
1471     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1472     // cannot be distinguished by bytecode alone.
1473     if (ta->elem() == TypeInt::BOOL) {
1474       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1475       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1476       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,Type::Offset(offset), ta->field_offset());
1477     }
1478     // During the 2nd round of IterGVN, NotNull castings are removed.
1479     // Make sure the Bottom and NotNull variants alias the same.
1480     // Also, make sure exact and non-exact variants alias the same.
1481     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1482       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,Type::Offset(offset), ta->field_offset());
1483     }
1484   }
1485 
1486   // Oop pointers need some flattening
1487   const TypeInstPtr *to = tj->isa_instptr();
1488   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1489     ciInstanceKlass *k = to->klass()->as_instance_klass();
1490     if( ptr == TypePtr::Constant ) {
1491       if (to->klass() != ciEnv::current()->Class_klass() ||
1492           offset < k->size_helper() * wordSize) {
1493         // No constant oop pointers (such as Strings); they alias with
1494         // unknown strings.
1495         assert(!is_known_inst, "not scalarizable allocation");
1496         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,Type::Offset(offset));
1497       }
1498     } else if( is_known_inst ) {
1499       tj = to; // Keep NotNull and klass_is_exact for instance type
1500     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1501       // During the 2nd round of IterGVN, NotNull castings are removed.
1502       // Make sure the Bottom and NotNull variants alias the same.
1503       // Also, make sure exact and non-exact variants alias the same.
1504       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,Type::Offset(offset));
1505     }
1506     if (to->speculative() != NULL) {
1507       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),Type::Offset(to->offset()), to->instance_id());
1508     }
1509     // Canonicalize the holder of this field
1510     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1511       // First handle header references such as a LoadKlassNode, even if the
1512       // object's klass is unloaded at compile time (4965979).
1513       if (!is_known_inst) { // Do it only for non-instance types
1514         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, Type::Offset(offset));
1515       }
1516     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1517       // Static fields are in the space above the normal instance
1518       // fields in the java.lang.Class instance.
1519       if (to->klass() != ciEnv::current()->Class_klass()) {
1520         to = NULL;
1521         tj = TypeOopPtr::BOTTOM;
1522         offset = tj->offset();
1523       }
1524     } else {
1525       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1526       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1527         if( is_known_inst ) {
1528           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, Type::Offset(offset), to->instance_id());
1529         } else {
1530           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, Type::Offset(offset));
1531         }
1532       }
1533     }
1534   }
1535 
1536   // Value type pointers need flattening
1537   const TypeValueTypePtr* tv = tj->isa_valuetypeptr();
1538   if (tv != NULL && _AliasLevel >= 2) {
1539     assert(tv->speculative() == NULL, "should not have speculative type information");
1540     ciValueKlass* vk = tv->klass()->as_value_klass();
1541     if (ptr == TypePtr::Constant) {
1542       assert(!is_known_inst, "not scalarizable allocation");
1543       tj = tv = TypeValueTypePtr::make(TypePtr::BotPTR, tv->value_klass(), NULL, Type::Offset(offset));
1544     } else if (is_known_inst) {
1545       tj = tv; // Keep NotNull and klass_is_exact for instance type
1546     } else if (ptr == TypePtr::NotNull || tv->klass_is_exact()) {
1547       // During the 2nd round of IterGVN, NotNull castings are removed.
1548       // Make sure the Bottom and NotNull variants alias the same.
1549       // Also, make sure exact and non-exact variants alias the same.
1550       tj = tv = TypeValueTypePtr::make(TypePtr::BotPTR, tv->value_klass(), tv->const_oop(), Type::Offset(offset));
1551     }
1552     // Canonicalize the holder of this field
1553     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1554       // First handle header references such as a LoadKlassNode, even if the
1555       // object's klass is unloaded at compile time (4965979).
1556       if (!is_known_inst) { // Do it only for non-instance types
1557         // tj = tv = TypeValueTypePtr::make(TypePtr::BotPTR, env()->___Value_klass()->as_value_klass(), NULL, Type::Offset(offset));
1558         tj = tv = NULL;
1559       }
1560     } else if (offset < 0 || offset >= vk->size_helper() * wordSize) {
1561       // Static fields are in the space above the normal instance
1562       // fields in the java.lang.Class instance.
1563       tv = NULL;
1564       tj = TypeOopPtr::BOTTOM;
1565       offset = tj->offset();
1566     } else {
1567       ciInstanceKlass* canonical_holder = vk->get_canonical_holder(offset);
1568       assert(vk->equals(canonical_holder), "value types should not inherit fields");
1569     }
1570   }
1571 
1572   // Klass pointers to object array klasses need some flattening
1573   const TypeKlassPtr *tk = tj->isa_klassptr();
1574   if( tk ) {
1575     // If we are referencing a field within a Klass, we need
1576     // to assume the worst case of an Object.  Both exact and
1577     // inexact types must flatten to the same alias class so
1578     // use NotNull as the PTR.
1579     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1580 
1581       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1582                                    TypeKlassPtr::OBJECT->klass(),
1583                                    Type::Offset(offset));
1584     }
1585 
1586     ciKlass* klass = tk->klass();
1587     if (klass != NULL && klass->is_obj_array_klass()) {
1588       ciKlass* k = TypeAryPtr::OOPS->klass();
1589       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1590         k = TypeInstPtr::BOTTOM->klass();
1591       tj = tk = TypeKlassPtr::make(TypePtr::NotNull, k, Type::Offset(offset));
1592     }
1593 
1594     // Check for precise loads from the primary supertype array and force them
1595     // to the supertype cache alias index.  Check for generic array loads from
1596     // the primary supertype array and also force them to the supertype cache
1597     // alias index.  Since the same load can reach both, we need to merge
1598     // these 2 disparate memories into the same alias class.  Since the
1599     // primary supertype array is read-only, there's no chance of confusion
1600     // where we bypass an array load and an array store.
1601     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1602     if (offset == Type::OffsetBot ||
1603         (offset >= primary_supers_offset &&
1604          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1605         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1606       offset = in_bytes(Klass::secondary_super_cache_offset());
1607       tj = tk = TypeKlassPtr::make(TypePtr::NotNull, tk->klass(), Type::Offset(offset));
1608     }
1609   }
1610 
1611   // Flatten all Raw pointers together.
1612   if (tj->base() == Type::RawPtr)
1613     tj = TypeRawPtr::BOTTOM;
1614 
1615   if (tj->base() == Type::AnyPtr)
1616     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1617 
1618   // Flatten all to bottom for now
1619   switch( _AliasLevel ) {
1620   case 0:
1621     tj = TypePtr::BOTTOM;
1622     break;
1623   case 1:                       // Flatten to: oop, static, field or array
1624     switch (tj->base()) {
1625     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1626     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1627     case Type::AryPtr:   // do not distinguish arrays at all
1628     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1629     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1630     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1631     default: ShouldNotReachHere();
1632     }
1633     break;
1634   case 2:                       // No collapsing at level 2; keep all splits
1635   case 3:                       // No collapsing at level 3; keep all splits
1636     break;
1637   default:
1638     Unimplemented();
1639   }
1640 
1641   offset = tj->offset();
1642   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1643 
1644   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1645           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1646           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1647           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1648           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1649           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1650           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1651           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1652   assert( tj->ptr() != TypePtr::TopPTR &&
1653           tj->ptr() != TypePtr::AnyNull &&
1654           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1655 //    assert( tj->ptr() != TypePtr::Constant ||
1656 //            tj->base() == Type::RawPtr ||
1657 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1658 
1659   return tj;
1660 }
1661 
1662 void Compile::AliasType::Init(int i, const TypePtr* at) {
1663   _index = i;
1664   _adr_type = at;
1665   _field = NULL;
1666   _element = NULL;
1667   _is_rewritable = true; // default
1668   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1669   if (atoop != NULL && atoop->is_known_instance()) {
1670     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1671     _general_index = Compile::current()->get_alias_index(gt);
1672   } else {
1673     _general_index = 0;
1674   }
1675 }
1676 
1677 BasicType Compile::AliasType::basic_type() const {
1678   if (element() != NULL) {
1679     const Type* element = adr_type()->is_aryptr()->elem();
1680     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1681   } if (field() != NULL) {
1682     return field()->layout_type();
1683   } else {
1684     return T_ILLEGAL; // unknown
1685   }
1686 }
1687 
1688 //---------------------------------print_on------------------------------------
1689 #ifndef PRODUCT
1690 void Compile::AliasType::print_on(outputStream* st) {
1691   if (index() < 10)
1692         st->print("@ <%d> ", index());
1693   else  st->print("@ <%d>",  index());
1694   st->print(is_rewritable() ? "   " : " RO");
1695   int offset = adr_type()->offset();
1696   if (offset == Type::OffsetBot)
1697         st->print(" +any");
1698   else  st->print(" +%-3d", offset);
1699   st->print(" in ");
1700   adr_type()->dump_on(st);
1701   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1702   if (field() != NULL && tjp) {
1703     if (tjp->klass()  != field()->holder() ||
1704         tjp->offset() != field()->offset_in_bytes()) {
1705       st->print(" != ");
1706       field()->print();
1707       st->print(" ***");
1708     }
1709   }
1710 }
1711 
1712 void print_alias_types() {
1713   Compile* C = Compile::current();
1714   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1715   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1716     C->alias_type(idx)->print_on(tty);
1717     tty->cr();
1718   }
1719 }
1720 #endif
1721 
1722 
1723 //----------------------------probe_alias_cache--------------------------------
1724 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1725   intptr_t key = (intptr_t) adr_type;
1726   key ^= key >> logAliasCacheSize;
1727   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1728 }
1729 
1730 
1731 //-----------------------------grow_alias_types--------------------------------
1732 void Compile::grow_alias_types() {
1733   const int old_ats  = _max_alias_types; // how many before?
1734   const int new_ats  = old_ats;          // how many more?
1735   const int grow_ats = old_ats+new_ats;  // how many now?
1736   _max_alias_types = grow_ats;
1737   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1738   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1739   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1740   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1741 }
1742 
1743 
1744 //--------------------------------find_alias_type------------------------------
1745 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1746   if (_AliasLevel == 0)
1747     return alias_type(AliasIdxBot);
1748 
1749   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1750   if (ace->_adr_type == adr_type) {
1751     return alias_type(ace->_index);
1752   }
1753 
1754   // Handle special cases.
1755   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1756   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1757 
1758   // Do it the slow way.
1759   const TypePtr* flat = flatten_alias_type(adr_type);
1760 
1761 #ifdef ASSERT
1762   {
1763     ResourceMark rm;
1764     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1765            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1766     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1767            Type::str(adr_type));
1768     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1769       const TypeOopPtr* foop = flat->is_oopptr();
1770       // Scalarizable allocations have exact klass always.
1771       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1772       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1773       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1774              Type::str(foop), Type::str(xoop));
1775     }
1776   }
1777 #endif
1778 
1779   int idx = AliasIdxTop;
1780   for (int i = 0; i < num_alias_types(); i++) {
1781     if (alias_type(i)->adr_type() == flat) {
1782       idx = i;
1783       break;
1784     }
1785   }
1786 
1787   if (idx == AliasIdxTop) {
1788     if (no_create)  return NULL;
1789     // Grow the array if necessary.
1790     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1791     // Add a new alias type.
1792     idx = _num_alias_types++;
1793     _alias_types[idx]->Init(idx, flat);
1794     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1795     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1796     if (flat->isa_instptr()) {
1797       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1798           && flat->is_instptr()->klass() == env()->Class_klass())
1799         alias_type(idx)->set_rewritable(false);
1800     }
1801     if (flat->isa_aryptr()) {
1802 #ifdef ASSERT
1803       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1804       // (T_BYTE has the weakest alignment and size restrictions...)
1805       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1806 #endif
1807       if (flat->offset() == TypePtr::OffsetBot) {
1808         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1809       }
1810     }
1811     if (flat->isa_klassptr()) {
1812       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1813         alias_type(idx)->set_rewritable(false);
1814       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1815         alias_type(idx)->set_rewritable(false);
1816       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1817         alias_type(idx)->set_rewritable(false);
1818       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1819         alias_type(idx)->set_rewritable(false);
1820     }
1821     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1822     // but the base pointer type is not distinctive enough to identify
1823     // references into JavaThread.)
1824 
1825     // Check for final fields.
1826     const TypeInstPtr* tinst = flat->isa_instptr();
1827     const TypeValueTypePtr* vtptr = flat->isa_valuetypeptr();
1828     ciField* field = NULL;
1829     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1830       if (tinst->const_oop() != NULL &&
1831           tinst->klass() == ciEnv::current()->Class_klass() &&
1832           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1833         // static field
1834         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1835         field = k->get_field_by_offset(tinst->offset(), true);
1836       } else {
1837         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1838         field = k->get_field_by_offset(tinst->offset(), false);
1839       }
1840     } else if (vtptr) {
1841       // Value type field
1842       ciValueKlass* vk = vtptr->klass()->as_value_klass();
1843       field = vk->get_field_by_offset(vtptr->offset(), false);
1844     }
1845     assert(field == NULL ||
1846            original_field == NULL ||
1847            (field->holder() == original_field->holder() &&
1848             field->offset() == original_field->offset() &&
1849             field->is_static() == original_field->is_static()), "wrong field?");
1850     // Set field() and is_rewritable() attributes.
1851     if (field != NULL)  alias_type(idx)->set_field(field);
1852   }
1853 
1854   // Fill the cache for next time.
1855   ace->_adr_type = adr_type;
1856   ace->_index    = idx;
1857   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1858 
1859   // Might as well try to fill the cache for the flattened version, too.
1860   AliasCacheEntry* face = probe_alias_cache(flat);
1861   if (face->_adr_type == NULL) {
1862     face->_adr_type = flat;
1863     face->_index    = idx;
1864     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1865   }
1866 
1867   return alias_type(idx);
1868 }
1869 
1870 
1871 Compile::AliasType* Compile::alias_type(ciField* field) {
1872   const TypeOopPtr* t;
1873   if (field->is_static())
1874     t = TypeInstPtr::make(field->holder()->java_mirror());
1875   else
1876     t = TypeOopPtr::make_from_klass_raw(field->holder());
1877   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1878   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1879   return atp;
1880 }
1881 
1882 
1883 //------------------------------have_alias_type--------------------------------
1884 bool Compile::have_alias_type(const TypePtr* adr_type) {
1885   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1886   if (ace->_adr_type == adr_type) {
1887     return true;
1888   }
1889 
1890   // Handle special cases.
1891   if (adr_type == NULL)             return true;
1892   if (adr_type == TypePtr::BOTTOM)  return true;
1893 
1894   return find_alias_type(adr_type, true, NULL) != NULL;
1895 }
1896 
1897 //-----------------------------must_alias--------------------------------------
1898 // True if all values of the given address type are in the given alias category.
1899 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1900   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1901   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1902   if (alias_idx == AliasIdxTop)         return false; // the empty category
1903   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1904 
1905   // the only remaining possible overlap is identity
1906   int adr_idx = get_alias_index(adr_type);
1907   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1908   assert(adr_idx == alias_idx ||
1909          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1910           && adr_type                       != TypeOopPtr::BOTTOM),
1911          "should not be testing for overlap with an unsafe pointer");
1912   return adr_idx == alias_idx;
1913 }
1914 
1915 //------------------------------can_alias--------------------------------------
1916 // True if any values of the given address type are in the given alias category.
1917 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1918   if (alias_idx == AliasIdxTop)         return false; // the empty category
1919   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1920   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1921   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1922 
1923   // the only remaining possible overlap is identity
1924   int adr_idx = get_alias_index(adr_type);
1925   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1926   return adr_idx == alias_idx;
1927 }
1928 
1929 
1930 
1931 //---------------------------pop_warm_call-------------------------------------
1932 WarmCallInfo* Compile::pop_warm_call() {
1933   WarmCallInfo* wci = _warm_calls;
1934   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1935   return wci;
1936 }
1937 
1938 //----------------------------Inline_Warm--------------------------------------
1939 int Compile::Inline_Warm() {
1940   // If there is room, try to inline some more warm call sites.
1941   // %%% Do a graph index compaction pass when we think we're out of space?
1942   if (!InlineWarmCalls)  return 0;
1943 
1944   int calls_made_hot = 0;
1945   int room_to_grow   = NodeCountInliningCutoff - unique();
1946   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1947   int amount_grown   = 0;
1948   WarmCallInfo* call;
1949   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1950     int est_size = (int)call->size();
1951     if (est_size > (room_to_grow - amount_grown)) {
1952       // This one won't fit anyway.  Get rid of it.
1953       call->make_cold();
1954       continue;
1955     }
1956     call->make_hot();
1957     calls_made_hot++;
1958     amount_grown   += est_size;
1959     amount_to_grow -= est_size;
1960   }
1961 
1962   if (calls_made_hot > 0)  set_major_progress();
1963   return calls_made_hot;
1964 }
1965 
1966 
1967 //----------------------------Finish_Warm--------------------------------------
1968 void Compile::Finish_Warm() {
1969   if (!InlineWarmCalls)  return;
1970   if (failing())  return;
1971   if (warm_calls() == NULL)  return;
1972 
1973   // Clean up loose ends, if we are out of space for inlining.
1974   WarmCallInfo* call;
1975   while ((call = pop_warm_call()) != NULL) {
1976     call->make_cold();
1977   }
1978 }
1979 
1980 //---------------------cleanup_loop_predicates-----------------------
1981 // Remove the opaque nodes that protect the predicates so that all unused
1982 // checks and uncommon_traps will be eliminated from the ideal graph
1983 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1984   if (predicate_count()==0) return;
1985   for (int i = predicate_count(); i > 0; i--) {
1986     Node * n = predicate_opaque1_node(i-1);
1987     assert(n->Opcode() == Op_Opaque1, "must be");
1988     igvn.replace_node(n, n->in(1));
1989   }
1990   assert(predicate_count()==0, "should be clean!");
1991 }
1992 
1993 void Compile::add_range_check_cast(Node* n) {
1994   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1995   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1996   _range_check_casts->append(n);
1997 }
1998 
1999 // Remove all range check dependent CastIINodes.
2000 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
2001   for (int i = range_check_cast_count(); i > 0; i--) {
2002     Node* cast = range_check_cast_node(i-1);
2003     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
2004     igvn.replace_node(cast, cast->in(1));
2005   }
2006   assert(range_check_cast_count() == 0, "should be empty");
2007 }
2008 
2009 void Compile::add_value_type(Node* n) {
2010   assert(n->is_ValueTypeBase(), "unexpected node");
2011   if (_value_type_nodes != NULL) {
2012     _value_type_nodes->push(n);
2013   }
2014 }
2015 
2016 void Compile::remove_value_type(Node* n) {
2017   assert(n->is_ValueTypeBase(), "unexpected node");
2018   if (_value_type_nodes != NULL) {
2019     _value_type_nodes->remove(n);
2020   }
2021 }
2022 
2023 void Compile::process_value_types(PhaseIterGVN &igvn) {
2024   // Make value types scalar in safepoints
2025   while (_value_type_nodes->size() != 0) {
2026     ValueTypeBaseNode* vt = _value_type_nodes->pop()->as_ValueTypeBase();
2027     vt->make_scalar_in_safepoints(igvn.C->root(), &igvn);
2028     if (vt->is_ValueTypePtr()) {
2029       igvn.replace_node(vt, vt->get_oop());
2030     }
2031   }
2032   _value_type_nodes = NULL;
2033   igvn.optimize();
2034 }
2035 
2036 // StringOpts and late inlining of string methods
2037 void Compile::inline_string_calls(bool parse_time) {
2038   {
2039     // remove useless nodes to make the usage analysis simpler
2040     ResourceMark rm;
2041     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2042   }
2043 
2044   {
2045     ResourceMark rm;
2046     print_method(PHASE_BEFORE_STRINGOPTS, 3);
2047     PhaseStringOpts pso(initial_gvn(), for_igvn());
2048     print_method(PHASE_AFTER_STRINGOPTS, 3);
2049   }
2050 
2051   // now inline anything that we skipped the first time around
2052   if (!parse_time) {
2053     _late_inlines_pos = _late_inlines.length();
2054   }
2055 
2056   while (_string_late_inlines.length() > 0) {
2057     CallGenerator* cg = _string_late_inlines.pop();
2058     cg->do_late_inline();
2059     if (failing())  return;
2060   }
2061   _string_late_inlines.trunc_to(0);
2062 }
2063 
2064 // Late inlining of boxing methods
2065 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
2066   if (_boxing_late_inlines.length() > 0) {
2067     assert(has_boxed_value(), "inconsistent");
2068 
2069     PhaseGVN* gvn = initial_gvn();
2070     set_inlining_incrementally(true);
2071 
2072     assert( igvn._worklist.size() == 0, "should be done with igvn" );
2073     for_igvn()->clear();
2074     gvn->replace_with(&igvn);
2075 
2076     _late_inlines_pos = _late_inlines.length();
2077 
2078     while (_boxing_late_inlines.length() > 0) {
2079       CallGenerator* cg = _boxing_late_inlines.pop();
2080       cg->do_late_inline();
2081       if (failing())  return;
2082     }
2083     _boxing_late_inlines.trunc_to(0);
2084 
2085     {
2086       ResourceMark rm;
2087       PhaseRemoveUseless pru(gvn, for_igvn());
2088     }
2089 
2090     igvn = PhaseIterGVN(gvn);
2091     igvn.optimize();
2092 
2093     set_inlining_progress(false);
2094     set_inlining_incrementally(false);
2095   }
2096 }
2097 
2098 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
2099   assert(IncrementalInline, "incremental inlining should be on");
2100   PhaseGVN* gvn = initial_gvn();
2101 
2102   set_inlining_progress(false);
2103   for_igvn()->clear();
2104   gvn->replace_with(&igvn);
2105 
2106   {
2107     TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
2108     int i = 0;
2109     for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2110       CallGenerator* cg = _late_inlines.at(i);
2111       _late_inlines_pos = i+1;
2112       cg->do_late_inline();
2113       if (failing())  return;
2114     }
2115     int j = 0;
2116     for (; i < _late_inlines.length(); i++, j++) {
2117       _late_inlines.at_put(j, _late_inlines.at(i));
2118     }
2119     _late_inlines.trunc_to(j);
2120   }
2121 
2122   {
2123     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2124     ResourceMark rm;
2125     PhaseRemoveUseless pru(gvn, for_igvn());
2126   }
2127 
2128   {
2129     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2130     igvn = PhaseIterGVN(gvn);
2131   }
2132 }
2133 
2134 // Perform incremental inlining until bound on number of live nodes is reached
2135 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2136   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2137 
2138   PhaseGVN* gvn = initial_gvn();
2139 
2140   set_inlining_incrementally(true);
2141   set_inlining_progress(true);
2142   uint low_live_nodes = 0;
2143 
2144   while(inlining_progress() && _late_inlines.length() > 0) {
2145 
2146     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2147       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2148         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2149         // PhaseIdealLoop is expensive so we only try it once we are
2150         // out of live nodes and we only try it again if the previous
2151         // helped got the number of nodes down significantly
2152         PhaseIdealLoop ideal_loop( igvn, false, true );
2153         if (failing())  return;
2154         low_live_nodes = live_nodes();
2155         _major_progress = true;
2156       }
2157 
2158       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2159         break;
2160       }
2161     }
2162 
2163     inline_incrementally_one(igvn);
2164 
2165     if (failing())  return;
2166 
2167     {
2168       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2169       igvn.optimize();
2170     }
2171 
2172     if (failing())  return;
2173   }
2174 
2175   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2176 
2177   if (_string_late_inlines.length() > 0) {
2178     assert(has_stringbuilder(), "inconsistent");
2179     for_igvn()->clear();
2180     initial_gvn()->replace_with(&igvn);
2181 
2182     inline_string_calls(false);
2183 
2184     if (failing())  return;
2185 
2186     {
2187       TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2188       ResourceMark rm;
2189       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2190     }
2191 
2192     {
2193       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2194       igvn = PhaseIterGVN(gvn);
2195       igvn.optimize();
2196     }
2197   }
2198 
2199   set_inlining_incrementally(false);
2200 }
2201 
2202 
2203 //------------------------------Optimize---------------------------------------
2204 // Given a graph, optimize it.
2205 void Compile::Optimize() {
2206   TracePhase tp("optimizer", &timers[_t_optimizer]);
2207 
2208 #ifndef PRODUCT
2209   if (_directive->BreakAtCompileOption) {
2210     BREAKPOINT;
2211   }
2212 
2213 #endif
2214 
2215   ResourceMark rm;
2216   int          loop_opts_cnt;
2217 
2218   print_inlining_reinit();
2219 
2220   NOT_PRODUCT( verify_graph_edges(); )
2221 
2222   print_method(PHASE_AFTER_PARSING);
2223 
2224  {
2225   // Iterative Global Value Numbering, including ideal transforms
2226   // Initialize IterGVN with types and values from parse-time GVN
2227   PhaseIterGVN igvn(initial_gvn());
2228 #ifdef ASSERT
2229   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2230 #endif
2231   {
2232     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2233     igvn.optimize();
2234   }
2235 
2236   print_method(PHASE_ITER_GVN1, 2);
2237 
2238   if (failing())  return;
2239 
2240   inline_incrementally(igvn);
2241 
2242   print_method(PHASE_INCREMENTAL_INLINE, 2);
2243 
2244   if (failing())  return;
2245 
2246   if (eliminate_boxing()) {
2247     // Inline valueOf() methods now.
2248     inline_boxing_calls(igvn);
2249 
2250     if (AlwaysIncrementalInline) {
2251       inline_incrementally(igvn);
2252     }
2253 
2254     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2255 
2256     if (failing())  return;
2257   }
2258 
2259   // Remove the speculative part of types and clean up the graph from
2260   // the extra CastPP nodes whose only purpose is to carry them. Do
2261   // that early so that optimizations are not disrupted by the extra
2262   // CastPP nodes.
2263   remove_speculative_types(igvn);
2264 
2265   // No more new expensive nodes will be added to the list from here
2266   // so keep only the actual candidates for optimizations.
2267   cleanup_expensive_nodes(igvn);
2268 
2269   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2270     Compile::TracePhase tp("", &timers[_t_renumberLive]);
2271     initial_gvn()->replace_with(&igvn);
2272     for_igvn()->clear();
2273     Unique_Node_List new_worklist(C->comp_arena());
2274     {
2275       ResourceMark rm;
2276       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2277     }
2278     set_for_igvn(&new_worklist);
2279     igvn = PhaseIterGVN(initial_gvn());
2280     igvn.optimize();
2281   }
2282 
2283   if (_value_type_nodes->size() > 0) {
2284     // Do this once all inlining is over to avoid getting inconsistent debug info
2285     process_value_types(igvn);
2286   }
2287 
2288   // Perform escape analysis
2289   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2290     if (has_loops()) {
2291       // Cleanup graph (remove dead nodes).
2292       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2293       PhaseIdealLoop ideal_loop( igvn, false, true );
2294       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2295       if (failing())  return;
2296     }
2297     ConnectionGraph::do_analysis(this, &igvn);
2298 
2299     if (failing())  return;
2300 
2301     // Optimize out fields loads from scalar replaceable allocations.
2302     igvn.optimize();
2303     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2304 
2305     if (failing())  return;
2306 
2307     if (congraph() != NULL && macro_count() > 0) {
2308       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2309       PhaseMacroExpand mexp(igvn);
2310       mexp.eliminate_macro_nodes();
2311       igvn.set_delay_transform(false);
2312 
2313       igvn.optimize();
2314       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2315 
2316       if (failing())  return;
2317     }
2318   }
2319 
2320   // Loop transforms on the ideal graph.  Range Check Elimination,
2321   // peeling, unrolling, etc.
2322 
2323   // Set loop opts counter
2324   loop_opts_cnt = num_loop_opts();
2325   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2326     {
2327       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2328       PhaseIdealLoop ideal_loop( igvn, true );
2329       loop_opts_cnt--;
2330       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2331       if (failing())  return;
2332     }
2333     // Loop opts pass if partial peeling occurred in previous pass
2334     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2335       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2336       PhaseIdealLoop ideal_loop( igvn, false );
2337       loop_opts_cnt--;
2338       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2339       if (failing())  return;
2340     }
2341     // Loop opts pass for loop-unrolling before CCP
2342     if(major_progress() && (loop_opts_cnt > 0)) {
2343       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2344       PhaseIdealLoop ideal_loop( igvn, false );
2345       loop_opts_cnt--;
2346       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2347     }
2348     if (!failing()) {
2349       // Verify that last round of loop opts produced a valid graph
2350       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2351       PhaseIdealLoop::verify(igvn);
2352     }
2353   }
2354   if (failing())  return;
2355 
2356   // Conditional Constant Propagation;
2357   PhaseCCP ccp( &igvn );
2358   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2359   {
2360     TracePhase tp("ccp", &timers[_t_ccp]);
2361     ccp.do_transform();
2362   }
2363   print_method(PHASE_CPP1, 2);
2364 
2365   assert( true, "Break here to ccp.dump_old2new_map()");
2366 
2367   // Iterative Global Value Numbering, including ideal transforms
2368   {
2369     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2370     igvn = ccp;
2371     igvn.optimize();
2372   }
2373 
2374   print_method(PHASE_ITER_GVN2, 2);
2375 
2376   if (failing())  return;
2377 
2378   // Loop transforms on the ideal graph.  Range Check Elimination,
2379   // peeling, unrolling, etc.
2380   if(loop_opts_cnt > 0) {
2381     debug_only( int cnt = 0; );
2382     while(major_progress() && (loop_opts_cnt > 0)) {
2383       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2384       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2385       PhaseIdealLoop ideal_loop( igvn, true);
2386       loop_opts_cnt--;
2387       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2388       if (failing())  return;
2389     }
2390   }
2391   // Ensure that major progress is now clear
2392   C->clear_major_progress();
2393 
2394   {
2395     // Verify that all previous optimizations produced a valid graph
2396     // at least to this point, even if no loop optimizations were done.
2397     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2398     PhaseIdealLoop::verify(igvn);
2399   }
2400 
2401   if (range_check_cast_count() > 0) {
2402     // No more loop optimizations. Remove all range check dependent CastIINodes.
2403     C->remove_range_check_casts(igvn);
2404     igvn.optimize();
2405   }
2406 
2407   {
2408     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2409     PhaseMacroExpand  mex(igvn);
2410     if (mex.expand_macro_nodes()) {
2411       assert(failing(), "must bail out w/ explicit message");
2412       return;
2413     }
2414   }
2415 
2416   DEBUG_ONLY( _modified_nodes = NULL; )
2417  } // (End scope of igvn; run destructor if necessary for asserts.)
2418 
2419  process_print_inlining();
2420  // A method with only infinite loops has no edges entering loops from root
2421  {
2422    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2423    if (final_graph_reshaping()) {
2424      assert(failing(), "must bail out w/ explicit message");
2425      return;
2426    }
2427  }
2428 
2429  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2430 }
2431 
2432 //------------------------------Code_Gen---------------------------------------
2433 // Given a graph, generate code for it
2434 void Compile::Code_Gen() {
2435   if (failing()) {
2436     return;
2437   }
2438 
2439   // Perform instruction selection.  You might think we could reclaim Matcher
2440   // memory PDQ, but actually the Matcher is used in generating spill code.
2441   // Internals of the Matcher (including some VectorSets) must remain live
2442   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2443   // set a bit in reclaimed memory.
2444 
2445   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2446   // nodes.  Mapping is only valid at the root of each matched subtree.
2447   NOT_PRODUCT( verify_graph_edges(); )
2448 
2449   Matcher matcher;
2450   _matcher = &matcher;
2451   {
2452     TracePhase tp("matcher", &timers[_t_matcher]);
2453     matcher.match();
2454   }
2455   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2456   // nodes.  Mapping is only valid at the root of each matched subtree.
2457   NOT_PRODUCT( verify_graph_edges(); )
2458 
2459   // If you have too many nodes, or if matching has failed, bail out
2460   check_node_count(0, "out of nodes matching instructions");
2461   if (failing()) {
2462     return;
2463   }
2464 
2465   // Build a proper-looking CFG
2466   PhaseCFG cfg(node_arena(), root(), matcher);
2467   _cfg = &cfg;
2468   {
2469     TracePhase tp("scheduler", &timers[_t_scheduler]);
2470     bool success = cfg.do_global_code_motion();
2471     if (!success) {
2472       return;
2473     }
2474 
2475     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2476     NOT_PRODUCT( verify_graph_edges(); )
2477     debug_only( cfg.verify(); )
2478   }
2479 
2480   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2481   _regalloc = &regalloc;
2482   {
2483     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2484     // Perform register allocation.  After Chaitin, use-def chains are
2485     // no longer accurate (at spill code) and so must be ignored.
2486     // Node->LRG->reg mappings are still accurate.
2487     _regalloc->Register_Allocate();
2488 
2489     // Bail out if the allocator builds too many nodes
2490     if (failing()) {
2491       return;
2492     }
2493   }
2494 
2495   // Prior to register allocation we kept empty basic blocks in case the
2496   // the allocator needed a place to spill.  After register allocation we
2497   // are not adding any new instructions.  If any basic block is empty, we
2498   // can now safely remove it.
2499   {
2500     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2501     cfg.remove_empty_blocks();
2502     if (do_freq_based_layout()) {
2503       PhaseBlockLayout layout(cfg);
2504     } else {
2505       cfg.set_loop_alignment();
2506     }
2507     cfg.fixup_flow();
2508   }
2509 
2510   // Apply peephole optimizations
2511   if( OptoPeephole ) {
2512     TracePhase tp("peephole", &timers[_t_peephole]);
2513     PhasePeephole peep( _regalloc, cfg);
2514     peep.do_transform();
2515   }
2516 
2517   // Do late expand if CPU requires this.
2518   if (Matcher::require_postalloc_expand) {
2519     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2520     cfg.postalloc_expand(_regalloc);
2521   }
2522 
2523   // Convert Nodes to instruction bits in a buffer
2524   {
2525     TraceTime tp("output", &timers[_t_output], CITime);
2526     Output();
2527   }
2528 
2529   print_method(PHASE_FINAL_CODE);
2530 
2531   // He's dead, Jim.
2532   _cfg     = (PhaseCFG*)0xdeadbeef;
2533   _regalloc = (PhaseChaitin*)0xdeadbeef;
2534 }
2535 
2536 
2537 //------------------------------dump_asm---------------------------------------
2538 // Dump formatted assembly
2539 #ifndef PRODUCT
2540 void Compile::dump_asm(int *pcs, uint pc_limit) {
2541   bool cut_short = false;
2542   tty->print_cr("#");
2543   tty->print("#  ");  _tf->dump();  tty->cr();
2544   tty->print_cr("#");
2545 
2546   // For all blocks
2547   int pc = 0x0;                 // Program counter
2548   char starts_bundle = ' ';
2549   _regalloc->dump_frame();
2550 
2551   Node *n = NULL;
2552   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2553     if (VMThread::should_terminate()) {
2554       cut_short = true;
2555       break;
2556     }
2557     Block* block = _cfg->get_block(i);
2558     if (block->is_connector() && !Verbose) {
2559       continue;
2560     }
2561     n = block->head();
2562     if (pcs && n->_idx < pc_limit) {
2563       tty->print("%3.3x   ", pcs[n->_idx]);
2564     } else {
2565       tty->print("      ");
2566     }
2567     block->dump_head(_cfg);
2568     if (block->is_connector()) {
2569       tty->print_cr("        # Empty connector block");
2570     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2571       tty->print_cr("        # Block is sole successor of call");
2572     }
2573 
2574     // For all instructions
2575     Node *delay = NULL;
2576     for (uint j = 0; j < block->number_of_nodes(); j++) {
2577       if (VMThread::should_terminate()) {
2578         cut_short = true;
2579         break;
2580       }
2581       n = block->get_node(j);
2582       if (valid_bundle_info(n)) {
2583         Bundle* bundle = node_bundling(n);
2584         if (bundle->used_in_unconditional_delay()) {
2585           delay = n;
2586           continue;
2587         }
2588         if (bundle->starts_bundle()) {
2589           starts_bundle = '+';
2590         }
2591       }
2592 
2593       if (WizardMode) {
2594         n->dump();
2595       }
2596 
2597       if( !n->is_Region() &&    // Dont print in the Assembly
2598           !n->is_Phi() &&       // a few noisely useless nodes
2599           !n->is_Proj() &&
2600           !n->is_MachTemp() &&
2601           !n->is_SafePointScalarObject() &&
2602           !n->is_Catch() &&     // Would be nice to print exception table targets
2603           !n->is_MergeMem() &&  // Not very interesting
2604           !n->is_top() &&       // Debug info table constants
2605           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2606           ) {
2607         if (pcs && n->_idx < pc_limit)
2608           tty->print("%3.3x", pcs[n->_idx]);
2609         else
2610           tty->print("   ");
2611         tty->print(" %c ", starts_bundle);
2612         starts_bundle = ' ';
2613         tty->print("\t");
2614         n->format(_regalloc, tty);
2615         tty->cr();
2616       }
2617 
2618       // If we have an instruction with a delay slot, and have seen a delay,
2619       // then back up and print it
2620       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2621         assert(delay != NULL, "no unconditional delay instruction");
2622         if (WizardMode) delay->dump();
2623 
2624         if (node_bundling(delay)->starts_bundle())
2625           starts_bundle = '+';
2626         if (pcs && n->_idx < pc_limit)
2627           tty->print("%3.3x", pcs[n->_idx]);
2628         else
2629           tty->print("   ");
2630         tty->print(" %c ", starts_bundle);
2631         starts_bundle = ' ';
2632         tty->print("\t");
2633         delay->format(_regalloc, tty);
2634         tty->cr();
2635         delay = NULL;
2636       }
2637 
2638       // Dump the exception table as well
2639       if( n->is_Catch() && (Verbose || WizardMode) ) {
2640         // Print the exception table for this offset
2641         _handler_table.print_subtable_for(pc);
2642       }
2643     }
2644 
2645     if (pcs && n->_idx < pc_limit)
2646       tty->print_cr("%3.3x", pcs[n->_idx]);
2647     else
2648       tty->cr();
2649 
2650     assert(cut_short || delay == NULL, "no unconditional delay branch");
2651 
2652   } // End of per-block dump
2653   tty->cr();
2654 
2655   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2656 }
2657 #endif
2658 
2659 //------------------------------Final_Reshape_Counts---------------------------
2660 // This class defines counters to help identify when a method
2661 // may/must be executed using hardware with only 24-bit precision.
2662 struct Final_Reshape_Counts : public StackObj {
2663   int  _call_count;             // count non-inlined 'common' calls
2664   int  _float_count;            // count float ops requiring 24-bit precision
2665   int  _double_count;           // count double ops requiring more precision
2666   int  _java_call_count;        // count non-inlined 'java' calls
2667   int  _inner_loop_count;       // count loops which need alignment
2668   VectorSet _visited;           // Visitation flags
2669   Node_List _tests;             // Set of IfNodes & PCTableNodes
2670 
2671   Final_Reshape_Counts() :
2672     _call_count(0), _float_count(0), _double_count(0),
2673     _java_call_count(0), _inner_loop_count(0),
2674     _visited( Thread::current()->resource_area() ) { }
2675 
2676   void inc_call_count  () { _call_count  ++; }
2677   void inc_float_count () { _float_count ++; }
2678   void inc_double_count() { _double_count++; }
2679   void inc_java_call_count() { _java_call_count++; }
2680   void inc_inner_loop_count() { _inner_loop_count++; }
2681 
2682   int  get_call_count  () const { return _call_count  ; }
2683   int  get_float_count () const { return _float_count ; }
2684   int  get_double_count() const { return _double_count; }
2685   int  get_java_call_count() const { return _java_call_count; }
2686   int  get_inner_loop_count() const { return _inner_loop_count; }
2687 };
2688 
2689 #ifdef ASSERT
2690 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2691   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2692   // Make sure the offset goes inside the instance layout.
2693   return k->contains_field_offset(tp->offset());
2694   // Note that OffsetBot and OffsetTop are very negative.
2695 }
2696 #endif
2697 
2698 // Eliminate trivially redundant StoreCMs and accumulate their
2699 // precedence edges.
2700 void Compile::eliminate_redundant_card_marks(Node* n) {
2701   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2702   if (n->in(MemNode::Address)->outcnt() > 1) {
2703     // There are multiple users of the same address so it might be
2704     // possible to eliminate some of the StoreCMs
2705     Node* mem = n->in(MemNode::Memory);
2706     Node* adr = n->in(MemNode::Address);
2707     Node* val = n->in(MemNode::ValueIn);
2708     Node* prev = n;
2709     bool done = false;
2710     // Walk the chain of StoreCMs eliminating ones that match.  As
2711     // long as it's a chain of single users then the optimization is
2712     // safe.  Eliminating partially redundant StoreCMs would require
2713     // cloning copies down the other paths.
2714     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2715       if (adr == mem->in(MemNode::Address) &&
2716           val == mem->in(MemNode::ValueIn)) {
2717         // redundant StoreCM
2718         if (mem->req() > MemNode::OopStore) {
2719           // Hasn't been processed by this code yet.
2720           n->add_prec(mem->in(MemNode::OopStore));
2721         } else {
2722           // Already converted to precedence edge
2723           for (uint i = mem->req(); i < mem->len(); i++) {
2724             // Accumulate any precedence edges
2725             if (mem->in(i) != NULL) {
2726               n->add_prec(mem->in(i));
2727             }
2728           }
2729           // Everything above this point has been processed.
2730           done = true;
2731         }
2732         // Eliminate the previous StoreCM
2733         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2734         assert(mem->outcnt() == 0, "should be dead");
2735         mem->disconnect_inputs(NULL, this);
2736       } else {
2737         prev = mem;
2738       }
2739       mem = prev->in(MemNode::Memory);
2740     }
2741   }
2742 }
2743 
2744 
2745 //------------------------------final_graph_reshaping_impl----------------------
2746 // Implement items 1-5 from final_graph_reshaping below.
2747 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2748 
2749   if ( n->outcnt() == 0 ) return; // dead node
2750   uint nop = n->Opcode();
2751 
2752   // Check for 2-input instruction with "last use" on right input.
2753   // Swap to left input.  Implements item (2).
2754   if( n->req() == 3 &&          // two-input instruction
2755       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2756       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2757       n->in(2)->outcnt() == 1 &&// right use IS a last use
2758       !n->in(2)->is_Con() ) {   // right use is not a constant
2759     // Check for commutative opcode
2760     switch( nop ) {
2761     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2762     case Op_MaxI:  case Op_MinI:
2763     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2764     case Op_AndL:  case Op_XorL:  case Op_OrL:
2765     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2766       // Move "last use" input to left by swapping inputs
2767       n->swap_edges(1, 2);
2768       break;
2769     }
2770     default:
2771       break;
2772     }
2773   }
2774 
2775 #ifdef ASSERT
2776   if( n->is_Mem() ) {
2777     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2778     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2779             // oop will be recorded in oop map if load crosses safepoint
2780             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2781                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2782             "raw memory operations should have control edge");
2783   }
2784 #endif
2785   // Count FPU ops and common calls, implements item (3)
2786   switch( nop ) {
2787   // Count all float operations that may use FPU
2788   case Op_AddF:
2789   case Op_SubF:
2790   case Op_MulF:
2791   case Op_DivF:
2792   case Op_NegF:
2793   case Op_ModF:
2794   case Op_ConvI2F:
2795   case Op_ConF:
2796   case Op_CmpF:
2797   case Op_CmpF3:
2798   // case Op_ConvL2F: // longs are split into 32-bit halves
2799     frc.inc_float_count();
2800     break;
2801 
2802   case Op_ConvF2D:
2803   case Op_ConvD2F:
2804     frc.inc_float_count();
2805     frc.inc_double_count();
2806     break;
2807 
2808   // Count all double operations that may use FPU
2809   case Op_AddD:
2810   case Op_SubD:
2811   case Op_MulD:
2812   case Op_DivD:
2813   case Op_NegD:
2814   case Op_ModD:
2815   case Op_ConvI2D:
2816   case Op_ConvD2I:
2817   // case Op_ConvL2D: // handled by leaf call
2818   // case Op_ConvD2L: // handled by leaf call
2819   case Op_ConD:
2820   case Op_CmpD:
2821   case Op_CmpD3:
2822     frc.inc_double_count();
2823     break;
2824   case Op_Opaque1:              // Remove Opaque Nodes before matching
2825   case Op_Opaque2:              // Remove Opaque Nodes before matching
2826   case Op_Opaque3:
2827     n->subsume_by(n->in(1), this);
2828     break;
2829   case Op_CallStaticJava:
2830   case Op_CallJava:
2831   case Op_CallDynamicJava:
2832     frc.inc_java_call_count(); // Count java call site;
2833   case Op_CallRuntime:
2834   case Op_CallLeaf:
2835   case Op_CallLeafNoFP: {
2836     assert (n->is_Call(), "");
2837     CallNode *call = n->as_Call();
2838     // Count call sites where the FP mode bit would have to be flipped.
2839     // Do not count uncommon runtime calls:
2840     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2841     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2842     if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
2843       frc.inc_call_count();   // Count the call site
2844     } else {                  // See if uncommon argument is shared
2845       Node *n = call->in(TypeFunc::Parms);
2846       int nop = n->Opcode();
2847       // Clone shared simple arguments to uncommon calls, item (1).
2848       if (n->outcnt() > 1 &&
2849           !n->is_Proj() &&
2850           nop != Op_CreateEx &&
2851           nop != Op_CheckCastPP &&
2852           nop != Op_DecodeN &&
2853           nop != Op_DecodeNKlass &&
2854           !n->is_Mem() &&
2855           !n->is_Phi()) {
2856         Node *x = n->clone();
2857         call->set_req(TypeFunc::Parms, x);
2858       }
2859     }
2860     break;
2861   }
2862 
2863   case Op_StoreD:
2864   case Op_LoadD:
2865   case Op_LoadD_unaligned:
2866     frc.inc_double_count();
2867     goto handle_mem;
2868   case Op_StoreF:
2869   case Op_LoadF:
2870     frc.inc_float_count();
2871     goto handle_mem;
2872 
2873   case Op_StoreCM:
2874     {
2875       // Convert OopStore dependence into precedence edge
2876       Node* prec = n->in(MemNode::OopStore);
2877       n->del_req(MemNode::OopStore);
2878       n->add_prec(prec);
2879       eliminate_redundant_card_marks(n);
2880     }
2881 
2882     // fall through
2883 
2884   case Op_StoreB:
2885   case Op_StoreC:
2886   case Op_StorePConditional:
2887   case Op_StoreI:
2888   case Op_StoreL:
2889   case Op_StoreIConditional:
2890   case Op_StoreLConditional:
2891   case Op_CompareAndSwapB:
2892   case Op_CompareAndSwapS:
2893   case Op_CompareAndSwapI:
2894   case Op_CompareAndSwapL:
2895   case Op_CompareAndSwapP:
2896   case Op_CompareAndSwapN:
2897   case Op_WeakCompareAndSwapB:
2898   case Op_WeakCompareAndSwapS:
2899   case Op_WeakCompareAndSwapI:
2900   case Op_WeakCompareAndSwapL:
2901   case Op_WeakCompareAndSwapP:
2902   case Op_WeakCompareAndSwapN:
2903   case Op_CompareAndExchangeB:
2904   case Op_CompareAndExchangeS:
2905   case Op_CompareAndExchangeI:
2906   case Op_CompareAndExchangeL:
2907   case Op_CompareAndExchangeP:
2908   case Op_CompareAndExchangeN:
2909   case Op_GetAndAddS:
2910   case Op_GetAndAddB:
2911   case Op_GetAndAddI:
2912   case Op_GetAndAddL:
2913   case Op_GetAndSetS:
2914   case Op_GetAndSetB:
2915   case Op_GetAndSetI:
2916   case Op_GetAndSetL:
2917   case Op_GetAndSetP:
2918   case Op_GetAndSetN:
2919   case Op_StoreP:
2920   case Op_StoreN:
2921   case Op_StoreNKlass:
2922   case Op_LoadB:
2923   case Op_LoadUB:
2924   case Op_LoadUS:
2925   case Op_LoadI:
2926   case Op_LoadKlass:
2927   case Op_LoadNKlass:
2928   case Op_LoadL:
2929   case Op_LoadL_unaligned:
2930   case Op_LoadPLocked:
2931   case Op_LoadP:
2932   case Op_LoadN:
2933   case Op_LoadRange:
2934   case Op_LoadS: {
2935   handle_mem:
2936 #ifdef ASSERT
2937     if( VerifyOptoOopOffsets ) {
2938       assert( n->is_Mem(), "" );
2939       MemNode *mem  = (MemNode*)n;
2940       // Check to see if address types have grounded out somehow.
2941       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2942       assert( !tp || oop_offset_is_sane(tp), "" );
2943     }
2944 #endif
2945     break;
2946   }
2947 
2948   case Op_AddP: {               // Assert sane base pointers
2949     Node *addp = n->in(AddPNode::Address);
2950     assert( !addp->is_AddP() ||
2951             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2952             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2953             "Base pointers must match (addp %u)", addp->_idx );
2954 #ifdef _LP64
2955     if ((UseCompressedOops || UseCompressedClassPointers) &&
2956         addp->Opcode() == Op_ConP &&
2957         addp == n->in(AddPNode::Base) &&
2958         n->in(AddPNode::Offset)->is_Con()) {
2959       // If the transformation of ConP to ConN+DecodeN is beneficial depends
2960       // on the platform and on the compressed oops mode.
2961       // Use addressing with narrow klass to load with offset on x86.
2962       // Some platforms can use the constant pool to load ConP.
2963       // Do this transformation here since IGVN will convert ConN back to ConP.
2964       const Type* t = addp->bottom_type();
2965       bool is_oop   = t->isa_oopptr() != NULL;
2966       bool is_klass = t->isa_klassptr() != NULL;
2967 
2968       if ((is_oop   && Matcher::const_oop_prefer_decode()  ) ||
2969           (is_klass && Matcher::const_klass_prefer_decode())) {
2970         Node* nn = NULL;
2971 
2972         int op = is_oop ? Op_ConN : Op_ConNKlass;
2973 
2974         // Look for existing ConN node of the same exact type.
2975         Node* r  = root();
2976         uint cnt = r->outcnt();
2977         for (uint i = 0; i < cnt; i++) {
2978           Node* m = r->raw_out(i);
2979           if (m!= NULL && m->Opcode() == op &&
2980               m->bottom_type()->make_ptr() == t) {
2981             nn = m;
2982             break;
2983           }
2984         }
2985         if (nn != NULL) {
2986           // Decode a narrow oop to match address
2987           // [R12 + narrow_oop_reg<<3 + offset]
2988           if (is_oop) {
2989             nn = new DecodeNNode(nn, t);
2990           } else {
2991             nn = new DecodeNKlassNode(nn, t);
2992           }
2993           // Check for succeeding AddP which uses the same Base.
2994           // Otherwise we will run into the assertion above when visiting that guy.
2995           for (uint i = 0; i < n->outcnt(); ++i) {
2996             Node *out_i = n->raw_out(i);
2997             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
2998               out_i->set_req(AddPNode::Base, nn);
2999 #ifdef ASSERT
3000               for (uint j = 0; j < out_i->outcnt(); ++j) {
3001                 Node *out_j = out_i->raw_out(j);
3002                 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3003                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3004               }
3005 #endif
3006             }
3007           }
3008           n->set_req(AddPNode::Base, nn);
3009           n->set_req(AddPNode::Address, nn);
3010           if (addp->outcnt() == 0) {
3011             addp->disconnect_inputs(NULL, this);
3012           }
3013         }
3014       }
3015     }
3016 #endif
3017     // platform dependent reshaping of the address expression
3018     reshape_address(n->as_AddP());
3019     break;
3020   }
3021 
3022   case Op_CastPP: {
3023     // Remove CastPP nodes to gain more freedom during scheduling but
3024     // keep the dependency they encode as control or precedence edges
3025     // (if control is set already) on memory operations. Some CastPP
3026     // nodes don't have a control (don't carry a dependency): skip
3027     // those.
3028     if (n->in(0) != NULL) {
3029       ResourceMark rm;
3030       Unique_Node_List wq;
3031       wq.push(n);
3032       for (uint next = 0; next < wq.size(); ++next) {
3033         Node *m = wq.at(next);
3034         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3035           Node* use = m->fast_out(i);
3036           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
3037             use->ensure_control_or_add_prec(n->in(0));
3038           } else {
3039             switch(use->Opcode()) {
3040             case Op_AddP:
3041             case Op_DecodeN:
3042             case Op_DecodeNKlass:
3043             case Op_CheckCastPP:
3044             case Op_CastPP:
3045               wq.push(use);
3046               break;
3047             }
3048           }
3049         }
3050       }
3051     }
3052     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3053     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3054       Node* in1 = n->in(1);
3055       const Type* t = n->bottom_type();
3056       Node* new_in1 = in1->clone();
3057       new_in1->as_DecodeN()->set_type(t);
3058 
3059       if (!Matcher::narrow_oop_use_complex_address()) {
3060         //
3061         // x86, ARM and friends can handle 2 adds in addressing mode
3062         // and Matcher can fold a DecodeN node into address by using
3063         // a narrow oop directly and do implicit NULL check in address:
3064         //
3065         // [R12 + narrow_oop_reg<<3 + offset]
3066         // NullCheck narrow_oop_reg
3067         //
3068         // On other platforms (Sparc) we have to keep new DecodeN node and
3069         // use it to do implicit NULL check in address:
3070         //
3071         // decode_not_null narrow_oop_reg, base_reg
3072         // [base_reg + offset]
3073         // NullCheck base_reg
3074         //
3075         // Pin the new DecodeN node to non-null path on these platform (Sparc)
3076         // to keep the information to which NULL check the new DecodeN node
3077         // corresponds to use it as value in implicit_null_check().
3078         //
3079         new_in1->set_req(0, n->in(0));
3080       }
3081 
3082       n->subsume_by(new_in1, this);
3083       if (in1->outcnt() == 0) {
3084         in1->disconnect_inputs(NULL, this);
3085       }
3086     } else {
3087       n->subsume_by(n->in(1), this);
3088       if (n->outcnt() == 0) {
3089         n->disconnect_inputs(NULL, this);
3090       }
3091     }
3092     break;
3093   }
3094 #ifdef _LP64
3095   case Op_CmpP:
3096     // Do this transformation here to preserve CmpPNode::sub() and
3097     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3098     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3099       Node* in1 = n->in(1);
3100       Node* in2 = n->in(2);
3101       if (!in1->is_DecodeNarrowPtr()) {
3102         in2 = in1;
3103         in1 = n->in(2);
3104       }
3105       assert(in1->is_DecodeNarrowPtr(), "sanity");
3106 
3107       Node* new_in2 = NULL;
3108       if (in2->is_DecodeNarrowPtr()) {
3109         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3110         new_in2 = in2->in(1);
3111       } else if (in2->Opcode() == Op_ConP) {
3112         const Type* t = in2->bottom_type();
3113         if (t == TypePtr::NULL_PTR) {
3114           assert(in1->is_DecodeN(), "compare klass to null?");
3115           // Don't convert CmpP null check into CmpN if compressed
3116           // oops implicit null check is not generated.
3117           // This will allow to generate normal oop implicit null check.
3118           if (Matcher::gen_narrow_oop_implicit_null_checks())
3119             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3120           //
3121           // This transformation together with CastPP transformation above
3122           // will generated code for implicit NULL checks for compressed oops.
3123           //
3124           // The original code after Optimize()
3125           //
3126           //    LoadN memory, narrow_oop_reg
3127           //    decode narrow_oop_reg, base_reg
3128           //    CmpP base_reg, NULL
3129           //    CastPP base_reg // NotNull
3130           //    Load [base_reg + offset], val_reg
3131           //
3132           // after these transformations will be
3133           //
3134           //    LoadN memory, narrow_oop_reg
3135           //    CmpN narrow_oop_reg, NULL
3136           //    decode_not_null narrow_oop_reg, base_reg
3137           //    Load [base_reg + offset], val_reg
3138           //
3139           // and the uncommon path (== NULL) will use narrow_oop_reg directly
3140           // since narrow oops can be used in debug info now (see the code in
3141           // final_graph_reshaping_walk()).
3142           //
3143           // At the end the code will be matched to
3144           // on x86:
3145           //
3146           //    Load_narrow_oop memory, narrow_oop_reg
3147           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3148           //    NullCheck narrow_oop_reg
3149           //
3150           // and on sparc:
3151           //
3152           //    Load_narrow_oop memory, narrow_oop_reg
3153           //    decode_not_null narrow_oop_reg, base_reg
3154           //    Load [base_reg + offset], val_reg
3155           //    NullCheck base_reg
3156           //
3157         } else if (t->isa_oopptr()) {
3158           new_in2 = ConNode::make(t->make_narrowoop());
3159         } else if (t->isa_klassptr()) {
3160           new_in2 = ConNode::make(t->make_narrowklass());
3161         }
3162       }
3163       if (new_in2 != NULL) {
3164         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3165         n->subsume_by(cmpN, this);
3166         if (in1->outcnt() == 0) {
3167           in1->disconnect_inputs(NULL, this);
3168         }
3169         if (in2->outcnt() == 0) {
3170           in2->disconnect_inputs(NULL, this);
3171         }
3172       }
3173     }
3174     break;
3175 
3176   case Op_DecodeN:
3177   case Op_DecodeNKlass:
3178     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3179     // DecodeN could be pinned when it can't be fold into
3180     // an address expression, see the code for Op_CastPP above.
3181     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3182     break;
3183 
3184   case Op_EncodeP:
3185   case Op_EncodePKlass: {
3186     Node* in1 = n->in(1);
3187     if (in1->is_DecodeNarrowPtr()) {
3188       n->subsume_by(in1->in(1), this);
3189     } else if (in1->Opcode() == Op_ConP) {
3190       const Type* t = in1->bottom_type();
3191       if (t == TypePtr::NULL_PTR) {
3192         assert(t->isa_oopptr(), "null klass?");
3193         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3194       } else if (t->isa_oopptr()) {
3195         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3196       } else if (t->isa_klassptr()) {
3197         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3198       }
3199     }
3200     if (in1->outcnt() == 0) {
3201       in1->disconnect_inputs(NULL, this);
3202     }
3203     break;
3204   }
3205 
3206   case Op_Proj: {
3207     if (OptimizeStringConcat) {
3208       ProjNode* p = n->as_Proj();
3209       if (p->_is_io_use) {
3210         // Separate projections were used for the exception path which
3211         // are normally removed by a late inline.  If it wasn't inlined
3212         // then they will hang around and should just be replaced with
3213         // the original one.
3214         Node* proj = NULL;
3215         // Replace with just one
3216         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3217           Node *use = i.get();
3218           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3219             proj = use;
3220             break;
3221           }
3222         }
3223         assert(proj != NULL, "must be found");
3224         p->subsume_by(proj, this);
3225       }
3226     }
3227     break;
3228   }
3229 
3230   case Op_Phi:
3231     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3232       // The EncodeP optimization may create Phi with the same edges
3233       // for all paths. It is not handled well by Register Allocator.
3234       Node* unique_in = n->in(1);
3235       assert(unique_in != NULL, "");
3236       uint cnt = n->req();
3237       for (uint i = 2; i < cnt; i++) {
3238         Node* m = n->in(i);
3239         assert(m != NULL, "");
3240         if (unique_in != m)
3241           unique_in = NULL;
3242       }
3243       if (unique_in != NULL) {
3244         n->subsume_by(unique_in, this);
3245       }
3246     }
3247     break;
3248 
3249 #endif
3250 
3251 #ifdef ASSERT
3252   case Op_CastII:
3253     // Verify that all range check dependent CastII nodes were removed.
3254     if (n->isa_CastII()->has_range_check()) {
3255       n->dump(3);
3256       assert(false, "Range check dependent CastII node was not removed");
3257     }
3258     break;
3259 #endif
3260 
3261   case Op_ModI:
3262     if (UseDivMod) {
3263       // Check if a%b and a/b both exist
3264       Node* d = n->find_similar(Op_DivI);
3265       if (d) {
3266         // Replace them with a fused divmod if supported
3267         if (Matcher::has_match_rule(Op_DivModI)) {
3268           DivModINode* divmod = DivModINode::make(n);
3269           d->subsume_by(divmod->div_proj(), this);
3270           n->subsume_by(divmod->mod_proj(), this);
3271         } else {
3272           // replace a%b with a-((a/b)*b)
3273           Node* mult = new MulINode(d, d->in(2));
3274           Node* sub  = new SubINode(d->in(1), mult);
3275           n->subsume_by(sub, this);
3276         }
3277       }
3278     }
3279     break;
3280 
3281   case Op_ModL:
3282     if (UseDivMod) {
3283       // Check if a%b and a/b both exist
3284       Node* d = n->find_similar(Op_DivL);
3285       if (d) {
3286         // Replace them with a fused divmod if supported
3287         if (Matcher::has_match_rule(Op_DivModL)) {
3288           DivModLNode* divmod = DivModLNode::make(n);
3289           d->subsume_by(divmod->div_proj(), this);
3290           n->subsume_by(divmod->mod_proj(), this);
3291         } else {
3292           // replace a%b with a-((a/b)*b)
3293           Node* mult = new MulLNode(d, d->in(2));
3294           Node* sub  = new SubLNode(d->in(1), mult);
3295           n->subsume_by(sub, this);
3296         }
3297       }
3298     }
3299     break;
3300 
3301   case Op_LoadVector:
3302   case Op_StoreVector:
3303     break;
3304 
3305   case Op_AddReductionVI:
3306   case Op_AddReductionVL:
3307   case Op_AddReductionVF:
3308   case Op_AddReductionVD:
3309   case Op_MulReductionVI:
3310   case Op_MulReductionVL:
3311   case Op_MulReductionVF:
3312   case Op_MulReductionVD:
3313     break;
3314 
3315   case Op_PackB:
3316   case Op_PackS:
3317   case Op_PackI:
3318   case Op_PackF:
3319   case Op_PackL:
3320   case Op_PackD:
3321     if (n->req()-1 > 2) {
3322       // Replace many operand PackNodes with a binary tree for matching
3323       PackNode* p = (PackNode*) n;
3324       Node* btp = p->binary_tree_pack(1, n->req());
3325       n->subsume_by(btp, this);
3326     }
3327     break;
3328   case Op_Loop:
3329   case Op_CountedLoop:
3330   case Op_OuterStripMinedLoop:
3331     if (n->as_Loop()->is_inner_loop()) {
3332       frc.inc_inner_loop_count();
3333     }
3334     n->as_Loop()->verify_strip_mined(0);
3335     break;
3336   case Op_LShiftI:
3337   case Op_RShiftI:
3338   case Op_URShiftI:
3339   case Op_LShiftL:
3340   case Op_RShiftL:
3341   case Op_URShiftL:
3342     if (Matcher::need_masked_shift_count) {
3343       // The cpu's shift instructions don't restrict the count to the
3344       // lower 5/6 bits. We need to do the masking ourselves.
3345       Node* in2 = n->in(2);
3346       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3347       const TypeInt* t = in2->find_int_type();
3348       if (t != NULL && t->is_con()) {
3349         juint shift = t->get_con();
3350         if (shift > mask) { // Unsigned cmp
3351           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3352         }
3353       } else {
3354         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3355           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3356           n->set_req(2, shift);
3357         }
3358       }
3359       if (in2->outcnt() == 0) { // Remove dead node
3360         in2->disconnect_inputs(NULL, this);
3361       }
3362     }
3363     break;
3364   case Op_MemBarStoreStore:
3365   case Op_MemBarRelease:
3366     // Break the link with AllocateNode: it is no longer useful and
3367     // confuses register allocation.
3368     if (n->req() > MemBarNode::Precedent) {
3369       n->set_req(MemBarNode::Precedent, top());
3370     }
3371     break;
3372   case Op_RangeCheck: {
3373     RangeCheckNode* rc = n->as_RangeCheck();
3374     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3375     n->subsume_by(iff, this);
3376     frc._tests.push(iff);
3377     break;
3378   }
3379   case Op_ConvI2L: {
3380     if (!Matcher::convi2l_type_required) {
3381       // Code generation on some platforms doesn't need accurate
3382       // ConvI2L types. Widening the type can help remove redundant
3383       // address computations.
3384       n->as_Type()->set_type(TypeLong::INT);
3385       ResourceMark rm;
3386       Node_List wq;
3387       wq.push(n);
3388       for (uint next = 0; next < wq.size(); next++) {
3389         Node *m = wq.at(next);
3390 
3391         for(;;) {
3392           // Loop over all nodes with identical inputs edges as m
3393           Node* k = m->find_similar(m->Opcode());
3394           if (k == NULL) {
3395             break;
3396           }
3397           // Push their uses so we get a chance to remove node made
3398           // redundant
3399           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3400             Node* u = k->fast_out(i);
3401             assert(!wq.contains(u), "shouldn't process one node several times");
3402             if (u->Opcode() == Op_LShiftL ||
3403                 u->Opcode() == Op_AddL ||
3404                 u->Opcode() == Op_SubL ||
3405                 u->Opcode() == Op_AddP) {
3406               wq.push(u);
3407             }
3408           }
3409           // Replace all nodes with identical edges as m with m
3410           k->subsume_by(m, this);
3411         }
3412       }
3413     }
3414     break;
3415   }
3416 #ifdef ASSERT
3417   case Op_ValueTypePtr:
3418   case Op_ValueType: {
3419     n->dump(-1);
3420     assert(false, "value type node was not removed");
3421     break;
3422   }
3423 #endif
3424   default:
3425     assert( !n->is_Call(), "" );
3426     assert( !n->is_Mem(), "" );
3427     assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3428     break;
3429   }
3430 
3431   // Collect CFG split points
3432   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3433     frc._tests.push(n);
3434   }
3435 }
3436 
3437 //------------------------------final_graph_reshaping_walk---------------------
3438 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3439 // requires that the walk visits a node's inputs before visiting the node.
3440 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3441   ResourceArea *area = Thread::current()->resource_area();
3442   Unique_Node_List sfpt(area);
3443 
3444   frc._visited.set(root->_idx); // first, mark node as visited
3445   uint cnt = root->req();
3446   Node *n = root;
3447   uint  i = 0;
3448   while (true) {
3449     if (i < cnt) {
3450       // Place all non-visited non-null inputs onto stack
3451       Node* m = n->in(i);
3452       ++i;
3453       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3454         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3455           // compute worst case interpreter size in case of a deoptimization
3456           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3457 
3458           sfpt.push(m);
3459         }
3460         cnt = m->req();
3461         nstack.push(n, i); // put on stack parent and next input's index
3462         n = m;
3463         i = 0;
3464       }
3465     } else {
3466       // Now do post-visit work
3467       final_graph_reshaping_impl( n, frc );
3468       if (nstack.is_empty())
3469         break;             // finished
3470       n = nstack.node();   // Get node from stack
3471       cnt = n->req();
3472       i = nstack.index();
3473       nstack.pop();        // Shift to the next node on stack
3474     }
3475   }
3476 
3477   // Skip next transformation if compressed oops are not used.
3478   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3479       (!UseCompressedOops && !UseCompressedClassPointers))
3480     return;
3481 
3482   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3483   // It could be done for an uncommon traps or any safepoints/calls
3484   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3485   while (sfpt.size() > 0) {
3486     n = sfpt.pop();
3487     JVMState *jvms = n->as_SafePoint()->jvms();
3488     assert(jvms != NULL, "sanity");
3489     int start = jvms->debug_start();
3490     int end   = n->req();
3491     bool is_uncommon = (n->is_CallStaticJava() &&
3492                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3493     for (int j = start; j < end; j++) {
3494       Node* in = n->in(j);
3495       if (in->is_DecodeNarrowPtr()) {
3496         bool safe_to_skip = true;
3497         if (!is_uncommon ) {
3498           // Is it safe to skip?
3499           for (uint i = 0; i < in->outcnt(); i++) {
3500             Node* u = in->raw_out(i);
3501             if (!u->is_SafePoint() ||
3502                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3503               safe_to_skip = false;
3504             }
3505           }
3506         }
3507         if (safe_to_skip) {
3508           n->set_req(j, in->in(1));
3509         }
3510         if (in->outcnt() == 0) {
3511           in->disconnect_inputs(NULL, this);
3512         }
3513       }
3514     }
3515   }
3516 }
3517 
3518 //------------------------------final_graph_reshaping--------------------------
3519 // Final Graph Reshaping.
3520 //
3521 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3522 //     and not commoned up and forced early.  Must come after regular
3523 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3524 //     inputs to Loop Phis; these will be split by the allocator anyways.
3525 //     Remove Opaque nodes.
3526 // (2) Move last-uses by commutative operations to the left input to encourage
3527 //     Intel update-in-place two-address operations and better register usage
3528 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3529 //     calls canonicalizing them back.
3530 // (3) Count the number of double-precision FP ops, single-precision FP ops
3531 //     and call sites.  On Intel, we can get correct rounding either by
3532 //     forcing singles to memory (requires extra stores and loads after each
3533 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3534 //     clearing the mode bit around call sites).  The mode bit is only used
3535 //     if the relative frequency of single FP ops to calls is low enough.
3536 //     This is a key transform for SPEC mpeg_audio.
3537 // (4) Detect infinite loops; blobs of code reachable from above but not
3538 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3539 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3540 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3541 //     Detection is by looking for IfNodes where only 1 projection is
3542 //     reachable from below or CatchNodes missing some targets.
3543 // (5) Assert for insane oop offsets in debug mode.
3544 
3545 bool Compile::final_graph_reshaping() {
3546   // an infinite loop may have been eliminated by the optimizer,
3547   // in which case the graph will be empty.
3548   if (root()->req() == 1) {
3549     record_method_not_compilable("trivial infinite loop");
3550     return true;
3551   }
3552 
3553   // Expensive nodes have their control input set to prevent the GVN
3554   // from freely commoning them. There's no GVN beyond this point so
3555   // no need to keep the control input. We want the expensive nodes to
3556   // be freely moved to the least frequent code path by gcm.
3557   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3558   for (int i = 0; i < expensive_count(); i++) {
3559     _expensive_nodes->at(i)->set_req(0, NULL);
3560   }
3561 
3562   Final_Reshape_Counts frc;
3563 
3564   // Visit everybody reachable!
3565   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3566   Node_Stack nstack(live_nodes() >> 1);
3567   final_graph_reshaping_walk(nstack, root(), frc);
3568 
3569   // Check for unreachable (from below) code (i.e., infinite loops).
3570   for( uint i = 0; i < frc._tests.size(); i++ ) {
3571     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3572     // Get number of CFG targets.
3573     // Note that PCTables include exception targets after calls.
3574     uint required_outcnt = n->required_outcnt();
3575     if (n->outcnt() != required_outcnt) {
3576       // Check for a few special cases.  Rethrow Nodes never take the
3577       // 'fall-thru' path, so expected kids is 1 less.
3578       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3579         if (n->in(0)->in(0)->is_Call()) {
3580           CallNode *call = n->in(0)->in(0)->as_Call();
3581           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3582             required_outcnt--;      // Rethrow always has 1 less kid
3583           } else if (call->req() > TypeFunc::Parms &&
3584                      call->is_CallDynamicJava()) {
3585             // Check for null receiver. In such case, the optimizer has
3586             // detected that the virtual call will always result in a null
3587             // pointer exception. The fall-through projection of this CatchNode
3588             // will not be populated.
3589             Node *arg0 = call->in(TypeFunc::Parms);
3590             if (arg0->is_Type() &&
3591                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3592               required_outcnt--;
3593             }
3594           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3595                      call->req() > TypeFunc::Parms+1 &&
3596                      call->is_CallStaticJava()) {
3597             // Check for negative array length. In such case, the optimizer has
3598             // detected that the allocation attempt will always result in an
3599             // exception. There is no fall-through projection of this CatchNode .
3600             Node *arg1 = call->in(TypeFunc::Parms+1);
3601             if (arg1->is_Type() &&
3602                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3603               required_outcnt--;
3604             }
3605           }
3606         }
3607       }
3608       // Recheck with a better notion of 'required_outcnt'
3609       if (n->outcnt() != required_outcnt) {
3610         record_method_not_compilable("malformed control flow");
3611         return true;            // Not all targets reachable!
3612       }
3613     }
3614     // Check that I actually visited all kids.  Unreached kids
3615     // must be infinite loops.
3616     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3617       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3618         record_method_not_compilable("infinite loop");
3619         return true;            // Found unvisited kid; must be unreach
3620       }
3621 
3622     // Here so verification code in final_graph_reshaping_walk()
3623     // always see an OuterStripMinedLoopEnd
3624     if (n->is_OuterStripMinedLoopEnd()) {
3625       IfNode* init_iff = n->as_If();
3626       Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
3627       n->subsume_by(iff, this);
3628     }
3629   }
3630 
3631   // If original bytecodes contained a mixture of floats and doubles
3632   // check if the optimizer has made it homogenous, item (3).
3633   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3634       frc.get_float_count() > 32 &&
3635       frc.get_double_count() == 0 &&
3636       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3637     set_24_bit_selection_and_mode( false,  true );
3638   }
3639 
3640   set_java_calls(frc.get_java_call_count());
3641   set_inner_loops(frc.get_inner_loop_count());
3642 
3643   // No infinite loops, no reason to bail out.
3644   return false;
3645 }
3646 
3647 //-----------------------------too_many_traps----------------------------------
3648 // Report if there are too many traps at the current method and bci.
3649 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3650 bool Compile::too_many_traps(ciMethod* method,
3651                              int bci,
3652                              Deoptimization::DeoptReason reason) {
3653   ciMethodData* md = method->method_data();
3654   if (md->is_empty()) {
3655     // Assume the trap has not occurred, or that it occurred only
3656     // because of a transient condition during start-up in the interpreter.
3657     return false;
3658   }
3659   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3660   if (md->has_trap_at(bci, m, reason) != 0) {
3661     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3662     // Also, if there are multiple reasons, or if there is no per-BCI record,
3663     // assume the worst.
3664     if (log())
3665       log()->elem("observe trap='%s' count='%d'",
3666                   Deoptimization::trap_reason_name(reason),
3667                   md->trap_count(reason));
3668     return true;
3669   } else {
3670     // Ignore method/bci and see if there have been too many globally.
3671     return too_many_traps(reason, md);
3672   }
3673 }
3674 
3675 // Less-accurate variant which does not require a method and bci.
3676 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3677                              ciMethodData* logmd) {
3678   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3679     // Too many traps globally.
3680     // Note that we use cumulative trap_count, not just md->trap_count.
3681     if (log()) {
3682       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3683       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3684                   Deoptimization::trap_reason_name(reason),
3685                   mcount, trap_count(reason));
3686     }
3687     return true;
3688   } else {
3689     // The coast is clear.
3690     return false;
3691   }
3692 }
3693 
3694 //--------------------------too_many_recompiles--------------------------------
3695 // Report if there are too many recompiles at the current method and bci.
3696 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3697 // Is not eager to return true, since this will cause the compiler to use
3698 // Action_none for a trap point, to avoid too many recompilations.
3699 bool Compile::too_many_recompiles(ciMethod* method,
3700                                   int bci,
3701                                   Deoptimization::DeoptReason reason) {
3702   ciMethodData* md = method->method_data();
3703   if (md->is_empty()) {
3704     // Assume the trap has not occurred, or that it occurred only
3705     // because of a transient condition during start-up in the interpreter.
3706     return false;
3707   }
3708   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3709   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3710   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3711   Deoptimization::DeoptReason per_bc_reason
3712     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3713   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3714   if ((per_bc_reason == Deoptimization::Reason_none
3715        || md->has_trap_at(bci, m, reason) != 0)
3716       // The trap frequency measure we care about is the recompile count:
3717       && md->trap_recompiled_at(bci, m)
3718       && md->overflow_recompile_count() >= bc_cutoff) {
3719     // Do not emit a trap here if it has already caused recompilations.
3720     // Also, if there are multiple reasons, or if there is no per-BCI record,
3721     // assume the worst.
3722     if (log())
3723       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3724                   Deoptimization::trap_reason_name(reason),
3725                   md->trap_count(reason),
3726                   md->overflow_recompile_count());
3727     return true;
3728   } else if (trap_count(reason) != 0
3729              && decompile_count() >= m_cutoff) {
3730     // Too many recompiles globally, and we have seen this sort of trap.
3731     // Use cumulative decompile_count, not just md->decompile_count.
3732     if (log())
3733       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3734                   Deoptimization::trap_reason_name(reason),
3735                   md->trap_count(reason), trap_count(reason),
3736                   md->decompile_count(), decompile_count());
3737     return true;
3738   } else {
3739     // The coast is clear.
3740     return false;
3741   }
3742 }
3743 
3744 // Compute when not to trap. Used by matching trap based nodes and
3745 // NullCheck optimization.
3746 void Compile::set_allowed_deopt_reasons() {
3747   _allowed_reasons = 0;
3748   if (is_method_compilation()) {
3749     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3750       assert(rs < BitsPerInt, "recode bit map");
3751       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3752         _allowed_reasons |= nth_bit(rs);
3753       }
3754     }
3755   }
3756 }
3757 
3758 #ifndef PRODUCT
3759 //------------------------------verify_graph_edges---------------------------
3760 // Walk the Graph and verify that there is a one-to-one correspondence
3761 // between Use-Def edges and Def-Use edges in the graph.
3762 void Compile::verify_graph_edges(bool no_dead_code) {
3763   if (VerifyGraphEdges) {
3764     ResourceArea *area = Thread::current()->resource_area();
3765     Unique_Node_List visited(area);
3766     // Call recursive graph walk to check edges
3767     _root->verify_edges(visited);
3768     if (no_dead_code) {
3769       // Now make sure that no visited node is used by an unvisited node.
3770       bool dead_nodes = false;
3771       Unique_Node_List checked(area);
3772       while (visited.size() > 0) {
3773         Node* n = visited.pop();
3774         checked.push(n);
3775         for (uint i = 0; i < n->outcnt(); i++) {
3776           Node* use = n->raw_out(i);
3777           if (checked.member(use))  continue;  // already checked
3778           if (visited.member(use))  continue;  // already in the graph
3779           if (use->is_Con())        continue;  // a dead ConNode is OK
3780           // At this point, we have found a dead node which is DU-reachable.
3781           if (!dead_nodes) {
3782             tty->print_cr("*** Dead nodes reachable via DU edges:");
3783             dead_nodes = true;
3784           }
3785           use->dump(2);
3786           tty->print_cr("---");
3787           checked.push(use);  // No repeats; pretend it is now checked.
3788         }
3789       }
3790       assert(!dead_nodes, "using nodes must be reachable from root");
3791     }
3792   }
3793 }
3794 
3795 // Verify GC barriers consistency
3796 // Currently supported:
3797 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3798 void Compile::verify_barriers() {
3799   if (UseG1GC) {
3800     // Verify G1 pre-barriers
3801     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active());
3802 
3803     ResourceArea *area = Thread::current()->resource_area();
3804     Unique_Node_List visited(area);
3805     Node_List worklist(area);
3806     // We're going to walk control flow backwards starting from the Root
3807     worklist.push(_root);
3808     while (worklist.size() > 0) {
3809       Node* x = worklist.pop();
3810       if (x == NULL || x == top()) continue;
3811       if (visited.member(x)) {
3812         continue;
3813       } else {
3814         visited.push(x);
3815       }
3816 
3817       if (x->is_Region()) {
3818         for (uint i = 1; i < x->req(); i++) {
3819           worklist.push(x->in(i));
3820         }
3821       } else {
3822         worklist.push(x->in(0));
3823         // We are looking for the pattern:
3824         //                            /->ThreadLocal
3825         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3826         //              \->ConI(0)
3827         // We want to verify that the If and the LoadB have the same control
3828         // See GraphKit::g1_write_barrier_pre()
3829         if (x->is_If()) {
3830           IfNode *iff = x->as_If();
3831           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3832             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3833             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3834                 && cmp->in(1)->is_Load()) {
3835               LoadNode* load = cmp->in(1)->as_Load();
3836               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3837                   && load->in(2)->in(3)->is_Con()
3838                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3839 
3840                 Node* if_ctrl = iff->in(0);
3841                 Node* load_ctrl = load->in(0);
3842 
3843                 if (if_ctrl != load_ctrl) {
3844                   // Skip possible CProj->NeverBranch in infinite loops
3845                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3846                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3847                     if_ctrl = if_ctrl->in(0)->in(0);
3848                   }
3849                 }
3850                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3851               }
3852             }
3853           }
3854         }
3855       }
3856     }
3857   }
3858 }
3859 
3860 #endif
3861 
3862 // The Compile object keeps track of failure reasons separately from the ciEnv.
3863 // This is required because there is not quite a 1-1 relation between the
3864 // ciEnv and its compilation task and the Compile object.  Note that one
3865 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3866 // to backtrack and retry without subsuming loads.  Other than this backtracking
3867 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3868 // by the logic in C2Compiler.
3869 void Compile::record_failure(const char* reason) {
3870   if (log() != NULL) {
3871     log()->elem("failure reason='%s' phase='compile'", reason);
3872   }
3873   if (_failure_reason == NULL) {
3874     // Record the first failure reason.
3875     _failure_reason = reason;
3876   }
3877 
3878   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3879     C->print_method(PHASE_FAILURE);
3880   }
3881   _root = NULL;  // flush the graph, too
3882 }
3883 
3884 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3885   : TraceTime(name, accumulator, CITime, CITimeVerbose),
3886     _phase_name(name), _dolog(CITimeVerbose)
3887 {
3888   if (_dolog) {
3889     C = Compile::current();
3890     _log = C->log();
3891   } else {
3892     C = NULL;
3893     _log = NULL;
3894   }
3895   if (_log != NULL) {
3896     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3897     _log->stamp();
3898     _log->end_head();
3899   }
3900 }
3901 
3902 Compile::TracePhase::~TracePhase() {
3903 
3904   C = Compile::current();
3905   if (_dolog) {
3906     _log = C->log();
3907   } else {
3908     _log = NULL;
3909   }
3910 
3911 #ifdef ASSERT
3912   if (PrintIdealNodeCount) {
3913     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3914                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3915   }
3916 
3917   if (VerifyIdealNodeCount) {
3918     Compile::current()->print_missing_nodes();
3919   }
3920 #endif
3921 
3922   if (_log != NULL) {
3923     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3924   }
3925 }
3926 
3927 //=============================================================================
3928 // Two Constant's are equal when the type and the value are equal.
3929 bool Compile::Constant::operator==(const Constant& other) {
3930   if (type()          != other.type()         )  return false;
3931   if (can_be_reused() != other.can_be_reused())  return false;
3932   // For floating point values we compare the bit pattern.
3933   switch (type()) {
3934   case T_INT:
3935   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3936   case T_LONG:
3937   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3938   case T_OBJECT:
3939   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3940   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3941   case T_METADATA: return (_v._metadata == other._v._metadata);
3942   default: ShouldNotReachHere(); return false;
3943   }
3944 }
3945 
3946 static int type_to_size_in_bytes(BasicType t) {
3947   switch (t) {
3948   case T_INT:     return sizeof(jint   );
3949   case T_LONG:    return sizeof(jlong  );
3950   case T_FLOAT:   return sizeof(jfloat );
3951   case T_DOUBLE:  return sizeof(jdouble);
3952   case T_METADATA: return sizeof(Metadata*);
3953     // We use T_VOID as marker for jump-table entries (labels) which
3954     // need an internal word relocation.
3955   case T_VOID:
3956   case T_ADDRESS:
3957   case T_OBJECT:  return sizeof(jobject);
3958   default:
3959     ShouldNotReachHere();
3960     return -1;
3961   }
3962 }
3963 
3964 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3965   // sort descending
3966   if (a->freq() > b->freq())  return -1;
3967   if (a->freq() < b->freq())  return  1;
3968   return 0;
3969 }
3970 
3971 void Compile::ConstantTable::calculate_offsets_and_size() {
3972   // First, sort the array by frequencies.
3973   _constants.sort(qsort_comparator);
3974 
3975 #ifdef ASSERT
3976   // Make sure all jump-table entries were sorted to the end of the
3977   // array (they have a negative frequency).
3978   bool found_void = false;
3979   for (int i = 0; i < _constants.length(); i++) {
3980     Constant con = _constants.at(i);
3981     if (con.type() == T_VOID)
3982       found_void = true;  // jump-tables
3983     else
3984       assert(!found_void, "wrong sorting");
3985   }
3986 #endif
3987 
3988   int offset = 0;
3989   for (int i = 0; i < _constants.length(); i++) {
3990     Constant* con = _constants.adr_at(i);
3991 
3992     // Align offset for type.
3993     int typesize = type_to_size_in_bytes(con->type());
3994     offset = align_up(offset, typesize);
3995     con->set_offset(offset);   // set constant's offset
3996 
3997     if (con->type() == T_VOID) {
3998       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3999       offset = offset + typesize * n->outcnt();  // expand jump-table
4000     } else {
4001       offset = offset + typesize;
4002     }
4003   }
4004 
4005   // Align size up to the next section start (which is insts; see
4006   // CodeBuffer::align_at_start).
4007   assert(_size == -1, "already set?");
4008   _size = align_up(offset, (int)CodeEntryAlignment);
4009 }
4010 
4011 void Compile::ConstantTable::emit(CodeBuffer& cb) {
4012   MacroAssembler _masm(&cb);
4013   for (int i = 0; i < _constants.length(); i++) {
4014     Constant con = _constants.at(i);
4015     address constant_addr = NULL;
4016     switch (con.type()) {
4017     case T_INT:    constant_addr = _masm.int_constant(   con.get_jint()   ); break;
4018     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
4019     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
4020     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
4021     case T_OBJECT: {
4022       jobject obj = con.get_jobject();
4023       int oop_index = _masm.oop_recorder()->find_index(obj);
4024       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
4025       break;
4026     }
4027     case T_ADDRESS: {
4028       address addr = (address) con.get_jobject();
4029       constant_addr = _masm.address_constant(addr);
4030       break;
4031     }
4032     // We use T_VOID as marker for jump-table entries (labels) which
4033     // need an internal word relocation.
4034     case T_VOID: {
4035       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
4036       // Fill the jump-table with a dummy word.  The real value is
4037       // filled in later in fill_jump_table.
4038       address dummy = (address) n;
4039       constant_addr = _masm.address_constant(dummy);
4040       // Expand jump-table
4041       for (uint i = 1; i < n->outcnt(); i++) {
4042         address temp_addr = _masm.address_constant(dummy + i);
4043         assert(temp_addr, "consts section too small");
4044       }
4045       break;
4046     }
4047     case T_METADATA: {
4048       Metadata* obj = con.get_metadata();
4049       int metadata_index = _masm.oop_recorder()->find_index(obj);
4050       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
4051       break;
4052     }
4053     default: ShouldNotReachHere();
4054     }
4055     assert(constant_addr, "consts section too small");
4056     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
4057             "must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
4058   }
4059 }
4060 
4061 int Compile::ConstantTable::find_offset(Constant& con) const {
4062   int idx = _constants.find(con);
4063   assert(idx != -1, "constant must be in constant table");
4064   int offset = _constants.at(idx).offset();
4065   assert(offset != -1, "constant table not emitted yet?");
4066   return offset;
4067 }
4068 
4069 void Compile::ConstantTable::add(Constant& con) {
4070   if (con.can_be_reused()) {
4071     int idx = _constants.find(con);
4072     if (idx != -1 && _constants.at(idx).can_be_reused()) {
4073       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
4074       return;
4075     }
4076   }
4077   (void) _constants.append(con);
4078 }
4079 
4080 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
4081   Block* b = Compile::current()->cfg()->get_block_for_node(n);
4082   Constant con(type, value, b->_freq);
4083   add(con);
4084   return con;
4085 }
4086 
4087 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
4088   Constant con(metadata);
4089   add(con);
4090   return con;
4091 }
4092 
4093 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
4094   jvalue value;
4095   BasicType type = oper->type()->basic_type();
4096   switch (type) {
4097   case T_LONG:    value.j = oper->constantL(); break;
4098   case T_FLOAT:   value.f = oper->constantF(); break;
4099   case T_DOUBLE:  value.d = oper->constantD(); break;
4100   case T_OBJECT:
4101   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
4102   case T_METADATA: return add((Metadata*)oper->constant()); break;
4103   default: guarantee(false, "unhandled type: %s", type2name(type));
4104   }
4105   return add(n, type, value);
4106 }
4107 
4108 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
4109   jvalue value;
4110   // We can use the node pointer here to identify the right jump-table
4111   // as this method is called from Compile::Fill_buffer right before
4112   // the MachNodes are emitted and the jump-table is filled (means the
4113   // MachNode pointers do not change anymore).
4114   value.l = (jobject) n;
4115   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
4116   add(con);
4117   return con;
4118 }
4119 
4120 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
4121   // If called from Compile::scratch_emit_size do nothing.
4122   if (Compile::current()->in_scratch_emit_size())  return;
4123 
4124   assert(labels.is_nonempty(), "must be");
4125   assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt());
4126 
4127   // Since MachConstantNode::constant_offset() also contains
4128   // table_base_offset() we need to subtract the table_base_offset()
4129   // to get the plain offset into the constant table.
4130   int offset = n->constant_offset() - table_base_offset();
4131 
4132   MacroAssembler _masm(&cb);
4133   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
4134 
4135   for (uint i = 0; i < n->outcnt(); i++) {
4136     address* constant_addr = &jump_table_base[i];
4137     assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i));
4138     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
4139     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
4140   }
4141 }
4142 
4143 //----------------------------static_subtype_check-----------------------------
4144 // Shortcut important common cases when superklass is exact:
4145 // (0) superklass is java.lang.Object (can occur in reflective code)
4146 // (1) subklass is already limited to a subtype of superklass => always ok
4147 // (2) subklass does not overlap with superklass => always fail
4148 // (3) superklass has NO subtypes and we can check with a simple compare.
4149 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
4150   if (StressReflectiveCode || superk == NULL || subk == NULL) {
4151     return SSC_full_test;       // Let caller generate the general case.
4152   }
4153 
4154   if (!EnableValhalla && superk == env()->Object_klass()) {
4155     return SSC_always_true;     // (0) this test cannot fail
4156   }
4157 
4158   ciType* superelem = superk;
4159   if (superelem->is_array_klass())
4160     superelem = superelem->as_array_klass()->base_element_type();
4161 
4162   if (!subk->is_interface()) {  // cannot trust static interface types yet
4163     if (subk->is_subtype_of(superk)) {
4164       return SSC_always_true;   // (1) false path dead; no dynamic test needed
4165     }
4166     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
4167         !superk->is_subtype_of(subk)) {
4168       return SSC_always_false;
4169     }
4170   }
4171 
4172   // If casting to an instance klass, it must have no subtypes
4173   if (superk->is_interface()) {
4174     // Cannot trust interfaces yet.
4175     // %%% S.B. superk->nof_implementors() == 1
4176   } else if (superelem->is_instance_klass()) {
4177     ciInstanceKlass* ik = superelem->as_instance_klass();
4178     if (!ik->has_subklass() && !ik->is_interface()) {
4179       if (!ik->is_final()) {
4180         // Add a dependency if there is a chance of a later subclass.
4181         dependencies()->assert_leaf_type(ik);
4182       }
4183       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4184     }
4185   } else {
4186     // A primitive array type has no subtypes.
4187     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4188   }
4189 
4190   return SSC_full_test;
4191 }
4192 
4193 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4194 #ifdef _LP64
4195   // The scaled index operand to AddP must be a clean 64-bit value.
4196   // Java allows a 32-bit int to be incremented to a negative
4197   // value, which appears in a 64-bit register as a large
4198   // positive number.  Using that large positive number as an
4199   // operand in pointer arithmetic has bad consequences.
4200   // On the other hand, 32-bit overflow is rare, and the possibility
4201   // can often be excluded, if we annotate the ConvI2L node with
4202   // a type assertion that its value is known to be a small positive
4203   // number.  (The prior range check has ensured this.)
4204   // This assertion is used by ConvI2LNode::Ideal.
4205   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4206   if (sizetype != NULL) index_max = sizetype->_hi - 1;
4207   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4208   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4209 #endif
4210   return idx;
4211 }
4212 
4213 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4214 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4215   if (ctrl != NULL) {
4216     // Express control dependency by a CastII node with a narrow type.
4217     value = new CastIINode(value, itype, false, true /* range check dependency */);
4218     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4219     // node from floating above the range check during loop optimizations. Otherwise, the
4220     // ConvI2L node may be eliminated independently of the range check, causing the data path
4221     // to become TOP while the control path is still there (although it's unreachable).
4222     value->set_req(0, ctrl);
4223     // Save CastII node to remove it after loop optimizations.
4224     phase->C->add_range_check_cast(value);
4225     value = phase->transform(value);
4226   }
4227   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4228   return phase->transform(new ConvI2LNode(value, ltype));
4229 }
4230 
4231 // The message about the current inlining is accumulated in
4232 // _print_inlining_stream and transfered into the _print_inlining_list
4233 // once we know whether inlining succeeds or not. For regular
4234 // inlining, messages are appended to the buffer pointed by
4235 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4236 // a new buffer is added after _print_inlining_idx in the list. This
4237 // way we can update the inlining message for late inlining call site
4238 // when the inlining is attempted again.
4239 void Compile::print_inlining_init() {
4240   if (print_inlining() || print_intrinsics()) {
4241     _print_inlining_stream = new stringStream();
4242     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
4243   }
4244 }
4245 
4246 void Compile::print_inlining_reinit() {
4247   if (print_inlining() || print_intrinsics()) {
4248     // Re allocate buffer when we change ResourceMark
4249     _print_inlining_stream = new stringStream();
4250   }
4251 }
4252 
4253 void Compile::print_inlining_reset() {
4254   _print_inlining_stream->reset();
4255 }
4256 
4257 void Compile::print_inlining_commit() {
4258   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4259   // Transfer the message from _print_inlining_stream to the current
4260   // _print_inlining_list buffer and clear _print_inlining_stream.
4261   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
4262   print_inlining_reset();
4263 }
4264 
4265 void Compile::print_inlining_push() {
4266   // Add new buffer to the _print_inlining_list at current position
4267   _print_inlining_idx++;
4268   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
4269 }
4270 
4271 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
4272   return _print_inlining_list->at(_print_inlining_idx);
4273 }
4274 
4275 void Compile::print_inlining_update(CallGenerator* cg) {
4276   if (print_inlining() || print_intrinsics()) {
4277     if (!cg->is_late_inline()) {
4278       if (print_inlining_current().cg() != NULL) {
4279         print_inlining_push();
4280       }
4281       print_inlining_commit();
4282     } else {
4283       if (print_inlining_current().cg() != cg &&
4284           (print_inlining_current().cg() != NULL ||
4285            print_inlining_current().ss()->size() != 0)) {
4286         print_inlining_push();
4287       }
4288       print_inlining_commit();
4289       print_inlining_current().set_cg(cg);
4290     }
4291   }
4292 }
4293 
4294 void Compile::print_inlining_move_to(CallGenerator* cg) {
4295   // We resume inlining at a late inlining call site. Locate the
4296   // corresponding inlining buffer so that we can update it.
4297   if (print_inlining()) {
4298     for (int i = 0; i < _print_inlining_list->length(); i++) {
4299       if (_print_inlining_list->adr_at(i)->cg() == cg) {
4300         _print_inlining_idx = i;
4301         return;
4302       }
4303     }
4304     ShouldNotReachHere();
4305   }
4306 }
4307 
4308 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4309   if (print_inlining()) {
4310     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4311     assert(print_inlining_current().cg() == cg, "wrong entry");
4312     // replace message with new message
4313     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4314     print_inlining_commit();
4315     print_inlining_current().set_cg(cg);
4316   }
4317 }
4318 
4319 void Compile::print_inlining_assert_ready() {
4320   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4321 }
4322 
4323 void Compile::process_print_inlining() {
4324   bool do_print_inlining = print_inlining() || print_intrinsics();
4325   if (do_print_inlining || log() != NULL) {
4326     // Print inlining message for candidates that we couldn't inline
4327     // for lack of space
4328     for (int i = 0; i < _late_inlines.length(); i++) {
4329       CallGenerator* cg = _late_inlines.at(i);
4330       if (!cg->is_mh_late_inline()) {
4331         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4332         if (do_print_inlining) {
4333           cg->print_inlining_late(msg);
4334         }
4335         log_late_inline_failure(cg, msg);
4336       }
4337     }
4338   }
4339   if (do_print_inlining) {
4340     ResourceMark rm;
4341     stringStream ss;
4342     for (int i = 0; i < _print_inlining_list->length(); i++) {
4343       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4344     }
4345     size_t end = ss.size();
4346     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4347     strncpy(_print_inlining_output, ss.base(), end+1);
4348     _print_inlining_output[end] = 0;
4349   }
4350 }
4351 
4352 void Compile::dump_print_inlining() {
4353   if (_print_inlining_output != NULL) {
4354     tty->print_raw(_print_inlining_output);
4355   }
4356 }
4357 
4358 void Compile::log_late_inline(CallGenerator* cg) {
4359   if (log() != NULL) {
4360     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4361                 cg->unique_id());
4362     JVMState* p = cg->call_node()->jvms();
4363     while (p != NULL) {
4364       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4365       p = p->caller();
4366     }
4367     log()->tail("late_inline");
4368   }
4369 }
4370 
4371 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4372   log_late_inline(cg);
4373   if (log() != NULL) {
4374     log()->inline_fail(msg);
4375   }
4376 }
4377 
4378 void Compile::log_inline_id(CallGenerator* cg) {
4379   if (log() != NULL) {
4380     // The LogCompilation tool needs a unique way to identify late
4381     // inline call sites. This id must be unique for this call site in
4382     // this compilation. Try to have it unique across compilations as
4383     // well because it can be convenient when grepping through the log
4384     // file.
4385     // Distinguish OSR compilations from others in case CICountOSR is
4386     // on.
4387     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4388     cg->set_unique_id(id);
4389     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4390   }
4391 }
4392 
4393 void Compile::log_inline_failure(const char* msg) {
4394   if (C->log() != NULL) {
4395     C->log()->inline_fail(msg);
4396   }
4397 }
4398 
4399 
4400 // Dump inlining replay data to the stream.
4401 // Don't change thread state and acquire any locks.
4402 void Compile::dump_inline_data(outputStream* out) {
4403   InlineTree* inl_tree = ilt();
4404   if (inl_tree != NULL) {
4405     out->print(" inline %d", inl_tree->count());
4406     inl_tree->dump_replay_data(out);
4407   }
4408 }
4409 
4410 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4411   if (n1->Opcode() < n2->Opcode())      return -1;
4412   else if (n1->Opcode() > n2->Opcode()) return 1;
4413 
4414   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4415   for (uint i = 1; i < n1->req(); i++) {
4416     if (n1->in(i) < n2->in(i))      return -1;
4417     else if (n1->in(i) > n2->in(i)) return 1;
4418   }
4419 
4420   return 0;
4421 }
4422 
4423 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4424   Node* n1 = *n1p;
4425   Node* n2 = *n2p;
4426 
4427   return cmp_expensive_nodes(n1, n2);
4428 }
4429 
4430 void Compile::sort_expensive_nodes() {
4431   if (!expensive_nodes_sorted()) {
4432     _expensive_nodes->sort(cmp_expensive_nodes);
4433   }
4434 }
4435 
4436 bool Compile::expensive_nodes_sorted() const {
4437   for (int i = 1; i < _expensive_nodes->length(); i++) {
4438     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4439       return false;
4440     }
4441   }
4442   return true;
4443 }
4444 
4445 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4446   if (_expensive_nodes->length() == 0) {
4447     return false;
4448   }
4449 
4450   assert(OptimizeExpensiveOps, "optimization off?");
4451 
4452   // Take this opportunity to remove dead nodes from the list
4453   int j = 0;
4454   for (int i = 0; i < _expensive_nodes->length(); i++) {
4455     Node* n = _expensive_nodes->at(i);
4456     if (!n->is_unreachable(igvn)) {
4457       assert(n->is_expensive(), "should be expensive");
4458       _expensive_nodes->at_put(j, n);
4459       j++;
4460     }
4461   }
4462   _expensive_nodes->trunc_to(j);
4463 
4464   // Then sort the list so that similar nodes are next to each other
4465   // and check for at least two nodes of identical kind with same data
4466   // inputs.
4467   sort_expensive_nodes();
4468 
4469   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4470     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4471       return true;
4472     }
4473   }
4474 
4475   return false;
4476 }
4477 
4478 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4479   if (_expensive_nodes->length() == 0) {
4480     return;
4481   }
4482 
4483   assert(OptimizeExpensiveOps, "optimization off?");
4484 
4485   // Sort to bring similar nodes next to each other and clear the
4486   // control input of nodes for which there's only a single copy.
4487   sort_expensive_nodes();
4488 
4489   int j = 0;
4490   int identical = 0;
4491   int i = 0;
4492   bool modified = false;
4493   for (; i < _expensive_nodes->length()-1; i++) {
4494     assert(j <= i, "can't write beyond current index");
4495     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4496       identical++;
4497       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4498       continue;
4499     }
4500     if (identical > 0) {
4501       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4502       identical = 0;
4503     } else {
4504       Node* n = _expensive_nodes->at(i);
4505       igvn.replace_input_of(n, 0, NULL);
4506       igvn.hash_insert(n);
4507       modified = true;
4508     }
4509   }
4510   if (identical > 0) {
4511     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4512   } else if (_expensive_nodes->length() >= 1) {
4513     Node* n = _expensive_nodes->at(i);
4514     igvn.replace_input_of(n, 0, NULL);
4515     igvn.hash_insert(n);
4516     modified = true;
4517   }
4518   _expensive_nodes->trunc_to(j);
4519   if (modified) {
4520     igvn.optimize();
4521   }
4522 }
4523 
4524 void Compile::add_expensive_node(Node * n) {
4525   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4526   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4527   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4528   if (OptimizeExpensiveOps) {
4529     _expensive_nodes->append(n);
4530   } else {
4531     // Clear control input and let IGVN optimize expensive nodes if
4532     // OptimizeExpensiveOps is off.
4533     n->set_req(0, NULL);
4534   }
4535 }
4536 
4537 /**
4538  * Remove the speculative part of types and clean up the graph
4539  */
4540 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4541   if (UseTypeSpeculation) {
4542     Unique_Node_List worklist;
4543     worklist.push(root());
4544     int modified = 0;
4545     // Go over all type nodes that carry a speculative type, drop the
4546     // speculative part of the type and enqueue the node for an igvn
4547     // which may optimize it out.
4548     for (uint next = 0; next < worklist.size(); ++next) {
4549       Node *n  = worklist.at(next);
4550       if (n->is_Type()) {
4551         TypeNode* tn = n->as_Type();
4552         const Type* t = tn->type();
4553         const Type* t_no_spec = t->remove_speculative();
4554         if (t_no_spec != t) {
4555           bool in_hash = igvn.hash_delete(n);
4556           assert(in_hash, "node should be in igvn hash table");
4557           tn->set_type(t_no_spec);
4558           igvn.hash_insert(n);
4559           igvn._worklist.push(n); // give it a chance to go away
4560           modified++;
4561         }
4562       }
4563       uint max = n->len();
4564       for( uint i = 0; i < max; ++i ) {
4565         Node *m = n->in(i);
4566         if (not_a_node(m))  continue;
4567         worklist.push(m);
4568       }
4569     }
4570     // Drop the speculative part of all types in the igvn's type table
4571     igvn.remove_speculative_types();
4572     if (modified > 0) {
4573       igvn.optimize();
4574     }
4575 #ifdef ASSERT
4576     // Verify that after the IGVN is over no speculative type has resurfaced
4577     worklist.clear();
4578     worklist.push(root());
4579     for (uint next = 0; next < worklist.size(); ++next) {
4580       Node *n  = worklist.at(next);
4581       const Type* t = igvn.type_or_null(n);
4582       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4583       if (n->is_Type()) {
4584         t = n->as_Type()->type();
4585         assert(t == t->remove_speculative(), "no more speculative types");
4586       }
4587       uint max = n->len();
4588       for( uint i = 0; i < max; ++i ) {
4589         Node *m = n->in(i);
4590         if (not_a_node(m))  continue;
4591         worklist.push(m);
4592       }
4593     }
4594     igvn.check_no_speculative_types();
4595 #endif
4596   }
4597 }
4598 
4599 // Auxiliary method to support randomized stressing/fuzzing.
4600 //
4601 // This method can be called the arbitrary number of times, with current count
4602 // as the argument. The logic allows selecting a single candidate from the
4603 // running list of candidates as follows:
4604 //    int count = 0;
4605 //    Cand* selected = null;
4606 //    while(cand = cand->next()) {
4607 //      if (randomized_select(++count)) {
4608 //        selected = cand;
4609 //      }
4610 //    }
4611 //
4612 // Including count equalizes the chances any candidate is "selected".
4613 // This is useful when we don't have the complete list of candidates to choose
4614 // from uniformly. In this case, we need to adjust the randomicity of the
4615 // selection, or else we will end up biasing the selection towards the latter
4616 // candidates.
4617 //
4618 // Quick back-envelope calculation shows that for the list of n candidates
4619 // the equal probability for the candidate to persist as "best" can be
4620 // achieved by replacing it with "next" k-th candidate with the probability
4621 // of 1/k. It can be easily shown that by the end of the run, the
4622 // probability for any candidate is converged to 1/n, thus giving the
4623 // uniform distribution among all the candidates.
4624 //
4625 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4626 #define RANDOMIZED_DOMAIN_POW 29
4627 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4628 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4629 bool Compile::randomized_select(int count) {
4630   assert(count > 0, "only positive");
4631   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4632 }
4633 
4634 CloneMap&     Compile::clone_map()                 { return _clone_map; }
4635 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
4636 
4637 void NodeCloneInfo::dump() const {
4638   tty->print(" {%d:%d} ", idx(), gen());
4639 }
4640 
4641 void CloneMap::clone(Node* old, Node* nnn, int gen) {
4642   uint64_t val = value(old->_idx);
4643   NodeCloneInfo cio(val);
4644   assert(val != 0, "old node should be in the map");
4645   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4646   insert(nnn->_idx, cin.get());
4647 #ifndef PRODUCT
4648   if (is_debug()) {
4649     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4650   }
4651 #endif
4652 }
4653 
4654 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4655   NodeCloneInfo cio(value(old->_idx));
4656   if (cio.get() == 0) {
4657     cio.set(old->_idx, 0);
4658     insert(old->_idx, cio.get());
4659 #ifndef PRODUCT
4660     if (is_debug()) {
4661       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4662     }
4663 #endif
4664   }
4665   clone(old, nnn, gen);
4666 }
4667 
4668 int CloneMap::max_gen() const {
4669   int g = 0;
4670   DictI di(_dict);
4671   for(; di.test(); ++di) {
4672     int t = gen(di._key);
4673     if (g < t) {
4674       g = t;
4675 #ifndef PRODUCT
4676       if (is_debug()) {
4677         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4678       }
4679 #endif
4680     }
4681   }
4682   return g;
4683 }
4684 
4685 void CloneMap::dump(node_idx_t key) const {
4686   uint64_t val = value(key);
4687   if (val != 0) {
4688     NodeCloneInfo ni(val);
4689     ni.dump();
4690   }
4691 }