1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "interpreter/linkResolver.hpp"
  28 #include "oops/method.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/c2compiler.hpp"
  31 #include "opto/castnode.hpp"
  32 #include "opto/idealGraphPrinter.hpp"
  33 #include "opto/locknode.hpp"
  34 #include "opto/memnode.hpp"
  35 #include "opto/opaquenode.hpp"
  36 #include "opto/parse.hpp"
  37 #include "opto/rootnode.hpp"
  38 #include "opto/runtime.hpp"
  39 #include "runtime/arguments.hpp"
  40 #include "runtime/handles.inline.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "utilities/copy.hpp"
  43 
  44 // Static array so we can figure out which bytecodes stop us from compiling
  45 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
  46 // and eventually should be encapsulated in a proper class (gri 8/18/98).
  47 
  48 int nodes_created              = 0;
  49 int methods_parsed             = 0;
  50 int methods_seen               = 0;
  51 int blocks_parsed              = 0;
  52 int blocks_seen                = 0;
  53 
  54 int explicit_null_checks_inserted = 0;
  55 int explicit_null_checks_elided   = 0;
  56 int all_null_checks_found         = 0, implicit_null_checks              = 0;
  57 int implicit_null_throws          = 0;
  58 
  59 int reclaim_idx  = 0;
  60 int reclaim_in   = 0;
  61 int reclaim_node = 0;
  62 
  63 #ifndef PRODUCT
  64 bool Parse::BytecodeParseHistogram::_initialized = false;
  65 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
  66 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
  67 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
  68 uint Parse::BytecodeParseHistogram::_new_values       [Bytecodes::number_of_codes];
  69 #endif
  70 
  71 //------------------------------print_statistics-------------------------------
  72 #ifndef PRODUCT
  73 void Parse::print_statistics() {
  74   tty->print_cr("--- Compiler Statistics ---");
  75   tty->print("Methods seen: %d  Methods parsed: %d", methods_seen, methods_parsed);
  76   tty->print("  Nodes created: %d", nodes_created);
  77   tty->cr();
  78   if (methods_seen != methods_parsed)
  79     tty->print_cr("Reasons for parse failures (NOT cumulative):");
  80   tty->print_cr("Blocks parsed: %d  Blocks seen: %d", blocks_parsed, blocks_seen);
  81 
  82   if( explicit_null_checks_inserted )
  83     tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,", explicit_null_checks_inserted, explicit_null_checks_elided, (100*explicit_null_checks_elided)/explicit_null_checks_inserted, all_null_checks_found);
  84   if( all_null_checks_found )
  85     tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks,
  86                   (100*implicit_null_checks)/all_null_checks_found);
  87   if( implicit_null_throws )
  88     tty->print_cr("%d implicit null exceptions at runtime",
  89                   implicit_null_throws);
  90 
  91   if( PrintParseStatistics && BytecodeParseHistogram::initialized() ) {
  92     BytecodeParseHistogram::print();
  93   }
  94 }
  95 #endif
  96 
  97 //------------------------------ON STACK REPLACEMENT---------------------------
  98 
  99 // Construct a node which can be used to get incoming state for
 100 // on stack replacement.
 101 Node *Parse::fetch_interpreter_state(int index,
 102                                      BasicType bt,
 103                                      Node *local_addrs,
 104                                      Node *local_addrs_base) {
 105   Node *mem = memory(Compile::AliasIdxRaw);
 106   Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
 107   Node *ctl = control();
 108 
 109   // Very similar to LoadNode::make, except we handle un-aligned longs and
 110   // doubles on Sparc.  Intel can handle them just fine directly.
 111   Node *l;
 112   switch (bt) {                // Signature is flattened
 113   case T_INT:     l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT,        MemNode::unordered); break;
 114   case T_FLOAT:   l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT,         MemNode::unordered); break;
 115   case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,  MemNode::unordered); break;
 116   case T_OBJECT:  l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
 117   case T_LONG:
 118   case T_DOUBLE: {
 119     // Since arguments are in reverse order, the argument address 'adr'
 120     // refers to the back half of the long/double.  Recompute adr.
 121     adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
 122     if (Matcher::misaligned_doubles_ok) {
 123       l = (bt == T_DOUBLE)
 124         ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)
 125         : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered);
 126     } else {
 127       l = (bt == T_DOUBLE)
 128         ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
 129         : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
 130     }
 131     break;
 132   }
 133   default: ShouldNotReachHere();
 134   }
 135   return _gvn.transform(l);
 136 }
 137 
 138 // Helper routine to prevent the interpreter from handing
 139 // unexpected typestate to an OSR method.
 140 // The Node l is a value newly dug out of the interpreter frame.
 141 // The type is the type predicted by ciTypeFlow.  Note that it is
 142 // not a general type, but can only come from Type::get_typeflow_type.
 143 // The safepoint is a map which will feed an uncommon trap.
 144 Node* Parse::check_interpreter_type(Node* l, const Type* type,
 145                                     SafePointNode* &bad_type_exit) {
 146 
 147   const TypeOopPtr* tp = type->isa_oopptr();
 148 
 149   // TypeFlow may assert null-ness if a type appears unloaded.
 150   if (type == TypePtr::NULL_PTR ||
 151       (tp != NULL && !tp->klass()->is_loaded())) {
 152     // Value must be null, not a real oop.
 153     Node* chk = _gvn.transform( new CmpPNode(l, null()) );
 154     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 155     IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 156     set_control(_gvn.transform( new IfTrueNode(iff) ));
 157     Node* bad_type = _gvn.transform( new IfFalseNode(iff) );
 158     bad_type_exit->control()->add_req(bad_type);
 159     l = null();
 160   }
 161 
 162   // Typeflow can also cut off paths from the CFG, based on
 163   // types which appear unloaded, or call sites which appear unlinked.
 164   // When paths are cut off, values at later merge points can rise
 165   // toward more specific classes.  Make sure these specific classes
 166   // are still in effect.
 167   if (tp != NULL && tp->klass() != C->env()->Object_klass()) {
 168     // TypeFlow asserted a specific object type.  Value must have that type.
 169     Node* bad_type_ctrl = NULL;
 170     l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl);
 171     bad_type_exit->control()->add_req(bad_type_ctrl);
 172   }
 173 
 174   BasicType bt_l = _gvn.type(l)->basic_type();
 175   BasicType bt_t = type->basic_type();
 176   assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
 177   return l;
 178 }
 179 
 180 // Helper routine which sets up elements of the initial parser map when
 181 // performing a parse for on stack replacement.  Add values into map.
 182 // The only parameter contains the address of a interpreter arguments.
 183 void Parse::load_interpreter_state(Node* osr_buf) {
 184   int index;
 185   int max_locals = jvms()->loc_size();
 186   int max_stack  = jvms()->stk_size();
 187 
 188 
 189   // Mismatch between method and jvms can occur since map briefly held
 190   // an OSR entry state (which takes up one RawPtr word).
 191   assert(max_locals == method()->max_locals(), "sanity");
 192   assert(max_stack  >= method()->max_stack(),  "sanity");
 193   assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
 194   assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
 195 
 196   // Find the start block.
 197   Block* osr_block = start_block();
 198   assert(osr_block->start() == osr_bci(), "sanity");
 199 
 200   // Set initial BCI.
 201   set_parse_bci(osr_block->start());
 202 
 203   // Set initial stack depth.
 204   set_sp(osr_block->start_sp());
 205 
 206   // Check bailouts.  We currently do not perform on stack replacement
 207   // of loops in catch blocks or loops which branch with a non-empty stack.
 208   if (sp() != 0) {
 209     C->record_method_not_compilable("OSR starts with non-empty stack");
 210     return;
 211   }
 212   // Do not OSR inside finally clauses:
 213   if (osr_block->has_trap_at(osr_block->start())) {
 214     C->record_method_not_compilable("OSR starts with an immediate trap");
 215     return;
 216   }
 217 
 218   // Commute monitors from interpreter frame to compiler frame.
 219   assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
 220   int mcnt = osr_block->flow()->monitor_count();
 221   Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
 222   for (index = 0; index < mcnt; index++) {
 223     // Make a BoxLockNode for the monitor.
 224     Node *box = _gvn.transform(new BoxLockNode(next_monitor()));
 225 
 226 
 227     // Displaced headers and locked objects are interleaved in the
 228     // temp OSR buffer.  We only copy the locked objects out here.
 229     // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
 230     Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
 231     // Try and copy the displaced header to the BoxNode
 232     Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
 233 
 234 
 235     store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
 236 
 237     // Build a bogus FastLockNode (no code will be generated) and push the
 238     // monitor into our debug info.
 239     const FastLockNode *flock = _gvn.transform(new FastLockNode( 0, lock_object, box ))->as_FastLock();
 240     map()->push_monitor(flock);
 241 
 242     // If the lock is our method synchronization lock, tuck it away in
 243     // _sync_lock for return and rethrow exit paths.
 244     if (index == 0 && method()->is_synchronized()) {
 245       _synch_lock = flock;
 246     }
 247   }
 248 
 249   // Use the raw liveness computation to make sure that unexpected
 250   // values don't propagate into the OSR frame.
 251   MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
 252   if (!live_locals.is_valid()) {
 253     // Degenerate or breakpointed method.
 254     C->record_method_not_compilable("OSR in empty or breakpointed method");
 255     return;
 256   }
 257 
 258   // Extract the needed locals from the interpreter frame.
 259   Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
 260 
 261   // find all the locals that the interpreter thinks contain live oops
 262   const BitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
 263   for (index = 0; index < max_locals; index++) {
 264 
 265     if (!live_locals.at(index)) {
 266       continue;
 267     }
 268 
 269     const Type *type = osr_block->local_type_at(index);
 270 
 271     if (type->isa_oopptr() != NULL) {
 272 
 273       // 6403625: Verify that the interpreter oopMap thinks that the oop is live
 274       // else we might load a stale oop if the MethodLiveness disagrees with the
 275       // result of the interpreter. If the interpreter says it is dead we agree
 276       // by making the value go to top.
 277       //
 278 
 279       if (!live_oops.at(index)) {
 280         if (C->log() != NULL) {
 281           C->log()->elem("OSR_mismatch local_index='%d'",index);
 282         }
 283         set_local(index, null());
 284         // and ignore it for the loads
 285         continue;
 286       }
 287     }
 288 
 289     // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
 290     if (type == Type::TOP || type == Type::HALF) {
 291       continue;
 292     }
 293     // If the type falls to bottom, then this must be a local that
 294     // is mixing ints and oops or some such.  Forcing it to top
 295     // makes it go dead.
 296     if (type == Type::BOTTOM) {
 297       continue;
 298     }
 299     // Construct code to access the appropriate local.
 300     BasicType bt = type->basic_type();
 301     if (type == TypePtr::NULL_PTR) {
 302       // Ptr types are mixed together with T_ADDRESS but NULL is
 303       // really for T_OBJECT types so correct it.
 304       bt = T_OBJECT;
 305     }
 306     Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf);
 307     set_local(index, value);
 308   }
 309 
 310   // Extract the needed stack entries from the interpreter frame.
 311   for (index = 0; index < sp(); index++) {
 312     const Type *type = osr_block->stack_type_at(index);
 313     if (type != Type::TOP) {
 314       // Currently the compiler bails out when attempting to on stack replace
 315       // at a bci with a non-empty stack.  We should not reach here.
 316       ShouldNotReachHere();
 317     }
 318   }
 319 
 320   // End the OSR migration
 321   make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
 322                     CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
 323                     "OSR_migration_end", TypeRawPtr::BOTTOM,
 324                     osr_buf);
 325 
 326   // Now that the interpreter state is loaded, make sure it will match
 327   // at execution time what the compiler is expecting now:
 328   SafePointNode* bad_type_exit = clone_map();
 329   bad_type_exit->set_control(new RegionNode(1));
 330 
 331   assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point");
 332   for (index = 0; index < max_locals; index++) {
 333     if (stopped())  break;
 334     Node* l = local(index);
 335     if (l->is_top())  continue;  // nothing here
 336     const Type *type = osr_block->local_type_at(index);
 337     if (type->isa_oopptr() != NULL) {
 338       if (!live_oops.at(index)) {
 339         // skip type check for dead oops
 340         continue;
 341       }
 342     }
 343     if (osr_block->flow()->local_type_at(index)->is_return_address()) {
 344       // In our current system it's illegal for jsr addresses to be
 345       // live into an OSR entry point because the compiler performs
 346       // inlining of jsrs.  ciTypeFlow has a bailout that detect this
 347       // case and aborts the compile if addresses are live into an OSR
 348       // entry point.  Because of that we can assume that any address
 349       // locals at the OSR entry point are dead.  Method liveness
 350       // isn't precise enought to figure out that they are dead in all
 351       // cases so simply skip checking address locals all
 352       // together. Any type check is guaranteed to fail since the
 353       // interpreter type is the result of a load which might have any
 354       // value and the expected type is a constant.
 355       continue;
 356     }
 357     set_local(index, check_interpreter_type(l, type, bad_type_exit));
 358   }
 359 
 360   for (index = 0; index < sp(); index++) {
 361     if (stopped())  break;
 362     Node* l = stack(index);
 363     if (l->is_top())  continue;  // nothing here
 364     const Type *type = osr_block->stack_type_at(index);
 365     set_stack(index, check_interpreter_type(l, type, bad_type_exit));
 366   }
 367 
 368   if (bad_type_exit->control()->req() > 1) {
 369     // Build an uncommon trap here, if any inputs can be unexpected.
 370     bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
 371     record_for_igvn(bad_type_exit->control());
 372     SafePointNode* types_are_good = map();
 373     set_map(bad_type_exit);
 374     // The unexpected type happens because a new edge is active
 375     // in the CFG, which typeflow had previously ignored.
 376     // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
 377     // This x will be typed as Integer if notReached is not yet linked.
 378     // It could also happen due to a problem in ciTypeFlow analysis.
 379     uncommon_trap(Deoptimization::Reason_constraint,
 380                   Deoptimization::Action_reinterpret);
 381     set_map(types_are_good);
 382   }
 383 }
 384 
 385 //------------------------------Parse------------------------------------------
 386 // Main parser constructor.
 387 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses)
 388   : _exits(caller)
 389 {
 390   // Init some variables
 391   _caller = caller;
 392   _method = parse_method;
 393   _expected_uses = expected_uses;
 394   _depth = 1 + (caller->has_method() ? caller->depth() : 0);
 395   _wrote_final = false;
 396   _wrote_volatile = false;
 397   _wrote_stable = false;
 398   _wrote_fields = false;
 399   _alloc_with_final = NULL;

 400   _entry_bci = InvocationEntryBci;
 401   _tf = NULL;
 402   _block = NULL;
 403   _first_return = true;
 404   _replaced_nodes_for_exceptions = false;
 405   _new_idx = C->unique();
 406   debug_only(_block_count = -1);
 407   debug_only(_blocks = (Block*)-1);
 408 #ifndef PRODUCT
 409   if (PrintCompilation || PrintOpto) {
 410     // Make sure I have an inline tree, so I can print messages about it.
 411     JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller;
 412     InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method);
 413   }
 414   _max_switch_depth = 0;
 415   _est_switch_depth = 0;
 416 #endif
 417 
 418   _tf = TypeFunc::make(method());
 419   _iter.reset_to_method(method());
 420   _flow = method()->get_flow_analysis();
 421   if (_flow->failing()) {
 422     C->record_method_not_compilable_all_tiers(_flow->failure_reason());
 423   }
 424 
 425 #ifndef PRODUCT
 426   if (_flow->has_irreducible_entry()) {
 427     C->set_parsed_irreducible_loop(true);
 428   }
 429 #endif
 430 
 431   if (_expected_uses <= 0) {
 432     _prof_factor = 1;
 433   } else {
 434     float prof_total = parse_method->interpreter_invocation_count();
 435     if (prof_total <= _expected_uses) {
 436       _prof_factor = 1;
 437     } else {
 438       _prof_factor = _expected_uses / prof_total;
 439     }
 440   }
 441 
 442   CompileLog* log = C->log();
 443   if (log != NULL) {
 444     log->begin_head("parse method='%d' uses='%f'",
 445                     log->identify(parse_method), expected_uses);
 446     if (depth() == 1 && C->is_osr_compilation()) {
 447       log->print(" osr_bci='%d'", C->entry_bci());
 448     }
 449     log->stamp();
 450     log->end_head();
 451   }
 452 
 453   // Accumulate deoptimization counts.
 454   // (The range_check and store_check counts are checked elsewhere.)
 455   ciMethodData* md = method()->method_data();
 456   for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
 457     uint md_count = md->trap_count(reason);
 458     if (md_count != 0) {
 459       if (md_count == md->trap_count_limit())
 460         md_count += md->overflow_trap_count();
 461       uint total_count = C->trap_count(reason);
 462       uint old_count   = total_count;
 463       total_count += md_count;
 464       // Saturate the add if it overflows.
 465       if (total_count < old_count || total_count < md_count)
 466         total_count = (uint)-1;
 467       C->set_trap_count(reason, total_count);
 468       if (log != NULL)
 469         log->elem("observe trap='%s' count='%d' total='%d'",
 470                   Deoptimization::trap_reason_name(reason),
 471                   md_count, total_count);
 472     }
 473   }
 474   // Accumulate total sum of decompilations, also.
 475   C->set_decompile_count(C->decompile_count() + md->decompile_count());
 476 
 477   _count_invocations = C->do_count_invocations();
 478   _method_data_update = C->do_method_data_update();
 479 
 480   if (log != NULL && method()->has_exception_handlers()) {
 481     log->elem("observe that='has_exception_handlers'");
 482   }
 483 
 484   assert(method()->can_be_compiled(),       "Can not parse this method, cutout earlier");
 485   assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
 486 
 487   // Always register dependence if JVMTI is enabled, because
 488   // either breakpoint setting or hotswapping of methods may
 489   // cause deoptimization.
 490   if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
 491     C->dependencies()->assert_evol_method(method());
 492   }
 493 
 494   methods_seen++;
 495 
 496   // Do some special top-level things.
 497   if (depth() == 1 && C->is_osr_compilation()) {
 498     _entry_bci = C->entry_bci();
 499     _flow = method()->get_osr_flow_analysis(osr_bci());
 500     if (_flow->failing()) {
 501       C->record_method_not_compilable(_flow->failure_reason());
 502 #ifndef PRODUCT
 503       if (PrintOpto && (Verbose || WizardMode)) {
 504         tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
 505         if (Verbose) {
 506           method()->print();
 507           method()->print_codes();
 508           _flow->print();
 509         }
 510       }
 511 #endif
 512     }
 513     _tf = C->tf();     // the OSR entry type is different
 514   }
 515 
 516 #ifdef ASSERT
 517   if (depth() == 1) {
 518     assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
 519     if (C->tf() != tf()) {
 520       MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
 521       assert(C->env()->system_dictionary_modification_counter_changed(),
 522              "Must invalidate if TypeFuncs differ");
 523     }
 524   } else {
 525     assert(!this->is_osr_parse(), "no recursive OSR");
 526   }
 527 #endif
 528 
 529   methods_parsed++;
 530 #ifndef PRODUCT
 531   // add method size here to guarantee that inlined methods are added too
 532   if (CITime)
 533     _total_bytes_compiled += method()->code_size();
 534 
 535   show_parse_info();
 536 #endif
 537 
 538   if (failing()) {
 539     if (log)  log->done("parse");
 540     return;
 541   }
 542 
 543   gvn().set_type(root(), root()->bottom_type());
 544   gvn().transform(top());
 545 
 546   // Import the results of the ciTypeFlow.
 547   init_blocks();
 548 
 549   // Merge point for all normal exits
 550   build_exits();
 551 
 552   // Setup the initial JVM state map.
 553   SafePointNode* entry_map = create_entry_map();
 554 
 555   // Check for bailouts during map initialization
 556   if (failing() || entry_map == NULL) {
 557     if (log)  log->done("parse");
 558     return;
 559   }
 560 
 561   Node_Notes* caller_nn = C->default_node_notes();
 562   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
 563   if (DebugInlinedCalls || depth() == 1) {
 564     C->set_default_node_notes(make_node_notes(caller_nn));
 565   }
 566 
 567   if (is_osr_parse()) {
 568     Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
 569     entry_map->set_req(TypeFunc::Parms+0, top());
 570     set_map(entry_map);
 571     load_interpreter_state(osr_buf);
 572   } else {
 573     set_map(entry_map);
 574     do_method_entry();
 575     if (depth() == 1 && C->age_code()) {
 576       decrement_age();
 577     }
 578   }
 579 
 580   if (depth() == 1 && !failing()) {
 581     // Add check to deoptimize the nmethod if RTM state was changed
 582     rtm_deopt();
 583   }
 584 
 585   // Check for bailouts during method entry or RTM state check setup.
 586   if (failing()) {
 587     if (log)  log->done("parse");
 588     C->set_default_node_notes(caller_nn);
 589     return;
 590   }
 591 
 592   entry_map = map();  // capture any changes performed by method setup code
 593   assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
 594 
 595   // We begin parsing as if we have just encountered a jump to the
 596   // method entry.
 597   Block* entry_block = start_block();
 598   assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
 599   set_map_clone(entry_map);
 600   merge_common(entry_block, entry_block->next_path_num());
 601 
 602 #ifndef PRODUCT
 603   BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
 604   set_parse_histogram( parse_histogram_obj );
 605 #endif
 606 
 607   // Parse all the basic blocks.
 608   do_all_blocks();
 609 
 610   C->set_default_node_notes(caller_nn);
 611 
 612   // Check for bailouts during conversion to graph
 613   if (failing()) {
 614     if (log)  log->done("parse");
 615     return;
 616   }
 617 
 618   // Fix up all exiting control flow.
 619   set_map(entry_map);
 620   do_exits();
 621 
 622   if (log)  log->done("parse nodes='%d' live='%d' memory='" SIZE_FORMAT "'",
 623                       C->unique(), C->live_nodes(), C->node_arena()->used());
 624 }
 625 
 626 //---------------------------do_all_blocks-------------------------------------
 627 void Parse::do_all_blocks() {
 628   bool has_irreducible = flow()->has_irreducible_entry();
 629 
 630   // Walk over all blocks in Reverse Post-Order.
 631   while (true) {
 632     bool progress = false;
 633     for (int rpo = 0; rpo < block_count(); rpo++) {
 634       Block* block = rpo_at(rpo);
 635 
 636       if (block->is_parsed()) continue;
 637 
 638       if (!block->is_merged()) {
 639         // Dead block, no state reaches this block
 640         continue;
 641       }
 642 
 643       // Prepare to parse this block.
 644       load_state_from(block);
 645 
 646       if (stopped()) {
 647         // Block is dead.
 648         continue;
 649       }
 650 
 651       blocks_parsed++;
 652 
 653       progress = true;
 654       if (block->is_loop_head() || block->is_handler() || has_irreducible && !block->is_ready()) {
 655         // Not all preds have been parsed.  We must build phis everywhere.
 656         // (Note that dead locals do not get phis built, ever.)
 657         ensure_phis_everywhere();
 658 
 659         if (block->is_SEL_head() &&
 660             (UseLoopPredicate || LoopLimitCheck)) {
 661           // Add predicate to single entry (not irreducible) loop head.
 662           assert(!block->has_merged_backedge(), "only entry paths should be merged for now");
 663           // Need correct bci for predicate.
 664           // It is fine to set it here since do_one_block() will set it anyway.
 665           set_parse_bci(block->start());
 666           add_predicate();
 667           // Add new region for back branches.
 668           int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region
 669           RegionNode *r = new RegionNode(edges+1);
 670           _gvn.set_type(r, Type::CONTROL);
 671           record_for_igvn(r);
 672           r->init_req(edges, control());
 673           set_control(r);
 674           // Add new phis.
 675           ensure_phis_everywhere();
 676         }
 677 
 678         // Leave behind an undisturbed copy of the map, for future merges.
 679         set_map(clone_map());
 680       }
 681 
 682       if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) {
 683         // In the absence of irreducible loops, the Region and Phis
 684         // associated with a merge that doesn't involve a backedge can
 685         // be simplified now since the RPO parsing order guarantees
 686         // that any path which was supposed to reach here has already
 687         // been parsed or must be dead.
 688         Node* c = control();
 689         Node* result = _gvn.transform_no_reclaim(control());
 690         if (c != result && TraceOptoParse) {
 691           tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx);
 692         }
 693         if (result != top()) {
 694           record_for_igvn(result);
 695         }
 696       }
 697 
 698       // Parse the block.
 699       do_one_block();
 700 
 701       // Check for bailouts.
 702       if (failing())  return;
 703     }
 704 
 705     // with irreducible loops multiple passes might be necessary to parse everything
 706     if (!has_irreducible || !progress) {
 707       break;
 708     }
 709   }
 710 
 711   blocks_seen += block_count();
 712 
 713 #ifndef PRODUCT
 714   // Make sure there are no half-processed blocks remaining.
 715   // Every remaining unprocessed block is dead and may be ignored now.
 716   for (int rpo = 0; rpo < block_count(); rpo++) {
 717     Block* block = rpo_at(rpo);
 718     if (!block->is_parsed()) {
 719       if (TraceOptoParse) {
 720         tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start());
 721       }
 722       assert(!block->is_merged(), "no half-processed blocks");
 723     }
 724   }
 725 #endif
 726 }
 727 
 728 //-------------------------------build_exits----------------------------------
 729 // Build normal and exceptional exit merge points.
 730 void Parse::build_exits() {
 731   // make a clone of caller to prevent sharing of side-effects
 732   _exits.set_map(_exits.clone_map());
 733   _exits.clean_stack(_exits.sp());
 734   _exits.sync_jvms();
 735 
 736   RegionNode* region = new RegionNode(1);
 737   record_for_igvn(region);
 738   gvn().set_type_bottom(region);
 739   _exits.set_control(region);
 740 
 741   // Note:  iophi and memphi are not transformed until do_exits.
 742   Node* iophi  = new PhiNode(region, Type::ABIO);
 743   Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 744   gvn().set_type_bottom(iophi);
 745   gvn().set_type_bottom(memphi);
 746   _exits.set_i_o(iophi);
 747   _exits.set_all_memory(memphi);
 748 
 749   // Add a return value to the exit state.  (Do not push it yet.)
 750   if (tf()->range()->cnt() > TypeFunc::Parms) {
 751     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 752     // Don't "bind" an unloaded return klass to the ret_phi. If the klass
 753     // becomes loaded during the subsequent parsing, the loaded and unloaded
 754     // types will not join when we transform and push in do_exits().
 755     const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
 756     if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) {
 757       ret_type = TypeOopPtr::BOTTOM;
 758     }
 759     int         ret_size = type2size[ret_type->basic_type()];
 760     Node*       ret_phi  = new PhiNode(region, ret_type);
 761     gvn().set_type_bottom(ret_phi);
 762     _exits.ensure_stack(ret_size);
 763     assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
 764     assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
 765     _exits.set_argument(0, ret_phi);  // here is where the parser finds it
 766     // Note:  ret_phi is not yet pushed, until do_exits.
 767   }
 768 }
 769 
 770 
 771 //----------------------------build_start_state-------------------------------
 772 // Construct a state which contains only the incoming arguments from an
 773 // unknown caller.  The method & bci will be NULL & InvocationEntryBci.
 774 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
 775   int        arg_size = tf->domain()->cnt();
 776   int        max_size = MAX2(arg_size, (int)tf->range()->cnt());
 777   JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
 778   SafePointNode* map  = new SafePointNode(max_size, NULL);
 779   record_for_igvn(map);
 780   assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
 781   Node_Notes* old_nn = default_node_notes();
 782   if (old_nn != NULL && has_method()) {
 783     Node_Notes* entry_nn = old_nn->clone(this);
 784     JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
 785     entry_jvms->set_offsets(0);
 786     entry_jvms->set_bci(entry_bci());
 787     entry_nn->set_jvms(entry_jvms);
 788     set_default_node_notes(entry_nn);
 789   }
 790   uint i;
 791   for (i = 0; i < (uint)arg_size; i++) {
 792     Node* parm = initial_gvn()->transform(new ParmNode(start, i));
 793     map->init_req(i, parm);
 794     // Record all these guys for later GVN.
 795     record_for_igvn(parm);
 796   }
 797   for (; i < map->req(); i++) {
 798     map->init_req(i, top());
 799   }
 800   assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
 801   set_default_node_notes(old_nn);
 802   map->set_jvms(jvms);
 803   jvms->set_map(map);
 804   return jvms;
 805 }
 806 
 807 //-----------------------------make_node_notes---------------------------------
 808 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
 809   if (caller_nn == NULL)  return NULL;
 810   Node_Notes* nn = caller_nn->clone(C);
 811   JVMState* caller_jvms = nn->jvms();
 812   JVMState* jvms = new (C) JVMState(method(), caller_jvms);
 813   jvms->set_offsets(0);
 814   jvms->set_bci(_entry_bci);
 815   nn->set_jvms(jvms);
 816   return nn;
 817 }
 818 
 819 
 820 //--------------------------return_values--------------------------------------
 821 void Compile::return_values(JVMState* jvms) {
 822   GraphKit kit(jvms);
 823   Node* ret = new ReturnNode(TypeFunc::Parms,
 824                              kit.control(),
 825                              kit.i_o(),
 826                              kit.reset_memory(),
 827                              kit.frameptr(),
 828                              kit.returnadr());
 829   // Add zero or 1 return values
 830   int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
 831   if (ret_size > 0) {
 832     kit.inc_sp(-ret_size);  // pop the return value(s)
 833     kit.sync_jvms();
 834     ret->add_req(kit.argument(0));
 835     // Note:  The second dummy edge is not needed by a ReturnNode.
 836   }
 837   // bind it to root
 838   root()->add_req(ret);
 839   record_for_igvn(ret);
 840   initial_gvn()->transform_no_reclaim(ret);
 841 }
 842 
 843 //------------------------rethrow_exceptions-----------------------------------
 844 // Bind all exception states in the list into a single RethrowNode.
 845 void Compile::rethrow_exceptions(JVMState* jvms) {
 846   GraphKit kit(jvms);
 847   if (!kit.has_exceptions())  return;  // nothing to generate
 848   // Load my combined exception state into the kit, with all phis transformed:
 849   SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
 850   Node* ex_oop = kit.use_exception_state(ex_map);
 851   RethrowNode* exit = new RethrowNode(kit.control(),
 852                                       kit.i_o(), kit.reset_memory(),
 853                                       kit.frameptr(), kit.returnadr(),
 854                                       // like a return but with exception input
 855                                       ex_oop);
 856   // bind to root
 857   root()->add_req(exit);
 858   record_for_igvn(exit);
 859   initial_gvn()->transform_no_reclaim(exit);
 860 }
 861 
 862 //---------------------------do_exceptions-------------------------------------
 863 // Process exceptions arising from the current bytecode.
 864 // Send caught exceptions to the proper handler within this method.
 865 // Unhandled exceptions feed into _exit.
 866 void Parse::do_exceptions() {
 867   if (!has_exceptions())  return;
 868 
 869   if (failing()) {
 870     // Pop them all off and throw them away.
 871     while (pop_exception_state() != NULL) ;
 872     return;
 873   }
 874 
 875   PreserveJVMState pjvms(this, false);
 876 
 877   SafePointNode* ex_map;
 878   while ((ex_map = pop_exception_state()) != NULL) {
 879     if (!method()->has_exception_handlers()) {
 880       // Common case:  Transfer control outward.
 881       // Doing it this early allows the exceptions to common up
 882       // even between adjacent method calls.
 883       throw_to_exit(ex_map);
 884     } else {
 885       // Have to look at the exception first.
 886       assert(stopped(), "catch_inline_exceptions trashes the map");
 887       catch_inline_exceptions(ex_map);
 888       stop_and_kill_map();      // we used up this exception state; kill it
 889     }
 890   }
 891 
 892   // We now return to our regularly scheduled program:
 893 }
 894 
 895 //---------------------------throw_to_exit-------------------------------------
 896 // Merge the given map into an exception exit from this method.
 897 // The exception exit will handle any unlocking of receiver.
 898 // The ex_oop must be saved within the ex_map, unlike merge_exception.
 899 void Parse::throw_to_exit(SafePointNode* ex_map) {
 900   // Pop the JVMS to (a copy of) the caller.
 901   GraphKit caller;
 902   caller.set_map_clone(_caller->map());
 903   caller.set_bci(_caller->bci());
 904   caller.set_sp(_caller->sp());
 905   // Copy out the standard machine state:
 906   for (uint i = 0; i < TypeFunc::Parms; i++) {
 907     caller.map()->set_req(i, ex_map->in(i));
 908   }
 909   if (ex_map->has_replaced_nodes()) {
 910     _replaced_nodes_for_exceptions = true;
 911   }
 912   caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx);
 913   // ...and the exception:
 914   Node*          ex_oop        = saved_ex_oop(ex_map);
 915   SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
 916   // Finally, collect the new exception state in my exits:
 917   _exits.add_exception_state(caller_ex_map);
 918 }
 919 
 920 //------------------------------do_exits---------------------------------------
 921 void Parse::do_exits() {
 922   set_parse_bci(InvocationEntryBci);
 923 
 924   // Now peephole on the return bits
 925   Node* region = _exits.control();
 926   _exits.set_control(gvn().transform(region));
 927 
 928   Node* iophi = _exits.i_o();
 929   _exits.set_i_o(gvn().transform(iophi));
 930 
 931   // Figure out if we need to emit the trailing barrier. The barrier is only
 932   // needed in the constructors, and only in three cases:
 933   //
 934   // 1. The constructor wrote a final. The effects of all initializations
 935   //    must be committed to memory before any code after the constructor
 936   //    publishes the reference to the newly constructed object. Rather
 937   //    than wait for the publication, we simply block the writes here.
 938   //    Rather than put a barrier on only those writes which are required
 939   //    to complete, we force all writes to complete.
 940   //
 941   // 2. On PPC64, also add MemBarRelease for constructors which write
 942   //    volatile fields. As support_IRIW_for_not_multiple_copy_atomic_cpu
 943   //    is set on PPC64, no sync instruction is issued after volatile
 944   //    stores. We want to guarantee the same behavior as on platforms
 945   //    with total store order, although this is not required by the Java
 946   //    memory model. So as with finals, we add a barrier here.
 947   //
 948   // 3. Experimental VM option is used to force the barrier if any field
 949   //    was written out in the constructor.
 950   //
 951   // "All bets are off" unless the first publication occurs after a
 952   // normal return from the constructor.  We do not attempt to detect
 953   // such unusual early publications.  But no barrier is needed on
 954   // exceptional returns, since they cannot publish normally.
 955   //
 956   if (method()->is_initializer() &&
 957         (wrote_final() ||
 958            PPC64_ONLY(wrote_volatile() ||)
 959            (AlwaysSafeConstructors && wrote_fields()))) {
 960     _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());









 961 #ifndef PRODUCT
 962     if (PrintOpto && (Verbose || WizardMode)) {
 963       method()->print_name();
 964       tty->print_cr(" writes finals and needs a memory barrier");
 965     }
 966 #endif
 967   }
 968 
 969   // Any method can write a @Stable field; insert memory barriers after
 970   // those also. If there is a predecessor allocation node, bind the
 971   // barrier there.
 972   if (wrote_stable()) {
 973     _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
 974 #ifndef PRODUCT
 975     if (PrintOpto && (Verbose || WizardMode)) {
 976       method()->print_name();
 977       tty->print_cr(" writes @Stable and needs a memory barrier");
 978     }
 979 #endif
 980   }
 981 
 982   for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
 983     // transform each slice of the original memphi:
 984     mms.set_memory(_gvn.transform(mms.memory()));
 985   }
 986 
 987   if (tf()->range()->cnt() > TypeFunc::Parms) {
 988     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 989     Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
 990     if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) {
 991       // In case of concurrent class loading, the type we set for the
 992       // ret_phi in build_exits() may have been too optimistic and the
 993       // ret_phi may be top now.
 994 #ifdef ASSERT
 995       {
 996         MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
 997         assert(ret_type->isa_ptr() && C->env()->system_dictionary_modification_counter_changed(), "return value must be well defined");
 998       }
 999 #endif
1000       C->record_failure(C2Compiler::retry_class_loading_during_parsing());
1001     }
1002     _exits.push_node(ret_type->basic_type(), ret_phi);
1003   }
1004 
1005   // Note:  Logic for creating and optimizing the ReturnNode is in Compile.
1006 
1007   // Unlock along the exceptional paths.
1008   // This is done late so that we can common up equivalent exceptions
1009   // (e.g., null checks) arising from multiple points within this method.
1010   // See GraphKit::add_exception_state, which performs the commoning.
1011   bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode;
1012 
1013   // record exit from a method if compiled while Dtrace is turned on.
1014   if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) {
1015     // First move the exception list out of _exits:
1016     GraphKit kit(_exits.transfer_exceptions_into_jvms());
1017     SafePointNode* normal_map = kit.map();  // keep this guy safe
1018     // Now re-collect the exceptions into _exits:
1019     SafePointNode* ex_map;
1020     while ((ex_map = kit.pop_exception_state()) != NULL) {
1021       Node* ex_oop = kit.use_exception_state(ex_map);
1022       // Force the exiting JVM state to have this method at InvocationEntryBci.
1023       // The exiting JVM state is otherwise a copy of the calling JVMS.
1024       JVMState* caller = kit.jvms();
1025       JVMState* ex_jvms = caller->clone_shallow(C);
1026       ex_jvms->set_map(kit.clone_map());
1027       ex_jvms->map()->set_jvms(ex_jvms);
1028       ex_jvms->set_bci(   InvocationEntryBci);
1029       kit.set_jvms(ex_jvms);
1030       if (do_synch) {
1031         // Add on the synchronized-method box/object combo
1032         kit.map()->push_monitor(_synch_lock);
1033         // Unlock!
1034         kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
1035       }
1036       if (C->env()->dtrace_method_probes()) {
1037         kit.make_dtrace_method_exit(method());
1038       }
1039       if (_replaced_nodes_for_exceptions) {
1040         kit.map()->apply_replaced_nodes();
1041       }
1042       // Done with exception-path processing.
1043       ex_map = kit.make_exception_state(ex_oop);
1044       assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
1045       // Pop the last vestige of this method:
1046       ex_map->set_jvms(caller->clone_shallow(C));
1047       ex_map->jvms()->set_map(ex_map);
1048       _exits.push_exception_state(ex_map);
1049     }
1050     assert(_exits.map() == normal_map, "keep the same return state");
1051   }
1052 
1053   {
1054     // Capture very early exceptions (receiver null checks) from caller JVMS
1055     GraphKit caller(_caller);
1056     SafePointNode* ex_map;
1057     while ((ex_map = caller.pop_exception_state()) != NULL) {
1058       _exits.add_exception_state(ex_map);
1059     }
1060   }
1061   _exits.map()->apply_replaced_nodes();
1062 }
1063 
1064 //-----------------------------create_entry_map-------------------------------
1065 // Initialize our parser map to contain the types at method entry.
1066 // For OSR, the map contains a single RawPtr parameter.
1067 // Initial monitor locking for sync. methods is performed by do_method_entry.
1068 SafePointNode* Parse::create_entry_map() {
1069   // Check for really stupid bail-out cases.
1070   uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1071   if (len >= 32760) {
1072     C->record_method_not_compilable_all_tiers("too many local variables");
1073     return NULL;
1074   }
1075 
1076   // clear current replaced nodes that are of no use from here on (map was cloned in build_exits).
1077   _caller->map()->delete_replaced_nodes();
1078 
1079   // If this is an inlined method, we may have to do a receiver null check.
1080   if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1081     GraphKit kit(_caller);
1082     kit.null_check_receiver_before_call(method());
1083     _caller = kit.transfer_exceptions_into_jvms();
1084     if (kit.stopped()) {
1085       _exits.add_exception_states_from(_caller);
1086       _exits.set_jvms(_caller);
1087       return NULL;
1088     }
1089   }
1090 
1091   assert(method() != NULL, "parser must have a method");
1092 
1093   // Create an initial safepoint to hold JVM state during parsing
1094   JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL);
1095   set_map(new SafePointNode(len, jvms));
1096   jvms->set_map(map());
1097   record_for_igvn(map());
1098   assert(jvms->endoff() == len, "correct jvms sizing");
1099 
1100   SafePointNode* inmap = _caller->map();
1101   assert(inmap != NULL, "must have inmap");
1102   // In case of null check on receiver above
1103   map()->transfer_replaced_nodes_from(inmap, _new_idx);
1104 
1105   uint i;
1106 
1107   // Pass thru the predefined input parameters.
1108   for (i = 0; i < TypeFunc::Parms; i++) {
1109     map()->init_req(i, inmap->in(i));
1110   }
1111 
1112   if (depth() == 1) {
1113     assert(map()->memory()->Opcode() == Op_Parm, "");
1114     // Insert the memory aliasing node
1115     set_all_memory(reset_memory());
1116   }
1117   assert(merged_memory(), "");
1118 
1119   // Now add the locals which are initially bound to arguments:
1120   uint arg_size = tf()->domain()->cnt();
1121   ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
1122   for (i = TypeFunc::Parms; i < arg_size; i++) {
1123     map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1124   }
1125 
1126   // Clear out the rest of the map (locals and stack)
1127   for (i = arg_size; i < len; i++) {
1128     map()->init_req(i, top());
1129   }
1130 
1131   SafePointNode* entry_map = stop();
1132   return entry_map;
1133 }
1134 
1135 //-----------------------------do_method_entry--------------------------------
1136 // Emit any code needed in the pseudo-block before BCI zero.
1137 // The main thing to do is lock the receiver of a synchronized method.
1138 void Parse::do_method_entry() {
1139   set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1140   set_sp(0);                      // Java Stack Pointer
1141 
1142   NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
1143 
1144   if (C->env()->dtrace_method_probes()) {
1145     make_dtrace_method_entry(method());
1146   }
1147 
1148   // If the method is synchronized, we need to construct a lock node, attach
1149   // it to the Start node, and pin it there.
1150   if (method()->is_synchronized()) {
1151     // Insert a FastLockNode right after the Start which takes as arguments
1152     // the current thread pointer, the "this" pointer & the address of the
1153     // stack slot pair used for the lock.  The "this" pointer is a projection
1154     // off the start node, but the locking spot has to be constructed by
1155     // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
1156     // becomes the second argument to the FastLockNode call.  The
1157     // FastLockNode becomes the new control parent to pin it to the start.
1158 
1159     // Setup Object Pointer
1160     Node *lock_obj = NULL;
1161     if(method()->is_static()) {
1162       ciInstance* mirror = _method->holder()->java_mirror();
1163       const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1164       lock_obj = makecon(t_lock);
1165     } else {                  // Else pass the "this" pointer,
1166       lock_obj = local(0);    // which is Parm0 from StartNode
1167     }
1168     // Clear out dead values from the debug info.
1169     kill_dead_locals();
1170     // Build the FastLockNode
1171     _synch_lock = shared_lock(lock_obj);
1172   }
1173 
1174   // Feed profiling data for parameters to the type system so it can
1175   // propagate it as speculative types
1176   record_profiled_parameters_for_speculation();
1177 
1178   if (depth() == 1) {
1179     increment_and_test_invocation_counter(Tier2CompileThreshold);
1180   }
1181 }
1182 
1183 //------------------------------init_blocks------------------------------------
1184 // Initialize our parser map to contain the types/monitors at method entry.
1185 void Parse::init_blocks() {
1186   // Create the blocks.
1187   _block_count = flow()->block_count();
1188   _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1189   Copy::zero_to_bytes(_blocks, sizeof(Block)*_block_count);
1190 
1191   int rpo;
1192 
1193   // Initialize the structs.
1194   for (rpo = 0; rpo < block_count(); rpo++) {
1195     Block* block = rpo_at(rpo);
1196     block->init_node(this, rpo);
1197   }
1198 
1199   // Collect predecessor and successor information.
1200   for (rpo = 0; rpo < block_count(); rpo++) {
1201     Block* block = rpo_at(rpo);
1202     block->init_graph(this);
1203   }
1204 }
1205 
1206 //-------------------------------init_node-------------------------------------
1207 void Parse::Block::init_node(Parse* outer, int rpo) {
1208   _flow = outer->flow()->rpo_at(rpo);
1209   _pred_count = 0;
1210   _preds_parsed = 0;
1211   _count = 0;
1212   assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
1213   assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity");
1214   assert(_live_locals.size() == 0, "sanity");
1215 
1216   // entry point has additional predecessor
1217   if (flow()->is_start())  _pred_count++;
1218   assert(flow()->is_start() == (this == outer->start_block()), "");
1219 }
1220 
1221 //-------------------------------init_graph------------------------------------
1222 void Parse::Block::init_graph(Parse* outer) {
1223   // Create the successor list for this parser block.
1224   GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
1225   GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
1226   int ns = tfs->length();
1227   int ne = tfe->length();
1228   _num_successors = ns;
1229   _all_successors = ns+ne;
1230   _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne);
1231   int p = 0;
1232   for (int i = 0; i < ns+ne; i++) {
1233     ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
1234     Block* block2 = outer->rpo_at(tf2->rpo());
1235     _successors[i] = block2;
1236 
1237     // Accumulate pred info for the other block, too.
1238     if (i < ns) {
1239       block2->_pred_count++;
1240     } else {
1241       block2->_is_handler = true;
1242     }
1243 
1244     #ifdef ASSERT
1245     // A block's successors must be distinguishable by BCI.
1246     // That is, no bytecode is allowed to branch to two different
1247     // clones of the same code location.
1248     for (int j = 0; j < i; j++) {
1249       Block* block1 = _successors[j];
1250       if (block1 == block2)  continue;  // duplicates are OK
1251       assert(block1->start() != block2->start(), "successors have unique bcis");
1252     }
1253     #endif
1254   }
1255 
1256   // Note: We never call next_path_num along exception paths, so they
1257   // never get processed as "ready".  Also, the input phis of exception
1258   // handlers get specially processed, so that
1259 }
1260 
1261 //---------------------------successor_for_bci---------------------------------
1262 Parse::Block* Parse::Block::successor_for_bci(int bci) {
1263   for (int i = 0; i < all_successors(); i++) {
1264     Block* block2 = successor_at(i);
1265     if (block2->start() == bci)  return block2;
1266   }
1267   // We can actually reach here if ciTypeFlow traps out a block
1268   // due to an unloaded class, and concurrently with compilation the
1269   // class is then loaded, so that a later phase of the parser is
1270   // able to see more of the bytecode CFG.  Or, the flow pass and
1271   // the parser can have a minor difference of opinion about executability
1272   // of bytecodes.  For example, "obj.field = null" is executable even
1273   // if the field's type is an unloaded class; the flow pass used to
1274   // make a trap for such code.
1275   return NULL;
1276 }
1277 
1278 
1279 //-----------------------------stack_type_at-----------------------------------
1280 const Type* Parse::Block::stack_type_at(int i) const {
1281   return get_type(flow()->stack_type_at(i));
1282 }
1283 
1284 
1285 //-----------------------------local_type_at-----------------------------------
1286 const Type* Parse::Block::local_type_at(int i) const {
1287   // Make dead locals fall to bottom.
1288   if (_live_locals.size() == 0) {
1289     MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
1290     // This bitmap can be zero length if we saw a breakpoint.
1291     // In such cases, pretend they are all live.
1292     ((Block*)this)->_live_locals = live_locals;
1293   }
1294   if (_live_locals.size() > 0 && !_live_locals.at(i))
1295     return Type::BOTTOM;
1296 
1297   return get_type(flow()->local_type_at(i));
1298 }
1299 
1300 
1301 #ifndef PRODUCT
1302 
1303 //----------------------------name_for_bc--------------------------------------
1304 // helper method for BytecodeParseHistogram
1305 static const char* name_for_bc(int i) {
1306   return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
1307 }
1308 
1309 //----------------------------BytecodeParseHistogram------------------------------------
1310 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
1311   _parser   = p;
1312   _compiler = c;
1313   if( ! _initialized ) { _initialized = true; reset(); }
1314 }
1315 
1316 //----------------------------current_count------------------------------------
1317 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
1318   switch( bph_type ) {
1319   case BPH_transforms: { return _parser->gvn().made_progress(); }
1320   case BPH_values:     { return _parser->gvn().made_new_values(); }
1321   default: { ShouldNotReachHere(); return 0; }
1322   }
1323 }
1324 
1325 //----------------------------initialized--------------------------------------
1326 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
1327 
1328 //----------------------------reset--------------------------------------------
1329 void Parse::BytecodeParseHistogram::reset() {
1330   int i = Bytecodes::number_of_codes;
1331   while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
1332 }
1333 
1334 //----------------------------set_initial_state--------------------------------
1335 // Record info when starting to parse one bytecode
1336 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
1337   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1338     _initial_bytecode    = bc;
1339     _initial_node_count  = _compiler->unique();
1340     _initial_transforms  = current_count(BPH_transforms);
1341     _initial_values      = current_count(BPH_values);
1342   }
1343 }
1344 
1345 //----------------------------record_change--------------------------------
1346 // Record results of parsing one bytecode
1347 void Parse::BytecodeParseHistogram::record_change() {
1348   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1349     ++_bytecodes_parsed[_initial_bytecode];
1350     _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
1351     _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
1352     _new_values        [_initial_bytecode] += (current_count(BPH_values)     - _initial_values);
1353   }
1354 }
1355 
1356 
1357 //----------------------------print--------------------------------------------
1358 void Parse::BytecodeParseHistogram::print(float cutoff) {
1359   ResourceMark rm;
1360   // print profile
1361   int total  = 0;
1362   int i      = 0;
1363   for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
1364   int abs_sum = 0;
1365   tty->cr();   //0123456789012345678901234567890123456789012345678901234567890123456789
1366   tty->print_cr("Histogram of %d parsed bytecodes:", total);
1367   if( total == 0 ) { return; }
1368   tty->cr();
1369   tty->print_cr("absolute:  count of compiled bytecodes of this type");
1370   tty->print_cr("relative:  percentage contribution to compiled nodes");
1371   tty->print_cr("nodes   :  Average number of nodes constructed per bytecode");
1372   tty->print_cr("rnodes  :  Significance towards total nodes constructed, (nodes*relative)");
1373   tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled");
1374   tty->print_cr("values  :  Average number of node values improved per bytecode");
1375   tty->print_cr("name    :  Bytecode name");
1376   tty->cr();
1377   tty->print_cr("  absolute  relative   nodes  rnodes  transforms  values   name");
1378   tty->print_cr("----------------------------------------------------------------------");
1379   while (--i > 0) {
1380     int       abs = _bytecodes_parsed[i];
1381     float     rel = abs * 100.0F / total;
1382     float   nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
1383     float  rnodes = _bytecodes_parsed[i] == 0 ? 0 :  rel * nodes;
1384     float  xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
1385     float  values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values       [i])/_bytecodes_parsed[i];
1386     if (cutoff <= rel) {
1387       tty->print_cr("%10d  %7.2f%%  %6.1f  %6.2f   %6.1f   %6.1f     %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
1388       abs_sum += abs;
1389     }
1390   }
1391   tty->print_cr("----------------------------------------------------------------------");
1392   float rel_sum = abs_sum * 100.0F / total;
1393   tty->print_cr("%10d  %7.2f%%    (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
1394   tty->print_cr("----------------------------------------------------------------------");
1395   tty->cr();
1396 }
1397 #endif
1398 
1399 //----------------------------load_state_from----------------------------------
1400 // Load block/map/sp.  But not do not touch iter/bci.
1401 void Parse::load_state_from(Block* block) {
1402   set_block(block);
1403   // load the block's JVM state:
1404   set_map(block->start_map());
1405   set_sp( block->start_sp());
1406 }
1407 
1408 
1409 //-----------------------------record_state------------------------------------
1410 void Parse::Block::record_state(Parse* p) {
1411   assert(!is_merged(), "can only record state once, on 1st inflow");
1412   assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
1413   set_start_map(p->stop());
1414 }
1415 
1416 
1417 //------------------------------do_one_block-----------------------------------
1418 void Parse::do_one_block() {
1419   if (TraceOptoParse) {
1420     Block *b = block();
1421     int ns = b->num_successors();
1422     int nt = b->all_successors();
1423 
1424     tty->print("Parsing block #%d at bci [%d,%d), successors: ",
1425                   block()->rpo(), block()->start(), block()->limit());
1426     for (int i = 0; i < nt; i++) {
1427       tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo());
1428     }
1429     if (b->is_loop_head()) tty->print("  lphd");
1430     tty->cr();
1431   }
1432 
1433   assert(block()->is_merged(), "must be merged before being parsed");
1434   block()->mark_parsed();
1435   ++_blocks_parsed;
1436 
1437   // Set iterator to start of block.
1438   iter().reset_to_bci(block()->start());
1439 
1440   CompileLog* log = C->log();
1441 
1442   // Parse bytecodes
1443   while (!stopped() && !failing()) {
1444     iter().next();
1445 
1446     // Learn the current bci from the iterator:
1447     set_parse_bci(iter().cur_bci());
1448 
1449     if (bci() == block()->limit()) {
1450       // Do not walk into the next block until directed by do_all_blocks.
1451       merge(bci());
1452       break;
1453     }
1454     assert(bci() < block()->limit(), "bci still in block");
1455 
1456     if (log != NULL) {
1457       // Output an optional context marker, to help place actions
1458       // that occur during parsing of this BC.  If there is no log
1459       // output until the next context string, this context string
1460       // will be silently ignored.
1461       log->set_context("bc code='%d' bci='%d'", (int)bc(), bci());
1462     }
1463 
1464     if (block()->has_trap_at(bci())) {
1465       // We must respect the flow pass's traps, because it will refuse
1466       // to produce successors for trapping blocks.
1467       int trap_index = block()->flow()->trap_index();
1468       assert(trap_index != 0, "trap index must be valid");
1469       uncommon_trap(trap_index);
1470       break;
1471     }
1472 
1473     NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
1474 
1475 #ifdef ASSERT
1476     int pre_bc_sp = sp();
1477     int inputs, depth;
1478     bool have_se = !stopped() && compute_stack_effects(inputs, depth);
1479     assert(!have_se || pre_bc_sp >= inputs, err_msg_res("have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs));
1480 #endif //ASSERT
1481 
1482     do_one_bytecode();
1483 
1484     assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth,
1485            err_msg_res("incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth));
1486 
1487     do_exceptions();
1488 
1489     NOT_PRODUCT( parse_histogram()->record_change(); );
1490 
1491     if (log != NULL)
1492       log->clear_context();  // skip marker if nothing was printed
1493 
1494     // Fall into next bytecode.  Each bytecode normally has 1 sequential
1495     // successor which is typically made ready by visiting this bytecode.
1496     // If the successor has several predecessors, then it is a merge
1497     // point, starts a new basic block, and is handled like other basic blocks.
1498   }
1499 }
1500 
1501 
1502 //------------------------------merge------------------------------------------
1503 void Parse::set_parse_bci(int bci) {
1504   set_bci(bci);
1505   Node_Notes* nn = C->default_node_notes();
1506   if (nn == NULL)  return;
1507 
1508   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
1509   if (!DebugInlinedCalls && depth() > 1) {
1510     return;
1511   }
1512 
1513   // Update the JVMS annotation, if present.
1514   JVMState* jvms = nn->jvms();
1515   if (jvms != NULL && jvms->bci() != bci) {
1516     // Update the JVMS.
1517     jvms = jvms->clone_shallow(C);
1518     jvms->set_bci(bci);
1519     nn->set_jvms(jvms);
1520   }
1521 }
1522 
1523 //------------------------------merge------------------------------------------
1524 // Merge the current mapping into the basic block starting at bci
1525 void Parse::merge(int target_bci) {
1526   Block* target = successor_for_bci(target_bci);
1527   if (target == NULL) { handle_missing_successor(target_bci); return; }
1528   assert(!target->is_ready(), "our arrival must be expected");
1529   int pnum = target->next_path_num();
1530   merge_common(target, pnum);
1531 }
1532 
1533 //-------------------------merge_new_path--------------------------------------
1534 // Merge the current mapping into the basic block, using a new path
1535 void Parse::merge_new_path(int target_bci) {
1536   Block* target = successor_for_bci(target_bci);
1537   if (target == NULL) { handle_missing_successor(target_bci); return; }
1538   assert(!target->is_ready(), "new path into frozen graph");
1539   int pnum = target->add_new_path();
1540   merge_common(target, pnum);
1541 }
1542 
1543 //-------------------------merge_exception-------------------------------------
1544 // Merge the current mapping into the basic block starting at bci
1545 // The ex_oop must be pushed on the stack, unlike throw_to_exit.
1546 void Parse::merge_exception(int target_bci) {
1547   assert(sp() == 1, "must have only the throw exception on the stack");
1548   Block* target = successor_for_bci(target_bci);
1549   if (target == NULL) { handle_missing_successor(target_bci); return; }
1550   assert(target->is_handler(), "exceptions are handled by special blocks");
1551   int pnum = target->add_new_path();
1552   merge_common(target, pnum);
1553 }
1554 
1555 //--------------------handle_missing_successor---------------------------------
1556 void Parse::handle_missing_successor(int target_bci) {
1557 #ifndef PRODUCT
1558   Block* b = block();
1559   int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1560   tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1561 #endif
1562   ShouldNotReachHere();
1563 }
1564 
1565 //--------------------------merge_common---------------------------------------
1566 void Parse::merge_common(Parse::Block* target, int pnum) {
1567   if (TraceOptoParse) {
1568     tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1569   }
1570 
1571   // Zap extra stack slots to top
1572   assert(sp() == target->start_sp(), "");
1573   clean_stack(sp());
1574 
1575   if (!target->is_merged()) {   // No prior mapping at this bci
1576     if (TraceOptoParse) { tty->print(" with empty state");  }
1577 
1578     // If this path is dead, do not bother capturing it as a merge.
1579     // It is "as if" we had 1 fewer predecessors from the beginning.
1580     if (stopped()) {
1581       if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
1582       return;
1583     }
1584 
1585     // Record that a new block has been merged.
1586     ++_blocks_merged;
1587 
1588     // Make a region if we know there are multiple or unpredictable inputs.
1589     // (Also, if this is a plain fall-through, we might see another region,
1590     // which must not be allowed into this block's map.)
1591     if (pnum > PhiNode::Input         // Known multiple inputs.
1592         || target->is_handler()       // These have unpredictable inputs.
1593         || target->is_loop_head()     // Known multiple inputs
1594         || control()->is_Region()) {  // We must hide this guy.
1595 
1596       int current_bci = bci();
1597       set_parse_bci(target->start()); // Set target bci
1598       if (target->is_SEL_head()) {
1599         DEBUG_ONLY( target->mark_merged_backedge(block()); )
1600         if (target->start() == 0) {
1601           // Add loop predicate for the special case when
1602           // there are backbranches to the method entry.
1603           add_predicate();
1604         }
1605       }
1606       // Add a Region to start the new basic block.  Phis will be added
1607       // later lazily.
1608       int edges = target->pred_count();
1609       if (edges < pnum)  edges = pnum;  // might be a new path!
1610       RegionNode *r = new RegionNode(edges+1);
1611       gvn().set_type(r, Type::CONTROL);
1612       record_for_igvn(r);
1613       // zap all inputs to NULL for debugging (done in Node(uint) constructor)
1614       // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); }
1615       r->init_req(pnum, control());
1616       set_control(r);
1617       set_parse_bci(current_bci); // Restore bci
1618     }
1619 
1620     // Convert the existing Parser mapping into a mapping at this bci.
1621     store_state_to(target);
1622     assert(target->is_merged(), "do not come here twice");
1623 
1624   } else {                      // Prior mapping at this bci
1625     if (TraceOptoParse) {  tty->print(" with previous state"); }
1626 #ifdef ASSERT
1627     if (target->is_SEL_head()) {
1628       target->mark_merged_backedge(block());
1629     }
1630 #endif
1631     // We must not manufacture more phis if the target is already parsed.
1632     bool nophi = target->is_parsed();
1633 
1634     SafePointNode* newin = map();// Hang on to incoming mapping
1635     Block* save_block = block(); // Hang on to incoming block;
1636     load_state_from(target);    // Get prior mapping
1637 
1638     assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1639     assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1640     assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1641     assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1642 
1643     // Iterate over my current mapping and the old mapping.
1644     // Where different, insert Phi functions.
1645     // Use any existing Phi functions.
1646     assert(control()->is_Region(), "must be merging to a region");
1647     RegionNode* r = control()->as_Region();
1648 
1649     // Compute where to merge into
1650     // Merge incoming control path
1651     r->init_req(pnum, newin->control());
1652 
1653     if (pnum == 1) {            // Last merge for this Region?
1654       if (!block()->flow()->is_irreducible_entry()) {
1655         Node* result = _gvn.transform_no_reclaim(r);
1656         if (r != result && TraceOptoParse) {
1657           tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1658         }
1659       }
1660       record_for_igvn(r);
1661     }
1662 
1663     // Update all the non-control inputs to map:
1664     assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1665     bool check_elide_phi = target->is_SEL_backedge(save_block);
1666     for (uint j = 1; j < newin->req(); j++) {
1667       Node* m = map()->in(j);   // Current state of target.
1668       Node* n = newin->in(j);   // Incoming change to target state.
1669       PhiNode* phi;
1670       if (m->is_Phi() && m->as_Phi()->region() == r)
1671         phi = m->as_Phi();
1672       else
1673         phi = NULL;
1674       if (m != n) {             // Different; must merge
1675         switch (j) {
1676         // Frame pointer and Return Address never changes
1677         case TypeFunc::FramePtr:// Drop m, use the original value
1678         case TypeFunc::ReturnAdr:
1679           break;
1680         case TypeFunc::Memory:  // Merge inputs to the MergeMem node
1681           assert(phi == NULL, "the merge contains phis, not vice versa");
1682           merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1683           continue;
1684         default:                // All normal stuff
1685           if (phi == NULL) {
1686             const JVMState* jvms = map()->jvms();
1687             if (EliminateNestedLocks &&
1688                 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1689               // BoxLock nodes are not commoning.
1690               // Use old BoxLock node as merged box.
1691               assert(newin->jvms()->is_monitor_box(j), "sanity");
1692               // This assert also tests that nodes are BoxLock.
1693               assert(BoxLockNode::same_slot(n, m), "sanity");
1694               C->gvn_replace_by(n, m);
1695             } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1696               phi = ensure_phi(j, nophi);
1697             }
1698           }
1699           break;
1700         }
1701       }
1702       // At this point, n might be top if:
1703       //  - there is no phi (because TypeFlow detected a conflict), or
1704       //  - the corresponding control edges is top (a dead incoming path)
1705       // It is a bug if we create a phi which sees a garbage value on a live path.
1706 
1707       if (phi != NULL) {
1708         assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1709         assert(phi->region() == r, "");
1710         phi->set_req(pnum, n);  // Then add 'n' to the merge
1711         if (pnum == PhiNode::Input) {
1712           // Last merge for this Phi.
1713           // So far, Phis have had a reasonable type from ciTypeFlow.
1714           // Now _gvn will join that with the meet of current inputs.
1715           // BOTTOM is never permissible here, 'cause pessimistically
1716           // Phis of pointers cannot lose the basic pointer type.
1717           debug_only(const Type* bt1 = phi->bottom_type());
1718           assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1719           map()->set_req(j, _gvn.transform_no_reclaim(phi));
1720           debug_only(const Type* bt2 = phi->bottom_type());
1721           assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
1722           record_for_igvn(phi);
1723         }
1724       }
1725     } // End of for all values to be merged
1726 
1727     if (pnum == PhiNode::Input &&
1728         !r->in(0)) {         // The occasional useless Region
1729       assert(control() == r, "");
1730       set_control(r->nonnull_req());
1731     }
1732 
1733     map()->merge_replaced_nodes_with(newin);
1734 
1735     // newin has been subsumed into the lazy merge, and is now dead.
1736     set_block(save_block);
1737 
1738     stop();                     // done with this guy, for now
1739   }
1740 
1741   if (TraceOptoParse) {
1742     tty->print_cr(" on path %d", pnum);
1743   }
1744 
1745   // Done with this parser state.
1746   assert(stopped(), "");
1747 }
1748 
1749 
1750 //--------------------------merge_memory_edges---------------------------------
1751 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
1752   // (nophi means we must not create phis, because we already parsed here)
1753   assert(n != NULL, "");
1754   // Merge the inputs to the MergeMems
1755   MergeMemNode* m = merged_memory();
1756 
1757   assert(control()->is_Region(), "must be merging to a region");
1758   RegionNode* r = control()->as_Region();
1759 
1760   PhiNode* base = NULL;
1761   MergeMemNode* remerge = NULL;
1762   for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
1763     Node *p = mms.force_memory();
1764     Node *q = mms.memory2();
1765     if (mms.is_empty() && nophi) {
1766       // Trouble:  No new splits allowed after a loop body is parsed.
1767       // Instead, wire the new split into a MergeMem on the backedge.
1768       // The optimizer will sort it out, slicing the phi.
1769       if (remerge == NULL) {
1770         assert(base != NULL, "");
1771         assert(base->in(0) != NULL, "should not be xformed away");
1772         remerge = MergeMemNode::make(base->in(pnum));
1773         gvn().set_type(remerge, Type::MEMORY);
1774         base->set_req(pnum, remerge);
1775       }
1776       remerge->set_memory_at(mms.alias_idx(), q);
1777       continue;
1778     }
1779     assert(!q->is_MergeMem(), "");
1780     PhiNode* phi;
1781     if (p != q) {
1782       phi = ensure_memory_phi(mms.alias_idx(), nophi);
1783     } else {
1784       if (p->is_Phi() && p->as_Phi()->region() == r)
1785         phi = p->as_Phi();
1786       else
1787         phi = NULL;
1788     }
1789     // Insert q into local phi
1790     if (phi != NULL) {
1791       assert(phi->region() == r, "");
1792       p = phi;
1793       phi->set_req(pnum, q);
1794       if (mms.at_base_memory()) {
1795         base = phi;  // delay transforming it
1796       } else if (pnum == 1) {
1797         record_for_igvn(phi);
1798         p = _gvn.transform_no_reclaim(phi);
1799       }
1800       mms.set_memory(p);// store back through the iterator
1801     }
1802   }
1803   // Transform base last, in case we must fiddle with remerging.
1804   if (base != NULL && pnum == 1) {
1805     record_for_igvn(base);
1806     m->set_base_memory( _gvn.transform_no_reclaim(base) );
1807   }
1808 }
1809 
1810 
1811 //------------------------ensure_phis_everywhere-------------------------------
1812 void Parse::ensure_phis_everywhere() {
1813   ensure_phi(TypeFunc::I_O);
1814 
1815   // Ensure a phi on all currently known memories.
1816   for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
1817     ensure_memory_phi(mms.alias_idx());
1818     debug_only(mms.set_memory());  // keep the iterator happy
1819   }
1820 
1821   // Note:  This is our only chance to create phis for memory slices.
1822   // If we miss a slice that crops up later, it will have to be
1823   // merged into the base-memory phi that we are building here.
1824   // Later, the optimizer will comb out the knot, and build separate
1825   // phi-loops for each memory slice that matters.
1826 
1827   // Monitors must nest nicely and not get confused amongst themselves.
1828   // Phi-ify everything up to the monitors, though.
1829   uint monoff = map()->jvms()->monoff();
1830   uint nof_monitors = map()->jvms()->nof_monitors();
1831 
1832   assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
1833   bool check_elide_phi = block()->is_SEL_head();
1834   for (uint i = TypeFunc::Parms; i < monoff; i++) {
1835     if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) {
1836       ensure_phi(i);
1837     }
1838   }
1839 
1840   // Even monitors need Phis, though they are well-structured.
1841   // This is true for OSR methods, and also for the rare cases where
1842   // a monitor object is the subject of a replace_in_map operation.
1843   // See bugs 4426707 and 5043395.
1844   for (uint m = 0; m < nof_monitors; m++) {
1845     ensure_phi(map()->jvms()->monitor_obj_offset(m));
1846   }
1847 }
1848 
1849 
1850 //-----------------------------add_new_path------------------------------------
1851 // Add a previously unaccounted predecessor to this block.
1852 int Parse::Block::add_new_path() {
1853   // If there is no map, return the lowest unused path number.
1854   if (!is_merged())  return pred_count()+1;  // there will be a map shortly
1855 
1856   SafePointNode* map = start_map();
1857   if (!map->control()->is_Region())
1858     return pred_count()+1;  // there may be a region some day
1859   RegionNode* r = map->control()->as_Region();
1860 
1861   // Add new path to the region.
1862   uint pnum = r->req();
1863   r->add_req(NULL);
1864 
1865   for (uint i = 1; i < map->req(); i++) {
1866     Node* n = map->in(i);
1867     if (i == TypeFunc::Memory) {
1868       // Ensure a phi on all currently known memories.
1869       for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
1870         Node* phi = mms.memory();
1871         if (phi->is_Phi() && phi->as_Phi()->region() == r) {
1872           assert(phi->req() == pnum, "must be same size as region");
1873           phi->add_req(NULL);
1874         }
1875       }
1876     } else {
1877       if (n->is_Phi() && n->as_Phi()->region() == r) {
1878         assert(n->req() == pnum, "must be same size as region");
1879         n->add_req(NULL);
1880       }
1881     }
1882   }
1883 
1884   return pnum;
1885 }
1886 
1887 //------------------------------ensure_phi-------------------------------------
1888 // Turn the idx'th entry of the current map into a Phi
1889 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
1890   SafePointNode* map = this->map();
1891   Node* region = map->control();
1892   assert(region->is_Region(), "");
1893 
1894   Node* o = map->in(idx);
1895   assert(o != NULL, "");
1896 
1897   if (o == top())  return NULL; // TOP always merges into TOP
1898 
1899   if (o->is_Phi() && o->as_Phi()->region() == region) {
1900     return o->as_Phi();
1901   }
1902 
1903   // Now use a Phi here for merging
1904   assert(!nocreate, "Cannot build a phi for a block already parsed.");
1905   const JVMState* jvms = map->jvms();
1906   const Type* t;
1907   if (jvms->is_loc(idx)) {
1908     t = block()->local_type_at(idx - jvms->locoff());
1909   } else if (jvms->is_stk(idx)) {
1910     t = block()->stack_type_at(idx - jvms->stkoff());
1911   } else if (jvms->is_mon(idx)) {
1912     assert(!jvms->is_monitor_box(idx), "no phis for boxes");
1913     t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
1914   } else if ((uint)idx < TypeFunc::Parms) {
1915     t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
1916   } else {
1917     assert(false, "no type information for this phi");
1918   }
1919 
1920   // If the type falls to bottom, then this must be a local that
1921   // is mixing ints and oops or some such.  Forcing it to top
1922   // makes it go dead.
1923   if (t == Type::BOTTOM) {
1924     map->set_req(idx, top());
1925     return NULL;
1926   }
1927 
1928   // Do not create phis for top either.
1929   // A top on a non-null control flow must be an unused even after the.phi.
1930   if (t == Type::TOP || t == Type::HALF) {
1931     map->set_req(idx, top());
1932     return NULL;
1933   }
1934 
1935   PhiNode* phi = PhiNode::make(region, o, t);
1936   gvn().set_type(phi, t);
1937   if (C->do_escape_analysis()) record_for_igvn(phi);
1938   map->set_req(idx, phi);
1939   return phi;
1940 }
1941 
1942 //--------------------------ensure_memory_phi----------------------------------
1943 // Turn the idx'th slice of the current memory into a Phi
1944 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
1945   MergeMemNode* mem = merged_memory();
1946   Node* region = control();
1947   assert(region->is_Region(), "");
1948 
1949   Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
1950   assert(o != NULL && o != top(), "");
1951 
1952   PhiNode* phi;
1953   if (o->is_Phi() && o->as_Phi()->region() == region) {
1954     phi = o->as_Phi();
1955     if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
1956       // clone the shared base memory phi to make a new memory split
1957       assert(!nocreate, "Cannot build a phi for a block already parsed.");
1958       const Type* t = phi->bottom_type();
1959       const TypePtr* adr_type = C->get_adr_type(idx);
1960       phi = phi->slice_memory(adr_type);
1961       gvn().set_type(phi, t);
1962     }
1963     return phi;
1964   }
1965 
1966   // Now use a Phi here for merging
1967   assert(!nocreate, "Cannot build a phi for a block already parsed.");
1968   const Type* t = o->bottom_type();
1969   const TypePtr* adr_type = C->get_adr_type(idx);
1970   phi = PhiNode::make(region, o, t, adr_type);
1971   gvn().set_type(phi, t);
1972   if (idx == Compile::AliasIdxBot)
1973     mem->set_base_memory(phi);
1974   else
1975     mem->set_memory_at(idx, phi);
1976   return phi;
1977 }
1978 
1979 //------------------------------call_register_finalizer-----------------------
1980 // Check the klass of the receiver and call register_finalizer if the
1981 // class need finalization.
1982 void Parse::call_register_finalizer() {
1983   Node* receiver = local(0);
1984   assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL,
1985          "must have non-null instance type");
1986 
1987   const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
1988   if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) {
1989     // The type isn't known exactly so see if CHA tells us anything.
1990     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
1991     if (!Dependencies::has_finalizable_subclass(ik)) {
1992       // No finalizable subclasses so skip the dynamic check.
1993       C->dependencies()->assert_has_no_finalizable_subclasses(ik);
1994       return;
1995     }
1996   }
1997 
1998   // Insert a dynamic test for whether the instance needs
1999   // finalization.  In general this will fold up since the concrete
2000   // class is often visible so the access flags are constant.
2001   Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
2002   Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), klass_addr, TypeInstPtr::KLASS));
2003 
2004   Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::access_flags_offset()));
2005   Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT, MemNode::unordered);
2006 
2007   Node* mask  = _gvn.transform(new AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER)));
2008   Node* check = _gvn.transform(new CmpINode(mask, intcon(0)));
2009   Node* test  = _gvn.transform(new BoolNode(check, BoolTest::ne));
2010 
2011   IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
2012 
2013   RegionNode* result_rgn = new RegionNode(3);
2014   record_for_igvn(result_rgn);
2015 
2016   Node *skip_register = _gvn.transform(new IfFalseNode(iff));
2017   result_rgn->init_req(1, skip_register);
2018 
2019   Node *needs_register = _gvn.transform(new IfTrueNode(iff));
2020   set_control(needs_register);
2021   if (stopped()) {
2022     // There is no slow path.
2023     result_rgn->init_req(2, top());
2024   } else {
2025     Node *call = make_runtime_call(RC_NO_LEAF,
2026                                    OptoRuntime::register_finalizer_Type(),
2027                                    OptoRuntime::register_finalizer_Java(),
2028                                    NULL, TypePtr::BOTTOM,
2029                                    receiver);
2030     make_slow_call_ex(call, env()->Throwable_klass(), true);
2031 
2032     Node* fast_io  = call->in(TypeFunc::I_O);
2033     Node* fast_mem = call->in(TypeFunc::Memory);
2034     // These two phis are pre-filled with copies of of the fast IO and Memory
2035     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
2036     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2037 
2038     result_rgn->init_req(2, control());
2039     io_phi    ->init_req(2, i_o());
2040     mem_phi   ->init_req(2, reset_memory());
2041 
2042     set_all_memory( _gvn.transform(mem_phi) );
2043     set_i_o(        _gvn.transform(io_phi) );
2044   }
2045 
2046   set_control( _gvn.transform(result_rgn) );
2047 }
2048 
2049 // Add check to deoptimize if RTM state is not ProfileRTM
2050 void Parse::rtm_deopt() {
2051 #if INCLUDE_RTM_OPT
2052   if (C->profile_rtm()) {
2053     assert(C->method() != NULL, "only for normal compilations");
2054     assert(!C->method()->method_data()->is_empty(), "MDO is needed to record RTM state");
2055     assert(depth() == 1, "generate check only for main compiled method");
2056 
2057     // Set starting bci for uncommon trap.
2058     set_parse_bci(is_osr_parse() ? osr_bci() : 0);
2059 
2060     // Load the rtm_state from the MethodData.
2061     const TypePtr* adr_type = TypeMetadataPtr::make(C->method()->method_data());
2062     Node* mdo = makecon(adr_type);
2063     int offset = MethodData::rtm_state_offset_in_bytes();
2064     Node* adr_node = basic_plus_adr(mdo, mdo, offset);
2065     Node* rtm_state = make_load(control(), adr_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
2066 
2067     // Separate Load from Cmp by Opaque.
2068     // In expand_macro_nodes() it will be replaced either
2069     // with this load when there are locks in the code
2070     // or with ProfileRTM (cmp->in(2)) otherwise so that
2071     // the check will fold.
2072     Node* profile_state = makecon(TypeInt::make(ProfileRTM));
2073     Node* opq   = _gvn.transform( new Opaque3Node(C, rtm_state, Opaque3Node::RTM_OPT) );
2074     Node* chk   = _gvn.transform( new CmpINode(opq, profile_state) );
2075     Node* tst   = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
2076     // Branch to failure if state was changed
2077     { BuildCutout unless(this, tst, PROB_ALWAYS);
2078       uncommon_trap(Deoptimization::Reason_rtm_state_change,
2079                     Deoptimization::Action_make_not_entrant);
2080     }
2081   }
2082 #endif
2083 }
2084 
2085 void Parse::decrement_age() {
2086   MethodCounters* mc = method()->ensure_method_counters();
2087   if (mc == NULL) {
2088     C->record_failure("Must have MCs");
2089     return;
2090   }
2091   assert(!is_osr_parse(), "Not doing this for OSRs");
2092 
2093   // Set starting bci for uncommon trap.
2094   set_parse_bci(0);
2095 
2096   const TypePtr* adr_type = TypeRawPtr::make((address)mc);
2097   Node* mc_adr = makecon(adr_type);
2098   Node* cnt_adr = basic_plus_adr(mc_adr, mc_adr, in_bytes(MethodCounters::nmethod_age_offset()));
2099   Node* cnt = make_load(control(), cnt_adr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
2100   Node* decr = _gvn.transform(new SubINode(cnt, makecon(TypeInt::ONE)));
2101   store_to_memory(control(), cnt_adr, decr, T_INT, adr_type, MemNode::unordered);
2102   Node *chk   = _gvn.transform(new CmpINode(decr, makecon(TypeInt::ZERO)));
2103   Node* tst   = _gvn.transform(new BoolNode(chk, BoolTest::gt));
2104   { BuildCutout unless(this, tst, PROB_ALWAYS);
2105     uncommon_trap(Deoptimization::Reason_tenured,
2106                   Deoptimization::Action_make_not_entrant);
2107   }
2108 }
2109 
2110 //------------------------------return_current---------------------------------
2111 // Append current _map to _exit_return
2112 void Parse::return_current(Node* value) {
2113   if (RegisterFinalizersAtInit &&
2114       method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2115     call_register_finalizer();
2116   }
2117 
2118   // Do not set_parse_bci, so that return goo is credited to the return insn.
2119   set_bci(InvocationEntryBci);
2120   if (method()->is_synchronized() && GenerateSynchronizationCode) {
2121     shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2122   }
2123   if (C->env()->dtrace_method_probes()) {
2124     make_dtrace_method_exit(method());
2125   }
2126   SafePointNode* exit_return = _exits.map();
2127   exit_return->in( TypeFunc::Control  )->add_req( control() );
2128   exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
2129   Node *mem = exit_return->in( TypeFunc::Memory   );
2130   for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2131     if (mms.is_empty()) {
2132       // get a copy of the base memory, and patch just this one input
2133       const TypePtr* adr_type = mms.adr_type(C);
2134       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2135       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2136       gvn().set_type_bottom(phi);
2137       phi->del_req(phi->req()-1);  // prepare to re-patch
2138       mms.set_memory(phi);
2139     }
2140     mms.memory()->add_req(mms.memory2());
2141   }
2142 
2143   // frame pointer is always same, already captured
2144   if (value != NULL) {
2145     // If returning oops to an interface-return, there is a silent free
2146     // cast from oop to interface allowed by the Verifier.  Make it explicit
2147     // here.
2148     Node* phi = _exits.argument(0);
2149     const TypeInstPtr *tr = phi->bottom_type()->isa_instptr();
2150     if( tr && tr->klass()->is_loaded() &&
2151         tr->klass()->is_interface() ) {
2152       const TypeInstPtr *tp = value->bottom_type()->isa_instptr();
2153       if (tp && tp->klass()->is_loaded() &&
2154           !tp->klass()->is_interface()) {
2155         // sharpen the type eagerly; this eases certain assert checking
2156         if (tp->higher_equal(TypeInstPtr::NOTNULL))
2157           tr = tr->join_speculative(TypeInstPtr::NOTNULL)->is_instptr();
2158         value = _gvn.transform(new CheckCastPPNode(0,value,tr));
2159       }
2160     }
2161     phi->add_req(value);
2162   }
2163 
2164   if (_first_return) {
2165     _exits.map()->transfer_replaced_nodes_from(map(), _new_idx);
2166     _first_return = false;
2167   } else {
2168     _exits.map()->merge_replaced_nodes_with(map());
2169   }
2170 
2171   stop_and_kill_map();          // This CFG path dies here
2172 }
2173 
2174 
2175 //------------------------------add_safepoint----------------------------------
2176 void Parse::add_safepoint() {
2177   // See if we can avoid this safepoint.  No need for a SafePoint immediately
2178   // after a Call (except Leaf Call) or another SafePoint.
2179   Node *proj = control();
2180   bool add_poll_param = SafePointNode::needs_polling_address_input();
2181   uint parms = add_poll_param ? TypeFunc::Parms+1 : TypeFunc::Parms;
2182   if( proj->is_Proj() ) {
2183     Node *n0 = proj->in(0);
2184     if( n0->is_Catch() ) {
2185       n0 = n0->in(0)->in(0);
2186       assert( n0->is_Call(), "expect a call here" );
2187     }
2188     if( n0->is_Call() ) {
2189       if( n0->as_Call()->guaranteed_safepoint() )
2190         return;
2191     } else if( n0->is_SafePoint() && n0->req() >= parms ) {
2192       return;
2193     }
2194   }
2195 
2196   // Clear out dead values from the debug info.
2197   kill_dead_locals();
2198 
2199   // Clone the JVM State
2200   SafePointNode *sfpnt = new SafePointNode(parms, NULL);
2201 
2202   // Capture memory state BEFORE a SafePoint.  Since we can block at a
2203   // SafePoint we need our GC state to be safe; i.e. we need all our current
2204   // write barriers (card marks) to not float down after the SafePoint so we
2205   // must read raw memory.  Likewise we need all oop stores to match the card
2206   // marks.  If deopt can happen, we need ALL stores (we need the correct JVM
2207   // state on a deopt).
2208 
2209   // We do not need to WRITE the memory state after a SafePoint.  The control
2210   // edge will keep card-marks and oop-stores from floating up from below a
2211   // SafePoint and our true dependency added here will keep them from floating
2212   // down below a SafePoint.
2213 
2214   // Clone the current memory state
2215   Node* mem = MergeMemNode::make(map()->memory());
2216 
2217   mem = _gvn.transform(mem);
2218 
2219   // Pass control through the safepoint
2220   sfpnt->init_req(TypeFunc::Control  , control());
2221   // Fix edges normally used by a call
2222   sfpnt->init_req(TypeFunc::I_O      , top() );
2223   sfpnt->init_req(TypeFunc::Memory   , mem   );
2224   sfpnt->init_req(TypeFunc::ReturnAdr, top() );
2225   sfpnt->init_req(TypeFunc::FramePtr , top() );
2226 
2227   // Create a node for the polling address
2228   if( add_poll_param ) {
2229     Node *polladr = ConPNode::make((address)os::get_polling_page());
2230     sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
2231   }
2232 
2233   // Fix up the JVM State edges
2234   add_safepoint_edges(sfpnt);
2235   Node *transformed_sfpnt = _gvn.transform(sfpnt);
2236   set_control(transformed_sfpnt);
2237 
2238   // Provide an edge from root to safepoint.  This makes the safepoint
2239   // appear useful until the parse has completed.
2240   if( OptoRemoveUseless && transformed_sfpnt->is_SafePoint() ) {
2241     assert(C->root() != NULL, "Expect parse is still valid");
2242     C->root()->add_prec(transformed_sfpnt);
2243   }
2244 }
2245 
2246 #ifndef PRODUCT
2247 //------------------------show_parse_info--------------------------------------
2248 void Parse::show_parse_info() {
2249   InlineTree* ilt = NULL;
2250   if (C->ilt() != NULL) {
2251     JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
2252     ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
2253   }
2254   if (PrintCompilation && Verbose) {
2255     if (depth() == 1) {
2256       if( ilt->count_inlines() ) {
2257         tty->print("    __inlined %d (%d bytes)", ilt->count_inlines(),
2258                      ilt->count_inline_bcs());
2259         tty->cr();
2260       }
2261     } else {
2262       if (method()->is_synchronized())         tty->print("s");
2263       if (method()->has_exception_handlers())  tty->print("!");
2264       // Check this is not the final compiled version
2265       if (C->trap_can_recompile()) {
2266         tty->print("-");
2267       } else {
2268         tty->print(" ");
2269       }
2270       method()->print_short_name();
2271       if (is_osr_parse()) {
2272         tty->print(" @ %d", osr_bci());
2273       }
2274       tty->print(" (%d bytes)",method()->code_size());
2275       if (ilt->count_inlines()) {
2276         tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2277                    ilt->count_inline_bcs());
2278       }
2279       tty->cr();
2280     }
2281   }
2282   if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
2283     // Print that we succeeded; suppress this message on the first osr parse.
2284 
2285     if (method()->is_synchronized())         tty->print("s");
2286     if (method()->has_exception_handlers())  tty->print("!");
2287     // Check this is not the final compiled version
2288     if (C->trap_can_recompile() && depth() == 1) {
2289       tty->print("-");
2290     } else {
2291       tty->print(" ");
2292     }
2293     if( depth() != 1 ) { tty->print("   "); }  // missing compile count
2294     for (int i = 1; i < depth(); ++i) { tty->print("  "); }
2295     method()->print_short_name();
2296     if (is_osr_parse()) {
2297       tty->print(" @ %d", osr_bci());
2298     }
2299     if (ilt->caller_bci() != -1) {
2300       tty->print(" @ %d", ilt->caller_bci());
2301     }
2302     tty->print(" (%d bytes)",method()->code_size());
2303     if (ilt->count_inlines()) {
2304       tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2305                  ilt->count_inline_bcs());
2306     }
2307     tty->cr();
2308   }
2309 }
2310 
2311 
2312 //------------------------------dump-------------------------------------------
2313 // Dump information associated with the bytecodes of current _method
2314 void Parse::dump() {
2315   if( method() != NULL ) {
2316     // Iterate over bytecodes
2317     ciBytecodeStream iter(method());
2318     for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
2319       dump_bci( iter.cur_bci() );
2320       tty->cr();
2321     }
2322   }
2323 }
2324 
2325 // Dump information associated with a byte code index, 'bci'
2326 void Parse::dump_bci(int bci) {
2327   // Output info on merge-points, cloning, and within _jsr..._ret
2328   // NYI
2329   tty->print(" bci:%d", bci);
2330 }
2331 
2332 #endif
--- EOF ---