1 /*
   2  * Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "interp_masm_aarch64.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterRuntime.hpp"
  30 #include "oops/arrayOop.hpp"
  31 #include "oops/markOop.hpp"
  32 #include "oops/methodData.hpp"
  33 #include "oops/method.hpp"
  34 #include "prims/jvmtiExport.hpp"
  35 #include "prims/jvmtiRedefineClassesTrace.hpp"
  36 #include "prims/jvmtiThreadState.hpp"
  37 #include "runtime/basicLock.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 
  42 
  43 // Implementation of InterpreterMacroAssembler
  44 
  45 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  46   assert(entry, "Entry must have been generated by now");
  47   b(entry);
  48 }
  49 
  50 #ifndef CC_INTERP
  51 
  52 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
  53   if (JvmtiExport::can_pop_frame()) {
  54     Label L;
  55     // Initiate popframe handling only if it is not already being
  56     // processed.  If the flag has the popframe_processing bit set, it
  57     // means that this code is called *during* popframe handling - we
  58     // don't want to reenter.
  59     // This method is only called just after the call into the vm in
  60     // call_VM_base, so the arg registers are available.
  61     ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
  62     tstw(rscratch1, JavaThread::popframe_pending_bit);
  63     br(Assembler::EQ, L);
  64     tstw(rscratch1, JavaThread::popframe_processing_bit);
  65     br(Assembler::NE, L);
  66     // Call Interpreter::remove_activation_preserving_args_entry() to get the
  67     // address of the same-named entrypoint in the generated interpreter code.
  68     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
  69     br(r0);
  70     bind(L);
  71   }
  72 }
  73 
  74 
  75 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
  76   ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset()));
  77   const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset());
  78   const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset());
  79   const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset());
  80   switch (state) {
  81     case atos: ldr(r0, oop_addr);
  82                str(zr, oop_addr);
  83                verify_oop(r0, state);               break;
  84     case ltos: ldr(r0, val_addr);                   break;
  85     case btos:                                   // fall through
  86     case ctos:                                   // fall through
  87     case stos:                                   // fall through
  88     case itos: ldrw(r0, val_addr);                  break;
  89     case ftos: ldrs(v0, val_addr);                  break;
  90     case dtos: ldrd(v0, val_addr);                  break;
  91     case vtos: /* nothing to do */                  break;
  92     default  : ShouldNotReachHere();
  93   }
  94   // Clean up tos value in the thread object
  95   movw(rscratch1, (int) ilgl);
  96   strw(rscratch1, tos_addr);
  97   strw(zr, val_addr);
  98 }
  99 
 100 
 101 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 102   if (JvmtiExport::can_force_early_return()) {
 103     Label L;
 104     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 105     cbz(rscratch1, L); // if (thread->jvmti_thread_state() == NULL) exit;
 106 
 107     // Initiate earlyret handling only if it is not already being processed.
 108     // If the flag has the earlyret_processing bit set, it means that this code
 109     // is called *during* earlyret handling - we don't want to reenter.
 110     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset()));
 111     cmpw(rscratch1, JvmtiThreadState::earlyret_pending);
 112     br(Assembler::NE, L);
 113 
 114     // Call Interpreter::remove_activation_early_entry() to get the address of the
 115     // same-named entrypoint in the generated interpreter code.
 116     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 117     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset()));
 118     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1);
 119     br(r0);
 120     bind(L);
 121   }
 122 }
 123 
 124 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
 125   Register reg,
 126   int bcp_offset) {
 127   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 128   ldrh(reg, Address(rbcp, bcp_offset));
 129   rev16(reg, reg);
 130 }
 131 
 132 void InterpreterMacroAssembler::get_dispatch() {
 133   unsigned long offset;
 134   adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset);
 135   lea(rdispatch, Address(rdispatch, offset));
 136 }
 137 
 138 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 139                                                        int bcp_offset,
 140                                                        size_t index_size) {
 141   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 142   if (index_size == sizeof(u2)) {
 143     load_unsigned_short(index, Address(rbcp, bcp_offset));
 144   } else if (index_size == sizeof(u4)) {
 145     // assert(EnableInvokeDynamic, "giant index used only for JSR 292");
 146     ldrw(index, Address(rbcp, bcp_offset));
 147     // Check if the secondary index definition is still ~x, otherwise
 148     // we have to change the following assembler code to calculate the
 149     // plain index.
 150     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 151     eonw(index, index, zr);  // convert to plain index
 152   } else if (index_size == sizeof(u1)) {
 153     load_unsigned_byte(index, Address(rbcp, bcp_offset));
 154   } else {
 155     ShouldNotReachHere();
 156   }
 157 }
 158 
 159 // Return
 160 // Rindex: index into constant pool
 161 // Rcache: address of cache entry - ConstantPoolCache::base_offset()
 162 //
 163 // A caller must add ConstantPoolCache::base_offset() to Rcache to get
 164 // the true address of the cache entry.
 165 //
 166 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
 167                                                            Register index,
 168                                                            int bcp_offset,
 169                                                            size_t index_size) {
 170   assert_different_registers(cache, index);
 171   assert_different_registers(cache, rcpool);
 172   get_cache_index_at_bcp(index, bcp_offset, index_size);
 173   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 174   // convert from field index to ConstantPoolCacheEntry
 175   // aarch64 already has the cache in rcpool so there is no need to
 176   // install it in cache. instead we pre-add the indexed offset to
 177   // rcpool and return it in cache. All clients of this method need to
 178   // be modified accordingly.
 179   add(cache, rcpool, index, Assembler::LSL, 5);
 180 }
 181 
 182 
 183 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
 184                                                                         Register index,
 185                                                                         Register bytecode,
 186                                                                         int byte_no,
 187                                                                         int bcp_offset,
 188                                                                         size_t index_size) {
 189   get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
 190   // We use a 32-bit load here since the layout of 64-bit words on
 191   // little-endian machines allow us that.
 192   // n.b. unlike x86 cache alreeady includes the index offset
 193   ldrw(bytecode, Address(cache,
 194                          ConstantPoolCache::base_offset()
 195                          + ConstantPoolCacheEntry::indices_offset()));
 196   const int shift_count = (1 + byte_no) * BitsPerByte;
 197   ubfx(bytecode, bytecode, shift_count, BitsPerByte);
 198 }
 199 
 200 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
 201                                                                Register tmp,
 202                                                                int bcp_offset,
 203                                                                size_t index_size) {
 204   assert(cache != tmp, "must use different register");
 205   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
 206   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 207   // convert from field index to ConstantPoolCacheEntry index
 208   // and from word offset to byte offset
 209   assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
 210   ldr(cache, Address(rfp, frame::interpreter_frame_cache_offset * wordSize));
 211   // skip past the header
 212   add(cache, cache, in_bytes(ConstantPoolCache::base_offset()));
 213   add(cache, cache, tmp, Assembler::LSL, 2 + LogBytesPerWord);  // construct pointer to cache entry
 214 }
 215 
 216 void InterpreterMacroAssembler::get_method_counters(Register method,
 217                                                     Register mcs, Label& skip) {
 218   Label has_counters;
 219   ldr(mcs, Address(method, Method::method_counters_offset()));
 220   cbnz(mcs, has_counters);
 221   call_VM(noreg, CAST_FROM_FN_PTR(address,
 222           InterpreterRuntime::build_method_counters), method);
 223   ldr(mcs, Address(method, Method::method_counters_offset()));
 224   cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory
 225   bind(has_counters);
 226 }
 227 
 228 // Load object from cpool->resolved_references(index)
 229 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 230                                            Register result, Register index) {
 231   assert_different_registers(result, index);
 232   // convert from field index to resolved_references() index and from
 233   // word index to byte offset. Since this is a java object, it can be compressed
 234   Register tmp = index;  // reuse
 235   lslw(tmp, tmp, LogBytesPerHeapOop);
 236 
 237   get_constant_pool(result);
 238   // load pointer for resolved_references[] objArray
 239   ldr(result, Address(result, ConstantPool::resolved_references_offset_in_bytes()));
 240   // JNIHandles::resolve(obj);
 241   ldr(result, Address(result, 0));
 242   // Add in the index
 243   add(result, result, tmp);
 244   load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 245 }
 246 
 247 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 248 // subtype of super_klass.
 249 //
 250 // Args:
 251 //      r0: superklass
 252 //      Rsub_klass: subklass
 253 //
 254 // Kills:
 255 //      r2, r5
 256 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 257                                                   Label& ok_is_subtype) {
 258   assert(Rsub_klass != r0, "r0 holds superklass");
 259   assert(Rsub_klass != r2, "r2 holds 2ndary super array length");
 260   assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr");
 261 
 262   // Profile the not-null value's klass.
 263   profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5
 264 
 265   // Do the check.
 266   check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2
 267 
 268   // Profile the failure of the check.
 269   profile_typecheck_failed(r2); // blows r2
 270 }
 271 
 272 // Java Expression Stack
 273 
 274 void InterpreterMacroAssembler::pop_ptr(Register r) {
 275   ldr(r, post(esp, wordSize));
 276 }
 277 
 278 void InterpreterMacroAssembler::pop_i(Register r) {
 279   ldrw(r, post(esp, wordSize));
 280 }
 281 
 282 void InterpreterMacroAssembler::pop_l(Register r) {
 283   ldr(r, post(esp, 2 * Interpreter::stackElementSize));
 284 }
 285 
 286 void InterpreterMacroAssembler::push_ptr(Register r) {
 287   str(r, pre(esp, -wordSize));
 288  }
 289 
 290 void InterpreterMacroAssembler::push_i(Register r) {
 291   str(r, pre(esp, -wordSize));
 292 }
 293 
 294 void InterpreterMacroAssembler::push_l(Register r) {
 295   str(r, pre(esp, 2 * -wordSize));
 296 }
 297 
 298 void InterpreterMacroAssembler::pop_f(FloatRegister r) {
 299   ldrs(r, post(esp, wordSize));
 300 }
 301 
 302 void InterpreterMacroAssembler::pop_d(FloatRegister r) {
 303   ldrd(r, post(esp, 2 * Interpreter::stackElementSize));
 304 }
 305 
 306 void InterpreterMacroAssembler::push_f(FloatRegister r) {
 307   strs(r, pre(esp, -wordSize));
 308 }
 309 
 310 void InterpreterMacroAssembler::push_d(FloatRegister r) {
 311   strd(r, pre(esp, 2* -wordSize));
 312 }
 313 
 314 void InterpreterMacroAssembler::pop(TosState state) {
 315   switch (state) {
 316   case atos: pop_ptr();                 break;
 317   case btos:
 318   case ctos:
 319   case stos:
 320   case itos: pop_i();                   break;
 321   case ltos: pop_l();                   break;
 322   case ftos: pop_f();                   break;
 323   case dtos: pop_d();                   break;
 324   case vtos: /* nothing to do */        break;
 325   default:   ShouldNotReachHere();
 326   }
 327   verify_oop(r0, state);
 328 }
 329 
 330 void InterpreterMacroAssembler::push(TosState state) {
 331   verify_oop(r0, state);
 332   switch (state) {
 333   case atos: push_ptr();                break;
 334   case btos:
 335   case ctos:
 336   case stos:
 337   case itos: push_i();                  break;
 338   case ltos: push_l();                  break;
 339   case ftos: push_f();                  break;
 340   case dtos: push_d();                  break;
 341   case vtos: /* nothing to do */        break;
 342   default  : ShouldNotReachHere();
 343   }
 344 }
 345 
 346 // Helpers for swap and dup
 347 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 348   ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 349 }
 350 
 351 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 352   str(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 353 }
 354 
 355 
 356 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 357   // set sender sp
 358   mov(r13, sp);
 359   // record last_sp
 360   str(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 361 }
 362 
 363 // Jump to from_interpreted entry of a call unless single stepping is possible
 364 // in this thread in which case we must call the i2i entry
 365 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 366   prepare_to_jump_from_interpreted();
 367 
 368   if (JvmtiExport::can_post_interpreter_events()) {
 369     Label run_compiled_code;
 370     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 371     // compiled code in threads for which the event is enabled.  Check here for
 372     // interp_only_mode if these events CAN be enabled.
 373     // interp_only is an int, on little endian it is sufficient to test the byte only
 374     // Is a cmpl faster?
 375     ldr(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset()));
 376     cbz(rscratch1, run_compiled_code);
 377     ldr(rscratch1, Address(method, Method::interpreter_entry_offset()));
 378     br(rscratch1);
 379     bind(run_compiled_code);
 380   }
 381 
 382   ldr(rscratch1, Address(method, Method::from_interpreted_offset()));
 383   br(rscratch1);
 384 }
 385 
 386 // The following two routines provide a hook so that an implementation
 387 // can schedule the dispatch in two parts.  amd64 does not do this.
 388 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 389 }
 390 
 391 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 392     dispatch_next(state, step);
 393 }
 394 
 395 void InterpreterMacroAssembler::dispatch_base(TosState state,
 396                                               address* table,
 397                                               bool verifyoop) {
 398   if (VerifyActivationFrameSize) {
 399     Unimplemented();
 400   }
 401   if (verifyoop) {
 402     verify_oop(r0, state);
 403   }
 404   if (table == Interpreter::dispatch_table(state)) {
 405     addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state));
 406     ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3)));
 407   } else {
 408     mov(rscratch2, (address)table);
 409     ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
 410   }
 411   br(rscratch2);
 412 }
 413 
 414 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 415   dispatch_base(state, Interpreter::dispatch_table(state));
 416 }
 417 
 418 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 419   dispatch_base(state, Interpreter::normal_table(state));
 420 }
 421 
 422 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 423   dispatch_base(state, Interpreter::normal_table(state), false);
 424 }
 425 
 426 
 427 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
 428   // load next bytecode
 429   ldrb(rscratch1, Address(pre(rbcp, step)));
 430   dispatch_base(state, Interpreter::dispatch_table(state));
 431 }
 432 
 433 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 434   // load current bytecode
 435   ldrb(rscratch1, Address(rbcp, 0));
 436   dispatch_base(state, table);
 437 }
 438 
 439 // remove activation
 440 //
 441 // Unlock the receiver if this is a synchronized method.
 442 // Unlock any Java monitors from syncronized blocks.
 443 // Remove the activation from the stack.
 444 //
 445 // If there are locked Java monitors
 446 //    If throw_monitor_exception
 447 //       throws IllegalMonitorStateException
 448 //    Else if install_monitor_exception
 449 //       installs IllegalMonitorStateException
 450 //    Else
 451 //       no error processing
 452 void InterpreterMacroAssembler::remove_activation(
 453         TosState state,
 454         bool throw_monitor_exception,
 455         bool install_monitor_exception,
 456         bool notify_jvmdi) {
 457   // Note: Registers r3 xmm0 may be in use for the
 458   // result check if synchronized method
 459   Label unlocked, unlock, no_unlock;
 460 
 461   // get the value of _do_not_unlock_if_synchronized into r3
 462   const Address do_not_unlock_if_synchronized(rthread,
 463     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 464   ldrb(r3, do_not_unlock_if_synchronized);
 465   strb(zr, do_not_unlock_if_synchronized); // reset the flag
 466 
 467  // get method access flags
 468   ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
 469   ldr(r2, Address(r1, Method::access_flags_offset()));
 470   tst(r2, JVM_ACC_SYNCHRONIZED);
 471   br(Assembler::EQ, unlocked);
 472 
 473   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 474   // is set.
 475   cbnz(r3, no_unlock);
 476 
 477   // unlock monitor
 478   push(state); // save result
 479 
 480   // BasicObjectLock will be first in list, since this is a
 481   // synchronized method. However, need to check that the object has
 482   // not been unlocked by an explicit monitorexit bytecode.
 483   const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset *
 484                         wordSize - (int) sizeof(BasicObjectLock));
 485   // We use c_rarg1 so that if we go slow path it will be the correct
 486   // register for unlock_object to pass to VM directly
 487   lea(c_rarg1, monitor); // address of first monitor
 488 
 489   ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
 490   cbnz(r0, unlock);
 491 
 492   pop(state);
 493   if (throw_monitor_exception) {
 494     // Entry already unlocked, need to throw exception
 495     call_VM(noreg, CAST_FROM_FN_PTR(address,
 496                    InterpreterRuntime::throw_illegal_monitor_state_exception));
 497     should_not_reach_here();
 498   } else {
 499     // Monitor already unlocked during a stack unroll. If requested,
 500     // install an illegal_monitor_state_exception.  Continue with
 501     // stack unrolling.
 502     if (install_monitor_exception) {
 503       call_VM(noreg, CAST_FROM_FN_PTR(address,
 504                      InterpreterRuntime::new_illegal_monitor_state_exception));
 505     }
 506     b(unlocked);
 507   }
 508 
 509   bind(unlock);
 510   unlock_object(c_rarg1);
 511   pop(state);
 512 
 513   // Check that for block-structured locking (i.e., that all locked
 514   // objects has been unlocked)
 515   bind(unlocked);
 516 
 517   // r0: Might contain return value
 518 
 519   // Check that all monitors are unlocked
 520   {
 521     Label loop, exception, entry, restart;
 522     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 523     const Address monitor_block_top(
 524         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 525     const Address monitor_block_bot(
 526         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
 527 
 528     bind(restart);
 529     // We use c_rarg1 so that if we go slow path it will be the correct
 530     // register for unlock_object to pass to VM directly
 531     ldr(c_rarg1, monitor_block_top); // points to current entry, starting
 532                                      // with top-most entry
 533     lea(r19, monitor_block_bot);  // points to word before bottom of
 534                                   // monitor block
 535     b(entry);
 536 
 537     // Entry already locked, need to throw exception
 538     bind(exception);
 539 
 540     if (throw_monitor_exception) {
 541       // Throw exception
 542       MacroAssembler::call_VM(noreg,
 543                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
 544                                    throw_illegal_monitor_state_exception));
 545       should_not_reach_here();
 546     } else {
 547       // Stack unrolling. Unlock object and install illegal_monitor_exception.
 548       // Unlock does not block, so don't have to worry about the frame.
 549       // We don't have to preserve c_rarg1 since we are going to throw an exception.
 550 
 551       push(state);
 552       unlock_object(c_rarg1);
 553       pop(state);
 554 
 555       if (install_monitor_exception) {
 556         call_VM(noreg, CAST_FROM_FN_PTR(address,
 557                                         InterpreterRuntime::
 558                                         new_illegal_monitor_state_exception));
 559       }
 560 
 561       b(restart);
 562     }
 563 
 564     bind(loop);
 565     // check if current entry is used
 566     ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
 567     cbnz(rscratch1, exception);
 568 
 569     add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry
 570     bind(entry);
 571     cmp(c_rarg1, r19); // check if bottom reached
 572     br(Assembler::NE, loop); // if not at bottom then check this entry
 573   }
 574 
 575   bind(no_unlock);
 576 
 577   // jvmti support
 578   if (notify_jvmdi) {
 579     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
 580   } else {
 581     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
 582   }
 583 
 584   // remove activation
 585   // get sender esp
 586   ldr(esp,
 587       Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
 588   // remove frame anchor
 589   leave();
 590   // If we're returning to interpreted code we will shortly be
 591   // adjusting SP to allow some space for ESP.  If we're returning to
 592   // compiled code the saved sender SP was saved in sender_sp, so this
 593   // restores it.
 594   andr(sp, esp, -16);
 595 }
 596 
 597 #endif // C_INTERP
 598 
 599 // Lock object
 600 //
 601 // Args:
 602 //      c_rarg1: BasicObjectLock to be used for locking
 603 //
 604 // Kills:
 605 //      r0
 606 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
 607 //      rscratch1, rscratch2 (scratch regs)
 608 void InterpreterMacroAssembler::lock_object(Register lock_reg)
 609 {
 610   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
 611   if (UseHeavyMonitors) {
 612     call_VM(noreg,
 613             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 614             lock_reg);
 615   } else {
 616     Label done;
 617 
 618     const Register swap_reg = r0;
 619     const Register tmp = c_rarg2;
 620     const Register obj_reg = c_rarg3; // Will contain the oop
 621 
 622     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
 623     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
 624     const int mark_offset = lock_offset +
 625                             BasicLock::displaced_header_offset_in_bytes();
 626 
 627     Label slow_case;
 628 
 629     // Load object pointer into obj_reg %c_rarg3
 630     ldr(obj_reg, Address(lock_reg, obj_offset));
 631 
 632     if (UseBiasedLocking) {
 633       biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp, false, done, &slow_case);
 634     }
 635 
 636     // Load (object->mark() | 1) into swap_reg
 637     ldr(rscratch1, Address(obj_reg, 0));
 638     orr(swap_reg, rscratch1, 1);
 639 
 640     // Save (object->mark() | 1) into BasicLock's displaced header
 641     str(swap_reg, Address(lock_reg, mark_offset));
 642 
 643     assert(lock_offset == 0,
 644            "displached header must be first word in BasicObjectLock");
 645 
 646     Label fail;
 647     if (PrintBiasedLockingStatistics) {
 648       Label fast;
 649       cmpxchgptr(swap_reg, lock_reg, obj_reg, rscratch1, fast, &fail);
 650       bind(fast);
 651       atomic_incw(Address((address)BiasedLocking::fast_path_entry_count_addr()),
 652                   rscratch2, rscratch1, tmp);
 653       b(done);
 654       bind(fail);
 655     } else {
 656       cmpxchgptr(swap_reg, lock_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL);
 657     }
 658 
 659     // Test if the oopMark is an obvious stack pointer, i.e.,
 660     //  1) (mark & 7) == 0, and
 661     //  2) rsp <= mark < mark + os::pagesize()
 662     //
 663     // These 3 tests can be done by evaluating the following
 664     // expression: ((mark - rsp) & (7 - os::vm_page_size())),
 665     // assuming both stack pointer and pagesize have their
 666     // least significant 3 bits clear.
 667     // NOTE: the oopMark is in swap_reg %r0 as the result of cmpxchg
 668     // NOTE2: aarch64 does not like to subtract sp from rn so take a
 669     // copy
 670     mov(rscratch1, sp);
 671     sub(swap_reg, swap_reg, rscratch1);
 672     ands(swap_reg, swap_reg, (unsigned long)(7 - os::vm_page_size()));
 673 
 674     // Save the test result, for recursive case, the result is zero
 675     str(swap_reg, Address(lock_reg, mark_offset));
 676 
 677     if (PrintBiasedLockingStatistics) {
 678       br(Assembler::NE, slow_case);
 679       atomic_incw(Address((address)BiasedLocking::fast_path_entry_count_addr()),
 680                   rscratch2, rscratch1, tmp);
 681     }
 682     br(Assembler::EQ, done);
 683 
 684     bind(slow_case);
 685 
 686     // Call the runtime routine for slow case
 687     call_VM(noreg,
 688             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 689             lock_reg);
 690 
 691     bind(done);
 692   }
 693 }
 694 
 695 
 696 // Unlocks an object. Used in monitorexit bytecode and
 697 // remove_activation.  Throws an IllegalMonitorException if object is
 698 // not locked by current thread.
 699 //
 700 // Args:
 701 //      c_rarg1: BasicObjectLock for lock
 702 //
 703 // Kills:
 704 //      r0
 705 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
 706 //      rscratch1, rscratch2 (scratch regs)
 707 void InterpreterMacroAssembler::unlock_object(Register lock_reg)
 708 {
 709   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
 710 
 711   if (UseHeavyMonitors) {
 712     call_VM(noreg,
 713             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
 714             lock_reg);
 715   } else {
 716     Label done;
 717 
 718     const Register swap_reg   = r0;
 719     const Register header_reg = c_rarg2;  // Will contain the old oopMark
 720     const Register obj_reg    = c_rarg3;  // Will contain the oop
 721 
 722     save_bcp(); // Save in case of exception
 723 
 724     // Convert from BasicObjectLock structure to object and BasicLock
 725     // structure Store the BasicLock address into %r0
 726     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
 727 
 728     // Load oop into obj_reg(%c_rarg3)
 729     ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
 730 
 731     // Free entry
 732     str(zr, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
 733 
 734     if (UseBiasedLocking) {
 735       biased_locking_exit(obj_reg, header_reg, done);
 736     }
 737 
 738     // Load the old header from BasicLock structure
 739     ldr(header_reg, Address(swap_reg,
 740                             BasicLock::displaced_header_offset_in_bytes()));
 741 
 742     // Test for recursion
 743     cbz(header_reg, done);
 744 
 745     // Atomic swap back the old header
 746     cmpxchgptr(swap_reg, header_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL);
 747 
 748     // Call the runtime routine for slow case.
 749     str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); // restore obj
 750     call_VM(noreg,
 751             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
 752             lock_reg);
 753 
 754     bind(done);
 755 
 756     restore_bcp();
 757   }
 758 }
 759 
 760 #ifndef CC_INTERP
 761 
 762 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
 763                                                          Label& zero_continue) {
 764   assert(ProfileInterpreter, "must be profiling interpreter");
 765   ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 766   cbz(mdp, zero_continue);
 767 }
 768 
 769 // Set the method data pointer for the current bcp.
 770 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
 771   assert(ProfileInterpreter, "must be profiling interpreter");
 772   Label set_mdp;
 773   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 774 
 775   // Test MDO to avoid the call if it is NULL.
 776   ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset())));
 777   cbz(r0, set_mdp);
 778   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp);
 779   // r0: mdi
 780   // mdo is guaranteed to be non-zero here, we checked for it before the call.
 781   ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
 782   lea(r1, Address(r1, in_bytes(MethodData::data_offset())));
 783   add(r0, r1, r0);
 784   str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 785   bind(set_mdp);
 786   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 787 }
 788 
 789 void InterpreterMacroAssembler::verify_method_data_pointer() {
 790   assert(ProfileInterpreter, "must be profiling interpreter");
 791 #ifdef ASSERT
 792   Label verify_continue;
 793   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 794   stp(r2, r3, Address(pre(sp, -2 * wordSize)));
 795   test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue
 796   get_method(r1);
 797 
 798   // If the mdp is valid, it will point to a DataLayout header which is
 799   // consistent with the bcp.  The converse is highly probable also.
 800   ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset())));
 801   ldr(rscratch1, Address(r1, Method::const_offset()));
 802   add(r2, r2, rscratch1, Assembler::LSL);
 803   lea(r2, Address(r2, ConstMethod::codes_offset()));
 804   cmp(r2, rbcp);
 805   br(Assembler::EQ, verify_continue);
 806   // r1: method
 807   // rbcp: bcp // rbcp == 22
 808   // r3: mdp
 809   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
 810                r1, rbcp, r3);
 811   bind(verify_continue);
 812   ldp(r2, r3, Address(post(sp, 2 * wordSize)));
 813   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 814 #endif // ASSERT
 815 }
 816 
 817 
 818 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
 819                                                 int constant,
 820                                                 Register value) {
 821   assert(ProfileInterpreter, "must be profiling interpreter");
 822   Address data(mdp_in, constant);
 823   str(value, data);
 824 }
 825 
 826 
 827 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 828                                                       int constant,
 829                                                       bool decrement) {
 830   increment_mdp_data_at(mdp_in, noreg, constant, decrement);
 831 }
 832 
 833 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 834                                                       Register reg,
 835                                                       int constant,
 836                                                       bool decrement) {
 837   assert(ProfileInterpreter, "must be profiling interpreter");
 838   // %%% this does 64bit counters at best it is wasting space
 839   // at worst it is a rare bug when counters overflow
 840 
 841   assert_different_registers(rscratch2, rscratch1, mdp_in, reg);
 842 
 843   Address addr1(mdp_in, constant);
 844   Address addr2(rscratch2, reg, Address::lsl(0));
 845   Address &addr = addr1;
 846   if (reg != noreg) {
 847     lea(rscratch2, addr1);
 848     addr = addr2;
 849   }
 850 
 851   if (decrement) {
 852     // Decrement the register.  Set condition codes.
 853     // Intel does this
 854     // addptr(data, (int32_t) -DataLayout::counter_increment);
 855     // If the decrement causes the counter to overflow, stay negative
 856     // Label L;
 857     // jcc(Assembler::negative, L);
 858     // addptr(data, (int32_t) DataLayout::counter_increment);
 859     // so we do this
 860     ldr(rscratch1, addr);
 861     subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment);
 862     Label L;
 863     br(Assembler::LO, L);       // skip store if counter underflow
 864     str(rscratch1, addr);
 865     bind(L);
 866   } else {
 867     assert(DataLayout::counter_increment == 1,
 868            "flow-free idiom only works with 1");
 869     // Intel does this
 870     // Increment the register.  Set carry flag.
 871     // addptr(data, DataLayout::counter_increment);
 872     // If the increment causes the counter to overflow, pull back by 1.
 873     // sbbptr(data, (int32_t)0);
 874     // so we do this
 875     ldr(rscratch1, addr);
 876     adds(rscratch1, rscratch1, DataLayout::counter_increment);
 877     Label L;
 878     br(Assembler::CS, L);       // skip store if counter overflow
 879     str(rscratch1, addr);
 880     bind(L);
 881   }
 882 }
 883 
 884 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
 885                                                 int flag_byte_constant) {
 886   assert(ProfileInterpreter, "must be profiling interpreter");
 887   int header_offset = in_bytes(DataLayout::header_offset());
 888   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
 889   // Set the flag
 890   ldr(rscratch1, Address(mdp_in, header_offset));
 891   orr(rscratch1, rscratch1, header_bits);
 892   str(rscratch1, Address(mdp_in, header_offset));
 893 }
 894 
 895 
 896 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
 897                                                  int offset,
 898                                                  Register value,
 899                                                  Register test_value_out,
 900                                                  Label& not_equal_continue) {
 901   assert(ProfileInterpreter, "must be profiling interpreter");
 902   if (test_value_out == noreg) {
 903     ldr(rscratch1, Address(mdp_in, offset));
 904     cmp(value, rscratch1);
 905   } else {
 906     // Put the test value into a register, so caller can use it:
 907     ldr(test_value_out, Address(mdp_in, offset));
 908     cmp(value, test_value_out);
 909   }
 910   br(Assembler::NE, not_equal_continue);
 911 }
 912 
 913 
 914 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
 915                                                      int offset_of_disp) {
 916   assert(ProfileInterpreter, "must be profiling interpreter");
 917   ldr(rscratch1, Address(mdp_in, offset_of_disp));
 918   add(mdp_in, mdp_in, rscratch1, LSL);
 919   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 920 }
 921 
 922 
 923 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
 924                                                      Register reg,
 925                                                      int offset_of_disp) {
 926   assert(ProfileInterpreter, "must be profiling interpreter");
 927   lea(rscratch1, Address(mdp_in, offset_of_disp));
 928   ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0)));
 929   add(mdp_in, mdp_in, rscratch1, LSL);
 930   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 931 }
 932 
 933 
 934 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
 935                                                        int constant) {
 936   assert(ProfileInterpreter, "must be profiling interpreter");
 937   add(mdp_in, mdp_in, (unsigned)constant);
 938   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 939 }
 940 
 941 
 942 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
 943   assert(ProfileInterpreter, "must be profiling interpreter");
 944   // save/restore across call_VM
 945   stp(zr, return_bci, Address(pre(sp, -2 * wordSize)));
 946   call_VM(noreg,
 947           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
 948           return_bci);
 949   ldp(zr, return_bci, Address(post(sp, 2 * wordSize)));
 950 }
 951 
 952 
 953 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
 954                                                      Register bumped_count) {
 955   if (ProfileInterpreter) {
 956     Label profile_continue;
 957 
 958     // If no method data exists, go to profile_continue.
 959     // Otherwise, assign to mdp
 960     test_method_data_pointer(mdp, profile_continue);
 961 
 962     // We are taking a branch.  Increment the taken count.
 963     // We inline increment_mdp_data_at to return bumped_count in a register
 964     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
 965     Address data(mdp, in_bytes(JumpData::taken_offset()));
 966     ldr(bumped_count, data);
 967     assert(DataLayout::counter_increment == 1,
 968             "flow-free idiom only works with 1");
 969     // Intel does this to catch overflow
 970     // addptr(bumped_count, DataLayout::counter_increment);
 971     // sbbptr(bumped_count, 0);
 972     // so we do this
 973     adds(bumped_count, bumped_count, DataLayout::counter_increment);
 974     Label L;
 975     br(Assembler::CS, L);       // skip store if counter overflow
 976     str(bumped_count, data);
 977     bind(L);
 978     // The method data pointer needs to be updated to reflect the new target.
 979     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
 980     bind(profile_continue);
 981   }
 982 }
 983 
 984 
 985 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
 986   if (ProfileInterpreter) {
 987     Label profile_continue;
 988 
 989     // If no method data exists, go to profile_continue.
 990     test_method_data_pointer(mdp, profile_continue);
 991 
 992     // We are taking a branch.  Increment the not taken count.
 993     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
 994 
 995     // The method data pointer needs to be updated to correspond to
 996     // the next bytecode
 997     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
 998     bind(profile_continue);
 999   }
1000 }
1001 
1002 
1003 void InterpreterMacroAssembler::profile_call(Register mdp) {
1004   if (ProfileInterpreter) {
1005     Label profile_continue;
1006 
1007     // If no method data exists, go to profile_continue.
1008     test_method_data_pointer(mdp, profile_continue);
1009 
1010     // We are making a call.  Increment the count.
1011     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1012 
1013     // The method data pointer needs to be updated to reflect the new target.
1014     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1015     bind(profile_continue);
1016   }
1017 }
1018 
1019 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1020   if (ProfileInterpreter) {
1021     Label profile_continue;
1022 
1023     // If no method data exists, go to profile_continue.
1024     test_method_data_pointer(mdp, profile_continue);
1025 
1026     // We are making a call.  Increment the count.
1027     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1028 
1029     // The method data pointer needs to be updated to reflect the new target.
1030     update_mdp_by_constant(mdp,
1031                            in_bytes(VirtualCallData::
1032                                     virtual_call_data_size()));
1033     bind(profile_continue);
1034   }
1035 }
1036 
1037 
1038 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1039                                                      Register mdp,
1040                                                      Register reg2,
1041                                                      bool receiver_can_be_null) {
1042   if (ProfileInterpreter) {
1043     Label profile_continue;
1044 
1045     // If no method data exists, go to profile_continue.
1046     test_method_data_pointer(mdp, profile_continue);
1047 
1048     Label skip_receiver_profile;
1049     if (receiver_can_be_null) {
1050       Label not_null;
1051       // We are making a call.  Increment the count for null receiver.
1052       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1053       b(skip_receiver_profile);
1054       bind(not_null);
1055     }
1056 
1057     // Record the receiver type.
1058     record_klass_in_profile(receiver, mdp, reg2, true);
1059     bind(skip_receiver_profile);
1060 
1061     // The method data pointer needs to be updated to reflect the new target.
1062     update_mdp_by_constant(mdp,
1063                            in_bytes(VirtualCallData::
1064                                     virtual_call_data_size()));
1065     bind(profile_continue);
1066   }
1067 }
1068 
1069 // This routine creates a state machine for updating the multi-row
1070 // type profile at a virtual call site (or other type-sensitive bytecode).
1071 // The machine visits each row (of receiver/count) until the receiver type
1072 // is found, or until it runs out of rows.  At the same time, it remembers
1073 // the location of the first empty row.  (An empty row records null for its
1074 // receiver, and can be allocated for a newly-observed receiver type.)
1075 // Because there are two degrees of freedom in the state, a simple linear
1076 // search will not work; it must be a decision tree.  Hence this helper
1077 // function is recursive, to generate the required tree structured code.
1078 // It's the interpreter, so we are trading off code space for speed.
1079 // See below for example code.
1080 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1081                                         Register receiver, Register mdp,
1082                                         Register reg2, int start_row,
1083                                         Label& done, bool is_virtual_call) {
1084   if (TypeProfileWidth == 0) {
1085     if (is_virtual_call) {
1086       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1087     }
1088     return;
1089   }
1090 
1091   int last_row = VirtualCallData::row_limit() - 1;
1092   assert(start_row <= last_row, "must be work left to do");
1093   // Test this row for both the receiver and for null.
1094   // Take any of three different outcomes:
1095   //   1. found receiver => increment count and goto done
1096   //   2. found null => keep looking for case 1, maybe allocate this cell
1097   //   3. found something else => keep looking for cases 1 and 2
1098   // Case 3 is handled by a recursive call.
1099   for (int row = start_row; row <= last_row; row++) {
1100     Label next_test;
1101     bool test_for_null_also = (row == start_row);
1102 
1103     // See if the receiver is receiver[n].
1104     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1105     test_mdp_data_at(mdp, recvr_offset, receiver,
1106                      (test_for_null_also ? reg2 : noreg),
1107                      next_test);
1108     // (Reg2 now contains the receiver from the CallData.)
1109 
1110     // The receiver is receiver[n].  Increment count[n].
1111     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1112     increment_mdp_data_at(mdp, count_offset);
1113     b(done);
1114     bind(next_test);
1115 
1116     if (test_for_null_also) {
1117       Label found_null;
1118       // Failed the equality check on receiver[n]...  Test for null.
1119       if (start_row == last_row) {
1120         // The only thing left to do is handle the null case.
1121         if (is_virtual_call) {
1122           cbz(reg2, found_null);
1123           // Receiver did not match any saved receiver and there is no empty row for it.
1124           // Increment total counter to indicate polymorphic case.
1125           increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1126           b(done);
1127           bind(found_null);
1128         } else {
1129           cbz(reg2, done);
1130         }
1131         break;
1132       }
1133       // Since null is rare, make it be the branch-taken case.
1134       cbz(reg2,found_null);
1135 
1136       // Put all the "Case 3" tests here.
1137       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call);
1138 
1139       // Found a null.  Keep searching for a matching receiver,
1140       // but remember that this is an empty (unused) slot.
1141       bind(found_null);
1142     }
1143   }
1144 
1145   // In the fall-through case, we found no matching receiver, but we
1146   // observed the receiver[start_row] is NULL.
1147 
1148   // Fill in the receiver field and increment the count.
1149   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1150   set_mdp_data_at(mdp, recvr_offset, receiver);
1151   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1152   mov(reg2, DataLayout::counter_increment);
1153   set_mdp_data_at(mdp, count_offset, reg2);
1154   if (start_row > 0) {
1155     b(done);
1156   }
1157 }
1158 
1159 // Example state machine code for three profile rows:
1160 //   // main copy of decision tree, rooted at row[1]
1161 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1162 //   if (row[0].rec != NULL) {
1163 //     // inner copy of decision tree, rooted at row[1]
1164 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1165 //     if (row[1].rec != NULL) {
1166 //       // degenerate decision tree, rooted at row[2]
1167 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1168 //       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
1169 //       row[2].init(rec); goto done;
1170 //     } else {
1171 //       // remember row[1] is empty
1172 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1173 //       row[1].init(rec); goto done;
1174 //     }
1175 //   } else {
1176 //     // remember row[0] is empty
1177 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1178 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1179 //     row[0].init(rec); goto done;
1180 //   }
1181 //   done:
1182 
1183 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1184                                                         Register mdp, Register reg2,
1185                                                         bool is_virtual_call) {
1186   assert(ProfileInterpreter, "must be profiling");
1187   Label done;
1188 
1189   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1190 
1191   bind (done);
1192 }
1193 
1194 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1195                                             Register mdp) {
1196   if (ProfileInterpreter) {
1197     Label profile_continue;
1198     uint row;
1199 
1200     // If no method data exists, go to profile_continue.
1201     test_method_data_pointer(mdp, profile_continue);
1202 
1203     // Update the total ret count.
1204     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1205 
1206     for (row = 0; row < RetData::row_limit(); row++) {
1207       Label next_test;
1208 
1209       // See if return_bci is equal to bci[n]:
1210       test_mdp_data_at(mdp,
1211                        in_bytes(RetData::bci_offset(row)),
1212                        return_bci, noreg,
1213                        next_test);
1214 
1215       // return_bci is equal to bci[n].  Increment the count.
1216       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1217 
1218       // The method data pointer needs to be updated to reflect the new target.
1219       update_mdp_by_offset(mdp,
1220                            in_bytes(RetData::bci_displacement_offset(row)));
1221       b(profile_continue);
1222       bind(next_test);
1223     }
1224 
1225     update_mdp_for_ret(return_bci);
1226 
1227     bind(profile_continue);
1228   }
1229 }
1230 
1231 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1232   if (ProfileInterpreter) {
1233     Label profile_continue;
1234 
1235     // If no method data exists, go to profile_continue.
1236     test_method_data_pointer(mdp, profile_continue);
1237 
1238     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1239 
1240     // The method data pointer needs to be updated.
1241     int mdp_delta = in_bytes(BitData::bit_data_size());
1242     if (TypeProfileCasts) {
1243       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1244     }
1245     update_mdp_by_constant(mdp, mdp_delta);
1246 
1247     bind(profile_continue);
1248   }
1249 }
1250 
1251 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1252   if (ProfileInterpreter && TypeProfileCasts) {
1253     Label profile_continue;
1254 
1255     // If no method data exists, go to profile_continue.
1256     test_method_data_pointer(mdp, profile_continue);
1257 
1258     int count_offset = in_bytes(CounterData::count_offset());
1259     // Back up the address, since we have already bumped the mdp.
1260     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1261 
1262     // *Decrement* the counter.  We expect to see zero or small negatives.
1263     increment_mdp_data_at(mdp, count_offset, true);
1264 
1265     bind (profile_continue);
1266   }
1267 }
1268 
1269 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1270   if (ProfileInterpreter) {
1271     Label profile_continue;
1272 
1273     // If no method data exists, go to profile_continue.
1274     test_method_data_pointer(mdp, profile_continue);
1275 
1276     // The method data pointer needs to be updated.
1277     int mdp_delta = in_bytes(BitData::bit_data_size());
1278     if (TypeProfileCasts) {
1279       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1280 
1281       // Record the object type.
1282       record_klass_in_profile(klass, mdp, reg2, false);
1283     }
1284     update_mdp_by_constant(mdp, mdp_delta);
1285 
1286     bind(profile_continue);
1287   }
1288 }
1289 
1290 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1291   if (ProfileInterpreter) {
1292     Label profile_continue;
1293 
1294     // If no method data exists, go to profile_continue.
1295     test_method_data_pointer(mdp, profile_continue);
1296 
1297     // Update the default case count
1298     increment_mdp_data_at(mdp,
1299                           in_bytes(MultiBranchData::default_count_offset()));
1300 
1301     // The method data pointer needs to be updated.
1302     update_mdp_by_offset(mdp,
1303                          in_bytes(MultiBranchData::
1304                                   default_displacement_offset()));
1305 
1306     bind(profile_continue);
1307   }
1308 }
1309 
1310 void InterpreterMacroAssembler::profile_switch_case(Register index,
1311                                                     Register mdp,
1312                                                     Register reg2) {
1313   if (ProfileInterpreter) {
1314     Label profile_continue;
1315 
1316     // If no method data exists, go to profile_continue.
1317     test_method_data_pointer(mdp, profile_continue);
1318 
1319     // Build the base (index * per_case_size_in_bytes()) +
1320     // case_array_offset_in_bytes()
1321     movw(reg2, in_bytes(MultiBranchData::per_case_size()));
1322     movw(rscratch1, in_bytes(MultiBranchData::case_array_offset()));
1323     Assembler::maddw(index, index, reg2, rscratch1);
1324 
1325     // Update the case count
1326     increment_mdp_data_at(mdp,
1327                           index,
1328                           in_bytes(MultiBranchData::relative_count_offset()));
1329 
1330     // The method data pointer needs to be updated.
1331     update_mdp_by_offset(mdp,
1332                          index,
1333                          in_bytes(MultiBranchData::
1334                                   relative_displacement_offset()));
1335 
1336     bind(profile_continue);
1337   }
1338 }
1339 
1340 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1341   if (state == atos) {
1342     MacroAssembler::verify_oop(reg);
1343   }
1344 }
1345 
1346 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; }
1347 #endif // !CC_INTERP
1348 
1349 
1350 void InterpreterMacroAssembler::notify_method_entry() {
1351   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1352   // track stack depth.  If it is possible to enter interp_only_mode we add
1353   // the code to check if the event should be sent.
1354   if (JvmtiExport::can_post_interpreter_events()) {
1355     Label L;
1356     ldr(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1357     tst(r3, ~0);
1358     br(Assembler::EQ, L);
1359     call_VM(noreg, CAST_FROM_FN_PTR(address,
1360                                     InterpreterRuntime::post_method_entry));
1361     bind(L);
1362   }
1363 
1364   {
1365     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1366     get_method(c_rarg1);
1367     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1368                  rthread, c_rarg1);
1369   }
1370 
1371   // RedefineClasses() tracing support for obsolete method entry
1372   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1373     get_method(c_rarg1);
1374     call_VM_leaf(
1375       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1376       rthread, c_rarg1);
1377   }
1378 
1379  }
1380 
1381 
1382 void InterpreterMacroAssembler::notify_method_exit(
1383     TosState state, NotifyMethodExitMode mode) {
1384   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1385   // track stack depth.  If it is possible to enter interp_only_mode we add
1386   // the code to check if the event should be sent.
1387   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1388     Label L;
1389     // Note: frame::interpreter_frame_result has a dependency on how the
1390     // method result is saved across the call to post_method_exit. If this
1391     // is changed then the interpreter_frame_result implementation will
1392     // need to be updated too.
1393 
1394     // For c++ interpreter the result is always stored at a known location in the frame
1395     // template interpreter will leave it on the top of the stack.
1396     NOT_CC_INTERP(push(state);)
1397     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1398     cbz(r3, L);
1399     call_VM(noreg,
1400             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1401     bind(L);
1402     NOT_CC_INTERP(pop(state));
1403   }
1404 
1405   {
1406     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1407     NOT_CC_INTERP(push(state));
1408     get_method(c_rarg1);
1409     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1410                  rthread, c_rarg1);
1411     NOT_CC_INTERP(pop(state));
1412   }
1413 }
1414 
1415 
1416 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1417 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1418                                                         int increment, Address mask,
1419                                                         Register scratch, Register scratch2,
1420                                                         bool preloaded, Condition cond,
1421                                                         Label* where) {
1422   if (!preloaded) {
1423     ldrw(scratch, counter_addr);
1424   }
1425   add(scratch, scratch, increment);
1426   strw(scratch, counter_addr);
1427   ldrw(scratch2, mask);
1428   ands(scratch, scratch, scratch2);
1429   br(cond, *where);
1430 }
1431 
1432 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
1433                                                   int number_of_arguments) {
1434   // interpreter specific
1435   //
1436   // Note: No need to save/restore rbcp & rlocals pointer since these
1437   //       are callee saved registers and no blocking/ GC can happen
1438   //       in leaf calls.
1439 #ifdef ASSERT
1440   {
1441     Label L;
1442     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1443     cbz(rscratch1, L);
1444     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1445          " last_sp != NULL");
1446     bind(L);
1447   }
1448 #endif /* ASSERT */
1449   // super call
1450   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
1451 }
1452 
1453 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
1454                                              Register java_thread,
1455                                              Register last_java_sp,
1456                                              address  entry_point,
1457                                              int      number_of_arguments,
1458                                              bool     check_exceptions) {
1459   // interpreter specific
1460   //
1461   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
1462   //       really make a difference for these runtime calls, since they are
1463   //       slow anyway. Btw., bcp must be saved/restored since it may change
1464   //       due to GC.
1465   // assert(java_thread == noreg , "not expecting a precomputed java thread");
1466   save_bcp();
1467 #ifdef ASSERT
1468   {
1469     Label L;
1470     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1471     cbz(rscratch1, L);
1472     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1473          " last_sp != NULL");
1474     bind(L);
1475   }
1476 #endif /* ASSERT */
1477   // super call
1478   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
1479                                entry_point, number_of_arguments,
1480                      check_exceptions);
1481 // interpreter specific
1482   restore_bcp();
1483   restore_locals();
1484 }
1485 
1486 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
1487   Label update, next, none;
1488 
1489   verify_oop(obj);
1490 
1491   cbnz(obj, update);
1492   orptr(mdo_addr, TypeEntries::null_seen);
1493   b(next);
1494 
1495   bind(update);
1496   load_klass(obj, obj);
1497 
1498   ldr(rscratch1, mdo_addr);
1499   eor(obj, obj, rscratch1);
1500   tst(obj, TypeEntries::type_klass_mask);
1501   br(Assembler::EQ, next); // klass seen before, nothing to
1502                            // do. The unknown bit may have been
1503                            // set already but no need to check.
1504 
1505   tst(obj, TypeEntries::type_unknown);
1506   br(Assembler::NE, next); // already unknown. Nothing to do anymore.
1507 
1508   ldr(rscratch1, mdo_addr);
1509   cbz(rscratch1, none);
1510   cmp(rscratch1, TypeEntries::null_seen);
1511   br(Assembler::EQ, none);
1512   // There is a chance that the checks above (re-reading profiling
1513   // data from memory) fail if another thread has just set the
1514   // profiling to this obj's klass
1515   ldr(rscratch1, mdo_addr);
1516   eor(obj, obj, rscratch1);
1517   tst(obj, TypeEntries::type_klass_mask);
1518   br(Assembler::EQ, next);
1519 
1520   // different than before. Cannot keep accurate profile.
1521   orptr(mdo_addr, TypeEntries::type_unknown);
1522   b(next);
1523 
1524   bind(none);
1525   // first time here. Set profile type.
1526   str(obj, mdo_addr);
1527 
1528   bind(next);
1529 }
1530 
1531 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1532   if (!ProfileInterpreter) {
1533     return;
1534   }
1535 
1536   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1537     Label profile_continue;
1538 
1539     test_method_data_pointer(mdp, profile_continue);
1540 
1541     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1542 
1543     ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start));
1544     cmp(rscratch1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
1545     br(Assembler::NE, profile_continue);
1546 
1547     if (MethodData::profile_arguments()) {
1548       Label done;
1549       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1550 
1551       for (int i = 0; i < TypeProfileArgsLimit; i++) {
1552         if (i > 0 || MethodData::profile_return()) {
1553           // If return value type is profiled we may have no argument to profile
1554           ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1555           sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count());
1556           cmp(tmp, TypeStackSlotEntries::per_arg_count());
1557           add(rscratch1, mdp, off_to_args);
1558           br(Assembler::LT, done);
1559         }
1560         ldr(tmp, Address(callee, Method::const_offset()));
1561         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1562         // stack offset o (zero based) from the start of the argument
1563         // list, for n arguments translates into offset n - o - 1 from
1564         // the end of the argument list
1565         ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))));
1566         sub(tmp, tmp, rscratch1);
1567         sub(tmp, tmp, 1);
1568         Address arg_addr = argument_address(tmp);
1569         ldr(tmp, arg_addr);
1570 
1571         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i)));
1572         profile_obj_type(tmp, mdo_arg_addr);
1573 
1574         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1575         off_to_args += to_add;
1576       }
1577 
1578       if (MethodData::profile_return()) {
1579         ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1580         sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1581       }
1582 
1583       add(rscratch1, mdp, off_to_args);
1584       bind(done);
1585       mov(mdp, rscratch1);
1586 
1587       if (MethodData::profile_return()) {
1588         // We're right after the type profile for the last
1589         // argument. tmp is the number of cells left in the
1590         // CallTypeData/VirtualCallTypeData to reach its end. Non null
1591         // if there's a return to profile.
1592         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1593         add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size));
1594       }
1595       str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1596     } else {
1597       assert(MethodData::profile_return(), "either profile call args or call ret");
1598       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1599     }
1600 
1601     // mdp points right after the end of the
1602     // CallTypeData/VirtualCallTypeData, right after the cells for the
1603     // return value type if there's one
1604 
1605     bind(profile_continue);
1606   }
1607 }
1608 
1609 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1610   assert_different_registers(mdp, ret, tmp, rbcp);
1611   if (ProfileInterpreter && MethodData::profile_return()) {
1612     Label profile_continue, done;
1613 
1614     test_method_data_pointer(mdp, profile_continue);
1615 
1616     if (MethodData::profile_return_jsr292_only()) {
1617       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
1618 
1619       // If we don't profile all invoke bytecodes we must make sure
1620       // it's a bytecode we indeed profile. We can't go back to the
1621       // begining of the ProfileData we intend to update to check its
1622       // type because we're right after it and we don't known its
1623       // length
1624       Label do_profile;
1625       ldrb(rscratch1, Address(rbcp, 0));
1626       cmp(rscratch1, Bytecodes::_invokedynamic);
1627       br(Assembler::EQ, do_profile);
1628       cmp(rscratch1, Bytecodes::_invokehandle);
1629       br(Assembler::EQ, do_profile);
1630       get_method(tmp);
1631       ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset_in_bytes()));
1632       cmp(rscratch1, vmIntrinsics::_compiledLambdaForm);
1633       br(Assembler::NE, profile_continue);
1634 
1635       bind(do_profile);
1636     }
1637 
1638     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
1639     mov(tmp, ret);
1640     profile_obj_type(tmp, mdo_ret_addr);
1641 
1642     bind(profile_continue);
1643   }
1644 }
1645 
1646 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1647   if (ProfileInterpreter && MethodData::profile_parameters()) {
1648     Label profile_continue, done;
1649 
1650     test_method_data_pointer(mdp, profile_continue);
1651 
1652     // Load the offset of the area within the MDO used for
1653     // parameters. If it's negative we're not profiling any parameters
1654     ldr(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
1655     cmp(tmp1, 0u);
1656     br(Assembler::LT, profile_continue);
1657 
1658     // Compute a pointer to the area for parameters from the offset
1659     // and move the pointer to the slot for the last
1660     // parameters. Collect profiling from last parameter down.
1661     // mdo start + parameters offset + array length - 1
1662     add(mdp, mdp, tmp1);
1663     ldr(tmp1, Address(mdp, ArrayData::array_len_offset()));
1664     sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1665 
1666     Label loop;
1667     bind(loop);
1668 
1669     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1670     int type_base = in_bytes(ParametersTypeData::type_offset(0));
1671     int per_arg_scale = exact_log2(DataLayout::cell_size);
1672     add(rscratch1, mdp, off_base);
1673     add(rscratch2, mdp, type_base);
1674 
1675     Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale));
1676     Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale));
1677 
1678     // load offset on the stack from the slot for this parameter
1679     ldr(tmp2, arg_off);
1680     neg(tmp2, tmp2);
1681     // read the parameter from the local area
1682     ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize)));
1683 
1684     // profile the parameter
1685     profile_obj_type(tmp2, arg_type);
1686 
1687     // go to next parameter
1688     subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1689     br(Assembler::GE, loop);
1690 
1691     bind(profile_continue);
1692   }
1693 }