1 /*
   2  * Copyright (c) 1994, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.io.ObjectStreamField;
  29 import java.io.UnsupportedEncodingException;
  30 import java.nio.charset.Charset;
  31 import java.util.ArrayList;
  32 import java.util.Arrays;
  33 import java.util.Comparator;
  34 import java.util.Formatter;
  35 import java.util.Locale;
  36 import java.util.Objects;
  37 import java.util.Spliterator;
  38 import java.util.StringJoiner;
  39 import java.util.function.IntConsumer;
  40 import java.util.regex.Matcher;
  41 import java.util.regex.Pattern;
  42 import java.util.regex.PatternSyntaxException;
  43 import java.util.stream.IntStream;
  44 import java.util.stream.StreamSupport;
  45 
  46 /**
  47  * The {@code String} class represents character strings. All
  48  * string literals in Java programs, such as {@code "abc"}, are
  49  * implemented as instances of this class.
  50  * <p>
  51  * Strings are constant; their values cannot be changed after they
  52  * are created. String buffers support mutable strings.
  53  * Because String objects are immutable they can be shared. For example:
  54  * <blockquote><pre>
  55  *     String str = "abc";
  56  * </pre></blockquote><p>
  57  * is equivalent to:
  58  * <blockquote><pre>
  59  *     char data[] = {'a', 'b', 'c'};
  60  *     String str = new String(data);
  61  * </pre></blockquote><p>
  62  * Here are some more examples of how strings can be used:
  63  * <blockquote><pre>
  64  *     System.out.println("abc");
  65  *     String cde = "cde";
  66  *     System.out.println("abc" + cde);
  67  *     String c = "abc".substring(2,3);
  68  *     String d = cde.substring(1, 2);
  69  * </pre></blockquote>
  70  * <p>
  71  * The class {@code String} includes methods for examining
  72  * individual characters of the sequence, for comparing strings, for
  73  * searching strings, for extracting substrings, and for creating a
  74  * copy of a string with all characters translated to uppercase or to
  75  * lowercase. Case mapping is based on the Unicode Standard version
  76  * specified by the {@link java.lang.Character Character} class.
  77  * <p>
  78  * The Java language provides special support for the string
  79  * concatenation operator (&nbsp;+&nbsp;), and for conversion of
  80  * other objects to strings. String concatenation is implemented
  81  * through the {@code StringBuilder}(or {@code StringBuffer})
  82  * class and its {@code append} method.
  83  * String conversions are implemented through the method
  84  * {@code toString}, defined by {@code Object} and
  85  * inherited by all classes in Java. For additional information on
  86  * string concatenation and conversion, see Gosling, Joy, and Steele,
  87  * <i>The Java Language Specification</i>.
  88  *
  89  * <p> Unless otherwise noted, passing a <tt>null</tt> argument to a constructor
  90  * or method in this class will cause a {@link NullPointerException} to be
  91  * thrown.
  92  *
  93  * <p>A {@code String} represents a string in the UTF-16 format
  94  * in which <em>supplementary characters</em> are represented by <em>surrogate
  95  * pairs</em> (see the section <a href="Character.html#unicode">Unicode
  96  * Character Representations</a> in the {@code Character} class for
  97  * more information).
  98  * Index values refer to {@code char} code units, so a supplementary
  99  * character uses two positions in a {@code String}.
 100  * <p>The {@code String} class provides methods for dealing with
 101  * Unicode code points (i.e., characters), in addition to those for
 102  * dealing with Unicode code units (i.e., {@code char} values).
 103  *
 104  * @author  Lee Boynton
 105  * @author  Arthur van Hoff
 106  * @author  Martin Buchholz
 107  * @author  Ulf Zibis
 108  * @see     java.lang.Object#toString()
 109  * @see     java.lang.StringBuffer
 110  * @see     java.lang.StringBuilder
 111  * @see     java.nio.charset.Charset
 112  * @since   1.0
 113  */
 114 
 115 public final class String
 116     implements java.io.Serializable, Comparable<String>, CharSequence {
 117     /** The value is used for character storage. */
 118     private final char value[];
 119 
 120     /** Cache the hash code for the string */
 121     private int hash; // Default to 0
 122 
 123     /** use serialVersionUID from JDK 1.0.2 for interoperability */
 124     private static final long serialVersionUID = -6849794470754667710L;
 125 
 126     /**
 127      * Class String is special cased within the Serialization Stream Protocol.
 128      *
 129      * A String instance is written into an ObjectOutputStream according to
 130      * <a href="{@docRoot}/../platform/serialization/spec/output.html">
 131      * Object Serialization Specification, Section 6.2, "Stream Elements"</a>
 132      */
 133     private static final ObjectStreamField[] serialPersistentFields =
 134         new ObjectStreamField[0];
 135 
 136     /**
 137      * Initializes a newly created {@code String} object so that it represents
 138      * an empty character sequence.  Note that use of this constructor is
 139      * unnecessary since Strings are immutable.
 140      */
 141     public String() {
 142         this.value = "".value;
 143     }
 144 
 145     /**
 146      * Initializes a newly created {@code String} object so that it represents
 147      * the same sequence of characters as the argument; in other words, the
 148      * newly created string is a copy of the argument string. Unless an
 149      * explicit copy of {@code original} is needed, use of this constructor is
 150      * unnecessary since Strings are immutable.
 151      *
 152      * @param  original
 153      *         A {@code String}
 154      */
 155     public String(String original) {
 156         this.value = original.value;
 157         this.hash = original.hash;
 158     }
 159 
 160     /**
 161      * Allocates a new {@code String} so that it represents the sequence of
 162      * characters currently contained in the character array argument. The
 163      * contents of the character array are copied; subsequent modification of
 164      * the character array does not affect the newly created string.
 165      *
 166      * @param  value
 167      *         The initial value of the string
 168      */
 169     public String(char value[]) {
 170         this.value = Arrays.copyOf(value, value.length);
 171     }
 172 
 173     /**
 174      * Allocates a new {@code String} that contains characters from a subarray
 175      * of the character array argument. The {@code offset} argument is the
 176      * index of the first character of the subarray and the {@code count}
 177      * argument specifies the length of the subarray. The contents of the
 178      * subarray are copied; subsequent modification of the character array does
 179      * not affect the newly created string.
 180      *
 181      * @param  value
 182      *         Array that is the source of characters
 183      *
 184      * @param  offset
 185      *         The initial offset
 186      *
 187      * @param  count
 188      *         The length
 189      *
 190      * @throws  IndexOutOfBoundsException
 191      *          If {@code offset} is negative, {@code count} is negative, or
 192      *          {@code offset} is greater than {@code value.length - count}
 193      */
 194     public String(char value[], int offset, int count) {
 195         if (offset < 0) {
 196             throw new StringIndexOutOfBoundsException(offset);
 197         }
 198         if (count <= 0) {
 199             if (count < 0) {
 200                 throw new StringIndexOutOfBoundsException(count);
 201             }
 202             if (offset <= value.length) {
 203                 this.value = "".value;
 204                 return;
 205             }
 206         }
 207         // Note: offset or count might be near -1>>>1.
 208         if (offset > value.length - count) {
 209             throw new StringIndexOutOfBoundsException(offset + count);
 210         }
 211         this.value = Arrays.copyOfRange(value, offset, offset+count);
 212     }
 213 
 214     /**
 215      * Allocates a new {@code String} that contains characters from a subarray
 216      * of the <a href="Character.html#unicode">Unicode code point</a> array
 217      * argument.  The {@code offset} argument is the index of the first code
 218      * point of the subarray and the {@code count} argument specifies the
 219      * length of the subarray.  The contents of the subarray are converted to
 220      * {@code char}s; subsequent modification of the {@code int} array does not
 221      * affect the newly created string.
 222      *
 223      * @param  codePoints
 224      *         Array that is the source of Unicode code points
 225      *
 226      * @param  offset
 227      *         The initial offset
 228      *
 229      * @param  count
 230      *         The length
 231      *
 232      * @throws  IllegalArgumentException
 233      *          If any invalid Unicode code point is found in {@code
 234      *          codePoints}
 235      *
 236      * @throws  IndexOutOfBoundsException
 237      *          If {@code offset} is negative, {@code count} is negative, or
 238      *          {@code offset} is greater than {@code codePoints.length - count}
 239      *
 240      * @since  1.5
 241      */
 242     public String(int[] codePoints, int offset, int count) {
 243         if (offset < 0) {
 244             throw new StringIndexOutOfBoundsException(offset);
 245         }
 246         if (count <= 0) {
 247             if (count < 0) {
 248                 throw new StringIndexOutOfBoundsException(count);
 249             }
 250             if (offset <= codePoints.length) {
 251                 this.value = "".value;
 252                 return;
 253             }
 254         }
 255         // Note: offset or count might be near -1>>>1.
 256         if (offset > codePoints.length - count) {
 257             throw new StringIndexOutOfBoundsException(offset + count);
 258         }
 259 
 260         final int end = offset + count;
 261 
 262         // Pass 1: Compute precise size of char[]
 263         int n = count;
 264         for (int i = offset; i < end; i++) {
 265             int c = codePoints[i];
 266             if (Character.isBmpCodePoint(c))
 267                 continue;
 268             else if (Character.isValidCodePoint(c))
 269                 n++;
 270             else throw new IllegalArgumentException(Integer.toString(c));
 271         }
 272 
 273         // Pass 2: Allocate and fill in char[]
 274         final char[] v = new char[n];
 275 
 276         for (int i = offset, j = 0; i < end; i++, j++) {
 277             int c = codePoints[i];
 278             if (Character.isBmpCodePoint(c))
 279                 v[j] = (char)c;
 280             else
 281                 Character.toSurrogates(c, v, j++);
 282         }
 283 
 284         this.value = v;
 285     }
 286 
 287     /**
 288      * Allocates a new {@code String} constructed from a subarray of an array
 289      * of 8-bit integer values.
 290      *
 291      * <p> The {@code offset} argument is the index of the first byte of the
 292      * subarray, and the {@code count} argument specifies the length of the
 293      * subarray.
 294      *
 295      * <p> Each {@code byte} in the subarray is converted to a {@code char} as
 296      * specified in the method above.
 297      *
 298      * @deprecated This method does not properly convert bytes into characters.
 299      * As of JDK&nbsp;1.1, the preferred way to do this is via the
 300      * {@code String} constructors that take a {@link
 301      * java.nio.charset.Charset}, charset name, or that use the platform's
 302      * default charset.
 303      *
 304      * @param  ascii
 305      *         The bytes to be converted to characters
 306      *
 307      * @param  hibyte
 308      *         The top 8 bits of each 16-bit Unicode code unit
 309      *
 310      * @param  offset
 311      *         The initial offset
 312      * @param  count
 313      *         The length
 314      *
 315      * @throws  IndexOutOfBoundsException
 316      *          If {@code offset} is negative, {@code count} is negative, or
 317      *          {@code offset} is greater than {@code ascii.length - count}
 318      *
 319      * @see  #String(byte[], int)
 320      * @see  #String(byte[], int, int, java.lang.String)
 321      * @see  #String(byte[], int, int, java.nio.charset.Charset)
 322      * @see  #String(byte[], int, int)
 323      * @see  #String(byte[], java.lang.String)
 324      * @see  #String(byte[], java.nio.charset.Charset)
 325      * @see  #String(byte[])
 326      */
 327     @Deprecated
 328     public String(byte ascii[], int hibyte, int offset, int count) {
 329         checkBounds(ascii, offset, count);
 330         char[] value = new char[count];
 331 
 332         if (hibyte == 0) {
 333             for (int i = count; i-- > 0;) {
 334                 value[i] = (char)(ascii[i + offset] & 0xff);
 335             }
 336         } else {
 337             hibyte <<= 8;
 338             for (int i = count; i-- > 0;) {
 339                 value[i] = (char)(hibyte | (ascii[i + offset] & 0xff));
 340             }
 341         }
 342         this.value = value;
 343     }
 344 
 345     /**
 346      * Allocates a new {@code String} containing characters constructed from
 347      * an array of 8-bit integer values. Each character <i>c</i>in the
 348      * resulting string is constructed from the corresponding component
 349      * <i>b</i> in the byte array such that:
 350      *
 351      * <blockquote><pre>
 352      *     <b><i>c</i></b> == (char)(((hibyte &amp; 0xff) &lt;&lt; 8)
 353      *                         | (<b><i>b</i></b> &amp; 0xff))
 354      * </pre></blockquote>
 355      *
 356      * @deprecated  This method does not properly convert bytes into
 357      * characters.  As of JDK&nbsp;1.1, the preferred way to do this is via the
 358      * {@code String} constructors that take a {@link
 359      * java.nio.charset.Charset}, charset name, or that use the platform's
 360      * default charset.
 361      *
 362      * @param  ascii
 363      *         The bytes to be converted to characters
 364      *
 365      * @param  hibyte
 366      *         The top 8 bits of each 16-bit Unicode code unit
 367      *
 368      * @see  #String(byte[], int, int, java.lang.String)
 369      * @see  #String(byte[], int, int, java.nio.charset.Charset)
 370      * @see  #String(byte[], int, int)
 371      * @see  #String(byte[], java.lang.String)
 372      * @see  #String(byte[], java.nio.charset.Charset)
 373      * @see  #String(byte[])
 374      */
 375     @Deprecated
 376     public String(byte ascii[], int hibyte) {
 377         this(ascii, hibyte, 0, ascii.length);
 378     }
 379 
 380     /* Common private utility method used to bounds check the byte array
 381      * and requested offset & length values used by the String(byte[],..)
 382      * constructors.
 383      */
 384     private static void checkBounds(byte[] bytes, int offset, int length) {
 385         if (length < 0)
 386             throw new StringIndexOutOfBoundsException(length);
 387         if (offset < 0)
 388             throw new StringIndexOutOfBoundsException(offset);
 389         if (offset > bytes.length - length)
 390             throw new StringIndexOutOfBoundsException(offset + length);
 391     }
 392 
 393     /**
 394      * Constructs a new {@code String} by decoding the specified subarray of
 395      * bytes using the specified charset.  The length of the new {@code String}
 396      * is a function of the charset, and hence may not be equal to the length
 397      * of the subarray.
 398      *
 399      * <p> The behavior of this constructor when the given bytes are not valid
 400      * in the given charset is unspecified.  The {@link
 401      * java.nio.charset.CharsetDecoder} class should be used when more control
 402      * over the decoding process is required.
 403      *
 404      * @param  bytes
 405      *         The bytes to be decoded into characters
 406      *
 407      * @param  offset
 408      *         The index of the first byte to decode
 409      *
 410      * @param  length
 411      *         The number of bytes to decode
 412 
 413      * @param  charsetName
 414      *         The name of a supported {@linkplain java.nio.charset.Charset
 415      *         charset}
 416      *
 417      * @throws  UnsupportedEncodingException
 418      *          If the named charset is not supported
 419      *
 420      * @throws  IndexOutOfBoundsException
 421      *          If {@code offset} is negative, {@code length} is negative, or
 422      *          {@code offset} is greater than {@code bytes.length - length}
 423      *
 424      * @since  1.1
 425      */
 426     public String(byte bytes[], int offset, int length, String charsetName)
 427             throws UnsupportedEncodingException {
 428         if (charsetName == null)
 429             throw new NullPointerException("charsetName");
 430         checkBounds(bytes, offset, length);
 431         this.value = StringCoding.decode(charsetName, bytes, offset, length);
 432     }
 433 
 434     /**
 435      * Constructs a new {@code String} by decoding the specified subarray of
 436      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
 437      * The length of the new {@code String} is a function of the charset, and
 438      * hence may not be equal to the length of the subarray.
 439      *
 440      * <p> This method always replaces malformed-input and unmappable-character
 441      * sequences with this charset's default replacement string.  The {@link
 442      * java.nio.charset.CharsetDecoder} class should be used when more control
 443      * over the decoding process is required.
 444      *
 445      * @param  bytes
 446      *         The bytes to be decoded into characters
 447      *
 448      * @param  offset
 449      *         The index of the first byte to decode
 450      *
 451      * @param  length
 452      *         The number of bytes to decode
 453      *
 454      * @param  charset
 455      *         The {@linkplain java.nio.charset.Charset charset} to be used to
 456      *         decode the {@code bytes}
 457      *
 458      * @throws  IndexOutOfBoundsException
 459      *          If {@code offset} is negative, {@code length} is negative, or
 460      *          {@code offset} is greater than {@code bytes.length - length}
 461      *
 462      * @since  1.6
 463      */
 464     public String(byte bytes[], int offset, int length, Charset charset) {
 465         if (charset == null)
 466             throw new NullPointerException("charset");
 467         checkBounds(bytes, offset, length);
 468         this.value =  StringCoding.decode(charset, bytes, offset, length);
 469     }
 470 
 471     /**
 472      * Constructs a new {@code String} by decoding the specified array of bytes
 473      * using the specified {@linkplain java.nio.charset.Charset charset}.  The
 474      * length of the new {@code String} is a function of the charset, and hence
 475      * may not be equal to the length of the byte array.
 476      *
 477      * <p> The behavior of this constructor when the given bytes are not valid
 478      * in the given charset is unspecified.  The {@link
 479      * java.nio.charset.CharsetDecoder} class should be used when more control
 480      * over the decoding process is required.
 481      *
 482      * @param  bytes
 483      *         The bytes to be decoded into characters
 484      *
 485      * @param  charsetName
 486      *         The name of a supported {@linkplain java.nio.charset.Charset
 487      *         charset}
 488      *
 489      * @throws  UnsupportedEncodingException
 490      *          If the named charset is not supported
 491      *
 492      * @since  1.1
 493      */
 494     public String(byte bytes[], String charsetName)
 495             throws UnsupportedEncodingException {
 496         this(bytes, 0, bytes.length, charsetName);
 497     }
 498 
 499     /**
 500      * Constructs a new {@code String} by decoding the specified array of
 501      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
 502      * The length of the new {@code String} is a function of the charset, and
 503      * hence may not be equal to the length of the byte array.
 504      *
 505      * <p> This method always replaces malformed-input and unmappable-character
 506      * sequences with this charset's default replacement string.  The {@link
 507      * java.nio.charset.CharsetDecoder} class should be used when more control
 508      * over the decoding process is required.
 509      *
 510      * @param  bytes
 511      *         The bytes to be decoded into characters
 512      *
 513      * @param  charset
 514      *         The {@linkplain java.nio.charset.Charset charset} to be used to
 515      *         decode the {@code bytes}
 516      *
 517      * @since  1.6
 518      */
 519     public String(byte bytes[], Charset charset) {
 520         this(bytes, 0, bytes.length, charset);
 521     }
 522 
 523     /**
 524      * Constructs a new {@code String} by decoding the specified subarray of
 525      * bytes using the platform's default charset.  The length of the new
 526      * {@code String} is a function of the charset, and hence may not be equal
 527      * to the length of the subarray.
 528      *
 529      * <p> The behavior of this constructor when the given bytes are not valid
 530      * in the default charset is unspecified.  The {@link
 531      * java.nio.charset.CharsetDecoder} class should be used when more control
 532      * over the decoding process is required.
 533      *
 534      * @param  bytes
 535      *         The bytes to be decoded into characters
 536      *
 537      * @param  offset
 538      *         The index of the first byte to decode
 539      *
 540      * @param  length
 541      *         The number of bytes to decode
 542      *
 543      * @throws  IndexOutOfBoundsException
 544      *          If {@code offset} is negative, {@code length} is negative, or
 545      *          {@code offset} is greater than {@code bytes.length - length}
 546      *
 547      * @since  1.1
 548      */
 549     public String(byte bytes[], int offset, int length) {
 550         checkBounds(bytes, offset, length);
 551         this.value = StringCoding.decode(bytes, offset, length);
 552     }
 553 
 554     /**
 555      * Constructs a new {@code String} by decoding the specified array of bytes
 556      * using the platform's default charset.  The length of the new {@code
 557      * String} is a function of the charset, and hence may not be equal to the
 558      * length of the byte array.
 559      *
 560      * <p> The behavior of this constructor when the given bytes are not valid
 561      * in the default charset is unspecified.  The {@link
 562      * java.nio.charset.CharsetDecoder} class should be used when more control
 563      * over the decoding process is required.
 564      *
 565      * @param  bytes
 566      *         The bytes to be decoded into characters
 567      *
 568      * @since  1.1
 569      */
 570     public String(byte bytes[]) {
 571         this(bytes, 0, bytes.length);
 572     }
 573 
 574     /**
 575      * Allocates a new string that contains the sequence of characters
 576      * currently contained in the string buffer argument. The contents of the
 577      * string buffer are copied; subsequent modification of the string buffer
 578      * does not affect the newly created string.
 579      *
 580      * @param  buffer
 581      *         A {@code StringBuffer}
 582      */
 583     public String(StringBuffer buffer) {
 584         synchronized(buffer) {
 585             this.value = Arrays.copyOf(buffer.getValue(), buffer.length());
 586         }
 587     }
 588 
 589     /**
 590      * Allocates a new string that contains the sequence of characters
 591      * currently contained in the string builder argument. The contents of the
 592      * string builder are copied; subsequent modification of the string builder
 593      * does not affect the newly created string.
 594      *
 595      * <p> This constructor is provided to ease migration to {@code
 596      * StringBuilder}. Obtaining a string from a string builder via the {@code
 597      * toString} method is likely to run faster and is generally preferred.
 598      *
 599      * @param   builder
 600      *          A {@code StringBuilder}
 601      *
 602      * @since  1.5
 603      */
 604     public String(StringBuilder builder) {
 605         this.value = Arrays.copyOf(builder.getValue(), builder.length());
 606     }
 607 
 608     /*
 609     * Package private constructor which shares value array for speed.
 610     * this constructor is always expected to be called with share==true.
 611     * a separate constructor is needed because we already have a public
 612     * String(char[]) constructor that makes a copy of the given char[].
 613     */
 614     String(char[] value, boolean share) {
 615         // assert share : "unshared not supported";
 616         this.value = value;
 617     }
 618 
 619     /**
 620      * Returns the length of this string.
 621      * The length is equal to the number of <a href="Character.html#unicode">Unicode
 622      * code units</a> in the string.
 623      *
 624      * @return  the length of the sequence of characters represented by this
 625      *          object.
 626      */
 627     public int length() {
 628         return value.length;
 629     }
 630 
 631     /**
 632      * Returns {@code true} if, and only if, {@link #length()} is {@code 0}.
 633      *
 634      * @return {@code true} if {@link #length()} is {@code 0}, otherwise
 635      * {@code false}
 636      *
 637      * @since 1.6
 638      */
 639     public boolean isEmpty() {
 640         return value.length == 0;
 641     }
 642 
 643     /**
 644      * Returns the {@code char} value at the
 645      * specified index. An index ranges from {@code 0} to
 646      * {@code length() - 1}. The first {@code char} value of the sequence
 647      * is at index {@code 0}, the next at index {@code 1},
 648      * and so on, as for array indexing.
 649      *
 650      * <p>If the {@code char} value specified by the index is a
 651      * <a href="Character.html#unicode">surrogate</a>, the surrogate
 652      * value is returned.
 653      *
 654      * @param      index   the index of the {@code char} value.
 655      * @return     the {@code char} value at the specified index of this string.
 656      *             The first {@code char} value is at index {@code 0}.
 657      * @exception  IndexOutOfBoundsException  if the {@code index}
 658      *             argument is negative or not less than the length of this
 659      *             string.
 660      */
 661     public char charAt(int index) {
 662         if ((index < 0) || (index >= value.length)) {
 663             throw new StringIndexOutOfBoundsException(index);
 664         }
 665         return value[index];
 666     }
 667 
 668     /**
 669      * Returns the character (Unicode code point) at the specified
 670      * index. The index refers to {@code char} values
 671      * (Unicode code units) and ranges from {@code 0} to
 672      * {@link #length()}{@code  - 1}.
 673      *
 674      * <p> If the {@code char} value specified at the given index
 675      * is in the high-surrogate range, the following index is less
 676      * than the length of this {@code String}, and the
 677      * {@code char} value at the following index is in the
 678      * low-surrogate range, then the supplementary code point
 679      * corresponding to this surrogate pair is returned. Otherwise,
 680      * the {@code char} value at the given index is returned.
 681      *
 682      * @param      index the index to the {@code char} values
 683      * @return     the code point value of the character at the
 684      *             {@code index}
 685      * @exception  IndexOutOfBoundsException  if the {@code index}
 686      *             argument is negative or not less than the length of this
 687      *             string.
 688      * @since      1.5
 689      */
 690     public int codePointAt(int index) {
 691         if ((index < 0) || (index >= value.length)) {
 692             throw new StringIndexOutOfBoundsException(index);
 693         }
 694         return Character.codePointAtImpl(value, index, value.length);
 695     }
 696 
 697     /**
 698      * Returns the character (Unicode code point) before the specified
 699      * index. The index refers to {@code char} values
 700      * (Unicode code units) and ranges from {@code 1} to {@link
 701      * CharSequence#length() length}.
 702      *
 703      * <p> If the {@code char} value at {@code (index - 1)}
 704      * is in the low-surrogate range, {@code (index - 2)} is not
 705      * negative, and the {@code char} value at {@code (index -
 706      * 2)} is in the high-surrogate range, then the
 707      * supplementary code point value of the surrogate pair is
 708      * returned. If the {@code char} value at {@code index -
 709      * 1} is an unpaired low-surrogate or a high-surrogate, the
 710      * surrogate value is returned.
 711      *
 712      * @param     index the index following the code point that should be returned
 713      * @return    the Unicode code point value before the given index.
 714      * @exception IndexOutOfBoundsException if the {@code index}
 715      *            argument is less than 1 or greater than the length
 716      *            of this string.
 717      * @since     1.5
 718      */
 719     public int codePointBefore(int index) {
 720         int i = index - 1;
 721         if ((i < 0) || (i >= value.length)) {
 722             throw new StringIndexOutOfBoundsException(index);
 723         }
 724         return Character.codePointBeforeImpl(value, index, 0);
 725     }
 726 
 727     /**
 728      * Returns the number of Unicode code points in the specified text
 729      * range of this {@code String}. The text range begins at the
 730      * specified {@code beginIndex} and extends to the
 731      * {@code char} at index {@code endIndex - 1}. Thus the
 732      * length (in {@code char}s) of the text range is
 733      * {@code endIndex-beginIndex}. Unpaired surrogates within
 734      * the text range count as one code point each.
 735      *
 736      * @param beginIndex the index to the first {@code char} of
 737      * the text range.
 738      * @param endIndex the index after the last {@code char} of
 739      * the text range.
 740      * @return the number of Unicode code points in the specified text
 741      * range
 742      * @exception IndexOutOfBoundsException if the
 743      * {@code beginIndex} is negative, or {@code endIndex}
 744      * is larger than the length of this {@code String}, or
 745      * {@code beginIndex} is larger than {@code endIndex}.
 746      * @since  1.5
 747      */
 748     public int codePointCount(int beginIndex, int endIndex) {
 749         if (beginIndex < 0 || endIndex > value.length || beginIndex > endIndex) {
 750             throw new IndexOutOfBoundsException();
 751         }
 752         return Character.codePointCountImpl(value, beginIndex, endIndex - beginIndex);
 753     }
 754 
 755     /**
 756      * Returns the index within this {@code String} that is
 757      * offset from the given {@code index} by
 758      * {@code codePointOffset} code points. Unpaired surrogates
 759      * within the text range given by {@code index} and
 760      * {@code codePointOffset} count as one code point each.
 761      *
 762      * @param index the index to be offset
 763      * @param codePointOffset the offset in code points
 764      * @return the index within this {@code String}
 765      * @exception IndexOutOfBoundsException if {@code index}
 766      *   is negative or larger then the length of this
 767      *   {@code String}, or if {@code codePointOffset} is positive
 768      *   and the substring starting with {@code index} has fewer
 769      *   than {@code codePointOffset} code points,
 770      *   or if {@code codePointOffset} is negative and the substring
 771      *   before {@code index} has fewer than the absolute value
 772      *   of {@code codePointOffset} code points.
 773      * @since 1.5
 774      */
 775     public int offsetByCodePoints(int index, int codePointOffset) {
 776         if (index < 0 || index > value.length) {
 777             throw new IndexOutOfBoundsException();
 778         }
 779         return Character.offsetByCodePointsImpl(value, 0, value.length,
 780                 index, codePointOffset);
 781     }
 782 
 783     /**
 784      * Copy characters from this string into dst starting at dstBegin.
 785      * This method doesn't perform any range checking.
 786      */
 787     void getChars(char dst[], int dstBegin) {
 788         System.arraycopy(value, 0, dst, dstBegin, value.length);
 789     }
 790 
 791     /**
 792      * Copies characters from this string into the destination character
 793      * array.
 794      * <p>
 795      * The first character to be copied is at index {@code srcBegin};
 796      * the last character to be copied is at index {@code srcEnd-1}
 797      * (thus the total number of characters to be copied is
 798      * {@code srcEnd-srcBegin}). The characters are copied into the
 799      * subarray of {@code dst} starting at index {@code dstBegin}
 800      * and ending at index:
 801      * <blockquote><pre>
 802      *     dstBegin + (srcEnd-srcBegin) - 1
 803      * </pre></blockquote>
 804      *
 805      * @param      srcBegin   index of the first character in the string
 806      *                        to copy.
 807      * @param      srcEnd     index after the last character in the string
 808      *                        to copy.
 809      * @param      dst        the destination array.
 810      * @param      dstBegin   the start offset in the destination array.
 811      * @exception IndexOutOfBoundsException If any of the following
 812      *            is true:
 813      *            <ul><li>{@code srcBegin} is negative.
 814      *            <li>{@code srcBegin} is greater than {@code srcEnd}
 815      *            <li>{@code srcEnd} is greater than the length of this
 816      *                string
 817      *            <li>{@code dstBegin} is negative
 818      *            <li>{@code dstBegin+(srcEnd-srcBegin)} is larger than
 819      *                {@code dst.length}</ul>
 820      */
 821     public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {
 822         if (srcBegin < 0) {
 823             throw new StringIndexOutOfBoundsException(srcBegin);
 824         }
 825         if (srcEnd > value.length) {
 826             throw new StringIndexOutOfBoundsException(srcEnd);
 827         }
 828         if (srcBegin > srcEnd) {
 829             throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
 830         }
 831         System.arraycopy(value, srcBegin, dst, dstBegin, srcEnd - srcBegin);
 832     }
 833 
 834     /**
 835      * Copies characters from this string into the destination byte array. Each
 836      * byte receives the 8 low-order bits of the corresponding character. The
 837      * eight high-order bits of each character are not copied and do not
 838      * participate in the transfer in any way.
 839      *
 840      * <p> The first character to be copied is at index {@code srcBegin}; the
 841      * last character to be copied is at index {@code srcEnd-1}.  The total
 842      * number of characters to be copied is {@code srcEnd-srcBegin}. The
 843      * characters, converted to bytes, are copied into the subarray of {@code
 844      * dst} starting at index {@code dstBegin} and ending at index:
 845      *
 846      * <blockquote><pre>
 847      *     dstBegin + (srcEnd-srcBegin) - 1
 848      * </pre></blockquote>
 849      *
 850      * @deprecated  This method does not properly convert characters into
 851      * bytes.  As of JDK&nbsp;1.1, the preferred way to do this is via the
 852      * {@link #getBytes()} method, which uses the platform's default charset.
 853      *
 854      * @param  srcBegin
 855      *         Index of the first character in the string to copy
 856      *
 857      * @param  srcEnd
 858      *         Index after the last character in the string to copy
 859      *
 860      * @param  dst
 861      *         The destination array
 862      *
 863      * @param  dstBegin
 864      *         The start offset in the destination array
 865      *
 866      * @throws  IndexOutOfBoundsException
 867      *          If any of the following is true:
 868      *          <ul>
 869      *            <li> {@code srcBegin} is negative
 870      *            <li> {@code srcBegin} is greater than {@code srcEnd}
 871      *            <li> {@code srcEnd} is greater than the length of this String
 872      *            <li> {@code dstBegin} is negative
 873      *            <li> {@code dstBegin+(srcEnd-srcBegin)} is larger than {@code
 874      *                 dst.length}
 875      *          </ul>
 876      */
 877     @Deprecated
 878     public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) {
 879         if (srcBegin < 0) {
 880             throw new StringIndexOutOfBoundsException(srcBegin);
 881         }
 882         if (srcEnd > value.length) {
 883             throw new StringIndexOutOfBoundsException(srcEnd);
 884         }
 885         if (srcBegin > srcEnd) {
 886             throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
 887         }
 888         Objects.requireNonNull(dst);
 889 
 890         int j = dstBegin;
 891         int n = srcEnd;
 892         int i = srcBegin;
 893         char[] val = value;   /* avoid getfield opcode */
 894 
 895         while (i < n) {
 896             dst[j++] = (byte)val[i++];
 897         }
 898     }
 899 
 900     /**
 901      * Encodes this {@code String} into a sequence of bytes using the named
 902      * charset, storing the result into a new byte array.
 903      *
 904      * <p> The behavior of this method when this string cannot be encoded in
 905      * the given charset is unspecified.  The {@link
 906      * java.nio.charset.CharsetEncoder} class should be used when more control
 907      * over the encoding process is required.
 908      *
 909      * @param  charsetName
 910      *         The name of a supported {@linkplain java.nio.charset.Charset
 911      *         charset}
 912      *
 913      * @return  The resultant byte array
 914      *
 915      * @throws  UnsupportedEncodingException
 916      *          If the named charset is not supported
 917      *
 918      * @since  1.1
 919      */
 920     public byte[] getBytes(String charsetName)
 921             throws UnsupportedEncodingException {
 922         if (charsetName == null) throw new NullPointerException();
 923         return StringCoding.encode(charsetName, value, 0, value.length);
 924     }
 925 
 926     /**
 927      * Encodes this {@code String} into a sequence of bytes using the given
 928      * {@linkplain java.nio.charset.Charset charset}, storing the result into a
 929      * new byte array.
 930      *
 931      * <p> This method always replaces malformed-input and unmappable-character
 932      * sequences with this charset's default replacement byte array.  The
 933      * {@link java.nio.charset.CharsetEncoder} class should be used when more
 934      * control over the encoding process is required.
 935      *
 936      * @param  charset
 937      *         The {@linkplain java.nio.charset.Charset} to be used to encode
 938      *         the {@code String}
 939      *
 940      * @return  The resultant byte array
 941      *
 942      * @since  1.6
 943      */
 944     public byte[] getBytes(Charset charset) {
 945         if (charset == null) throw new NullPointerException();
 946         return StringCoding.encode(charset, value, 0, value.length);
 947     }
 948 
 949     /**
 950      * Encodes this {@code String} into a sequence of bytes using the
 951      * platform's default charset, storing the result into a new byte array.
 952      *
 953      * <p> The behavior of this method when this string cannot be encoded in
 954      * the default charset is unspecified.  The {@link
 955      * java.nio.charset.CharsetEncoder} class should be used when more control
 956      * over the encoding process is required.
 957      *
 958      * @return  The resultant byte array
 959      *
 960      * @since      1.1
 961      */
 962     public byte[] getBytes() {
 963         return StringCoding.encode(value, 0, value.length);
 964     }
 965 
 966     /**
 967      * Compares this string to the specified object.  The result is {@code
 968      * true} if and only if the argument is not {@code null} and is a {@code
 969      * String} object that represents the same sequence of characters as this
 970      * object.
 971      *
 972      * @param  anObject
 973      *         The object to compare this {@code String} against
 974      *
 975      * @return  {@code true} if the given object represents a {@code String}
 976      *          equivalent to this string, {@code false} otherwise
 977      *
 978      * @see  #compareTo(String)
 979      * @see  #equalsIgnoreCase(String)
 980      */
 981     public boolean equals(Object anObject) {
 982         if (this == anObject) {
 983             return true;
 984         }
 985         if (anObject instanceof String) {
 986             char[] v1 = value;
 987             char[] v2 = ((String)anObject).value;
 988             int n = v1.length;
 989             if (n == v2.length) {
 990                 int i = 0;
 991                 while (n-- != 0) {
 992                     if (v1[i] != v2[i])
 993                         return false;
 994                     i++;
 995                 }
 996                 return true;
 997             }
 998         }
 999         return false;
1000     }
1001 
1002     /**
1003      * Compares this string to the specified {@code StringBuffer}.  The result
1004      * is {@code true} if and only if this {@code String} represents the same
1005      * sequence of characters as the specified {@code StringBuffer}. This method
1006      * synchronizes on the {@code StringBuffer}.
1007      *
1008      * @param  sb
1009      *         The {@code StringBuffer} to compare this {@code String} against
1010      *
1011      * @return  {@code true} if this {@code String} represents the same
1012      *          sequence of characters as the specified {@code StringBuffer},
1013      *          {@code false} otherwise
1014      *
1015      * @since  1.4
1016      */
1017     public boolean contentEquals(StringBuffer sb) {
1018         return contentEquals((CharSequence)sb);
1019     }
1020 
1021     private boolean nonSyncContentEquals(AbstractStringBuilder sb) {
1022         char[] v1 = value;
1023         char[] v2 = sb.getValue();
1024         int n = v1.length;
1025         if (n != v2.length) {
1026             return false;
1027         }
1028         for (int i = 0; i < n; i++) {
1029             if (v1[i] != v2[i]) {
1030                 return false;
1031             }
1032         }
1033         return true;
1034     }
1035 
1036     /**
1037      * Compares this string to the specified {@code CharSequence}.  The
1038      * result is {@code true} if and only if this {@code String} represents the
1039      * same sequence of char values as the specified sequence. Note that if the
1040      * {@code CharSequence} is a {@code StringBuffer} then the method
1041      * synchronizes on it.
1042      *
1043      * @param  cs
1044      *         The sequence to compare this {@code String} against
1045      *
1046      * @return  {@code true} if this {@code String} represents the same
1047      *          sequence of char values as the specified sequence, {@code
1048      *          false} otherwise
1049      *
1050      * @since  1.5
1051      */
1052     public boolean contentEquals(CharSequence cs) {
1053         // Argument is a StringBuffer, StringBuilder
1054         if (cs instanceof AbstractStringBuilder) {
1055             if (cs instanceof StringBuffer) {
1056                 synchronized(cs) {
1057                    return nonSyncContentEquals((AbstractStringBuilder)cs);
1058                 }
1059             } else {
1060                 return nonSyncContentEquals((AbstractStringBuilder)cs);
1061             }
1062         }
1063         // Argument is a String
1064         if (cs instanceof String) {
1065             return equals(cs);
1066         }
1067         // Argument is a generic CharSequence
1068         char[] v1 = value;
1069         int n = v1.length;
1070         if (n != cs.length()) {
1071             return false;
1072         }
1073         for (int i = 0; i < n; i++) {
1074             if (v1[i] != cs.charAt(i)) {
1075                 return false;
1076             }
1077         }
1078         return true;
1079     }
1080 
1081     /**
1082      * Compares this {@code String} to another {@code String}, ignoring case
1083      * considerations.  Two strings are considered equal ignoring case if they
1084      * are of the same length and corresponding characters in the two strings
1085      * are equal ignoring case.
1086      *
1087      * <p> Two characters {@code c1} and {@code c2} are considered the same
1088      * ignoring case if at least one of the following is true:
1089      * <ul>
1090      *   <li> The two characters are the same (as compared by the
1091      *        {@code ==} operator)
1092      *   <li> Applying the method {@link
1093      *        java.lang.Character#toUpperCase(char)} to each character
1094      *        produces the same result
1095      *   <li> Applying the method {@link
1096      *        java.lang.Character#toLowerCase(char)} to each character
1097      *        produces the same result
1098      * </ul>
1099      *
1100      * @param  anotherString
1101      *         The {@code String} to compare this {@code String} against
1102      *
1103      * @return  {@code true} if the argument is not {@code null} and it
1104      *          represents an equivalent {@code String} ignoring case; {@code
1105      *          false} otherwise
1106      *
1107      * @see  #equals(Object)
1108      */
1109     public boolean equalsIgnoreCase(String anotherString) {
1110         return (this == anotherString) ? true
1111                 : (anotherString != null)
1112                 && (anotherString.value.length == value.length)
1113                 && regionMatches(true, 0, anotherString, 0, value.length);
1114     }
1115 
1116     /**
1117      * Compares two strings lexicographically.
1118      * The comparison is based on the Unicode value of each character in
1119      * the strings. The character sequence represented by this
1120      * {@code String} object is compared lexicographically to the
1121      * character sequence represented by the argument string. The result is
1122      * a negative integer if this {@code String} object
1123      * lexicographically precedes the argument string. The result is a
1124      * positive integer if this {@code String} object lexicographically
1125      * follows the argument string. The result is zero if the strings
1126      * are equal; {@code compareTo} returns {@code 0} exactly when
1127      * the {@link #equals(Object)} method would return {@code true}.
1128      * <p>
1129      * This is the definition of lexicographic ordering. If two strings are
1130      * different, then either they have different characters at some index
1131      * that is a valid index for both strings, or their lengths are different,
1132      * or both. If they have different characters at one or more index
1133      * positions, let <i>k</i> be the smallest such index; then the string
1134      * whose character at position <i>k</i> has the smaller value, as
1135      * determined by using the &lt; operator, lexicographically precedes the
1136      * other string. In this case, {@code compareTo} returns the
1137      * difference of the two character values at position {@code k} in
1138      * the two string -- that is, the value:
1139      * <blockquote><pre>
1140      * this.charAt(k)-anotherString.charAt(k)
1141      * </pre></blockquote>
1142      * If there is no index position at which they differ, then the shorter
1143      * string lexicographically precedes the longer string. In this case,
1144      * {@code compareTo} returns the difference of the lengths of the
1145      * strings -- that is, the value:
1146      * <blockquote><pre>
1147      * this.length()-anotherString.length()
1148      * </pre></blockquote>
1149      *
1150      * @param   anotherString   the {@code String} to be compared.
1151      * @return  the value {@code 0} if the argument string is equal to
1152      *          this string; a value less than {@code 0} if this string
1153      *          is lexicographically less than the string argument; and a
1154      *          value greater than {@code 0} if this string is
1155      *          lexicographically greater than the string argument.
1156      */
1157     public int compareTo(String anotherString) {
1158         char[] v1 = value;
1159         char[] v2 = anotherString.value;
1160         int len1 = v1.length;
1161         int len2 = v2.length;
1162         int lim = Math.min(len1, len2);
1163 
1164         for (int k = 0; k < lim; k++) {
1165             char c1 = v1[k];
1166             char c2 = v2[k];
1167             if (c1 != c2) {
1168                 return c1 - c2;
1169             }
1170         }
1171         return len1 - len2;
1172     }
1173 
1174     /**
1175      * A Comparator that orders {@code String} objects as by
1176      * {@code compareToIgnoreCase}. This comparator is serializable.
1177      * <p>
1178      * Note that this Comparator does <em>not</em> take locale into account,
1179      * and will result in an unsatisfactory ordering for certain locales.
1180      * The java.text package provides <em>Collators</em> to allow
1181      * locale-sensitive ordering.
1182      *
1183      * @see     java.text.Collator#compare(String, String)
1184      * @since   1.2
1185      */
1186     public static final Comparator<String> CASE_INSENSITIVE_ORDER
1187                                          = new CaseInsensitiveComparator();
1188     private static class CaseInsensitiveComparator
1189             implements Comparator<String>, java.io.Serializable {
1190         // use serialVersionUID from JDK 1.2.2 for interoperability
1191         private static final long serialVersionUID = 8575799808933029326L;
1192 
1193         public int compare(String s1, String s2) {
1194             int n1 = s1.length();
1195             int n2 = s2.length();
1196             int min = Math.min(n1, n2);
1197             for (int i = 0; i < min; i++) {
1198                 char c1 = s1.charAt(i);
1199                 char c2 = s2.charAt(i);
1200                 if (c1 != c2) {
1201                     c1 = Character.toUpperCase(c1);
1202                     c2 = Character.toUpperCase(c2);
1203                     if (c1 != c2) {
1204                         c1 = Character.toLowerCase(c1);
1205                         c2 = Character.toLowerCase(c2);
1206                         if (c1 != c2) {
1207                             // No overflow because of numeric promotion
1208                             return c1 - c2;
1209                         }
1210                     }
1211                 }
1212             }
1213             return n1 - n2;
1214         }
1215 
1216         /** Replaces the de-serialized object. */
1217         private Object readResolve() { return CASE_INSENSITIVE_ORDER; }
1218     }
1219 
1220     /**
1221      * Compares two strings lexicographically, ignoring case
1222      * differences. This method returns an integer whose sign is that of
1223      * calling {@code compareTo} with normalized versions of the strings
1224      * where case differences have been eliminated by calling
1225      * {@code Character.toLowerCase(Character.toUpperCase(character))} on
1226      * each character.
1227      * <p>
1228      * Note that this method does <em>not</em> take locale into account,
1229      * and will result in an unsatisfactory ordering for certain locales.
1230      * The java.text package provides <em>collators</em> to allow
1231      * locale-sensitive ordering.
1232      *
1233      * @param   str   the {@code String} to be compared.
1234      * @return  a negative integer, zero, or a positive integer as the
1235      *          specified String is greater than, equal to, or less
1236      *          than this String, ignoring case considerations.
1237      * @see     java.text.Collator#compare(String, String)
1238      * @since   1.2
1239      */
1240     public int compareToIgnoreCase(String str) {
1241         return CASE_INSENSITIVE_ORDER.compare(this, str);
1242     }
1243 
1244     /**
1245      * Tests if two string regions are equal.
1246      * <p>
1247      * A substring of this {@code String} object is compared to a substring
1248      * of the argument other. The result is true if these substrings
1249      * represent identical character sequences. The substring of this
1250      * {@code String} object to be compared begins at index {@code toffset}
1251      * and has length {@code len}. The substring of other to be compared
1252      * begins at index {@code ooffset} and has length {@code len}. The
1253      * result is {@code false} if and only if at least one of the following
1254      * is true:
1255      * <ul><li>{@code toffset} is negative.
1256      * <li>{@code ooffset} is negative.
1257      * <li>{@code toffset+len} is greater than the length of this
1258      * {@code String} object.
1259      * <li>{@code ooffset+len} is greater than the length of the other
1260      * argument.
1261      * <li>There is some nonnegative integer <i>k</i> less than {@code len}
1262      * such that:
1263      * {@code this.charAt(toffset + }<i>k</i>{@code ) != other.charAt(ooffset + }
1264      * <i>k</i>{@code )}
1265      * </ul>
1266      *
1267      * @param   toffset   the starting offset of the subregion in this string.
1268      * @param   other     the string argument.
1269      * @param   ooffset   the starting offset of the subregion in the string
1270      *                    argument.
1271      * @param   len       the number of characters to compare.
1272      * @return  {@code true} if the specified subregion of this string
1273      *          exactly matches the specified subregion of the string argument;
1274      *          {@code false} otherwise.
1275      */
1276     public boolean regionMatches(int toffset, String other, int ooffset,
1277             int len) {
1278         char[] ta = value;
1279         int to = toffset;
1280         char[] pa = other.value;
1281         int po = ooffset;
1282         // Note: toffset, ooffset, or len might be near -1>>>1.
1283         if ((ooffset < 0) || (toffset < 0)
1284                 || (toffset > (long)ta.length - len)
1285                 || (ooffset > (long)pa.length - len)) {
1286             return false;
1287         }
1288         while (len-- > 0) {
1289             if (ta[to++] != pa[po++]) {
1290                 return false;
1291             }
1292         }
1293         return true;
1294     }
1295 
1296     /**
1297      * Tests if two string regions are equal.
1298      * <p>
1299      * A substring of this {@code String} object is compared to a substring
1300      * of the argument {@code other}. The result is {@code true} if these
1301      * substrings represent character sequences that are the same, ignoring
1302      * case if and only if {@code ignoreCase} is true. The substring of
1303      * this {@code String} object to be compared begins at index
1304      * {@code toffset} and has length {@code len}. The substring of
1305      * {@code other} to be compared begins at index {@code ooffset} and
1306      * has length {@code len}. The result is {@code false} if and only if
1307      * at least one of the following is true:
1308      * <ul><li>{@code toffset} is negative.
1309      * <li>{@code ooffset} is negative.
1310      * <li>{@code toffset+len} is greater than the length of this
1311      * {@code String} object.
1312      * <li>{@code ooffset+len} is greater than the length of the other
1313      * argument.
1314      * <li>{@code ignoreCase} is {@code false} and there is some nonnegative
1315      * integer <i>k</i> less than {@code len} such that:
1316      * <blockquote><pre>
1317      * this.charAt(toffset+k) != other.charAt(ooffset+k)
1318      * </pre></blockquote>
1319      * <li>{@code ignoreCase} is {@code true} and there is some nonnegative
1320      * integer <i>k</i> less than {@code len} such that:
1321      * <blockquote><pre>
1322      * Character.toLowerCase(this.charAt(toffset+k)) !=
1323      Character.toLowerCase(other.charAt(ooffset+k))
1324      * </pre></blockquote>
1325      * and:
1326      * <blockquote><pre>
1327      * Character.toUpperCase(this.charAt(toffset+k)) !=
1328      *         Character.toUpperCase(other.charAt(ooffset+k))
1329      * </pre></blockquote>
1330      * </ul>
1331      *
1332      * @param   ignoreCase   if {@code true}, ignore case when comparing
1333      *                       characters.
1334      * @param   toffset      the starting offset of the subregion in this
1335      *                       string.
1336      * @param   other        the string argument.
1337      * @param   ooffset      the starting offset of the subregion in the string
1338      *                       argument.
1339      * @param   len          the number of characters to compare.
1340      * @return  {@code true} if the specified subregion of this string
1341      *          matches the specified subregion of the string argument;
1342      *          {@code false} otherwise. Whether the matching is exact
1343      *          or case insensitive depends on the {@code ignoreCase}
1344      *          argument.
1345      */
1346     public boolean regionMatches(boolean ignoreCase, int toffset,
1347             String other, int ooffset, int len) {
1348         char[] ta = value;
1349         int to = toffset;
1350         char[] pa = other.value;
1351         int po = ooffset;
1352         // Note: toffset, ooffset, or len might be near -1>>>1.
1353         if ((ooffset < 0) || (toffset < 0)
1354                 || (toffset > (long)ta.length - len)
1355                 || (ooffset > (long)pa.length - len)) {
1356             return false;
1357         }
1358         while (len-- > 0) {
1359             char c1 = ta[to++];
1360             char c2 = pa[po++];
1361             if (c1 == c2) {
1362                 continue;
1363             }
1364             if (ignoreCase) {
1365                 // If characters don't match but case may be ignored,
1366                 // try converting both characters to uppercase.
1367                 // If the results match, then the comparison scan should
1368                 // continue.
1369                 char u1 = Character.toUpperCase(c1);
1370                 char u2 = Character.toUpperCase(c2);
1371                 if (u1 == u2) {
1372                     continue;
1373                 }
1374                 // Unfortunately, conversion to uppercase does not work properly
1375                 // for the Georgian alphabet, which has strange rules about case
1376                 // conversion.  So we need to make one last check before
1377                 // exiting.
1378                 if (Character.toLowerCase(u1) == Character.toLowerCase(u2)) {
1379                     continue;
1380                 }
1381             }
1382             return false;
1383         }
1384         return true;
1385     }
1386 
1387     /**
1388      * Tests if the substring of this string beginning at the
1389      * specified index starts with the specified prefix.
1390      *
1391      * @param   prefix    the prefix.
1392      * @param   toffset   where to begin looking in this string.
1393      * @return  {@code true} if the character sequence represented by the
1394      *          argument is a prefix of the substring of this object starting
1395      *          at index {@code toffset}; {@code false} otherwise.
1396      *          The result is {@code false} if {@code toffset} is
1397      *          negative or greater than the length of this
1398      *          {@code String} object; otherwise the result is the same
1399      *          as the result of the expression
1400      *          <pre>
1401      *          this.substring(toffset).startsWith(prefix)
1402      *          </pre>
1403      */
1404     public boolean startsWith(String prefix, int toffset) {
1405         char[] ta = value;
1406         int to = toffset;
1407         char[] pa = prefix.value;
1408         int po = 0;
1409         int pc = pa.length;
1410         // Note: toffset might be near -1>>>1.
1411         if ((toffset < 0) || (toffset > ta.length - pc)) {
1412             return false;
1413         }
1414         while (--pc >= 0) {
1415             if (ta[to++] != pa[po++]) {
1416                 return false;
1417             }
1418         }
1419         return true;
1420     }
1421 
1422     /**
1423      * Tests if this string starts with the specified prefix.
1424      *
1425      * @param   prefix   the prefix.
1426      * @return  {@code true} if the character sequence represented by the
1427      *          argument is a prefix of the character sequence represented by
1428      *          this string; {@code false} otherwise.
1429      *          Note also that {@code true} will be returned if the
1430      *          argument is an empty string or is equal to this
1431      *          {@code String} object as determined by the
1432      *          {@link #equals(Object)} method.
1433      * @since   1.0
1434      */
1435     public boolean startsWith(String prefix) {
1436         return startsWith(prefix, 0);
1437     }
1438 
1439     /**
1440      * Tests if this string ends with the specified suffix.
1441      *
1442      * @param   suffix   the suffix.
1443      * @return  {@code true} if the character sequence represented by the
1444      *          argument is a suffix of the character sequence represented by
1445      *          this object; {@code false} otherwise. Note that the
1446      *          result will be {@code true} if the argument is the
1447      *          empty string or is equal to this {@code String} object
1448      *          as determined by the {@link #equals(Object)} method.
1449      */
1450     public boolean endsWith(String suffix) {
1451         return startsWith(suffix, value.length - suffix.value.length);
1452     }
1453 
1454     /**
1455      * Returns a hash code for this string. The hash code for a
1456      * {@code String} object is computed as
1457      * <blockquote><pre>
1458      * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
1459      * </pre></blockquote>
1460      * using {@code int} arithmetic, where {@code s[i]} is the
1461      * <i>i</i>th character of the string, {@code n} is the length of
1462      * the string, and {@code ^} indicates exponentiation.
1463      * (The hash value of the empty string is zero.)
1464      *
1465      * @return  a hash code value for this object.
1466      */
1467     public int hashCode() {
1468         int h = hash;
1469         if (h == 0) {
1470             for (char v : value) {
1471                 h = 31 * h + v;
1472             }
1473             hash = h;
1474         }
1475         return h;
1476     }
1477 
1478     /**
1479      * Returns the index within this string of the first occurrence of
1480      * the specified character. If a character with value
1481      * {@code ch} occurs in the character sequence represented by
1482      * this {@code String} object, then the index (in Unicode
1483      * code units) of the first such occurrence is returned. For
1484      * values of {@code ch} in the range from 0 to 0xFFFF
1485      * (inclusive), this is the smallest value <i>k</i> such that:
1486      * <blockquote><pre>
1487      * this.charAt(<i>k</i>) == ch
1488      * </pre></blockquote>
1489      * is true. For other values of {@code ch}, it is the
1490      * smallest value <i>k</i> such that:
1491      * <blockquote><pre>
1492      * this.codePointAt(<i>k</i>) == ch
1493      * </pre></blockquote>
1494      * is true. In either case, if no such character occurs in this
1495      * string, then {@code -1} is returned.
1496      *
1497      * @param   ch   a character (Unicode code point).
1498      * @return  the index of the first occurrence of the character in the
1499      *          character sequence represented by this object, or
1500      *          {@code -1} if the character does not occur.
1501      */
1502     public int indexOf(int ch) {
1503         return indexOf(ch, 0);
1504     }
1505 
1506     /**
1507      * Returns the index within this string of the first occurrence of the
1508      * specified character, starting the search at the specified index.
1509      * <p>
1510      * If a character with value {@code ch} occurs in the
1511      * character sequence represented by this {@code String}
1512      * object at an index no smaller than {@code fromIndex}, then
1513      * the index of the first such occurrence is returned. For values
1514      * of {@code ch} in the range from 0 to 0xFFFF (inclusive),
1515      * this is the smallest value <i>k</i> such that:
1516      * <blockquote><pre>
1517      * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &gt;= fromIndex)
1518      * </pre></blockquote>
1519      * is true. For other values of {@code ch}, it is the
1520      * smallest value <i>k</i> such that:
1521      * <blockquote><pre>
1522      * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &gt;= fromIndex)
1523      * </pre></blockquote>
1524      * is true. In either case, if no such character occurs in this
1525      * string at or after position {@code fromIndex}, then
1526      * {@code -1} is returned.
1527      *
1528      * <p>
1529      * There is no restriction on the value of {@code fromIndex}. If it
1530      * is negative, it has the same effect as if it were zero: this entire
1531      * string may be searched. If it is greater than the length of this
1532      * string, it has the same effect as if it were equal to the length of
1533      * this string: {@code -1} is returned.
1534      *
1535      * <p>All indices are specified in {@code char} values
1536      * (Unicode code units).
1537      *
1538      * @param   ch          a character (Unicode code point).
1539      * @param   fromIndex   the index to start the search from.
1540      * @return  the index of the first occurrence of the character in the
1541      *          character sequence represented by this object that is greater
1542      *          than or equal to {@code fromIndex}, or {@code -1}
1543      *          if the character does not occur.
1544      */
1545     public int indexOf(int ch, int fromIndex) {
1546         final int max = value.length;
1547         if (fromIndex < 0) {
1548             fromIndex = 0;
1549         } else if (fromIndex >= max) {
1550             // Note: fromIndex might be near -1>>>1.
1551             return -1;
1552         }
1553 
1554         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
1555             // handle most cases here (ch is a BMP code point or a
1556             // negative value (invalid code point))
1557             final char[] value = this.value;
1558             for (int i = fromIndex; i < max; i++) {
1559                 if (value[i] == ch) {
1560                     return i;
1561                 }
1562             }
1563             return -1;
1564         } else {
1565             return indexOfSupplementary(ch, fromIndex);
1566         }
1567     }
1568 
1569     /**
1570      * Handles (rare) calls of indexOf with a supplementary character.
1571      */
1572     private int indexOfSupplementary(int ch, int fromIndex) {
1573         if (Character.isValidCodePoint(ch)) {
1574             final char[] value = this.value;
1575             final char hi = Character.highSurrogate(ch);
1576             final char lo = Character.lowSurrogate(ch);
1577             final int max = value.length - 1;
1578             for (int i = fromIndex; i < max; i++) {
1579                 if (value[i] == hi && value[i + 1] == lo) {
1580                     return i;
1581                 }
1582             }
1583         }
1584         return -1;
1585     }
1586 
1587     /**
1588      * Returns the index within this string of the last occurrence of
1589      * the specified character. For values of {@code ch} in the
1590      * range from 0 to 0xFFFF (inclusive), the index (in Unicode code
1591      * units) returned is the largest value <i>k</i> such that:
1592      * <blockquote><pre>
1593      * this.charAt(<i>k</i>) == ch
1594      * </pre></blockquote>
1595      * is true. For other values of {@code ch}, it is the
1596      * largest value <i>k</i> such that:
1597      * <blockquote><pre>
1598      * this.codePointAt(<i>k</i>) == ch
1599      * </pre></blockquote>
1600      * is true.  In either case, if no such character occurs in this
1601      * string, then {@code -1} is returned.  The
1602      * {@code String} is searched backwards starting at the last
1603      * character.
1604      *
1605      * @param   ch   a character (Unicode code point).
1606      * @return  the index of the last occurrence of the character in the
1607      *          character sequence represented by this object, or
1608      *          {@code -1} if the character does not occur.
1609      */
1610     public int lastIndexOf(int ch) {
1611         return lastIndexOf(ch, value.length - 1);
1612     }
1613 
1614     /**
1615      * Returns the index within this string of the last occurrence of
1616      * the specified character, searching backward starting at the
1617      * specified index. For values of {@code ch} in the range
1618      * from 0 to 0xFFFF (inclusive), the index returned is the largest
1619      * value <i>k</i> such that:
1620      * <blockquote><pre>
1621      * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &lt;= fromIndex)
1622      * </pre></blockquote>
1623      * is true. For other values of {@code ch}, it is the
1624      * largest value <i>k</i> such that:
1625      * <blockquote><pre>
1626      * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &lt;= fromIndex)
1627      * </pre></blockquote>
1628      * is true. In either case, if no such character occurs in this
1629      * string at or before position {@code fromIndex}, then
1630      * {@code -1} is returned.
1631      *
1632      * <p>All indices are specified in {@code char} values
1633      * (Unicode code units).
1634      *
1635      * @param   ch          a character (Unicode code point).
1636      * @param   fromIndex   the index to start the search from. There is no
1637      *          restriction on the value of {@code fromIndex}. If it is
1638      *          greater than or equal to the length of this string, it has
1639      *          the same effect as if it were equal to one less than the
1640      *          length of this string: this entire string may be searched.
1641      *          If it is negative, it has the same effect as if it were -1:
1642      *          -1 is returned.
1643      * @return  the index of the last occurrence of the character in the
1644      *          character sequence represented by this object that is less
1645      *          than or equal to {@code fromIndex}, or {@code -1}
1646      *          if the character does not occur before that point.
1647      */
1648     public int lastIndexOf(int ch, int fromIndex) {
1649         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
1650             // handle most cases here (ch is a BMP code point or a
1651             // negative value (invalid code point))
1652             final char[] value = this.value;
1653             int i = Math.min(fromIndex, value.length - 1);
1654             for (; i >= 0; i--) {
1655                 if (value[i] == ch) {
1656                     return i;
1657                 }
1658             }
1659             return -1;
1660         } else {
1661             return lastIndexOfSupplementary(ch, fromIndex);
1662         }
1663     }
1664 
1665     /**
1666      * Handles (rare) calls of lastIndexOf with a supplementary character.
1667      */
1668     private int lastIndexOfSupplementary(int ch, int fromIndex) {
1669         if (Character.isValidCodePoint(ch)) {
1670             final char[] value = this.value;
1671             char hi = Character.highSurrogate(ch);
1672             char lo = Character.lowSurrogate(ch);
1673             int i = Math.min(fromIndex, value.length - 2);
1674             for (; i >= 0; i--) {
1675                 if (value[i] == hi && value[i + 1] == lo) {
1676                     return i;
1677                 }
1678             }
1679         }
1680         return -1;
1681     }
1682 
1683     /**
1684      * Returns the index within this string of the first occurrence of the
1685      * specified substring.
1686      *
1687      * <p>The returned index is the smallest value {@code k} for which:
1688      * <pre>{@code
1689      * this.startsWith(str, k)
1690      * }</pre>
1691      * If no such value of {@code k} exists, then {@code -1} is returned.
1692      *
1693      * @param   str   the substring to search for.
1694      * @return  the index of the first occurrence of the specified substring,
1695      *          or {@code -1} if there is no such occurrence.
1696      */
1697     public int indexOf(String str) {
1698         return indexOf(str, 0);
1699     }
1700 
1701     /**
1702      * Returns the index within this string of the first occurrence of the
1703      * specified substring, starting at the specified index.
1704      *
1705      * <p>The returned index is the smallest value {@code k} for which:
1706      * <pre>{@code
1707      *     k >= Math.min(fromIndex, this.length()) &&
1708      *                   this.startsWith(str, k)
1709      * }</pre>
1710      * If no such value of {@code k} exists, then {@code -1} is returned.
1711      *
1712      * @param   str         the substring to search for.
1713      * @param   fromIndex   the index from which to start the search.
1714      * @return  the index of the first occurrence of the specified substring,
1715      *          starting at the specified index,
1716      *          or {@code -1} if there is no such occurrence.
1717      */
1718     public int indexOf(String str, int fromIndex) {
1719         return indexOf(value, 0, value.length,
1720                 str.value, 0, str.value.length, fromIndex);
1721     }
1722 
1723     /**
1724      * Code shared by String and AbstractStringBuilder to do searches. The
1725      * source is the character array being searched, and the target
1726      * is the string being searched for.
1727      *
1728      * @param   source       the characters being searched.
1729      * @param   sourceOffset offset of the source string.
1730      * @param   sourceCount  count of the source string.
1731      * @param   target       the characters being searched for.
1732      * @param   fromIndex    the index to begin searching from.
1733      */
1734     static int indexOf(char[] source, int sourceOffset, int sourceCount,
1735             String target, int fromIndex) {
1736         return indexOf(source, sourceOffset, sourceCount,
1737                        target.value, 0, target.value.length,
1738                        fromIndex);
1739     }
1740 
1741     /**
1742      * Code shared by String and StringBuffer to do searches. The
1743      * source is the character array being searched, and the target
1744      * is the string being searched for.
1745      *
1746      * @param   source       the characters being searched.
1747      * @param   sourceOffset offset of the source string.
1748      * @param   sourceCount  count of the source string.
1749      * @param   target       the characters being searched for.
1750      * @param   targetOffset offset of the target string.
1751      * @param   targetCount  count of the target string.
1752      * @param   fromIndex    the index to begin searching from.
1753      */
1754     static int indexOf(char[] source, int sourceOffset, int sourceCount,
1755             char[] target, int targetOffset, int targetCount,
1756             int fromIndex) {
1757         if (fromIndex >= sourceCount) {
1758             return (targetCount == 0 ? sourceCount : -1);
1759         }
1760         if (fromIndex < 0) {
1761             fromIndex = 0;
1762         }
1763         if (targetCount == 0) {
1764             return fromIndex;
1765         }
1766 
1767         char first = target[targetOffset];
1768         int max = sourceOffset + (sourceCount - targetCount);
1769 
1770         for (int i = sourceOffset + fromIndex; i <= max; i++) {
1771             /* Look for first character. */
1772             if (source[i] != first) {
1773                 while (++i <= max && source[i] != first);
1774             }
1775 
1776             /* Found first character, now look at the rest of v2 */
1777             if (i <= max) {
1778                 int j = i + 1;
1779                 int end = j + targetCount - 1;
1780                 for (int k = targetOffset + 1; j < end && source[j]
1781                         == target[k]; j++, k++);
1782 
1783                 if (j == end) {
1784                     /* Found whole string. */
1785                     return i - sourceOffset;
1786                 }
1787             }
1788         }
1789         return -1;
1790     }
1791 
1792     /**
1793      * Returns the index within this string of the last occurrence of the
1794      * specified substring.  The last occurrence of the empty string ""
1795      * is considered to occur at the index value {@code this.length()}.
1796      *
1797      * <p>The returned index is the largest value {@code k} for which:
1798      * <pre>{@code
1799      * this.startsWith(str, k)
1800      * }</pre>
1801      * If no such value of {@code k} exists, then {@code -1} is returned.
1802      *
1803      * @param   str   the substring to search for.
1804      * @return  the index of the last occurrence of the specified substring,
1805      *          or {@code -1} if there is no such occurrence.
1806      */
1807     public int lastIndexOf(String str) {
1808         return lastIndexOf(str, value.length);
1809     }
1810 
1811     /**
1812      * Returns the index within this string of the last occurrence of the
1813      * specified substring, searching backward starting at the specified index.
1814      *
1815      * <p>The returned index is the largest value {@code k} for which:
1816      * <pre>{@code
1817      *     k <= Math.min(fromIndex, this.length()) &&
1818      *                   this.startsWith(str, k)
1819      * }</pre>
1820      * If no such value of {@code k} exists, then {@code -1} is returned.
1821      *
1822      * @param   str         the substring to search for.
1823      * @param   fromIndex   the index to start the search from.
1824      * @return  the index of the last occurrence of the specified substring,
1825      *          searching backward from the specified index,
1826      *          or {@code -1} if there is no such occurrence.
1827      */
1828     public int lastIndexOf(String str, int fromIndex) {
1829         return lastIndexOf(value, 0, value.length,
1830                 str.value, 0, str.value.length, fromIndex);
1831     }
1832 
1833     /**
1834      * Code shared by String and AbstractStringBuilder to do searches. The
1835      * source is the character array being searched, and the target
1836      * is the string being searched for.
1837      *
1838      * @param   source       the characters being searched.
1839      * @param   sourceOffset offset of the source string.
1840      * @param   sourceCount  count of the source string.
1841      * @param   target       the characters being searched for.
1842      * @param   fromIndex    the index to begin searching from.
1843      */
1844     static int lastIndexOf(char[] source, int sourceOffset, int sourceCount,
1845             String target, int fromIndex) {
1846         return lastIndexOf(source, sourceOffset, sourceCount,
1847                        target.value, 0, target.value.length,
1848                        fromIndex);
1849     }
1850 
1851     /**
1852      * Code shared by String and StringBuffer to do searches. The
1853      * source is the character array being searched, and the target
1854      * is the string being searched for.
1855      *
1856      * @param   source       the characters being searched.
1857      * @param   sourceOffset offset of the source string.
1858      * @param   sourceCount  count of the source string.
1859      * @param   target       the characters being searched for.
1860      * @param   targetOffset offset of the target string.
1861      * @param   targetCount  count of the target string.
1862      * @param   fromIndex    the index to begin searching from.
1863      */
1864     static int lastIndexOf(char[] source, int sourceOffset, int sourceCount,
1865             char[] target, int targetOffset, int targetCount,
1866             int fromIndex) {
1867         /*
1868          * Check arguments; return immediately where possible. For
1869          * consistency, don't check for null str.
1870          */
1871         int rightIndex = sourceCount - targetCount;
1872         if (fromIndex < 0) {
1873             return -1;
1874         }
1875         if (fromIndex > rightIndex) {
1876             fromIndex = rightIndex;
1877         }
1878         /* Empty string always matches. */
1879         if (targetCount == 0) {
1880             return fromIndex;
1881         }
1882 
1883         int strLastIndex = targetOffset + targetCount - 1;
1884         char strLastChar = target[strLastIndex];
1885         int min = sourceOffset + targetCount - 1;
1886         int i = min + fromIndex;
1887 
1888     startSearchForLastChar:
1889         while (true) {
1890             while (i >= min && source[i] != strLastChar) {
1891                 i--;
1892             }
1893             if (i < min) {
1894                 return -1;
1895             }
1896             int j = i - 1;
1897             int start = j - (targetCount - 1);
1898             int k = strLastIndex - 1;
1899 
1900             while (j > start) {
1901                 if (source[j--] != target[k--]) {
1902                     i--;
1903                     continue startSearchForLastChar;
1904                 }
1905             }
1906             return start - sourceOffset + 1;
1907         }
1908     }
1909 
1910     /**
1911      * Returns a string that is a substring of this string. The
1912      * substring begins with the character at the specified index and
1913      * extends to the end of this string. <p>
1914      * Examples:
1915      * <blockquote><pre>
1916      * "unhappy".substring(2) returns "happy"
1917      * "Harbison".substring(3) returns "bison"
1918      * "emptiness".substring(9) returns "" (an empty string)
1919      * </pre></blockquote>
1920      *
1921      * @param      beginIndex   the beginning index, inclusive.
1922      * @return     the specified substring.
1923      * @exception  IndexOutOfBoundsException  if
1924      *             {@code beginIndex} is negative or larger than the
1925      *             length of this {@code String} object.
1926      */
1927     public String substring(int beginIndex) {
1928         if (beginIndex <= 0) {
1929             if (beginIndex < 0) {
1930                 throw new StringIndexOutOfBoundsException(beginIndex);
1931             }
1932             return this;
1933         }
1934         int subLen = value.length - beginIndex;
1935         if (subLen < 0) {
1936             throw new StringIndexOutOfBoundsException(subLen);
1937         }
1938         return new String(value, beginIndex, subLen);
1939     }
1940 
1941     /**
1942      * Returns a string that is a substring of this string. The
1943      * substring begins at the specified {@code beginIndex} and
1944      * extends to the character at index {@code endIndex - 1}.
1945      * Thus the length of the substring is {@code endIndex-beginIndex}.
1946      * <p>
1947      * Examples:
1948      * <blockquote><pre>
1949      * "hamburger".substring(4, 8) returns "urge"
1950      * "smiles".substring(1, 5) returns "mile"
1951      * </pre></blockquote>
1952      *
1953      * @param      beginIndex   the beginning index, inclusive.
1954      * @param      endIndex     the ending index, exclusive.
1955      * @return     the specified substring.
1956      * @exception  IndexOutOfBoundsException  if the
1957      *             {@code beginIndex} is negative, or
1958      *             {@code endIndex} is larger than the length of
1959      *             this {@code String} object, or
1960      *             {@code beginIndex} is larger than
1961      *             {@code endIndex}.
1962      */
1963     public String substring(int beginIndex, int endIndex) {
1964         if (beginIndex <= 0) {
1965             if (beginIndex < 0) {
1966                 throw new StringIndexOutOfBoundsException(beginIndex);
1967             }
1968             if (endIndex == value.length) {
1969                 return this;
1970             }
1971         }
1972         if (endIndex > value.length) {
1973             throw new StringIndexOutOfBoundsException(endIndex);
1974         }
1975         int subLen = endIndex - beginIndex;
1976         if (subLen < 0) {
1977             throw new StringIndexOutOfBoundsException(subLen);
1978         }
1979         return new String(value, beginIndex, subLen);
1980     }
1981 
1982     /**
1983      * Returns a character sequence that is a subsequence of this sequence.
1984      *
1985      * <p> An invocation of this method of the form
1986      *
1987      * <blockquote><pre>
1988      * str.subSequence(begin,&nbsp;end)</pre></blockquote>
1989      *
1990      * behaves in exactly the same way as the invocation
1991      *
1992      * <blockquote><pre>
1993      * str.substring(begin,&nbsp;end)</pre></blockquote>
1994      *
1995      * @apiNote
1996      * This method is defined so that the {@code String} class can implement
1997      * the {@link CharSequence} interface.
1998      *
1999      * @param   beginIndex   the begin index, inclusive.
2000      * @param   endIndex     the end index, exclusive.
2001      * @return  the specified subsequence.
2002      *
2003      * @throws  IndexOutOfBoundsException
2004      *          if {@code beginIndex} or {@code endIndex} is negative,
2005      *          if {@code endIndex} is greater than {@code length()},
2006      *          or if {@code beginIndex} is greater than {@code endIndex}
2007      *
2008      * @since 1.4
2009      * @spec JSR-51
2010      */
2011     public CharSequence subSequence(int beginIndex, int endIndex) {
2012         return this.substring(beginIndex, endIndex);
2013     }
2014 
2015     /**
2016      * Concatenates the specified string to the end of this string.
2017      * <p>
2018      * If the length of the argument string is {@code 0}, then this
2019      * {@code String} object is returned. Otherwise, a
2020      * {@code String} object is returned that represents a character
2021      * sequence that is the concatenation of the character sequence
2022      * represented by this {@code String} object and the character
2023      * sequence represented by the argument string.<p>
2024      * Examples:
2025      * <blockquote><pre>
2026      * "cares".concat("s") returns "caress"
2027      * "to".concat("get").concat("her") returns "together"
2028      * </pre></blockquote>
2029      *
2030      * @param   str   the {@code String} that is concatenated to the end
2031      *                of this {@code String}.
2032      * @return  a string that represents the concatenation of this object's
2033      *          characters followed by the string argument's characters.
2034      */
2035     public String concat(String str) {
2036         int otherLen = str.length();
2037         if (otherLen == 0) {
2038             return this;
2039         }
2040         int len = value.length;
2041         char[] buf = Arrays.copyOf(value, len + otherLen);
2042         str.getChars(buf, len);
2043         return new String(buf, true);
2044     }
2045 
2046     /**
2047      * Returns a string resulting from replacing all occurrences of
2048      * {@code oldChar} in this string with {@code newChar}.
2049      * <p>
2050      * If the character {@code oldChar} does not occur in the
2051      * character sequence represented by this {@code String} object,
2052      * then a reference to this {@code String} object is returned.
2053      * Otherwise, a {@code String} object is returned that
2054      * represents a character sequence identical to the character sequence
2055      * represented by this {@code String} object, except that every
2056      * occurrence of {@code oldChar} is replaced by an occurrence
2057      * of {@code newChar}.
2058      * <p>
2059      * Examples:
2060      * <blockquote><pre>
2061      * "mesquite in your cellar".replace('e', 'o')
2062      *         returns "mosquito in your collar"
2063      * "the war of baronets".replace('r', 'y')
2064      *         returns "the way of bayonets"
2065      * "sparring with a purple porpoise".replace('p', 't')
2066      *         returns "starring with a turtle tortoise"
2067      * "JonL".replace('q', 'x') returns "JonL" (no change)
2068      * </pre></blockquote>
2069      *
2070      * @param   oldChar   the old character.
2071      * @param   newChar   the new character.
2072      * @return  a string derived from this string by replacing every
2073      *          occurrence of {@code oldChar} with {@code newChar}.
2074      */
2075     public String replace(char oldChar, char newChar) {
2076         if (oldChar != newChar) {
2077             char[] val = value; /* avoid getfield opcode */
2078             int len = val.length;
2079             int i = -1;
2080 
2081             while (++i < len) {
2082                 if (val[i] == oldChar) {
2083                     break;
2084                 }
2085             }
2086             if (i < len) {
2087                 char[] buf = new char[len];
2088                 for (int j = 0; j < i; j++) {
2089                     buf[j] = val[j];
2090                 }
2091                 while (i < len) {
2092                     char c = val[i];
2093                     buf[i] = (c == oldChar) ? newChar : c;
2094                     i++;
2095                 }
2096                 return new String(buf, true);
2097             }
2098         }
2099         return this;
2100     }
2101 
2102     /**
2103      * Tells whether or not this string matches the given <a
2104      * href="../util/regex/Pattern.html#sum">regular expression</a>.
2105      *
2106      * <p> An invocation of this method of the form
2107      * <i>str</i>{@code .matches(}<i>regex</i>{@code )} yields exactly the
2108      * same result as the expression
2109      *
2110      * <blockquote>
2111      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#matches(String,CharSequence)
2112      * matches(<i>regex</i>, <i>str</i>)}
2113      * </blockquote>
2114      *
2115      * @param   regex
2116      *          the regular expression to which this string is to be matched
2117      *
2118      * @return  {@code true} if, and only if, this string matches the
2119      *          given regular expression
2120      *
2121      * @throws  PatternSyntaxException
2122      *          if the regular expression's syntax is invalid
2123      *
2124      * @see java.util.regex.Pattern
2125      *
2126      * @since 1.4
2127      * @spec JSR-51
2128      */
2129     public boolean matches(String regex) {
2130         return Pattern.matches(regex, this);
2131     }
2132 
2133     /**
2134      * Returns true if and only if this string contains the specified
2135      * sequence of char values.
2136      *
2137      * @param s the sequence to search for
2138      * @return true if this string contains {@code s}, false otherwise
2139      * @since 1.5
2140      */
2141     public boolean contains(CharSequence s) {
2142         return indexOf(s.toString()) >= 0;
2143     }
2144 
2145     /**
2146      * Replaces the first substring of this string that matches the given <a
2147      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2148      * given replacement.
2149      *
2150      * <p> An invocation of this method of the form
2151      * <i>str</i>{@code .replaceFirst(}<i>regex</i>{@code ,} <i>repl</i>{@code )}
2152      * yields exactly the same result as the expression
2153      *
2154      * <blockquote>
2155      * <code>
2156      * {@link java.util.regex.Pattern}.{@link
2157      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2158      * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(<i>str</i>).{@link
2159      * java.util.regex.Matcher#replaceFirst replaceFirst}(<i>repl</i>)
2160      * </code>
2161      * </blockquote>
2162      *
2163      *<p>
2164      * Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
2165      * replacement string may cause the results to be different than if it were
2166      * being treated as a literal replacement string; see
2167      * {@link java.util.regex.Matcher#replaceFirst}.
2168      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2169      * meaning of these characters, if desired.
2170      *
2171      * @param   regex
2172      *          the regular expression to which this string is to be matched
2173      * @param   replacement
2174      *          the string to be substituted for the first match
2175      *
2176      * @return  The resulting {@code String}
2177      *
2178      * @throws  PatternSyntaxException
2179      *          if the regular expression's syntax is invalid
2180      *
2181      * @see java.util.regex.Pattern
2182      *
2183      * @since 1.4
2184      * @spec JSR-51
2185      */
2186     public String replaceFirst(String regex, String replacement) {
2187         return Pattern.compile(regex).matcher(this).replaceFirst(replacement);
2188     }
2189 
2190     /**
2191      * Replaces each substring of this string that matches the given <a
2192      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2193      * given replacement.
2194      *
2195      * <p> An invocation of this method of the form
2196      * <i>str</i>{@code .replaceAll(}<i>regex</i>{@code ,} <i>repl</i>{@code )}
2197      * yields exactly the same result as the expression
2198      *
2199      * <blockquote>
2200      * <code>
2201      * {@link java.util.regex.Pattern}.{@link
2202      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2203      * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(<i>str</i>).{@link
2204      * java.util.regex.Matcher#replaceAll replaceAll}(<i>repl</i>)
2205      * </code>
2206      * </blockquote>
2207      *
2208      *<p>
2209      * Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
2210      * replacement string may cause the results to be different than if it were
2211      * being treated as a literal replacement string; see
2212      * {@link java.util.regex.Matcher#replaceAll Matcher.replaceAll}.
2213      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2214      * meaning of these characters, if desired.
2215      *
2216      * @param   regex
2217      *          the regular expression to which this string is to be matched
2218      * @param   replacement
2219      *          the string to be substituted for each match
2220      *
2221      * @return  The resulting {@code String}
2222      *
2223      * @throws  PatternSyntaxException
2224      *          if the regular expression's syntax is invalid
2225      *
2226      * @see java.util.regex.Pattern
2227      *
2228      * @since 1.4
2229      * @spec JSR-51
2230      */
2231     public String replaceAll(String regex, String replacement) {
2232         return Pattern.compile(regex).matcher(this).replaceAll(replacement);
2233     }
2234 
2235     /**
2236      * Replaces each substring of this string that matches the literal target
2237      * sequence with the specified literal replacement sequence. The
2238      * replacement proceeds from the beginning of the string to the end, for
2239      * example, replacing "aa" with "b" in the string "aaa" will result in
2240      * "ba" rather than "ab".
2241      *
2242      * @param  target The sequence of char values to be replaced
2243      * @param  replacement The replacement sequence of char values
2244      * @return  The resulting string
2245      * @since 1.5
2246      */
2247     public String replace(CharSequence target, CharSequence replacement) {
2248         return Pattern.compile(target.toString(), Pattern.LITERAL).matcher(
2249                 this).replaceAll(Matcher.quoteReplacement(replacement.toString()));
2250     }
2251 
2252     /**
2253      * Splits this string around matches of the given
2254      * <a href="../util/regex/Pattern.html#sum">regular expression</a>.
2255      *
2256      * <p> The array returned by this method contains each substring of this
2257      * string that is terminated by another substring that matches the given
2258      * expression or is terminated by the end of the string.  The substrings in
2259      * the array are in the order in which they occur in this string.  If the
2260      * expression does not match any part of the input then the resulting array
2261      * has just one element, namely this string.
2262      *
2263      * <p> When there is a positive-width match at the beginning of this
2264      * string then an empty leading substring is included at the beginning
2265      * of the resulting array. A zero-width match at the beginning however
2266      * never produces such empty leading substring.
2267      *
2268      * <p> The {@code limit} parameter controls the number of times the
2269      * pattern is applied and therefore affects the length of the resulting
2270      * array.  If the limit <i>n</i> is greater than zero then the pattern
2271      * will be applied at most <i>n</i>&nbsp;-&nbsp;1 times, the array's
2272      * length will be no greater than <i>n</i>, and the array's last entry
2273      * will contain all input beyond the last matched delimiter.  If <i>n</i>
2274      * is non-positive then the pattern will be applied as many times as
2275      * possible and the array can have any length.  If <i>n</i> is zero then
2276      * the pattern will be applied as many times as possible, the array can
2277      * have any length, and trailing empty strings will be discarded.
2278      *
2279      * <p> The string {@code "boo:and:foo"}, for example, yields the
2280      * following results with these parameters:
2281      *
2282      * <blockquote><table cellpadding=1 cellspacing=0 summary="Split example showing regex, limit, and result">
2283      * <tr>
2284      *     <th>Regex</th>
2285      *     <th>Limit</th>
2286      *     <th>Result</th>
2287      * </tr>
2288      * <tr><td align=center>:</td>
2289      *     <td align=center>2</td>
2290      *     <td>{@code { "boo", "and:foo" }}</td></tr>
2291      * <tr><td align=center>:</td>
2292      *     <td align=center>5</td>
2293      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2294      * <tr><td align=center>:</td>
2295      *     <td align=center>-2</td>
2296      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2297      * <tr><td align=center>o</td>
2298      *     <td align=center>5</td>
2299      *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
2300      * <tr><td align=center>o</td>
2301      *     <td align=center>-2</td>
2302      *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
2303      * <tr><td align=center>o</td>
2304      *     <td align=center>0</td>
2305      *     <td>{@code { "b", "", ":and:f" }}</td></tr>
2306      * </table></blockquote>
2307      *
2308      * <p> An invocation of this method of the form
2309      * <i>str.</i>{@code split(}<i>regex</i>{@code ,}&nbsp;<i>n</i>{@code )}
2310      * yields the same result as the expression
2311      *
2312      * <blockquote>
2313      * <code>
2314      * {@link java.util.regex.Pattern}.{@link
2315      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2316      * java.util.regex.Pattern#split(java.lang.CharSequence,int) split}(<i>str</i>,&nbsp;<i>n</i>)
2317      * </code>
2318      * </blockquote>
2319      *
2320      *
2321      * @param  regex
2322      *         the delimiting regular expression
2323      *
2324      * @param  limit
2325      *         the result threshold, as described above
2326      *
2327      * @return  the array of strings computed by splitting this string
2328      *          around matches of the given regular expression
2329      *
2330      * @throws  PatternSyntaxException
2331      *          if the regular expression's syntax is invalid
2332      *
2333      * @see java.util.regex.Pattern
2334      *
2335      * @since 1.4
2336      * @spec JSR-51
2337      */
2338     public String[] split(String regex, int limit) {
2339         /* fastpath if the regex is a
2340          (1)one-char String and this character is not one of the
2341             RegEx's meta characters ".$|()[{^?*+\\", or
2342          (2)two-char String and the first char is the backslash and
2343             the second is not the ascii digit or ascii letter.
2344          */
2345         char ch = 0;
2346         if (((regex.value.length == 1 &&
2347              ".$|()[{^?*+\\".indexOf(ch = regex.charAt(0)) == -1) ||
2348              (regex.length() == 2 &&
2349               regex.charAt(0) == '\\' &&
2350               (((ch = regex.charAt(1))-'0')|('9'-ch)) < 0 &&
2351               ((ch-'a')|('z'-ch)) < 0 &&
2352               ((ch-'A')|('Z'-ch)) < 0)) &&
2353             (ch < Character.MIN_HIGH_SURROGATE ||
2354              ch > Character.MAX_LOW_SURROGATE))
2355         {
2356             int off = 0;
2357             int next = 0;
2358             boolean limited = limit > 0;
2359             ArrayList<String> list = new ArrayList<>();
2360             while ((next = indexOf(ch, off)) != -1) {
2361                 if (!limited || list.size() < limit - 1) {
2362                     list.add(substring(off, next));
2363                     off = next + 1;
2364                 } else {    // last one
2365                     //assert (list.size() == limit - 1);
2366                     list.add(substring(off, value.length));
2367                     off = value.length;
2368                     break;
2369                 }
2370             }
2371             // If no match was found, return this
2372             if (off == 0)
2373                 return new String[]{this};
2374 
2375             // Add remaining segment
2376             if (!limited || list.size() < limit)
2377                 list.add(substring(off, value.length));
2378 
2379             // Construct result
2380             int resultSize = list.size();
2381             if (limit == 0) {
2382                 while (resultSize > 0 && list.get(resultSize - 1).length() == 0) {
2383                     resultSize--;
2384                 }
2385             }
2386             String[] result = new String[resultSize];
2387             return list.subList(0, resultSize).toArray(result);
2388         }
2389         return Pattern.compile(regex).split(this, limit);
2390     }
2391 
2392     /**
2393      * Splits this string around matches of the given <a
2394      * href="../util/regex/Pattern.html#sum">regular expression</a>.
2395      *
2396      * <p> This method works as if by invoking the two-argument {@link
2397      * #split(String, int) split} method with the given expression and a limit
2398      * argument of zero.  Trailing empty strings are therefore not included in
2399      * the resulting array.
2400      *
2401      * <p> The string {@code "boo:and:foo"}, for example, yields the following
2402      * results with these expressions:
2403      *
2404      * <blockquote><table cellpadding=1 cellspacing=0 summary="Split examples showing regex and result">
2405      * <tr>
2406      *  <th>Regex</th>
2407      *  <th>Result</th>
2408      * </tr>
2409      * <tr><td align=center>:</td>
2410      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2411      * <tr><td align=center>o</td>
2412      *     <td>{@code { "b", "", ":and:f" }}</td></tr>
2413      * </table></blockquote>
2414      *
2415      *
2416      * @param  regex
2417      *         the delimiting regular expression
2418      *
2419      * @return  the array of strings computed by splitting this string
2420      *          around matches of the given regular expression
2421      *
2422      * @throws  PatternSyntaxException
2423      *          if the regular expression's syntax is invalid
2424      *
2425      * @see java.util.regex.Pattern
2426      *
2427      * @since 1.4
2428      * @spec JSR-51
2429      */
2430     public String[] split(String regex) {
2431         return split(regex, 0);
2432     }
2433 
2434     /**
2435      * Returns a new String composed of copies of the
2436      * {@code CharSequence elements} joined together with a copy of
2437      * the specified {@code delimiter}.
2438      *
2439      * <blockquote>For example,
2440      * <pre>{@code
2441      *     String message = String.join("-", "Java", "is", "cool");
2442      *     // message returned is: "Java-is-cool"
2443      * }</pre></blockquote>
2444      *
2445      * Note that if an element is null, then {@code "null"} is added.
2446      *
2447      * @param  delimiter the delimiter that separates each element
2448      * @param  elements the elements to join together.
2449      *
2450      * @return a new {@code String} that is composed of the {@code elements}
2451      *         separated by the {@code delimiter}
2452      *
2453      * @throws NullPointerException If {@code delimiter} or {@code elements}
2454      *         is {@code null}
2455      *
2456      * @see java.util.StringJoiner
2457      * @since 1.8
2458      */
2459     public static String join(CharSequence delimiter, CharSequence... elements) {
2460         Objects.requireNonNull(delimiter);
2461         Objects.requireNonNull(elements);
2462         // Number of elements not likely worth Arrays.stream overhead.
2463         StringJoiner joiner = new StringJoiner(delimiter);
2464         for (CharSequence cs: elements) {
2465             joiner.add(cs);
2466         }
2467         return joiner.toString();
2468     }
2469 
2470     /**
2471      * Returns a new {@code String} composed of copies of the
2472      * {@code CharSequence elements} joined together with a copy of the
2473      * specified {@code delimiter}.
2474      *
2475      * <blockquote>For example,
2476      * <pre>{@code
2477      *     List<String> strings = new LinkedList<>();
2478      *     strings.add("Java");strings.add("is");
2479      *     strings.add("cool");
2480      *     String message = String.join(" ", strings);
2481      *     //message returned is: "Java is cool"
2482      *
2483      *     Set<String> strings = new LinkedHashSet<>();
2484      *     strings.add("Java"); strings.add("is");
2485      *     strings.add("very"); strings.add("cool");
2486      *     String message = String.join("-", strings);
2487      *     //message returned is: "Java-is-very-cool"
2488      * }</pre></blockquote>
2489      *
2490      * Note that if an individual element is {@code null}, then {@code "null"} is added.
2491      *
2492      * @param  delimiter a sequence of characters that is used to separate each
2493      *         of the {@code elements} in the resulting {@code String}
2494      * @param  elements an {@code Iterable} that will have its {@code elements}
2495      *         joined together.
2496      *
2497      * @return a new {@code String} that is composed from the {@code elements}
2498      *         argument
2499      *
2500      * @throws NullPointerException If {@code delimiter} or {@code elements}
2501      *         is {@code null}
2502      *
2503      * @see    #join(CharSequence,CharSequence...)
2504      * @see    java.util.StringJoiner
2505      * @since 1.8
2506      */
2507     public static String join(CharSequence delimiter,
2508             Iterable<? extends CharSequence> elements) {
2509         Objects.requireNonNull(delimiter);
2510         Objects.requireNonNull(elements);
2511         StringJoiner joiner = new StringJoiner(delimiter);
2512         for (CharSequence cs: elements) {
2513             joiner.add(cs);
2514         }
2515         return joiner.toString();
2516     }
2517 
2518     /**
2519      * Converts all of the characters in this {@code String} to lower
2520      * case using the rules of the given {@code Locale}.  Case mapping is based
2521      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2522      * class. Since case mappings are not always 1:1 char mappings, the resulting
2523      * {@code String} may be a different length than the original {@code String}.
2524      * <p>
2525      * Examples of lowercase  mappings are in the following table:
2526      * <table border="1" summary="Lowercase mapping examples showing language code of locale, upper case, lower case, and description">
2527      * <tr>
2528      *   <th>Language Code of Locale</th>
2529      *   <th>Upper Case</th>
2530      *   <th>Lower Case</th>
2531      *   <th>Description</th>
2532      * </tr>
2533      * <tr>
2534      *   <td>tr (Turkish)</td>
2535      *   <td>\u0130</td>
2536      *   <td>\u0069</td>
2537      *   <td>capital letter I with dot above -&gt; small letter i</td>
2538      * </tr>
2539      * <tr>
2540      *   <td>tr (Turkish)</td>
2541      *   <td>\u0049</td>
2542      *   <td>\u0131</td>
2543      *   <td>capital letter I -&gt; small letter dotless i </td>
2544      * </tr>
2545      * <tr>
2546      *   <td>(all)</td>
2547      *   <td>French Fries</td>
2548      *   <td>french fries</td>
2549      *   <td>lowercased all chars in String</td>
2550      * </tr>
2551      * <tr>
2552      *   <td>(all)</td>
2553      *   <td><img src="doc-files/capiota.gif" alt="capiota"><img src="doc-files/capchi.gif" alt="capchi">
2554      *       <img src="doc-files/captheta.gif" alt="captheta"><img src="doc-files/capupsil.gif" alt="capupsil">
2555      *       <img src="doc-files/capsigma.gif" alt="capsigma"></td>
2556      *   <td><img src="doc-files/iota.gif" alt="iota"><img src="doc-files/chi.gif" alt="chi">
2557      *       <img src="doc-files/theta.gif" alt="theta"><img src="doc-files/upsilon.gif" alt="upsilon">
2558      *       <img src="doc-files/sigma1.gif" alt="sigma"></td>
2559      *   <td>lowercased all chars in String</td>
2560      * </tr>
2561      * </table>
2562      *
2563      * @param locale use the case transformation rules for this locale
2564      * @return the {@code String}, converted to lowercase.
2565      * @see     java.lang.String#toLowerCase()
2566      * @see     java.lang.String#toUpperCase()
2567      * @see     java.lang.String#toUpperCase(Locale)
2568      * @since   1.1
2569      */
2570     public String toLowerCase(Locale locale) {
2571         if (locale == null) {
2572             throw new NullPointerException();
2573         }
2574         int first;
2575         boolean hasSurr = false;
2576         final int len = value.length;
2577 
2578         // Now check if there are any characters that need to be changed, or are surrogate
2579         for (first = 0 ; first < len; first++) {
2580             int cp = (int)value[first];
2581             if (Character.isSurrogate((char)cp)) {
2582                 hasSurr = true;
2583                 break;
2584             }
2585             if (cp != Character.toLowerCase(cp)) {  // no need to check Character.ERROR
2586                 break;
2587             }
2588         }
2589         if (first == len)
2590             return this;
2591         char[] result = new char[len];
2592         System.arraycopy(value, 0, result, 0, first);  // Just copy the first few
2593                                                        // lowerCase characters.
2594         String lang = locale.getLanguage();
2595         if (lang == "tr" || lang == "az" || lang == "lt") {
2596             return toLowerCaseEx(result, first, locale, true);
2597         }
2598         if (hasSurr) {
2599             return toLowerCaseEx(result, first, locale, false);
2600         }
2601         for (int i = first; i < len; i++) {
2602             int cp = (int)value[i];
2603             if (cp == '\u03A3' ||                       // GREEK CAPITAL LETTER SIGMA
2604                 Character.isSurrogate((char)cp)) {
2605                 return toLowerCaseEx(result, i, locale, false);
2606             }
2607             if (cp == '\u0130') {                       // LATIN CAPITAL LETTER I WITH DOT ABOVE
2608                 return toLowerCaseEx(result, i, locale, true);
2609             }
2610             cp = Character.toLowerCase(cp);
2611             if (!Character.isBmpCodePoint(cp)) {
2612                 return toLowerCaseEx(result, i, locale, false);
2613             }
2614             result[i] = (char)cp;
2615         }
2616         return new String(result, true);
2617     }
2618 
2619     private String toLowerCaseEx(char[] result, int first, Locale locale, boolean localeDependent) {
2620         int resultOffset = first;
2621         int srcCount;
2622         for (int i = first; i < value.length; i += srcCount) {
2623             int srcChar = (int)value[i];
2624             int lowerChar;
2625             char[] lowerCharArray;
2626             srcCount = 1;
2627             if (Character.isSurrogate((char)srcChar)) {
2628                 srcChar = codePointAt(i);
2629                 srcCount = Character.charCount(srcChar);
2630             }
2631             if (localeDependent || srcChar == '\u03A3') { // GREEK CAPITAL LETTER SIGMA
2632                 lowerChar = ConditionalSpecialCasing.toLowerCaseEx(this, i, locale);
2633             } else {
2634                 lowerChar = Character.toLowerCase(srcChar);
2635             }
2636             if (Character.isBmpCodePoint(lowerChar)) {    // Character.ERROR is not a bmp
2637                 result[resultOffset++] = (char)lowerChar;
2638             } else {
2639                 if (lowerChar == Character.ERROR) {
2640                     lowerCharArray = ConditionalSpecialCasing.toLowerCaseCharArray(this, i, locale);
2641                 } else if (srcCount == 2) {
2642                     resultOffset += Character.toChars(lowerChar, result, resultOffset);
2643                     continue;
2644                 } else {
2645                     lowerCharArray = Character.toChars(lowerChar);
2646                 }
2647                 /* Grow result if needed */
2648                 int mapLen = lowerCharArray.length;
2649                 if (mapLen > srcCount) {
2650                     char[] result2 = new char[result.length + mapLen - srcCount];
2651                     System.arraycopy(result, 0, result2, 0, resultOffset);
2652                     result = result2;
2653                 }
2654                 for (int x = 0; x < mapLen; ++x) {
2655                     result[resultOffset++] = lowerCharArray[x];
2656                 }
2657             }
2658         }
2659         return new String(result, 0, resultOffset);
2660     }
2661 
2662     /**
2663      * Converts all of the characters in this {@code String} to lower
2664      * case using the rules of the default locale. This is equivalent to calling
2665      * {@code toLowerCase(Locale.getDefault())}.
2666      * <p>
2667      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2668      * results if used for strings that are intended to be interpreted locale
2669      * independently.
2670      * Examples are programming language identifiers, protocol keys, and HTML
2671      * tags.
2672      * For instance, {@code "TITLE".toLowerCase()} in a Turkish locale
2673      * returns {@code "t\u005Cu0131tle"}, where '\u005Cu0131' is the
2674      * LATIN SMALL LETTER DOTLESS I character.
2675      * To obtain correct results for locale insensitive strings, use
2676      * {@code toLowerCase(Locale.ROOT)}.
2677      *
2678      * @return  the {@code String}, converted to lowercase.
2679      * @see     java.lang.String#toLowerCase(Locale)
2680      */
2681     public String toLowerCase() {
2682         return toLowerCase(Locale.getDefault());
2683     }
2684 
2685     /**
2686      * Converts all of the characters in this {@code String} to upper
2687      * case using the rules of the given {@code Locale}. Case mapping is based
2688      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2689      * class. Since case mappings are not always 1:1 char mappings, the resulting
2690      * {@code String} may be a different length than the original {@code String}.
2691      * <p>
2692      * Examples of locale-sensitive and 1:M case mappings are in the following table.
2693      *
2694      * <table border="1" summary="Examples of locale-sensitive and 1:M case mappings. Shows Language code of locale, lower case, upper case, and description.">
2695      * <tr>
2696      *   <th>Language Code of Locale</th>
2697      *   <th>Lower Case</th>
2698      *   <th>Upper Case</th>
2699      *   <th>Description</th>
2700      * </tr>
2701      * <tr>
2702      *   <td>tr (Turkish)</td>
2703      *   <td>\u0069</td>
2704      *   <td>\u0130</td>
2705      *   <td>small letter i -&gt; capital letter I with dot above</td>
2706      * </tr>
2707      * <tr>
2708      *   <td>tr (Turkish)</td>
2709      *   <td>\u0131</td>
2710      *   <td>\u0049</td>
2711      *   <td>small letter dotless i -&gt; capital letter I</td>
2712      * </tr>
2713      * <tr>
2714      *   <td>(all)</td>
2715      *   <td>\u00df</td>
2716      *   <td>\u0053 \u0053</td>
2717      *   <td>small letter sharp s -&gt; two letters: SS</td>
2718      * </tr>
2719      * <tr>
2720      *   <td>(all)</td>
2721      *   <td>Fahrvergn&uuml;gen</td>
2722      *   <td>FAHRVERGN&Uuml;GEN</td>
2723      *   <td></td>
2724      * </tr>
2725      * </table>
2726      * @param locale use the case transformation rules for this locale
2727      * @return the {@code String}, converted to uppercase.
2728      * @see     java.lang.String#toUpperCase()
2729      * @see     java.lang.String#toLowerCase()
2730      * @see     java.lang.String#toLowerCase(Locale)
2731      * @since   1.1
2732      */
2733     public String toUpperCase(Locale locale) {
2734         if (locale == null) {
2735             throw new NullPointerException();
2736         }
2737         int first;
2738         boolean hasSurr = false;
2739         final int len = value.length;
2740 
2741         // Now check if there are any characters that need to be changed, or are surrogate
2742         for (first = 0 ; first < len; first++ ) {
2743             int cp = (int)value[first];
2744             if (Character.isSurrogate((char)cp)) {
2745                 hasSurr = true;
2746                 break;
2747             }
2748             if (cp != Character.toUpperCaseEx(cp)) {   // no need to check Character.ERROR
2749                 break;
2750             }
2751         }
2752         if (first == len) {
2753             return this;
2754         }
2755         char[] result = new char[len];
2756         System.arraycopy(value, 0, result, 0, first);  // Just copy the first few
2757                                                        // upperCase characters.
2758         String lang = locale.getLanguage();
2759         if (lang == "tr" || lang == "az" || lang == "lt") {
2760             return toUpperCaseEx(result, first, locale, true);
2761         }
2762         if (hasSurr) {
2763             return toUpperCaseEx(result, first, locale, false);
2764         }
2765         for (int i = first; i < len; i++) {
2766             int cp = (int)value[i];
2767             if (Character.isSurrogate((char)cp)) {
2768                 return toUpperCaseEx(result, i, locale, false);
2769             }
2770             cp = Character.toUpperCaseEx(cp);
2771             if (!Character.isBmpCodePoint(cp)) {    // Character.ERROR is not bmp
2772                 return toUpperCaseEx(result, i, locale, false);
2773             }
2774             result[i] = (char)cp;
2775         }
2776         return new String(result, true);
2777     }
2778 
2779     private String toUpperCaseEx(char[] result, int first, Locale locale,
2780                                  boolean localeDependent) {
2781         int resultOffset = first;
2782         int srcCount;
2783         for (int i = first; i < value.length; i += srcCount) {
2784             int srcChar = (int)value[i];
2785             int upperChar;
2786             char[] upperCharArray;
2787             srcCount = 1;
2788             if (Character.isSurrogate((char)srcChar)) {
2789                 srcChar = codePointAt(i);
2790                 srcCount = Character.charCount(srcChar);
2791             }
2792             if (localeDependent) {
2793                 upperChar = ConditionalSpecialCasing.toUpperCaseEx(this, i, locale);
2794             } else {
2795                 upperChar = Character.toUpperCaseEx(srcChar);
2796             }
2797             if (Character.isBmpCodePoint(upperChar)) {
2798                 result[resultOffset++] = (char)upperChar;
2799             } else {
2800                 if (upperChar == Character.ERROR) {
2801                     if (localeDependent) {
2802                         upperCharArray =
2803                             ConditionalSpecialCasing.toUpperCaseCharArray(this, i, locale);
2804                     } else {
2805                         upperCharArray = Character.toUpperCaseCharArray(srcChar);
2806                     }
2807                 } else if (srcCount == 2) {
2808                     resultOffset += Character.toChars(upperChar, result, resultOffset);
2809                     continue;
2810                 } else {
2811                     upperCharArray = Character.toChars(upperChar);
2812                 }
2813                 /* Grow result if needed */
2814                 int mapLen = upperCharArray.length;
2815                 if (mapLen > srcCount) {
2816                     char[] result2 = new char[result.length + mapLen - srcCount];
2817                     System.arraycopy(result, 0, result2, 0, resultOffset);
2818                     result = result2;
2819                  }
2820                  for (int x = 0; x < mapLen; ++x) {
2821                     result[resultOffset++] = upperCharArray[x];
2822                  }
2823             }
2824         }
2825         return new String(result, 0, resultOffset);
2826     }
2827 
2828     /**
2829      * Converts all of the characters in this {@code String} to upper
2830      * case using the rules of the default locale. This method is equivalent to
2831      * {@code toUpperCase(Locale.getDefault())}.
2832      * <p>
2833      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2834      * results if used for strings that are intended to be interpreted locale
2835      * independently.
2836      * Examples are programming language identifiers, protocol keys, and HTML
2837      * tags.
2838      * For instance, {@code "title".toUpperCase()} in a Turkish locale
2839      * returns {@code "T\u005Cu0130TLE"}, where '\u005Cu0130' is the
2840      * LATIN CAPITAL LETTER I WITH DOT ABOVE character.
2841      * To obtain correct results for locale insensitive strings, use
2842      * {@code toUpperCase(Locale.ROOT)}.
2843      *
2844      * @return  the {@code String}, converted to uppercase.
2845      * @see     java.lang.String#toUpperCase(Locale)
2846      */
2847     public String toUpperCase() {
2848         return toUpperCase(Locale.getDefault());
2849     }
2850 
2851     /**
2852      * Returns a string whose value is this string, with any leading and trailing
2853      * whitespace removed.
2854      * <p>
2855      * If this {@code String} object represents an empty character
2856      * sequence, or the first and last characters of character sequence
2857      * represented by this {@code String} object both have codes
2858      * greater than {@code '\u005Cu0020'} (the space character), then a
2859      * reference to this {@code String} object is returned.
2860      * <p>
2861      * Otherwise, if there is no character with a code greater than
2862      * {@code '\u005Cu0020'} in the string, then a
2863      * {@code String} object representing an empty string is
2864      * returned.
2865      * <p>
2866      * Otherwise, let <i>k</i> be the index of the first character in the
2867      * string whose code is greater than {@code '\u005Cu0020'}, and let
2868      * <i>m</i> be the index of the last character in the string whose code
2869      * is greater than {@code '\u005Cu0020'}. A {@code String}
2870      * object is returned, representing the substring of this string that
2871      * begins with the character at index <i>k</i> and ends with the
2872      * character at index <i>m</i>-that is, the result of
2873      * {@code this.substring(k, m + 1)}.
2874      * <p>
2875      * This method may be used to trim whitespace (as defined above) from
2876      * the beginning and end of a string.
2877      *
2878      * @return  A string whose value is this string, with any leading and trailing white
2879      *          space removed, or this string if it has no leading or
2880      *          trailing white space.
2881      */
2882     public String trim() {
2883         char[] val = value;    /* avoid getfield opcode */
2884         int end = val.length;
2885         int beg = 0;
2886 
2887         while ((beg < end) && (val[beg] <= ' ')) {
2888             beg++;
2889         }
2890         while ((beg < end) && (val[end - 1] <= ' ')) {
2891             end--;
2892         }
2893         return substring(beg, end);
2894     }
2895 
2896     /**
2897      * This object (which is already a string!) is itself returned.
2898      *
2899      * @return  the string itself.
2900      */
2901     public String toString() {
2902         return this;
2903     }
2904 
2905     static class IntCharArraySpliterator implements Spliterator.OfInt {
2906         private final char[] array;
2907         private int index;        // current index, modified on advance/split
2908         private final int fence;  // one past last index
2909         private final int cs;
2910 
2911         IntCharArraySpliterator(char[] array, int acs) {
2912             this(array, 0, array.length, acs);
2913         }
2914 
2915         IntCharArraySpliterator(char[] array, int origin, int fence, int acs) {
2916             this.array = array;
2917             this.index = origin;
2918             this.fence = fence;
2919             this.cs = acs | Spliterator.ORDERED | Spliterator.SIZED
2920                       | Spliterator.SUBSIZED;
2921         }
2922 
2923         @Override
2924         public OfInt trySplit() {
2925             int lo = index, mid = (lo + fence) >>> 1;
2926             return (lo >= mid)
2927                    ? null
2928                    : new IntCharArraySpliterator(array, lo, index = mid, cs);
2929         }
2930 
2931         @Override
2932         public void forEachRemaining(IntConsumer action) {
2933             char[] a; int i, hi; // hoist accesses and checks from loop
2934             if (action == null)
2935                 throw new NullPointerException();
2936             if ((a = array).length >= (hi = fence) &&
2937                 (i = index) >= 0 && i < (index = hi)) {
2938                 do { action.accept(a[i]); } while (++i < hi);
2939             }
2940         }
2941 
2942         @Override
2943         public boolean tryAdvance(IntConsumer action) {
2944             if (action == null)
2945                 throw new NullPointerException();
2946             if (index >= 0 && index < fence) {
2947                 action.accept(array[index++]);
2948                 return true;
2949             }
2950             return false;
2951         }
2952 
2953         @Override
2954         public long estimateSize() { return (long)(fence - index); }
2955 
2956         @Override
2957         public int characteristics() {
2958             return cs;
2959         }
2960     }
2961 
2962     /**
2963      * Returns a stream of {@code int} zero-extending the {@code char} values
2964      * from this sequence.  Any char which maps to a <a
2965      * href="{@docRoot}/java/lang/Character.html#unicode">surrogate code
2966      * point</a> is passed through uninterpreted.
2967      *
2968      * @return an IntStream of char values from this sequence
2969      * @since 1.9
2970      */
2971     @Override
2972     public IntStream chars() {
2973         return StreamSupport.intStream(
2974                 new IntCharArraySpliterator(value, Spliterator.IMMUTABLE), false);
2975     }
2976 
2977     static class CodePointsSpliterator implements Spliterator.OfInt {
2978         private final char[] array;
2979         private int index;        // current index, modified on advance/split
2980         private final int fence;  // one past last index
2981         private final int cs;
2982 
2983         CodePointsSpliterator(char[] array, int acs) {
2984             this(array, 0, array.length, acs);
2985         }
2986 
2987         CodePointsSpliterator(char[] array, int origin, int fence, int acs) {
2988             this.array = array;
2989             this.index = origin;
2990             this.fence = fence;
2991             this.cs = acs | Spliterator.ORDERED;
2992         }
2993 
2994         @Override
2995         public OfInt trySplit() {
2996             int lo = index, mid = (lo + fence) >>> 1;
2997             if (lo >= mid)
2998                 return null;
2999 
3000             int midOneLess;
3001             // If the mid-point intersects a surrogate pair
3002             if (Character.isLowSurrogate(array[mid]) &&
3003                 Character.isHighSurrogate(array[midOneLess = (mid -1)])) {
3004                 // If there is only one pair it cannot be split
3005                 if (lo >= midOneLess)
3006                     return null;
3007                 // Shift the mid-point to align with the surrogate pair
3008                 return new CodePointsSpliterator(array, lo, index = midOneLess, cs);
3009             }
3010             return new CodePointsSpliterator(array, lo, index = mid, cs);
3011         }
3012 
3013         @Override
3014         public void forEachRemaining(IntConsumer action) {
3015             char[] a; int i, hi; // hoist accesses and checks from loop
3016             if (action == null)
3017                 throw new NullPointerException();
3018             if ((a = array).length >= (hi = fence) &&
3019                 (i = index) >= 0 && i < (index = hi)) {
3020                 do {
3021                     i = advance(a, i, hi, action);
3022                 } while (i < hi);
3023             }
3024         }
3025 
3026         @Override
3027         public boolean tryAdvance(IntConsumer action) {
3028             if (action == null)
3029                 throw new NullPointerException();
3030             if (index >= 0 && index < fence) {
3031                 index = advance(array, index, fence, action);
3032                 return true;
3033             }
3034             return false;
3035         }
3036 
3037         // Advance one code point from the index, i, and return the next
3038         // index to advance from
3039         private static int advance(char[] a, int i, int hi, IntConsumer action) {
3040             char c1 = a[i++];
3041             int cp = c1;
3042             if (Character.isHighSurrogate(c1) && i < hi) {
3043                 char c2 = a[i];
3044                 if (Character.isLowSurrogate(c2)) {
3045                     i++;
3046                     cp = Character.toCodePoint(c1, c2);
3047                 }
3048             }
3049             action.accept(cp);
3050             return i;
3051         }
3052 
3053         @Override
3054         public long estimateSize() { return (long)(fence - index); }
3055 
3056         @Override
3057         public int characteristics() {
3058             return cs;
3059         }
3060     }
3061 
3062     /**
3063      * Returns a stream of code point values from this sequence.  Any surrogate
3064      * pairs encountered in the sequence are combined as if by {@linkplain
3065      * Character#toCodePoint Character.toCodePoint} and the result is passed
3066      * to the stream. Any other code units, including ordinary BMP characters,
3067      * unpaired surrogates, and undefined code units, are zero-extended to
3068      * {@code int} values which are then passed to the stream.
3069      *
3070      * @return an IntStream of Unicode code points from this sequence
3071      * @since 1.9
3072      */
3073     @Override
3074     public IntStream codePoints() {
3075         return StreamSupport.intStream(
3076                 new CodePointsSpliterator(value, Spliterator.IMMUTABLE), false);
3077     }
3078 
3079     /**
3080      * Converts this string to a new character array.
3081      *
3082      * @return  a newly allocated character array whose length is the length
3083      *          of this string and whose contents are initialized to contain
3084      *          the character sequence represented by this string.
3085      */
3086     public char[] toCharArray() {
3087         // Cannot use Arrays.copyOf because of class initialization order issues
3088         char[] result = new char[value.length];
3089         System.arraycopy(value, 0, result, 0, value.length);
3090         return result;
3091     }
3092 
3093     /**
3094      * Returns a formatted string using the specified format string and
3095      * arguments.
3096      *
3097      * <p> The locale always used is the one returned by {@link
3098      * java.util.Locale#getDefault() Locale.getDefault()}.
3099      *
3100      * @param  format
3101      *         A <a href="../util/Formatter.html#syntax">format string</a>
3102      *
3103      * @param  args
3104      *         Arguments referenced by the format specifiers in the format
3105      *         string.  If there are more arguments than format specifiers, the
3106      *         extra arguments are ignored.  The number of arguments is
3107      *         variable and may be zero.  The maximum number of arguments is
3108      *         limited by the maximum dimension of a Java array as defined by
3109      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
3110      *         The behaviour on a
3111      *         {@code null} argument depends on the <a
3112      *         href="../util/Formatter.html#syntax">conversion</a>.
3113      *
3114      * @throws  java.util.IllegalFormatException
3115      *          If a format string contains an illegal syntax, a format
3116      *          specifier that is incompatible with the given arguments,
3117      *          insufficient arguments given the format string, or other
3118      *          illegal conditions.  For specification of all possible
3119      *          formatting errors, see the <a
3120      *          href="../util/Formatter.html#detail">Details</a> section of the
3121      *          formatter class specification.
3122      *
3123      * @return  A formatted string
3124      *
3125      * @see  java.util.Formatter
3126      * @since  1.5
3127      */
3128     public static String format(String format, Object... args) {
3129         return new Formatter().format(format, args).toString();
3130     }
3131 
3132     /**
3133      * Returns a formatted string using the specified locale, format string,
3134      * and arguments.
3135      *
3136      * @param  l
3137      *         The {@linkplain java.util.Locale locale} to apply during
3138      *         formatting.  If {@code l} is {@code null} then no localization
3139      *         is applied.
3140      *
3141      * @param  format
3142      *         A <a href="../util/Formatter.html#syntax">format string</a>
3143      *
3144      * @param  args
3145      *         Arguments referenced by the format specifiers in the format
3146      *         string.  If there are more arguments than format specifiers, the
3147      *         extra arguments are ignored.  The number of arguments is
3148      *         variable and may be zero.  The maximum number of arguments is
3149      *         limited by the maximum dimension of a Java array as defined by
3150      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
3151      *         The behaviour on a
3152      *         {@code null} argument depends on the
3153      *         <a href="../util/Formatter.html#syntax">conversion</a>.
3154      *
3155      * @throws  java.util.IllegalFormatException
3156      *          If a format string contains an illegal syntax, a format
3157      *          specifier that is incompatible with the given arguments,
3158      *          insufficient arguments given the format string, or other
3159      *          illegal conditions.  For specification of all possible
3160      *          formatting errors, see the <a
3161      *          href="../util/Formatter.html#detail">Details</a> section of the
3162      *          formatter class specification
3163      *
3164      * @return  A formatted string
3165      *
3166      * @see  java.util.Formatter
3167      * @since  1.5
3168      */
3169     public static String format(Locale l, String format, Object... args) {
3170         return new Formatter(l).format(format, args).toString();
3171     }
3172 
3173     /**
3174      * Returns the string representation of the {@code Object} argument.
3175      *
3176      * @param   obj   an {@code Object}.
3177      * @return  if the argument is {@code null}, then a string equal to
3178      *          {@code "null"}; otherwise, the value of
3179      *          {@code obj.toString()} is returned.
3180      * @see     java.lang.Object#toString()
3181      */
3182     public static String valueOf(Object obj) {
3183         return (obj == null) ? "null" : obj.toString();
3184     }
3185 
3186     /**
3187      * Returns the string representation of the {@code char} array
3188      * argument. The contents of the character array are copied; subsequent
3189      * modification of the character array does not affect the returned
3190      * string.
3191      *
3192      * @param   data     the character array.
3193      * @return  a {@code String} that contains the characters of the
3194      *          character array.
3195      */
3196     public static String valueOf(char data[]) {
3197         return new String(data);
3198     }
3199 
3200     /**
3201      * Returns the string representation of a specific subarray of the
3202      * {@code char} array argument.
3203      * <p>
3204      * The {@code offset} argument is the index of the first
3205      * character of the subarray. The {@code count} argument
3206      * specifies the length of the subarray. The contents of the subarray
3207      * are copied; subsequent modification of the character array does not
3208      * affect the returned string.
3209      *
3210      * @param   data     the character array.
3211      * @param   offset   initial offset of the subarray.
3212      * @param   count    length of the subarray.
3213      * @return  a {@code String} that contains the characters of the
3214      *          specified subarray of the character array.
3215      * @exception IndexOutOfBoundsException if {@code offset} is
3216      *          negative, or {@code count} is negative, or
3217      *          {@code offset+count} is larger than
3218      *          {@code data.length}.
3219      */
3220     public static String valueOf(char data[], int offset, int count) {
3221         return new String(data, offset, count);
3222     }
3223 
3224     /**
3225      * Equivalent to {@link #valueOf(char[], int, int)}.
3226      *
3227      * @param   data     the character array.
3228      * @param   offset   initial offset of the subarray.
3229      * @param   count    length of the subarray.
3230      * @return  a {@code String} that contains the characters of the
3231      *          specified subarray of the character array.
3232      * @exception IndexOutOfBoundsException if {@code offset} is
3233      *          negative, or {@code count} is negative, or
3234      *          {@code offset+count} is larger than
3235      *          {@code data.length}.
3236      */
3237     public static String copyValueOf(char data[], int offset, int count) {
3238         return new String(data, offset, count);
3239     }
3240 
3241     /**
3242      * Equivalent to {@link #valueOf(char[])}.
3243      *
3244      * @param   data   the character array.
3245      * @return  a {@code String} that contains the characters of the
3246      *          character array.
3247      */
3248     public static String copyValueOf(char data[]) {
3249         return new String(data);
3250     }
3251 
3252     /**
3253      * Returns the string representation of the {@code boolean} argument.
3254      *
3255      * @param   b   a {@code boolean}.
3256      * @return  if the argument is {@code true}, a string equal to
3257      *          {@code "true"} is returned; otherwise, a string equal to
3258      *          {@code "false"} is returned.
3259      */
3260     public static String valueOf(boolean b) {
3261         return b ? "true" : "false";
3262     }
3263 
3264     /**
3265      * Returns the string representation of the {@code char}
3266      * argument.
3267      *
3268      * @param   c   a {@code char}.
3269      * @return  a string of length {@code 1} containing
3270      *          as its single character the argument {@code c}.
3271      */
3272     public static String valueOf(char c) {
3273         return new String(new char[]{c}, true);
3274     }
3275 
3276     /**
3277      * Returns the string representation of the {@code int} argument.
3278      * <p>
3279      * The representation is exactly the one returned by the
3280      * {@code Integer.toString} method of one argument.
3281      *
3282      * @param   i   an {@code int}.
3283      * @return  a string representation of the {@code int} argument.
3284      * @see     java.lang.Integer#toString(int, int)
3285      */
3286     public static String valueOf(int i) {
3287         return Integer.toString(i);
3288     }
3289 
3290     /**
3291      * Returns the string representation of the {@code long} argument.
3292      * <p>
3293      * The representation is exactly the one returned by the
3294      * {@code Long.toString} method of one argument.
3295      *
3296      * @param   l   a {@code long}.
3297      * @return  a string representation of the {@code long} argument.
3298      * @see     java.lang.Long#toString(long)
3299      */
3300     public static String valueOf(long l) {
3301         return Long.toString(l);
3302     }
3303 
3304     /**
3305      * Returns the string representation of the {@code float} argument.
3306      * <p>
3307      * The representation is exactly the one returned by the
3308      * {@code Float.toString} method of one argument.
3309      *
3310      * @param   f   a {@code float}.
3311      * @return  a string representation of the {@code float} argument.
3312      * @see     java.lang.Float#toString(float)
3313      */
3314     public static String valueOf(float f) {
3315         return Float.toString(f);
3316     }
3317 
3318     /**
3319      * Returns the string representation of the {@code double} argument.
3320      * <p>
3321      * The representation is exactly the one returned by the
3322      * {@code Double.toString} method of one argument.
3323      *
3324      * @param   d   a {@code double}.
3325      * @return  a  string representation of the {@code double} argument.
3326      * @see     java.lang.Double#toString(double)
3327      */
3328     public static String valueOf(double d) {
3329         return Double.toString(d);
3330     }
3331 
3332     /**
3333      * Returns a canonical representation for the string object.
3334      * <p>
3335      * A pool of strings, initially empty, is maintained privately by the
3336      * class {@code String}.
3337      * <p>
3338      * When the intern method is invoked, if the pool already contains a
3339      * string equal to this {@code String} object as determined by
3340      * the {@link #equals(Object)} method, then the string from the pool is
3341      * returned. Otherwise, this {@code String} object is added to the
3342      * pool and a reference to this {@code String} object is returned.
3343      * <p>
3344      * It follows that for any two strings {@code s} and {@code t},
3345      * {@code s.intern() == t.intern()} is {@code true}
3346      * if and only if {@code s.equals(t)} is {@code true}.
3347      * <p>
3348      * All literal strings and string-valued constant expressions are
3349      * interned. String literals are defined in section 3.10.5 of the
3350      * <cite>The Java&trade; Language Specification</cite>.
3351      *
3352      * @return  a string that has the same contents as this string, but is
3353      *          guaranteed to be from a pool of unique strings.
3354      */
3355     public native String intern();
3356 }