1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_ASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_ASSEMBLER_X86_HPP
  27 
  28 #include "asm/register.hpp"
  29 
  30 class BiasedLockingCounters;
  31 
  32 // Contains all the definitions needed for x86 assembly code generation.
  33 
  34 // Calling convention
  35 class Argument VALUE_OBJ_CLASS_SPEC {
  36  public:
  37   enum {
  38 #ifdef _LP64
  39 #ifdef _WIN64
  40     n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
  41     n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
  42 #else
  43     n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
  44     n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
  45 #endif // _WIN64
  46     n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
  47     n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
  48 #else
  49     n_register_parameters = 0   // 0 registers used to pass arguments
  50 #endif // _LP64
  51   };
  52 };
  53 
  54 
  55 #ifdef _LP64
  56 // Symbolically name the register arguments used by the c calling convention.
  57 // Windows is different from linux/solaris. So much for standards...
  58 
  59 #ifdef _WIN64
  60 
  61 REGISTER_DECLARATION(Register, c_rarg0, rcx);
  62 REGISTER_DECLARATION(Register, c_rarg1, rdx);
  63 REGISTER_DECLARATION(Register, c_rarg2, r8);
  64 REGISTER_DECLARATION(Register, c_rarg3, r9);
  65 
  66 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
  67 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
  68 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
  69 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
  70 
  71 #else
  72 
  73 REGISTER_DECLARATION(Register, c_rarg0, rdi);
  74 REGISTER_DECLARATION(Register, c_rarg1, rsi);
  75 REGISTER_DECLARATION(Register, c_rarg2, rdx);
  76 REGISTER_DECLARATION(Register, c_rarg3, rcx);
  77 REGISTER_DECLARATION(Register, c_rarg4, r8);
  78 REGISTER_DECLARATION(Register, c_rarg5, r9);
  79 
  80 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
  81 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
  82 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
  83 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
  84 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
  85 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
  86 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
  87 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
  88 
  89 #endif // _WIN64
  90 
  91 // Symbolically name the register arguments used by the Java calling convention.
  92 // We have control over the convention for java so we can do what we please.
  93 // What pleases us is to offset the java calling convention so that when
  94 // we call a suitable jni method the arguments are lined up and we don't
  95 // have to do little shuffling. A suitable jni method is non-static and a
  96 // small number of arguments (two fewer args on windows)
  97 //
  98 //        |-------------------------------------------------------|
  99 //        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
 100 //        |-------------------------------------------------------|
 101 //        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
 102 //        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
 103 //        |-------------------------------------------------------|
 104 //        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
 105 //        |-------------------------------------------------------|
 106 
 107 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
 108 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
 109 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
 110 // Windows runs out of register args here
 111 #ifdef _WIN64
 112 REGISTER_DECLARATION(Register, j_rarg3, rdi);
 113 REGISTER_DECLARATION(Register, j_rarg4, rsi);
 114 #else
 115 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
 116 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
 117 #endif /* _WIN64 */
 118 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
 119 
 120 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
 121 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
 122 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
 123 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
 124 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
 125 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
 126 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
 127 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
 128 
 129 REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
 130 REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile
 131 
 132 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
 133 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
 134 
 135 #else
 136 // rscratch1 will apear in 32bit code that is dead but of course must compile
 137 // Using noreg ensures if the dead code is incorrectly live and executed it
 138 // will cause an assertion failure
 139 #define rscratch1 noreg
 140 #define rscratch2 noreg
 141 
 142 #endif // _LP64
 143 
 144 // JSR 292
 145 // On x86, the SP does not have to be saved when invoking method handle intrinsics
 146 // or compiled lambda forms. We indicate that by setting rbp_mh_SP_save to noreg.
 147 REGISTER_DECLARATION(Register, rbp_mh_SP_save, noreg);
 148 
 149 // Address is an abstraction used to represent a memory location
 150 // using any of the amd64 addressing modes with one object.
 151 //
 152 // Note: A register location is represented via a Register, not
 153 //       via an address for efficiency & simplicity reasons.
 154 
 155 class ArrayAddress;
 156 
 157 class Address VALUE_OBJ_CLASS_SPEC {
 158  public:
 159   enum ScaleFactor {
 160     no_scale = -1,
 161     times_1  =  0,
 162     times_2  =  1,
 163     times_4  =  2,
 164     times_8  =  3,
 165     times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
 166   };
 167   static ScaleFactor times(int size) {
 168     assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
 169     if (size == 8)  return times_8;
 170     if (size == 4)  return times_4;
 171     if (size == 2)  return times_2;
 172     return times_1;
 173   }
 174   static int scale_size(ScaleFactor scale) {
 175     assert(scale != no_scale, "");
 176     assert(((1 << (int)times_1) == 1 &&
 177             (1 << (int)times_2) == 2 &&
 178             (1 << (int)times_4) == 4 &&
 179             (1 << (int)times_8) == 8), "");
 180     return (1 << (int)scale);
 181   }
 182 
 183  private:
 184   Register         _base;
 185   Register         _index;
 186   ScaleFactor      _scale;
 187   int              _disp;
 188   RelocationHolder _rspec;
 189 
 190   // Easily misused constructors make them private
 191   // %%% can we make these go away?
 192   NOT_LP64(Address(address loc, RelocationHolder spec);)
 193   Address(int disp, address loc, relocInfo::relocType rtype);
 194   Address(int disp, address loc, RelocationHolder spec);
 195 
 196  public:
 197 
 198  int disp() { return _disp; }
 199   // creation
 200   Address()
 201     : _base(noreg),
 202       _index(noreg),
 203       _scale(no_scale),
 204       _disp(0) {
 205   }
 206 
 207   // No default displacement otherwise Register can be implicitly
 208   // converted to 0(Register) which is quite a different animal.
 209 
 210   Address(Register base, int disp)
 211     : _base(base),
 212       _index(noreg),
 213       _scale(no_scale),
 214       _disp(disp) {
 215   }
 216 
 217   Address(Register base, Register index, ScaleFactor scale, int disp = 0)
 218     : _base (base),
 219       _index(index),
 220       _scale(scale),
 221       _disp (disp) {
 222     assert(!index->is_valid() == (scale == Address::no_scale),
 223            "inconsistent address");
 224   }
 225 
 226   Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
 227     : _base (base),
 228       _index(index.register_or_noreg()),
 229       _scale(scale),
 230       _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
 231     if (!index.is_register())  scale = Address::no_scale;
 232     assert(!_index->is_valid() == (scale == Address::no_scale),
 233            "inconsistent address");
 234   }
 235 
 236   Address plus_disp(int disp) const {
 237     Address a = (*this);
 238     a._disp += disp;
 239     return a;
 240   }
 241   Address plus_disp(RegisterOrConstant disp, ScaleFactor scale = times_1) const {
 242     Address a = (*this);
 243     a._disp += disp.constant_or_zero() * scale_size(scale);
 244     if (disp.is_register()) {
 245       assert(!a.index()->is_valid(), "competing indexes");
 246       a._index = disp.as_register();
 247       a._scale = scale;
 248     }
 249     return a;
 250   }
 251   bool is_same_address(Address a) const {
 252     // disregard _rspec
 253     return _base == a._base && _disp == a._disp && _index == a._index && _scale == a._scale;
 254   }
 255 
 256   // The following two overloads are used in connection with the
 257   // ByteSize type (see sizes.hpp).  They simplify the use of
 258   // ByteSize'd arguments in assembly code. Note that their equivalent
 259   // for the optimized build are the member functions with int disp
 260   // argument since ByteSize is mapped to an int type in that case.
 261   //
 262   // Note: DO NOT introduce similar overloaded functions for WordSize
 263   // arguments as in the optimized mode, both ByteSize and WordSize
 264   // are mapped to the same type and thus the compiler cannot make a
 265   // distinction anymore (=> compiler errors).
 266 
 267 #ifdef ASSERT
 268   Address(Register base, ByteSize disp)
 269     : _base(base),
 270       _index(noreg),
 271       _scale(no_scale),
 272       _disp(in_bytes(disp)) {
 273   }
 274 
 275   Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
 276     : _base(base),
 277       _index(index),
 278       _scale(scale),
 279       _disp(in_bytes(disp)) {
 280     assert(!index->is_valid() == (scale == Address::no_scale),
 281            "inconsistent address");
 282   }
 283 
 284   Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
 285     : _base (base),
 286       _index(index.register_or_noreg()),
 287       _scale(scale),
 288       _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
 289     if (!index.is_register())  scale = Address::no_scale;
 290     assert(!_index->is_valid() == (scale == Address::no_scale),
 291            "inconsistent address");
 292   }
 293 
 294 #endif // ASSERT
 295 
 296   // accessors
 297   bool        uses(Register reg) const { return _base == reg || _index == reg; }
 298   Register    base()             const { return _base;  }
 299   Register    index()            const { return _index; }
 300   ScaleFactor scale()            const { return _scale; }
 301   int         disp()             const { return _disp;  }
 302 
 303   // Convert the raw encoding form into the form expected by the constructor for
 304   // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 305   // that to noreg for the Address constructor.
 306   static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc);
 307 
 308   static Address make_array(ArrayAddress);
 309 
 310  private:
 311   bool base_needs_rex() const {
 312     return _base != noreg && _base->encoding() >= 8;
 313   }
 314 
 315   bool index_needs_rex() const {
 316     return _index != noreg &&_index->encoding() >= 8;
 317   }
 318 
 319   relocInfo::relocType reloc() const { return _rspec.type(); }
 320 
 321   friend class Assembler;
 322   friend class MacroAssembler;
 323   friend class LIR_Assembler; // base/index/scale/disp
 324 };
 325 
 326 //
 327 // AddressLiteral has been split out from Address because operands of this type
 328 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
 329 // the few instructions that need to deal with address literals are unique and the
 330 // MacroAssembler does not have to implement every instruction in the Assembler
 331 // in order to search for address literals that may need special handling depending
 332 // on the instruction and the platform. As small step on the way to merging i486/amd64
 333 // directories.
 334 //
 335 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
 336   friend class ArrayAddress;
 337   RelocationHolder _rspec;
 338   // Typically we use AddressLiterals we want to use their rval
 339   // However in some situations we want the lval (effect address) of the item.
 340   // We provide a special factory for making those lvals.
 341   bool _is_lval;
 342 
 343   // If the target is far we'll need to load the ea of this to
 344   // a register to reach it. Otherwise if near we can do rip
 345   // relative addressing.
 346 
 347   address          _target;
 348 
 349  protected:
 350   // creation
 351   AddressLiteral()
 352     : _is_lval(false),
 353       _target(NULL)
 354   {}
 355 
 356   public:
 357 
 358 
 359   AddressLiteral(address target, relocInfo::relocType rtype);
 360 
 361   AddressLiteral(address target, RelocationHolder const& rspec)
 362     : _rspec(rspec),
 363       _is_lval(false),
 364       _target(target)
 365   {}
 366 
 367   AddressLiteral addr() {
 368     AddressLiteral ret = *this;
 369     ret._is_lval = true;
 370     return ret;
 371   }
 372 
 373 
 374  private:
 375 
 376   address target() { return _target; }
 377   bool is_lval() { return _is_lval; }
 378 
 379   relocInfo::relocType reloc() const { return _rspec.type(); }
 380   const RelocationHolder& rspec() const { return _rspec; }
 381 
 382   friend class Assembler;
 383   friend class MacroAssembler;
 384   friend class Address;
 385   friend class LIR_Assembler;
 386 };
 387 
 388 // Convience classes
 389 class RuntimeAddress: public AddressLiteral {
 390 
 391   public:
 392 
 393   RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
 394 
 395 };
 396 
 397 class ExternalAddress: public AddressLiteral {
 398  private:
 399   static relocInfo::relocType reloc_for_target(address target) {
 400     // Sometimes ExternalAddress is used for values which aren't
 401     // exactly addresses, like the card table base.
 402     // external_word_type can't be used for values in the first page
 403     // so just skip the reloc in that case.
 404     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 405   }
 406 
 407  public:
 408 
 409   ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(target)) {}
 410 
 411 };
 412 
 413 class InternalAddress: public AddressLiteral {
 414 
 415   public:
 416 
 417   InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
 418 
 419 };
 420 
 421 // x86 can do array addressing as a single operation since disp can be an absolute
 422 // address amd64 can't. We create a class that expresses the concept but does extra
 423 // magic on amd64 to get the final result
 424 
 425 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
 426   private:
 427 
 428   AddressLiteral _base;
 429   Address        _index;
 430 
 431   public:
 432 
 433   ArrayAddress() {};
 434   ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
 435   AddressLiteral base() { return _base; }
 436   Address index() { return _index; }
 437 
 438 };
 439 
 440 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
 441 
 442 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
 443 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
 444 // is what you get. The Assembler is generating code into a CodeBuffer.
 445 
 446 class Assembler : public AbstractAssembler  {
 447   friend class AbstractAssembler; // for the non-virtual hack
 448   friend class LIR_Assembler; // as_Address()
 449   friend class StubGenerator;
 450 
 451  public:
 452   enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
 453     zero          = 0x4,
 454     notZero       = 0x5,
 455     equal         = 0x4,
 456     notEqual      = 0x5,
 457     less          = 0xc,
 458     lessEqual     = 0xe,
 459     greater       = 0xf,
 460     greaterEqual  = 0xd,
 461     below         = 0x2,
 462     belowEqual    = 0x6,
 463     above         = 0x7,
 464     aboveEqual    = 0x3,
 465     overflow      = 0x0,
 466     noOverflow    = 0x1,
 467     carrySet      = 0x2,
 468     carryClear    = 0x3,
 469     negative      = 0x8,
 470     positive      = 0x9,
 471     parity        = 0xa,
 472     noParity      = 0xb
 473   };
 474 
 475   enum Prefix {
 476     // segment overrides
 477     CS_segment = 0x2e,
 478     SS_segment = 0x36,
 479     DS_segment = 0x3e,
 480     ES_segment = 0x26,
 481     FS_segment = 0x64,
 482     GS_segment = 0x65,
 483 
 484     REX        = 0x40,
 485 
 486     REX_B      = 0x41,
 487     REX_X      = 0x42,
 488     REX_XB     = 0x43,
 489     REX_R      = 0x44,
 490     REX_RB     = 0x45,
 491     REX_RX     = 0x46,
 492     REX_RXB    = 0x47,
 493 
 494     REX_W      = 0x48,
 495 
 496     REX_WB     = 0x49,
 497     REX_WX     = 0x4A,
 498     REX_WXB    = 0x4B,
 499     REX_WR     = 0x4C,
 500     REX_WRB    = 0x4D,
 501     REX_WRX    = 0x4E,
 502     REX_WRXB   = 0x4F,
 503 
 504     VEX_3bytes = 0xC4,
 505     VEX_2bytes = 0xC5
 506   };
 507 
 508   enum VexPrefix {
 509     VEX_B = 0x20,
 510     VEX_X = 0x40,
 511     VEX_R = 0x80,
 512     VEX_W = 0x80
 513   };
 514 
 515   enum VexSimdPrefix {
 516     VEX_SIMD_NONE = 0x0,
 517     VEX_SIMD_66   = 0x1,
 518     VEX_SIMD_F3   = 0x2,
 519     VEX_SIMD_F2   = 0x3
 520   };
 521 
 522   enum VexOpcode {
 523     VEX_OPCODE_NONE  = 0x0,
 524     VEX_OPCODE_0F    = 0x1,
 525     VEX_OPCODE_0F_38 = 0x2,
 526     VEX_OPCODE_0F_3A = 0x3
 527   };
 528 
 529   enum WhichOperand {
 530     // input to locate_operand, and format code for relocations
 531     imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
 532     disp32_operand = 1,          // embedded 32-bit displacement or address
 533     call32_operand = 2,          // embedded 32-bit self-relative displacement
 534 #ifndef _LP64
 535     _WhichOperand_limit = 3
 536 #else
 537      narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
 538     _WhichOperand_limit = 4
 539 #endif
 540   };
 541 
 542 
 543 
 544   // NOTE: The general philopsophy of the declarations here is that 64bit versions
 545   // of instructions are freely declared without the need for wrapping them an ifdef.
 546   // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
 547   // In the .cpp file the implementations are wrapped so that they are dropped out
 548   // of the resulting jvm. This is done mostly to keep the footprint of MINIMAL
 549   // to the size it was prior to merging up the 32bit and 64bit assemblers.
 550   //
 551   // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
 552   // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
 553 
 554 private:
 555 
 556 
 557   // 64bit prefixes
 558   int prefix_and_encode(int reg_enc, bool byteinst = false);
 559   int prefixq_and_encode(int reg_enc);
 560 
 561   int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
 562   int prefixq_and_encode(int dst_enc, int src_enc);
 563 
 564   void prefix(Register reg);
 565   void prefix(Address adr);
 566   void prefixq(Address adr);
 567 
 568   void prefix(Address adr, Register reg,  bool byteinst = false);
 569   void prefix(Address adr, XMMRegister reg);
 570   void prefixq(Address adr, Register reg);
 571   void prefixq(Address adr, XMMRegister reg);
 572 
 573   void prefetch_prefix(Address src);
 574 
 575   void rex_prefix(Address adr, XMMRegister xreg,
 576                   VexSimdPrefix pre, VexOpcode opc, bool rex_w);
 577   int  rex_prefix_and_encode(int dst_enc, int src_enc,
 578                              VexSimdPrefix pre, VexOpcode opc, bool rex_w);
 579 
 580   void vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w,
 581                   int nds_enc, VexSimdPrefix pre, VexOpcode opc,
 582                   bool vector256);
 583 
 584   void vex_prefix(Address adr, int nds_enc, int xreg_enc,
 585                   VexSimdPrefix pre, VexOpcode opc,
 586                   bool vex_w, bool vector256);
 587 
 588   void vex_prefix(XMMRegister dst, XMMRegister nds, Address src,
 589                   VexSimdPrefix pre, bool vector256 = false) {
 590     int dst_enc = dst->encoding();
 591     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
 592     vex_prefix(src, nds_enc, dst_enc, pre, VEX_OPCODE_0F, false, vector256);
 593   }
 594 
 595   void vex_prefix_0F38(Register dst, Register nds, Address src) {
 596     bool vex_w = false;
 597     bool vector256 = false;
 598     vex_prefix(src, nds->encoding(), dst->encoding(),
 599                VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w, vector256);
 600   }
 601 
 602   void vex_prefix_0F38_q(Register dst, Register nds, Address src) {
 603     bool vex_w = true;
 604     bool vector256 = false;
 605     vex_prefix(src, nds->encoding(), dst->encoding(),
 606                VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w, vector256);
 607   }
 608   int  vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc,
 609                              VexSimdPrefix pre, VexOpcode opc,
 610                              bool vex_w, bool vector256);
 611 
 612   int  vex_prefix_0F38_and_encode(Register dst, Register nds, Register src) {
 613     bool vex_w = false;
 614     bool vector256 = false;
 615     return vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(),
 616                                  VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w, vector256);
 617   }
 618   int  vex_prefix_0F38_and_encode_q(Register dst, Register nds, Register src) {
 619     bool vex_w = true;
 620     bool vector256 = false;
 621     return vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(),
 622                                  VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w, vector256);
 623   }
 624   int  vex_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
 625                              VexSimdPrefix pre, bool vector256 = false,
 626                              VexOpcode opc = VEX_OPCODE_0F) {
 627     int src_enc = src->encoding();
 628     int dst_enc = dst->encoding();
 629     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
 630     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, false, vector256);
 631   }
 632 
 633   void simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr,
 634                    VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
 635                    bool rex_w = false, bool vector256 = false);
 636 
 637   void simd_prefix(XMMRegister dst, Address src,
 638                    VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
 639     simd_prefix(dst, xnoreg, src, pre, opc);
 640   }
 641 
 642   void simd_prefix(Address dst, XMMRegister src, VexSimdPrefix pre) {
 643     simd_prefix(src, dst, pre);
 644   }
 645   void simd_prefix_q(XMMRegister dst, XMMRegister nds, Address src,
 646                      VexSimdPrefix pre) {
 647     bool rex_w = true;
 648     simd_prefix(dst, nds, src, pre, VEX_OPCODE_0F, rex_w);
 649   }
 650 
 651   int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
 652                              VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
 653                              bool rex_w = false, bool vector256 = false);
 654 
 655   // Move/convert 32-bit integer value.
 656   int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, Register src,
 657                              VexSimdPrefix pre) {
 658     // It is OK to cast from Register to XMMRegister to pass argument here
 659     // since only encoding is used in simd_prefix_and_encode() and number of
 660     // Gen and Xmm registers are the same.
 661     return simd_prefix_and_encode(dst, nds, as_XMMRegister(src->encoding()), pre);
 662   }
 663   int simd_prefix_and_encode(XMMRegister dst, Register src, VexSimdPrefix pre) {
 664     return simd_prefix_and_encode(dst, xnoreg, src, pre);
 665   }
 666   int simd_prefix_and_encode(Register dst, XMMRegister src,
 667                              VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
 668     return simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, pre, opc);
 669   }
 670 
 671   // Move/convert 64-bit integer value.
 672   int simd_prefix_and_encode_q(XMMRegister dst, XMMRegister nds, Register src,
 673                                VexSimdPrefix pre) {
 674     bool rex_w = true;
 675     return simd_prefix_and_encode(dst, nds, as_XMMRegister(src->encoding()), pre, VEX_OPCODE_0F, rex_w);
 676   }
 677   int simd_prefix_and_encode_q(XMMRegister dst, Register src, VexSimdPrefix pre) {
 678     return simd_prefix_and_encode_q(dst, xnoreg, src, pre);
 679   }
 680   int simd_prefix_and_encode_q(Register dst, XMMRegister src,
 681                              VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
 682     bool rex_w = true;
 683     return simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, pre, opc, rex_w);
 684   }
 685 
 686   // Helper functions for groups of instructions
 687   void emit_arith_b(int op1, int op2, Register dst, int imm8);
 688 
 689   void emit_arith(int op1, int op2, Register dst, int32_t imm32);
 690   // Force generation of a 4 byte immediate value even if it fits into 8bit
 691   void emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32);
 692   void emit_arith(int op1, int op2, Register dst, Register src);
 693 
 694   void emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre);
 695   void emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre);
 696   void emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre);
 697   void emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre);
 698   void emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
 699                       Address src, VexSimdPrefix pre, bool vector256);
 700   void emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
 701                       XMMRegister src, VexSimdPrefix pre, bool vector256);
 702 
 703   void emit_operand(Register reg,
 704                     Register base, Register index, Address::ScaleFactor scale,
 705                     int disp,
 706                     RelocationHolder const& rspec,
 707                     int rip_relative_correction = 0);
 708 
 709   void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
 710 
 711   // operands that only take the original 32bit registers
 712   void emit_operand32(Register reg, Address adr);
 713 
 714   void emit_operand(XMMRegister reg,
 715                     Register base, Register index, Address::ScaleFactor scale,
 716                     int disp,
 717                     RelocationHolder const& rspec);
 718 
 719   void emit_operand(XMMRegister reg, Address adr);
 720 
 721   void emit_operand(MMXRegister reg, Address adr);
 722 
 723   // workaround gcc (3.2.1-7) bug
 724   void emit_operand(Address adr, MMXRegister reg);
 725 
 726 
 727   // Immediate-to-memory forms
 728   void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
 729 
 730   void emit_farith(int b1, int b2, int i);
 731 
 732 
 733  protected:
 734   #ifdef ASSERT
 735   void check_relocation(RelocationHolder const& rspec, int format);
 736   #endif
 737 
 738   void emit_data(jint data, relocInfo::relocType    rtype, int format);
 739   void emit_data(jint data, RelocationHolder const& rspec, int format);
 740   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
 741   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
 742 
 743   bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
 744 
 745   // These are all easily abused and hence protected
 746 
 747   // 32BIT ONLY SECTION
 748 #ifndef _LP64
 749   // Make these disappear in 64bit mode since they would never be correct
 750   void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
 751   void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
 752 
 753   void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
 754   void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY
 755 
 756   void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
 757 #else
 758   // 64BIT ONLY SECTION
 759   void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
 760 
 761   void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
 762   void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
 763 
 764   void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
 765   void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
 766 #endif // _LP64
 767 
 768   // These are unique in that we are ensured by the caller that the 32bit
 769   // relative in these instructions will always be able to reach the potentially
 770   // 64bit address described by entry. Since they can take a 64bit address they
 771   // don't have the 32 suffix like the other instructions in this class.
 772 
 773   void call_literal(address entry, RelocationHolder const& rspec);
 774   void jmp_literal(address entry, RelocationHolder const& rspec);
 775 
 776   // Avoid using directly section
 777   // Instructions in this section are actually usable by anyone without danger
 778   // of failure but have performance issues that are addressed my enhanced
 779   // instructions which will do the proper thing base on the particular cpu.
 780   // We protect them because we don't trust you...
 781 
 782   // Don't use next inc() and dec() methods directly. INC & DEC instructions
 783   // could cause a partial flag stall since they don't set CF flag.
 784   // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
 785   // which call inc() & dec() or add() & sub() in accordance with
 786   // the product flag UseIncDec value.
 787 
 788   void decl(Register dst);
 789   void decl(Address dst);
 790   void decq(Register dst);
 791   void decq(Address dst);
 792 
 793   void incl(Register dst);
 794   void incl(Address dst);
 795   void incq(Register dst);
 796   void incq(Address dst);
 797 
 798   // New cpus require use of movsd and movss to avoid partial register stall
 799   // when loading from memory. But for old Opteron use movlpd instead of movsd.
 800   // The selection is done in MacroAssembler::movdbl() and movflt().
 801 
 802   // Move Scalar Single-Precision Floating-Point Values
 803   void movss(XMMRegister dst, Address src);
 804   void movss(XMMRegister dst, XMMRegister src);
 805   void movss(Address dst, XMMRegister src);
 806 
 807   // Move Scalar Double-Precision Floating-Point Values
 808   void movsd(XMMRegister dst, Address src);
 809   void movsd(XMMRegister dst, XMMRegister src);
 810   void movsd(Address dst, XMMRegister src);
 811   void movlpd(XMMRegister dst, Address src);
 812 
 813   // New cpus require use of movaps and movapd to avoid partial register stall
 814   // when moving between registers.
 815   void movaps(XMMRegister dst, XMMRegister src);
 816   void movapd(XMMRegister dst, XMMRegister src);
 817 
 818   // End avoid using directly
 819 
 820 
 821   // Instruction prefixes
 822   void prefix(Prefix p);
 823 
 824   public:
 825 
 826   // Creation
 827   Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
 828 
 829   // Decoding
 830   static address locate_operand(address inst, WhichOperand which);
 831   static address locate_next_instruction(address inst);
 832 
 833   // Utilities
 834   static bool is_polling_page_far() NOT_LP64({ return false;});
 835 
 836   // Generic instructions
 837   // Does 32bit or 64bit as needed for the platform. In some sense these
 838   // belong in macro assembler but there is no need for both varieties to exist
 839 
 840   void lea(Register dst, Address src);
 841 
 842   void mov(Register dst, Register src);
 843 
 844   void pusha();
 845   void popa();
 846 
 847   void pushf();
 848   void popf();
 849 
 850   void push(int32_t imm32);
 851 
 852   void push(Register src);
 853 
 854   void pop(Register dst);
 855 
 856   // These are dummies to prevent surprise implicit conversions to Register
 857   void push(void* v);
 858   void pop(void* v);
 859 
 860   // These do register sized moves/scans
 861   void rep_mov();
 862   void rep_stos();
 863   void rep_stosb();
 864   void repne_scan();
 865 #ifdef _LP64
 866   void repne_scanl();
 867 #endif
 868 
 869   // Vanilla instructions in lexical order
 870 
 871   void adcl(Address dst, int32_t imm32);
 872   void adcl(Address dst, Register src);
 873   void adcl(Register dst, int32_t imm32);
 874   void adcl(Register dst, Address src);
 875   void adcl(Register dst, Register src);
 876 
 877   void adcq(Register dst, int32_t imm32);
 878   void adcq(Register dst, Address src);
 879   void adcq(Register dst, Register src);
 880 
 881   void addl(Address dst, int32_t imm32);
 882   void addl(Address dst, Register src);
 883   void addl(Register dst, int32_t imm32);
 884   void addl(Register dst, Address src);
 885   void addl(Register dst, Register src);
 886 
 887   void addq(Address dst, int32_t imm32);
 888   void addq(Address dst, Register src);
 889   void addq(Register dst, int32_t imm32);
 890   void addq(Register dst, Address src);
 891   void addq(Register dst, Register src);
 892 
 893 #ifdef _LP64
 894  //Add Unsigned Integers with Carry Flag
 895   void adcxq(Register dst, Register src);
 896 
 897  //Add Unsigned Integers with Overflow Flag
 898   void adoxq(Register dst, Register src);
 899 #endif
 900 
 901   void addr_nop_4();
 902   void addr_nop_5();
 903   void addr_nop_7();
 904   void addr_nop_8();
 905 
 906   // Add Scalar Double-Precision Floating-Point Values
 907   void addsd(XMMRegister dst, Address src);
 908   void addsd(XMMRegister dst, XMMRegister src);
 909 
 910   // Add Scalar Single-Precision Floating-Point Values
 911   void addss(XMMRegister dst, Address src);
 912   void addss(XMMRegister dst, XMMRegister src);
 913 
 914   // AES instructions
 915   void aesdec(XMMRegister dst, Address src);
 916   void aesdec(XMMRegister dst, XMMRegister src);
 917   void aesdeclast(XMMRegister dst, Address src);
 918   void aesdeclast(XMMRegister dst, XMMRegister src);
 919   void aesenc(XMMRegister dst, Address src);
 920   void aesenc(XMMRegister dst, XMMRegister src);
 921   void aesenclast(XMMRegister dst, Address src);
 922   void aesenclast(XMMRegister dst, XMMRegister src);
 923 
 924 
 925   void andl(Address  dst, int32_t imm32);
 926   void andl(Register dst, int32_t imm32);
 927   void andl(Register dst, Address src);
 928   void andl(Register dst, Register src);
 929 
 930   void andq(Address  dst, int32_t imm32);
 931   void andq(Register dst, int32_t imm32);
 932   void andq(Register dst, Address src);
 933   void andq(Register dst, Register src);
 934 
 935   // BMI instructions
 936   void andnl(Register dst, Register src1, Register src2);
 937   void andnl(Register dst, Register src1, Address src2);
 938   void andnq(Register dst, Register src1, Register src2);
 939   void andnq(Register dst, Register src1, Address src2);
 940 
 941   void blsil(Register dst, Register src);
 942   void blsil(Register dst, Address src);
 943   void blsiq(Register dst, Register src);
 944   void blsiq(Register dst, Address src);
 945 
 946   void blsmskl(Register dst, Register src);
 947   void blsmskl(Register dst, Address src);
 948   void blsmskq(Register dst, Register src);
 949   void blsmskq(Register dst, Address src);
 950 
 951   void blsrl(Register dst, Register src);
 952   void blsrl(Register dst, Address src);
 953   void blsrq(Register dst, Register src);
 954   void blsrq(Register dst, Address src);
 955 
 956   void bsfl(Register dst, Register src);
 957   void bsrl(Register dst, Register src);
 958 
 959 #ifdef _LP64
 960   void bsfq(Register dst, Register src);
 961   void bsrq(Register dst, Register src);
 962 #endif
 963 
 964   void bswapl(Register reg);
 965 
 966   void bswapq(Register reg);
 967 
 968   void call(Label& L, relocInfo::relocType rtype);
 969   void call(Register reg);  // push pc; pc <- reg
 970   void call(Address adr);   // push pc; pc <- adr
 971 
 972   void cdql();
 973 
 974   void cdqq();
 975 
 976   void cld();
 977 
 978   void clflush(Address adr);
 979 
 980   void cmovl(Condition cc, Register dst, Register src);
 981   void cmovl(Condition cc, Register dst, Address src);
 982 
 983   void cmovq(Condition cc, Register dst, Register src);
 984   void cmovq(Condition cc, Register dst, Address src);
 985 
 986 
 987   void cmpb(Address dst, int imm8);
 988 
 989   void cmpl(Address dst, int32_t imm32);
 990 
 991   void cmpl(Register dst, int32_t imm32);
 992   void cmpl(Register dst, Register src);
 993   void cmpl(Register dst, Address src);
 994 
 995   void cmpq(Address dst, int32_t imm32);
 996   void cmpq(Address dst, Register src);
 997 
 998   void cmpq(Register dst, int32_t imm32);
 999   void cmpq(Register dst, Register src);
1000   void cmpq(Register dst, Address src);
1001 
1002   // these are dummies used to catch attempting to convert NULL to Register
1003   void cmpl(Register dst, void* junk); // dummy
1004   void cmpq(Register dst, void* junk); // dummy
1005 
1006   void cmpw(Address dst, int imm16);
1007 
1008   void cmpxchg8 (Address adr);
1009 
1010   void cmpxchgl(Register reg, Address adr);
1011 
1012   void cmpxchgq(Register reg, Address adr);
1013 
1014   // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
1015   void comisd(XMMRegister dst, Address src);
1016   void comisd(XMMRegister dst, XMMRegister src);
1017 
1018   // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
1019   void comiss(XMMRegister dst, Address src);
1020   void comiss(XMMRegister dst, XMMRegister src);
1021 
1022   // Identify processor type and features
1023   void cpuid();
1024 
1025   // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
1026   void cvtsd2ss(XMMRegister dst, XMMRegister src);
1027   void cvtsd2ss(XMMRegister dst, Address src);
1028 
1029   // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
1030   void cvtsi2sdl(XMMRegister dst, Register src);
1031   void cvtsi2sdl(XMMRegister dst, Address src);
1032   void cvtsi2sdq(XMMRegister dst, Register src);
1033   void cvtsi2sdq(XMMRegister dst, Address src);
1034 
1035   // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
1036   void cvtsi2ssl(XMMRegister dst, Register src);
1037   void cvtsi2ssl(XMMRegister dst, Address src);
1038   void cvtsi2ssq(XMMRegister dst, Register src);
1039   void cvtsi2ssq(XMMRegister dst, Address src);
1040 
1041   // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
1042   void cvtdq2pd(XMMRegister dst, XMMRegister src);
1043 
1044   // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
1045   void cvtdq2ps(XMMRegister dst, XMMRegister src);
1046 
1047   // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
1048   void cvtss2sd(XMMRegister dst, XMMRegister src);
1049   void cvtss2sd(XMMRegister dst, Address src);
1050 
1051   // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
1052   void cvttsd2sil(Register dst, Address src);
1053   void cvttsd2sil(Register dst, XMMRegister src);
1054   void cvttsd2siq(Register dst, XMMRegister src);
1055 
1056   // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
1057   void cvttss2sil(Register dst, XMMRegister src);
1058   void cvttss2siq(Register dst, XMMRegister src);
1059 
1060   // Divide Scalar Double-Precision Floating-Point Values
1061   void divsd(XMMRegister dst, Address src);
1062   void divsd(XMMRegister dst, XMMRegister src);
1063 
1064   // Divide Scalar Single-Precision Floating-Point Values
1065   void divss(XMMRegister dst, Address src);
1066   void divss(XMMRegister dst, XMMRegister src);
1067 
1068   void emms();
1069 
1070   void fabs();
1071 
1072   void fadd(int i);
1073 
1074   void fadd_d(Address src);
1075   void fadd_s(Address src);
1076 
1077   // "Alternate" versions of x87 instructions place result down in FPU
1078   // stack instead of on TOS
1079 
1080   void fadda(int i); // "alternate" fadd
1081   void faddp(int i = 1);
1082 
1083   void fchs();
1084 
1085   void fcom(int i);
1086 
1087   void fcomp(int i = 1);
1088   void fcomp_d(Address src);
1089   void fcomp_s(Address src);
1090 
1091   void fcompp();
1092 
1093   void fcos();
1094 
1095   void fdecstp();
1096 
1097   void fdiv(int i);
1098   void fdiv_d(Address src);
1099   void fdivr_s(Address src);
1100   void fdiva(int i);  // "alternate" fdiv
1101   void fdivp(int i = 1);
1102 
1103   void fdivr(int i);
1104   void fdivr_d(Address src);
1105   void fdiv_s(Address src);
1106 
1107   void fdivra(int i); // "alternate" reversed fdiv
1108 
1109   void fdivrp(int i = 1);
1110 
1111   void ffree(int i = 0);
1112 
1113   void fild_d(Address adr);
1114   void fild_s(Address adr);
1115 
1116   void fincstp();
1117 
1118   void finit();
1119 
1120   void fist_s (Address adr);
1121   void fistp_d(Address adr);
1122   void fistp_s(Address adr);
1123 
1124   void fld1();
1125 
1126   void fld_d(Address adr);
1127   void fld_s(Address adr);
1128   void fld_s(int index);
1129   void fld_x(Address adr);  // extended-precision (80-bit) format
1130 
1131   void fldcw(Address src);
1132 
1133   void fldenv(Address src);
1134 
1135   void fldlg2();
1136 
1137   void fldln2();
1138 
1139   void fldz();
1140 
1141   void flog();
1142   void flog10();
1143 
1144   void fmul(int i);
1145 
1146   void fmul_d(Address src);
1147   void fmul_s(Address src);
1148 
1149   void fmula(int i);  // "alternate" fmul
1150 
1151   void fmulp(int i = 1);
1152 
1153   void fnsave(Address dst);
1154 
1155   void fnstcw(Address src);
1156 
1157   void fnstsw_ax();
1158 
1159   void fprem();
1160   void fprem1();
1161 
1162   void frstor(Address src);
1163 
1164   void fsin();
1165 
1166   void fsqrt();
1167 
1168   void fst_d(Address adr);
1169   void fst_s(Address adr);
1170 
1171   void fstp_d(Address adr);
1172   void fstp_d(int index);
1173   void fstp_s(Address adr);
1174   void fstp_x(Address adr); // extended-precision (80-bit) format
1175 
1176   void fsub(int i);
1177   void fsub_d(Address src);
1178   void fsub_s(Address src);
1179 
1180   void fsuba(int i);  // "alternate" fsub
1181 
1182   void fsubp(int i = 1);
1183 
1184   void fsubr(int i);
1185   void fsubr_d(Address src);
1186   void fsubr_s(Address src);
1187 
1188   void fsubra(int i); // "alternate" reversed fsub
1189 
1190   void fsubrp(int i = 1);
1191 
1192   void ftan();
1193 
1194   void ftst();
1195 
1196   void fucomi(int i = 1);
1197   void fucomip(int i = 1);
1198 
1199   void fwait();
1200 
1201   void fxch(int i = 1);
1202 
1203   void fxrstor(Address src);
1204 
1205   void fxsave(Address dst);
1206 
1207   void fyl2x();
1208   void frndint();
1209   void f2xm1();
1210   void fldl2e();
1211 
1212   void hlt();
1213 
1214   void idivl(Register src);
1215   void divl(Register src); // Unsigned division
1216 
1217 #ifdef _LP64
1218   void idivq(Register src);
1219 #endif
1220 
1221   void imull(Register dst, Register src);
1222   void imull(Register dst, Register src, int value);
1223   void imull(Register dst, Address src);
1224 
1225 #ifdef _LP64
1226   void imulq(Register dst, Register src);
1227   void imulq(Register dst, Register src, int value);
1228   void imulq(Register dst, Address src);
1229 #endif
1230 
1231   // jcc is the generic conditional branch generator to run-
1232   // time routines, jcc is used for branches to labels. jcc
1233   // takes a branch opcode (cc) and a label (L) and generates
1234   // either a backward branch or a forward branch and links it
1235   // to the label fixup chain. Usage:
1236   //
1237   // Label L;      // unbound label
1238   // jcc(cc, L);   // forward branch to unbound label
1239   // bind(L);      // bind label to the current pc
1240   // jcc(cc, L);   // backward branch to bound label
1241   // bind(L);      // illegal: a label may be bound only once
1242   //
1243   // Note: The same Label can be used for forward and backward branches
1244   // but it may be bound only once.
1245 
1246   void jcc(Condition cc, Label& L, bool maybe_short = true);
1247 
1248   // Conditional jump to a 8-bit offset to L.
1249   // WARNING: be very careful using this for forward jumps.  If the label is
1250   // not bound within an 8-bit offset of this instruction, a run-time error
1251   // will occur.
1252   void jccb(Condition cc, Label& L);
1253 
1254   void jmp(Address entry);    // pc <- entry
1255 
1256   // Label operations & relative jumps (PPUM Appendix D)
1257   void jmp(Label& L, bool maybe_short = true);   // unconditional jump to L
1258 
1259   void jmp(Register entry); // pc <- entry
1260 
1261   // Unconditional 8-bit offset jump to L.
1262   // WARNING: be very careful using this for forward jumps.  If the label is
1263   // not bound within an 8-bit offset of this instruction, a run-time error
1264   // will occur.
1265   void jmpb(Label& L);
1266 
1267   void ldmxcsr( Address src );
1268 
1269   void leal(Register dst, Address src);
1270 
1271   void leaq(Register dst, Address src);
1272 
1273   void lfence();
1274 
1275   void lock();
1276 
1277   void lzcntl(Register dst, Register src);
1278 
1279 #ifdef _LP64
1280   void lzcntq(Register dst, Register src);
1281 #endif
1282 
1283   enum Membar_mask_bits {
1284     StoreStore = 1 << 3,
1285     LoadStore  = 1 << 2,
1286     StoreLoad  = 1 << 1,
1287     LoadLoad   = 1 << 0
1288   };
1289 
1290   // Serializes memory and blows flags
1291   void membar(Membar_mask_bits order_constraint) {
1292     if (os::is_MP()) {
1293       // We only have to handle StoreLoad
1294       if (order_constraint & StoreLoad) {
1295         // All usable chips support "locked" instructions which suffice
1296         // as barriers, and are much faster than the alternative of
1297         // using cpuid instruction. We use here a locked add [esp],0.
1298         // This is conveniently otherwise a no-op except for blowing
1299         // flags.
1300         // Any change to this code may need to revisit other places in
1301         // the code where this idiom is used, in particular the
1302         // orderAccess code.
1303         lock();
1304         addl(Address(rsp, 0), 0);// Assert the lock# signal here
1305       }
1306     }
1307   }
1308 
1309   void mfence();
1310 
1311   // Moves
1312 
1313   void mov64(Register dst, int64_t imm64);
1314 
1315   void movb(Address dst, Register src);
1316   void movb(Address dst, int imm8);
1317   void movb(Register dst, Address src);
1318 
1319   void movdl(XMMRegister dst, Register src);
1320   void movdl(Register dst, XMMRegister src);
1321   void movdl(XMMRegister dst, Address src);
1322   void movdl(Address dst, XMMRegister src);
1323 
1324   // Move Double Quadword
1325   void movdq(XMMRegister dst, Register src);
1326   void movdq(Register dst, XMMRegister src);
1327 
1328   // Move Aligned Double Quadword
1329   void movdqa(XMMRegister dst, XMMRegister src);
1330   void movdqa(XMMRegister dst, Address src);
1331 
1332   // Move Unaligned Double Quadword
1333   void movdqu(Address     dst, XMMRegister src);
1334   void movdqu(XMMRegister dst, Address src);
1335   void movdqu(XMMRegister dst, XMMRegister src);
1336 
1337   // Move Unaligned 256bit Vector
1338   void vmovdqu(Address dst, XMMRegister src);
1339   void vmovdqu(XMMRegister dst, Address src);
1340   void vmovdqu(XMMRegister dst, XMMRegister src);
1341 
1342   // Move lower 64bit to high 64bit in 128bit register
1343   void movlhps(XMMRegister dst, XMMRegister src);
1344 
1345   void movl(Register dst, int32_t imm32);
1346   void movl(Address dst, int32_t imm32);
1347   void movl(Register dst, Register src);
1348   void movl(Register dst, Address src);
1349   void movl(Address dst, Register src);
1350 
1351   // These dummies prevent using movl from converting a zero (like NULL) into Register
1352   // by giving the compiler two choices it can't resolve
1353 
1354   void movl(Address  dst, void* junk);
1355   void movl(Register dst, void* junk);
1356 
1357 #ifdef _LP64
1358   void movq(Register dst, Register src);
1359   void movq(Register dst, Address src);
1360   void movq(Address  dst, Register src);
1361 #endif
1362 
1363   void movq(Address     dst, MMXRegister src );
1364   void movq(MMXRegister dst, Address src );
1365 
1366 #ifdef _LP64
1367   // These dummies prevent using movq from converting a zero (like NULL) into Register
1368   // by giving the compiler two choices it can't resolve
1369 
1370   void movq(Address  dst, void* dummy);
1371   void movq(Register dst, void* dummy);
1372 #endif
1373 
1374   // Move Quadword
1375   void movq(Address     dst, XMMRegister src);
1376   void movq(XMMRegister dst, Address src);
1377 
1378   void movsbl(Register dst, Address src);
1379   void movsbl(Register dst, Register src);
1380 
1381 #ifdef _LP64
1382   void movsbq(Register dst, Address src);
1383   void movsbq(Register dst, Register src);
1384 
1385   // Move signed 32bit immediate to 64bit extending sign
1386   void movslq(Address  dst, int32_t imm64);
1387   void movslq(Register dst, int32_t imm64);
1388 
1389   void movslq(Register dst, Address src);
1390   void movslq(Register dst, Register src);
1391   void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
1392 #endif
1393 
1394   void movswl(Register dst, Address src);
1395   void movswl(Register dst, Register src);
1396 
1397 #ifdef _LP64
1398   void movswq(Register dst, Address src);
1399   void movswq(Register dst, Register src);
1400 #endif
1401 
1402   void movw(Address dst, int imm16);
1403   void movw(Register dst, Address src);
1404   void movw(Address dst, Register src);
1405 
1406   void movzbl(Register dst, Address src);
1407   void movzbl(Register dst, Register src);
1408 
1409 #ifdef _LP64
1410   void movzbq(Register dst, Address src);
1411   void movzbq(Register dst, Register src);
1412 #endif
1413 
1414   void movzwl(Register dst, Address src);
1415   void movzwl(Register dst, Register src);
1416 
1417 #ifdef _LP64
1418   void movzwq(Register dst, Address src);
1419   void movzwq(Register dst, Register src);
1420 #endif
1421 
1422   // Unsigned multiply with RAX destination register
1423   void mull(Address src);
1424   void mull(Register src);
1425 
1426 #ifdef _LP64
1427   void mulq(Address src);
1428   void mulq(Register src);
1429   void mulxq(Register dst1, Register dst2, Register src);
1430 #endif
1431 
1432   // Multiply Scalar Double-Precision Floating-Point Values
1433   void mulsd(XMMRegister dst, Address src);
1434   void mulsd(XMMRegister dst, XMMRegister src);
1435 
1436   // Multiply Scalar Single-Precision Floating-Point Values
1437   void mulss(XMMRegister dst, Address src);
1438   void mulss(XMMRegister dst, XMMRegister src);
1439 
1440   void negl(Register dst);
1441 
1442 #ifdef _LP64
1443   void negq(Register dst);
1444 #endif
1445 
1446   void nop(int i = 1);
1447 
1448   void notl(Register dst);
1449 
1450 #ifdef _LP64
1451   void notq(Register dst);
1452 #endif
1453 
1454   void orl(Address dst, int32_t imm32);
1455   void orl(Register dst, int32_t imm32);
1456   void orl(Register dst, Address src);
1457   void orl(Register dst, Register src);
1458 
1459   void orq(Address dst, int32_t imm32);
1460   void orq(Register dst, int32_t imm32);
1461   void orq(Register dst, Address src);
1462   void orq(Register dst, Register src);
1463 
1464   // Pack with unsigned saturation
1465   void packuswb(XMMRegister dst, XMMRegister src);
1466   void packuswb(XMMRegister dst, Address src);
1467   void vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1468 
1469   // Pemutation of 64bit words
1470   void vpermq(XMMRegister dst, XMMRegister src, int imm8, bool vector256);
1471 
1472   void pause();
1473 
1474   // SSE4.2 string instructions
1475   void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
1476   void pcmpestri(XMMRegister xmm1, Address src, int imm8);
1477 
1478   // SSE 4.1 extract
1479   void pextrd(Register dst, XMMRegister src, int imm8);
1480   void pextrq(Register dst, XMMRegister src, int imm8);
1481 
1482   // SSE 4.1 insert
1483   void pinsrd(XMMRegister dst, Register src, int imm8);
1484   void pinsrq(XMMRegister dst, Register src, int imm8);
1485 
1486   // SSE4.1 packed move
1487   void pmovzxbw(XMMRegister dst, XMMRegister src);
1488   void pmovzxbw(XMMRegister dst, Address src);
1489 
1490 #ifndef _LP64 // no 32bit push/pop on amd64
1491   void popl(Address dst);
1492 #endif
1493 
1494 #ifdef _LP64
1495   void popq(Address dst);
1496 #endif
1497 
1498   void popcntl(Register dst, Address src);
1499   void popcntl(Register dst, Register src);
1500 
1501 #ifdef _LP64
1502   void popcntq(Register dst, Address src);
1503   void popcntq(Register dst, Register src);
1504 #endif
1505 
1506   // Prefetches (SSE, SSE2, 3DNOW only)
1507 
1508   void prefetchnta(Address src);
1509   void prefetchr(Address src);
1510   void prefetcht0(Address src);
1511   void prefetcht1(Address src);
1512   void prefetcht2(Address src);
1513   void prefetchw(Address src);
1514 
1515   // Shuffle Bytes
1516   void pshufb(XMMRegister dst, XMMRegister src);
1517   void pshufb(XMMRegister dst, Address src);
1518 
1519   // Shuffle Packed Doublewords
1520   void pshufd(XMMRegister dst, XMMRegister src, int mode);
1521   void pshufd(XMMRegister dst, Address src,     int mode);
1522 
1523   // Shuffle Packed Low Words
1524   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1525   void pshuflw(XMMRegister dst, Address src,     int mode);
1526 
1527   // Shift Right by bytes Logical DoubleQuadword Immediate
1528   void psrldq(XMMRegister dst, int shift);
1529 
1530   // Logical Compare 128bit
1531   void ptest(XMMRegister dst, XMMRegister src);
1532   void ptest(XMMRegister dst, Address src);
1533   // Logical Compare 256bit
1534   void vptest(XMMRegister dst, XMMRegister src);
1535   void vptest(XMMRegister dst, Address src);
1536 
1537   // Interleave Low Bytes
1538   void punpcklbw(XMMRegister dst, XMMRegister src);
1539   void punpcklbw(XMMRegister dst, Address src);
1540 
1541   // Interleave Low Doublewords
1542   void punpckldq(XMMRegister dst, XMMRegister src);
1543   void punpckldq(XMMRegister dst, Address src);
1544 
1545   // Interleave Low Quadwords
1546   void punpcklqdq(XMMRegister dst, XMMRegister src);
1547 
1548 #ifndef _LP64 // no 32bit push/pop on amd64
1549   void pushl(Address src);
1550 #endif
1551 
1552   void pushq(Address src);
1553 
1554   void rcll(Register dst, int imm8);
1555 
1556   void rclq(Register dst, int imm8);
1557 
1558   void rdtsc();
1559 
1560   void ret(int imm16);
1561 
1562 #ifdef _LP64
1563   void rorq(Register dst, int imm8);
1564   void rorxq(Register dst, Register src, int imm8);
1565 #endif
1566 
1567   void sahf();
1568 
1569   void sarl(Register dst, int imm8);
1570   void sarl(Register dst);
1571 
1572   void sarq(Register dst, int imm8);
1573   void sarq(Register dst);
1574 
1575   void sbbl(Address dst, int32_t imm32);
1576   void sbbl(Register dst, int32_t imm32);
1577   void sbbl(Register dst, Address src);
1578   void sbbl(Register dst, Register src);
1579 
1580   void sbbq(Address dst, int32_t imm32);
1581   void sbbq(Register dst, int32_t imm32);
1582   void sbbq(Register dst, Address src);
1583   void sbbq(Register dst, Register src);
1584 
1585   void setb(Condition cc, Register dst);
1586 
1587   void shldl(Register dst, Register src);
1588 
1589   void shll(Register dst, int imm8);
1590   void shll(Register dst);
1591 
1592   void shlq(Register dst, int imm8);
1593   void shlq(Register dst);
1594 
1595   void shrdl(Register dst, Register src);
1596 
1597   void shrl(Register dst, int imm8);
1598   void shrl(Register dst);
1599 
1600   void shrq(Register dst, int imm8);
1601   void shrq(Register dst);
1602 
1603   void smovl(); // QQQ generic?
1604 
1605   // Compute Square Root of Scalar Double-Precision Floating-Point Value
1606   void sqrtsd(XMMRegister dst, Address src);
1607   void sqrtsd(XMMRegister dst, XMMRegister src);
1608 
1609   // Compute Square Root of Scalar Single-Precision Floating-Point Value
1610   void sqrtss(XMMRegister dst, Address src);
1611   void sqrtss(XMMRegister dst, XMMRegister src);
1612 
1613   void std();
1614 
1615   void stmxcsr( Address dst );
1616 
1617   void subl(Address dst, int32_t imm32);
1618   void subl(Address dst, Register src);
1619   void subl(Register dst, int32_t imm32);
1620   void subl(Register dst, Address src);
1621   void subl(Register dst, Register src);
1622 
1623   void subq(Address dst, int32_t imm32);
1624   void subq(Address dst, Register src);
1625   void subq(Register dst, int32_t imm32);
1626   void subq(Register dst, Address src);
1627   void subq(Register dst, Register src);
1628 
1629   // Force generation of a 4 byte immediate value even if it fits into 8bit
1630   void subl_imm32(Register dst, int32_t imm32);
1631   void subq_imm32(Register dst, int32_t imm32);
1632 
1633   // Subtract Scalar Double-Precision Floating-Point Values
1634   void subsd(XMMRegister dst, Address src);
1635   void subsd(XMMRegister dst, XMMRegister src);
1636 
1637   // Subtract Scalar Single-Precision Floating-Point Values
1638   void subss(XMMRegister dst, Address src);
1639   void subss(XMMRegister dst, XMMRegister src);
1640 
1641   void testb(Register dst, int imm8);
1642 
1643   void testl(Register dst, int32_t imm32);
1644   void testl(Register dst, Register src);
1645   void testl(Register dst, Address src);
1646 
1647   void testq(Register dst, int32_t imm32);
1648   void testq(Register dst, Register src);
1649 
1650   // BMI - count trailing zeros
1651   void tzcntl(Register dst, Register src);
1652   void tzcntq(Register dst, Register src);
1653 
1654   // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
1655   void ucomisd(XMMRegister dst, Address src);
1656   void ucomisd(XMMRegister dst, XMMRegister src);
1657 
1658   // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
1659   void ucomiss(XMMRegister dst, Address src);
1660   void ucomiss(XMMRegister dst, XMMRegister src);
1661 
1662   void xabort(int8_t imm8);
1663 
1664   void xaddl(Address dst, Register src);
1665 
1666   void xaddq(Address dst, Register src);
1667 
1668   void xbegin(Label& abort, relocInfo::relocType rtype = relocInfo::none);
1669 
1670   void xchgl(Register reg, Address adr);
1671   void xchgl(Register dst, Register src);
1672 
1673   void xchgq(Register reg, Address adr);
1674   void xchgq(Register dst, Register src);
1675 
1676   void xend();
1677 
1678   // Get Value of Extended Control Register
1679   void xgetbv();
1680 
1681   void xorl(Register dst, int32_t imm32);
1682   void xorl(Register dst, Address src);
1683   void xorl(Register dst, Register src);
1684 
1685   void xorq(Register dst, Address src);
1686   void xorq(Register dst, Register src);
1687 
1688   void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
1689 
1690   // AVX 3-operands scalar instructions (encoded with VEX prefix)
1691 
1692   void vaddsd(XMMRegister dst, XMMRegister nds, Address src);
1693   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1694   void vaddss(XMMRegister dst, XMMRegister nds, Address src);
1695   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1696   void vdivsd(XMMRegister dst, XMMRegister nds, Address src);
1697   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1698   void vdivss(XMMRegister dst, XMMRegister nds, Address src);
1699   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1700   void vmulsd(XMMRegister dst, XMMRegister nds, Address src);
1701   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1702   void vmulss(XMMRegister dst, XMMRegister nds, Address src);
1703   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1704   void vsubsd(XMMRegister dst, XMMRegister nds, Address src);
1705   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1706   void vsubss(XMMRegister dst, XMMRegister nds, Address src);
1707   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1708 
1709 
1710   //====================VECTOR ARITHMETIC=====================================
1711 
1712   // Add Packed Floating-Point Values
1713   void addpd(XMMRegister dst, XMMRegister src);
1714   void addps(XMMRegister dst, XMMRegister src);
1715   void vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1716   void vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1717   void vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1718   void vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1719 
1720   // Subtract Packed Floating-Point Values
1721   void subpd(XMMRegister dst, XMMRegister src);
1722   void subps(XMMRegister dst, XMMRegister src);
1723   void vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1724   void vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1725   void vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1726   void vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1727 
1728   // Multiply Packed Floating-Point Values
1729   void mulpd(XMMRegister dst, XMMRegister src);
1730   void mulps(XMMRegister dst, XMMRegister src);
1731   void vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1732   void vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1733   void vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1734   void vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1735 
1736   // Divide Packed Floating-Point Values
1737   void divpd(XMMRegister dst, XMMRegister src);
1738   void divps(XMMRegister dst, XMMRegister src);
1739   void vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1740   void vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1741   void vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1742   void vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1743 
1744   // Bitwise Logical AND of Packed Floating-Point Values
1745   void andpd(XMMRegister dst, XMMRegister src);
1746   void andps(XMMRegister dst, XMMRegister src);
1747   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1748   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1749   void vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1750   void vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1751 
1752   // Bitwise Logical XOR of Packed Floating-Point Values
1753   void xorpd(XMMRegister dst, XMMRegister src);
1754   void xorps(XMMRegister dst, XMMRegister src);
1755   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1756   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1757   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1758   void vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1759 
1760   // Add packed integers
1761   void paddb(XMMRegister dst, XMMRegister src);
1762   void paddw(XMMRegister dst, XMMRegister src);
1763   void paddd(XMMRegister dst, XMMRegister src);
1764   void paddq(XMMRegister dst, XMMRegister src);
1765   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1766   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1767   void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1768   void vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1769   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1770   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1771   void vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1772   void vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1773 
1774   // Sub packed integers
1775   void psubb(XMMRegister dst, XMMRegister src);
1776   void psubw(XMMRegister dst, XMMRegister src);
1777   void psubd(XMMRegister dst, XMMRegister src);
1778   void psubq(XMMRegister dst, XMMRegister src);
1779   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1780   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1781   void vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1782   void vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1783   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1784   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1785   void vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1786   void vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1787 
1788   // Multiply packed integers (only shorts and ints)
1789   void pmullw(XMMRegister dst, XMMRegister src);
1790   void pmulld(XMMRegister dst, XMMRegister src);
1791   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1792   void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1793   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1794   void vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1795 
1796   // Shift left packed integers
1797   void psllw(XMMRegister dst, int shift);
1798   void pslld(XMMRegister dst, int shift);
1799   void psllq(XMMRegister dst, int shift);
1800   void psllw(XMMRegister dst, XMMRegister shift);
1801   void pslld(XMMRegister dst, XMMRegister shift);
1802   void psllq(XMMRegister dst, XMMRegister shift);
1803   void vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1804   void vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1805   void vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1806   void vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1807   void vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1808   void vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1809 
1810   // Logical shift right packed integers
1811   void psrlw(XMMRegister dst, int shift);
1812   void psrld(XMMRegister dst, int shift);
1813   void psrlq(XMMRegister dst, int shift);
1814   void psrlw(XMMRegister dst, XMMRegister shift);
1815   void psrld(XMMRegister dst, XMMRegister shift);
1816   void psrlq(XMMRegister dst, XMMRegister shift);
1817   void vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1818   void vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1819   void vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1820   void vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1821   void vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1822   void vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1823 
1824   // Arithmetic shift right packed integers (only shorts and ints, no instructions for longs)
1825   void psraw(XMMRegister dst, int shift);
1826   void psrad(XMMRegister dst, int shift);
1827   void psraw(XMMRegister dst, XMMRegister shift);
1828   void psrad(XMMRegister dst, XMMRegister shift);
1829   void vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1830   void vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256);
1831   void vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1832   void vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
1833 
1834   // And packed integers
1835   void pand(XMMRegister dst, XMMRegister src);
1836   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1837   void vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1838 
1839   // Or packed integers
1840   void por(XMMRegister dst, XMMRegister src);
1841   void vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1842   void vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1843 
1844   // Xor packed integers
1845   void pxor(XMMRegister dst, XMMRegister src);
1846   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
1847   void vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
1848 
1849   // Copy low 128bit into high 128bit of YMM registers.
1850   void vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src);
1851   void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src);
1852 
1853   // Load/store high 128bit of YMM registers which does not destroy other half.
1854   void vinsertf128h(XMMRegister dst, Address src);
1855   void vinserti128h(XMMRegister dst, Address src);
1856   void vextractf128h(Address dst, XMMRegister src);
1857   void vextracti128h(Address dst, XMMRegister src);
1858 
1859   // duplicate 4-bytes integer data from src into 8 locations in dest
1860   void vpbroadcastd(XMMRegister dst, XMMRegister src);
1861 
1862   // Carry-Less Multiplication Quadword
1863   void pclmulqdq(XMMRegister dst, XMMRegister src, int mask);
1864   void vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask);
1865 
1866   // AVX instruction which is used to clear upper 128 bits of YMM registers and
1867   // to avoid transaction penalty between AVX and SSE states. There is no
1868   // penalty if legacy SSE instructions are encoded using VEX prefix because
1869   // they always clear upper 128 bits. It should be used before calling
1870   // runtime code and native libraries.
1871   void vzeroupper();
1872 
1873  protected:
1874   // Next instructions require address alignment 16 bytes SSE mode.
1875   // They should be called only from corresponding MacroAssembler instructions.
1876   void andpd(XMMRegister dst, Address src);
1877   void andps(XMMRegister dst, Address src);
1878   void xorpd(XMMRegister dst, Address src);
1879   void xorps(XMMRegister dst, Address src);
1880 
1881 };
1882 
1883 #endif // CPU_X86_VM_ASSEMBLER_X86_HPP