1 /*
   2  * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/allocation.hpp"
  30 #include "opto/c2compiler.hpp"
  31 #include "opto/callnode.hpp"
  32 #include "opto/cfgnode.hpp"
  33 #include "opto/compile.hpp"
  34 #include "opto/escape.hpp"
  35 #include "opto/phaseX.hpp"
  36 #include "opto/rootnode.hpp"
  37 
  38 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  39   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
  40   _in_worklist(C->comp_arena()),
  41   _next_pidx(0),
  42   _collecting(true),
  43   _verify(false),
  44   _compile(C),
  45   _igvn(igvn),
  46   _node_map(C->comp_arena()) {
  47   // Add unknown java object.
  48   add_java_object(C->top(), PointsToNode::GlobalEscape);
  49   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  50   // Add ConP(#NULL) and ConN(#NULL) nodes.
  51   Node* oop_null = igvn->zerocon(T_OBJECT);
  52   assert(oop_null->_idx < nodes_size(), "should be created already");
  53   add_java_object(oop_null, PointsToNode::NoEscape);
  54   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  55   if (UseCompressedOops) {
  56     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  57     assert(noop_null->_idx < nodes_size(), "should be created already");
  58     map_ideal_node(noop_null, null_obj);
  59   }
  60   _pcmp_neq = NULL; // Should be initialized
  61   _pcmp_eq  = NULL;
  62 }
  63 
  64 bool ConnectionGraph::has_candidates(Compile *C) {
  65   // EA brings benefits only when the code has allocations and/or locks which
  66   // are represented by ideal Macro nodes.
  67   int cnt = C->macro_count();
  68   for (int i = 0; i < cnt; i++) {
  69     Node *n = C->macro_node(i);
  70     if (n->is_Allocate())
  71       return true;
  72     if (n->is_Lock()) {
  73       Node* obj = n->as_Lock()->obj_node()->uncast();
  74       if (!(obj->is_Parm() || obj->is_Con()))
  75         return true;
  76     }
  77     if (n->is_CallStaticJava() &&
  78         n->as_CallStaticJava()->is_boxing_method()) {
  79       return true;
  80     }
  81   }
  82   return false;
  83 }
  84 
  85 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
  86   Compile::TracePhase t2("escapeAnalysis", &Phase::_t_escapeAnalysis, true);
  87   ResourceMark rm;
  88 
  89   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
  90   // to create space for them in ConnectionGraph::_nodes[].
  91   Node* oop_null = igvn->zerocon(T_OBJECT);
  92   Node* noop_null = igvn->zerocon(T_NARROWOOP);
  93   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
  94   // Perform escape analysis
  95   if (congraph->compute_escape()) {
  96     // There are non escaping objects.
  97     C->set_congraph(congraph);
  98   }
  99   // Cleanup.
 100   if (oop_null->outcnt() == 0)
 101     igvn->hash_delete(oop_null);
 102   if (noop_null->outcnt() == 0)
 103     igvn->hash_delete(noop_null);
 104 }
 105 
 106 bool ConnectionGraph::compute_escape() {
 107   Compile* C = _compile;
 108   PhaseGVN* igvn = _igvn;
 109 
 110   // Worklists used by EA.
 111   Unique_Node_List delayed_worklist;
 112   GrowableArray<Node*> alloc_worklist;
 113   GrowableArray<Node*> ptr_cmp_worklist;
 114   GrowableArray<Node*> storestore_worklist;
 115   GrowableArray<PointsToNode*>   ptnodes_worklist;
 116   GrowableArray<JavaObjectNode*> java_objects_worklist;
 117   GrowableArray<JavaObjectNode*> non_escaped_worklist;
 118   GrowableArray<FieldNode*>      oop_fields_worklist;
 119   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 120 
 121   { Compile::TracePhase t3("connectionGraph", &Phase::_t_connectionGraph, true);
 122 
 123   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 124   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
 125   // Initialize worklist
 126   if (C->root() != NULL) {
 127     ideal_nodes.push(C->root());
 128   }
 129   // Processed ideal nodes are unique on ideal_nodes list
 130   // but several ideal nodes are mapped to the phantom_obj.
 131   // To avoid duplicated entries on the following worklists
 132   // add the phantom_obj only once to them.
 133   ptnodes_worklist.append(phantom_obj);
 134   java_objects_worklist.append(phantom_obj);
 135   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 136     Node* n = ideal_nodes.at(next);
 137     // Create PointsTo nodes and add them to Connection Graph. Called
 138     // only once per ideal node since ideal_nodes is Unique_Node list.
 139     add_node_to_connection_graph(n, &delayed_worklist);
 140     PointsToNode* ptn = ptnode_adr(n->_idx);
 141     if (ptn != NULL && ptn != phantom_obj) {
 142       ptnodes_worklist.append(ptn);
 143       if (ptn->is_JavaObject()) {
 144         java_objects_worklist.append(ptn->as_JavaObject());
 145         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 146             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 147           // Only allocations and java static calls results are interesting.
 148           non_escaped_worklist.append(ptn->as_JavaObject());
 149         }
 150       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 151         oop_fields_worklist.append(ptn->as_Field());
 152       }
 153     }
 154     if (n->is_MergeMem()) {
 155       // Collect all MergeMem nodes to add memory slices for
 156       // scalar replaceable objects in split_unique_types().
 157       _mergemem_worklist.append(n->as_MergeMem());
 158     } else if (OptimizePtrCompare && n->is_Cmp() &&
 159                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
 160       // Collect compare pointers nodes.
 161       ptr_cmp_worklist.append(n);
 162     } else if (n->is_MemBarStoreStore()) {
 163       // Collect all MemBarStoreStore nodes so that depending on the
 164       // escape status of the associated Allocate node some of them
 165       // may be eliminated.
 166       storestore_worklist.append(n);
 167     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
 168                (n->req() > MemBarNode::Precedent)) {
 169       record_for_optimizer(n);
 170 #ifdef ASSERT
 171     } else if (n->is_AddP()) {
 172       // Collect address nodes for graph verification.
 173       addp_worklist.append(n);
 174 #endif
 175     }
 176     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 177       Node* m = n->fast_out(i);   // Get user
 178       ideal_nodes.push(m);
 179     }
 180   }
 181   if (non_escaped_worklist.length() == 0) {
 182     _collecting = false;
 183     return false; // Nothing to do.
 184   }
 185   // Add final simple edges to graph.
 186   while(delayed_worklist.size() > 0) {
 187     Node* n = delayed_worklist.pop();
 188     add_final_edges(n);
 189   }
 190   int ptnodes_length = ptnodes_worklist.length();
 191 
 192 #ifdef ASSERT
 193   if (VerifyConnectionGraph) {
 194     // Verify that no new simple edges could be created and all
 195     // local vars has edges.
 196     _verify = true;
 197     for (int next = 0; next < ptnodes_length; ++next) {
 198       PointsToNode* ptn = ptnodes_worklist.at(next);
 199       add_final_edges(ptn->ideal_node());
 200       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 201         ptn->dump();
 202         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 203       }
 204     }
 205     _verify = false;
 206   }
 207 #endif
 208   // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
 209   // processing, calls to CI to resolve symbols (types, fields, methods)
 210   // referenced in bytecode. During symbol resolution VM may throw
 211   // an exception which CI cleans and converts to compilation failure.
 212   if (C->failing())  return false;
 213 
 214   // 2. Finish Graph construction by propagating references to all
 215   //    java objects through graph.
 216   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
 217                                  java_objects_worklist, oop_fields_worklist)) {
 218     // All objects escaped or hit time or iterations limits.
 219     _collecting = false;
 220     return false;
 221   }
 222 
 223   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 224   //    scalar replaceable allocations on alloc_worklist for processing
 225   //    in split_unique_types().
 226   int non_escaped_length = non_escaped_worklist.length();
 227   for (int next = 0; next < non_escaped_length; next++) {
 228     JavaObjectNode* ptn = non_escaped_worklist.at(next);
 229     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 230     Node* n = ptn->ideal_node();
 231     if (n->is_Allocate()) {
 232       n->as_Allocate()->_is_non_escaping = noescape;
 233     }
 234     if (n->is_CallStaticJava()) {
 235       n->as_CallStaticJava()->_is_non_escaping = noescape;
 236     }
 237     if (noescape && ptn->scalar_replaceable()) {
 238       adjust_scalar_replaceable_state(ptn);
 239       if (ptn->scalar_replaceable()) {
 240         alloc_worklist.append(ptn->ideal_node());
 241       }
 242     }
 243   }
 244 
 245 #ifdef ASSERT
 246   if (VerifyConnectionGraph) {
 247     // Verify that graph is complete - no new edges could be added or needed.
 248     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
 249                             java_objects_worklist, addp_worklist);
 250   }
 251   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 252   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 253          null_obj->edge_count() == 0 &&
 254          !null_obj->arraycopy_src() &&
 255          !null_obj->arraycopy_dst(), "sanity");
 256 #endif
 257 
 258   _collecting = false;
 259 
 260   } // TracePhase t3("connectionGraph")
 261 
 262   // 4. Optimize ideal graph based on EA information.
 263   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
 264   if (has_non_escaping_obj) {
 265     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 266   }
 267 
 268 #ifndef PRODUCT
 269   if (PrintEscapeAnalysis) {
 270     dump(ptnodes_worklist); // Dump ConnectionGraph
 271   }
 272 #endif
 273 
 274   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 275 #ifdef ASSERT
 276   if (VerifyConnectionGraph) {
 277     int alloc_length = alloc_worklist.length();
 278     for (int next = 0; next < alloc_length; ++next) {
 279       Node* n = alloc_worklist.at(next);
 280       PointsToNode* ptn = ptnode_adr(n->_idx);
 281       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 282     }
 283   }
 284 #endif
 285 
 286   // 5. Separate memory graph for scalar replaceable allcations.
 287   if (has_scalar_replaceable_candidates &&
 288       C->AliasLevel() >= 3 && EliminateAllocations) {
 289     // Now use the escape information to create unique types for
 290     // scalar replaceable objects.
 291     split_unique_types(alloc_worklist);
 292     if (C->failing())  return false;
 293     C->print_method(PHASE_AFTER_EA, 2);
 294 
 295 #ifdef ASSERT
 296   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 297     tty->print("=== No allocations eliminated for ");
 298     C->method()->print_short_name();
 299     if(!EliminateAllocations) {
 300       tty->print(" since EliminateAllocations is off ===");
 301     } else if(!has_scalar_replaceable_candidates) {
 302       tty->print(" since there are no scalar replaceable candidates ===");
 303     } else if(C->AliasLevel() < 3) {
 304       tty->print(" since AliasLevel < 3 ===");
 305     }
 306     tty->cr();
 307 #endif
 308   }
 309   return has_non_escaping_obj;
 310 }
 311 
 312 // Utility function for nodes that load an object
 313 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 314   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 315   // ThreadLocal has RawPtr type.
 316   const Type* t = _igvn->type(n);
 317   if (t->make_ptr() != NULL) {
 318     Node* adr = n->in(MemNode::Address);
 319 #ifdef ASSERT
 320     if (!adr->is_AddP()) {
 321       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
 322     } else {
 323       assert((ptnode_adr(adr->_idx) == NULL ||
 324               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
 325     }
 326 #endif
 327     add_local_var_and_edge(n, PointsToNode::NoEscape,
 328                            adr, delayed_worklist);
 329   }
 330 }
 331 
 332 // Populate Connection Graph with PointsTo nodes and create simple
 333 // connection graph edges.
 334 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 335   assert(!_verify, "this method sould not be called for verification");
 336   PhaseGVN* igvn = _igvn;
 337   uint n_idx = n->_idx;
 338   PointsToNode* n_ptn = ptnode_adr(n_idx);
 339   if (n_ptn != NULL)
 340     return; // No need to redefine PointsTo node during first iteration.
 341 
 342   if (n->is_Call()) {
 343     // Arguments to allocation and locking don't escape.
 344     if (n->is_AbstractLock()) {
 345       // Put Lock and Unlock nodes on IGVN worklist to process them during
 346       // first IGVN optimization when escape information is still available.
 347       record_for_optimizer(n);
 348     } else if (n->is_Allocate()) {
 349       add_call_node(n->as_Call());
 350       record_for_optimizer(n);
 351     } else {
 352       if (n->is_CallStaticJava()) {
 353         const char* name = n->as_CallStaticJava()->_name;
 354         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
 355           return; // Skip uncommon traps
 356       }
 357       // Don't mark as processed since call's arguments have to be processed.
 358       delayed_worklist->push(n);
 359       // Check if a call returns an object.
 360       if ((n->as_Call()->returns_pointer() &&
 361            n->as_Call()->proj_out(TypeFunc::Parms) != NULL) ||
 362           (n->is_CallStaticJava() &&
 363            n->as_CallStaticJava()->is_boxing_method())) {
 364         add_call_node(n->as_Call());
 365       }
 366     }
 367     return;
 368   }
 369   // Put this check here to process call arguments since some call nodes
 370   // point to phantom_obj.
 371   if (n_ptn == phantom_obj || n_ptn == null_obj)
 372     return; // Skip predefined nodes.
 373 
 374   int opcode = n->Opcode();
 375   switch (opcode) {
 376     case Op_AddP: {
 377       Node* base = get_addp_base(n);
 378       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 379       // Field nodes are created for all field types. They are used in
 380       // adjust_scalar_replaceable_state() and split_unique_types().
 381       // Note, non-oop fields will have only base edges in Connection
 382       // Graph because such fields are not used for oop loads and stores.
 383       int offset = address_offset(n, igvn);
 384       add_field(n, PointsToNode::NoEscape, offset);
 385       if (ptn_base == NULL) {
 386         delayed_worklist->push(n); // Process it later.
 387       } else {
 388         n_ptn = ptnode_adr(n_idx);
 389         add_base(n_ptn->as_Field(), ptn_base);
 390       }
 391       break;
 392     }
 393     case Op_CastX2P: {
 394       map_ideal_node(n, phantom_obj);
 395       break;
 396     }
 397     case Op_CastPP:
 398     case Op_CheckCastPP:
 399     case Op_EncodeP:
 400     case Op_DecodeN:
 401     case Op_EncodePKlass:
 402     case Op_DecodeNKlass: {
 403       add_local_var_and_edge(n, PointsToNode::NoEscape,
 404                              n->in(1), delayed_worklist);
 405       break;
 406     }
 407     case Op_CMoveP: {
 408       add_local_var(n, PointsToNode::NoEscape);
 409       // Do not add edges during first iteration because some could be
 410       // not defined yet.
 411       delayed_worklist->push(n);
 412       break;
 413     }
 414     case Op_ConP:
 415     case Op_ConN:
 416     case Op_ConNKlass: {
 417       // assume all oop constants globally escape except for null
 418       PointsToNode::EscapeState es;
 419       const Type* t = igvn->type(n);
 420       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
 421         es = PointsToNode::NoEscape;
 422       } else {
 423         es = PointsToNode::GlobalEscape;
 424       }
 425       add_java_object(n, es);
 426       break;
 427     }
 428     case Op_CreateEx: {
 429       // assume that all exception objects globally escape
 430       map_ideal_node(n, phantom_obj);
 431       break;
 432     }
 433     case Op_LoadKlass:
 434     case Op_LoadNKlass: {
 435       // Unknown class is loaded
 436       map_ideal_node(n, phantom_obj);
 437       break;
 438     }
 439     case Op_LoadP:
 440     case Op_LoadN:
 441     case Op_LoadPLocked: {
 442       add_objload_to_connection_graph(n, delayed_worklist);
 443       break;
 444     }
 445     case Op_Parm: {
 446       map_ideal_node(n, phantom_obj);
 447       break;
 448     }
 449     case Op_PartialSubtypeCheck: {
 450       // Produces Null or notNull and is used in only in CmpP so
 451       // phantom_obj could be used.
 452       map_ideal_node(n, phantom_obj); // Result is unknown
 453       break;
 454     }
 455     case Op_Phi: {
 456       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 457       // ThreadLocal has RawPtr type.
 458       const Type* t = n->as_Phi()->type();
 459       if (t->make_ptr() != NULL) {
 460         add_local_var(n, PointsToNode::NoEscape);
 461         // Do not add edges during first iteration because some could be
 462         // not defined yet.
 463         delayed_worklist->push(n);
 464       }
 465       break;
 466     }
 467     case Op_Proj: {
 468       // we are only interested in the oop result projection from a call
 469       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 470           n->in(0)->as_Call()->returns_pointer()) {
 471         add_local_var_and_edge(n, PointsToNode::NoEscape,
 472                                n->in(0), delayed_worklist);
 473       }
 474       break;
 475     }
 476     case Op_Rethrow: // Exception object escapes
 477     case Op_Return: {
 478       if (n->req() > TypeFunc::Parms &&
 479           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 480         // Treat Return value as LocalVar with GlobalEscape escape state.
 481         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 482                                n->in(TypeFunc::Parms), delayed_worklist);
 483       }
 484       break;
 485     }
 486     case Op_GetAndSetP:
 487     case Op_GetAndSetN: {
 488       add_objload_to_connection_graph(n, delayed_worklist);
 489       // fallthrough
 490     }
 491     case Op_StoreP:
 492     case Op_StoreN:
 493     case Op_StoreNKlass:
 494     case Op_StorePConditional:
 495     case Op_CompareAndSwapP:
 496     case Op_CompareAndSwapN: {
 497       Node* adr = n->in(MemNode::Address);
 498       const Type *adr_type = igvn->type(adr);
 499       adr_type = adr_type->make_ptr();
 500       if (adr_type == NULL) {
 501         break; // skip dead nodes
 502       }
 503       if (adr_type->isa_oopptr() ||
 504           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 505                         (adr_type == TypeRawPtr::NOTNULL &&
 506                          adr->in(AddPNode::Address)->is_Proj() &&
 507                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 508         delayed_worklist->push(n); // Process it later.
 509 #ifdef ASSERT
 510         assert(adr->is_AddP(), "expecting an AddP");
 511         if (adr_type == TypeRawPtr::NOTNULL) {
 512           // Verify a raw address for a store captured by Initialize node.
 513           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 514           assert(offs != Type::OffsetBot, "offset must be a constant");
 515         }
 516 #endif
 517       } else {
 518         // Ignore copy the displaced header to the BoxNode (OSR compilation).
 519         if (adr->is_BoxLock())
 520           break;
 521         // Stored value escapes in unsafe access.
 522         if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
 523           // Pointer stores in G1 barriers looks like unsafe access.
 524           // Ignore such stores to be able scalar replace non-escaping
 525           // allocations.
 526           if (UseG1GC && adr->is_AddP()) {
 527             Node* base = get_addp_base(adr);
 528             if (base->Opcode() == Op_LoadP &&
 529                 base->in(MemNode::Address)->is_AddP()) {
 530               adr = base->in(MemNode::Address);
 531               Node* tls = get_addp_base(adr);
 532               if (tls->Opcode() == Op_ThreadLocal) {
 533                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 534                 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
 535                                      PtrQueue::byte_offset_of_buf())) {
 536                   break; // G1 pre barier previous oop value store.
 537                 }
 538                 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
 539                                      PtrQueue::byte_offset_of_buf())) {
 540                   break; // G1 post barier card address store.
 541                 }
 542               }
 543             }
 544           }
 545           delayed_worklist->push(n); // Process unsafe access later.
 546           break;
 547         }
 548 #ifdef ASSERT
 549         n->dump(1);
 550         assert(false, "not unsafe or G1 barrier raw StoreP");
 551 #endif
 552       }
 553       break;
 554     }
 555     case Op_AryEq:
 556     case Op_StrComp:
 557     case Op_StrEquals:
 558     case Op_StrIndexOf:
 559     case Op_EncodeISOArray: {
 560       add_local_var(n, PointsToNode::ArgEscape);
 561       delayed_worklist->push(n); // Process it later.
 562       break;
 563     }
 564     case Op_ThreadLocal: {
 565       add_java_object(n, PointsToNode::ArgEscape);
 566       break;
 567     }
 568     default:
 569       ; // Do nothing for nodes not related to EA.
 570   }
 571   return;
 572 }
 573 
 574 #ifdef ASSERT
 575 #define ELSE_FAIL(name)                               \
 576       /* Should not be called for not pointer type. */  \
 577       n->dump(1);                                       \
 578       assert(false, name);                              \
 579       break;
 580 #else
 581 #define ELSE_FAIL(name) \
 582       break;
 583 #endif
 584 
 585 // Add final simple edges to graph.
 586 void ConnectionGraph::add_final_edges(Node *n) {
 587   PointsToNode* n_ptn = ptnode_adr(n->_idx);
 588 #ifdef ASSERT
 589   if (_verify && n_ptn->is_JavaObject())
 590     return; // This method does not change graph for JavaObject.
 591 #endif
 592 
 593   if (n->is_Call()) {
 594     process_call_arguments(n->as_Call());
 595     return;
 596   }
 597   assert(n->is_Store() || n->is_LoadStore() ||
 598          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
 599          "node should be registered already");
 600   int opcode = n->Opcode();
 601   switch (opcode) {
 602     case Op_AddP: {
 603       Node* base = get_addp_base(n);
 604       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 605       assert(ptn_base != NULL, "field's base should be registered");
 606       add_base(n_ptn->as_Field(), ptn_base);
 607       break;
 608     }
 609     case Op_CastPP:
 610     case Op_CheckCastPP:
 611     case Op_EncodeP:
 612     case Op_DecodeN:
 613     case Op_EncodePKlass:
 614     case Op_DecodeNKlass: {
 615       add_local_var_and_edge(n, PointsToNode::NoEscape,
 616                              n->in(1), NULL);
 617       break;
 618     }
 619     case Op_CMoveP: {
 620       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
 621         Node* in = n->in(i);
 622         if (in == NULL)
 623           continue;  // ignore NULL
 624         Node* uncast_in = in->uncast();
 625         if (uncast_in->is_top() || uncast_in == n)
 626           continue;  // ignore top or inputs which go back this node
 627         PointsToNode* ptn = ptnode_adr(in->_idx);
 628         assert(ptn != NULL, "node should be registered");
 629         add_edge(n_ptn, ptn);
 630       }
 631       break;
 632     }
 633     case Op_LoadP:
 634     case Op_LoadN:
 635     case Op_LoadPLocked: {
 636       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 637       // ThreadLocal has RawPtr type.
 638       const Type* t = _igvn->type(n);
 639       if (t->make_ptr() != NULL) {
 640         Node* adr = n->in(MemNode::Address);
 641         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 642         break;
 643       }
 644       ELSE_FAIL("Op_LoadP");
 645     }
 646     case Op_Phi: {
 647       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 648       // ThreadLocal has RawPtr type.
 649       const Type* t = n->as_Phi()->type();
 650       if (t->make_ptr() != NULL) {
 651         for (uint i = 1; i < n->req(); i++) {
 652           Node* in = n->in(i);
 653           if (in == NULL)
 654             continue;  // ignore NULL
 655           Node* uncast_in = in->uncast();
 656           if (uncast_in->is_top() || uncast_in == n)
 657             continue;  // ignore top or inputs which go back this node
 658           PointsToNode* ptn = ptnode_adr(in->_idx);
 659           assert(ptn != NULL, "node should be registered");
 660           add_edge(n_ptn, ptn);
 661         }
 662         break;
 663       }
 664       ELSE_FAIL("Op_Phi");
 665     }
 666     case Op_Proj: {
 667       // we are only interested in the oop result projection from a call
 668       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 669           n->in(0)->as_Call()->returns_pointer()) {
 670         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
 671         break;
 672       }
 673       ELSE_FAIL("Op_Proj");
 674     }
 675     case Op_Rethrow: // Exception object escapes
 676     case Op_Return: {
 677       if (n->req() > TypeFunc::Parms &&
 678           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 679         // Treat Return value as LocalVar with GlobalEscape escape state.
 680         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 681                                n->in(TypeFunc::Parms), NULL);
 682         break;
 683       }
 684       ELSE_FAIL("Op_Return");
 685     }
 686     case Op_StoreP:
 687     case Op_StoreN:
 688     case Op_StoreNKlass:
 689     case Op_StorePConditional:
 690     case Op_CompareAndSwapP:
 691     case Op_CompareAndSwapN:
 692     case Op_GetAndSetP:
 693     case Op_GetAndSetN: {
 694       Node* adr = n->in(MemNode::Address);
 695       const Type *adr_type = _igvn->type(adr);
 696       adr_type = adr_type->make_ptr();
 697 #ifdef ASSERT
 698       if (adr_type == NULL) {
 699         n->dump(1);
 700         assert(adr_type != NULL, "dead node should not be on list");
 701         break;
 702       }
 703 #endif
 704       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) {
 705         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 706       }
 707       if (adr_type->isa_oopptr() ||
 708           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 709                         (adr_type == TypeRawPtr::NOTNULL &&
 710                          adr->in(AddPNode::Address)->is_Proj() &&
 711                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 712         // Point Address to Value
 713         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 714         assert(adr_ptn != NULL &&
 715                adr_ptn->as_Field()->is_oop(), "node should be registered");
 716         Node *val = n->in(MemNode::ValueIn);
 717         PointsToNode* ptn = ptnode_adr(val->_idx);
 718         assert(ptn != NULL, "node should be registered");
 719         add_edge(adr_ptn, ptn);
 720         break;
 721       } else if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
 722         // Stored value escapes in unsafe access.
 723         Node *val = n->in(MemNode::ValueIn);
 724         PointsToNode* ptn = ptnode_adr(val->_idx);
 725         assert(ptn != NULL, "node should be registered");
 726         set_escape_state(ptn, PointsToNode::GlobalEscape);
 727         // Add edge to object for unsafe access with offset.
 728         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 729         assert(adr_ptn != NULL, "node should be registered");
 730         if (adr_ptn->is_Field()) {
 731           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
 732           add_edge(adr_ptn, ptn);
 733         }
 734         break;
 735       }
 736       ELSE_FAIL("Op_StoreP");
 737     }
 738     case Op_AryEq:
 739     case Op_StrComp:
 740     case Op_StrEquals:
 741     case Op_StrIndexOf:
 742     case Op_EncodeISOArray: {
 743       // char[] arrays passed to string intrinsic do not escape but
 744       // they are not scalar replaceable. Adjust escape state for them.
 745       // Start from in(2) edge since in(1) is memory edge.
 746       for (uint i = 2; i < n->req(); i++) {
 747         Node* adr = n->in(i);
 748         const Type* at = _igvn->type(adr);
 749         if (!adr->is_top() && at->isa_ptr()) {
 750           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
 751                  at->isa_ptr() != NULL, "expecting a pointer");
 752           if (adr->is_AddP()) {
 753             adr = get_addp_base(adr);
 754           }
 755           PointsToNode* ptn = ptnode_adr(adr->_idx);
 756           assert(ptn != NULL, "node should be registered");
 757           add_edge(n_ptn, ptn);
 758         }
 759       }
 760       break;
 761     }
 762     default: {
 763       // This method should be called only for EA specific nodes which may
 764       // miss some edges when they were created.
 765 #ifdef ASSERT
 766       n->dump(1);
 767 #endif
 768       guarantee(false, "unknown node");
 769     }
 770   }
 771   return;
 772 }
 773 
 774 void ConnectionGraph::add_call_node(CallNode* call) {
 775   assert(call->returns_pointer(), "only for call which returns pointer");
 776   uint call_idx = call->_idx;
 777   if (call->is_Allocate()) {
 778     Node* k = call->in(AllocateNode::KlassNode);
 779     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
 780     assert(kt != NULL, "TypeKlassPtr  required.");
 781     ciKlass* cik = kt->klass();
 782     PointsToNode::EscapeState es = PointsToNode::NoEscape;
 783     bool scalar_replaceable = true;
 784     if (call->is_AllocateArray()) {
 785       if (!cik->is_array_klass()) { // StressReflectiveCode
 786         es = PointsToNode::GlobalEscape;
 787       } else {
 788         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
 789         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
 790           // Not scalar replaceable if the length is not constant or too big.
 791           scalar_replaceable = false;
 792         }
 793       }
 794     } else {  // Allocate instance
 795       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
 796           cik->is_subclass_of(_compile->env()->Reference_klass()) ||
 797          !cik->is_instance_klass() || // StressReflectiveCode
 798           cik->as_instance_klass()->has_finalizer()) {
 799         es = PointsToNode::GlobalEscape;
 800       }
 801     }
 802     add_java_object(call, es);
 803     PointsToNode* ptn = ptnode_adr(call_idx);
 804     if (!scalar_replaceable && ptn->scalar_replaceable()) {
 805       ptn->set_scalar_replaceable(false);
 806     }
 807   } else if (call->is_CallStaticJava()) {
 808     // Call nodes could be different types:
 809     //
 810     // 1. CallDynamicJavaNode (what happened during call is unknown):
 811     //
 812     //    - mapped to GlobalEscape JavaObject node if oop is returned;
 813     //
 814     //    - all oop arguments are escaping globally;
 815     //
 816     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
 817     //
 818     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
 819     //
 820     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
 821     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
 822     //      during call is returned;
 823     //    - mapped to ArgEscape LocalVar node pointed to object arguments
 824     //      which are returned and does not escape during call;
 825     //
 826     //    - oop arguments escaping status is defined by bytecode analysis;
 827     //
 828     // For a static call, we know exactly what method is being called.
 829     // Use bytecode estimator to record whether the call's return value escapes.
 830     ciMethod* meth = call->as_CallJava()->method();
 831     if (meth == NULL) {
 832       const char* name = call->as_CallStaticJava()->_name;
 833       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
 834       // Returns a newly allocated unescaped object.
 835       add_java_object(call, PointsToNode::NoEscape);
 836       ptnode_adr(call_idx)->set_scalar_replaceable(false);
 837     } else if (meth->is_boxing_method()) {
 838       // Returns boxing object
 839       PointsToNode::EscapeState es;
 840       vmIntrinsics::ID intr = meth->intrinsic_id();
 841       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
 842         // It does not escape if object is always allocated.
 843         es = PointsToNode::NoEscape;
 844       } else {
 845         // It escapes globally if object could be loaded from cache.
 846         es = PointsToNode::GlobalEscape;
 847       }
 848       add_java_object(call, es);
 849     } else {
 850       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
 851       call_analyzer->copy_dependencies(_compile->dependencies());
 852       if (call_analyzer->is_return_allocated()) {
 853         // Returns a newly allocated unescaped object, simply
 854         // update dependency information.
 855         // Mark it as NoEscape so that objects referenced by
 856         // it's fields will be marked as NoEscape at least.
 857         add_java_object(call, PointsToNode::NoEscape);
 858         ptnode_adr(call_idx)->set_scalar_replaceable(false);
 859       } else {
 860         // Determine whether any arguments are returned.
 861         const TypeTuple* d = call->tf()->domain();
 862         bool ret_arg = false;
 863         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 864           if (d->field_at(i)->isa_ptr() != NULL &&
 865               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
 866             ret_arg = true;
 867             break;
 868           }
 869         }
 870         if (ret_arg) {
 871           add_local_var(call, PointsToNode::ArgEscape);
 872         } else {
 873           // Returns unknown object.
 874           map_ideal_node(call, phantom_obj);
 875         }
 876       }
 877     }
 878   } else {
 879     // An other type of call, assume the worst case:
 880     // returned value is unknown and globally escapes.
 881     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
 882     map_ideal_node(call, phantom_obj);
 883   }
 884 }
 885 
 886 void ConnectionGraph::process_call_arguments(CallNode *call) {
 887     bool is_arraycopy = false;
 888     switch (call->Opcode()) {
 889 #ifdef ASSERT
 890     case Op_Allocate:
 891     case Op_AllocateArray:
 892     case Op_Lock:
 893     case Op_Unlock:
 894       assert(false, "should be done already");
 895       break;
 896 #endif
 897     case Op_CallLeafNoFP:
 898       is_arraycopy = (call->as_CallLeaf()->_name != NULL &&
 899                       strstr(call->as_CallLeaf()->_name, "arraycopy") != 0);
 900       // fall through
 901     case Op_CallLeaf: {
 902       // Stub calls, objects do not escape but they are not scale replaceable.
 903       // Adjust escape state for outgoing arguments.
 904       const TypeTuple * d = call->tf()->domain();
 905       bool src_has_oops = false;
 906       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 907         const Type* at = d->field_at(i);
 908         Node *arg = call->in(i);
 909         const Type *aat = _igvn->type(arg);
 910         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
 911           continue;
 912         if (arg->is_AddP()) {
 913           //
 914           // The inline_native_clone() case when the arraycopy stub is called
 915           // after the allocation before Initialize and CheckCastPP nodes.
 916           // Or normal arraycopy for object arrays case.
 917           //
 918           // Set AddP's base (Allocate) as not scalar replaceable since
 919           // pointer to the base (with offset) is passed as argument.
 920           //
 921           arg = get_addp_base(arg);
 922         }
 923         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 924         assert(arg_ptn != NULL, "should be registered");
 925         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
 926         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
 927           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
 928                  aat->isa_ptr() != NULL, "expecting an Ptr");
 929           bool arg_has_oops = aat->isa_oopptr() &&
 930                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
 931                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
 932           if (i == TypeFunc::Parms) {
 933             src_has_oops = arg_has_oops;
 934           }
 935           //
 936           // src or dst could be j.l.Object when other is basic type array:
 937           //
 938           //   arraycopy(char[],0,Object*,0,size);
 939           //   arraycopy(Object*,0,char[],0,size);
 940           //
 941           // Don't add edges in such cases.
 942           //
 943           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
 944                                        arg_has_oops && (i > TypeFunc::Parms);
 945 #ifdef ASSERT
 946           if (!(is_arraycopy ||
 947                 (call->as_CallLeaf()->_name != NULL &&
 948                  (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
 949                   strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
 950                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
 951                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
 952                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
 953                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
 954                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
 955                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
 956                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
 957                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
 958                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
 959                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
 960                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
 961                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0)
 962                   ))) {
 963             call->dump();
 964             fatal(err_msg_res("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name));
 965           }
 966 #endif
 967           // Always process arraycopy's destination object since
 968           // we need to add all possible edges to references in
 969           // source object.
 970           if (arg_esc >= PointsToNode::ArgEscape &&
 971               !arg_is_arraycopy_dest) {
 972             continue;
 973           }
 974           set_escape_state(arg_ptn, PointsToNode::ArgEscape);
 975           if (arg_is_arraycopy_dest) {
 976             Node* src = call->in(TypeFunc::Parms);
 977             if (src->is_AddP()) {
 978               src = get_addp_base(src);
 979             }
 980             PointsToNode* src_ptn = ptnode_adr(src->_idx);
 981             assert(src_ptn != NULL, "should be registered");
 982             if (arg_ptn != src_ptn) {
 983               // Special arraycopy edge:
 984               // A destination object's field can't have the source object
 985               // as base since objects escape states are not related.
 986               // Only escape state of destination object's fields affects
 987               // escape state of fields in source object.
 988               add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn);
 989             }
 990           }
 991         }
 992       }
 993       break;
 994     }
 995     case Op_CallStaticJava: {
 996       // For a static call, we know exactly what method is being called.
 997       // Use bytecode estimator to record the call's escape affects
 998 #ifdef ASSERT
 999       const char* name = call->as_CallStaticJava()->_name;
1000       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
1001 #endif
1002       ciMethod* meth = call->as_CallJava()->method();
1003       if ((meth != NULL) && meth->is_boxing_method()) {
1004         break; // Boxing methods do not modify any oops.
1005       }
1006       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1007       // fall-through if not a Java method or no analyzer information
1008       if (call_analyzer != NULL) {
1009         PointsToNode* call_ptn = ptnode_adr(call->_idx);
1010         const TypeTuple* d = call->tf()->domain();
1011         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1012           const Type* at = d->field_at(i);
1013           int k = i - TypeFunc::Parms;
1014           Node* arg = call->in(i);
1015           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1016           if (at->isa_ptr() != NULL &&
1017               call_analyzer->is_arg_returned(k)) {
1018             // The call returns arguments.
1019             if (call_ptn != NULL) { // Is call's result used?
1020               assert(call_ptn->is_LocalVar(), "node should be registered");
1021               assert(arg_ptn != NULL, "node should be registered");
1022               add_edge(call_ptn, arg_ptn);
1023             }
1024           }
1025           if (at->isa_oopptr() != NULL &&
1026               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
1027             if (!call_analyzer->is_arg_stack(k)) {
1028               // The argument global escapes
1029               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1030             } else {
1031               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
1032               if (!call_analyzer->is_arg_local(k)) {
1033                 // The argument itself doesn't escape, but any fields might
1034                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1035               }
1036             }
1037           }
1038         }
1039         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
1040           // The call returns arguments.
1041           assert(call_ptn->edge_count() > 0, "sanity");
1042           if (!call_analyzer->is_return_local()) {
1043             // Returns also unknown object.
1044             add_edge(call_ptn, phantom_obj);
1045           }
1046         }
1047         break;
1048       }
1049     }
1050     default: {
1051       // Fall-through here if not a Java method or no analyzer information
1052       // or some other type of call, assume the worst case: all arguments
1053       // globally escape.
1054       const TypeTuple* d = call->tf()->domain();
1055       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1056         const Type* at = d->field_at(i);
1057         if (at->isa_oopptr() != NULL) {
1058           Node* arg = call->in(i);
1059           if (arg->is_AddP()) {
1060             arg = get_addp_base(arg);
1061           }
1062           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
1063           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
1064         }
1065       }
1066     }
1067   }
1068 }
1069 
1070 
1071 // Finish Graph construction.
1072 bool ConnectionGraph::complete_connection_graph(
1073                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1074                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1075                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1076                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
1077   // Normally only 1-3 passes needed to build Connection Graph depending
1078   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1079   // Set limit to 20 to catch situation when something did go wrong and
1080   // bailout Escape Analysis.
1081   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
1082 #define CG_BUILD_ITER_LIMIT 20
1083 
1084   // Propagate GlobalEscape and ArgEscape escape states and check that
1085   // we still have non-escaping objects. The method pushs on _worklist
1086   // Field nodes which reference phantom_object.
1087   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1088     return false; // Nothing to do.
1089   }
1090   // Now propagate references to all JavaObject nodes.
1091   int java_objects_length = java_objects_worklist.length();
1092   elapsedTimer time;
1093   bool timeout = false;
1094   int new_edges = 1;
1095   int iterations = 0;
1096   do {
1097     while ((new_edges > 0) &&
1098            (iterations++ < CG_BUILD_ITER_LIMIT)) {
1099       double start_time = time.seconds();
1100       time.start();
1101       new_edges = 0;
1102       // Propagate references to phantom_object for nodes pushed on _worklist
1103       // by find_non_escaped_objects() and find_field_value().
1104       new_edges += add_java_object_edges(phantom_obj, false);
1105       for (int next = 0; next < java_objects_length; ++next) {
1106         JavaObjectNode* ptn = java_objects_worklist.at(next);
1107         new_edges += add_java_object_edges(ptn, true);
1108 
1109 #define SAMPLE_SIZE 4
1110         if ((next % SAMPLE_SIZE) == 0) {
1111           // Each 4 iterations calculate how much time it will take
1112           // to complete graph construction.
1113           time.stop();
1114           // Poll for requests from shutdown mechanism to quiesce compiler
1115           // because Connection graph construction may take long time.
1116           CompileBroker::maybe_block();
1117           double stop_time = time.seconds();
1118           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
1119           double time_until_end = time_per_iter * (double)(java_objects_length - next);
1120           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
1121             timeout = true;
1122             break; // Timeout
1123           }
1124           start_time = stop_time;
1125           time.start();
1126         }
1127 #undef SAMPLE_SIZE
1128 
1129       }
1130       if (timeout) break;
1131       if (new_edges > 0) {
1132         // Update escape states on each iteration if graph was updated.
1133         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1134           return false; // Nothing to do.
1135         }
1136       }
1137       time.stop();
1138       if (time.seconds() >= EscapeAnalysisTimeout) {
1139         timeout = true;
1140         break;
1141       }
1142     }
1143     if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
1144       time.start();
1145       // Find fields which have unknown value.
1146       int fields_length = oop_fields_worklist.length();
1147       for (int next = 0; next < fields_length; next++) {
1148         FieldNode* field = oop_fields_worklist.at(next);
1149         if (field->edge_count() == 0) {
1150           new_edges += find_field_value(field);
1151           // This code may added new edges to phantom_object.
1152           // Need an other cycle to propagate references to phantom_object.
1153         }
1154       }
1155       time.stop();
1156       if (time.seconds() >= EscapeAnalysisTimeout) {
1157         timeout = true;
1158         break;
1159       }
1160     } else {
1161       new_edges = 0; // Bailout
1162     }
1163   } while (new_edges > 0);
1164 
1165   // Bailout if passed limits.
1166   if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
1167     Compile* C = _compile;
1168     if (C->log() != NULL) {
1169       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1170       C->log()->text("%s", timeout ? "time" : "iterations");
1171       C->log()->end_elem(" limit'");
1172     }
1173     assert(ExitEscapeAnalysisOnTimeout, err_msg_res("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1174            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()));
1175     // Possible infinite build_connection_graph loop,
1176     // bailout (no changes to ideal graph were made).
1177     return false;
1178   }
1179 #ifdef ASSERT
1180   if (Verbose && PrintEscapeAnalysis) {
1181     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1182                   iterations, nodes_size(), ptnodes_worklist.length());
1183   }
1184 #endif
1185 
1186 #undef CG_BUILD_ITER_LIMIT
1187 
1188   // Find fields initialized by NULL for non-escaping Allocations.
1189   int non_escaped_length = non_escaped_worklist.length();
1190   for (int next = 0; next < non_escaped_length; next++) {
1191     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1192     PointsToNode::EscapeState es = ptn->escape_state();
1193     assert(es <= PointsToNode::ArgEscape, "sanity");
1194     if (es == PointsToNode::NoEscape) {
1195       if (find_init_values(ptn, null_obj, _igvn) > 0) {
1196         // Adding references to NULL object does not change escape states
1197         // since it does not escape. Also no fields are added to NULL object.
1198         add_java_object_edges(null_obj, false);
1199       }
1200     }
1201     Node* n = ptn->ideal_node();
1202     if (n->is_Allocate()) {
1203       // The object allocated by this Allocate node will never be
1204       // seen by an other thread. Mark it so that when it is
1205       // expanded no MemBarStoreStore is added.
1206       InitializeNode* ini = n->as_Allocate()->initialization();
1207       if (ini != NULL)
1208         ini->set_does_not_escape();
1209     }
1210   }
1211   return true; // Finished graph construction.
1212 }
1213 
1214 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1215 // and check that we still have non-escaping java objects.
1216 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1217                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1218   GrowableArray<PointsToNode*> escape_worklist;
1219   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1220   int ptnodes_length = ptnodes_worklist.length();
1221   for (int next = 0; next < ptnodes_length; ++next) {
1222     PointsToNode* ptn = ptnodes_worklist.at(next);
1223     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1224         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1225       escape_worklist.push(ptn);
1226     }
1227   }
1228   // Set escape states to referenced nodes (edges list).
1229   while (escape_worklist.length() > 0) {
1230     PointsToNode* ptn = escape_worklist.pop();
1231     PointsToNode::EscapeState es  = ptn->escape_state();
1232     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1233     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1234         es >= PointsToNode::ArgEscape) {
1235       // GlobalEscape or ArgEscape state of field means it has unknown value.
1236       if (add_edge(ptn, phantom_obj)) {
1237         // New edge was added
1238         add_field_uses_to_worklist(ptn->as_Field());
1239       }
1240     }
1241     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1242       PointsToNode* e = i.get();
1243       if (e->is_Arraycopy()) {
1244         assert(ptn->arraycopy_dst(), "sanity");
1245         // Propagate only fields escape state through arraycopy edge.
1246         if (e->fields_escape_state() < field_es) {
1247           set_fields_escape_state(e, field_es);
1248           escape_worklist.push(e);
1249         }
1250       } else if (es >= field_es) {
1251         // fields_escape_state is also set to 'es' if it is less than 'es'.
1252         if (e->escape_state() < es) {
1253           set_escape_state(e, es);
1254           escape_worklist.push(e);
1255         }
1256       } else {
1257         // Propagate field escape state.
1258         bool es_changed = false;
1259         if (e->fields_escape_state() < field_es) {
1260           set_fields_escape_state(e, field_es);
1261           es_changed = true;
1262         }
1263         if ((e->escape_state() < field_es) &&
1264             e->is_Field() && ptn->is_JavaObject() &&
1265             e->as_Field()->is_oop()) {
1266           // Change escape state of referenced fileds.
1267           set_escape_state(e, field_es);
1268           es_changed = true;;
1269         } else if (e->escape_state() < es) {
1270           set_escape_state(e, es);
1271           es_changed = true;;
1272         }
1273         if (es_changed) {
1274           escape_worklist.push(e);
1275         }
1276       }
1277     }
1278   }
1279   // Remove escaped objects from non_escaped list.
1280   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1281     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1282     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1283       non_escaped_worklist.delete_at(next);
1284     }
1285     if (ptn->escape_state() == PointsToNode::NoEscape) {
1286       // Find fields in non-escaped allocations which have unknown value.
1287       find_init_values(ptn, phantom_obj, NULL);
1288     }
1289   }
1290   return (non_escaped_worklist.length() > 0);
1291 }
1292 
1293 // Add all references to JavaObject node by walking over all uses.
1294 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1295   int new_edges = 0;
1296   if (populate_worklist) {
1297     // Populate _worklist by uses of jobj's uses.
1298     for (UseIterator i(jobj); i.has_next(); i.next()) {
1299       PointsToNode* use = i.get();
1300       if (use->is_Arraycopy())
1301         continue;
1302       add_uses_to_worklist(use);
1303       if (use->is_Field() && use->as_Field()->is_oop()) {
1304         // Put on worklist all field's uses (loads) and
1305         // related field nodes (same base and offset).
1306         add_field_uses_to_worklist(use->as_Field());
1307       }
1308     }
1309   }
1310   for (int l = 0; l < _worklist.length(); l++) {
1311     PointsToNode* use = _worklist.at(l);
1312     if (PointsToNode::is_base_use(use)) {
1313       // Add reference from jobj to field and from field to jobj (field's base).
1314       use = PointsToNode::get_use_node(use)->as_Field();
1315       if (add_base(use->as_Field(), jobj)) {
1316         new_edges++;
1317       }
1318       continue;
1319     }
1320     assert(!use->is_JavaObject(), "sanity");
1321     if (use->is_Arraycopy()) {
1322       if (jobj == null_obj) // NULL object does not have field edges
1323         continue;
1324       // Added edge from Arraycopy node to arraycopy's source java object
1325       if (add_edge(use, jobj)) {
1326         jobj->set_arraycopy_src();
1327         new_edges++;
1328       }
1329       // and stop here.
1330       continue;
1331     }
1332     if (!add_edge(use, jobj))
1333       continue; // No new edge added, there was such edge already.
1334     new_edges++;
1335     if (use->is_LocalVar()) {
1336       add_uses_to_worklist(use);
1337       if (use->arraycopy_dst()) {
1338         for (EdgeIterator i(use); i.has_next(); i.next()) {
1339           PointsToNode* e = i.get();
1340           if (e->is_Arraycopy()) {
1341             if (jobj == null_obj) // NULL object does not have field edges
1342               continue;
1343             // Add edge from arraycopy's destination java object to Arraycopy node.
1344             if (add_edge(jobj, e)) {
1345               new_edges++;
1346               jobj->set_arraycopy_dst();
1347             }
1348           }
1349         }
1350       }
1351     } else {
1352       // Added new edge to stored in field values.
1353       // Put on worklist all field's uses (loads) and
1354       // related field nodes (same base and offset).
1355       add_field_uses_to_worklist(use->as_Field());
1356     }
1357   }
1358   _worklist.clear();
1359   _in_worklist.Reset();
1360   return new_edges;
1361 }
1362 
1363 // Put on worklist all related field nodes.
1364 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1365   assert(field->is_oop(), "sanity");
1366   int offset = field->offset();
1367   add_uses_to_worklist(field);
1368   // Loop over all bases of this field and push on worklist Field nodes
1369   // with the same offset and base (since they may reference the same field).
1370   for (BaseIterator i(field); i.has_next(); i.next()) {
1371     PointsToNode* base = i.get();
1372     add_fields_to_worklist(field, base);
1373     // Check if the base was source object of arraycopy and go over arraycopy's
1374     // destination objects since values stored to a field of source object are
1375     // accessable by uses (loads) of fields of destination objects.
1376     if (base->arraycopy_src()) {
1377       for (UseIterator j(base); j.has_next(); j.next()) {
1378         PointsToNode* arycp = j.get();
1379         if (arycp->is_Arraycopy()) {
1380           for (UseIterator k(arycp); k.has_next(); k.next()) {
1381             PointsToNode* abase = k.get();
1382             if (abase->arraycopy_dst() && abase != base) {
1383               // Look for the same arracopy reference.
1384               add_fields_to_worklist(field, abase);
1385             }
1386           }
1387         }
1388       }
1389     }
1390   }
1391 }
1392 
1393 // Put on worklist all related field nodes.
1394 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1395   int offset = field->offset();
1396   if (base->is_LocalVar()) {
1397     for (UseIterator j(base); j.has_next(); j.next()) {
1398       PointsToNode* f = j.get();
1399       if (PointsToNode::is_base_use(f)) { // Field
1400         f = PointsToNode::get_use_node(f);
1401         if (f == field || !f->as_Field()->is_oop())
1402           continue;
1403         int offs = f->as_Field()->offset();
1404         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1405           add_to_worklist(f);
1406         }
1407       }
1408     }
1409   } else {
1410     assert(base->is_JavaObject(), "sanity");
1411     if (// Skip phantom_object since it is only used to indicate that
1412         // this field's content globally escapes.
1413         (base != phantom_obj) &&
1414         // NULL object node does not have fields.
1415         (base != null_obj)) {
1416       for (EdgeIterator i(base); i.has_next(); i.next()) {
1417         PointsToNode* f = i.get();
1418         // Skip arraycopy edge since store to destination object field
1419         // does not update value in source object field.
1420         if (f->is_Arraycopy()) {
1421           assert(base->arraycopy_dst(), "sanity");
1422           continue;
1423         }
1424         if (f == field || !f->as_Field()->is_oop())
1425           continue;
1426         int offs = f->as_Field()->offset();
1427         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1428           add_to_worklist(f);
1429         }
1430       }
1431     }
1432   }
1433 }
1434 
1435 // Find fields which have unknown value.
1436 int ConnectionGraph::find_field_value(FieldNode* field) {
1437   // Escaped fields should have init value already.
1438   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1439   int new_edges = 0;
1440   for (BaseIterator i(field); i.has_next(); i.next()) {
1441     PointsToNode* base = i.get();
1442     if (base->is_JavaObject()) {
1443       // Skip Allocate's fields which will be processed later.
1444       if (base->ideal_node()->is_Allocate())
1445         return 0;
1446       assert(base == null_obj, "only NULL ptr base expected here");
1447     }
1448   }
1449   if (add_edge(field, phantom_obj)) {
1450     // New edge was added
1451     new_edges++;
1452     add_field_uses_to_worklist(field);
1453   }
1454   return new_edges;
1455 }
1456 
1457 // Find fields initializing values for allocations.
1458 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1459   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1460   int new_edges = 0;
1461   Node* alloc = pta->ideal_node();
1462   if (init_val == phantom_obj) {
1463     // Do nothing for Allocate nodes since its fields values are "known".
1464     if (alloc->is_Allocate())
1465       return 0;
1466     assert(alloc->as_CallStaticJava(), "sanity");
1467 #ifdef ASSERT
1468     if (alloc->as_CallStaticJava()->method() == NULL) {
1469       const char* name = alloc->as_CallStaticJava()->_name;
1470       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1471     }
1472 #endif
1473     // Non-escaped allocation returned from Java or runtime call have
1474     // unknown values in fields.
1475     for (EdgeIterator i(pta); i.has_next(); i.next()) {
1476       PointsToNode* field = i.get();
1477       if (field->is_Field() && field->as_Field()->is_oop()) {
1478         if (add_edge(field, phantom_obj)) {
1479           // New edge was added
1480           new_edges++;
1481           add_field_uses_to_worklist(field->as_Field());
1482         }
1483       }
1484     }
1485     return new_edges;
1486   }
1487   assert(init_val == null_obj, "sanity");
1488   // Do nothing for Call nodes since its fields values are unknown.
1489   if (!alloc->is_Allocate())
1490     return 0;
1491 
1492   InitializeNode* ini = alloc->as_Allocate()->initialization();
1493   Compile* C = _compile;
1494   bool visited_bottom_offset = false;
1495   GrowableArray<int> offsets_worklist;
1496 
1497   // Check if an oop field's initializing value is recorded and add
1498   // a corresponding NULL if field's value if it is not recorded.
1499   // Connection Graph does not record a default initialization by NULL
1500   // captured by Initialize node.
1501   //
1502   for (EdgeIterator i(pta); i.has_next(); i.next()) {
1503     PointsToNode* field = i.get(); // Field (AddP)
1504     if (!field->is_Field() || !field->as_Field()->is_oop())
1505       continue; // Not oop field
1506     int offset = field->as_Field()->offset();
1507     if (offset == Type::OffsetBot) {
1508       if (!visited_bottom_offset) {
1509         // OffsetBot is used to reference array's element,
1510         // always add reference to NULL to all Field nodes since we don't
1511         // known which element is referenced.
1512         if (add_edge(field, null_obj)) {
1513           // New edge was added
1514           new_edges++;
1515           add_field_uses_to_worklist(field->as_Field());
1516           visited_bottom_offset = true;
1517         }
1518       }
1519     } else {
1520       // Check only oop fields.
1521       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
1522       if (adr_type->isa_rawptr()) {
1523 #ifdef ASSERT
1524         // Raw pointers are used for initializing stores so skip it
1525         // since it should be recorded already
1526         Node* base = get_addp_base(field->ideal_node());
1527         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1528                (base->in(0) == alloc),"unexpected pointer type");
1529 #endif
1530         continue;
1531       }
1532       if (!offsets_worklist.contains(offset)) {
1533         offsets_worklist.append(offset);
1534         Node* value = NULL;
1535         if (ini != NULL) {
1536           // StoreP::memory_type() == T_ADDRESS
1537           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
1538           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
1539           // Make sure initializing store has the same type as this AddP.
1540           // This AddP may reference non existing field because it is on a
1541           // dead branch of bimorphic call which is not eliminated yet.
1542           if (store != NULL && store->is_Store() &&
1543               store->as_Store()->memory_type() == ft) {
1544             value = store->in(MemNode::ValueIn);
1545 #ifdef ASSERT
1546             if (VerifyConnectionGraph) {
1547               // Verify that AddP already points to all objects the value points to.
1548               PointsToNode* val = ptnode_adr(value->_idx);
1549               assert((val != NULL), "should be processed already");
1550               PointsToNode* missed_obj = NULL;
1551               if (val->is_JavaObject()) {
1552                 if (!field->points_to(val->as_JavaObject())) {
1553                   missed_obj = val;
1554                 }
1555               } else {
1556                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
1557                   tty->print_cr("----------init store has invalid value -----");
1558                   store->dump();
1559                   val->dump();
1560                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
1561                 }
1562                 for (EdgeIterator j(val); j.has_next(); j.next()) {
1563                   PointsToNode* obj = j.get();
1564                   if (obj->is_JavaObject()) {
1565                     if (!field->points_to(obj->as_JavaObject())) {
1566                       missed_obj = obj;
1567                       break;
1568                     }
1569                   }
1570                 }
1571               }
1572               if (missed_obj != NULL) {
1573                 tty->print_cr("----------field---------------------------------");
1574                 field->dump();
1575                 tty->print_cr("----------missed referernce to object-----------");
1576                 missed_obj->dump();
1577                 tty->print_cr("----------object referernced by init store -----");
1578                 store->dump();
1579                 val->dump();
1580                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
1581               }
1582             }
1583 #endif
1584           } else {
1585             // There could be initializing stores which follow allocation.
1586             // For example, a volatile field store is not collected
1587             // by Initialize node.
1588             //
1589             // Need to check for dependent loads to separate such stores from
1590             // stores which follow loads. For now, add initial value NULL so
1591             // that compare pointers optimization works correctly.
1592           }
1593         }
1594         if (value == NULL) {
1595           // A field's initializing value was not recorded. Add NULL.
1596           if (add_edge(field, null_obj)) {
1597             // New edge was added
1598             new_edges++;
1599             add_field_uses_to_worklist(field->as_Field());
1600           }
1601         }
1602       }
1603     }
1604   }
1605   return new_edges;
1606 }
1607 
1608 // Adjust scalar_replaceable state after Connection Graph is built.
1609 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1610   // Search for non-escaping objects which are not scalar replaceable
1611   // and mark them to propagate the state to referenced objects.
1612 
1613   // 1. An object is not scalar replaceable if the field into which it is
1614   // stored has unknown offset (stored into unknown element of an array).
1615   //
1616   for (UseIterator i(jobj); i.has_next(); i.next()) {
1617     PointsToNode* use = i.get();
1618     assert(!use->is_Arraycopy(), "sanity");
1619     if (use->is_Field()) {
1620       FieldNode* field = use->as_Field();
1621       assert(field->is_oop() && field->scalar_replaceable() &&
1622              field->fields_escape_state() == PointsToNode::NoEscape, "sanity");
1623       if (field->offset() == Type::OffsetBot) {
1624         jobj->set_scalar_replaceable(false);
1625         return;
1626       }
1627       // 2. An object is not scalar replaceable if the field into which it is
1628       // stored has multiple bases one of which is null.
1629       if (field->base_count() > 1) {
1630         for (BaseIterator i(field); i.has_next(); i.next()) {
1631           PointsToNode* base = i.get();
1632           if (base == null_obj) {
1633             jobj->set_scalar_replaceable(false);
1634             return;
1635           }
1636         }
1637       }
1638     }
1639     assert(use->is_Field() || use->is_LocalVar(), "sanity");
1640     // 3. An object is not scalar replaceable if it is merged with other objects.
1641     for (EdgeIterator j(use); j.has_next(); j.next()) {
1642       PointsToNode* ptn = j.get();
1643       if (ptn->is_JavaObject() && ptn != jobj) {
1644         // Mark all objects.
1645         jobj->set_scalar_replaceable(false);
1646          ptn->set_scalar_replaceable(false);
1647       }
1648     }
1649     if (!jobj->scalar_replaceable()) {
1650       return;
1651     }
1652   }
1653 
1654   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1655     // Non-escaping object node should point only to field nodes.
1656     FieldNode* field = j.get()->as_Field();
1657     int offset = field->as_Field()->offset();
1658 
1659     // 4. An object is not scalar replaceable if it has a field with unknown
1660     // offset (array's element is accessed in loop).
1661     if (offset == Type::OffsetBot) {
1662       jobj->set_scalar_replaceable(false);
1663       return;
1664     }
1665     // 5. Currently an object is not scalar replaceable if a LoadStore node
1666     // access its field since the field value is unknown after it.
1667     //
1668     Node* n = field->ideal_node();
1669     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1670       if (n->fast_out(i)->is_LoadStore()) {
1671         jobj->set_scalar_replaceable(false);
1672         return;
1673       }
1674     }
1675 
1676     // 6. Or the address may point to more then one object. This may produce
1677     // the false positive result (set not scalar replaceable)
1678     // since the flow-insensitive escape analysis can't separate
1679     // the case when stores overwrite the field's value from the case
1680     // when stores happened on different control branches.
1681     //
1682     // Note: it will disable scalar replacement in some cases:
1683     //
1684     //    Point p[] = new Point[1];
1685     //    p[0] = new Point(); // Will be not scalar replaced
1686     //
1687     // but it will save us from incorrect optimizations in next cases:
1688     //
1689     //    Point p[] = new Point[1];
1690     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1691     //
1692     if (field->base_count() > 1) {
1693       for (BaseIterator i(field); i.has_next(); i.next()) {
1694         PointsToNode* base = i.get();
1695         // Don't take into account LocalVar nodes which
1696         // may point to only one object which should be also
1697         // this field's base by now.
1698         if (base->is_JavaObject() && base != jobj) {
1699           // Mark all bases.
1700           jobj->set_scalar_replaceable(false);
1701           base->set_scalar_replaceable(false);
1702         }
1703       }
1704     }
1705   }
1706 }
1707 
1708 #ifdef ASSERT
1709 void ConnectionGraph::verify_connection_graph(
1710                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1711                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1712                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1713                          GrowableArray<Node*>& addp_worklist) {
1714   // Verify that graph is complete - no new edges could be added.
1715   int java_objects_length = java_objects_worklist.length();
1716   int non_escaped_length  = non_escaped_worklist.length();
1717   int new_edges = 0;
1718   for (int next = 0; next < java_objects_length; ++next) {
1719     JavaObjectNode* ptn = java_objects_worklist.at(next);
1720     new_edges += add_java_object_edges(ptn, true);
1721   }
1722   assert(new_edges == 0, "graph was not complete");
1723   // Verify that escape state is final.
1724   int length = non_escaped_worklist.length();
1725   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1726   assert((non_escaped_length == non_escaped_worklist.length()) &&
1727          (non_escaped_length == length) &&
1728          (_worklist.length() == 0), "escape state was not final");
1729 
1730   // Verify fields information.
1731   int addp_length = addp_worklist.length();
1732   for (int next = 0; next < addp_length; ++next ) {
1733     Node* n = addp_worklist.at(next);
1734     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1735     if (field->is_oop()) {
1736       // Verify that field has all bases
1737       Node* base = get_addp_base(n);
1738       PointsToNode* ptn = ptnode_adr(base->_idx);
1739       if (ptn->is_JavaObject()) {
1740         assert(field->has_base(ptn->as_JavaObject()), "sanity");
1741       } else {
1742         assert(ptn->is_LocalVar(), "sanity");
1743         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1744           PointsToNode* e = i.get();
1745           if (e->is_JavaObject()) {
1746             assert(field->has_base(e->as_JavaObject()), "sanity");
1747           }
1748         }
1749       }
1750       // Verify that all fields have initializing values.
1751       if (field->edge_count() == 0) {
1752         tty->print_cr("----------field does not have references----------");
1753         field->dump();
1754         for (BaseIterator i(field); i.has_next(); i.next()) {
1755           PointsToNode* base = i.get();
1756           tty->print_cr("----------field has next base---------------------");
1757           base->dump();
1758           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
1759             tty->print_cr("----------base has fields-------------------------");
1760             for (EdgeIterator j(base); j.has_next(); j.next()) {
1761               j.get()->dump();
1762             }
1763             tty->print_cr("----------base has references---------------------");
1764             for (UseIterator j(base); j.has_next(); j.next()) {
1765               j.get()->dump();
1766             }
1767           }
1768         }
1769         for (UseIterator i(field); i.has_next(); i.next()) {
1770           i.get()->dump();
1771         }
1772         assert(field->edge_count() > 0, "sanity");
1773       }
1774     }
1775   }
1776 }
1777 #endif
1778 
1779 // Optimize ideal graph.
1780 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1781                                            GrowableArray<Node*>& storestore_worklist) {
1782   Compile* C = _compile;
1783   PhaseIterGVN* igvn = _igvn;
1784   if (EliminateLocks) {
1785     // Mark locks before changing ideal graph.
1786     int cnt = C->macro_count();
1787     for( int i=0; i < cnt; i++ ) {
1788       Node *n = C->macro_node(i);
1789       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1790         AbstractLockNode* alock = n->as_AbstractLock();
1791         if (!alock->is_non_esc_obj()) {
1792           if (not_global_escape(alock->obj_node())) {
1793             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1794             // The lock could be marked eliminated by lock coarsening
1795             // code during first IGVN before EA. Replace coarsened flag
1796             // to eliminate all associated locks/unlocks.
1797 #ifdef ASSERT
1798             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
1799 #endif
1800             alock->set_non_esc_obj();
1801           }
1802         }
1803       }
1804     }
1805   }
1806 
1807   if (OptimizePtrCompare) {
1808     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1809     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1810     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1811     // Optimize objects compare.
1812     while (ptr_cmp_worklist.length() != 0) {
1813       Node *n = ptr_cmp_worklist.pop();
1814       Node *res = optimize_ptr_compare(n);
1815       if (res != NULL) {
1816 #ifndef PRODUCT
1817         if (PrintOptimizePtrCompare) {
1818           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1819           if (Verbose) {
1820             n->dump(1);
1821           }
1822         }
1823 #endif
1824         igvn->replace_node(n, res);
1825       }
1826     }
1827     // cleanup
1828     if (_pcmp_neq->outcnt() == 0)
1829       igvn->hash_delete(_pcmp_neq);
1830     if (_pcmp_eq->outcnt()  == 0)
1831       igvn->hash_delete(_pcmp_eq);
1832   }
1833 
1834   // For MemBarStoreStore nodes added in library_call.cpp, check
1835   // escape status of associated AllocateNode and optimize out
1836   // MemBarStoreStore node if the allocated object never escapes.
1837   while (storestore_worklist.length() != 0) {
1838     Node *n = storestore_worklist.pop();
1839     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1840     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1841     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1842     if (not_global_escape(alloc)) {
1843       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1844       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1845       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1846       igvn->register_new_node_with_optimizer(mb);
1847       igvn->replace_node(storestore, mb);
1848     }
1849   }
1850 }
1851 
1852 // Optimize objects compare.
1853 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1854   assert(OptimizePtrCompare, "sanity");
1855   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1856   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1857   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1858   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1859   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1860   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1861 
1862   // Check simple cases first.
1863   if (jobj1 != NULL) {
1864     if (jobj1->escape_state() == PointsToNode::NoEscape) {
1865       if (jobj1 == jobj2) {
1866         // Comparing the same not escaping object.
1867         return _pcmp_eq;
1868       }
1869       Node* obj = jobj1->ideal_node();
1870       // Comparing not escaping allocation.
1871       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1872           !ptn2->points_to(jobj1)) {
1873         return _pcmp_neq; // This includes nullness check.
1874       }
1875     }
1876   }
1877   if (jobj2 != NULL) {
1878     if (jobj2->escape_state() == PointsToNode::NoEscape) {
1879       Node* obj = jobj2->ideal_node();
1880       // Comparing not escaping allocation.
1881       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1882           !ptn1->points_to(jobj2)) {
1883         return _pcmp_neq; // This includes nullness check.
1884       }
1885     }
1886   }
1887   if (jobj1 != NULL && jobj1 != phantom_obj &&
1888       jobj2 != NULL && jobj2 != phantom_obj &&
1889       jobj1->ideal_node()->is_Con() &&
1890       jobj2->ideal_node()->is_Con()) {
1891     // Klass or String constants compare. Need to be careful with
1892     // compressed pointers - compare types of ConN and ConP instead of nodes.
1893     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
1894     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
1895     if (t1->make_ptr() == t2->make_ptr()) {
1896       return _pcmp_eq;
1897     } else {
1898       return _pcmp_neq;
1899     }
1900   }
1901   if (ptn1->meet(ptn2)) {
1902     return NULL; // Sets are not disjoint
1903   }
1904 
1905   // Sets are disjoint.
1906   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1907   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1908   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
1909   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
1910   if (set1_has_unknown_ptr && set2_has_null_ptr ||
1911       set2_has_unknown_ptr && set1_has_null_ptr) {
1912     // Check nullness of unknown object.
1913     return NULL;
1914   }
1915 
1916   // Disjointness by itself is not sufficient since
1917   // alias analysis is not complete for escaped objects.
1918   // Disjoint sets are definitely unrelated only when
1919   // at least one set has only not escaping allocations.
1920   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
1921     if (ptn1->non_escaping_allocation()) {
1922       return _pcmp_neq;
1923     }
1924   }
1925   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
1926     if (ptn2->non_escaping_allocation()) {
1927       return _pcmp_neq;
1928     }
1929   }
1930   return NULL;
1931 }
1932 
1933 // Connection Graph constuction functions.
1934 
1935 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
1936   PointsToNode* ptadr = _nodes.at(n->_idx);
1937   if (ptadr != NULL) {
1938     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
1939     return;
1940   }
1941   Compile* C = _compile;
1942   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
1943   _nodes.at_put(n->_idx, ptadr);
1944 }
1945 
1946 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
1947   PointsToNode* ptadr = _nodes.at(n->_idx);
1948   if (ptadr != NULL) {
1949     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
1950     return;
1951   }
1952   Compile* C = _compile;
1953   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
1954   _nodes.at_put(n->_idx, ptadr);
1955 }
1956 
1957 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
1958   PointsToNode* ptadr = _nodes.at(n->_idx);
1959   if (ptadr != NULL) {
1960     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
1961     return;
1962   }
1963   bool unsafe = false;
1964   bool is_oop = is_oop_field(n, offset, &unsafe);
1965   if (unsafe) {
1966     es = PointsToNode::GlobalEscape;
1967   }
1968   Compile* C = _compile;
1969   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
1970   _nodes.at_put(n->_idx, field);
1971 }
1972 
1973 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
1974                                     PointsToNode* src, PointsToNode* dst) {
1975   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
1976   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
1977   PointsToNode* ptadr = _nodes.at(n->_idx);
1978   if (ptadr != NULL) {
1979     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
1980     return;
1981   }
1982   Compile* C = _compile;
1983   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
1984   _nodes.at_put(n->_idx, ptadr);
1985   // Add edge from arraycopy node to source object.
1986   (void)add_edge(ptadr, src);
1987   src->set_arraycopy_src();
1988   // Add edge from destination object to arraycopy node.
1989   (void)add_edge(dst, ptadr);
1990   dst->set_arraycopy_dst();
1991 }
1992 
1993 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
1994   const Type* adr_type = n->as_AddP()->bottom_type();
1995   BasicType bt = T_INT;
1996   if (offset == Type::OffsetBot) {
1997     // Check only oop fields.
1998     if (!adr_type->isa_aryptr() ||
1999         (adr_type->isa_aryptr()->klass() == NULL) ||
2000          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
2001       // OffsetBot is used to reference array's element. Ignore first AddP.
2002       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
2003         bt = T_OBJECT;
2004       }
2005     }
2006   } else if (offset != oopDesc::klass_offset_in_bytes()) {
2007     if (adr_type->isa_instptr()) {
2008       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
2009       if (field != NULL) {
2010         bt = field->layout_type();
2011       } else {
2012         // Check for unsafe oop field access
2013         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2014           int opcode = n->fast_out(i)->Opcode();
2015           if (opcode == Op_StoreP || opcode == Op_LoadP ||
2016               opcode == Op_StoreN || opcode == Op_LoadN) {
2017             bt = T_OBJECT;
2018             (*unsafe) = true;
2019             break;
2020           }
2021         }
2022       }
2023     } else if (adr_type->isa_aryptr()) {
2024       if (offset == arrayOopDesc::length_offset_in_bytes()) {
2025         // Ignore array length load.
2026       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
2027         // Ignore first AddP.
2028       } else {
2029         const Type* elemtype = adr_type->isa_aryptr()->elem();
2030         bt = elemtype->array_element_basic_type();
2031       }
2032     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
2033       // Allocation initialization, ThreadLocal field access, unsafe access
2034       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2035         int opcode = n->fast_out(i)->Opcode();
2036         if (opcode == Op_StoreP || opcode == Op_LoadP ||
2037             opcode == Op_StoreN || opcode == Op_LoadN) {
2038           bt = T_OBJECT;
2039           break;
2040         }
2041       }
2042     }
2043   }
2044   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
2045 }
2046 
2047 // Returns unique pointed java object or NULL.
2048 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
2049   assert(!_collecting, "should not call when contructed graph");
2050   // If the node was created after the escape computation we can't answer.
2051   uint idx = n->_idx;
2052   if (idx >= nodes_size()) {
2053     return NULL;
2054   }
2055   PointsToNode* ptn = ptnode_adr(idx);
2056   if (ptn->is_JavaObject()) {
2057     return ptn->as_JavaObject();
2058   }
2059   assert(ptn->is_LocalVar(), "sanity");
2060   // Check all java objects it points to.
2061   JavaObjectNode* jobj = NULL;
2062   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2063     PointsToNode* e = i.get();
2064     if (e->is_JavaObject()) {
2065       if (jobj == NULL) {
2066         jobj = e->as_JavaObject();
2067       } else if (jobj != e) {
2068         return NULL;
2069       }
2070     }
2071   }
2072   return jobj;
2073 }
2074 
2075 // Return true if this node points only to non-escaping allocations.
2076 bool PointsToNode::non_escaping_allocation() {
2077   if (is_JavaObject()) {
2078     Node* n = ideal_node();
2079     if (n->is_Allocate() || n->is_CallStaticJava()) {
2080       return (escape_state() == PointsToNode::NoEscape);
2081     } else {
2082       return false;
2083     }
2084   }
2085   assert(is_LocalVar(), "sanity");
2086   // Check all java objects it points to.
2087   for (EdgeIterator i(this); i.has_next(); i.next()) {
2088     PointsToNode* e = i.get();
2089     if (e->is_JavaObject()) {
2090       Node* n = e->ideal_node();
2091       if ((e->escape_state() != PointsToNode::NoEscape) ||
2092           !(n->is_Allocate() || n->is_CallStaticJava())) {
2093         return false;
2094       }
2095     }
2096   }
2097   return true;
2098 }
2099 
2100 // Return true if we know the node does not escape globally.
2101 bool ConnectionGraph::not_global_escape(Node *n) {
2102   assert(!_collecting, "should not call during graph construction");
2103   // If the node was created after the escape computation we can't answer.
2104   uint idx = n->_idx;
2105   if (idx >= nodes_size()) {
2106     return false;
2107   }
2108   PointsToNode* ptn = ptnode_adr(idx);
2109   PointsToNode::EscapeState es = ptn->escape_state();
2110   // If we have already computed a value, return it.
2111   if (es >= PointsToNode::GlobalEscape)
2112     return false;
2113   if (ptn->is_JavaObject()) {
2114     return true; // (es < PointsToNode::GlobalEscape);
2115   }
2116   assert(ptn->is_LocalVar(), "sanity");
2117   // Check all java objects it points to.
2118   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2119     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
2120       return false;
2121   }
2122   return true;
2123 }
2124 
2125 
2126 // Helper functions
2127 
2128 // Return true if this node points to specified node or nodes it points to.
2129 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
2130   if (is_JavaObject()) {
2131     return (this == ptn);
2132   }
2133   assert(is_LocalVar() || is_Field(), "sanity");
2134   for (EdgeIterator i(this); i.has_next(); i.next()) {
2135     if (i.get() == ptn)
2136       return true;
2137   }
2138   return false;
2139 }
2140 
2141 // Return true if one node points to an other.
2142 bool PointsToNode::meet(PointsToNode* ptn) {
2143   if (this == ptn) {
2144     return true;
2145   } else if (ptn->is_JavaObject()) {
2146     return this->points_to(ptn->as_JavaObject());
2147   } else if (this->is_JavaObject()) {
2148     return ptn->points_to(this->as_JavaObject());
2149   }
2150   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
2151   int ptn_count =  ptn->edge_count();
2152   for (EdgeIterator i(this); i.has_next(); i.next()) {
2153     PointsToNode* this_e = i.get();
2154     for (int j = 0; j < ptn_count; j++) {
2155       if (this_e == ptn->edge(j))
2156         return true;
2157     }
2158   }
2159   return false;
2160 }
2161 
2162 #ifdef ASSERT
2163 // Return true if bases point to this java object.
2164 bool FieldNode::has_base(JavaObjectNode* jobj) const {
2165   for (BaseIterator i(this); i.has_next(); i.next()) {
2166     if (i.get() == jobj)
2167       return true;
2168   }
2169   return false;
2170 }
2171 #endif
2172 
2173 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2174   const Type *adr_type = phase->type(adr);
2175   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
2176       adr->in(AddPNode::Address)->is_Proj() &&
2177       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2178     // We are computing a raw address for a store captured by an Initialize
2179     // compute an appropriate address type. AddP cases #3 and #5 (see below).
2180     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2181     assert(offs != Type::OffsetBot ||
2182            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2183            "offset must be a constant or it is initialization of array");
2184     return offs;
2185   }
2186   const TypePtr *t_ptr = adr_type->isa_ptr();
2187   assert(t_ptr != NULL, "must be a pointer type");
2188   return t_ptr->offset();
2189 }
2190 
2191 Node* ConnectionGraph::get_addp_base(Node *addp) {
2192   assert(addp->is_AddP(), "must be AddP");
2193   //
2194   // AddP cases for Base and Address inputs:
2195   // case #1. Direct object's field reference:
2196   //     Allocate
2197   //       |
2198   //     Proj #5 ( oop result )
2199   //       |
2200   //     CheckCastPP (cast to instance type)
2201   //      | |
2202   //     AddP  ( base == address )
2203   //
2204   // case #2. Indirect object's field reference:
2205   //      Phi
2206   //       |
2207   //     CastPP (cast to instance type)
2208   //      | |
2209   //     AddP  ( base == address )
2210   //
2211   // case #3. Raw object's field reference for Initialize node:
2212   //      Allocate
2213   //        |
2214   //      Proj #5 ( oop result )
2215   //  top   |
2216   //     \  |
2217   //     AddP  ( base == top )
2218   //
2219   // case #4. Array's element reference:
2220   //   {CheckCastPP | CastPP}
2221   //     |  | |
2222   //     |  AddP ( array's element offset )
2223   //     |  |
2224   //     AddP ( array's offset )
2225   //
2226   // case #5. Raw object's field reference for arraycopy stub call:
2227   //          The inline_native_clone() case when the arraycopy stub is called
2228   //          after the allocation before Initialize and CheckCastPP nodes.
2229   //      Allocate
2230   //        |
2231   //      Proj #5 ( oop result )
2232   //       | |
2233   //       AddP  ( base == address )
2234   //
2235   // case #6. Constant Pool, ThreadLocal, CastX2P or
2236   //          Raw object's field reference:
2237   //      {ConP, ThreadLocal, CastX2P, raw Load}
2238   //  top   |
2239   //     \  |
2240   //     AddP  ( base == top )
2241   //
2242   // case #7. Klass's field reference.
2243   //      LoadKlass
2244   //       | |
2245   //       AddP  ( base == address )
2246   //
2247   // case #8. narrow Klass's field reference.
2248   //      LoadNKlass
2249   //       |
2250   //      DecodeN
2251   //       | |
2252   //       AddP  ( base == address )
2253   //
2254   Node *base = addp->in(AddPNode::Base);
2255   if (base->uncast()->is_top()) { // The AddP case #3 and #6.
2256     base = addp->in(AddPNode::Address);
2257     while (base->is_AddP()) {
2258       // Case #6 (unsafe access) may have several chained AddP nodes.
2259       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2260       base = base->in(AddPNode::Address);
2261     }
2262     Node* uncast_base = base->uncast();
2263     int opcode = uncast_base->Opcode();
2264     assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2265            opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
2266            (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
2267            (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
2268   }
2269   return base;
2270 }
2271 
2272 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2273   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2274   Node* addp2 = addp->raw_out(0);
2275   if (addp->outcnt() == 1 && addp2->is_AddP() &&
2276       addp2->in(AddPNode::Base) == n &&
2277       addp2->in(AddPNode::Address) == addp) {
2278     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2279     //
2280     // Find array's offset to push it on worklist first and
2281     // as result process an array's element offset first (pushed second)
2282     // to avoid CastPP for the array's offset.
2283     // Otherwise the inserted CastPP (LocalVar) will point to what
2284     // the AddP (Field) points to. Which would be wrong since
2285     // the algorithm expects the CastPP has the same point as
2286     // as AddP's base CheckCastPP (LocalVar).
2287     //
2288     //    ArrayAllocation
2289     //     |
2290     //    CheckCastPP
2291     //     |
2292     //    memProj (from ArrayAllocation CheckCastPP)
2293     //     |  ||
2294     //     |  ||   Int (element index)
2295     //     |  ||    |   ConI (log(element size))
2296     //     |  ||    |   /
2297     //     |  ||   LShift
2298     //     |  ||  /
2299     //     |  AddP (array's element offset)
2300     //     |  |
2301     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
2302     //     | / /
2303     //     AddP (array's offset)
2304     //      |
2305     //     Load/Store (memory operation on array's element)
2306     //
2307     return addp2;
2308   }
2309   return NULL;
2310 }
2311 
2312 //
2313 // Adjust the type and inputs of an AddP which computes the
2314 // address of a field of an instance
2315 //
2316 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2317   PhaseGVN* igvn = _igvn;
2318   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2319   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2320   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2321   if (t == NULL) {
2322     // We are computing a raw address for a store captured by an Initialize
2323     // compute an appropriate address type (cases #3 and #5).
2324     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2325     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2326     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2327     assert(offs != Type::OffsetBot, "offset must be a constant");
2328     t = base_t->add_offset(offs)->is_oopptr();
2329   }
2330   int inst_id =  base_t->instance_id();
2331   assert(!t->is_known_instance() || t->instance_id() == inst_id,
2332                              "old type must be non-instance or match new type");
2333 
2334   // The type 't' could be subclass of 'base_t'.
2335   // As result t->offset() could be large then base_t's size and it will
2336   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2337   // constructor verifies correctness of the offset.
2338   //
2339   // It could happened on subclass's branch (from the type profiling
2340   // inlining) which was not eliminated during parsing since the exactness
2341   // of the allocation type was not propagated to the subclass type check.
2342   //
2343   // Or the type 't' could be not related to 'base_t' at all.
2344   // It could happened when CHA type is different from MDO type on a dead path
2345   // (for example, from instanceof check) which is not collapsed during parsing.
2346   //
2347   // Do nothing for such AddP node and don't process its users since
2348   // this code branch will go away.
2349   //
2350   if (!t->is_known_instance() &&
2351       !base_t->klass()->is_subtype_of(t->klass())) {
2352      return false; // bail out
2353   }
2354   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
2355   // Do NOT remove the next line: ensure a new alias index is allocated
2356   // for the instance type. Note: C++ will not remove it since the call
2357   // has side effect.
2358   int alias_idx = _compile->get_alias_index(tinst);
2359   igvn->set_type(addp, tinst);
2360   // record the allocation in the node map
2361   set_map(addp, get_map(base->_idx));
2362   // Set addp's Base and Address to 'base'.
2363   Node *abase = addp->in(AddPNode::Base);
2364   Node *adr   = addp->in(AddPNode::Address);
2365   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2366       adr->in(0)->_idx == (uint)inst_id) {
2367     // Skip AddP cases #3 and #5.
2368   } else {
2369     assert(!abase->is_top(), "sanity"); // AddP case #3
2370     if (abase != base) {
2371       igvn->hash_delete(addp);
2372       addp->set_req(AddPNode::Base, base);
2373       if (abase == adr) {
2374         addp->set_req(AddPNode::Address, base);
2375       } else {
2376         // AddP case #4 (adr is array's element offset AddP node)
2377 #ifdef ASSERT
2378         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2379         assert(adr->is_AddP() && atype != NULL &&
2380                atype->instance_id() == inst_id, "array's element offset should be processed first");
2381 #endif
2382       }
2383       igvn->hash_insert(addp);
2384     }
2385   }
2386   // Put on IGVN worklist since at least addp's type was changed above.
2387   record_for_optimizer(addp);
2388   return true;
2389 }
2390 
2391 //
2392 // Create a new version of orig_phi if necessary. Returns either the newly
2393 // created phi or an existing phi.  Sets create_new to indicate whether a new
2394 // phi was created.  Cache the last newly created phi in the node map.
2395 //
2396 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
2397   Compile *C = _compile;
2398   PhaseGVN* igvn = _igvn;
2399   new_created = false;
2400   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2401   // nothing to do if orig_phi is bottom memory or matches alias_idx
2402   if (phi_alias_idx == alias_idx) {
2403     return orig_phi;
2404   }
2405   // Have we recently created a Phi for this alias index?
2406   PhiNode *result = get_map_phi(orig_phi->_idx);
2407   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2408     return result;
2409   }
2410   // Previous check may fail when the same wide memory Phi was split into Phis
2411   // for different memory slices. Search all Phis for this region.
2412   if (result != NULL) {
2413     Node* region = orig_phi->in(0);
2414     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2415       Node* phi = region->fast_out(i);
2416       if (phi->is_Phi() &&
2417           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2418         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2419         return phi->as_Phi();
2420       }
2421     }
2422   }
2423   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
2424     if (C->do_escape_analysis() == true && !C->failing()) {
2425       // Retry compilation without escape analysis.
2426       // If this is the first failure, the sentinel string will "stick"
2427       // to the Compile object, and the C2Compiler will see it and retry.
2428       C->record_failure(C2Compiler::retry_no_escape_analysis());
2429     }
2430     return NULL;
2431   }
2432   orig_phi_worklist.append_if_missing(orig_phi);
2433   const TypePtr *atype = C->get_adr_type(alias_idx);
2434   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2435   C->copy_node_notes_to(result, orig_phi);
2436   igvn->set_type(result, result->bottom_type());
2437   record_for_optimizer(result);
2438   set_map(orig_phi, result);
2439   new_created = true;
2440   return result;
2441 }
2442 
2443 //
2444 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2445 // specified alias index.
2446 //
2447 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
2448   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2449   Compile *C = _compile;
2450   PhaseGVN* igvn = _igvn;
2451   bool new_phi_created;
2452   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2453   if (!new_phi_created) {
2454     return result;
2455   }
2456   GrowableArray<PhiNode *>  phi_list;
2457   GrowableArray<uint>  cur_input;
2458   PhiNode *phi = orig_phi;
2459   uint idx = 1;
2460   bool finished = false;
2461   while(!finished) {
2462     while (idx < phi->req()) {
2463       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2464       if (mem != NULL && mem->is_Phi()) {
2465         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2466         if (new_phi_created) {
2467           // found an phi for which we created a new split, push current one on worklist and begin
2468           // processing new one
2469           phi_list.push(phi);
2470           cur_input.push(idx);
2471           phi = mem->as_Phi();
2472           result = newphi;
2473           idx = 1;
2474           continue;
2475         } else {
2476           mem = newphi;
2477         }
2478       }
2479       if (C->failing()) {
2480         return NULL;
2481       }
2482       result->set_req(idx++, mem);
2483     }
2484 #ifdef ASSERT
2485     // verify that the new Phi has an input for each input of the original
2486     assert( phi->req() == result->req(), "must have same number of inputs.");
2487     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2488 #endif
2489     // Check if all new phi's inputs have specified alias index.
2490     // Otherwise use old phi.
2491     for (uint i = 1; i < phi->req(); i++) {
2492       Node* in = result->in(i);
2493       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2494     }
2495     // we have finished processing a Phi, see if there are any more to do
2496     finished = (phi_list.length() == 0 );
2497     if (!finished) {
2498       phi = phi_list.pop();
2499       idx = cur_input.pop();
2500       PhiNode *prev_result = get_map_phi(phi->_idx);
2501       prev_result->set_req(idx++, result);
2502       result = prev_result;
2503     }
2504   }
2505   return result;
2506 }
2507 
2508 //
2509 // The next methods are derived from methods in MemNode.
2510 //
2511 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2512   Node *mem = mmem;
2513   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2514   // means an array I have not precisely typed yet.  Do not do any
2515   // alias stuff with it any time soon.
2516   if (toop->base() != Type::AnyPtr &&
2517       !(toop->klass() != NULL &&
2518         toop->klass()->is_java_lang_Object() &&
2519         toop->offset() == Type::OffsetBot)) {
2520     mem = mmem->memory_at(alias_idx);
2521     // Update input if it is progress over what we have now
2522   }
2523   return mem;
2524 }
2525 
2526 //
2527 // Move memory users to their memory slices.
2528 //
2529 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
2530   Compile* C = _compile;
2531   PhaseGVN* igvn = _igvn;
2532   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2533   assert(tp != NULL, "ptr type");
2534   int alias_idx = C->get_alias_index(tp);
2535   int general_idx = C->get_general_index(alias_idx);
2536 
2537   // Move users first
2538   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2539     Node* use = n->fast_out(i);
2540     if (use->is_MergeMem()) {
2541       MergeMemNode* mmem = use->as_MergeMem();
2542       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2543       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2544         continue; // Nothing to do
2545       }
2546       // Replace previous general reference to mem node.
2547       uint orig_uniq = C->unique();
2548       Node* m = find_inst_mem(n, general_idx, orig_phis);
2549       assert(orig_uniq == C->unique(), "no new nodes");
2550       mmem->set_memory_at(general_idx, m);
2551       --imax;
2552       --i;
2553     } else if (use->is_MemBar()) {
2554       assert(!use->is_Initialize(), "initializing stores should not be moved");
2555       if (use->req() > MemBarNode::Precedent &&
2556           use->in(MemBarNode::Precedent) == n) {
2557         // Don't move related membars.
2558         record_for_optimizer(use);
2559         continue;
2560       }
2561       tp = use->as_MemBar()->adr_type()->isa_ptr();
2562       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
2563           alias_idx == general_idx) {
2564         continue; // Nothing to do
2565       }
2566       // Move to general memory slice.
2567       uint orig_uniq = C->unique();
2568       Node* m = find_inst_mem(n, general_idx, orig_phis);
2569       assert(orig_uniq == C->unique(), "no new nodes");
2570       igvn->hash_delete(use);
2571       imax -= use->replace_edge(n, m);
2572       igvn->hash_insert(use);
2573       record_for_optimizer(use);
2574       --i;
2575 #ifdef ASSERT
2576     } else if (use->is_Mem()) {
2577       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2578         // Don't move related cardmark.
2579         continue;
2580       }
2581       // Memory nodes should have new memory input.
2582       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2583       assert(tp != NULL, "ptr type");
2584       int idx = C->get_alias_index(tp);
2585       assert(get_map(use->_idx) != NULL || idx == alias_idx,
2586              "Following memory nodes should have new memory input or be on the same memory slice");
2587     } else if (use->is_Phi()) {
2588       // Phi nodes should be split and moved already.
2589       tp = use->as_Phi()->adr_type()->isa_ptr();
2590       assert(tp != NULL, "ptr type");
2591       int idx = C->get_alias_index(tp);
2592       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2593     } else {
2594       use->dump();
2595       assert(false, "should not be here");
2596 #endif
2597     }
2598   }
2599 }
2600 
2601 //
2602 // Search memory chain of "mem" to find a MemNode whose address
2603 // is the specified alias index.
2604 //
2605 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
2606   if (orig_mem == NULL)
2607     return orig_mem;
2608   Compile* C = _compile;
2609   PhaseGVN* igvn = _igvn;
2610   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2611   bool is_instance = (toop != NULL) && toop->is_known_instance();
2612   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
2613   Node *prev = NULL;
2614   Node *result = orig_mem;
2615   while (prev != result) {
2616     prev = result;
2617     if (result == start_mem)
2618       break;  // hit one of our sentinels
2619     if (result->is_Mem()) {
2620       const Type *at = igvn->type(result->in(MemNode::Address));
2621       if (at == Type::TOP)
2622         break; // Dead
2623       assert (at->isa_ptr() != NULL, "pointer type required.");
2624       int idx = C->get_alias_index(at->is_ptr());
2625       if (idx == alias_idx)
2626         break; // Found
2627       if (!is_instance && (at->isa_oopptr() == NULL ||
2628                            !at->is_oopptr()->is_known_instance())) {
2629         break; // Do not skip store to general memory slice.
2630       }
2631       result = result->in(MemNode::Memory);
2632     }
2633     if (!is_instance)
2634       continue;  // don't search further for non-instance types
2635     // skip over a call which does not affect this memory slice
2636     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2637       Node *proj_in = result->in(0);
2638       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2639         break;  // hit one of our sentinels
2640       } else if (proj_in->is_Call()) {
2641         CallNode *call = proj_in->as_Call();
2642         if (!call->may_modify(toop, igvn)) {
2643           result = call->in(TypeFunc::Memory);
2644         }
2645       } else if (proj_in->is_Initialize()) {
2646         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2647         // Stop if this is the initialization for the object instance which
2648         // which contains this memory slice, otherwise skip over it.
2649         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2650           result = proj_in->in(TypeFunc::Memory);
2651         }
2652       } else if (proj_in->is_MemBar()) {
2653         result = proj_in->in(TypeFunc::Memory);
2654       }
2655     } else if (result->is_MergeMem()) {
2656       MergeMemNode *mmem = result->as_MergeMem();
2657       result = step_through_mergemem(mmem, alias_idx, toop);
2658       if (result == mmem->base_memory()) {
2659         // Didn't find instance memory, search through general slice recursively.
2660         result = mmem->memory_at(C->get_general_index(alias_idx));
2661         result = find_inst_mem(result, alias_idx, orig_phis);
2662         if (C->failing()) {
2663           return NULL;
2664         }
2665         mmem->set_memory_at(alias_idx, result);
2666       }
2667     } else if (result->is_Phi() &&
2668                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2669       Node *un = result->as_Phi()->unique_input(igvn);
2670       if (un != NULL) {
2671         orig_phis.append_if_missing(result->as_Phi());
2672         result = un;
2673       } else {
2674         break;
2675       }
2676     } else if (result->is_ClearArray()) {
2677       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2678         // Can not bypass initialization of the instance
2679         // we are looking for.
2680         break;
2681       }
2682       // Otherwise skip it (the call updated 'result' value).
2683     } else if (result->Opcode() == Op_SCMemProj) {
2684       Node* mem = result->in(0);
2685       Node* adr = NULL;
2686       if (mem->is_LoadStore()) {
2687         adr = mem->in(MemNode::Address);
2688       } else {
2689         assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
2690         adr = mem->in(3); // Memory edge corresponds to destination array
2691       }
2692       const Type *at = igvn->type(adr);
2693       if (at != Type::TOP) {
2694         assert (at->isa_ptr() != NULL, "pointer type required.");
2695         int idx = C->get_alias_index(at->is_ptr());
2696         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
2697         break;
2698       }
2699       result = mem->in(MemNode::Memory);
2700     }
2701   }
2702   if (result->is_Phi()) {
2703     PhiNode *mphi = result->as_Phi();
2704     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2705     const TypePtr *t = mphi->adr_type();
2706     if (!is_instance) {
2707       // Push all non-instance Phis on the orig_phis worklist to update inputs
2708       // during Phase 4 if needed.
2709       orig_phis.append_if_missing(mphi);
2710     } else if (C->get_alias_index(t) != alias_idx) {
2711       // Create a new Phi with the specified alias index type.
2712       result = split_memory_phi(mphi, alias_idx, orig_phis);
2713     }
2714   }
2715   // the result is either MemNode, PhiNode, InitializeNode.
2716   return result;
2717 }
2718 
2719 //
2720 //  Convert the types of unescaped object to instance types where possible,
2721 //  propagate the new type information through the graph, and update memory
2722 //  edges and MergeMem inputs to reflect the new type.
2723 //
2724 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
2725 //  The processing is done in 4 phases:
2726 //
2727 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
2728 //            types for the CheckCastPP for allocations where possible.
2729 //            Propagate the the new types through users as follows:
2730 //               casts and Phi:  push users on alloc_worklist
2731 //               AddP:  cast Base and Address inputs to the instance type
2732 //                      push any AddP users on alloc_worklist and push any memnode
2733 //                      users onto memnode_worklist.
2734 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2735 //            search the Memory chain for a store with the appropriate type
2736 //            address type.  If a Phi is found, create a new version with
2737 //            the appropriate memory slices from each of the Phi inputs.
2738 //            For stores, process the users as follows:
2739 //               MemNode:  push on memnode_worklist
2740 //               MergeMem: push on mergemem_worklist
2741 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
2742 //            moving the first node encountered of each  instance type to the
2743 //            the input corresponding to its alias index.
2744 //            appropriate memory slice.
2745 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2746 //
2747 // In the following example, the CheckCastPP nodes are the cast of allocation
2748 // results and the allocation of node 29 is unescaped and eligible to be an
2749 // instance type.
2750 //
2751 // We start with:
2752 //
2753 //     7 Parm #memory
2754 //    10  ConI  "12"
2755 //    19  CheckCastPP   "Foo"
2756 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2757 //    29  CheckCastPP   "Foo"
2758 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
2759 //
2760 //    40  StoreP  25   7  20   ... alias_index=4
2761 //    50  StoreP  35  40  30   ... alias_index=4
2762 //    60  StoreP  45  50  20   ... alias_index=4
2763 //    70  LoadP    _  60  30   ... alias_index=4
2764 //    80  Phi     75  50  60   Memory alias_index=4
2765 //    90  LoadP    _  80  30   ... alias_index=4
2766 //   100  LoadP    _  80  20   ... alias_index=4
2767 //
2768 //
2769 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2770 // and creating a new alias index for node 30.  This gives:
2771 //
2772 //     7 Parm #memory
2773 //    10  ConI  "12"
2774 //    19  CheckCastPP   "Foo"
2775 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2776 //    29  CheckCastPP   "Foo"  iid=24
2777 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2778 //
2779 //    40  StoreP  25   7  20   ... alias_index=4
2780 //    50  StoreP  35  40  30   ... alias_index=6
2781 //    60  StoreP  45  50  20   ... alias_index=4
2782 //    70  LoadP    _  60  30   ... alias_index=6
2783 //    80  Phi     75  50  60   Memory alias_index=4
2784 //    90  LoadP    _  80  30   ... alias_index=6
2785 //   100  LoadP    _  80  20   ... alias_index=4
2786 //
2787 // In phase 2, new memory inputs are computed for the loads and stores,
2788 // And a new version of the phi is created.  In phase 4, the inputs to
2789 // node 80 are updated and then the memory nodes are updated with the
2790 // values computed in phase 2.  This results in:
2791 //
2792 //     7 Parm #memory
2793 //    10  ConI  "12"
2794 //    19  CheckCastPP   "Foo"
2795 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2796 //    29  CheckCastPP   "Foo"  iid=24
2797 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2798 //
2799 //    40  StoreP  25  7   20   ... alias_index=4
2800 //    50  StoreP  35  7   30   ... alias_index=6
2801 //    60  StoreP  45  40  20   ... alias_index=4
2802 //    70  LoadP    _  50  30   ... alias_index=6
2803 //    80  Phi     75  40  60   Memory alias_index=4
2804 //   120  Phi     75  50  50   Memory alias_index=6
2805 //    90  LoadP    _ 120  30   ... alias_index=6
2806 //   100  LoadP    _  80  20   ... alias_index=4
2807 //
2808 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
2809   GrowableArray<Node *>  memnode_worklist;
2810   GrowableArray<PhiNode *>  orig_phis;
2811   PhaseIterGVN  *igvn = _igvn;
2812   uint new_index_start = (uint) _compile->num_alias_types();
2813   Arena* arena = Thread::current()->resource_area();
2814   VectorSet visited(arena);
2815   ideal_nodes.clear(); // Reset for use with set_map/get_map.
2816   uint unique_old = _compile->unique();
2817 
2818   //  Phase 1:  Process possible allocations from alloc_worklist.
2819   //  Create instance types for the CheckCastPP for allocations where possible.
2820   //
2821   // (Note: don't forget to change the order of the second AddP node on
2822   //  the alloc_worklist if the order of the worklist processing is changed,
2823   //  see the comment in find_second_addp().)
2824   //
2825   while (alloc_worklist.length() != 0) {
2826     Node *n = alloc_worklist.pop();
2827     uint ni = n->_idx;
2828     if (n->is_Call()) {
2829       CallNode *alloc = n->as_Call();
2830       // copy escape information to call node
2831       PointsToNode* ptn = ptnode_adr(alloc->_idx);
2832       PointsToNode::EscapeState es = ptn->escape_state();
2833       // We have an allocation or call which returns a Java object,
2834       // see if it is unescaped.
2835       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2836         continue;
2837       // Find CheckCastPP for the allocate or for the return value of a call
2838       n = alloc->result_cast();
2839       if (n == NULL) {            // No uses except Initialize node
2840         if (alloc->is_Allocate()) {
2841           // Set the scalar_replaceable flag for allocation
2842           // so it could be eliminated if it has no uses.
2843           alloc->as_Allocate()->_is_scalar_replaceable = true;
2844         }
2845         if (alloc->is_CallStaticJava()) {
2846           // Set the scalar_replaceable flag for boxing method
2847           // so it could be eliminated if it has no uses.
2848           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2849         }
2850         continue;
2851       }
2852       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2853         assert(!alloc->is_Allocate(), "allocation should have unique type");
2854         continue;
2855       }
2856 
2857       // The inline code for Object.clone() casts the allocation result to
2858       // java.lang.Object and then to the actual type of the allocated
2859       // object. Detect this case and use the second cast.
2860       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
2861       // the allocation result is cast to java.lang.Object and then
2862       // to the actual Array type.
2863       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
2864           && (alloc->is_AllocateArray() ||
2865               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
2866         Node *cast2 = NULL;
2867         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2868           Node *use = n->fast_out(i);
2869           if (use->is_CheckCastPP()) {
2870             cast2 = use;
2871             break;
2872           }
2873         }
2874         if (cast2 != NULL) {
2875           n = cast2;
2876         } else {
2877           // Non-scalar replaceable if the allocation type is unknown statically
2878           // (reflection allocation), the object can't be restored during
2879           // deoptimization without precise type.
2880           continue;
2881         }
2882       }
2883 
2884       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
2885       if (t == NULL)
2886         continue;  // not a TypeOopPtr
2887       if (!t->klass_is_exact())
2888         continue; // not an unique type
2889 
2890       if (alloc->is_Allocate()) {
2891         // Set the scalar_replaceable flag for allocation
2892         // so it could be eliminated.
2893         alloc->as_Allocate()->_is_scalar_replaceable = true;
2894       }
2895       if (alloc->is_CallStaticJava()) {
2896         // Set the scalar_replaceable flag for boxing method
2897         // so it could be eliminated.
2898         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2899       }
2900       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
2901       // in order for an object to be scalar-replaceable, it must be:
2902       //   - a direct allocation (not a call returning an object)
2903       //   - non-escaping
2904       //   - eligible to be a unique type
2905       //   - not determined to be ineligible by escape analysis
2906       set_map(alloc, n);
2907       set_map(n, alloc);
2908       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
2909       igvn->hash_delete(n);
2910       igvn->set_type(n,  tinst);
2911       n->raise_bottom_type(tinst);
2912       igvn->hash_insert(n);
2913       record_for_optimizer(n);
2914       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
2915 
2916         // First, put on the worklist all Field edges from Connection Graph
2917         // which is more accurate then putting immediate users from Ideal Graph.
2918         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
2919           PointsToNode* tgt = e.get();
2920           Node* use = tgt->ideal_node();
2921           assert(tgt->is_Field() && use->is_AddP(),
2922                  "only AddP nodes are Field edges in CG");
2923           if (use->outcnt() > 0) { // Don't process dead nodes
2924             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
2925             if (addp2 != NULL) {
2926               assert(alloc->is_AllocateArray(),"array allocation was expected");
2927               alloc_worklist.append_if_missing(addp2);
2928             }
2929             alloc_worklist.append_if_missing(use);
2930           }
2931         }
2932 
2933         // An allocation may have an Initialize which has raw stores. Scan
2934         // the users of the raw allocation result and push AddP users
2935         // on alloc_worklist.
2936         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
2937         assert (raw_result != NULL, "must have an allocation result");
2938         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
2939           Node *use = raw_result->fast_out(i);
2940           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
2941             Node* addp2 = find_second_addp(use, raw_result);
2942             if (addp2 != NULL) {
2943               assert(alloc->is_AllocateArray(),"array allocation was expected");
2944               alloc_worklist.append_if_missing(addp2);
2945             }
2946             alloc_worklist.append_if_missing(use);
2947           } else if (use->is_MemBar()) {
2948             memnode_worklist.append_if_missing(use);
2949           }
2950         }
2951       }
2952     } else if (n->is_AddP()) {
2953       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
2954       if (jobj == NULL || jobj == phantom_obj) {
2955 #ifdef ASSERT
2956         ptnode_adr(get_addp_base(n)->_idx)->dump();
2957         ptnode_adr(n->_idx)->dump();
2958         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
2959 #endif
2960         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
2961         return;
2962       }
2963       Node *base = get_map(jobj->idx());  // CheckCastPP node
2964       if (!split_AddP(n, base)) continue; // wrong type from dead path
2965     } else if (n->is_Phi() ||
2966                n->is_CheckCastPP() ||
2967                n->is_EncodeP() ||
2968                n->is_DecodeN() ||
2969                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
2970       if (visited.test_set(n->_idx)) {
2971         assert(n->is_Phi(), "loops only through Phi's");
2972         continue;  // already processed
2973       }
2974       JavaObjectNode* jobj = unique_java_object(n);
2975       if (jobj == NULL || jobj == phantom_obj) {
2976 #ifdef ASSERT
2977         ptnode_adr(n->_idx)->dump();
2978         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
2979 #endif
2980         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
2981         return;
2982       } else {
2983         Node *val = get_map(jobj->idx());   // CheckCastPP node
2984         TypeNode *tn = n->as_Type();
2985         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
2986         assert(tinst != NULL && tinst->is_known_instance() &&
2987                tinst->instance_id() == jobj->idx() , "instance type expected.");
2988 
2989         const Type *tn_type = igvn->type(tn);
2990         const TypeOopPtr *tn_t;
2991         if (tn_type->isa_narrowoop()) {
2992           tn_t = tn_type->make_ptr()->isa_oopptr();
2993         } else {
2994           tn_t = tn_type->isa_oopptr();
2995         }
2996         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
2997           if (tn_type->isa_narrowoop()) {
2998             tn_type = tinst->make_narrowoop();
2999           } else {
3000             tn_type = tinst;
3001           }
3002           igvn->hash_delete(tn);
3003           igvn->set_type(tn, tn_type);
3004           tn->set_type(tn_type);
3005           igvn->hash_insert(tn);
3006           record_for_optimizer(n);
3007         } else {
3008           assert(tn_type == TypePtr::NULL_PTR ||
3009                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
3010                  "unexpected type");
3011           continue; // Skip dead path with different type
3012         }
3013       }
3014     } else {
3015       debug_only(n->dump();)
3016       assert(false, "EA: unexpected node");
3017       continue;
3018     }
3019     // push allocation's users on appropriate worklist
3020     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3021       Node *use = n->fast_out(i);
3022       if(use->is_Mem() && use->in(MemNode::Address) == n) {
3023         // Load/store to instance's field
3024         memnode_worklist.append_if_missing(use);
3025       } else if (use->is_MemBar()) {
3026         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3027           memnode_worklist.append_if_missing(use);
3028         }
3029       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
3030         Node* addp2 = find_second_addp(use, n);
3031         if (addp2 != NULL) {
3032           alloc_worklist.append_if_missing(addp2);
3033         }
3034         alloc_worklist.append_if_missing(use);
3035       } else if (use->is_Phi() ||
3036                  use->is_CheckCastPP() ||
3037                  use->is_EncodeNarrowPtr() ||
3038                  use->is_DecodeNarrowPtr() ||
3039                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
3040         alloc_worklist.append_if_missing(use);
3041 #ifdef ASSERT
3042       } else if (use->is_Mem()) {
3043         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
3044       } else if (use->is_MergeMem()) {
3045         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3046       } else if (use->is_SafePoint()) {
3047         // Look for MergeMem nodes for calls which reference unique allocation
3048         // (through CheckCastPP nodes) even for debug info.
3049         Node* m = use->in(TypeFunc::Memory);
3050         if (m->is_MergeMem()) {
3051           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3052         }
3053       } else if (use->Opcode() == Op_EncodeISOArray) {
3054         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3055           // EncodeISOArray overwrites destination array
3056           memnode_worklist.append_if_missing(use);
3057         }
3058       } else {
3059         uint op = use->Opcode();
3060         if (!(op == Op_CmpP || op == Op_Conv2B ||
3061               op == Op_CastP2X || op == Op_StoreCM ||
3062               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
3063               op == Op_StrEquals || op == Op_StrIndexOf)) {
3064           n->dump();
3065           use->dump();
3066           assert(false, "EA: missing allocation reference path");
3067         }
3068 #endif
3069       }
3070     }
3071 
3072   }
3073   // New alias types were created in split_AddP().
3074   uint new_index_end = (uint) _compile->num_alias_types();
3075   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
3076 
3077   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
3078   //            compute new values for Memory inputs  (the Memory inputs are not
3079   //            actually updated until phase 4.)
3080   if (memnode_worklist.length() == 0)
3081     return;  // nothing to do
3082   while (memnode_worklist.length() != 0) {
3083     Node *n = memnode_worklist.pop();
3084     if (visited.test_set(n->_idx))
3085       continue;
3086     if (n->is_Phi() || n->is_ClearArray()) {
3087       // we don't need to do anything, but the users must be pushed
3088     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
3089       // we don't need to do anything, but the users must be pushed
3090       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
3091       if (n == NULL)
3092         continue;
3093     } else if (n->Opcode() == Op_EncodeISOArray) {
3094       // get the memory projection
3095       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3096         Node *use = n->fast_out(i);
3097         if (use->Opcode() == Op_SCMemProj) {
3098           n = use;
3099           break;
3100         }
3101       }
3102       assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3103     } else {
3104       assert(n->is_Mem(), "memory node required.");
3105       Node *addr = n->in(MemNode::Address);
3106       const Type *addr_t = igvn->type(addr);
3107       if (addr_t == Type::TOP)
3108         continue;
3109       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
3110       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
3111       assert ((uint)alias_idx < new_index_end, "wrong alias index");
3112       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
3113       if (_compile->failing()) {
3114         return;
3115       }
3116       if (mem != n->in(MemNode::Memory)) {
3117         // We delay the memory edge update since we need old one in
3118         // MergeMem code below when instances memory slices are separated.
3119         set_map(n, mem);
3120       }
3121       if (n->is_Load()) {
3122         continue;  // don't push users
3123       } else if (n->is_LoadStore()) {
3124         // get the memory projection
3125         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3126           Node *use = n->fast_out(i);
3127           if (use->Opcode() == Op_SCMemProj) {
3128             n = use;
3129             break;
3130           }
3131         }
3132         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3133       }
3134     }
3135     // push user on appropriate worklist
3136     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3137       Node *use = n->fast_out(i);
3138       if (use->is_Phi() || use->is_ClearArray()) {
3139         memnode_worklist.append_if_missing(use);
3140       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
3141         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
3142           continue;
3143         memnode_worklist.append_if_missing(use);
3144       } else if (use->is_MemBar()) {
3145         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3146           memnode_worklist.append_if_missing(use);
3147         }
3148 #ifdef ASSERT
3149       } else if(use->is_Mem()) {
3150         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
3151       } else if (use->is_MergeMem()) {
3152         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3153       } else if (use->Opcode() == Op_EncodeISOArray) {
3154         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3155           // EncodeISOArray overwrites destination array
3156           memnode_worklist.append_if_missing(use);
3157         }
3158       } else {
3159         uint op = use->Opcode();
3160         if (!(op == Op_StoreCM ||
3161               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
3162                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
3163               op == Op_AryEq || op == Op_StrComp ||
3164               op == Op_StrEquals || op == Op_StrIndexOf)) {
3165           n->dump();
3166           use->dump();
3167           assert(false, "EA: missing memory path");
3168         }
3169 #endif
3170       }
3171     }
3172   }
3173 
3174   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
3175   //            Walk each memory slice moving the first node encountered of each
3176   //            instance type to the the input corresponding to its alias index.
3177   uint length = _mergemem_worklist.length();
3178   for( uint next = 0; next < length; ++next ) {
3179     MergeMemNode* nmm = _mergemem_worklist.at(next);
3180     assert(!visited.test_set(nmm->_idx), "should not be visited before");
3181     // Note: we don't want to use MergeMemStream here because we only want to
3182     // scan inputs which exist at the start, not ones we add during processing.
3183     // Note 2: MergeMem may already contains instance memory slices added
3184     // during find_inst_mem() call when memory nodes were processed above.
3185     igvn->hash_delete(nmm);
3186     uint nslices = MIN2(nmm->req(), new_index_start);
3187     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
3188       Node* mem = nmm->in(i);
3189       Node* cur = NULL;
3190       if (mem == NULL || mem->is_top())
3191         continue;
3192       // First, update mergemem by moving memory nodes to corresponding slices
3193       // if their type became more precise since this mergemem was created.
3194       while (mem->is_Mem()) {
3195         const Type *at = igvn->type(mem->in(MemNode::Address));
3196         if (at != Type::TOP) {
3197           assert (at->isa_ptr() != NULL, "pointer type required.");
3198           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
3199           if (idx == i) {
3200             if (cur == NULL)
3201               cur = mem;
3202           } else {
3203             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
3204               nmm->set_memory_at(idx, mem);
3205             }
3206           }
3207         }
3208         mem = mem->in(MemNode::Memory);
3209       }
3210       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3211       // Find any instance of the current type if we haven't encountered
3212       // already a memory slice of the instance along the memory chain.
3213       for (uint ni = new_index_start; ni < new_index_end; ni++) {
3214         if((uint)_compile->get_general_index(ni) == i) {
3215           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3216           if (nmm->is_empty_memory(m)) {
3217             Node* result = find_inst_mem(mem, ni, orig_phis);
3218             if (_compile->failing()) {
3219               return;
3220             }
3221             nmm->set_memory_at(ni, result);
3222           }
3223         }
3224       }
3225     }
3226     // Find the rest of instances values
3227     for (uint ni = new_index_start; ni < new_index_end; ni++) {
3228       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3229       Node* result = step_through_mergemem(nmm, ni, tinst);
3230       if (result == nmm->base_memory()) {
3231         // Didn't find instance memory, search through general slice recursively.
3232         result = nmm->memory_at(_compile->get_general_index(ni));
3233         result = find_inst_mem(result, ni, orig_phis);
3234         if (_compile->failing()) {
3235           return;
3236         }
3237         nmm->set_memory_at(ni, result);
3238       }
3239     }
3240     igvn->hash_insert(nmm);
3241     record_for_optimizer(nmm);
3242   }
3243 
3244   //  Phase 4:  Update the inputs of non-instance memory Phis and
3245   //            the Memory input of memnodes
3246   // First update the inputs of any non-instance Phi's from
3247   // which we split out an instance Phi.  Note we don't have
3248   // to recursively process Phi's encounted on the input memory
3249   // chains as is done in split_memory_phi() since they  will
3250   // also be processed here.
3251   for (int j = 0; j < orig_phis.length(); j++) {
3252     PhiNode *phi = orig_phis.at(j);
3253     int alias_idx = _compile->get_alias_index(phi->adr_type());
3254     igvn->hash_delete(phi);
3255     for (uint i = 1; i < phi->req(); i++) {
3256       Node *mem = phi->in(i);
3257       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3258       if (_compile->failing()) {
3259         return;
3260       }
3261       if (mem != new_mem) {
3262         phi->set_req(i, new_mem);
3263       }
3264     }
3265     igvn->hash_insert(phi);
3266     record_for_optimizer(phi);
3267   }
3268 
3269   // Update the memory inputs of MemNodes with the value we computed
3270   // in Phase 2 and move stores memory users to corresponding memory slices.
3271   // Disable memory split verification code until the fix for 6984348.
3272   // Currently it produces false negative results since it does not cover all cases.
3273 #if 0 // ifdef ASSERT
3274   visited.Reset();
3275   Node_Stack old_mems(arena, _compile->unique() >> 2);
3276 #endif
3277   for (uint i = 0; i < ideal_nodes.size(); i++) {
3278     Node*    n = ideal_nodes.at(i);
3279     Node* nmem = get_map(n->_idx);
3280     assert(nmem != NULL, "sanity");
3281     if (n->is_Mem()) {
3282 #if 0 // ifdef ASSERT
3283       Node* old_mem = n->in(MemNode::Memory);
3284       if (!visited.test_set(old_mem->_idx)) {
3285         old_mems.push(old_mem, old_mem->outcnt());
3286       }
3287 #endif
3288       assert(n->in(MemNode::Memory) != nmem, "sanity");
3289       if (!n->is_Load()) {
3290         // Move memory users of a store first.
3291         move_inst_mem(n, orig_phis);
3292       }
3293       // Now update memory input
3294       igvn->hash_delete(n);
3295       n->set_req(MemNode::Memory, nmem);
3296       igvn->hash_insert(n);
3297       record_for_optimizer(n);
3298     } else {
3299       assert(n->is_Allocate() || n->is_CheckCastPP() ||
3300              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3301     }
3302   }
3303 #if 0 // ifdef ASSERT
3304   // Verify that memory was split correctly
3305   while (old_mems.is_nonempty()) {
3306     Node* old_mem = old_mems.node();
3307     uint  old_cnt = old_mems.index();
3308     old_mems.pop();
3309     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3310   }
3311 #endif
3312 }
3313 
3314 #ifndef PRODUCT
3315 static const char *node_type_names[] = {
3316   "UnknownType",
3317   "JavaObject",
3318   "LocalVar",
3319   "Field",
3320   "Arraycopy"
3321 };
3322 
3323 static const char *esc_names[] = {
3324   "UnknownEscape",
3325   "NoEscape",
3326   "ArgEscape",
3327   "GlobalEscape"
3328 };
3329 
3330 void PointsToNode::dump(bool print_state) const {
3331   NodeType nt = node_type();
3332   tty->print("%s ", node_type_names[(int) nt]);
3333   if (print_state) {
3334     EscapeState es = escape_state();
3335     EscapeState fields_es = fields_escape_state();
3336     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3337     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3338       tty->print("NSR ");
3339   }
3340   if (is_Field()) {
3341     FieldNode* f = (FieldNode*)this;
3342     if (f->is_oop())
3343       tty->print("oop ");
3344     if (f->offset() > 0)
3345       tty->print("+%d ", f->offset());
3346     tty->print("(");
3347     for (BaseIterator i(f); i.has_next(); i.next()) {
3348       PointsToNode* b = i.get();
3349       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3350     }
3351     tty->print(" )");
3352   }
3353   tty->print("[");
3354   for (EdgeIterator i(this); i.has_next(); i.next()) {
3355     PointsToNode* e = i.get();
3356     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3357   }
3358   tty->print(" [");
3359   for (UseIterator i(this); i.has_next(); i.next()) {
3360     PointsToNode* u = i.get();
3361     bool is_base = false;
3362     if (PointsToNode::is_base_use(u)) {
3363       is_base = true;
3364       u = PointsToNode::get_use_node(u)->as_Field();
3365     }
3366     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3367   }
3368   tty->print(" ]]  ");
3369   if (_node == NULL)
3370     tty->print_cr("<null>");
3371   else
3372     _node->dump();
3373 }
3374 
3375 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3376   bool first = true;
3377   int ptnodes_length = ptnodes_worklist.length();
3378   for (int i = 0; i < ptnodes_length; i++) {
3379     PointsToNode *ptn = ptnodes_worklist.at(i);
3380     if (ptn == NULL || !ptn->is_JavaObject())
3381       continue;
3382     PointsToNode::EscapeState es = ptn->escape_state();
3383     if ((es != PointsToNode::NoEscape) && !Verbose) {
3384       continue;
3385     }
3386     Node* n = ptn->ideal_node();
3387     if (n->is_Allocate() || (n->is_CallStaticJava() &&
3388                              n->as_CallStaticJava()->is_boxing_method())) {
3389       if (first) {
3390         tty->cr();
3391         tty->print("======== Connection graph for ");
3392         _compile->method()->print_short_name();
3393         tty->cr();
3394         first = false;
3395       }
3396       ptn->dump();
3397       // Print all locals and fields which reference this allocation
3398       for (UseIterator j(ptn); j.has_next(); j.next()) {
3399         PointsToNode* use = j.get();
3400         if (use->is_LocalVar()) {
3401           use->dump(Verbose);
3402         } else if (Verbose) {
3403           use->dump();
3404         }
3405       }
3406       tty->cr();
3407     }
3408   }
3409 }
3410 #endif