1 /*
   2  * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/allocation.hpp"
  30 #include "opto/c2compiler.hpp"
  31 #include "opto/callnode.hpp"
  32 #include "opto/cfgnode.hpp"
  33 #include "opto/compile.hpp"
  34 #include "opto/escape.hpp"
  35 #include "opto/phaseX.hpp"
  36 #include "opto/rootnode.hpp"
  37 
  38 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  39   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
  40   _in_worklist(C->comp_arena()),
  41   _next_pidx(0),
  42   _collecting(true),
  43   _verify(false),
  44   _compile(C),
  45   _igvn(igvn),
  46   _node_map(C->comp_arena()) {
  47   // Add unknown java object.
  48   add_java_object(C->top(), PointsToNode::GlobalEscape);
  49   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  50   // Add ConP(#NULL) and ConN(#NULL) nodes.
  51   Node* oop_null = igvn->zerocon(T_OBJECT);
  52   assert(oop_null->_idx < nodes_size(), "should be created already");
  53   add_java_object(oop_null, PointsToNode::NoEscape);
  54   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  55   if (UseCompressedOops) {
  56     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  57     assert(noop_null->_idx < nodes_size(), "should be created already");
  58     map_ideal_node(noop_null, null_obj);
  59   }
  60   _pcmp_neq = NULL; // Should be initialized
  61   _pcmp_eq  = NULL;
  62 }
  63 
  64 bool ConnectionGraph::has_candidates(Compile *C) {
  65   // EA brings benefits only when the code has allocations and/or locks which
  66   // are represented by ideal Macro nodes.
  67   int cnt = C->macro_count();
  68   for (int i = 0; i < cnt; i++) {
  69     Node *n = C->macro_node(i);
  70     if (n->is_Allocate())
  71       return true;
  72     if (n->is_Lock()) {
  73       Node* obj = n->as_Lock()->obj_node()->uncast();
  74       if (!(obj->is_Parm() || obj->is_Con()))
  75         return true;
  76     }
  77     if (n->is_CallStaticJava() &&
  78         n->as_CallStaticJava()->is_boxing_method()) {
  79       return true;
  80     }
  81   }
  82   return false;
  83 }
  84 
  85 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
  86   Compile::TracePhase t2("escapeAnalysis", &Phase::_t_escapeAnalysis, true);
  87   ResourceMark rm;
  88 
  89   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
  90   // to create space for them in ConnectionGraph::_nodes[].
  91   Node* oop_null = igvn->zerocon(T_OBJECT);
  92   Node* noop_null = igvn->zerocon(T_NARROWOOP);
  93   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
  94   // Perform escape analysis
  95   if (congraph->compute_escape()) {
  96     // There are non escaping objects.
  97     C->set_congraph(congraph);
  98   }
  99   // Cleanup.
 100   if (oop_null->outcnt() == 0)
 101     igvn->hash_delete(oop_null);
 102   if (noop_null->outcnt() == 0)
 103     igvn->hash_delete(noop_null);
 104 }
 105 
 106 bool ConnectionGraph::compute_escape() {
 107   Compile* C = _compile;
 108   PhaseGVN* igvn = _igvn;
 109 
 110   // Worklists used by EA.
 111   Unique_Node_List delayed_worklist;
 112   GrowableArray<Node*> alloc_worklist;
 113   GrowableArray<Node*> ptr_cmp_worklist;
 114   GrowableArray<Node*> storestore_worklist;
 115   GrowableArray<PointsToNode*>   ptnodes_worklist;
 116   GrowableArray<JavaObjectNode*> java_objects_worklist;
 117   GrowableArray<JavaObjectNode*> non_escaped_worklist;
 118   GrowableArray<FieldNode*>      oop_fields_worklist;
 119   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 120 
 121   { Compile::TracePhase t3("connectionGraph", &Phase::_t_connectionGraph, true);
 122 
 123   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 124   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
 125   // Initialize worklist
 126   if (C->root() != NULL) {
 127     ideal_nodes.push(C->root());
 128   }
 129   // Processed ideal nodes are unique on ideal_nodes list
 130   // but several ideal nodes are mapped to the phantom_obj.
 131   // To avoid duplicated entries on the following worklists
 132   // add the phantom_obj only once to them.
 133   ptnodes_worklist.append(phantom_obj);
 134   java_objects_worklist.append(phantom_obj);
 135   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 136     Node* n = ideal_nodes.at(next);
 137     // Create PointsTo nodes and add them to Connection Graph. Called
 138     // only once per ideal node since ideal_nodes is Unique_Node list.
 139     add_node_to_connection_graph(n, &delayed_worklist);
 140     PointsToNode* ptn = ptnode_adr(n->_idx);
 141     if (ptn != NULL && ptn != phantom_obj) {
 142       ptnodes_worklist.append(ptn);
 143       if (ptn->is_JavaObject()) {
 144         java_objects_worklist.append(ptn->as_JavaObject());
 145         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 146             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 147           // Only allocations and java static calls results are interesting.
 148           non_escaped_worklist.append(ptn->as_JavaObject());
 149         }
 150       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 151         oop_fields_worklist.append(ptn->as_Field());
 152       }
 153     }
 154     if (n->is_MergeMem()) {
 155       // Collect all MergeMem nodes to add memory slices for
 156       // scalar replaceable objects in split_unique_types().
 157       _mergemem_worklist.append(n->as_MergeMem());
 158     } else if (OptimizePtrCompare && n->is_Cmp() &&
 159                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
 160       // Collect compare pointers nodes.
 161       ptr_cmp_worklist.append(n);
 162     } else if (n->is_MemBarStoreStore()) {
 163       // Collect all MemBarStoreStore nodes so that depending on the
 164       // escape status of the associated Allocate node some of them
 165       // may be eliminated.
 166       storestore_worklist.append(n);
 167     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
 168                (n->req() > MemBarNode::Precedent)) {
 169       record_for_optimizer(n);
 170 #ifdef ASSERT
 171     } else if (n->is_AddP()) {
 172       // Collect address nodes for graph verification.
 173       addp_worklist.append(n);
 174 #endif
 175     }
 176     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 177       Node* m = n->fast_out(i);   // Get user
 178       ideal_nodes.push(m);
 179     }
 180   }
 181   if (non_escaped_worklist.length() == 0) {
 182     _collecting = false;
 183     return false; // Nothing to do.
 184   }
 185   // Add final simple edges to graph.
 186   while(delayed_worklist.size() > 0) {
 187     Node* n = delayed_worklist.pop();
 188     add_final_edges(n);
 189   }
 190   int ptnodes_length = ptnodes_worklist.length();
 191 
 192 #ifdef ASSERT
 193   if (VerifyConnectionGraph) {
 194     // Verify that no new simple edges could be created and all
 195     // local vars has edges.
 196     _verify = true;
 197     for (int next = 0; next < ptnodes_length; ++next) {
 198       PointsToNode* ptn = ptnodes_worklist.at(next);
 199       add_final_edges(ptn->ideal_node());
 200       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 201         ptn->dump();
 202         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 203       }
 204     }
 205     _verify = false;
 206   }
 207 #endif
 208   // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
 209   // processing, calls to CI to resolve symbols (types, fields, methods)
 210   // referenced in bytecode. During symbol resolution VM may throw
 211   // an exception which CI cleans and converts to compilation failure.
 212   if (C->failing())  return false;
 213 
 214   // 2. Finish Graph construction by propagating references to all
 215   //    java objects through graph.
 216   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
 217                                  java_objects_worklist, oop_fields_worklist)) {
 218     // All objects escaped or hit time or iterations limits.
 219     _collecting = false;
 220     return false;
 221   }
 222 
 223   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 224   //    scalar replaceable allocations on alloc_worklist for processing
 225   //    in split_unique_types().
 226   int non_escaped_length = non_escaped_worklist.length();
 227   for (int next = 0; next < non_escaped_length; next++) {
 228     JavaObjectNode* ptn = non_escaped_worklist.at(next);
 229     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 230     Node* n = ptn->ideal_node();
 231     if (n->is_Allocate()) {
 232       n->as_Allocate()->_is_non_escaping = noescape;
 233     }
 234     if (n->is_CallStaticJava()) {
 235       n->as_CallStaticJava()->_is_non_escaping = noescape;
 236     }
 237     if (noescape && ptn->scalar_replaceable()) {
 238       adjust_scalar_replaceable_state(ptn);
 239       if (ptn->scalar_replaceable()) {
 240         alloc_worklist.append(ptn->ideal_node());
 241       }
 242     }
 243   }
 244 
 245 #ifdef ASSERT
 246   if (VerifyConnectionGraph) {
 247     // Verify that graph is complete - no new edges could be added or needed.
 248     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
 249                             java_objects_worklist, addp_worklist);
 250   }
 251   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 252   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 253          null_obj->edge_count() == 0 &&
 254          !null_obj->arraycopy_src() &&
 255          !null_obj->arraycopy_dst(), "sanity");
 256 #endif
 257 
 258   _collecting = false;
 259 
 260   } // TracePhase t3("connectionGraph")
 261 
 262   // 4. Optimize ideal graph based on EA information.
 263   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
 264   if (has_non_escaping_obj) {
 265     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 266   }
 267 
 268 #ifndef PRODUCT
 269   if (PrintEscapeAnalysis) {
 270     dump(ptnodes_worklist); // Dump ConnectionGraph
 271   }
 272 #endif
 273 
 274   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 275 #ifdef ASSERT
 276   if (VerifyConnectionGraph) {
 277     int alloc_length = alloc_worklist.length();
 278     for (int next = 0; next < alloc_length; ++next) {
 279       Node* n = alloc_worklist.at(next);
 280       PointsToNode* ptn = ptnode_adr(n->_idx);
 281       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 282     }
 283   }
 284 #endif
 285 
 286   // 5. Separate memory graph for scalar replaceable allcations.
 287   if (has_scalar_replaceable_candidates &&
 288       C->AliasLevel() >= 3 && EliminateAllocations) {
 289     // Now use the escape information to create unique types for
 290     // scalar replaceable objects.
 291     split_unique_types(alloc_worklist);
 292     if (C->failing())  return false;
 293     C->print_method(PHASE_AFTER_EA, 2);
 294 
 295 #ifdef ASSERT
 296   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 297     tty->print("=== No allocations eliminated for ");
 298     C->method()->print_short_name();
 299     if(!EliminateAllocations) {
 300       tty->print(" since EliminateAllocations is off ===");
 301     } else if(!has_scalar_replaceable_candidates) {
 302       tty->print(" since there are no scalar replaceable candidates ===");
 303     } else if(C->AliasLevel() < 3) {
 304       tty->print(" since AliasLevel < 3 ===");
 305     }
 306     tty->cr();
 307 #endif
 308   }
 309   return has_non_escaping_obj;
 310 }
 311 
 312 // Utility function for nodes that load an object
 313 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 314   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 315   // ThreadLocal has RawPtr type.
 316   const Type* t = _igvn->type(n);
 317   if (t->make_ptr() != NULL) {
 318     Node* adr = n->in(MemNode::Address);
 319 #ifdef ASSERT
 320     if (!adr->is_AddP()) {
 321       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
 322     } else {
 323       assert((ptnode_adr(adr->_idx) == NULL ||
 324               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
 325     }
 326 #endif
 327     add_local_var_and_edge(n, PointsToNode::NoEscape,
 328                            adr, delayed_worklist);
 329   }
 330 }
 331 
 332 // Populate Connection Graph with PointsTo nodes and create simple
 333 // connection graph edges.
 334 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 335   assert(!_verify, "this method sould not be called for verification");
 336   PhaseGVN* igvn = _igvn;
 337   uint n_idx = n->_idx;
 338   PointsToNode* n_ptn = ptnode_adr(n_idx);
 339   if (n_ptn != NULL)
 340     return; // No need to redefine PointsTo node during first iteration.
 341 
 342   if (n->is_Call()) {
 343     // Arguments to allocation and locking don't escape.
 344     if (n->is_AbstractLock()) {
 345       // Put Lock and Unlock nodes on IGVN worklist to process them during
 346       // first IGVN optimization when escape information is still available.
 347       record_for_optimizer(n);
 348     } else if (n->is_Allocate()) {
 349       add_call_node(n->as_Call());
 350       record_for_optimizer(n);
 351     } else {
 352       if (n->is_CallStaticJava()) {
 353         const char* name = n->as_CallStaticJava()->_name;
 354         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
 355           return; // Skip uncommon traps
 356       }
 357       // Don't mark as processed since call's arguments have to be processed.
 358       delayed_worklist->push(n);
 359       // Check if a call returns an object.
 360       if ((n->as_Call()->returns_pointer() &&
 361            n->as_Call()->proj_out(TypeFunc::Parms) != NULL) ||
 362           (n->is_CallStaticJava() &&
 363            n->as_CallStaticJava()->is_boxing_method())) {
 364         add_call_node(n->as_Call());
 365       }
 366     }
 367     return;
 368   }
 369   // Put this check here to process call arguments since some call nodes
 370   // point to phantom_obj.
 371   if (n_ptn == phantom_obj || n_ptn == null_obj)
 372     return; // Skip predefined nodes.
 373 
 374   int opcode = n->Opcode();
 375   switch (opcode) {
 376     case Op_AddP: {
 377       Node* base = get_addp_base(n);
 378       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 379       // Field nodes are created for all field types. They are used in
 380       // adjust_scalar_replaceable_state() and split_unique_types().
 381       // Note, non-oop fields will have only base edges in Connection
 382       // Graph because such fields are not used for oop loads and stores.
 383       int offset = address_offset(n, igvn);
 384       add_field(n, PointsToNode::NoEscape, offset);
 385       if (ptn_base == NULL) {
 386         delayed_worklist->push(n); // Process it later.
 387       } else {
 388         n_ptn = ptnode_adr(n_idx);
 389         add_base(n_ptn->as_Field(), ptn_base);
 390       }
 391       break;
 392     }
 393     case Op_CastX2P: {
 394       map_ideal_node(n, phantom_obj);
 395       break;
 396     }
 397     case Op_CastPP:
 398     case Op_CheckCastPP:
 399     case Op_EncodeP:
 400     case Op_DecodeN:
 401     case Op_EncodePKlass:
 402     case Op_DecodeNKlass: {
 403       add_local_var_and_edge(n, PointsToNode::NoEscape,
 404                              n->in(1), delayed_worklist);
 405       break;
 406     }
 407     case Op_CMoveP: {
 408       add_local_var(n, PointsToNode::NoEscape);
 409       // Do not add edges during first iteration because some could be
 410       // not defined yet.
 411       delayed_worklist->push(n);
 412       break;
 413     }
 414     case Op_ConP:
 415     case Op_ConN:
 416     case Op_ConNKlass: {
 417       // assume all oop constants globally escape except for null
 418       PointsToNode::EscapeState es;
 419       const Type* t = igvn->type(n);
 420       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
 421         es = PointsToNode::NoEscape;
 422       } else {
 423         es = PointsToNode::GlobalEscape;
 424       }
 425       add_java_object(n, es);
 426       break;
 427     }
 428     case Op_CreateEx: {
 429       // assume that all exception objects globally escape
 430       map_ideal_node(n, phantom_obj);
 431       break;
 432     }
 433     case Op_LoadKlass:
 434     case Op_LoadNKlass: {
 435       // Unknown class is loaded
 436       map_ideal_node(n, phantom_obj);
 437       break;
 438     }
 439     case Op_LoadP:
 440     case Op_LoadN:
 441     case Op_LoadPLocked: {
 442       add_objload_to_connection_graph(n, delayed_worklist);
 443       break;
 444     }
 445     case Op_Parm: {
 446       map_ideal_node(n, phantom_obj);
 447       break;
 448     }
 449     case Op_PartialSubtypeCheck: {
 450       // Produces Null or notNull and is used in only in CmpP so
 451       // phantom_obj could be used.
 452       map_ideal_node(n, phantom_obj); // Result is unknown
 453       break;
 454     }
 455     case Op_Phi: {
 456       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 457       // ThreadLocal has RawPtr type.
 458       const Type* t = n->as_Phi()->type();
 459       if (t->make_ptr() != NULL) {
 460         add_local_var(n, PointsToNode::NoEscape);
 461         // Do not add edges during first iteration because some could be
 462         // not defined yet.
 463         delayed_worklist->push(n);
 464       }
 465       break;
 466     }
 467     case Op_Proj: {
 468       // we are only interested in the oop result projection from a call
 469       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 470           n->in(0)->as_Call()->returns_pointer()) {
 471         add_local_var_and_edge(n, PointsToNode::NoEscape,
 472                                n->in(0), delayed_worklist);
 473       }
 474       break;
 475     }
 476     case Op_Rethrow: // Exception object escapes
 477     case Op_Return: {
 478       if (n->req() > TypeFunc::Parms &&
 479           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 480         // Treat Return value as LocalVar with GlobalEscape escape state.
 481         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 482                                n->in(TypeFunc::Parms), delayed_worklist);
 483       }
 484       break;
 485     }
 486     case Op_GetAndSetP:
 487     case Op_GetAndSetN: {
 488       add_objload_to_connection_graph(n, delayed_worklist);
 489       // fallthrough
 490     }
 491     case Op_StoreP:
 492     case Op_StoreN:
 493     case Op_StoreNKlass:
 494     case Op_StorePConditional:
 495     case Op_CompareAndSwapP:
 496     case Op_CompareAndSwapN: {
 497       Node* adr = n->in(MemNode::Address);
 498       const Type *adr_type = igvn->type(adr);
 499       adr_type = adr_type->make_ptr();
 500       if (adr_type == NULL) {
 501         break; // skip dead nodes
 502       }
 503       if (adr_type->isa_oopptr() ||
 504           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 505                         (adr_type == TypeRawPtr::NOTNULL &&
 506                          adr->in(AddPNode::Address)->is_Proj() &&
 507                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 508         delayed_worklist->push(n); // Process it later.
 509 #ifdef ASSERT
 510         assert(adr->is_AddP(), "expecting an AddP");
 511         if (adr_type == TypeRawPtr::NOTNULL) {
 512           // Verify a raw address for a store captured by Initialize node.
 513           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 514           assert(offs != Type::OffsetBot, "offset must be a constant");
 515         }
 516 #endif
 517       } else {
 518         // Ignore copy the displaced header to the BoxNode (OSR compilation).
 519         if (adr->is_BoxLock())
 520           break;
 521         // Stored value escapes in unsafe access.
 522         if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
 523           // Pointer stores in G1 barriers looks like unsafe access.
 524           // Ignore such stores to be able scalar replace non-escaping
 525           // allocations.
 526           if (UseG1GC && adr->is_AddP()) {
 527             Node* base = get_addp_base(adr);
 528             if (base->Opcode() == Op_LoadP &&
 529                 base->in(MemNode::Address)->is_AddP()) {
 530               adr = base->in(MemNode::Address);
 531               Node* tls = get_addp_base(adr);
 532               if (tls->Opcode() == Op_ThreadLocal) {
 533                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 534                 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
 535                                      PtrQueue::byte_offset_of_buf())) {
 536                   break; // G1 pre barier previous oop value store.
 537                 }
 538                 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
 539                                      PtrQueue::byte_offset_of_buf())) {
 540                   break; // G1 post barier card address store.
 541                 }
 542               }
 543             }
 544           }
 545           delayed_worklist->push(n); // Process unsafe access later.
 546           break;
 547         }
 548 #ifdef ASSERT
 549         n->dump(1);
 550         assert(false, "not unsafe or G1 barrier raw StoreP");
 551 #endif
 552       }
 553       break;
 554     }
 555     case Op_AryEq:
 556     case Op_StrComp:
 557     case Op_StrEquals:
 558     case Op_StrIndexOf:
 559     case Op_EncodeISOArray: {
 560       add_local_var(n, PointsToNode::ArgEscape);
 561       delayed_worklist->push(n); // Process it later.
 562       break;
 563     }
 564     case Op_ThreadLocal: {
 565       add_java_object(n, PointsToNode::ArgEscape);
 566       break;
 567     }
 568     default:
 569       ; // Do nothing for nodes not related to EA.
 570   }
 571   return;
 572 }
 573 
 574 #ifdef ASSERT
 575 #define ELSE_FAIL(name)                               \
 576       /* Should not be called for not pointer type. */  \
 577       n->dump(1);                                       \
 578       assert(false, name);                              \
 579       break;
 580 #else
 581 #define ELSE_FAIL(name) \
 582       break;
 583 #endif
 584 
 585 // Add final simple edges to graph.
 586 void ConnectionGraph::add_final_edges(Node *n) {
 587   PointsToNode* n_ptn = ptnode_adr(n->_idx);
 588 #ifdef ASSERT
 589   if (_verify && n_ptn->is_JavaObject())
 590     return; // This method does not change graph for JavaObject.
 591 #endif
 592 
 593   if (n->is_Call()) {
 594     process_call_arguments(n->as_Call());
 595     return;
 596   }
 597   assert(n->is_Store() || n->is_LoadStore() ||
 598          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
 599          "node should be registered already");
 600   int opcode = n->Opcode();
 601   switch (opcode) {
 602     case Op_AddP: {
 603       Node* base = get_addp_base(n);
 604       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 605       assert(ptn_base != NULL, "field's base should be registered");
 606       add_base(n_ptn->as_Field(), ptn_base);
 607       break;
 608     }
 609     case Op_CastPP:
 610     case Op_CheckCastPP:
 611     case Op_EncodeP:
 612     case Op_DecodeN:
 613     case Op_EncodePKlass:
 614     case Op_DecodeNKlass: {
 615       add_local_var_and_edge(n, PointsToNode::NoEscape,
 616                              n->in(1), NULL);
 617       break;
 618     }
 619     case Op_CMoveP: {
 620       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
 621         Node* in = n->in(i);
 622         if (in == NULL)
 623           continue;  // ignore NULL
 624         Node* uncast_in = in->uncast();
 625         if (uncast_in->is_top() || uncast_in == n)
 626           continue;  // ignore top or inputs which go back this node
 627         PointsToNode* ptn = ptnode_adr(in->_idx);
 628         assert(ptn != NULL, "node should be registered");
 629         add_edge(n_ptn, ptn);
 630       }
 631       break;
 632     }
 633     case Op_LoadP:
 634     case Op_LoadN:
 635     case Op_LoadPLocked: {
 636       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 637       // ThreadLocal has RawPtr type.
 638       const Type* t = _igvn->type(n);
 639       if (t->make_ptr() != NULL) {
 640         Node* adr = n->in(MemNode::Address);
 641         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 642         break;
 643       }
 644       ELSE_FAIL("Op_LoadP");
 645     }
 646     case Op_Phi: {
 647       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 648       // ThreadLocal has RawPtr type.
 649       const Type* t = n->as_Phi()->type();
 650       if (t->make_ptr() != NULL) {
 651         for (uint i = 1; i < n->req(); i++) {
 652           Node* in = n->in(i);
 653           if (in == NULL)
 654             continue;  // ignore NULL
 655           Node* uncast_in = in->uncast();
 656           if (uncast_in->is_top() || uncast_in == n)
 657             continue;  // ignore top or inputs which go back this node
 658           PointsToNode* ptn = ptnode_adr(in->_idx);
 659           assert(ptn != NULL, "node should be registered");
 660           add_edge(n_ptn, ptn);
 661         }
 662         break;
 663       }
 664       ELSE_FAIL("Op_Phi");
 665     }
 666     case Op_Proj: {
 667       // we are only interested in the oop result projection from a call
 668       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 669           n->in(0)->as_Call()->returns_pointer()) {
 670         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
 671         break;
 672       }
 673       ELSE_FAIL("Op_Proj");
 674     }
 675     case Op_Rethrow: // Exception object escapes
 676     case Op_Return: {
 677       if (n->req() > TypeFunc::Parms &&
 678           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 679         // Treat Return value as LocalVar with GlobalEscape escape state.
 680         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 681                                n->in(TypeFunc::Parms), NULL);
 682         break;
 683       }
 684       ELSE_FAIL("Op_Return");
 685     }
 686     case Op_StoreP:
 687     case Op_StoreN:
 688     case Op_StoreNKlass:
 689     case Op_StorePConditional:
 690     case Op_CompareAndSwapP:
 691     case Op_CompareAndSwapN:
 692     case Op_GetAndSetP:
 693     case Op_GetAndSetN: {
 694       Node* adr = n->in(MemNode::Address);
 695       const Type *adr_type = _igvn->type(adr);
 696       adr_type = adr_type->make_ptr();
 697 #ifdef ASSERT
 698       if (adr_type == NULL) {
 699         n->dump(1);
 700         assert(adr_type != NULL, "dead node should not be on list");
 701         break;
 702       }
 703 #endif
 704       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) {
 705         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 706       }
 707       if (adr_type->isa_oopptr() ||
 708           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 709                         (adr_type == TypeRawPtr::NOTNULL &&
 710                          adr->in(AddPNode::Address)->is_Proj() &&
 711                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 712         // Point Address to Value
 713         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 714         assert(adr_ptn != NULL &&
 715                adr_ptn->as_Field()->is_oop(), "node should be registered");
 716         Node *val = n->in(MemNode::ValueIn);
 717         PointsToNode* ptn = ptnode_adr(val->_idx);
 718         assert(ptn != NULL, "node should be registered");
 719         add_edge(adr_ptn, ptn);
 720         break;
 721       } else if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
 722         // Stored value escapes in unsafe access.
 723         Node *val = n->in(MemNode::ValueIn);
 724         PointsToNode* ptn = ptnode_adr(val->_idx);
 725         assert(ptn != NULL, "node should be registered");
 726         set_escape_state(ptn, PointsToNode::GlobalEscape);
 727         // Add edge to object for unsafe access with offset.
 728         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 729         assert(adr_ptn != NULL, "node should be registered");
 730         if (adr_ptn->is_Field()) {
 731           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
 732           add_edge(adr_ptn, ptn);
 733         }
 734         break;
 735       }
 736       ELSE_FAIL("Op_StoreP");
 737     }
 738     case Op_AryEq:
 739     case Op_StrComp:
 740     case Op_StrEquals:
 741     case Op_StrIndexOf:
 742     case Op_EncodeISOArray: {
 743       // char[] arrays passed to string intrinsic do not escape but
 744       // they are not scalar replaceable. Adjust escape state for them.
 745       // Start from in(2) edge since in(1) is memory edge.
 746       for (uint i = 2; i < n->req(); i++) {
 747         Node* adr = n->in(i);
 748         const Type* at = _igvn->type(adr);
 749         if (!adr->is_top() && at->isa_ptr()) {
 750           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
 751                  at->isa_ptr() != NULL, "expecting a pointer");
 752           if (adr->is_AddP()) {
 753             adr = get_addp_base(adr);
 754           }
 755           PointsToNode* ptn = ptnode_adr(adr->_idx);
 756           assert(ptn != NULL, "node should be registered");
 757           add_edge(n_ptn, ptn);
 758         }
 759       }
 760       break;
 761     }
 762     default: {
 763       // This method should be called only for EA specific nodes which may
 764       // miss some edges when they were created.
 765 #ifdef ASSERT
 766       n->dump(1);
 767 #endif
 768       guarantee(false, "unknown node");
 769     }
 770   }
 771   return;
 772 }
 773 
 774 void ConnectionGraph::add_call_node(CallNode* call) {
 775   assert(call->returns_pointer(), "only for call which returns pointer");
 776   uint call_idx = call->_idx;
 777   if (call->is_Allocate()) {
 778     Node* k = call->in(AllocateNode::KlassNode);
 779     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
 780     assert(kt != NULL, "TypeKlassPtr  required.");
 781     ciKlass* cik = kt->klass();
 782     PointsToNode::EscapeState es = PointsToNode::NoEscape;
 783     bool scalar_replaceable = true;
 784     if (call->is_AllocateArray()) {
 785       if (!cik->is_array_klass()) { // StressReflectiveCode
 786         es = PointsToNode::GlobalEscape;
 787       } else {
 788         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
 789         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
 790           // Not scalar replaceable if the length is not constant or too big.
 791           scalar_replaceable = false;
 792         }
 793       }
 794     } else {  // Allocate instance
 795       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
 796           cik->is_subclass_of(_compile->env()->Reference_klass()) ||
 797          !cik->is_instance_klass() || // StressReflectiveCode
 798           cik->as_instance_klass()->has_finalizer()) {
 799         es = PointsToNode::GlobalEscape;
 800       }
 801     }
 802     add_java_object(call, es);
 803     PointsToNode* ptn = ptnode_adr(call_idx);
 804     if (!scalar_replaceable && ptn->scalar_replaceable()) {
 805       ptn->set_scalar_replaceable(false);
 806     }
 807   } else if (call->is_CallStaticJava()) {
 808     // Call nodes could be different types:
 809     //
 810     // 1. CallDynamicJavaNode (what happened during call is unknown):
 811     //
 812     //    - mapped to GlobalEscape JavaObject node if oop is returned;
 813     //
 814     //    - all oop arguments are escaping globally;
 815     //
 816     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
 817     //
 818     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
 819     //
 820     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
 821     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
 822     //      during call is returned;
 823     //    - mapped to ArgEscape LocalVar node pointed to object arguments
 824     //      which are returned and does not escape during call;
 825     //
 826     //    - oop arguments escaping status is defined by bytecode analysis;
 827     //
 828     // For a static call, we know exactly what method is being called.
 829     // Use bytecode estimator to record whether the call's return value escapes.
 830     ciMethod* meth = call->as_CallJava()->method();
 831     if (meth == NULL) {
 832       const char* name = call->as_CallStaticJava()->_name;
 833       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
 834       // Returns a newly allocated unescaped object.
 835       add_java_object(call, PointsToNode::NoEscape);
 836       ptnode_adr(call_idx)->set_scalar_replaceable(false);
 837     } else if (meth->is_boxing_method()) {
 838       // Returns boxing object
 839       PointsToNode::EscapeState es;
 840       vmIntrinsics::ID intr = meth->intrinsic_id();
 841       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
 842         // It does not escape if object is always allocated.
 843         es = PointsToNode::NoEscape;
 844       } else {
 845         // It escapes globally if object could be loaded from cache.
 846         es = PointsToNode::GlobalEscape;
 847       }
 848       add_java_object(call, es);
 849     } else {
 850       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
 851       call_analyzer->copy_dependencies(_compile->dependencies());
 852       if (call_analyzer->is_return_allocated()) {
 853         // Returns a newly allocated unescaped object, simply
 854         // update dependency information.
 855         // Mark it as NoEscape so that objects referenced by
 856         // it's fields will be marked as NoEscape at least.
 857         add_java_object(call, PointsToNode::NoEscape);
 858         ptnode_adr(call_idx)->set_scalar_replaceable(false);
 859       } else {
 860         // Determine whether any arguments are returned.
 861         const TypeTuple* d = call->tf()->domain();
 862         bool ret_arg = false;
 863         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 864           if (d->field_at(i)->isa_ptr() != NULL &&
 865               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
 866             ret_arg = true;
 867             break;
 868           }
 869         }
 870         if (ret_arg) {
 871           add_local_var(call, PointsToNode::ArgEscape);
 872         } else {
 873           // Returns unknown object.
 874           map_ideal_node(call, phantom_obj);
 875         }
 876       }
 877     }
 878   } else {
 879     // An other type of call, assume the worst case:
 880     // returned value is unknown and globally escapes.
 881     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
 882     map_ideal_node(call, phantom_obj);
 883   }
 884 }
 885 
 886 void ConnectionGraph::process_call_arguments(CallNode *call) {
 887     bool is_arraycopy = false;
 888     switch (call->Opcode()) {
 889 #ifdef ASSERT
 890     case Op_Allocate:
 891     case Op_AllocateArray:
 892     case Op_Lock:
 893     case Op_Unlock:
 894       assert(false, "should be done already");
 895       break;
 896 #endif
 897     case Op_CallLeafNoFP:
 898       is_arraycopy = (call->as_CallLeaf()->_name != NULL &&
 899                       strstr(call->as_CallLeaf()->_name, "arraycopy") != 0);
 900       // fall through
 901     case Op_CallLeaf: {
 902       // Stub calls, objects do not escape but they are not scale replaceable.
 903       // Adjust escape state for outgoing arguments.
 904       const TypeTuple * d = call->tf()->domain();
 905       bool src_has_oops = false;
 906       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 907         const Type* at = d->field_at(i);
 908         Node *arg = call->in(i);
 909         const Type *aat = _igvn->type(arg);
 910         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
 911           continue;
 912         if (arg->is_AddP()) {
 913           //
 914           // The inline_native_clone() case when the arraycopy stub is called
 915           // after the allocation before Initialize and CheckCastPP nodes.
 916           // Or normal arraycopy for object arrays case.
 917           //
 918           // Set AddP's base (Allocate) as not scalar replaceable since
 919           // pointer to the base (with offset) is passed as argument.
 920           //
 921           arg = get_addp_base(arg);
 922         }
 923         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 924         assert(arg_ptn != NULL, "should be registered");
 925         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
 926         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
 927           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
 928                  aat->isa_ptr() != NULL, "expecting an Ptr");
 929           bool arg_has_oops = aat->isa_oopptr() &&
 930                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
 931                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
 932           if (i == TypeFunc::Parms) {
 933             src_has_oops = arg_has_oops;
 934           }
 935           //
 936           // src or dst could be j.l.Object when other is basic type array:
 937           //
 938           //   arraycopy(char[],0,Object*,0,size);
 939           //   arraycopy(Object*,0,char[],0,size);
 940           //
 941           // Don't add edges in such cases.
 942           //
 943           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
 944                                        arg_has_oops && (i > TypeFunc::Parms);
 945 #ifdef ASSERT
 946           if (!(is_arraycopy ||
 947                 (call->as_CallLeaf()->_name != NULL &&
 948                  (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
 949                   strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
 950                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
 951                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
 952                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
 953                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
 954                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
 955                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
 956                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
 957                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
 958                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
 959                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
 960                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
 961                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
 962                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
 963                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0)
 964                   ))) {
 965             call->dump();
 966             fatal(err_msg_res("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name));
 967           }
 968 #endif
 969           // Always process arraycopy's destination object since
 970           // we need to add all possible edges to references in
 971           // source object.
 972           if (arg_esc >= PointsToNode::ArgEscape &&
 973               !arg_is_arraycopy_dest) {
 974             continue;
 975           }
 976           set_escape_state(arg_ptn, PointsToNode::ArgEscape);
 977           if (arg_is_arraycopy_dest) {
 978             Node* src = call->in(TypeFunc::Parms);
 979             if (src->is_AddP()) {
 980               src = get_addp_base(src);
 981             }
 982             PointsToNode* src_ptn = ptnode_adr(src->_idx);
 983             assert(src_ptn != NULL, "should be registered");
 984             if (arg_ptn != src_ptn) {
 985               // Special arraycopy edge:
 986               // A destination object's field can't have the source object
 987               // as base since objects escape states are not related.
 988               // Only escape state of destination object's fields affects
 989               // escape state of fields in source object.
 990               add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn);
 991             }
 992           }
 993         }
 994       }
 995       break;
 996     }
 997     case Op_CallStaticJava: {
 998       // For a static call, we know exactly what method is being called.
 999       // Use bytecode estimator to record the call's escape affects
1000 #ifdef ASSERT
1001       const char* name = call->as_CallStaticJava()->_name;
1002       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
1003 #endif
1004       ciMethod* meth = call->as_CallJava()->method();
1005       if ((meth != NULL) && meth->is_boxing_method()) {
1006         break; // Boxing methods do not modify any oops.
1007       }
1008       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1009       // fall-through if not a Java method or no analyzer information
1010       if (call_analyzer != NULL) {
1011         PointsToNode* call_ptn = ptnode_adr(call->_idx);
1012         const TypeTuple* d = call->tf()->domain();
1013         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1014           const Type* at = d->field_at(i);
1015           int k = i - TypeFunc::Parms;
1016           Node* arg = call->in(i);
1017           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1018           if (at->isa_ptr() != NULL &&
1019               call_analyzer->is_arg_returned(k)) {
1020             // The call returns arguments.
1021             if (call_ptn != NULL) { // Is call's result used?
1022               assert(call_ptn->is_LocalVar(), "node should be registered");
1023               assert(arg_ptn != NULL, "node should be registered");
1024               add_edge(call_ptn, arg_ptn);
1025             }
1026           }
1027           if (at->isa_oopptr() != NULL &&
1028               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
1029             if (!call_analyzer->is_arg_stack(k)) {
1030               // The argument global escapes
1031               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1032             } else {
1033               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
1034               if (!call_analyzer->is_arg_local(k)) {
1035                 // The argument itself doesn't escape, but any fields might
1036                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1037               }
1038             }
1039           }
1040         }
1041         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
1042           // The call returns arguments.
1043           assert(call_ptn->edge_count() > 0, "sanity");
1044           if (!call_analyzer->is_return_local()) {
1045             // Returns also unknown object.
1046             add_edge(call_ptn, phantom_obj);
1047           }
1048         }
1049         break;
1050       }
1051     }
1052     default: {
1053       // Fall-through here if not a Java method or no analyzer information
1054       // or some other type of call, assume the worst case: all arguments
1055       // globally escape.
1056       const TypeTuple* d = call->tf()->domain();
1057       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1058         const Type* at = d->field_at(i);
1059         if (at->isa_oopptr() != NULL) {
1060           Node* arg = call->in(i);
1061           if (arg->is_AddP()) {
1062             arg = get_addp_base(arg);
1063           }
1064           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
1065           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
1066         }
1067       }
1068     }
1069   }
1070 }
1071 
1072 
1073 // Finish Graph construction.
1074 bool ConnectionGraph::complete_connection_graph(
1075                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1076                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1077                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1078                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
1079   // Normally only 1-3 passes needed to build Connection Graph depending
1080   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1081   // Set limit to 20 to catch situation when something did go wrong and
1082   // bailout Escape Analysis.
1083   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
1084 #define CG_BUILD_ITER_LIMIT 20
1085 
1086   // Propagate GlobalEscape and ArgEscape escape states and check that
1087   // we still have non-escaping objects. The method pushs on _worklist
1088   // Field nodes which reference phantom_object.
1089   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1090     return false; // Nothing to do.
1091   }
1092   // Now propagate references to all JavaObject nodes.
1093   int java_objects_length = java_objects_worklist.length();
1094   elapsedTimer time;
1095   bool timeout = false;
1096   int new_edges = 1;
1097   int iterations = 0;
1098   do {
1099     while ((new_edges > 0) &&
1100            (iterations++ < CG_BUILD_ITER_LIMIT)) {
1101       double start_time = time.seconds();
1102       time.start();
1103       new_edges = 0;
1104       // Propagate references to phantom_object for nodes pushed on _worklist
1105       // by find_non_escaped_objects() and find_field_value().
1106       new_edges += add_java_object_edges(phantom_obj, false);
1107       for (int next = 0; next < java_objects_length; ++next) {
1108         JavaObjectNode* ptn = java_objects_worklist.at(next);
1109         new_edges += add_java_object_edges(ptn, true);
1110 
1111 #define SAMPLE_SIZE 4
1112         if ((next % SAMPLE_SIZE) == 0) {
1113           // Each 4 iterations calculate how much time it will take
1114           // to complete graph construction.
1115           time.stop();
1116           // Poll for requests from shutdown mechanism to quiesce compiler
1117           // because Connection graph construction may take long time.
1118           CompileBroker::maybe_block();
1119           double stop_time = time.seconds();
1120           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
1121           double time_until_end = time_per_iter * (double)(java_objects_length - next);
1122           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
1123             timeout = true;
1124             break; // Timeout
1125           }
1126           start_time = stop_time;
1127           time.start();
1128         }
1129 #undef SAMPLE_SIZE
1130 
1131       }
1132       if (timeout) break;
1133       if (new_edges > 0) {
1134         // Update escape states on each iteration if graph was updated.
1135         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1136           return false; // Nothing to do.
1137         }
1138       }
1139       time.stop();
1140       if (time.seconds() >= EscapeAnalysisTimeout) {
1141         timeout = true;
1142         break;
1143       }
1144     }
1145     if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
1146       time.start();
1147       // Find fields which have unknown value.
1148       int fields_length = oop_fields_worklist.length();
1149       for (int next = 0; next < fields_length; next++) {
1150         FieldNode* field = oop_fields_worklist.at(next);
1151         if (field->edge_count() == 0) {
1152           new_edges += find_field_value(field);
1153           // This code may added new edges to phantom_object.
1154           // Need an other cycle to propagate references to phantom_object.
1155         }
1156       }
1157       time.stop();
1158       if (time.seconds() >= EscapeAnalysisTimeout) {
1159         timeout = true;
1160         break;
1161       }
1162     } else {
1163       new_edges = 0; // Bailout
1164     }
1165   } while (new_edges > 0);
1166 
1167   // Bailout if passed limits.
1168   if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
1169     Compile* C = _compile;
1170     if (C->log() != NULL) {
1171       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1172       C->log()->text("%s", timeout ? "time" : "iterations");
1173       C->log()->end_elem(" limit'");
1174     }
1175     assert(ExitEscapeAnalysisOnTimeout, err_msg_res("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1176            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()));
1177     // Possible infinite build_connection_graph loop,
1178     // bailout (no changes to ideal graph were made).
1179     return false;
1180   }
1181 #ifdef ASSERT
1182   if (Verbose && PrintEscapeAnalysis) {
1183     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1184                   iterations, nodes_size(), ptnodes_worklist.length());
1185   }
1186 #endif
1187 
1188 #undef CG_BUILD_ITER_LIMIT
1189 
1190   // Find fields initialized by NULL for non-escaping Allocations.
1191   int non_escaped_length = non_escaped_worklist.length();
1192   for (int next = 0; next < non_escaped_length; next++) {
1193     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1194     PointsToNode::EscapeState es = ptn->escape_state();
1195     assert(es <= PointsToNode::ArgEscape, "sanity");
1196     if (es == PointsToNode::NoEscape) {
1197       if (find_init_values(ptn, null_obj, _igvn) > 0) {
1198         // Adding references to NULL object does not change escape states
1199         // since it does not escape. Also no fields are added to NULL object.
1200         add_java_object_edges(null_obj, false);
1201       }
1202     }
1203     Node* n = ptn->ideal_node();
1204     if (n->is_Allocate()) {
1205       // The object allocated by this Allocate node will never be
1206       // seen by an other thread. Mark it so that when it is
1207       // expanded no MemBarStoreStore is added.
1208       InitializeNode* ini = n->as_Allocate()->initialization();
1209       if (ini != NULL)
1210         ini->set_does_not_escape();
1211     }
1212   }
1213   return true; // Finished graph construction.
1214 }
1215 
1216 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1217 // and check that we still have non-escaping java objects.
1218 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1219                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1220   GrowableArray<PointsToNode*> escape_worklist;
1221   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1222   int ptnodes_length = ptnodes_worklist.length();
1223   for (int next = 0; next < ptnodes_length; ++next) {
1224     PointsToNode* ptn = ptnodes_worklist.at(next);
1225     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1226         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1227       escape_worklist.push(ptn);
1228     }
1229   }
1230   // Set escape states to referenced nodes (edges list).
1231   while (escape_worklist.length() > 0) {
1232     PointsToNode* ptn = escape_worklist.pop();
1233     PointsToNode::EscapeState es  = ptn->escape_state();
1234     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1235     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1236         es >= PointsToNode::ArgEscape) {
1237       // GlobalEscape or ArgEscape state of field means it has unknown value.
1238       if (add_edge(ptn, phantom_obj)) {
1239         // New edge was added
1240         add_field_uses_to_worklist(ptn->as_Field());
1241       }
1242     }
1243     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1244       PointsToNode* e = i.get();
1245       if (e->is_Arraycopy()) {
1246         assert(ptn->arraycopy_dst(), "sanity");
1247         // Propagate only fields escape state through arraycopy edge.
1248         if (e->fields_escape_state() < field_es) {
1249           set_fields_escape_state(e, field_es);
1250           escape_worklist.push(e);
1251         }
1252       } else if (es >= field_es) {
1253         // fields_escape_state is also set to 'es' if it is less than 'es'.
1254         if (e->escape_state() < es) {
1255           set_escape_state(e, es);
1256           escape_worklist.push(e);
1257         }
1258       } else {
1259         // Propagate field escape state.
1260         bool es_changed = false;
1261         if (e->fields_escape_state() < field_es) {
1262           set_fields_escape_state(e, field_es);
1263           es_changed = true;
1264         }
1265         if ((e->escape_state() < field_es) &&
1266             e->is_Field() && ptn->is_JavaObject() &&
1267             e->as_Field()->is_oop()) {
1268           // Change escape state of referenced fileds.
1269           set_escape_state(e, field_es);
1270           es_changed = true;;
1271         } else if (e->escape_state() < es) {
1272           set_escape_state(e, es);
1273           es_changed = true;;
1274         }
1275         if (es_changed) {
1276           escape_worklist.push(e);
1277         }
1278       }
1279     }
1280   }
1281   // Remove escaped objects from non_escaped list.
1282   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1283     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1284     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1285       non_escaped_worklist.delete_at(next);
1286     }
1287     if (ptn->escape_state() == PointsToNode::NoEscape) {
1288       // Find fields in non-escaped allocations which have unknown value.
1289       find_init_values(ptn, phantom_obj, NULL);
1290     }
1291   }
1292   return (non_escaped_worklist.length() > 0);
1293 }
1294 
1295 // Add all references to JavaObject node by walking over all uses.
1296 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1297   int new_edges = 0;
1298   if (populate_worklist) {
1299     // Populate _worklist by uses of jobj's uses.
1300     for (UseIterator i(jobj); i.has_next(); i.next()) {
1301       PointsToNode* use = i.get();
1302       if (use->is_Arraycopy())
1303         continue;
1304       add_uses_to_worklist(use);
1305       if (use->is_Field() && use->as_Field()->is_oop()) {
1306         // Put on worklist all field's uses (loads) and
1307         // related field nodes (same base and offset).
1308         add_field_uses_to_worklist(use->as_Field());
1309       }
1310     }
1311   }
1312   for (int l = 0; l < _worklist.length(); l++) {
1313     PointsToNode* use = _worklist.at(l);
1314     if (PointsToNode::is_base_use(use)) {
1315       // Add reference from jobj to field and from field to jobj (field's base).
1316       use = PointsToNode::get_use_node(use)->as_Field();
1317       if (add_base(use->as_Field(), jobj)) {
1318         new_edges++;
1319       }
1320       continue;
1321     }
1322     assert(!use->is_JavaObject(), "sanity");
1323     if (use->is_Arraycopy()) {
1324       if (jobj == null_obj) // NULL object does not have field edges
1325         continue;
1326       // Added edge from Arraycopy node to arraycopy's source java object
1327       if (add_edge(use, jobj)) {
1328         jobj->set_arraycopy_src();
1329         new_edges++;
1330       }
1331       // and stop here.
1332       continue;
1333     }
1334     if (!add_edge(use, jobj))
1335       continue; // No new edge added, there was such edge already.
1336     new_edges++;
1337     if (use->is_LocalVar()) {
1338       add_uses_to_worklist(use);
1339       if (use->arraycopy_dst()) {
1340         for (EdgeIterator i(use); i.has_next(); i.next()) {
1341           PointsToNode* e = i.get();
1342           if (e->is_Arraycopy()) {
1343             if (jobj == null_obj) // NULL object does not have field edges
1344               continue;
1345             // Add edge from arraycopy's destination java object to Arraycopy node.
1346             if (add_edge(jobj, e)) {
1347               new_edges++;
1348               jobj->set_arraycopy_dst();
1349             }
1350           }
1351         }
1352       }
1353     } else {
1354       // Added new edge to stored in field values.
1355       // Put on worklist all field's uses (loads) and
1356       // related field nodes (same base and offset).
1357       add_field_uses_to_worklist(use->as_Field());
1358     }
1359   }
1360   _worklist.clear();
1361   _in_worklist.Reset();
1362   return new_edges;
1363 }
1364 
1365 // Put on worklist all related field nodes.
1366 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1367   assert(field->is_oop(), "sanity");
1368   int offset = field->offset();
1369   add_uses_to_worklist(field);
1370   // Loop over all bases of this field and push on worklist Field nodes
1371   // with the same offset and base (since they may reference the same field).
1372   for (BaseIterator i(field); i.has_next(); i.next()) {
1373     PointsToNode* base = i.get();
1374     add_fields_to_worklist(field, base);
1375     // Check if the base was source object of arraycopy and go over arraycopy's
1376     // destination objects since values stored to a field of source object are
1377     // accessable by uses (loads) of fields of destination objects.
1378     if (base->arraycopy_src()) {
1379       for (UseIterator j(base); j.has_next(); j.next()) {
1380         PointsToNode* arycp = j.get();
1381         if (arycp->is_Arraycopy()) {
1382           for (UseIterator k(arycp); k.has_next(); k.next()) {
1383             PointsToNode* abase = k.get();
1384             if (abase->arraycopy_dst() && abase != base) {
1385               // Look for the same arracopy reference.
1386               add_fields_to_worklist(field, abase);
1387             }
1388           }
1389         }
1390       }
1391     }
1392   }
1393 }
1394 
1395 // Put on worklist all related field nodes.
1396 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1397   int offset = field->offset();
1398   if (base->is_LocalVar()) {
1399     for (UseIterator j(base); j.has_next(); j.next()) {
1400       PointsToNode* f = j.get();
1401       if (PointsToNode::is_base_use(f)) { // Field
1402         f = PointsToNode::get_use_node(f);
1403         if (f == field || !f->as_Field()->is_oop())
1404           continue;
1405         int offs = f->as_Field()->offset();
1406         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1407           add_to_worklist(f);
1408         }
1409       }
1410     }
1411   } else {
1412     assert(base->is_JavaObject(), "sanity");
1413     if (// Skip phantom_object since it is only used to indicate that
1414         // this field's content globally escapes.
1415         (base != phantom_obj) &&
1416         // NULL object node does not have fields.
1417         (base != null_obj)) {
1418       for (EdgeIterator i(base); i.has_next(); i.next()) {
1419         PointsToNode* f = i.get();
1420         // Skip arraycopy edge since store to destination object field
1421         // does not update value in source object field.
1422         if (f->is_Arraycopy()) {
1423           assert(base->arraycopy_dst(), "sanity");
1424           continue;
1425         }
1426         if (f == field || !f->as_Field()->is_oop())
1427           continue;
1428         int offs = f->as_Field()->offset();
1429         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1430           add_to_worklist(f);
1431         }
1432       }
1433     }
1434   }
1435 }
1436 
1437 // Find fields which have unknown value.
1438 int ConnectionGraph::find_field_value(FieldNode* field) {
1439   // Escaped fields should have init value already.
1440   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1441   int new_edges = 0;
1442   for (BaseIterator i(field); i.has_next(); i.next()) {
1443     PointsToNode* base = i.get();
1444     if (base->is_JavaObject()) {
1445       // Skip Allocate's fields which will be processed later.
1446       if (base->ideal_node()->is_Allocate())
1447         return 0;
1448       assert(base == null_obj, "only NULL ptr base expected here");
1449     }
1450   }
1451   if (add_edge(field, phantom_obj)) {
1452     // New edge was added
1453     new_edges++;
1454     add_field_uses_to_worklist(field);
1455   }
1456   return new_edges;
1457 }
1458 
1459 // Find fields initializing values for allocations.
1460 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1461   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1462   int new_edges = 0;
1463   Node* alloc = pta->ideal_node();
1464   if (init_val == phantom_obj) {
1465     // Do nothing for Allocate nodes since its fields values are "known".
1466     if (alloc->is_Allocate())
1467       return 0;
1468     assert(alloc->as_CallStaticJava(), "sanity");
1469 #ifdef ASSERT
1470     if (alloc->as_CallStaticJava()->method() == NULL) {
1471       const char* name = alloc->as_CallStaticJava()->_name;
1472       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1473     }
1474 #endif
1475     // Non-escaped allocation returned from Java or runtime call have
1476     // unknown values in fields.
1477     for (EdgeIterator i(pta); i.has_next(); i.next()) {
1478       PointsToNode* field = i.get();
1479       if (field->is_Field() && field->as_Field()->is_oop()) {
1480         if (add_edge(field, phantom_obj)) {
1481           // New edge was added
1482           new_edges++;
1483           add_field_uses_to_worklist(field->as_Field());
1484         }
1485       }
1486     }
1487     return new_edges;
1488   }
1489   assert(init_val == null_obj, "sanity");
1490   // Do nothing for Call nodes since its fields values are unknown.
1491   if (!alloc->is_Allocate())
1492     return 0;
1493 
1494   InitializeNode* ini = alloc->as_Allocate()->initialization();
1495   Compile* C = _compile;
1496   bool visited_bottom_offset = false;
1497   GrowableArray<int> offsets_worklist;
1498 
1499   // Check if an oop field's initializing value is recorded and add
1500   // a corresponding NULL if field's value if it is not recorded.
1501   // Connection Graph does not record a default initialization by NULL
1502   // captured by Initialize node.
1503   //
1504   for (EdgeIterator i(pta); i.has_next(); i.next()) {
1505     PointsToNode* field = i.get(); // Field (AddP)
1506     if (!field->is_Field() || !field->as_Field()->is_oop())
1507       continue; // Not oop field
1508     int offset = field->as_Field()->offset();
1509     if (offset == Type::OffsetBot) {
1510       if (!visited_bottom_offset) {
1511         // OffsetBot is used to reference array's element,
1512         // always add reference to NULL to all Field nodes since we don't
1513         // known which element is referenced.
1514         if (add_edge(field, null_obj)) {
1515           // New edge was added
1516           new_edges++;
1517           add_field_uses_to_worklist(field->as_Field());
1518           visited_bottom_offset = true;
1519         }
1520       }
1521     } else {
1522       // Check only oop fields.
1523       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
1524       if (adr_type->isa_rawptr()) {
1525 #ifdef ASSERT
1526         // Raw pointers are used for initializing stores so skip it
1527         // since it should be recorded already
1528         Node* base = get_addp_base(field->ideal_node());
1529         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1530                (base->in(0) == alloc),"unexpected pointer type");
1531 #endif
1532         continue;
1533       }
1534       if (!offsets_worklist.contains(offset)) {
1535         offsets_worklist.append(offset);
1536         Node* value = NULL;
1537         if (ini != NULL) {
1538           // StoreP::memory_type() == T_ADDRESS
1539           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
1540           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
1541           // Make sure initializing store has the same type as this AddP.
1542           // This AddP may reference non existing field because it is on a
1543           // dead branch of bimorphic call which is not eliminated yet.
1544           if (store != NULL && store->is_Store() &&
1545               store->as_Store()->memory_type() == ft) {
1546             value = store->in(MemNode::ValueIn);
1547 #ifdef ASSERT
1548             if (VerifyConnectionGraph) {
1549               // Verify that AddP already points to all objects the value points to.
1550               PointsToNode* val = ptnode_adr(value->_idx);
1551               assert((val != NULL), "should be processed already");
1552               PointsToNode* missed_obj = NULL;
1553               if (val->is_JavaObject()) {
1554                 if (!field->points_to(val->as_JavaObject())) {
1555                   missed_obj = val;
1556                 }
1557               } else {
1558                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
1559                   tty->print_cr("----------init store has invalid value -----");
1560                   store->dump();
1561                   val->dump();
1562                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
1563                 }
1564                 for (EdgeIterator j(val); j.has_next(); j.next()) {
1565                   PointsToNode* obj = j.get();
1566                   if (obj->is_JavaObject()) {
1567                     if (!field->points_to(obj->as_JavaObject())) {
1568                       missed_obj = obj;
1569                       break;
1570                     }
1571                   }
1572                 }
1573               }
1574               if (missed_obj != NULL) {
1575                 tty->print_cr("----------field---------------------------------");
1576                 field->dump();
1577                 tty->print_cr("----------missed referernce to object-----------");
1578                 missed_obj->dump();
1579                 tty->print_cr("----------object referernced by init store -----");
1580                 store->dump();
1581                 val->dump();
1582                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
1583               }
1584             }
1585 #endif
1586           } else {
1587             // There could be initializing stores which follow allocation.
1588             // For example, a volatile field store is not collected
1589             // by Initialize node.
1590             //
1591             // Need to check for dependent loads to separate such stores from
1592             // stores which follow loads. For now, add initial value NULL so
1593             // that compare pointers optimization works correctly.
1594           }
1595         }
1596         if (value == NULL) {
1597           // A field's initializing value was not recorded. Add NULL.
1598           if (add_edge(field, null_obj)) {
1599             // New edge was added
1600             new_edges++;
1601             add_field_uses_to_worklist(field->as_Field());
1602           }
1603         }
1604       }
1605     }
1606   }
1607   return new_edges;
1608 }
1609 
1610 // Adjust scalar_replaceable state after Connection Graph is built.
1611 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1612   // Search for non-escaping objects which are not scalar replaceable
1613   // and mark them to propagate the state to referenced objects.
1614 
1615   // 1. An object is not scalar replaceable if the field into which it is
1616   // stored has unknown offset (stored into unknown element of an array).
1617   //
1618   for (UseIterator i(jobj); i.has_next(); i.next()) {
1619     PointsToNode* use = i.get();
1620     assert(!use->is_Arraycopy(), "sanity");
1621     if (use->is_Field()) {
1622       FieldNode* field = use->as_Field();
1623       assert(field->is_oop() && field->scalar_replaceable() &&
1624              field->fields_escape_state() == PointsToNode::NoEscape, "sanity");
1625       if (field->offset() == Type::OffsetBot) {
1626         jobj->set_scalar_replaceable(false);
1627         return;
1628       }
1629       // 2. An object is not scalar replaceable if the field into which it is
1630       // stored has multiple bases one of which is null.
1631       if (field->base_count() > 1) {
1632         for (BaseIterator i(field); i.has_next(); i.next()) {
1633           PointsToNode* base = i.get();
1634           if (base == null_obj) {
1635             jobj->set_scalar_replaceable(false);
1636             return;
1637           }
1638         }
1639       }
1640     }
1641     assert(use->is_Field() || use->is_LocalVar(), "sanity");
1642     // 3. An object is not scalar replaceable if it is merged with other objects.
1643     for (EdgeIterator j(use); j.has_next(); j.next()) {
1644       PointsToNode* ptn = j.get();
1645       if (ptn->is_JavaObject() && ptn != jobj) {
1646         // Mark all objects.
1647         jobj->set_scalar_replaceable(false);
1648          ptn->set_scalar_replaceable(false);
1649       }
1650     }
1651     if (!jobj->scalar_replaceable()) {
1652       return;
1653     }
1654   }
1655 
1656   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1657     // Non-escaping object node should point only to field nodes.
1658     FieldNode* field = j.get()->as_Field();
1659     int offset = field->as_Field()->offset();
1660 
1661     // 4. An object is not scalar replaceable if it has a field with unknown
1662     // offset (array's element is accessed in loop).
1663     if (offset == Type::OffsetBot) {
1664       jobj->set_scalar_replaceable(false);
1665       return;
1666     }
1667     // 5. Currently an object is not scalar replaceable if a LoadStore node
1668     // access its field since the field value is unknown after it.
1669     //
1670     Node* n = field->ideal_node();
1671     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1672       if (n->fast_out(i)->is_LoadStore()) {
1673         jobj->set_scalar_replaceable(false);
1674         return;
1675       }
1676     }
1677 
1678     // 6. Or the address may point to more then one object. This may produce
1679     // the false positive result (set not scalar replaceable)
1680     // since the flow-insensitive escape analysis can't separate
1681     // the case when stores overwrite the field's value from the case
1682     // when stores happened on different control branches.
1683     //
1684     // Note: it will disable scalar replacement in some cases:
1685     //
1686     //    Point p[] = new Point[1];
1687     //    p[0] = new Point(); // Will be not scalar replaced
1688     //
1689     // but it will save us from incorrect optimizations in next cases:
1690     //
1691     //    Point p[] = new Point[1];
1692     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1693     //
1694     if (field->base_count() > 1) {
1695       for (BaseIterator i(field); i.has_next(); i.next()) {
1696         PointsToNode* base = i.get();
1697         // Don't take into account LocalVar nodes which
1698         // may point to only one object which should be also
1699         // this field's base by now.
1700         if (base->is_JavaObject() && base != jobj) {
1701           // Mark all bases.
1702           jobj->set_scalar_replaceable(false);
1703           base->set_scalar_replaceable(false);
1704         }
1705       }
1706     }
1707   }
1708 }
1709 
1710 #ifdef ASSERT
1711 void ConnectionGraph::verify_connection_graph(
1712                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1713                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1714                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1715                          GrowableArray<Node*>& addp_worklist) {
1716   // Verify that graph is complete - no new edges could be added.
1717   int java_objects_length = java_objects_worklist.length();
1718   int non_escaped_length  = non_escaped_worklist.length();
1719   int new_edges = 0;
1720   for (int next = 0; next < java_objects_length; ++next) {
1721     JavaObjectNode* ptn = java_objects_worklist.at(next);
1722     new_edges += add_java_object_edges(ptn, true);
1723   }
1724   assert(new_edges == 0, "graph was not complete");
1725   // Verify that escape state is final.
1726   int length = non_escaped_worklist.length();
1727   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1728   assert((non_escaped_length == non_escaped_worklist.length()) &&
1729          (non_escaped_length == length) &&
1730          (_worklist.length() == 0), "escape state was not final");
1731 
1732   // Verify fields information.
1733   int addp_length = addp_worklist.length();
1734   for (int next = 0; next < addp_length; ++next ) {
1735     Node* n = addp_worklist.at(next);
1736     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1737     if (field->is_oop()) {
1738       // Verify that field has all bases
1739       Node* base = get_addp_base(n);
1740       PointsToNode* ptn = ptnode_adr(base->_idx);
1741       if (ptn->is_JavaObject()) {
1742         assert(field->has_base(ptn->as_JavaObject()), "sanity");
1743       } else {
1744         assert(ptn->is_LocalVar(), "sanity");
1745         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1746           PointsToNode* e = i.get();
1747           if (e->is_JavaObject()) {
1748             assert(field->has_base(e->as_JavaObject()), "sanity");
1749           }
1750         }
1751       }
1752       // Verify that all fields have initializing values.
1753       if (field->edge_count() == 0) {
1754         tty->print_cr("----------field does not have references----------");
1755         field->dump();
1756         for (BaseIterator i(field); i.has_next(); i.next()) {
1757           PointsToNode* base = i.get();
1758           tty->print_cr("----------field has next base---------------------");
1759           base->dump();
1760           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
1761             tty->print_cr("----------base has fields-------------------------");
1762             for (EdgeIterator j(base); j.has_next(); j.next()) {
1763               j.get()->dump();
1764             }
1765             tty->print_cr("----------base has references---------------------");
1766             for (UseIterator j(base); j.has_next(); j.next()) {
1767               j.get()->dump();
1768             }
1769           }
1770         }
1771         for (UseIterator i(field); i.has_next(); i.next()) {
1772           i.get()->dump();
1773         }
1774         assert(field->edge_count() > 0, "sanity");
1775       }
1776     }
1777   }
1778 }
1779 #endif
1780 
1781 // Optimize ideal graph.
1782 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1783                                            GrowableArray<Node*>& storestore_worklist) {
1784   Compile* C = _compile;
1785   PhaseIterGVN* igvn = _igvn;
1786   if (EliminateLocks) {
1787     // Mark locks before changing ideal graph.
1788     int cnt = C->macro_count();
1789     for( int i=0; i < cnt; i++ ) {
1790       Node *n = C->macro_node(i);
1791       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1792         AbstractLockNode* alock = n->as_AbstractLock();
1793         if (!alock->is_non_esc_obj()) {
1794           if (not_global_escape(alock->obj_node())) {
1795             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1796             // The lock could be marked eliminated by lock coarsening
1797             // code during first IGVN before EA. Replace coarsened flag
1798             // to eliminate all associated locks/unlocks.
1799 #ifdef ASSERT
1800             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
1801 #endif
1802             alock->set_non_esc_obj();
1803           }
1804         }
1805       }
1806     }
1807   }
1808 
1809   if (OptimizePtrCompare) {
1810     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1811     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1812     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1813     // Optimize objects compare.
1814     while (ptr_cmp_worklist.length() != 0) {
1815       Node *n = ptr_cmp_worklist.pop();
1816       Node *res = optimize_ptr_compare(n);
1817       if (res != NULL) {
1818 #ifndef PRODUCT
1819         if (PrintOptimizePtrCompare) {
1820           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1821           if (Verbose) {
1822             n->dump(1);
1823           }
1824         }
1825 #endif
1826         igvn->replace_node(n, res);
1827       }
1828     }
1829     // cleanup
1830     if (_pcmp_neq->outcnt() == 0)
1831       igvn->hash_delete(_pcmp_neq);
1832     if (_pcmp_eq->outcnt()  == 0)
1833       igvn->hash_delete(_pcmp_eq);
1834   }
1835 
1836   // For MemBarStoreStore nodes added in library_call.cpp, check
1837   // escape status of associated AllocateNode and optimize out
1838   // MemBarStoreStore node if the allocated object never escapes.
1839   while (storestore_worklist.length() != 0) {
1840     Node *n = storestore_worklist.pop();
1841     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1842     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1843     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1844     if (not_global_escape(alloc)) {
1845       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1846       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1847       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1848       igvn->register_new_node_with_optimizer(mb);
1849       igvn->replace_node(storestore, mb);
1850     }
1851   }
1852 }
1853 
1854 // Optimize objects compare.
1855 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1856   assert(OptimizePtrCompare, "sanity");
1857   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1858   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1859   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1860   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1861   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1862   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1863 
1864   // Check simple cases first.
1865   if (jobj1 != NULL) {
1866     if (jobj1->escape_state() == PointsToNode::NoEscape) {
1867       if (jobj1 == jobj2) {
1868         // Comparing the same not escaping object.
1869         return _pcmp_eq;
1870       }
1871       Node* obj = jobj1->ideal_node();
1872       // Comparing not escaping allocation.
1873       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1874           !ptn2->points_to(jobj1)) {
1875         return _pcmp_neq; // This includes nullness check.
1876       }
1877     }
1878   }
1879   if (jobj2 != NULL) {
1880     if (jobj2->escape_state() == PointsToNode::NoEscape) {
1881       Node* obj = jobj2->ideal_node();
1882       // Comparing not escaping allocation.
1883       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1884           !ptn1->points_to(jobj2)) {
1885         return _pcmp_neq; // This includes nullness check.
1886       }
1887     }
1888   }
1889   if (jobj1 != NULL && jobj1 != phantom_obj &&
1890       jobj2 != NULL && jobj2 != phantom_obj &&
1891       jobj1->ideal_node()->is_Con() &&
1892       jobj2->ideal_node()->is_Con()) {
1893     // Klass or String constants compare. Need to be careful with
1894     // compressed pointers - compare types of ConN and ConP instead of nodes.
1895     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
1896     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
1897     if (t1->make_ptr() == t2->make_ptr()) {
1898       return _pcmp_eq;
1899     } else {
1900       return _pcmp_neq;
1901     }
1902   }
1903   if (ptn1->meet(ptn2)) {
1904     return NULL; // Sets are not disjoint
1905   }
1906 
1907   // Sets are disjoint.
1908   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1909   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1910   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
1911   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
1912   if (set1_has_unknown_ptr && set2_has_null_ptr ||
1913       set2_has_unknown_ptr && set1_has_null_ptr) {
1914     // Check nullness of unknown object.
1915     return NULL;
1916   }
1917 
1918   // Disjointness by itself is not sufficient since
1919   // alias analysis is not complete for escaped objects.
1920   // Disjoint sets are definitely unrelated only when
1921   // at least one set has only not escaping allocations.
1922   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
1923     if (ptn1->non_escaping_allocation()) {
1924       return _pcmp_neq;
1925     }
1926   }
1927   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
1928     if (ptn2->non_escaping_allocation()) {
1929       return _pcmp_neq;
1930     }
1931   }
1932   return NULL;
1933 }
1934 
1935 // Connection Graph constuction functions.
1936 
1937 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
1938   PointsToNode* ptadr = _nodes.at(n->_idx);
1939   if (ptadr != NULL) {
1940     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
1941     return;
1942   }
1943   Compile* C = _compile;
1944   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
1945   _nodes.at_put(n->_idx, ptadr);
1946 }
1947 
1948 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
1949   PointsToNode* ptadr = _nodes.at(n->_idx);
1950   if (ptadr != NULL) {
1951     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
1952     return;
1953   }
1954   Compile* C = _compile;
1955   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
1956   _nodes.at_put(n->_idx, ptadr);
1957 }
1958 
1959 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
1960   PointsToNode* ptadr = _nodes.at(n->_idx);
1961   if (ptadr != NULL) {
1962     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
1963     return;
1964   }
1965   bool unsafe = false;
1966   bool is_oop = is_oop_field(n, offset, &unsafe);
1967   if (unsafe) {
1968     es = PointsToNode::GlobalEscape;
1969   }
1970   Compile* C = _compile;
1971   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
1972   _nodes.at_put(n->_idx, field);
1973 }
1974 
1975 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
1976                                     PointsToNode* src, PointsToNode* dst) {
1977   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
1978   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
1979   PointsToNode* ptadr = _nodes.at(n->_idx);
1980   if (ptadr != NULL) {
1981     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
1982     return;
1983   }
1984   Compile* C = _compile;
1985   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
1986   _nodes.at_put(n->_idx, ptadr);
1987   // Add edge from arraycopy node to source object.
1988   (void)add_edge(ptadr, src);
1989   src->set_arraycopy_src();
1990   // Add edge from destination object to arraycopy node.
1991   (void)add_edge(dst, ptadr);
1992   dst->set_arraycopy_dst();
1993 }
1994 
1995 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
1996   const Type* adr_type = n->as_AddP()->bottom_type();
1997   BasicType bt = T_INT;
1998   if (offset == Type::OffsetBot) {
1999     // Check only oop fields.
2000     if (!adr_type->isa_aryptr() ||
2001         (adr_type->isa_aryptr()->klass() == NULL) ||
2002          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
2003       // OffsetBot is used to reference array's element. Ignore first AddP.
2004       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
2005         bt = T_OBJECT;
2006       }
2007     }
2008   } else if (offset != oopDesc::klass_offset_in_bytes()) {
2009     if (adr_type->isa_instptr()) {
2010       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
2011       if (field != NULL) {
2012         bt = field->layout_type();
2013       } else {
2014         // Check for unsafe oop field access
2015         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2016           int opcode = n->fast_out(i)->Opcode();
2017           if (opcode == Op_StoreP || opcode == Op_LoadP ||
2018               opcode == Op_StoreN || opcode == Op_LoadN) {
2019             bt = T_OBJECT;
2020             (*unsafe) = true;
2021             break;
2022           }
2023         }
2024       }
2025     } else if (adr_type->isa_aryptr()) {
2026       if (offset == arrayOopDesc::length_offset_in_bytes()) {
2027         // Ignore array length load.
2028       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
2029         // Ignore first AddP.
2030       } else {
2031         const Type* elemtype = adr_type->isa_aryptr()->elem();
2032         bt = elemtype->array_element_basic_type();
2033       }
2034     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
2035       // Allocation initialization, ThreadLocal field access, unsafe access
2036       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2037         int opcode = n->fast_out(i)->Opcode();
2038         if (opcode == Op_StoreP || opcode == Op_LoadP ||
2039             opcode == Op_StoreN || opcode == Op_LoadN) {
2040           bt = T_OBJECT;
2041           break;
2042         }
2043       }
2044     }
2045   }
2046   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
2047 }
2048 
2049 // Returns unique pointed java object or NULL.
2050 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
2051   assert(!_collecting, "should not call when contructed graph");
2052   // If the node was created after the escape computation we can't answer.
2053   uint idx = n->_idx;
2054   if (idx >= nodes_size()) {
2055     return NULL;
2056   }
2057   PointsToNode* ptn = ptnode_adr(idx);
2058   if (ptn->is_JavaObject()) {
2059     return ptn->as_JavaObject();
2060   }
2061   assert(ptn->is_LocalVar(), "sanity");
2062   // Check all java objects it points to.
2063   JavaObjectNode* jobj = NULL;
2064   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2065     PointsToNode* e = i.get();
2066     if (e->is_JavaObject()) {
2067       if (jobj == NULL) {
2068         jobj = e->as_JavaObject();
2069       } else if (jobj != e) {
2070         return NULL;
2071       }
2072     }
2073   }
2074   return jobj;
2075 }
2076 
2077 // Return true if this node points only to non-escaping allocations.
2078 bool PointsToNode::non_escaping_allocation() {
2079   if (is_JavaObject()) {
2080     Node* n = ideal_node();
2081     if (n->is_Allocate() || n->is_CallStaticJava()) {
2082       return (escape_state() == PointsToNode::NoEscape);
2083     } else {
2084       return false;
2085     }
2086   }
2087   assert(is_LocalVar(), "sanity");
2088   // Check all java objects it points to.
2089   for (EdgeIterator i(this); i.has_next(); i.next()) {
2090     PointsToNode* e = i.get();
2091     if (e->is_JavaObject()) {
2092       Node* n = e->ideal_node();
2093       if ((e->escape_state() != PointsToNode::NoEscape) ||
2094           !(n->is_Allocate() || n->is_CallStaticJava())) {
2095         return false;
2096       }
2097     }
2098   }
2099   return true;
2100 }
2101 
2102 // Return true if we know the node does not escape globally.
2103 bool ConnectionGraph::not_global_escape(Node *n) {
2104   assert(!_collecting, "should not call during graph construction");
2105   // If the node was created after the escape computation we can't answer.
2106   uint idx = n->_idx;
2107   if (idx >= nodes_size()) {
2108     return false;
2109   }
2110   PointsToNode* ptn = ptnode_adr(idx);
2111   PointsToNode::EscapeState es = ptn->escape_state();
2112   // If we have already computed a value, return it.
2113   if (es >= PointsToNode::GlobalEscape)
2114     return false;
2115   if (ptn->is_JavaObject()) {
2116     return true; // (es < PointsToNode::GlobalEscape);
2117   }
2118   assert(ptn->is_LocalVar(), "sanity");
2119   // Check all java objects it points to.
2120   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2121     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
2122       return false;
2123   }
2124   return true;
2125 }
2126 
2127 
2128 // Helper functions
2129 
2130 // Return true if this node points to specified node or nodes it points to.
2131 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
2132   if (is_JavaObject()) {
2133     return (this == ptn);
2134   }
2135   assert(is_LocalVar() || is_Field(), "sanity");
2136   for (EdgeIterator i(this); i.has_next(); i.next()) {
2137     if (i.get() == ptn)
2138       return true;
2139   }
2140   return false;
2141 }
2142 
2143 // Return true if one node points to an other.
2144 bool PointsToNode::meet(PointsToNode* ptn) {
2145   if (this == ptn) {
2146     return true;
2147   } else if (ptn->is_JavaObject()) {
2148     return this->points_to(ptn->as_JavaObject());
2149   } else if (this->is_JavaObject()) {
2150     return ptn->points_to(this->as_JavaObject());
2151   }
2152   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
2153   int ptn_count =  ptn->edge_count();
2154   for (EdgeIterator i(this); i.has_next(); i.next()) {
2155     PointsToNode* this_e = i.get();
2156     for (int j = 0; j < ptn_count; j++) {
2157       if (this_e == ptn->edge(j))
2158         return true;
2159     }
2160   }
2161   return false;
2162 }
2163 
2164 #ifdef ASSERT
2165 // Return true if bases point to this java object.
2166 bool FieldNode::has_base(JavaObjectNode* jobj) const {
2167   for (BaseIterator i(this); i.has_next(); i.next()) {
2168     if (i.get() == jobj)
2169       return true;
2170   }
2171   return false;
2172 }
2173 #endif
2174 
2175 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2176   const Type *adr_type = phase->type(adr);
2177   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
2178       adr->in(AddPNode::Address)->is_Proj() &&
2179       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2180     // We are computing a raw address for a store captured by an Initialize
2181     // compute an appropriate address type. AddP cases #3 and #5 (see below).
2182     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2183     assert(offs != Type::OffsetBot ||
2184            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2185            "offset must be a constant or it is initialization of array");
2186     return offs;
2187   }
2188   const TypePtr *t_ptr = adr_type->isa_ptr();
2189   assert(t_ptr != NULL, "must be a pointer type");
2190   return t_ptr->offset();
2191 }
2192 
2193 Node* ConnectionGraph::get_addp_base(Node *addp) {
2194   assert(addp->is_AddP(), "must be AddP");
2195   //
2196   // AddP cases for Base and Address inputs:
2197   // case #1. Direct object's field reference:
2198   //     Allocate
2199   //       |
2200   //     Proj #5 ( oop result )
2201   //       |
2202   //     CheckCastPP (cast to instance type)
2203   //      | |
2204   //     AddP  ( base == address )
2205   //
2206   // case #2. Indirect object's field reference:
2207   //      Phi
2208   //       |
2209   //     CastPP (cast to instance type)
2210   //      | |
2211   //     AddP  ( base == address )
2212   //
2213   // case #3. Raw object's field reference for Initialize node:
2214   //      Allocate
2215   //        |
2216   //      Proj #5 ( oop result )
2217   //  top   |
2218   //     \  |
2219   //     AddP  ( base == top )
2220   //
2221   // case #4. Array's element reference:
2222   //   {CheckCastPP | CastPP}
2223   //     |  | |
2224   //     |  AddP ( array's element offset )
2225   //     |  |
2226   //     AddP ( array's offset )
2227   //
2228   // case #5. Raw object's field reference for arraycopy stub call:
2229   //          The inline_native_clone() case when the arraycopy stub is called
2230   //          after the allocation before Initialize and CheckCastPP nodes.
2231   //      Allocate
2232   //        |
2233   //      Proj #5 ( oop result )
2234   //       | |
2235   //       AddP  ( base == address )
2236   //
2237   // case #6. Constant Pool, ThreadLocal, CastX2P or
2238   //          Raw object's field reference:
2239   //      {ConP, ThreadLocal, CastX2P, raw Load}
2240   //  top   |
2241   //     \  |
2242   //     AddP  ( base == top )
2243   //
2244   // case #7. Klass's field reference.
2245   //      LoadKlass
2246   //       | |
2247   //       AddP  ( base == address )
2248   //
2249   // case #8. narrow Klass's field reference.
2250   //      LoadNKlass
2251   //       |
2252   //      DecodeN
2253   //       | |
2254   //       AddP  ( base == address )
2255   //
2256   Node *base = addp->in(AddPNode::Base);
2257   if (base->uncast()->is_top()) { // The AddP case #3 and #6.
2258     base = addp->in(AddPNode::Address);
2259     while (base->is_AddP()) {
2260       // Case #6 (unsafe access) may have several chained AddP nodes.
2261       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2262       base = base->in(AddPNode::Address);
2263     }
2264     Node* uncast_base = base->uncast();
2265     int opcode = uncast_base->Opcode();
2266     assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2267            opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
2268            (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
2269            (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
2270   }
2271   return base;
2272 }
2273 
2274 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2275   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2276   Node* addp2 = addp->raw_out(0);
2277   if (addp->outcnt() == 1 && addp2->is_AddP() &&
2278       addp2->in(AddPNode::Base) == n &&
2279       addp2->in(AddPNode::Address) == addp) {
2280     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2281     //
2282     // Find array's offset to push it on worklist first and
2283     // as result process an array's element offset first (pushed second)
2284     // to avoid CastPP for the array's offset.
2285     // Otherwise the inserted CastPP (LocalVar) will point to what
2286     // the AddP (Field) points to. Which would be wrong since
2287     // the algorithm expects the CastPP has the same point as
2288     // as AddP's base CheckCastPP (LocalVar).
2289     //
2290     //    ArrayAllocation
2291     //     |
2292     //    CheckCastPP
2293     //     |
2294     //    memProj (from ArrayAllocation CheckCastPP)
2295     //     |  ||
2296     //     |  ||   Int (element index)
2297     //     |  ||    |   ConI (log(element size))
2298     //     |  ||    |   /
2299     //     |  ||   LShift
2300     //     |  ||  /
2301     //     |  AddP (array's element offset)
2302     //     |  |
2303     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
2304     //     | / /
2305     //     AddP (array's offset)
2306     //      |
2307     //     Load/Store (memory operation on array's element)
2308     //
2309     return addp2;
2310   }
2311   return NULL;
2312 }
2313 
2314 //
2315 // Adjust the type and inputs of an AddP which computes the
2316 // address of a field of an instance
2317 //
2318 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2319   PhaseGVN* igvn = _igvn;
2320   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2321   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2322   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2323   if (t == NULL) {
2324     // We are computing a raw address for a store captured by an Initialize
2325     // compute an appropriate address type (cases #3 and #5).
2326     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2327     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2328     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2329     assert(offs != Type::OffsetBot, "offset must be a constant");
2330     t = base_t->add_offset(offs)->is_oopptr();
2331   }
2332   int inst_id =  base_t->instance_id();
2333   assert(!t->is_known_instance() || t->instance_id() == inst_id,
2334                              "old type must be non-instance or match new type");
2335 
2336   // The type 't' could be subclass of 'base_t'.
2337   // As result t->offset() could be large then base_t's size and it will
2338   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2339   // constructor verifies correctness of the offset.
2340   //
2341   // It could happened on subclass's branch (from the type profiling
2342   // inlining) which was not eliminated during parsing since the exactness
2343   // of the allocation type was not propagated to the subclass type check.
2344   //
2345   // Or the type 't' could be not related to 'base_t' at all.
2346   // It could happened when CHA type is different from MDO type on a dead path
2347   // (for example, from instanceof check) which is not collapsed during parsing.
2348   //
2349   // Do nothing for such AddP node and don't process its users since
2350   // this code branch will go away.
2351   //
2352   if (!t->is_known_instance() &&
2353       !base_t->klass()->is_subtype_of(t->klass())) {
2354      return false; // bail out
2355   }
2356   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
2357   // Do NOT remove the next line: ensure a new alias index is allocated
2358   // for the instance type. Note: C++ will not remove it since the call
2359   // has side effect.
2360   int alias_idx = _compile->get_alias_index(tinst);
2361   igvn->set_type(addp, tinst);
2362   // record the allocation in the node map
2363   set_map(addp, get_map(base->_idx));
2364   // Set addp's Base and Address to 'base'.
2365   Node *abase = addp->in(AddPNode::Base);
2366   Node *adr   = addp->in(AddPNode::Address);
2367   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2368       adr->in(0)->_idx == (uint)inst_id) {
2369     // Skip AddP cases #3 and #5.
2370   } else {
2371     assert(!abase->is_top(), "sanity"); // AddP case #3
2372     if (abase != base) {
2373       igvn->hash_delete(addp);
2374       addp->set_req(AddPNode::Base, base);
2375       if (abase == adr) {
2376         addp->set_req(AddPNode::Address, base);
2377       } else {
2378         // AddP case #4 (adr is array's element offset AddP node)
2379 #ifdef ASSERT
2380         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2381         assert(adr->is_AddP() && atype != NULL &&
2382                atype->instance_id() == inst_id, "array's element offset should be processed first");
2383 #endif
2384       }
2385       igvn->hash_insert(addp);
2386     }
2387   }
2388   // Put on IGVN worklist since at least addp's type was changed above.
2389   record_for_optimizer(addp);
2390   return true;
2391 }
2392 
2393 //
2394 // Create a new version of orig_phi if necessary. Returns either the newly
2395 // created phi or an existing phi.  Sets create_new to indicate whether a new
2396 // phi was created.  Cache the last newly created phi in the node map.
2397 //
2398 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
2399   Compile *C = _compile;
2400   PhaseGVN* igvn = _igvn;
2401   new_created = false;
2402   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2403   // nothing to do if orig_phi is bottom memory or matches alias_idx
2404   if (phi_alias_idx == alias_idx) {
2405     return orig_phi;
2406   }
2407   // Have we recently created a Phi for this alias index?
2408   PhiNode *result = get_map_phi(orig_phi->_idx);
2409   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2410     return result;
2411   }
2412   // Previous check may fail when the same wide memory Phi was split into Phis
2413   // for different memory slices. Search all Phis for this region.
2414   if (result != NULL) {
2415     Node* region = orig_phi->in(0);
2416     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2417       Node* phi = region->fast_out(i);
2418       if (phi->is_Phi() &&
2419           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2420         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2421         return phi->as_Phi();
2422       }
2423     }
2424   }
2425   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
2426     if (C->do_escape_analysis() == true && !C->failing()) {
2427       // Retry compilation without escape analysis.
2428       // If this is the first failure, the sentinel string will "stick"
2429       // to the Compile object, and the C2Compiler will see it and retry.
2430       C->record_failure(C2Compiler::retry_no_escape_analysis());
2431     }
2432     return NULL;
2433   }
2434   orig_phi_worklist.append_if_missing(orig_phi);
2435   const TypePtr *atype = C->get_adr_type(alias_idx);
2436   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2437   C->copy_node_notes_to(result, orig_phi);
2438   igvn->set_type(result, result->bottom_type());
2439   record_for_optimizer(result);
2440   set_map(orig_phi, result);
2441   new_created = true;
2442   return result;
2443 }
2444 
2445 //
2446 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2447 // specified alias index.
2448 //
2449 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
2450   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2451   Compile *C = _compile;
2452   PhaseGVN* igvn = _igvn;
2453   bool new_phi_created;
2454   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2455   if (!new_phi_created) {
2456     return result;
2457   }
2458   GrowableArray<PhiNode *>  phi_list;
2459   GrowableArray<uint>  cur_input;
2460   PhiNode *phi = orig_phi;
2461   uint idx = 1;
2462   bool finished = false;
2463   while(!finished) {
2464     while (idx < phi->req()) {
2465       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2466       if (mem != NULL && mem->is_Phi()) {
2467         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2468         if (new_phi_created) {
2469           // found an phi for which we created a new split, push current one on worklist and begin
2470           // processing new one
2471           phi_list.push(phi);
2472           cur_input.push(idx);
2473           phi = mem->as_Phi();
2474           result = newphi;
2475           idx = 1;
2476           continue;
2477         } else {
2478           mem = newphi;
2479         }
2480       }
2481       if (C->failing()) {
2482         return NULL;
2483       }
2484       result->set_req(idx++, mem);
2485     }
2486 #ifdef ASSERT
2487     // verify that the new Phi has an input for each input of the original
2488     assert( phi->req() == result->req(), "must have same number of inputs.");
2489     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2490 #endif
2491     // Check if all new phi's inputs have specified alias index.
2492     // Otherwise use old phi.
2493     for (uint i = 1; i < phi->req(); i++) {
2494       Node* in = result->in(i);
2495       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2496     }
2497     // we have finished processing a Phi, see if there are any more to do
2498     finished = (phi_list.length() == 0 );
2499     if (!finished) {
2500       phi = phi_list.pop();
2501       idx = cur_input.pop();
2502       PhiNode *prev_result = get_map_phi(phi->_idx);
2503       prev_result->set_req(idx++, result);
2504       result = prev_result;
2505     }
2506   }
2507   return result;
2508 }
2509 
2510 //
2511 // The next methods are derived from methods in MemNode.
2512 //
2513 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2514   Node *mem = mmem;
2515   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2516   // means an array I have not precisely typed yet.  Do not do any
2517   // alias stuff with it any time soon.
2518   if (toop->base() != Type::AnyPtr &&
2519       !(toop->klass() != NULL &&
2520         toop->klass()->is_java_lang_Object() &&
2521         toop->offset() == Type::OffsetBot)) {
2522     mem = mmem->memory_at(alias_idx);
2523     // Update input if it is progress over what we have now
2524   }
2525   return mem;
2526 }
2527 
2528 //
2529 // Move memory users to their memory slices.
2530 //
2531 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
2532   Compile* C = _compile;
2533   PhaseGVN* igvn = _igvn;
2534   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2535   assert(tp != NULL, "ptr type");
2536   int alias_idx = C->get_alias_index(tp);
2537   int general_idx = C->get_general_index(alias_idx);
2538 
2539   // Move users first
2540   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2541     Node* use = n->fast_out(i);
2542     if (use->is_MergeMem()) {
2543       MergeMemNode* mmem = use->as_MergeMem();
2544       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2545       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2546         continue; // Nothing to do
2547       }
2548       // Replace previous general reference to mem node.
2549       uint orig_uniq = C->unique();
2550       Node* m = find_inst_mem(n, general_idx, orig_phis);
2551       assert(orig_uniq == C->unique(), "no new nodes");
2552       mmem->set_memory_at(general_idx, m);
2553       --imax;
2554       --i;
2555     } else if (use->is_MemBar()) {
2556       assert(!use->is_Initialize(), "initializing stores should not be moved");
2557       if (use->req() > MemBarNode::Precedent &&
2558           use->in(MemBarNode::Precedent) == n) {
2559         // Don't move related membars.
2560         record_for_optimizer(use);
2561         continue;
2562       }
2563       tp = use->as_MemBar()->adr_type()->isa_ptr();
2564       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
2565           alias_idx == general_idx) {
2566         continue; // Nothing to do
2567       }
2568       // Move to general memory slice.
2569       uint orig_uniq = C->unique();
2570       Node* m = find_inst_mem(n, general_idx, orig_phis);
2571       assert(orig_uniq == C->unique(), "no new nodes");
2572       igvn->hash_delete(use);
2573       imax -= use->replace_edge(n, m);
2574       igvn->hash_insert(use);
2575       record_for_optimizer(use);
2576       --i;
2577 #ifdef ASSERT
2578     } else if (use->is_Mem()) {
2579       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2580         // Don't move related cardmark.
2581         continue;
2582       }
2583       // Memory nodes should have new memory input.
2584       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2585       assert(tp != NULL, "ptr type");
2586       int idx = C->get_alias_index(tp);
2587       assert(get_map(use->_idx) != NULL || idx == alias_idx,
2588              "Following memory nodes should have new memory input or be on the same memory slice");
2589     } else if (use->is_Phi()) {
2590       // Phi nodes should be split and moved already.
2591       tp = use->as_Phi()->adr_type()->isa_ptr();
2592       assert(tp != NULL, "ptr type");
2593       int idx = C->get_alias_index(tp);
2594       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2595     } else {
2596       use->dump();
2597       assert(false, "should not be here");
2598 #endif
2599     }
2600   }
2601 }
2602 
2603 //
2604 // Search memory chain of "mem" to find a MemNode whose address
2605 // is the specified alias index.
2606 //
2607 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
2608   if (orig_mem == NULL)
2609     return orig_mem;
2610   Compile* C = _compile;
2611   PhaseGVN* igvn = _igvn;
2612   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2613   bool is_instance = (toop != NULL) && toop->is_known_instance();
2614   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
2615   Node *prev = NULL;
2616   Node *result = orig_mem;
2617   while (prev != result) {
2618     prev = result;
2619     if (result == start_mem)
2620       break;  // hit one of our sentinels
2621     if (result->is_Mem()) {
2622       const Type *at = igvn->type(result->in(MemNode::Address));
2623       if (at == Type::TOP)
2624         break; // Dead
2625       assert (at->isa_ptr() != NULL, "pointer type required.");
2626       int idx = C->get_alias_index(at->is_ptr());
2627       if (idx == alias_idx)
2628         break; // Found
2629       if (!is_instance && (at->isa_oopptr() == NULL ||
2630                            !at->is_oopptr()->is_known_instance())) {
2631         break; // Do not skip store to general memory slice.
2632       }
2633       result = result->in(MemNode::Memory);
2634     }
2635     if (!is_instance)
2636       continue;  // don't search further for non-instance types
2637     // skip over a call which does not affect this memory slice
2638     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2639       Node *proj_in = result->in(0);
2640       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2641         break;  // hit one of our sentinels
2642       } else if (proj_in->is_Call()) {
2643         CallNode *call = proj_in->as_Call();
2644         if (!call->may_modify(toop, igvn)) {
2645           result = call->in(TypeFunc::Memory);
2646         }
2647       } else if (proj_in->is_Initialize()) {
2648         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2649         // Stop if this is the initialization for the object instance which
2650         // which contains this memory slice, otherwise skip over it.
2651         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2652           result = proj_in->in(TypeFunc::Memory);
2653         }
2654       } else if (proj_in->is_MemBar()) {
2655         result = proj_in->in(TypeFunc::Memory);
2656       }
2657     } else if (result->is_MergeMem()) {
2658       MergeMemNode *mmem = result->as_MergeMem();
2659       result = step_through_mergemem(mmem, alias_idx, toop);
2660       if (result == mmem->base_memory()) {
2661         // Didn't find instance memory, search through general slice recursively.
2662         result = mmem->memory_at(C->get_general_index(alias_idx));
2663         result = find_inst_mem(result, alias_idx, orig_phis);
2664         if (C->failing()) {
2665           return NULL;
2666         }
2667         mmem->set_memory_at(alias_idx, result);
2668       }
2669     } else if (result->is_Phi() &&
2670                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2671       Node *un = result->as_Phi()->unique_input(igvn);
2672       if (un != NULL) {
2673         orig_phis.append_if_missing(result->as_Phi());
2674         result = un;
2675       } else {
2676         break;
2677       }
2678     } else if (result->is_ClearArray()) {
2679       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2680         // Can not bypass initialization of the instance
2681         // we are looking for.
2682         break;
2683       }
2684       // Otherwise skip it (the call updated 'result' value).
2685     } else if (result->Opcode() == Op_SCMemProj) {
2686       Node* mem = result->in(0);
2687       Node* adr = NULL;
2688       if (mem->is_LoadStore()) {
2689         adr = mem->in(MemNode::Address);
2690       } else {
2691         assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
2692         adr = mem->in(3); // Memory edge corresponds to destination array
2693       }
2694       const Type *at = igvn->type(adr);
2695       if (at != Type::TOP) {
2696         assert (at->isa_ptr() != NULL, "pointer type required.");
2697         int idx = C->get_alias_index(at->is_ptr());
2698         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
2699         break;
2700       }
2701       result = mem->in(MemNode::Memory);
2702     }
2703   }
2704   if (result->is_Phi()) {
2705     PhiNode *mphi = result->as_Phi();
2706     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2707     const TypePtr *t = mphi->adr_type();
2708     if (!is_instance) {
2709       // Push all non-instance Phis on the orig_phis worklist to update inputs
2710       // during Phase 4 if needed.
2711       orig_phis.append_if_missing(mphi);
2712     } else if (C->get_alias_index(t) != alias_idx) {
2713       // Create a new Phi with the specified alias index type.
2714       result = split_memory_phi(mphi, alias_idx, orig_phis);
2715     }
2716   }
2717   // the result is either MemNode, PhiNode, InitializeNode.
2718   return result;
2719 }
2720 
2721 //
2722 //  Convert the types of unescaped object to instance types where possible,
2723 //  propagate the new type information through the graph, and update memory
2724 //  edges and MergeMem inputs to reflect the new type.
2725 //
2726 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
2727 //  The processing is done in 4 phases:
2728 //
2729 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
2730 //            types for the CheckCastPP for allocations where possible.
2731 //            Propagate the the new types through users as follows:
2732 //               casts and Phi:  push users on alloc_worklist
2733 //               AddP:  cast Base and Address inputs to the instance type
2734 //                      push any AddP users on alloc_worklist and push any memnode
2735 //                      users onto memnode_worklist.
2736 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2737 //            search the Memory chain for a store with the appropriate type
2738 //            address type.  If a Phi is found, create a new version with
2739 //            the appropriate memory slices from each of the Phi inputs.
2740 //            For stores, process the users as follows:
2741 //               MemNode:  push on memnode_worklist
2742 //               MergeMem: push on mergemem_worklist
2743 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
2744 //            moving the first node encountered of each  instance type to the
2745 //            the input corresponding to its alias index.
2746 //            appropriate memory slice.
2747 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2748 //
2749 // In the following example, the CheckCastPP nodes are the cast of allocation
2750 // results and the allocation of node 29 is unescaped and eligible to be an
2751 // instance type.
2752 //
2753 // We start with:
2754 //
2755 //     7 Parm #memory
2756 //    10  ConI  "12"
2757 //    19  CheckCastPP   "Foo"
2758 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2759 //    29  CheckCastPP   "Foo"
2760 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
2761 //
2762 //    40  StoreP  25   7  20   ... alias_index=4
2763 //    50  StoreP  35  40  30   ... alias_index=4
2764 //    60  StoreP  45  50  20   ... alias_index=4
2765 //    70  LoadP    _  60  30   ... alias_index=4
2766 //    80  Phi     75  50  60   Memory alias_index=4
2767 //    90  LoadP    _  80  30   ... alias_index=4
2768 //   100  LoadP    _  80  20   ... alias_index=4
2769 //
2770 //
2771 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2772 // and creating a new alias index for node 30.  This gives:
2773 //
2774 //     7 Parm #memory
2775 //    10  ConI  "12"
2776 //    19  CheckCastPP   "Foo"
2777 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2778 //    29  CheckCastPP   "Foo"  iid=24
2779 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2780 //
2781 //    40  StoreP  25   7  20   ... alias_index=4
2782 //    50  StoreP  35  40  30   ... alias_index=6
2783 //    60  StoreP  45  50  20   ... alias_index=4
2784 //    70  LoadP    _  60  30   ... alias_index=6
2785 //    80  Phi     75  50  60   Memory alias_index=4
2786 //    90  LoadP    _  80  30   ... alias_index=6
2787 //   100  LoadP    _  80  20   ... alias_index=4
2788 //
2789 // In phase 2, new memory inputs are computed for the loads and stores,
2790 // And a new version of the phi is created.  In phase 4, the inputs to
2791 // node 80 are updated and then the memory nodes are updated with the
2792 // values computed in phase 2.  This results in:
2793 //
2794 //     7 Parm #memory
2795 //    10  ConI  "12"
2796 //    19  CheckCastPP   "Foo"
2797 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2798 //    29  CheckCastPP   "Foo"  iid=24
2799 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2800 //
2801 //    40  StoreP  25  7   20   ... alias_index=4
2802 //    50  StoreP  35  7   30   ... alias_index=6
2803 //    60  StoreP  45  40  20   ... alias_index=4
2804 //    70  LoadP    _  50  30   ... alias_index=6
2805 //    80  Phi     75  40  60   Memory alias_index=4
2806 //   120  Phi     75  50  50   Memory alias_index=6
2807 //    90  LoadP    _ 120  30   ... alias_index=6
2808 //   100  LoadP    _  80  20   ... alias_index=4
2809 //
2810 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
2811   GrowableArray<Node *>  memnode_worklist;
2812   GrowableArray<PhiNode *>  orig_phis;
2813   PhaseIterGVN  *igvn = _igvn;
2814   uint new_index_start = (uint) _compile->num_alias_types();
2815   Arena* arena = Thread::current()->resource_area();
2816   VectorSet visited(arena);
2817   ideal_nodes.clear(); // Reset for use with set_map/get_map.
2818   uint unique_old = _compile->unique();
2819 
2820   //  Phase 1:  Process possible allocations from alloc_worklist.
2821   //  Create instance types for the CheckCastPP for allocations where possible.
2822   //
2823   // (Note: don't forget to change the order of the second AddP node on
2824   //  the alloc_worklist if the order of the worklist processing is changed,
2825   //  see the comment in find_second_addp().)
2826   //
2827   while (alloc_worklist.length() != 0) {
2828     Node *n = alloc_worklist.pop();
2829     uint ni = n->_idx;
2830     if (n->is_Call()) {
2831       CallNode *alloc = n->as_Call();
2832       // copy escape information to call node
2833       PointsToNode* ptn = ptnode_adr(alloc->_idx);
2834       PointsToNode::EscapeState es = ptn->escape_state();
2835       // We have an allocation or call which returns a Java object,
2836       // see if it is unescaped.
2837       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2838         continue;
2839       // Find CheckCastPP for the allocate or for the return value of a call
2840       n = alloc->result_cast();
2841       if (n == NULL) {            // No uses except Initialize node
2842         if (alloc->is_Allocate()) {
2843           // Set the scalar_replaceable flag for allocation
2844           // so it could be eliminated if it has no uses.
2845           alloc->as_Allocate()->_is_scalar_replaceable = true;
2846         }
2847         if (alloc->is_CallStaticJava()) {
2848           // Set the scalar_replaceable flag for boxing method
2849           // so it could be eliminated if it has no uses.
2850           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2851         }
2852         continue;
2853       }
2854       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2855         assert(!alloc->is_Allocate(), "allocation should have unique type");
2856         continue;
2857       }
2858 
2859       // The inline code for Object.clone() casts the allocation result to
2860       // java.lang.Object and then to the actual type of the allocated
2861       // object. Detect this case and use the second cast.
2862       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
2863       // the allocation result is cast to java.lang.Object and then
2864       // to the actual Array type.
2865       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
2866           && (alloc->is_AllocateArray() ||
2867               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
2868         Node *cast2 = NULL;
2869         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2870           Node *use = n->fast_out(i);
2871           if (use->is_CheckCastPP()) {
2872             cast2 = use;
2873             break;
2874           }
2875         }
2876         if (cast2 != NULL) {
2877           n = cast2;
2878         } else {
2879           // Non-scalar replaceable if the allocation type is unknown statically
2880           // (reflection allocation), the object can't be restored during
2881           // deoptimization without precise type.
2882           continue;
2883         }
2884       }
2885 
2886       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
2887       if (t == NULL)
2888         continue;  // not a TypeOopPtr
2889       if (!t->klass_is_exact())
2890         continue; // not an unique type
2891 
2892       if (alloc->is_Allocate()) {
2893         // Set the scalar_replaceable flag for allocation
2894         // so it could be eliminated.
2895         alloc->as_Allocate()->_is_scalar_replaceable = true;
2896       }
2897       if (alloc->is_CallStaticJava()) {
2898         // Set the scalar_replaceable flag for boxing method
2899         // so it could be eliminated.
2900         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2901       }
2902       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
2903       // in order for an object to be scalar-replaceable, it must be:
2904       //   - a direct allocation (not a call returning an object)
2905       //   - non-escaping
2906       //   - eligible to be a unique type
2907       //   - not determined to be ineligible by escape analysis
2908       set_map(alloc, n);
2909       set_map(n, alloc);
2910       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
2911       igvn->hash_delete(n);
2912       igvn->set_type(n,  tinst);
2913       n->raise_bottom_type(tinst);
2914       igvn->hash_insert(n);
2915       record_for_optimizer(n);
2916       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
2917 
2918         // First, put on the worklist all Field edges from Connection Graph
2919         // which is more accurate then putting immediate users from Ideal Graph.
2920         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
2921           PointsToNode* tgt = e.get();
2922           Node* use = tgt->ideal_node();
2923           assert(tgt->is_Field() && use->is_AddP(),
2924                  "only AddP nodes are Field edges in CG");
2925           if (use->outcnt() > 0) { // Don't process dead nodes
2926             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
2927             if (addp2 != NULL) {
2928               assert(alloc->is_AllocateArray(),"array allocation was expected");
2929               alloc_worklist.append_if_missing(addp2);
2930             }
2931             alloc_worklist.append_if_missing(use);
2932           }
2933         }
2934 
2935         // An allocation may have an Initialize which has raw stores. Scan
2936         // the users of the raw allocation result and push AddP users
2937         // on alloc_worklist.
2938         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
2939         assert (raw_result != NULL, "must have an allocation result");
2940         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
2941           Node *use = raw_result->fast_out(i);
2942           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
2943             Node* addp2 = find_second_addp(use, raw_result);
2944             if (addp2 != NULL) {
2945               assert(alloc->is_AllocateArray(),"array allocation was expected");
2946               alloc_worklist.append_if_missing(addp2);
2947             }
2948             alloc_worklist.append_if_missing(use);
2949           } else if (use->is_MemBar()) {
2950             memnode_worklist.append_if_missing(use);
2951           }
2952         }
2953       }
2954     } else if (n->is_AddP()) {
2955       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
2956       if (jobj == NULL || jobj == phantom_obj) {
2957 #ifdef ASSERT
2958         ptnode_adr(get_addp_base(n)->_idx)->dump();
2959         ptnode_adr(n->_idx)->dump();
2960         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
2961 #endif
2962         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
2963         return;
2964       }
2965       Node *base = get_map(jobj->idx());  // CheckCastPP node
2966       if (!split_AddP(n, base)) continue; // wrong type from dead path
2967     } else if (n->is_Phi() ||
2968                n->is_CheckCastPP() ||
2969                n->is_EncodeP() ||
2970                n->is_DecodeN() ||
2971                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
2972       if (visited.test_set(n->_idx)) {
2973         assert(n->is_Phi(), "loops only through Phi's");
2974         continue;  // already processed
2975       }
2976       JavaObjectNode* jobj = unique_java_object(n);
2977       if (jobj == NULL || jobj == phantom_obj) {
2978 #ifdef ASSERT
2979         ptnode_adr(n->_idx)->dump();
2980         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
2981 #endif
2982         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
2983         return;
2984       } else {
2985         Node *val = get_map(jobj->idx());   // CheckCastPP node
2986         TypeNode *tn = n->as_Type();
2987         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
2988         assert(tinst != NULL && tinst->is_known_instance() &&
2989                tinst->instance_id() == jobj->idx() , "instance type expected.");
2990 
2991         const Type *tn_type = igvn->type(tn);
2992         const TypeOopPtr *tn_t;
2993         if (tn_type->isa_narrowoop()) {
2994           tn_t = tn_type->make_ptr()->isa_oopptr();
2995         } else {
2996           tn_t = tn_type->isa_oopptr();
2997         }
2998         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
2999           if (tn_type->isa_narrowoop()) {
3000             tn_type = tinst->make_narrowoop();
3001           } else {
3002             tn_type = tinst;
3003           }
3004           igvn->hash_delete(tn);
3005           igvn->set_type(tn, tn_type);
3006           tn->set_type(tn_type);
3007           igvn->hash_insert(tn);
3008           record_for_optimizer(n);
3009         } else {
3010           assert(tn_type == TypePtr::NULL_PTR ||
3011                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
3012                  "unexpected type");
3013           continue; // Skip dead path with different type
3014         }
3015       }
3016     } else {
3017       debug_only(n->dump();)
3018       assert(false, "EA: unexpected node");
3019       continue;
3020     }
3021     // push allocation's users on appropriate worklist
3022     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3023       Node *use = n->fast_out(i);
3024       if(use->is_Mem() && use->in(MemNode::Address) == n) {
3025         // Load/store to instance's field
3026         memnode_worklist.append_if_missing(use);
3027       } else if (use->is_MemBar()) {
3028         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3029           memnode_worklist.append_if_missing(use);
3030         }
3031       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
3032         Node* addp2 = find_second_addp(use, n);
3033         if (addp2 != NULL) {
3034           alloc_worklist.append_if_missing(addp2);
3035         }
3036         alloc_worklist.append_if_missing(use);
3037       } else if (use->is_Phi() ||
3038                  use->is_CheckCastPP() ||
3039                  use->is_EncodeNarrowPtr() ||
3040                  use->is_DecodeNarrowPtr() ||
3041                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
3042         alloc_worklist.append_if_missing(use);
3043 #ifdef ASSERT
3044       } else if (use->is_Mem()) {
3045         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
3046       } else if (use->is_MergeMem()) {
3047         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3048       } else if (use->is_SafePoint()) {
3049         // Look for MergeMem nodes for calls which reference unique allocation
3050         // (through CheckCastPP nodes) even for debug info.
3051         Node* m = use->in(TypeFunc::Memory);
3052         if (m->is_MergeMem()) {
3053           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3054         }
3055       } else if (use->Opcode() == Op_EncodeISOArray) {
3056         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3057           // EncodeISOArray overwrites destination array
3058           memnode_worklist.append_if_missing(use);
3059         }
3060       } else {
3061         uint op = use->Opcode();
3062         if (!(op == Op_CmpP || op == Op_Conv2B ||
3063               op == Op_CastP2X || op == Op_StoreCM ||
3064               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
3065               op == Op_StrEquals || op == Op_StrIndexOf)) {
3066           n->dump();
3067           use->dump();
3068           assert(false, "EA: missing allocation reference path");
3069         }
3070 #endif
3071       }
3072     }
3073 
3074   }
3075   // New alias types were created in split_AddP().
3076   uint new_index_end = (uint) _compile->num_alias_types();
3077   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
3078 
3079   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
3080   //            compute new values for Memory inputs  (the Memory inputs are not
3081   //            actually updated until phase 4.)
3082   if (memnode_worklist.length() == 0)
3083     return;  // nothing to do
3084   while (memnode_worklist.length() != 0) {
3085     Node *n = memnode_worklist.pop();
3086     if (visited.test_set(n->_idx))
3087       continue;
3088     if (n->is_Phi() || n->is_ClearArray()) {
3089       // we don't need to do anything, but the users must be pushed
3090     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
3091       // we don't need to do anything, but the users must be pushed
3092       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
3093       if (n == NULL)
3094         continue;
3095     } else if (n->Opcode() == Op_EncodeISOArray) {
3096       // get the memory projection
3097       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3098         Node *use = n->fast_out(i);
3099         if (use->Opcode() == Op_SCMemProj) {
3100           n = use;
3101           break;
3102         }
3103       }
3104       assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3105     } else {
3106       assert(n->is_Mem(), "memory node required.");
3107       Node *addr = n->in(MemNode::Address);
3108       const Type *addr_t = igvn->type(addr);
3109       if (addr_t == Type::TOP)
3110         continue;
3111       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
3112       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
3113       assert ((uint)alias_idx < new_index_end, "wrong alias index");
3114       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
3115       if (_compile->failing()) {
3116         return;
3117       }
3118       if (mem != n->in(MemNode::Memory)) {
3119         // We delay the memory edge update since we need old one in
3120         // MergeMem code below when instances memory slices are separated.
3121         set_map(n, mem);
3122       }
3123       if (n->is_Load()) {
3124         continue;  // don't push users
3125       } else if (n->is_LoadStore()) {
3126         // get the memory projection
3127         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3128           Node *use = n->fast_out(i);
3129           if (use->Opcode() == Op_SCMemProj) {
3130             n = use;
3131             break;
3132           }
3133         }
3134         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3135       }
3136     }
3137     // push user on appropriate worklist
3138     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3139       Node *use = n->fast_out(i);
3140       if (use->is_Phi() || use->is_ClearArray()) {
3141         memnode_worklist.append_if_missing(use);
3142       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
3143         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
3144           continue;
3145         memnode_worklist.append_if_missing(use);
3146       } else if (use->is_MemBar()) {
3147         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3148           memnode_worklist.append_if_missing(use);
3149         }
3150 #ifdef ASSERT
3151       } else if(use->is_Mem()) {
3152         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
3153       } else if (use->is_MergeMem()) {
3154         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3155       } else if (use->Opcode() == Op_EncodeISOArray) {
3156         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3157           // EncodeISOArray overwrites destination array
3158           memnode_worklist.append_if_missing(use);
3159         }
3160       } else {
3161         uint op = use->Opcode();
3162         if (!(op == Op_StoreCM ||
3163               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
3164                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
3165               op == Op_AryEq || op == Op_StrComp ||
3166               op == Op_StrEquals || op == Op_StrIndexOf)) {
3167           n->dump();
3168           use->dump();
3169           assert(false, "EA: missing memory path");
3170         }
3171 #endif
3172       }
3173     }
3174   }
3175 
3176   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
3177   //            Walk each memory slice moving the first node encountered of each
3178   //            instance type to the the input corresponding to its alias index.
3179   uint length = _mergemem_worklist.length();
3180   for( uint next = 0; next < length; ++next ) {
3181     MergeMemNode* nmm = _mergemem_worklist.at(next);
3182     assert(!visited.test_set(nmm->_idx), "should not be visited before");
3183     // Note: we don't want to use MergeMemStream here because we only want to
3184     // scan inputs which exist at the start, not ones we add during processing.
3185     // Note 2: MergeMem may already contains instance memory slices added
3186     // during find_inst_mem() call when memory nodes were processed above.
3187     igvn->hash_delete(nmm);
3188     uint nslices = MIN2(nmm->req(), new_index_start);
3189     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
3190       Node* mem = nmm->in(i);
3191       Node* cur = NULL;
3192       if (mem == NULL || mem->is_top())
3193         continue;
3194       // First, update mergemem by moving memory nodes to corresponding slices
3195       // if their type became more precise since this mergemem was created.
3196       while (mem->is_Mem()) {
3197         const Type *at = igvn->type(mem->in(MemNode::Address));
3198         if (at != Type::TOP) {
3199           assert (at->isa_ptr() != NULL, "pointer type required.");
3200           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
3201           if (idx == i) {
3202             if (cur == NULL)
3203               cur = mem;
3204           } else {
3205             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
3206               nmm->set_memory_at(idx, mem);
3207             }
3208           }
3209         }
3210         mem = mem->in(MemNode::Memory);
3211       }
3212       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3213       // Find any instance of the current type if we haven't encountered
3214       // already a memory slice of the instance along the memory chain.
3215       for (uint ni = new_index_start; ni < new_index_end; ni++) {
3216         if((uint)_compile->get_general_index(ni) == i) {
3217           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3218           if (nmm->is_empty_memory(m)) {
3219             Node* result = find_inst_mem(mem, ni, orig_phis);
3220             if (_compile->failing()) {
3221               return;
3222             }
3223             nmm->set_memory_at(ni, result);
3224           }
3225         }
3226       }
3227     }
3228     // Find the rest of instances values
3229     for (uint ni = new_index_start; ni < new_index_end; ni++) {
3230       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3231       Node* result = step_through_mergemem(nmm, ni, tinst);
3232       if (result == nmm->base_memory()) {
3233         // Didn't find instance memory, search through general slice recursively.
3234         result = nmm->memory_at(_compile->get_general_index(ni));
3235         result = find_inst_mem(result, ni, orig_phis);
3236         if (_compile->failing()) {
3237           return;
3238         }
3239         nmm->set_memory_at(ni, result);
3240       }
3241     }
3242     igvn->hash_insert(nmm);
3243     record_for_optimizer(nmm);
3244   }
3245 
3246   //  Phase 4:  Update the inputs of non-instance memory Phis and
3247   //            the Memory input of memnodes
3248   // First update the inputs of any non-instance Phi's from
3249   // which we split out an instance Phi.  Note we don't have
3250   // to recursively process Phi's encounted on the input memory
3251   // chains as is done in split_memory_phi() since they  will
3252   // also be processed here.
3253   for (int j = 0; j < orig_phis.length(); j++) {
3254     PhiNode *phi = orig_phis.at(j);
3255     int alias_idx = _compile->get_alias_index(phi->adr_type());
3256     igvn->hash_delete(phi);
3257     for (uint i = 1; i < phi->req(); i++) {
3258       Node *mem = phi->in(i);
3259       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3260       if (_compile->failing()) {
3261         return;
3262       }
3263       if (mem != new_mem) {
3264         phi->set_req(i, new_mem);
3265       }
3266     }
3267     igvn->hash_insert(phi);
3268     record_for_optimizer(phi);
3269   }
3270 
3271   // Update the memory inputs of MemNodes with the value we computed
3272   // in Phase 2 and move stores memory users to corresponding memory slices.
3273   // Disable memory split verification code until the fix for 6984348.
3274   // Currently it produces false negative results since it does not cover all cases.
3275 #if 0 // ifdef ASSERT
3276   visited.Reset();
3277   Node_Stack old_mems(arena, _compile->unique() >> 2);
3278 #endif
3279   for (uint i = 0; i < ideal_nodes.size(); i++) {
3280     Node*    n = ideal_nodes.at(i);
3281     Node* nmem = get_map(n->_idx);
3282     assert(nmem != NULL, "sanity");
3283     if (n->is_Mem()) {
3284 #if 0 // ifdef ASSERT
3285       Node* old_mem = n->in(MemNode::Memory);
3286       if (!visited.test_set(old_mem->_idx)) {
3287         old_mems.push(old_mem, old_mem->outcnt());
3288       }
3289 #endif
3290       assert(n->in(MemNode::Memory) != nmem, "sanity");
3291       if (!n->is_Load()) {
3292         // Move memory users of a store first.
3293         move_inst_mem(n, orig_phis);
3294       }
3295       // Now update memory input
3296       igvn->hash_delete(n);
3297       n->set_req(MemNode::Memory, nmem);
3298       igvn->hash_insert(n);
3299       record_for_optimizer(n);
3300     } else {
3301       assert(n->is_Allocate() || n->is_CheckCastPP() ||
3302              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3303     }
3304   }
3305 #if 0 // ifdef ASSERT
3306   // Verify that memory was split correctly
3307   while (old_mems.is_nonempty()) {
3308     Node* old_mem = old_mems.node();
3309     uint  old_cnt = old_mems.index();
3310     old_mems.pop();
3311     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3312   }
3313 #endif
3314 }
3315 
3316 #ifndef PRODUCT
3317 static const char *node_type_names[] = {
3318   "UnknownType",
3319   "JavaObject",
3320   "LocalVar",
3321   "Field",
3322   "Arraycopy"
3323 };
3324 
3325 static const char *esc_names[] = {
3326   "UnknownEscape",
3327   "NoEscape",
3328   "ArgEscape",
3329   "GlobalEscape"
3330 };
3331 
3332 void PointsToNode::dump(bool print_state) const {
3333   NodeType nt = node_type();
3334   tty->print("%s ", node_type_names[(int) nt]);
3335   if (print_state) {
3336     EscapeState es = escape_state();
3337     EscapeState fields_es = fields_escape_state();
3338     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3339     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3340       tty->print("NSR ");
3341   }
3342   if (is_Field()) {
3343     FieldNode* f = (FieldNode*)this;
3344     if (f->is_oop())
3345       tty->print("oop ");
3346     if (f->offset() > 0)
3347       tty->print("+%d ", f->offset());
3348     tty->print("(");
3349     for (BaseIterator i(f); i.has_next(); i.next()) {
3350       PointsToNode* b = i.get();
3351       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3352     }
3353     tty->print(" )");
3354   }
3355   tty->print("[");
3356   for (EdgeIterator i(this); i.has_next(); i.next()) {
3357     PointsToNode* e = i.get();
3358     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3359   }
3360   tty->print(" [");
3361   for (UseIterator i(this); i.has_next(); i.next()) {
3362     PointsToNode* u = i.get();
3363     bool is_base = false;
3364     if (PointsToNode::is_base_use(u)) {
3365       is_base = true;
3366       u = PointsToNode::get_use_node(u)->as_Field();
3367     }
3368     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3369   }
3370   tty->print(" ]]  ");
3371   if (_node == NULL)
3372     tty->print_cr("<null>");
3373   else
3374     _node->dump();
3375 }
3376 
3377 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3378   bool first = true;
3379   int ptnodes_length = ptnodes_worklist.length();
3380   for (int i = 0; i < ptnodes_length; i++) {
3381     PointsToNode *ptn = ptnodes_worklist.at(i);
3382     if (ptn == NULL || !ptn->is_JavaObject())
3383       continue;
3384     PointsToNode::EscapeState es = ptn->escape_state();
3385     if ((es != PointsToNode::NoEscape) && !Verbose) {
3386       continue;
3387     }
3388     Node* n = ptn->ideal_node();
3389     if (n->is_Allocate() || (n->is_CallStaticJava() &&
3390                              n->as_CallStaticJava()->is_boxing_method())) {
3391       if (first) {
3392         tty->cr();
3393         tty->print("======== Connection graph for ");
3394         _compile->method()->print_short_name();
3395         tty->cr();
3396         first = false;
3397       }
3398       ptn->dump();
3399       // Print all locals and fields which reference this allocation
3400       for (UseIterator j(ptn); j.has_next(); j.next()) {
3401         PointsToNode* use = j.get();
3402         if (use->is_LocalVar()) {
3403           use->dump(Verbose);
3404         } else if (Verbose) {
3405           use->dump();
3406         }
3407       }
3408       tty->cr();
3409     }
3410   }
3411 }
3412 #endif