1 /*
   2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util.regex;
  27 
  28 import java.text.Normalizer;
  29 import java.util.Locale;
  30 import java.util.Iterator;
  31 import java.util.Map;
  32 import java.util.ArrayList;
  33 import java.util.HashMap;
  34 import java.util.Arrays;
  35 import java.util.NoSuchElementException;
  36 import java.util.Spliterator;
  37 import java.util.Spliterators;
  38 import java.util.function.Predicate;
  39 import java.util.stream.Stream;
  40 import java.util.stream.StreamSupport;
  41 
  42 
  43 /**
  44  * A compiled representation of a regular expression.
  45  *
  46  * <p> A regular expression, specified as a string, must first be compiled into
  47  * an instance of this class.  The resulting pattern can then be used to create
  48  * a {@link Matcher} object that can match arbitrary {@linkplain
  49  * java.lang.CharSequence character sequences} against the regular
  50  * expression.  All of the state involved in performing a match resides in the
  51  * matcher, so many matchers can share the same pattern.
  52  *
  53  * <p> A typical invocation sequence is thus
  54  *
  55  * <blockquote><pre>
  56  * Pattern p = Pattern.{@link #compile compile}("a*b");
  57  * Matcher m = p.{@link #matcher matcher}("aaaaab");
  58  * boolean b = m.{@link Matcher#matches matches}();</pre></blockquote>
  59  *
  60  * <p> A {@link #matches matches} method is defined by this class as a
  61  * convenience for when a regular expression is used just once.  This method
  62  * compiles an expression and matches an input sequence against it in a single
  63  * invocation.  The statement
  64  *
  65  * <blockquote><pre>
  66  * boolean b = Pattern.matches("a*b", "aaaaab");</pre></blockquote>
  67  *
  68  * is equivalent to the three statements above, though for repeated matches it
  69  * is less efficient since it does not allow the compiled pattern to be reused.
  70  *
  71  * <p> Instances of this class are immutable and are safe for use by multiple
  72  * concurrent threads.  Instances of the {@link Matcher} class are not safe for
  73  * such use.
  74  *
  75  *
  76  * <h3><a name="sum">Summary of regular-expression constructs</a></h3>
  77  *
  78  * <table border="0" cellpadding="1" cellspacing="0"
  79  *  summary="Regular expression constructs, and what they match">
  80  *
  81  * <tr align="left">
  82  * <th align="left" id="construct">Construct</th>
  83  * <th align="left" id="matches">Matches</th>
  84  * </tr>
  85  *
  86  * <tr><th>&nbsp;</th></tr>
  87  * <tr align="left"><th colspan="2" id="characters">Characters</th></tr>
  88  *
  89  * <tr><td valign="top" headers="construct characters"><i>x</i></td>
  90  *     <td headers="matches">The character <i>x</i></td></tr>
  91  * <tr><td valign="top" headers="construct characters"><tt>\\</tt></td>
  92  *     <td headers="matches">The backslash character</td></tr>
  93  * <tr><td valign="top" headers="construct characters"><tt>\0</tt><i>n</i></td>
  94  *     <td headers="matches">The character with octal value <tt>0</tt><i>n</i>
  95  *         (0&nbsp;<tt>&lt;=</tt>&nbsp;<i>n</i>&nbsp;<tt>&lt;=</tt>&nbsp;7)</td></tr>
  96  * <tr><td valign="top" headers="construct characters"><tt>\0</tt><i>nn</i></td>
  97  *     <td headers="matches">The character with octal value <tt>0</tt><i>nn</i>
  98  *         (0&nbsp;<tt>&lt;=</tt>&nbsp;<i>n</i>&nbsp;<tt>&lt;=</tt>&nbsp;7)</td></tr>
  99  * <tr><td valign="top" headers="construct characters"><tt>\0</tt><i>mnn</i></td>
 100  *     <td headers="matches">The character with octal value <tt>0</tt><i>mnn</i>
 101  *         (0&nbsp;<tt>&lt;=</tt>&nbsp;<i>m</i>&nbsp;<tt>&lt;=</tt>&nbsp;3,
 102  *         0&nbsp;<tt>&lt;=</tt>&nbsp;<i>n</i>&nbsp;<tt>&lt;=</tt>&nbsp;7)</td></tr>
 103  * <tr><td valign="top" headers="construct characters"><tt>\x</tt><i>hh</i></td>
 104  *     <td headers="matches">The character with hexadecimal&nbsp;value&nbsp;<tt>0x</tt><i>hh</i></td></tr>
 105  * <tr><td valign="top" headers="construct characters"><tt>\u</tt><i>hhhh</i></td>
 106  *     <td headers="matches">The character with hexadecimal&nbsp;value&nbsp;<tt>0x</tt><i>hhhh</i></td></tr>
 107  * <tr><td valign="top" headers="construct characters"><tt>\x</tt><i>{h...h}</i></td>
 108  *     <td headers="matches">The character with hexadecimal&nbsp;value&nbsp;<tt>0x</tt><i>h...h</i>
 109  *         ({@link java.lang.Character#MIN_CODE_POINT Character.MIN_CODE_POINT}
 110  *         &nbsp;&lt;=&nbsp;<tt>0x</tt><i>h...h</i>&nbsp;&lt;=&nbsp;
 111  *          {@link java.lang.Character#MAX_CODE_POINT Character.MAX_CODE_POINT})</td></tr>
 112  * <tr><td valign="top" headers="matches"><tt>\t</tt></td>
 113  *     <td headers="matches">The tab character (<tt>'\u0009'</tt>)</td></tr>
 114  * <tr><td valign="top" headers="construct characters"><tt>\n</tt></td>
 115  *     <td headers="matches">The newline (line feed) character (<tt>'\u000A'</tt>)</td></tr>
 116  * <tr><td valign="top" headers="construct characters"><tt>\r</tt></td>
 117  *     <td headers="matches">The carriage-return character (<tt>'\u000D'</tt>)</td></tr>
 118  * <tr><td valign="top" headers="construct characters"><tt>\f</tt></td>
 119  *     <td headers="matches">The form-feed character (<tt>'\u000C'</tt>)</td></tr>
 120  * <tr><td valign="top" headers="construct characters"><tt>\a</tt></td>
 121  *     <td headers="matches">The alert (bell) character (<tt>'\u0007'</tt>)</td></tr>
 122  * <tr><td valign="top" headers="construct characters"><tt>\e</tt></td>
 123  *     <td headers="matches">The escape character (<tt>'\u001B'</tt>)</td></tr>
 124  * <tr><td valign="top" headers="construct characters"><tt>\c</tt><i>x</i></td>
 125  *     <td headers="matches">The control character corresponding to <i>x</i></td></tr>
 126  *
 127  * <tr><th>&nbsp;</th></tr>
 128  * <tr align="left"><th colspan="2" id="classes">Character classes</th></tr>
 129  *
 130  * <tr><td valign="top" headers="construct classes">{@code [abc]}</td>
 131  *     <td headers="matches">{@code a}, {@code b}, or {@code c} (simple class)</td></tr>
 132  * <tr><td valign="top" headers="construct classes">{@code [^abc]}</td>
 133  *     <td headers="matches">Any character except {@code a}, {@code b}, or {@code c} (negation)</td></tr>
 134  * <tr><td valign="top" headers="construct classes">{@code [a-zA-Z]}</td>
 135  *     <td headers="matches">{@code a} through {@code z}
 136  *         or {@code A} through {@code Z}, inclusive (range)</td></tr>
 137  * <tr><td valign="top" headers="construct classes">{@code [a-d[m-p]]}</td>
 138  *     <td headers="matches">{@code a} through {@code d},
 139  *      or {@code m} through {@code p}: {@code [a-dm-p]} (union)</td></tr>
 140  * <tr><td valign="top" headers="construct classes">{@code [a-z&&[def]]}</td>
 141  *     <td headers="matches">{@code d}, {@code e}, or {@code f} (intersection)</tr>
 142  * <tr><td valign="top" headers="construct classes">{@code [a-z&&[^bc]]}</td>
 143  *     <td headers="matches">{@code a} through {@code z},
 144  *         except for {@code b} and {@code c}: {@code [ad-z]} (subtraction)</td></tr>
 145  * <tr><td valign="top" headers="construct classes">{@code [a-z&&[^m-p]]}</td>
 146  *     <td headers="matches">{@code a} through {@code z},
 147  *          and not {@code m} through {@code p}: {@code [a-lq-z]}(subtraction)</td></tr>
 148  * <tr><th>&nbsp;</th></tr>
 149  *
 150  * <tr align="left"><th colspan="2" id="predef">Predefined character classes</th></tr>
 151  *
 152  * <tr><td valign="top" headers="construct predef"><tt>.</tt></td>
 153  *     <td headers="matches">Any character (may or may not match <a href="#lt">line terminators</a>)</td></tr>
 154  * <tr><td valign="top" headers="construct predef"><tt>\d</tt></td>
 155  *     <td headers="matches">A digit: <tt>[0-9]</tt></td></tr>
 156  * <tr><td valign="top" headers="construct predef"><tt>\D</tt></td>
 157  *     <td headers="matches">A non-digit: <tt>[^0-9]</tt></td></tr>
 158  * <tr><td valign="top" headers="construct predef"><tt>\h</tt></td>
 159  *     <td headers="matches">A horizontal whitespace character:
 160  *     <tt>[ \t\xA0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]</tt></td></tr>
 161  * <tr><td valign="top" headers="construct predef"><tt>\H</tt></td>
 162  *     <td headers="matches">A non-horizontal whitespace character: <tt>[^\h]</tt></td></tr>
 163  * <tr><td valign="top" headers="construct predef"><tt>\s</tt></td>
 164  *     <td headers="matches">A whitespace character: <tt>[ \t\n\x0B\f\r]</tt></td></tr>
 165  * <tr><td valign="top" headers="construct predef"><tt>\S</tt></td>
 166  *     <td headers="matches">A non-whitespace character: <tt>[^\s]</tt></td></tr>
 167  * <tr><td valign="top" headers="construct predef"><tt>\v</tt></td>
 168  *     <td headers="matches">A vertical whitespace character: <tt>[\n\x0B\f\r\x85\u2028\u2029]</tt>
 169  *     </td></tr>
 170  * <tr><td valign="top" headers="construct predef"><tt>\V</tt></td>
 171  *     <td headers="matches">A non-vertical whitespace character: <tt>[^\v]</tt></td></tr>
 172  * <tr><td valign="top" headers="construct predef"><tt>\w</tt></td>
 173  *     <td headers="matches">A word character: <tt>[a-zA-Z_0-9]</tt></td></tr>
 174  * <tr><td valign="top" headers="construct predef"><tt>\W</tt></td>
 175  *     <td headers="matches">A non-word character: <tt>[^\w]</tt></td></tr>
 176  * <tr><th>&nbsp;</th></tr>
 177  * <tr align="left"><th colspan="2" id="posix"><b>POSIX character classes (US-ASCII only)</b></th></tr>
 178  *
 179  * <tr><td valign="top" headers="construct posix">{@code \p{Lower}}</td>
 180  *     <td headers="matches">A lower-case alphabetic character: {@code [a-z]}</td></tr>
 181  * <tr><td valign="top" headers="construct posix">{@code \p{Upper}}</td>
 182  *     <td headers="matches">An upper-case alphabetic character:{@code [A-Z]}</td></tr>
 183  * <tr><td valign="top" headers="construct posix">{@code \p{ASCII}}</td>
 184  *     <td headers="matches">All ASCII:{@code [\x00-\x7F]}</td></tr>
 185  * <tr><td valign="top" headers="construct posix">{@code \p{Alpha}}</td>
 186  *     <td headers="matches">An alphabetic character:{@code [\p{Lower}\p{Upper}]}</td></tr>
 187  * <tr><td valign="top" headers="construct posix">{@code \p{Digit}}</td>
 188  *     <td headers="matches">A decimal digit: {@code [0-9]}</td></tr>
 189  * <tr><td valign="top" headers="construct posix">{@code \p{Alnum}}</td>
 190  *     <td headers="matches">An alphanumeric character:{@code [\p{Alpha}\p{Digit}]}</td></tr>
 191  * <tr><td valign="top" headers="construct posix">{@code \p{Punct}}</td>
 192  *     <td headers="matches">Punctuation: One of {@code !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~}</td></tr>
 193  *     <!-- {@code [\!"#\$%&'\(\)\*\+,\-\./:;\<=\>\?@\[\\\]\^_`\{\|\}~]}
 194  *          {@code [\X21-\X2F\X31-\X40\X5B-\X60\X7B-\X7E]} -->
 195  * <tr><td valign="top" headers="construct posix">{@code \p{Graph}}</td>
 196  *     <td headers="matches">A visible character: {@code [\p{Alnum}\p{Punct}]}</td></tr>
 197  * <tr><td valign="top" headers="construct posix">{@code \p{Print}}</td>
 198  *     <td headers="matches">A printable character: {@code [\p{Graph}\x20]}</td></tr>
 199  * <tr><td valign="top" headers="construct posix">{@code \p{Blank}}</td>
 200  *     <td headers="matches">A space or a tab: {@code [ \t]}</td></tr>
 201  * <tr><td valign="top" headers="construct posix">{@code \p{Cntrl}}</td>
 202  *     <td headers="matches">A control character: {@code [\x00-\x1F\x7F]}</td></tr>
 203  * <tr><td valign="top" headers="construct posix">{@code \p{XDigit}}</td>
 204  *     <td headers="matches">A hexadecimal digit: {@code [0-9a-fA-F]}</td></tr>
 205  * <tr><td valign="top" headers="construct posix">{@code \p{Space}}</td>
 206  *     <td headers="matches">A whitespace character: {@code [ \t\n\x0B\f\r]}</td></tr>
 207  *
 208  * <tr><th>&nbsp;</th></tr>
 209  * <tr align="left"><th colspan="2">java.lang.Character classes (simple <a href="#jcc">java character type</a>)</th></tr>
 210  *
 211  * <tr><td valign="top"><tt>\p{javaLowerCase}</tt></td>
 212  *     <td>Equivalent to java.lang.Character.isLowerCase()</td></tr>
 213  * <tr><td valign="top"><tt>\p{javaUpperCase}</tt></td>
 214  *     <td>Equivalent to java.lang.Character.isUpperCase()</td></tr>
 215  * <tr><td valign="top"><tt>\p{javaWhitespace}</tt></td>
 216  *     <td>Equivalent to java.lang.Character.isWhitespace()</td></tr>
 217  * <tr><td valign="top"><tt>\p{javaMirrored}</tt></td>
 218  *     <td>Equivalent to java.lang.Character.isMirrored()</td></tr>
 219  *
 220  * <tr><th>&nbsp;</th></tr>
 221  * <tr align="left"><th colspan="2" id="unicode">Classes for Unicode scripts, blocks, categories and binary properties</th></tr>
 222  * <tr><td valign="top" headers="construct unicode">{@code \p{IsLatin}}</td>
 223  *     <td headers="matches">A Latin&nbsp;script character (<a href="#usc">script</a>)</td></tr>
 224  * <tr><td valign="top" headers="construct unicode">{@code \p{InGreek}}</td>
 225  *     <td headers="matches">A character in the Greek&nbsp;block (<a href="#ubc">block</a>)</td></tr>
 226  * <tr><td valign="top" headers="construct unicode">{@code \p{Lu}}</td>
 227  *     <td headers="matches">An uppercase letter (<a href="#ucc">category</a>)</td></tr>
 228  * <tr><td valign="top" headers="construct unicode">{@code \p{IsAlphabetic}}</td>
 229  *     <td headers="matches">An alphabetic character (<a href="#ubpc">binary property</a>)</td></tr>
 230  * <tr><td valign="top" headers="construct unicode">{@code \p{Sc}}</td>
 231  *     <td headers="matches">A currency symbol</td></tr>
 232  * <tr><td valign="top" headers="construct unicode">{@code \P{InGreek}}</td>
 233  *     <td headers="matches">Any character except one in the Greek block (negation)</td></tr>
 234  * <tr><td valign="top" headers="construct unicode">{@code [\p{L}&&[^\p{Lu}]]}</td>
 235  *     <td headers="matches">Any letter except an uppercase letter (subtraction)</td></tr>
 236  *
 237  * <tr><th>&nbsp;</th></tr>
 238  * <tr align="left"><th colspan="2" id="bounds">Boundary matchers</th></tr>
 239  *
 240  * <tr><td valign="top" headers="construct bounds"><tt>^</tt></td>
 241  *     <td headers="matches">The beginning of a line</td></tr>
 242  * <tr><td valign="top" headers="construct bounds"><tt>$</tt></td>
 243  *     <td headers="matches">The end of a line</td></tr>
 244  * <tr><td valign="top" headers="construct bounds"><tt>\b</tt></td>
 245  *     <td headers="matches">A word boundary</td></tr>
 246  * <tr><td valign="top" headers="construct bounds"><tt>\B</tt></td>
 247  *     <td headers="matches">A non-word boundary</td></tr>
 248  * <tr><td valign="top" headers="construct bounds"><tt>\A</tt></td>
 249  *     <td headers="matches">The beginning of the input</td></tr>
 250  * <tr><td valign="top" headers="construct bounds"><tt>\G</tt></td>
 251  *     <td headers="matches">The end of the previous match</td></tr>
 252  * <tr><td valign="top" headers="construct bounds"><tt>\Z</tt></td>
 253  *     <td headers="matches">The end of the input but for the final
 254  *         <a href="#lt">terminator</a>, if&nbsp;any</td></tr>
 255  * <tr><td valign="top" headers="construct bounds"><tt>\z</tt></td>
 256  *     <td headers="matches">The end of the input</td></tr>
 257  *
 258  * <tr><th>&nbsp;</th></tr>
 259  * <tr align="left"><th colspan="2" id="lineending">Linebreak matcher</th></tr>
 260  * <tr><td valign="top" headers="construct lineending"><tt>\R</tt></td>
 261  *     <td headers="matches">Any Unicode linebreak sequence, is equivalent to
 262  *     <tt>\u000D\u000A|[\u000A\u000B\u000C\u000D\u0085\u2028\u2029]
 263  *     </tt></td></tr>
 264  *
 265  * <tr><th>&nbsp;</th></tr>
 266  * <tr align="left"><th colspan="2" id="greedy">Greedy quantifiers</th></tr>
 267  *
 268  * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>?</tt></td>
 269  *     <td headers="matches"><i>X</i>, once or not at all</td></tr>
 270  * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>*</tt></td>
 271  *     <td headers="matches"><i>X</i>, zero or more times</td></tr>
 272  * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>+</tt></td>
 273  *     <td headers="matches"><i>X</i>, one or more times</td></tr>
 274  * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>{</tt><i>n</i><tt>}</tt></td>
 275  *     <td headers="matches"><i>X</i>, exactly <i>n</i> times</td></tr>
 276  * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>{</tt><i>n</i><tt>,}</tt></td>
 277  *     <td headers="matches"><i>X</i>, at least <i>n</i> times</td></tr>
 278  * <tr><td valign="top" headers="construct greedy"><i>X</i><tt>{</tt><i>n</i><tt>,</tt><i>m</i><tt>}</tt></td>
 279  *     <td headers="matches"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
 280  *
 281  * <tr><th>&nbsp;</th></tr>
 282  * <tr align="left"><th colspan="2" id="reluc">Reluctant quantifiers</th></tr>
 283  *
 284  * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>??</tt></td>
 285  *     <td headers="matches"><i>X</i>, once or not at all</td></tr>
 286  * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>*?</tt></td>
 287  *     <td headers="matches"><i>X</i>, zero or more times</td></tr>
 288  * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>+?</tt></td>
 289  *     <td headers="matches"><i>X</i>, one or more times</td></tr>
 290  * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>{</tt><i>n</i><tt>}?</tt></td>
 291  *     <td headers="matches"><i>X</i>, exactly <i>n</i> times</td></tr>
 292  * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>{</tt><i>n</i><tt>,}?</tt></td>
 293  *     <td headers="matches"><i>X</i>, at least <i>n</i> times</td></tr>
 294  * <tr><td valign="top" headers="construct reluc"><i>X</i><tt>{</tt><i>n</i><tt>,</tt><i>m</i><tt>}?</tt></td>
 295  *     <td headers="matches"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
 296  *
 297  * <tr><th>&nbsp;</th></tr>
 298  * <tr align="left"><th colspan="2" id="poss">Possessive quantifiers</th></tr>
 299  *
 300  * <tr><td valign="top" headers="construct poss"><i>X</i><tt>?+</tt></td>
 301  *     <td headers="matches"><i>X</i>, once or not at all</td></tr>
 302  * <tr><td valign="top" headers="construct poss"><i>X</i><tt>*+</tt></td>
 303  *     <td headers="matches"><i>X</i>, zero or more times</td></tr>
 304  * <tr><td valign="top" headers="construct poss"><i>X</i><tt>++</tt></td>
 305  *     <td headers="matches"><i>X</i>, one or more times</td></tr>
 306  * <tr><td valign="top" headers="construct poss"><i>X</i><tt>{</tt><i>n</i><tt>}+</tt></td>
 307  *     <td headers="matches"><i>X</i>, exactly <i>n</i> times</td></tr>
 308  * <tr><td valign="top" headers="construct poss"><i>X</i><tt>{</tt><i>n</i><tt>,}+</tt></td>
 309  *     <td headers="matches"><i>X</i>, at least <i>n</i> times</td></tr>
 310  * <tr><td valign="top" headers="construct poss"><i>X</i><tt>{</tt><i>n</i><tt>,</tt><i>m</i><tt>}+</tt></td>
 311  *     <td headers="matches"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
 312  *
 313  * <tr><th>&nbsp;</th></tr>
 314  * <tr align="left"><th colspan="2" id="logical">Logical operators</th></tr>
 315  *
 316  * <tr><td valign="top" headers="construct logical"><i>XY</i></td>
 317  *     <td headers="matches"><i>X</i> followed by <i>Y</i></td></tr>
 318  * <tr><td valign="top" headers="construct logical"><i>X</i><tt>|</tt><i>Y</i></td>
 319  *     <td headers="matches">Either <i>X</i> or <i>Y</i></td></tr>
 320  * <tr><td valign="top" headers="construct logical"><tt>(</tt><i>X</i><tt>)</tt></td>
 321  *     <td headers="matches">X, as a <a href="#cg">capturing group</a></td></tr>
 322  *
 323  * <tr><th>&nbsp;</th></tr>
 324  * <tr align="left"><th colspan="2" id="backref">Back references</th></tr>
 325  *
 326  * <tr><td valign="bottom" headers="construct backref"><tt>\</tt><i>n</i></td>
 327  *     <td valign="bottom" headers="matches">Whatever the <i>n</i><sup>th</sup>
 328  *     <a href="#cg">capturing group</a> matched</td></tr>
 329  *
 330  * <tr><td valign="bottom" headers="construct backref"><tt>\</tt><i>k</i>&lt;<i>name</i>&gt;</td>
 331  *     <td valign="bottom" headers="matches">Whatever the
 332  *     <a href="#groupname">named-capturing group</a> "name" matched</td></tr>
 333  *
 334  * <tr><th>&nbsp;</th></tr>
 335  * <tr align="left"><th colspan="2" id="quot">Quotation</th></tr>
 336  *
 337  * <tr><td valign="top" headers="construct quot"><tt>\</tt></td>
 338  *     <td headers="matches">Nothing, but quotes the following character</td></tr>
 339  * <tr><td valign="top" headers="construct quot"><tt>\Q</tt></td>
 340  *     <td headers="matches">Nothing, but quotes all characters until <tt>\E</tt></td></tr>
 341  * <tr><td valign="top" headers="construct quot"><tt>\E</tt></td>
 342  *     <td headers="matches">Nothing, but ends quoting started by <tt>\Q</tt></td></tr>
 343  *     <!-- Metachars: !$()*+.<>?[\]^{|} -->
 344  *
 345  * <tr><th>&nbsp;</th></tr>
 346  * <tr align="left"><th colspan="2" id="special">Special constructs (named-capturing and non-capturing)</th></tr>
 347  *
 348  * <tr><td valign="top" headers="construct special"><tt>(?&lt;<a href="#groupname">name</a>&gt;</tt><i>X</i><tt>)</tt></td>
 349  *     <td headers="matches"><i>X</i>, as a named-capturing group</td></tr>
 350  * <tr><td valign="top" headers="construct special"><tt>(?:</tt><i>X</i><tt>)</tt></td>
 351  *     <td headers="matches"><i>X</i>, as a non-capturing group</td></tr>
 352  * <tr><td valign="top" headers="construct special"><tt>(?idmsuxU-idmsuxU)&nbsp;</tt></td>
 353  *     <td headers="matches">Nothing, but turns match flags <a href="#CASE_INSENSITIVE">i</a>
 354  * <a href="#UNIX_LINES">d</a> <a href="#MULTILINE">m</a> <a href="#DOTALL">s</a>
 355  * <a href="#UNICODE_CASE">u</a> <a href="#COMMENTS">x</a> <a href="#UNICODE_CHARACTER_CLASS">U</a>
 356  * on - off</td></tr>
 357  * <tr><td valign="top" headers="construct special"><tt>(?idmsux-idmsux:</tt><i>X</i><tt>)</tt>&nbsp;&nbsp;</td>
 358  *     <td headers="matches"><i>X</i>, as a <a href="#cg">non-capturing group</a> with the
 359  *         given flags <a href="#CASE_INSENSITIVE">i</a> <a href="#UNIX_LINES">d</a>
 360  * <a href="#MULTILINE">m</a> <a href="#DOTALL">s</a> <a href="#UNICODE_CASE">u</a >
 361  * <a href="#COMMENTS">x</a> on - off</td></tr>
 362  * <tr><td valign="top" headers="construct special"><tt>(?=</tt><i>X</i><tt>)</tt></td>
 363  *     <td headers="matches"><i>X</i>, via zero-width positive lookahead</td></tr>
 364  * <tr><td valign="top" headers="construct special"><tt>(?!</tt><i>X</i><tt>)</tt></td>
 365  *     <td headers="matches"><i>X</i>, via zero-width negative lookahead</td></tr>
 366  * <tr><td valign="top" headers="construct special"><tt>(?&lt;=</tt><i>X</i><tt>)</tt></td>
 367  *     <td headers="matches"><i>X</i>, via zero-width positive lookbehind</td></tr>
 368  * <tr><td valign="top" headers="construct special"><tt>(?&lt;!</tt><i>X</i><tt>)</tt></td>
 369  *     <td headers="matches"><i>X</i>, via zero-width negative lookbehind</td></tr>
 370  * <tr><td valign="top" headers="construct special"><tt>(?&gt;</tt><i>X</i><tt>)</tt></td>
 371  *     <td headers="matches"><i>X</i>, as an independent, non-capturing group</td></tr>
 372  *
 373  * </table>
 374  *
 375  * <hr>
 376  *
 377  *
 378  * <h3><a name="bs">Backslashes, escapes, and quoting</a></h3>
 379  *
 380  * <p> The backslash character (<tt>'\'</tt>) serves to introduce escaped
 381  * constructs, as defined in the table above, as well as to quote characters
 382  * that otherwise would be interpreted as unescaped constructs.  Thus the
 383  * expression <tt>\\</tt> matches a single backslash and <tt>\{</tt> matches a
 384  * left brace.
 385  *
 386  * <p> It is an error to use a backslash prior to any alphabetic character that
 387  * does not denote an escaped construct; these are reserved for future
 388  * extensions to the regular-expression language.  A backslash may be used
 389  * prior to a non-alphabetic character regardless of whether that character is
 390  * part of an unescaped construct.
 391  *
 392  * <p> Backslashes within string literals in Java source code are interpreted
 393  * as required by
 394  * <cite>The Java&trade; Language Specification</cite>
 395  * as either Unicode escapes (section 3.3) or other character escapes (section 3.10.6)
 396  * It is therefore necessary to double backslashes in string
 397  * literals that represent regular expressions to protect them from
 398  * interpretation by the Java bytecode compiler.  The string literal
 399  * <tt>"\b"</tt>, for example, matches a single backspace character when
 400  * interpreted as a regular expression, while <tt>"\\b"</tt> matches a
 401  * word boundary.  The string literal <tt>"\(hello\)"</tt> is illegal
 402  * and leads to a compile-time error; in order to match the string
 403  * <tt>(hello)</tt> the string literal <tt>"\\(hello\\)"</tt>
 404  * must be used.
 405  *
 406  * <h3><a name="cc">Character Classes</a></h3>
 407  *
 408  *    <p> Character classes may appear within other character classes, and
 409  *    may be composed by the union operator (implicit) and the intersection
 410  *    operator (<tt>&amp;&amp;</tt>).
 411  *    The union operator denotes a class that contains every character that is
 412  *    in at least one of its operand classes.  The intersection operator
 413  *    denotes a class that contains every character that is in both of its
 414  *    operand classes.
 415  *
 416  *    <p> The precedence of character-class operators is as follows, from
 417  *    highest to lowest:
 418  *
 419  *    <blockquote><table border="0" cellpadding="1" cellspacing="0"
 420  *                 summary="Precedence of character class operators.">
 421  *      <tr><th>1&nbsp;&nbsp;&nbsp;&nbsp;</th>
 422  *        <td>Literal escape&nbsp;&nbsp;&nbsp;&nbsp;</td>
 423  *        <td><tt>\x</tt></td></tr>
 424  *     <tr><th>2&nbsp;&nbsp;&nbsp;&nbsp;</th>
 425  *        <td>Grouping</td>
 426  *        <td><tt>[...]</tt></td></tr>
 427  *     <tr><th>3&nbsp;&nbsp;&nbsp;&nbsp;</th>
 428  *        <td>Range</td>
 429  *        <td><tt>a-z</tt></td></tr>
 430  *      <tr><th>4&nbsp;&nbsp;&nbsp;&nbsp;</th>
 431  *        <td>Union</td>
 432  *        <td><tt>[a-e][i-u]</tt></td></tr>
 433  *      <tr><th>5&nbsp;&nbsp;&nbsp;&nbsp;</th>
 434  *        <td>Intersection</td>
 435  *        <td>{@code [a-z&&[aeiou]]}</td></tr>
 436  *    </table></blockquote>
 437  *
 438  *    <p> Note that a different set of metacharacters are in effect inside
 439  *    a character class than outside a character class. For instance, the
 440  *    regular expression <tt>.</tt> loses its special meaning inside a
 441  *    character class, while the expression <tt>-</tt> becomes a range
 442  *    forming metacharacter.
 443  *
 444  * <h3><a name="lt">Line terminators</a></h3>
 445  *
 446  * <p> A <i>line terminator</i> is a one- or two-character sequence that marks
 447  * the end of a line of the input character sequence.  The following are
 448  * recognized as line terminators:
 449  *
 450  * <ul>
 451  *
 452  *   <li> A newline (line feed) character&nbsp;(<tt>'\n'</tt>),
 453  *
 454  *   <li> A carriage-return character followed immediately by a newline
 455  *   character&nbsp;(<tt>"\r\n"</tt>),
 456  *
 457  *   <li> A standalone carriage-return character&nbsp;(<tt>'\r'</tt>),
 458  *
 459  *   <li> A next-line character&nbsp;(<tt>'\u0085'</tt>),
 460  *
 461  *   <li> A line-separator character&nbsp;(<tt>'\u2028'</tt>), or
 462  *
 463  *   <li> A paragraph-separator character&nbsp;(<tt>'\u2029</tt>).
 464  *
 465  * </ul>
 466  * <p>If {@link #UNIX_LINES} mode is activated, then the only line terminators
 467  * recognized are newline characters.
 468  *
 469  * <p> The regular expression <tt>.</tt> matches any character except a line
 470  * terminator unless the {@link #DOTALL} flag is specified.
 471  *
 472  * <p> By default, the regular expressions <tt>^</tt> and <tt>$</tt> ignore
 473  * line terminators and only match at the beginning and the end, respectively,
 474  * of the entire input sequence. If {@link #MULTILINE} mode is activated then
 475  * <tt>^</tt> matches at the beginning of input and after any line terminator
 476  * except at the end of input. When in {@link #MULTILINE} mode <tt>$</tt>
 477  * matches just before a line terminator or the end of the input sequence.
 478  *
 479  * <h3><a name="cg">Groups and capturing</a></h3>
 480  *
 481  * <h4><a name="gnumber">Group number</a></h4>
 482  * <p> Capturing groups are numbered by counting their opening parentheses from
 483  * left to right.  In the expression <tt>((A)(B(C)))</tt>, for example, there
 484  * are four such groups: </p>
 485  *
 486  * <blockquote><table cellpadding=1 cellspacing=0 summary="Capturing group numberings">
 487  * <tr><th>1&nbsp;&nbsp;&nbsp;&nbsp;</th>
 488  *     <td><tt>((A)(B(C)))</tt></td></tr>
 489  * <tr><th>2&nbsp;&nbsp;&nbsp;&nbsp;</th>
 490  *     <td><tt>(A)</tt></td></tr>
 491  * <tr><th>3&nbsp;&nbsp;&nbsp;&nbsp;</th>
 492  *     <td><tt>(B(C))</tt></td></tr>
 493  * <tr><th>4&nbsp;&nbsp;&nbsp;&nbsp;</th>
 494  *     <td><tt>(C)</tt></td></tr>
 495  * </table></blockquote>
 496  *
 497  * <p> Group zero always stands for the entire expression.
 498  *
 499  * <p> Capturing groups are so named because, during a match, each subsequence
 500  * of the input sequence that matches such a group is saved.  The captured
 501  * subsequence may be used later in the expression, via a back reference, and
 502  * may also be retrieved from the matcher once the match operation is complete.
 503  *
 504  * <h4><a name="groupname">Group name</a></h4>
 505  * <p>A capturing group can also be assigned a "name", a <tt>named-capturing group</tt>,
 506  * and then be back-referenced later by the "name". Group names are composed of
 507  * the following characters. The first character must be a <tt>letter</tt>.
 508  *
 509  * <ul>
 510  *   <li> The uppercase letters <tt>'A'</tt> through <tt>'Z'</tt>
 511  *        (<tt>'\u0041'</tt>&nbsp;through&nbsp;<tt>'\u005a'</tt>),
 512  *   <li> The lowercase letters <tt>'a'</tt> through <tt>'z'</tt>
 513  *        (<tt>'\u0061'</tt>&nbsp;through&nbsp;<tt>'\u007a'</tt>),
 514  *   <li> The digits <tt>'0'</tt> through <tt>'9'</tt>
 515  *        (<tt>'\u0030'</tt>&nbsp;through&nbsp;<tt>'\u0039'</tt>),
 516  * </ul>
 517  *
 518  * <p> A <tt>named-capturing group</tt> is still numbered as described in
 519  * <a href="#gnumber">Group number</a>.
 520  *
 521  * <p> The captured input associated with a group is always the subsequence
 522  * that the group most recently matched.  If a group is evaluated a second time
 523  * because of quantification then its previously-captured value, if any, will
 524  * be retained if the second evaluation fails.  Matching the string
 525  * <tt>"aba"</tt> against the expression <tt>(a(b)?)+</tt>, for example, leaves
 526  * group two set to <tt>"b"</tt>.  All captured input is discarded at the
 527  * beginning of each match.
 528  *
 529  * <p> Groups beginning with <tt>(?</tt> are either pure, <i>non-capturing</i> groups
 530  * that do not capture text and do not count towards the group total, or
 531  * <i>named-capturing</i> group.
 532  *
 533  * <h3> Unicode support </h3>
 534  *
 535  * <p> This class is in conformance with Level 1 of <a
 536  * href="http://www.unicode.org/reports/tr18/"><i>Unicode Technical
 537  * Standard #18: Unicode Regular Expression</i></a>, plus RL2.1
 538  * Canonical Equivalents.
 539  * <p>
 540  * <b>Unicode escape sequences</b> such as <tt>\u2014</tt> in Java source code
 541  * are processed as described in section 3.3 of
 542  * <cite>The Java&trade; Language Specification</cite>.
 543  * Such escape sequences are also implemented directly by the regular-expression
 544  * parser so that Unicode escapes can be used in expressions that are read from
 545  * files or from the keyboard.  Thus the strings <tt>"\u2014"</tt> and
 546  * <tt>"\\u2014"</tt>, while not equal, compile into the same pattern, which
 547  * matches the character with hexadecimal value <tt>0x2014</tt>.
 548  * <p>
 549  * A Unicode character can also be represented in a regular-expression by
 550  * using its <b>Hex notation</b>(hexadecimal code point value) directly as described in construct
 551  * <tt>\x{...}</tt>, for example a supplementary character U+2011F
 552  * can be specified as <tt>\x{2011F}</tt>, instead of two consecutive
 553  * Unicode escape sequences of the surrogate pair
 554  * <tt>\uD840</tt><tt>\uDD1F</tt>.
 555  * <p>
 556  * Unicode scripts, blocks, categories and binary properties are written with
 557  * the <tt>\p</tt> and <tt>\P</tt> constructs as in Perl.
 558  * <tt>\p{</tt><i>prop</i><tt>}</tt> matches if
 559  * the input has the property <i>prop</i>, while <tt>\P{</tt><i>prop</i><tt>}</tt>
 560  * does not match if the input has that property.
 561  * <p>
 562  * Scripts, blocks, categories and binary properties can be used both inside
 563  * and outside of a character class.
 564  *
 565  * <p>
 566  * <b><a name="usc">Scripts</a></b> are specified either with the prefix {@code Is}, as in
 567  * {@code IsHiragana}, or by using  the {@code script} keyword (or its short
 568  * form {@code sc})as in {@code script=Hiragana} or {@code sc=Hiragana}.
 569  * <p>
 570  * The script names supported by <code>Pattern</code> are the valid script names
 571  * accepted and defined by
 572  * {@link java.lang.Character.UnicodeScript#forName(String) UnicodeScript.forName}.
 573  *
 574  * <p>
 575  * <b><a name="ubc">Blocks</a></b> are specified with the prefix {@code In}, as in
 576  * {@code InMongolian}, or by using the keyword {@code block} (or its short
 577  * form {@code blk}) as in {@code block=Mongolian} or {@code blk=Mongolian}.
 578  * <p>
 579  * The block names supported by <code>Pattern</code> are the valid block names
 580  * accepted and defined by
 581  * {@link java.lang.Character.UnicodeBlock#forName(String) UnicodeBlock.forName}.
 582  * <p>
 583  *
 584  * <b><a name="ucc">Categories</a></b> may be specified with the optional prefix {@code Is}:
 585  * Both {@code \p{L}} and {@code \p{IsL}} denote the category of Unicode
 586  * letters. Same as scripts and blocks, categories can also be specified
 587  * by using the keyword {@code general_category} (or its short form
 588  * {@code gc}) as in {@code general_category=Lu} or {@code gc=Lu}.
 589  * <p>
 590  * The supported categories are those of
 591  * <a href="http://www.unicode.org/unicode/standard/standard.html">
 592  * <i>The Unicode Standard</i></a> in the version specified by the
 593  * {@link java.lang.Character Character} class. The category names are those
 594  * defined in the Standard, both normative and informative.
 595  * <p>
 596  *
 597  * <b><a name="ubpc">Binary properties</a></b> are specified with the prefix {@code Is}, as in
 598  * {@code IsAlphabetic}. The supported binary properties by <code>Pattern</code>
 599  * are
 600  * <ul>
 601  *   <li> Alphabetic
 602  *   <li> Ideographic
 603  *   <li> Letter
 604  *   <li> Lowercase
 605  *   <li> Uppercase
 606  *   <li> Titlecase
 607  *   <li> Punctuation
 608  *   <Li> Control
 609  *   <li> White_Space
 610  *   <li> Digit
 611  *   <li> Hex_Digit
 612  *   <li> Join_Control
 613  *   <li> Noncharacter_Code_Point
 614  *   <li> Assigned
 615  * </ul>
 616  * <p>
 617  * The following <b>Predefined Character classes</b> and <b>POSIX character classes</b>
 618  * are in conformance with the recommendation of <i>Annex C: Compatibility Properties</i>
 619  * of <a href="http://www.unicode.org/reports/tr18/"><i>Unicode Regular Expression
 620  * </i></a>, when {@link #UNICODE_CHARACTER_CLASS} flag is specified.
 621  *
 622  * <table border="0" cellpadding="1" cellspacing="0"
 623  *  summary="predefined and posix character classes in Unicode mode">
 624  * <tr align="left">
 625  * <th align="left" id="predef_classes">Classes</th>
 626  * <th align="left" id="predef_matches">Matches</th>
 627  *</tr>
 628  * <tr><td><tt>\p{Lower}</tt></td>
 629  *     <td>A lowercase character:<tt>\p{IsLowercase}</tt></td></tr>
 630  * <tr><td><tt>\p{Upper}</tt></td>
 631  *     <td>An uppercase character:<tt>\p{IsUppercase}</tt></td></tr>
 632  * <tr><td><tt>\p{ASCII}</tt></td>
 633  *     <td>All ASCII:<tt>[\x00-\x7F]</tt></td></tr>
 634  * <tr><td><tt>\p{Alpha}</tt></td>
 635  *     <td>An alphabetic character:<tt>\p{IsAlphabetic}</tt></td></tr>
 636  * <tr><td><tt>\p{Digit}</tt></td>
 637  *     <td>A decimal digit character:<tt>p{IsDigit}</tt></td></tr>
 638  * <tr><td><tt>\p{Alnum}</tt></td>
 639  *     <td>An alphanumeric character:<tt>[\p{IsAlphabetic}\p{IsDigit}]</tt></td></tr>
 640  * <tr><td><tt>\p{Punct}</tt></td>
 641  *     <td>A punctuation character:<tt>p{IsPunctuation}</tt></td></tr>
 642  * <tr><td><tt>\p{Graph}</tt></td>
 643  *     <td>A visible character: <tt>[^\p{IsWhite_Space}\p{gc=Cc}\p{gc=Cs}\p{gc=Cn}]</tt></td></tr>
 644  * <tr><td><tt>\p{Print}</tt></td>
 645  *     <td>A printable character: {@code [\p{Graph}\p{Blank}&&[^\p{Cntrl}]]}</td></tr>
 646  * <tr><td><tt>\p{Blank}</tt></td>
 647  *     <td>A space or a tab: {@code [\p{IsWhite_Space}&&[^\p{gc=Zl}\p{gc=Zp}\x0a\x0b\x0c\x0d\x85]]}</td></tr>
 648  * <tr><td><tt>\p{Cntrl}</tt></td>
 649  *     <td>A control character: <tt>\p{gc=Cc}</tt></td></tr>
 650  * <tr><td><tt>\p{XDigit}</tt></td>
 651  *     <td>A hexadecimal digit: <tt>[\p{gc=Nd}\p{IsHex_Digit}]</tt></td></tr>
 652  * <tr><td><tt>\p{Space}</tt></td>
 653  *     <td>A whitespace character:<tt>\p{IsWhite_Space}</tt></td></tr>
 654  * <tr><td><tt>\d</tt></td>
 655  *     <td>A digit: <tt>\p{IsDigit}</tt></td></tr>
 656  * <tr><td><tt>\D</tt></td>
 657  *     <td>A non-digit: <tt>[^\d]</tt></td></tr>
 658  * <tr><td><tt>\s</tt></td>
 659  *     <td>A whitespace character: <tt>\p{IsWhite_Space}</tt></td></tr>
 660  * <tr><td><tt>\S</tt></td>
 661  *     <td>A non-whitespace character: <tt>[^\s]</tt></td></tr>
 662  * <tr><td><tt>\w</tt></td>
 663  *     <td>A word character: <tt>[\p{Alpha}\p{gc=Mn}\p{gc=Me}\p{gc=Mc}\p{Digit}\p{gc=Pc}\p{IsJoin_Control}]</tt></td></tr>
 664  * <tr><td><tt>\W</tt></td>
 665  *     <td>A non-word character: <tt>[^\w]</tt></td></tr>
 666  * </table>
 667  * <p>
 668  * <a name="jcc">
 669  * Categories that behave like the java.lang.Character
 670  * boolean is<i>methodname</i> methods (except for the deprecated ones) are
 671  * available through the same <tt>\p{</tt><i>prop</i><tt>}</tt> syntax where
 672  * the specified property has the name <tt>java<i>methodname</i></tt></a>.
 673  *
 674  * <h3> Comparison to Perl 5 </h3>
 675  *
 676  * <p>The <code>Pattern</code> engine performs traditional NFA-based matching
 677  * with ordered alternation as occurs in Perl 5.
 678  *
 679  * <p> Perl constructs not supported by this class: </p>
 680  *
 681  * <ul>
 682  *    <li><p> Predefined character classes (Unicode character)
 683  *    <p><tt>\X&nbsp;&nbsp;&nbsp;&nbsp;</tt>Match Unicode
 684  *    <a href="http://www.unicode.org/reports/tr18/#Default_Grapheme_Clusters">
 685  *    <i>extended grapheme cluster</i></a>
 686  *    </p></li>
 687  *
 688  *    <li><p> The backreference constructs, <tt>\g{</tt><i>n</i><tt>}</tt> for
 689  *    the <i>n</i><sup>th</sup><a href="#cg">capturing group</a> and
 690  *    <tt>\g{</tt><i>name</i><tt>}</tt> for
 691  *    <a href="#groupname">named-capturing group</a>.
 692  *    </p></li>
 693  *
 694  *    <li><p> The named character construct, <tt>\N{</tt><i>name</i><tt>}</tt>
 695  *    for a Unicode character by its name.
 696  *    </p></li>
 697  *
 698  *    <li><p> The conditional constructs
 699  *    <tt>(?(</tt><i>condition</i><tt>)</tt><i>X</i><tt>)</tt> and
 700  *    <tt>(?(</tt><i>condition</i><tt>)</tt><i>X</i><tt>|</tt><i>Y</i><tt>)</tt>,
 701  *    </p></li>
 702  *
 703  *    <li><p> The embedded code constructs <tt>(?{</tt><i>code</i><tt>})</tt>
 704  *    and <tt>(??{</tt><i>code</i><tt>})</tt>,</p></li>
 705  *
 706  *    <li><p> The embedded comment syntax <tt>(?#comment)</tt>, and </p></li>
 707  *
 708  *    <li><p> The preprocessing operations <tt>\l</tt> <tt>\u</tt>,
 709  *    <tt>\L</tt>, and <tt>\U</tt>.  </p></li>
 710  *
 711  * </ul>
 712  *
 713  * <p> Constructs supported by this class but not by Perl: </p>
 714  *
 715  * <ul>
 716  *
 717  *    <li><p> Character-class union and intersection as described
 718  *    <a href="#cc">above</a>.</p></li>
 719  *
 720  * </ul>
 721  *
 722  * <p> Notable differences from Perl: </p>
 723  *
 724  * <ul>
 725  *
 726  *    <li><p> In Perl, <tt>\1</tt> through <tt>\9</tt> are always interpreted
 727  *    as back references; a backslash-escaped number greater than <tt>9</tt> is
 728  *    treated as a back reference if at least that many subexpressions exist,
 729  *    otherwise it is interpreted, if possible, as an octal escape.  In this
 730  *    class octal escapes must always begin with a zero. In this class,
 731  *    <tt>\1</tt> through <tt>\9</tt> are always interpreted as back
 732  *    references, and a larger number is accepted as a back reference if at
 733  *    least that many subexpressions exist at that point in the regular
 734  *    expression, otherwise the parser will drop digits until the number is
 735  *    smaller or equal to the existing number of groups or it is one digit.
 736  *    </p></li>
 737  *
 738  *    <li><p> Perl uses the <tt>g</tt> flag to request a match that resumes
 739  *    where the last match left off.  This functionality is provided implicitly
 740  *    by the {@link Matcher} class: Repeated invocations of the {@link
 741  *    Matcher#find find} method will resume where the last match left off,
 742  *    unless the matcher is reset.  </p></li>
 743  *
 744  *    <li><p> In Perl, embedded flags at the top level of an expression affect
 745  *    the whole expression.  In this class, embedded flags always take effect
 746  *    at the point at which they appear, whether they are at the top level or
 747  *    within a group; in the latter case, flags are restored at the end of the
 748  *    group just as in Perl.  </p></li>
 749  *
 750  * </ul>
 751  *
 752  *
 753  * <p> For a more precise description of the behavior of regular expression
 754  * constructs, please see <a href="http://www.oreilly.com/catalog/regex3/">
 755  * <i>Mastering Regular Expressions, 3nd Edition</i>, Jeffrey E. F. Friedl,
 756  * O'Reilly and Associates, 2006.</a>
 757  * </p>
 758  *
 759  * @see java.lang.String#split(String, int)
 760  * @see java.lang.String#split(String)
 761  *
 762  * @author      Mike McCloskey
 763  * @author      Mark Reinhold
 764  * @author      JSR-51 Expert Group
 765  * @since       1.4
 766  * @spec        JSR-51
 767  */
 768 
 769 public final class Pattern
 770     implements java.io.Serializable
 771 {
 772 
 773     /**
 774      * Regular expression modifier values.  Instead of being passed as
 775      * arguments, they can also be passed as inline modifiers.
 776      * For example, the following statements have the same effect.
 777      * <pre>
 778      * RegExp r1 = RegExp.compile("abc", Pattern.I|Pattern.M);
 779      * RegExp r2 = RegExp.compile("(?im)abc", 0);
 780      * </pre>
 781      *
 782      * The flags are duplicated so that the familiar Perl match flag
 783      * names are available.
 784      */
 785 
 786     /**
 787      * Enables Unix lines mode.
 788      *
 789      * <p> In this mode, only the <tt>'\n'</tt> line terminator is recognized
 790      * in the behavior of <tt>.</tt>, <tt>^</tt>, and <tt>$</tt>.
 791      *
 792      * <p> Unix lines mode can also be enabled via the embedded flag
 793      * expression&nbsp;<tt>(?d)</tt>.
 794      */
 795     public static final int UNIX_LINES = 0x01;
 796 
 797     /**
 798      * Enables case-insensitive matching.
 799      *
 800      * <p> By default, case-insensitive matching assumes that only characters
 801      * in the US-ASCII charset are being matched.  Unicode-aware
 802      * case-insensitive matching can be enabled by specifying the {@link
 803      * #UNICODE_CASE} flag in conjunction with this flag.
 804      *
 805      * <p> Case-insensitive matching can also be enabled via the embedded flag
 806      * expression&nbsp;<tt>(?i)</tt>.
 807      *
 808      * <p> Specifying this flag may impose a slight performance penalty.  </p>
 809      */
 810     public static final int CASE_INSENSITIVE = 0x02;
 811 
 812     /**
 813      * Permits whitespace and comments in pattern.
 814      *
 815      * <p> In this mode, whitespace is ignored, and embedded comments starting
 816      * with <tt>#</tt> are ignored until the end of a line.
 817      *
 818      * <p> Comments mode can also be enabled via the embedded flag
 819      * expression&nbsp;<tt>(?x)</tt>.
 820      */
 821     public static final int COMMENTS = 0x04;
 822 
 823     /**
 824      * Enables multiline mode.
 825      *
 826      * <p> In multiline mode the expressions <tt>^</tt> and <tt>$</tt> match
 827      * just after or just before, respectively, a line terminator or the end of
 828      * the input sequence.  By default these expressions only match at the
 829      * beginning and the end of the entire input sequence.
 830      *
 831      * <p> Multiline mode can also be enabled via the embedded flag
 832      * expression&nbsp;<tt>(?m)</tt>.  </p>
 833      */
 834     public static final int MULTILINE = 0x08;
 835 
 836     /**
 837      * Enables literal parsing of the pattern.
 838      *
 839      * <p> When this flag is specified then the input string that specifies
 840      * the pattern is treated as a sequence of literal characters.
 841      * Metacharacters or escape sequences in the input sequence will be
 842      * given no special meaning.
 843      *
 844      * <p>The flags CASE_INSENSITIVE and UNICODE_CASE retain their impact on
 845      * matching when used in conjunction with this flag. The other flags
 846      * become superfluous.
 847      *
 848      * <p> There is no embedded flag character for enabling literal parsing.
 849      * @since 1.5
 850      */
 851     public static final int LITERAL = 0x10;
 852 
 853     /**
 854      * Enables dotall mode.
 855      *
 856      * <p> In dotall mode, the expression <tt>.</tt> matches any character,
 857      * including a line terminator.  By default this expression does not match
 858      * line terminators.
 859      *
 860      * <p> Dotall mode can also be enabled via the embedded flag
 861      * expression&nbsp;<tt>(?s)</tt>.  (The <tt>s</tt> is a mnemonic for
 862      * "single-line" mode, which is what this is called in Perl.)  </p>
 863      */
 864     public static final int DOTALL = 0x20;
 865 
 866     /**
 867      * Enables Unicode-aware case folding.
 868      *
 869      * <p> When this flag is specified then case-insensitive matching, when
 870      * enabled by the {@link #CASE_INSENSITIVE} flag, is done in a manner
 871      * consistent with the Unicode Standard.  By default, case-insensitive
 872      * matching assumes that only characters in the US-ASCII charset are being
 873      * matched.
 874      *
 875      * <p> Unicode-aware case folding can also be enabled via the embedded flag
 876      * expression&nbsp;<tt>(?u)</tt>.
 877      *
 878      * <p> Specifying this flag may impose a performance penalty.  </p>
 879      */
 880     public static final int UNICODE_CASE = 0x40;
 881 
 882     /**
 883      * Enables canonical equivalence.
 884      *
 885      * <p> When this flag is specified then two characters will be considered
 886      * to match if, and only if, their full canonical decompositions match.
 887      * The expression <tt>"a\u030A"</tt>, for example, will match the
 888      * string <tt>"\u00E5"</tt> when this flag is specified.  By default,
 889      * matching does not take canonical equivalence into account.
 890      *
 891      * <p> There is no embedded flag character for enabling canonical
 892      * equivalence.
 893      *
 894      * <p> Specifying this flag may impose a performance penalty.  </p>
 895      */
 896     public static final int CANON_EQ = 0x80;
 897 
 898     /**
 899      * Enables the Unicode version of <i>Predefined character classes</i> and
 900      * <i>POSIX character classes</i>.
 901      *
 902      * <p> When this flag is specified then the (US-ASCII only)
 903      * <i>Predefined character classes</i> and <i>POSIX character classes</i>
 904      * are in conformance with
 905      * <a href="http://www.unicode.org/reports/tr18/"><i>Unicode Technical
 906      * Standard #18: Unicode Regular Expression</i></a>
 907      * <i>Annex C: Compatibility Properties</i>.
 908      * <p>
 909      * The UNICODE_CHARACTER_CLASS mode can also be enabled via the embedded
 910      * flag expression&nbsp;<tt>(?U)</tt>.
 911      * <p>
 912      * The flag implies UNICODE_CASE, that is, it enables Unicode-aware case
 913      * folding.
 914      * <p>
 915      * Specifying this flag may impose a performance penalty.  </p>
 916      * @since 1.7
 917      */
 918     public static final int UNICODE_CHARACTER_CLASS = 0x100;
 919 
 920     /* Pattern has only two serialized components: The pattern string
 921      * and the flags, which are all that is needed to recompile the pattern
 922      * when it is deserialized.
 923      */
 924 
 925     /** use serialVersionUID from Merlin b59 for interoperability */
 926     private static final long serialVersionUID = 5073258162644648461L;
 927 
 928     /**
 929      * The original regular-expression pattern string.
 930      *
 931      * @serial
 932      */
 933     private String pattern;
 934 
 935     /**
 936      * The original pattern flags.
 937      *
 938      * @serial
 939      */
 940     private int flags;
 941 
 942     /**
 943      * Boolean indicating this Pattern is compiled; this is necessary in order
 944      * to lazily compile deserialized Patterns.
 945      */
 946     private transient volatile boolean compiled = false;
 947 
 948     /**
 949      * The normalized pattern string.
 950      */
 951     private transient String normalizedPattern;
 952 
 953     /**
 954      * The starting point of state machine for the find operation.  This allows
 955      * a match to start anywhere in the input.
 956      */
 957     transient Node root;
 958 
 959     /**
 960      * The root of object tree for a match operation.  The pattern is matched
 961      * at the beginning.  This may include a find that uses BnM or a First
 962      * node.
 963      */
 964     transient Node matchRoot;
 965 
 966     /**
 967      * Temporary storage used by parsing pattern slice.
 968      */
 969     transient int[] buffer;
 970 
 971     /**
 972      * Map the "name" of the "named capturing group" to its group id
 973      * node.
 974      */
 975     transient volatile Map<String, Integer> namedGroups;
 976 
 977     /**
 978      * Temporary storage used while parsing group references.
 979      */
 980     transient GroupHead[] groupNodes;
 981 
 982     /**
 983      * Temporary null terminated code point array used by pattern compiling.
 984      */
 985     private transient int[] temp;
 986 
 987     /**
 988      * The number of capturing groups in this Pattern. Used by matchers to
 989      * allocate storage needed to perform a match.
 990      */
 991     transient int capturingGroupCount;
 992 
 993     /**
 994      * The local variable count used by parsing tree. Used by matchers to
 995      * allocate storage needed to perform a match.
 996      */
 997     transient int localCount;
 998 
 999     /**
1000      * Index into the pattern string that keeps track of how much has been
1001      * parsed.
1002      */
1003     private transient int cursor;
1004 
1005     /**
1006      * Holds the length of the pattern string.
1007      */
1008     private transient int patternLength;
1009 
1010     /**
1011      * If the Start node might possibly match supplementary characters.
1012      * It is set to true during compiling if
1013      * (1) There is supplementary char in pattern, or
1014      * (2) There is complement node of Category or Block
1015      */
1016     private transient boolean hasSupplementary;
1017 
1018     /**
1019      * Compiles the given regular expression into a pattern.
1020      *
1021      * @param  regex
1022      *         The expression to be compiled
1023      * @return the given regular expression compiled into a pattern
1024      * @throws  PatternSyntaxException
1025      *          If the expression's syntax is invalid
1026      */
1027     public static Pattern compile(String regex) {
1028         return new Pattern(regex, 0);
1029     }
1030 
1031     /**
1032      * Compiles the given regular expression into a pattern with the given
1033      * flags.
1034      *
1035      * @param  regex
1036      *         The expression to be compiled
1037      *
1038      * @param  flags
1039      *         Match flags, a bit mask that may include
1040      *         {@link #CASE_INSENSITIVE}, {@link #MULTILINE}, {@link #DOTALL},
1041      *         {@link #UNICODE_CASE}, {@link #CANON_EQ}, {@link #UNIX_LINES},
1042      *         {@link #LITERAL}, {@link #UNICODE_CHARACTER_CLASS}
1043      *         and {@link #COMMENTS}
1044      *
1045      * @return the given regular expression compiled into a pattern with the given flags
1046      * @throws  IllegalArgumentException
1047      *          If bit values other than those corresponding to the defined
1048      *          match flags are set in <tt>flags</tt>
1049      *
1050      * @throws  PatternSyntaxException
1051      *          If the expression's syntax is invalid
1052      */
1053     public static Pattern compile(String regex, int flags) {
1054         return new Pattern(regex, flags);
1055     }
1056 
1057     /**
1058      * Returns the regular expression from which this pattern was compiled.
1059      *
1060      * @return  The source of this pattern
1061      */
1062     public String pattern() {
1063         return pattern;
1064     }
1065 
1066     /**
1067      * <p>Returns the string representation of this pattern. This
1068      * is the regular expression from which this pattern was
1069      * compiled.</p>
1070      *
1071      * @return  The string representation of this pattern
1072      * @since 1.5
1073      */
1074     public String toString() {
1075         return pattern;
1076     }
1077 
1078     /**
1079      * Creates a matcher that will match the given input against this pattern.
1080      *
1081      * @param  input
1082      *         The character sequence to be matched
1083      *
1084      * @return  A new matcher for this pattern
1085      */
1086     public Matcher matcher(CharSequence input) {
1087         if (!compiled) {
1088             synchronized(this) {
1089                 if (!compiled)
1090                     compile();
1091             }
1092         }
1093         Matcher m = new Matcher(this, input);
1094         return m;
1095     }
1096 
1097     /**
1098      * Returns this pattern's match flags.
1099      *
1100      * @return  The match flags specified when this pattern was compiled
1101      */
1102     public int flags() {
1103         return flags;
1104     }
1105 
1106     /**
1107      * Compiles the given regular expression and attempts to match the given
1108      * input against it.
1109      *
1110      * <p> An invocation of this convenience method of the form
1111      *
1112      * <blockquote><pre>
1113      * Pattern.matches(regex, input);</pre></blockquote>
1114      *
1115      * behaves in exactly the same way as the expression
1116      *
1117      * <blockquote><pre>
1118      * Pattern.compile(regex).matcher(input).matches()</pre></blockquote>
1119      *
1120      * <p> If a pattern is to be used multiple times, compiling it once and reusing
1121      * it will be more efficient than invoking this method each time.  </p>
1122      *
1123      * @param  regex
1124      *         The expression to be compiled
1125      *
1126      * @param  input
1127      *         The character sequence to be matched
1128      * @return whether or not the regular expression matches on the input
1129      * @throws  PatternSyntaxException
1130      *          If the expression's syntax is invalid
1131      */
1132     public static boolean matches(String regex, CharSequence input) {
1133         Pattern p = Pattern.compile(regex);
1134         Matcher m = p.matcher(input);
1135         return m.matches();
1136     }
1137 
1138     /**
1139      * Splits the given input sequence around matches of this pattern.
1140      *
1141      * <p> The array returned by this method contains each substring of the
1142      * input sequence that is terminated by another subsequence that matches
1143      * this pattern or is terminated by the end of the input sequence.  The
1144      * substrings in the array are in the order in which they occur in the
1145      * input. If this pattern does not match any subsequence of the input then
1146      * the resulting array has just one element, namely the input sequence in
1147      * string form.
1148      *
1149      * <p> When there is a positive-width match at the beginning of the input
1150      * sequence then an empty leading substring is included at the beginning
1151      * of the resulting array. A zero-width match at the beginning however
1152      * never produces such empty leading substring.
1153      *
1154      * <p> The <tt>limit</tt> parameter controls the number of times the
1155      * pattern is applied and therefore affects the length of the resulting
1156      * array.  If the limit <i>n</i> is greater than zero then the pattern
1157      * will be applied at most <i>n</i>&nbsp;-&nbsp;1 times, the array's
1158      * length will be no greater than <i>n</i>, and the array's last entry
1159      * will contain all input beyond the last matched delimiter.  If <i>n</i>
1160      * is non-positive then the pattern will be applied as many times as
1161      * possible and the array can have any length.  If <i>n</i> is zero then
1162      * the pattern will be applied as many times as possible, the array can
1163      * have any length, and trailing empty strings will be discarded.
1164      *
1165      * <p> The input <tt>"boo:and:foo"</tt>, for example, yields the following
1166      * results with these parameters:
1167      *
1168      * <blockquote><table cellpadding=1 cellspacing=0
1169      *              summary="Split examples showing regex, limit, and result">
1170      * <tr><th align="left"><i>Regex&nbsp;&nbsp;&nbsp;&nbsp;</i></th>
1171      *     <th align="left"><i>Limit&nbsp;&nbsp;&nbsp;&nbsp;</i></th>
1172      *     <th align="left"><i>Result&nbsp;&nbsp;&nbsp;&nbsp;</i></th></tr>
1173      * <tr><td align=center>:</td>
1174      *     <td align=center>2</td>
1175      *     <td><tt>{ "boo", "and:foo" }</tt></td></tr>
1176      * <tr><td align=center>:</td>
1177      *     <td align=center>5</td>
1178      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
1179      * <tr><td align=center>:</td>
1180      *     <td align=center>-2</td>
1181      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
1182      * <tr><td align=center>o</td>
1183      *     <td align=center>5</td>
1184      *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
1185      * <tr><td align=center>o</td>
1186      *     <td align=center>-2</td>
1187      *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
1188      * <tr><td align=center>o</td>
1189      *     <td align=center>0</td>
1190      *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
1191      * </table></blockquote>
1192      *
1193      * @param  input
1194      *         The character sequence to be split
1195      *
1196      * @param  limit
1197      *         The result threshold, as described above
1198      *
1199      * @return  The array of strings computed by splitting the input
1200      *          around matches of this pattern
1201      */
1202     public String[] split(CharSequence input, int limit) {
1203         int index = 0;
1204         boolean matchLimited = limit > 0;
1205         ArrayList<String> matchList = new ArrayList<>();
1206         Matcher m = matcher(input);
1207 
1208         // Add segments before each match found
1209         while(m.find()) {
1210             if (!matchLimited || matchList.size() < limit - 1) {
1211                 if (index == 0 && index == m.start() && m.start() == m.end()) {
1212                     // no empty leading substring included for zero-width match
1213                     // at the beginning of the input char sequence.
1214                     continue;
1215                 }
1216                 String match = input.subSequence(index, m.start()).toString();
1217                 matchList.add(match);
1218                 index = m.end();
1219             } else if (matchList.size() == limit - 1) { // last one
1220                 String match = input.subSequence(index,
1221                                                  input.length()).toString();
1222                 matchList.add(match);
1223                 index = m.end();
1224             }
1225         }
1226 
1227         // If no match was found, return this
1228         if (index == 0)
1229             return new String[] {input.toString()};
1230 
1231         // Add remaining segment
1232         if (!matchLimited || matchList.size() < limit)
1233             matchList.add(input.subSequence(index, input.length()).toString());
1234 
1235         // Construct result
1236         int resultSize = matchList.size();
1237         if (limit == 0)
1238             while (resultSize > 0 && matchList.get(resultSize-1).equals(""))
1239                 resultSize--;
1240         String[] result = new String[resultSize];
1241         return matchList.subList(0, resultSize).toArray(result);
1242     }
1243 
1244     /**
1245      * Splits the given input sequence around matches of this pattern.
1246      *
1247      * <p> This method works as if by invoking the two-argument {@link
1248      * #split(java.lang.CharSequence, int) split} method with the given input
1249      * sequence and a limit argument of zero.  Trailing empty strings are
1250      * therefore not included in the resulting array. </p>
1251      *
1252      * <p> The input <tt>"boo:and:foo"</tt>, for example, yields the following
1253      * results with these expressions:
1254      *
1255      * <blockquote><table cellpadding=1 cellspacing=0
1256      *              summary="Split examples showing regex and result">
1257      * <tr><th align="left"><i>Regex&nbsp;&nbsp;&nbsp;&nbsp;</i></th>
1258      *     <th align="left"><i>Result</i></th></tr>
1259      * <tr><td align=center>:</td>
1260      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
1261      * <tr><td align=center>o</td>
1262      *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
1263      * </table></blockquote>
1264      *
1265      *
1266      * @param  input
1267      *         The character sequence to be split
1268      *
1269      * @return  The array of strings computed by splitting the input
1270      *          around matches of this pattern
1271      */
1272     public String[] split(CharSequence input) {
1273         return split(input, 0);
1274     }
1275 
1276     /**
1277      * Returns a literal pattern <code>String</code> for the specified
1278      * <code>String</code>.
1279      *
1280      * <p>This method produces a <code>String</code> that can be used to
1281      * create a <code>Pattern</code> that would match the string
1282      * <code>s</code> as if it were a literal pattern.</p> Metacharacters
1283      * or escape sequences in the input sequence will be given no special
1284      * meaning.
1285      *
1286      * @param  s The string to be literalized
1287      * @return  A literal string replacement
1288      * @since 1.5
1289      */
1290     public static String quote(String s) {
1291         int slashEIndex = s.indexOf("\\E");
1292         if (slashEIndex == -1)
1293             return "\\Q" + s + "\\E";
1294 
1295         StringBuilder sb = new StringBuilder(s.length() * 2);
1296         sb.append("\\Q");
1297         slashEIndex = 0;
1298         int current = 0;
1299         while ((slashEIndex = s.indexOf("\\E", current)) != -1) {
1300             sb.append(s.substring(current, slashEIndex));
1301             current = slashEIndex + 2;
1302             sb.append("\\E\\\\E\\Q");
1303         }
1304         sb.append(s.substring(current, s.length()));
1305         sb.append("\\E");
1306         return sb.toString();
1307     }
1308 
1309     /**
1310      * Recompile the Pattern instance from a stream.  The original pattern
1311      * string is read in and the object tree is recompiled from it.
1312      */
1313     private void readObject(java.io.ObjectInputStream s)
1314         throws java.io.IOException, ClassNotFoundException {
1315 
1316         // Read in all fields
1317         s.defaultReadObject();
1318 
1319         // Initialize counts
1320         capturingGroupCount = 1;
1321         localCount = 0;
1322 
1323         // if length > 0, the Pattern is lazily compiled
1324         compiled = false;
1325         if (pattern.length() == 0) {
1326             root = new Start(lastAccept);
1327             matchRoot = lastAccept;
1328             compiled = true;
1329         }
1330     }
1331 
1332     /**
1333      * This private constructor is used to create all Patterns. The pattern
1334      * string and match flags are all that is needed to completely describe
1335      * a Pattern. An empty pattern string results in an object tree with
1336      * only a Start node and a LastNode node.
1337      */
1338     private Pattern(String p, int f) {
1339         pattern = p;
1340         flags = f;
1341 
1342         // to use UNICODE_CASE if UNICODE_CHARACTER_CLASS present
1343         if ((flags & UNICODE_CHARACTER_CLASS) != 0)
1344             flags |= UNICODE_CASE;
1345 
1346         // Reset group index count
1347         capturingGroupCount = 1;
1348         localCount = 0;
1349 
1350         if (pattern.length() > 0) {
1351             compile();
1352         } else {
1353             root = new Start(lastAccept);
1354             matchRoot = lastAccept;
1355         }
1356     }
1357 
1358     /**
1359      * The pattern is converted to normalizedD form and then a pure group
1360      * is constructed to match canonical equivalences of the characters.
1361      */
1362     private void normalize() {
1363         boolean inCharClass = false;
1364         int lastCodePoint = -1;
1365 
1366         // Convert pattern into normalizedD form
1367         normalizedPattern = Normalizer.normalize(pattern, Normalizer.Form.NFD);
1368         patternLength = normalizedPattern.length();
1369 
1370         // Modify pattern to match canonical equivalences
1371         StringBuilder newPattern = new StringBuilder(patternLength);
1372         for(int i=0; i<patternLength; ) {
1373             int c = normalizedPattern.codePointAt(i);
1374             StringBuilder sequenceBuffer;
1375             if ((Character.getType(c) == Character.NON_SPACING_MARK)
1376                 && (lastCodePoint != -1)) {
1377                 sequenceBuffer = new StringBuilder();
1378                 sequenceBuffer.appendCodePoint(lastCodePoint);
1379                 sequenceBuffer.appendCodePoint(c);
1380                 while(Character.getType(c) == Character.NON_SPACING_MARK) {
1381                     i += Character.charCount(c);
1382                     if (i >= patternLength)
1383                         break;
1384                     c = normalizedPattern.codePointAt(i);
1385                     sequenceBuffer.appendCodePoint(c);
1386                 }
1387                 String ea = produceEquivalentAlternation(
1388                                                sequenceBuffer.toString());
1389                 newPattern.setLength(newPattern.length()-Character.charCount(lastCodePoint));
1390                 newPattern.append("(?:").append(ea).append(")");
1391             } else if (c == '[' && lastCodePoint != '\\') {
1392                 i = normalizeCharClass(newPattern, i);
1393             } else {
1394                 newPattern.appendCodePoint(c);
1395             }
1396             lastCodePoint = c;
1397             i += Character.charCount(c);
1398         }
1399         normalizedPattern = newPattern.toString();
1400     }
1401 
1402     /**
1403      * Complete the character class being parsed and add a set
1404      * of alternations to it that will match the canonical equivalences
1405      * of the characters within the class.
1406      */
1407     private int normalizeCharClass(StringBuilder newPattern, int i) {
1408         StringBuilder charClass = new StringBuilder();
1409         StringBuilder eq = null;
1410         int lastCodePoint = -1;
1411         String result;
1412 
1413         i++;
1414         if (i == normalizedPattern.length())
1415             throw error("Unclosed character class");
1416         charClass.append("[");
1417         while(true) {
1418             int c = normalizedPattern.codePointAt(i);
1419             StringBuilder sequenceBuffer;
1420 
1421             if (c == ']' && lastCodePoint != '\\') {
1422                 charClass.append((char)c);
1423                 break;
1424             } else if (Character.getType(c) == Character.NON_SPACING_MARK) {
1425                 sequenceBuffer = new StringBuilder();
1426                 sequenceBuffer.appendCodePoint(lastCodePoint);
1427                 while(Character.getType(c) == Character.NON_SPACING_MARK) {
1428                     sequenceBuffer.appendCodePoint(c);
1429                     i += Character.charCount(c);
1430                     if (i >= normalizedPattern.length())
1431                         break;
1432                     c = normalizedPattern.codePointAt(i);
1433                 }
1434                 String ea = produceEquivalentAlternation(
1435                                                   sequenceBuffer.toString());
1436 
1437                 charClass.setLength(charClass.length()-Character.charCount(lastCodePoint));
1438                 if (eq == null)
1439                     eq = new StringBuilder();
1440                 eq.append('|');
1441                 eq.append(ea);
1442             } else {
1443                 charClass.appendCodePoint(c);
1444                 i++;
1445             }
1446             if (i == normalizedPattern.length())
1447                 throw error("Unclosed character class");
1448             lastCodePoint = c;
1449         }
1450 
1451         if (eq != null) {
1452             result = "(?:"+charClass.toString()+eq.toString()+")";
1453         } else {
1454             result = charClass.toString();
1455         }
1456 
1457         newPattern.append(result);
1458         return i;
1459     }
1460 
1461     /**
1462      * Given a specific sequence composed of a regular character and
1463      * combining marks that follow it, produce the alternation that will
1464      * match all canonical equivalences of that sequence.
1465      */
1466     private String produceEquivalentAlternation(String source) {
1467         int len = countChars(source, 0, 1);
1468         if (source.length() == len)
1469             // source has one character.
1470             return source;
1471 
1472         String base = source.substring(0,len);
1473         String combiningMarks = source.substring(len);
1474 
1475         String[] perms = producePermutations(combiningMarks);
1476         StringBuilder result = new StringBuilder(source);
1477 
1478         // Add combined permutations
1479         for(int x=0; x<perms.length; x++) {
1480             String next = base + perms[x];
1481             if (x>0)
1482                 result.append("|"+next);
1483             next = composeOneStep(next);
1484             if (next != null)
1485                 result.append("|"+produceEquivalentAlternation(next));
1486         }
1487         return result.toString();
1488     }
1489 
1490     /**
1491      * Returns an array of strings that have all the possible
1492      * permutations of the characters in the input string.
1493      * This is used to get a list of all possible orderings
1494      * of a set of combining marks. Note that some of the permutations
1495      * are invalid because of combining class collisions, and these
1496      * possibilities must be removed because they are not canonically
1497      * equivalent.
1498      */
1499     private String[] producePermutations(String input) {
1500         if (input.length() == countChars(input, 0, 1))
1501             return new String[] {input};
1502 
1503         if (input.length() == countChars(input, 0, 2)) {
1504             int c0 = Character.codePointAt(input, 0);
1505             int c1 = Character.codePointAt(input, Character.charCount(c0));
1506             if (getClass(c1) == getClass(c0)) {
1507                 return new String[] {input};
1508             }
1509             String[] result = new String[2];
1510             result[0] = input;
1511             StringBuilder sb = new StringBuilder(2);
1512             sb.appendCodePoint(c1);
1513             sb.appendCodePoint(c0);
1514             result[1] = sb.toString();
1515             return result;
1516         }
1517 
1518         int length = 1;
1519         int nCodePoints = countCodePoints(input);
1520         for(int x=1; x<nCodePoints; x++)
1521             length = length * (x+1);
1522 
1523         String[] temp = new String[length];
1524 
1525         int combClass[] = new int[nCodePoints];
1526         for(int x=0, i=0; x<nCodePoints; x++) {
1527             int c = Character.codePointAt(input, i);
1528             combClass[x] = getClass(c);
1529             i +=  Character.charCount(c);
1530         }
1531 
1532         // For each char, take it out and add the permutations
1533         // of the remaining chars
1534         int index = 0;
1535         int len;
1536         // offset maintains the index in code units.
1537 loop:   for(int x=0, offset=0; x<nCodePoints; x++, offset+=len) {
1538             len = countChars(input, offset, 1);
1539             boolean skip = false;
1540             for(int y=x-1; y>=0; y--) {
1541                 if (combClass[y] == combClass[x]) {
1542                     continue loop;
1543                 }
1544             }
1545             StringBuilder sb = new StringBuilder(input);
1546             String otherChars = sb.delete(offset, offset+len).toString();
1547             String[] subResult = producePermutations(otherChars);
1548 
1549             String prefix = input.substring(offset, offset+len);
1550             for(int y=0; y<subResult.length; y++)
1551                 temp[index++] =  prefix + subResult[y];
1552         }
1553         String[] result = new String[index];
1554         for (int x=0; x<index; x++)
1555             result[x] = temp[x];
1556         return result;
1557     }
1558 
1559     private int getClass(int c) {
1560         return sun.text.Normalizer.getCombiningClass(c);
1561     }
1562 
1563     /**
1564      * Attempts to compose input by combining the first character
1565      * with the first combining mark following it. Returns a String
1566      * that is the composition of the leading character with its first
1567      * combining mark followed by the remaining combining marks. Returns
1568      * null if the first two characters cannot be further composed.
1569      */
1570     private String composeOneStep(String input) {
1571         int len = countChars(input, 0, 2);
1572         String firstTwoCharacters = input.substring(0, len);
1573         String result = Normalizer.normalize(firstTwoCharacters, Normalizer.Form.NFC);
1574 
1575         if (result.equals(firstTwoCharacters))
1576             return null;
1577         else {
1578             String remainder = input.substring(len);
1579             return result + remainder;
1580         }
1581     }
1582 
1583     /**
1584      * Preprocess any \Q...\E sequences in `temp', meta-quoting them.
1585      * See the description of `quotemeta' in perlfunc(1).
1586      */
1587     private void RemoveQEQuoting() {
1588         final int pLen = patternLength;
1589         int i = 0;
1590         while (i < pLen-1) {
1591             if (temp[i] != '\\')
1592                 i += 1;
1593             else if (temp[i + 1] != 'Q')
1594                 i += 2;
1595             else
1596                 break;
1597         }
1598         if (i >= pLen - 1)    // No \Q sequence found
1599             return;
1600         int j = i;
1601         i += 2;
1602         int[] newtemp = new int[j + 3*(pLen-i) + 2];
1603         System.arraycopy(temp, 0, newtemp, 0, j);
1604 
1605         boolean inQuote = true;
1606         boolean beginQuote = true;
1607         while (i < pLen) {
1608             int c = temp[i++];
1609             if (!ASCII.isAscii(c) || ASCII.isAlpha(c)) {
1610                 newtemp[j++] = c;
1611             } else if (ASCII.isDigit(c)) {
1612                 if (beginQuote) {
1613                     /*
1614                      * A unicode escape \[0xu] could be before this quote,
1615                      * and we don't want this numeric char to processed as
1616                      * part of the escape.
1617                      */
1618                     newtemp[j++] = '\\';
1619                     newtemp[j++] = 'x';
1620                     newtemp[j++] = '3';
1621                 }
1622                 newtemp[j++] = c;
1623             } else if (c != '\\') {
1624                 if (inQuote) newtemp[j++] = '\\';
1625                 newtemp[j++] = c;
1626             } else if (inQuote) {
1627                 if (temp[i] == 'E') {
1628                     i++;
1629                     inQuote = false;
1630                 } else {
1631                     newtemp[j++] = '\\';
1632                     newtemp[j++] = '\\';
1633                 }
1634             } else {
1635                 if (temp[i] == 'Q') {
1636                     i++;
1637                     inQuote = true;
1638                     beginQuote = true;
1639                     continue;
1640                 } else {
1641                     newtemp[j++] = c;
1642                     if (i != pLen)
1643                         newtemp[j++] = temp[i++];
1644                 }
1645             }
1646 
1647             beginQuote = false;
1648         }
1649 
1650         patternLength = j;
1651         temp = Arrays.copyOf(newtemp, j + 2); // double zero termination
1652     }
1653 
1654     /**
1655      * Copies regular expression to an int array and invokes the parsing
1656      * of the expression which will create the object tree.
1657      */
1658     private void compile() {
1659         // Handle canonical equivalences
1660         if (has(CANON_EQ) && !has(LITERAL)) {
1661             normalize();
1662         } else {
1663             normalizedPattern = pattern;
1664         }
1665         patternLength = normalizedPattern.length();
1666 
1667         // Copy pattern to int array for convenience
1668         // Use double zero to terminate pattern
1669         temp = new int[patternLength + 2];
1670 
1671         hasSupplementary = false;
1672         int c, count = 0;
1673         // Convert all chars into code points
1674         for (int x = 0; x < patternLength; x += Character.charCount(c)) {
1675             c = normalizedPattern.codePointAt(x);
1676             if (isSupplementary(c)) {
1677                 hasSupplementary = true;
1678             }
1679             temp[count++] = c;
1680         }
1681 
1682         patternLength = count;   // patternLength now in code points
1683 
1684         if (! has(LITERAL))
1685             RemoveQEQuoting();
1686 
1687         // Allocate all temporary objects here.
1688         buffer = new int[32];
1689         groupNodes = new GroupHead[10];
1690         namedGroups = null;
1691 
1692         if (has(LITERAL)) {
1693             // Literal pattern handling
1694             matchRoot = newSlice(temp, patternLength, hasSupplementary);
1695             matchRoot.next = lastAccept;
1696         } else {
1697             // Start recursive descent parsing
1698             matchRoot = expr(lastAccept);
1699             // Check extra pattern characters
1700             if (patternLength != cursor) {
1701                 if (peek() == ')') {
1702                     throw error("Unmatched closing ')'");
1703                 } else {
1704                     throw error("Unexpected internal error");
1705                 }
1706             }
1707         }
1708 
1709         // Peephole optimization
1710         if (matchRoot instanceof Slice) {
1711             root = BnM.optimize(matchRoot);
1712             if (root == matchRoot) {
1713                 root = hasSupplementary ? new StartS(matchRoot) : new Start(matchRoot);
1714             }
1715         } else if (matchRoot instanceof Begin || matchRoot instanceof First) {
1716             root = matchRoot;
1717         } else {
1718             root = hasSupplementary ? new StartS(matchRoot) : new Start(matchRoot);
1719         }
1720 
1721         // Release temporary storage
1722         temp = null;
1723         buffer = null;
1724         groupNodes = null;
1725         patternLength = 0;
1726         compiled = true;
1727     }
1728 
1729     Map<String, Integer> namedGroups() {
1730         if (namedGroups == null)
1731             namedGroups = new HashMap<>(2);
1732         return namedGroups;
1733     }
1734 
1735     /**
1736      * Used to print out a subtree of the Pattern to help with debugging.
1737      */
1738     private static void printObjectTree(Node node) {
1739         while(node != null) {
1740             if (node instanceof Prolog) {
1741                 System.out.println(node);
1742                 printObjectTree(((Prolog)node).loop);
1743                 System.out.println("**** end contents prolog loop");
1744             } else if (node instanceof Loop) {
1745                 System.out.println(node);
1746                 printObjectTree(((Loop)node).body);
1747                 System.out.println("**** end contents Loop body");
1748             } else if (node instanceof Curly) {
1749                 System.out.println(node);
1750                 printObjectTree(((Curly)node).atom);
1751                 System.out.println("**** end contents Curly body");
1752             } else if (node instanceof GroupCurly) {
1753                 System.out.println(node);
1754                 printObjectTree(((GroupCurly)node).atom);
1755                 System.out.println("**** end contents GroupCurly body");
1756             } else if (node instanceof GroupTail) {
1757                 System.out.println(node);
1758                 System.out.println("Tail next is "+node.next);
1759                 return;
1760             } else {
1761                 System.out.println(node);
1762             }
1763             node = node.next;
1764             if (node != null)
1765                 System.out.println("->next:");
1766             if (node == Pattern.accept) {
1767                 System.out.println("Accept Node");
1768                 node = null;
1769             }
1770        }
1771     }
1772 
1773     /**
1774      * Used to accumulate information about a subtree of the object graph
1775      * so that optimizations can be applied to the subtree.
1776      */
1777     static final class TreeInfo {
1778         int minLength;
1779         int maxLength;
1780         boolean maxValid;
1781         boolean deterministic;
1782 
1783         TreeInfo() {
1784             reset();
1785         }
1786         void reset() {
1787             minLength = 0;
1788             maxLength = 0;
1789             maxValid = true;
1790             deterministic = true;
1791         }
1792     }
1793 
1794     /*
1795      * The following private methods are mainly used to improve the
1796      * readability of the code. In order to let the Java compiler easily
1797      * inline them, we should not put many assertions or error checks in them.
1798      */
1799 
1800     /**
1801      * Indicates whether a particular flag is set or not.
1802      */
1803     private boolean has(int f) {
1804         return (flags & f) != 0;
1805     }
1806 
1807     /**
1808      * Match next character, signal error if failed.
1809      */
1810     private void accept(int ch, String s) {
1811         int testChar = temp[cursor++];
1812         if (has(COMMENTS))
1813             testChar = parsePastWhitespace(testChar);
1814         if (ch != testChar) {
1815             throw error(s);
1816         }
1817     }
1818 
1819     /**
1820      * Mark the end of pattern with a specific character.
1821      */
1822     private void mark(int c) {
1823         temp[patternLength] = c;
1824     }
1825 
1826     /**
1827      * Peek the next character, and do not advance the cursor.
1828      */
1829     private int peek() {
1830         int ch = temp[cursor];
1831         if (has(COMMENTS))
1832             ch = peekPastWhitespace(ch);
1833         return ch;
1834     }
1835 
1836     /**
1837      * Read the next character, and advance the cursor by one.
1838      */
1839     private int read() {
1840         int ch = temp[cursor++];
1841         if (has(COMMENTS))
1842             ch = parsePastWhitespace(ch);
1843         return ch;
1844     }
1845 
1846     /**
1847      * Read the next character, and advance the cursor by one,
1848      * ignoring the COMMENTS setting
1849      */
1850     private int readEscaped() {
1851         int ch = temp[cursor++];
1852         return ch;
1853     }
1854 
1855     /**
1856      * Advance the cursor by one, and peek the next character.
1857      */
1858     private int next() {
1859         int ch = temp[++cursor];
1860         if (has(COMMENTS))
1861             ch = peekPastWhitespace(ch);
1862         return ch;
1863     }
1864 
1865     /**
1866      * Advance the cursor by one, and peek the next character,
1867      * ignoring the COMMENTS setting
1868      */
1869     private int nextEscaped() {
1870         int ch = temp[++cursor];
1871         return ch;
1872     }
1873 
1874     /**
1875      * If in xmode peek past whitespace and comments.
1876      */
1877     private int peekPastWhitespace(int ch) {
1878         while (ASCII.isSpace(ch) || ch == '#') {
1879             while (ASCII.isSpace(ch))
1880                 ch = temp[++cursor];
1881             if (ch == '#') {
1882                 ch = peekPastLine();
1883             }
1884         }
1885         return ch;
1886     }
1887 
1888     /**
1889      * If in xmode parse past whitespace and comments.
1890      */
1891     private int parsePastWhitespace(int ch) {
1892         while (ASCII.isSpace(ch) || ch == '#') {
1893             while (ASCII.isSpace(ch))
1894                 ch = temp[cursor++];
1895             if (ch == '#')
1896                 ch = parsePastLine();
1897         }
1898         return ch;
1899     }
1900 
1901     /**
1902      * xmode parse past comment to end of line.
1903      */
1904     private int parsePastLine() {
1905         int ch = temp[cursor++];
1906         while (ch != 0 && !isLineSeparator(ch))
1907             ch = temp[cursor++];
1908         return ch;
1909     }
1910 
1911     /**
1912      * xmode peek past comment to end of line.
1913      */
1914     private int peekPastLine() {
1915         int ch = temp[++cursor];
1916         while (ch != 0 && !isLineSeparator(ch))
1917             ch = temp[++cursor];
1918         return ch;
1919     }
1920 
1921     /**
1922      * Determines if character is a line separator in the current mode
1923      */
1924     private boolean isLineSeparator(int ch) {
1925         if (has(UNIX_LINES)) {
1926             return ch == '\n';
1927         } else {
1928             return (ch == '\n' ||
1929                     ch == '\r' ||
1930                     (ch|1) == '\u2029' ||
1931                     ch == '\u0085');
1932         }
1933     }
1934 
1935     /**
1936      * Read the character after the next one, and advance the cursor by two.
1937      */
1938     private int skip() {
1939         int i = cursor;
1940         int ch = temp[i+1];
1941         cursor = i + 2;
1942         return ch;
1943     }
1944 
1945     /**
1946      * Unread one next character, and retreat cursor by one.
1947      */
1948     private void unread() {
1949         cursor--;
1950     }
1951 
1952     /**
1953      * Internal method used for handling all syntax errors. The pattern is
1954      * displayed with a pointer to aid in locating the syntax error.
1955      */
1956     private PatternSyntaxException error(String s) {
1957         return new PatternSyntaxException(s, normalizedPattern,  cursor - 1);
1958     }
1959 
1960     /**
1961      * Determines if there is any supplementary character or unpaired
1962      * surrogate in the specified range.
1963      */
1964     private boolean findSupplementary(int start, int end) {
1965         for (int i = start; i < end; i++) {
1966             if (isSupplementary(temp[i]))
1967                 return true;
1968         }
1969         return false;
1970     }
1971 
1972     /**
1973      * Determines if the specified code point is a supplementary
1974      * character or unpaired surrogate.
1975      */
1976     private static final boolean isSupplementary(int ch) {
1977         return ch >= Character.MIN_SUPPLEMENTARY_CODE_POINT ||
1978                Character.isSurrogate((char)ch);
1979     }
1980 
1981     /**
1982      *  The following methods handle the main parsing. They are sorted
1983      *  according to their precedence order, the lowest one first.
1984      */
1985 
1986     /**
1987      * The expression is parsed with branch nodes added for alternations.
1988      * This may be called recursively to parse sub expressions that may
1989      * contain alternations.
1990      */
1991     private Node expr(Node end) {
1992         Node prev = null;
1993         Node firstTail = null;
1994         Branch branch = null;
1995         Node branchConn = null;
1996 
1997         for (;;) {
1998             Node node = sequence(end);
1999             Node nodeTail = root;      //double return
2000             if (prev == null) {
2001                 prev = node;
2002                 firstTail = nodeTail;
2003             } else {
2004                 // Branch
2005                 if (branchConn == null) {
2006                     branchConn = new BranchConn();
2007                     branchConn.next = end;
2008                 }
2009                 if (node == end) {
2010                     // if the node returned from sequence() is "end"
2011                     // we have an empty expr, set a null atom into
2012                     // the branch to indicate to go "next" directly.
2013                     node = null;
2014                 } else {
2015                     // the "tail.next" of each atom goes to branchConn
2016                     nodeTail.next = branchConn;
2017                 }
2018                 if (prev == branch) {
2019                     branch.add(node);
2020                 } else {
2021                     if (prev == end) {
2022                         prev = null;
2023                     } else {
2024                         // replace the "end" with "branchConn" at its tail.next
2025                         // when put the "prev" into the branch as the first atom.
2026                         firstTail.next = branchConn;
2027                     }
2028                     prev = branch = new Branch(prev, node, branchConn);
2029                 }
2030             }
2031             if (peek() != '|') {
2032                 return prev;
2033             }
2034             next();
2035         }
2036     }
2037 
2038     @SuppressWarnings("fallthrough")
2039     /**
2040      * Parsing of sequences between alternations.
2041      */
2042     private Node sequence(Node end) {
2043         Node head = null;
2044         Node tail = null;
2045         Node node = null;
2046     LOOP:
2047         for (;;) {
2048             int ch = peek();
2049             switch (ch) {
2050             case '(':
2051                 // Because group handles its own closure,
2052                 // we need to treat it differently
2053                 node = group0();
2054                 // Check for comment or flag group
2055                 if (node == null)
2056                     continue;
2057                 if (head == null)
2058                     head = node;
2059                 else
2060                     tail.next = node;
2061                 // Double return: Tail was returned in root
2062                 tail = root;
2063                 continue;
2064             case '[':
2065                 node = clazz(true);
2066                 break;
2067             case '\\':
2068                 ch = nextEscaped();
2069                 if (ch == 'p' || ch == 'P') {
2070                     boolean oneLetter = true;
2071                     boolean comp = (ch == 'P');
2072                     ch = next(); // Consume { if present
2073                     if (ch != '{') {
2074                         unread();
2075                     } else {
2076                         oneLetter = false;
2077                     }
2078                     node = family(oneLetter, comp);
2079                 } else {
2080                     unread();
2081                     node = atom();
2082                 }
2083                 break;
2084             case '^':
2085                 next();
2086                 if (has(MULTILINE)) {
2087                     if (has(UNIX_LINES))
2088                         node = new UnixCaret();
2089                     else
2090                         node = new Caret();
2091                 } else {
2092                     node = new Begin();
2093                 }
2094                 break;
2095             case '$':
2096                 next();
2097                 if (has(UNIX_LINES))
2098                     node = new UnixDollar(has(MULTILINE));
2099                 else
2100                     node = new Dollar(has(MULTILINE));
2101                 break;
2102             case '.':
2103                 next();
2104                 if (has(DOTALL)) {
2105                     node = new All();
2106                 } else {
2107                     if (has(UNIX_LINES))
2108                         node = new UnixDot();
2109                     else {
2110                         node = new Dot();
2111                     }
2112                 }
2113                 break;
2114             case '|':
2115             case ')':
2116                 break LOOP;
2117             case ']': // Now interpreting dangling ] and } as literals
2118             case '}':
2119                 node = atom();
2120                 break;
2121             case '?':
2122             case '*':
2123             case '+':
2124                 next();
2125                 throw error("Dangling meta character '" + ((char)ch) + "'");
2126             case 0:
2127                 if (cursor >= patternLength) {
2128                     break LOOP;
2129                 }
2130                 // Fall through
2131             default:
2132                 node = atom();
2133                 break;
2134             }
2135 
2136             node = closure(node);
2137 
2138             if (head == null) {
2139                 head = tail = node;
2140             } else {
2141                 tail.next = node;
2142                 tail = node;
2143             }
2144         }
2145         if (head == null) {
2146             return end;
2147         }
2148         tail.next = end;
2149         root = tail;      //double return
2150         return head;
2151     }
2152 
2153     @SuppressWarnings("fallthrough")
2154     /**
2155      * Parse and add a new Single or Slice.
2156      */
2157     private Node atom() {
2158         int first = 0;
2159         int prev = -1;
2160         boolean hasSupplementary = false;
2161         int ch = peek();
2162         for (;;) {
2163             switch (ch) {
2164             case '*':
2165             case '+':
2166             case '?':
2167             case '{':
2168                 if (first > 1) {
2169                     cursor = prev;    // Unwind one character
2170                     first--;
2171                 }
2172                 break;
2173             case '$':
2174             case '.':
2175             case '^':
2176             case '(':
2177             case '[':
2178             case '|':
2179             case ')':
2180                 break;
2181             case '\\':
2182                 ch = nextEscaped();
2183                 if (ch == 'p' || ch == 'P') { // Property
2184                     if (first > 0) { // Slice is waiting; handle it first
2185                         unread();
2186                         break;
2187                     } else { // No slice; just return the family node
2188                         boolean comp = (ch == 'P');
2189                         boolean oneLetter = true;
2190                         ch = next(); // Consume { if present
2191                         if (ch != '{')
2192                             unread();
2193                         else
2194                             oneLetter = false;
2195                         return family(oneLetter, comp);
2196                     }
2197                 }
2198                 unread();
2199                 prev = cursor;
2200                 ch = escape(false, first == 0, false);
2201                 if (ch >= 0) {
2202                     append(ch, first);
2203                     first++;
2204                     if (isSupplementary(ch)) {
2205                         hasSupplementary = true;
2206                     }
2207                     ch = peek();
2208                     continue;
2209                 } else if (first == 0) {
2210                     return root;
2211                 }
2212                 // Unwind meta escape sequence
2213                 cursor = prev;
2214                 break;
2215             case 0:
2216                 if (cursor >= patternLength) {
2217                     break;
2218                 }
2219                 // Fall through
2220             default:
2221                 prev = cursor;
2222                 append(ch, first);
2223                 first++;
2224                 if (isSupplementary(ch)) {
2225                     hasSupplementary = true;
2226                 }
2227                 ch = next();
2228                 continue;
2229             }
2230             break;
2231         }
2232         if (first == 1) {
2233             return newSingle(buffer[0]);
2234         } else {
2235             return newSlice(buffer, first, hasSupplementary);
2236         }
2237     }
2238 
2239     private void append(int ch, int len) {
2240         if (len >= buffer.length) {
2241             int[] tmp = new int[len+len];
2242             System.arraycopy(buffer, 0, tmp, 0, len);
2243             buffer = tmp;
2244         }
2245         buffer[len] = ch;
2246     }
2247 
2248     /**
2249      * Parses a backref greedily, taking as many numbers as it
2250      * can. The first digit is always treated as a backref, but
2251      * multi digit numbers are only treated as a backref if at
2252      * least that many backrefs exist at this point in the regex.
2253      */
2254     private Node ref(int refNum) {
2255         boolean done = false;
2256         while(!done) {
2257             int ch = peek();
2258             switch(ch) {
2259             case '0':
2260             case '1':
2261             case '2':
2262             case '3':
2263             case '4':
2264             case '5':
2265             case '6':
2266             case '7':
2267             case '8':
2268             case '9':
2269                 int newRefNum = (refNum * 10) + (ch - '0');
2270                 // Add another number if it doesn't make a group
2271                 // that doesn't exist
2272                 if (capturingGroupCount - 1 < newRefNum) {
2273                     done = true;
2274                     break;
2275                 }
2276                 refNum = newRefNum;
2277                 read();
2278                 break;
2279             default:
2280                 done = true;
2281                 break;
2282             }
2283         }
2284         if (has(CASE_INSENSITIVE))
2285             return new CIBackRef(refNum, has(UNICODE_CASE));
2286         else
2287             return new BackRef(refNum);
2288     }
2289 
2290     /**
2291      * Parses an escape sequence to determine the actual value that needs
2292      * to be matched.
2293      * If -1 is returned and create was true a new object was added to the tree
2294      * to handle the escape sequence.
2295      * If the returned value is greater than zero, it is the value that
2296      * matches the escape sequence.
2297      */
2298     private int escape(boolean inclass, boolean create, boolean isrange) {
2299         int ch = skip();
2300         switch (ch) {
2301         case '0':
2302             return o();
2303         case '1':
2304         case '2':
2305         case '3':
2306         case '4':
2307         case '5':
2308         case '6':
2309         case '7':
2310         case '8':
2311         case '9':
2312             if (inclass) break;
2313             if (create) {
2314                 root = ref((ch - '0'));
2315             }
2316             return -1;
2317         case 'A':
2318             if (inclass) break;
2319             if (create) root = new Begin();
2320             return -1;
2321         case 'B':
2322             if (inclass) break;
2323             if (create) root = new Bound(Bound.NONE, has(UNICODE_CHARACTER_CLASS));
2324             return -1;
2325         case 'C':
2326             break;
2327         case 'D':
2328             if (create) root = has(UNICODE_CHARACTER_CLASS)
2329                                ? new Utype(UnicodeProp.DIGIT).complement()
2330                                : new Ctype(ASCII.DIGIT).complement();
2331             return -1;
2332         case 'E':
2333         case 'F':
2334             break;
2335         case 'G':
2336             if (inclass) break;
2337             if (create) root = new LastMatch();
2338             return -1;
2339         case 'H':
2340             if (create) root = new HorizWS().complement();
2341             return -1;
2342         case 'I':
2343         case 'J':
2344         case 'K':
2345         case 'L':
2346         case 'M':
2347         case 'N':
2348         case 'O':
2349         case 'P':
2350         case 'Q':
2351             break;
2352         case 'R':
2353             if (inclass) break;
2354             if (create) root = new LineEnding();
2355             return -1;
2356         case 'S':
2357             if (create) root = has(UNICODE_CHARACTER_CLASS)
2358                                ? new Utype(UnicodeProp.WHITE_SPACE).complement()
2359                                : new Ctype(ASCII.SPACE).complement();
2360             return -1;
2361         case 'T':
2362         case 'U':
2363             break;
2364         case 'V':
2365             if (create) root = new VertWS().complement();
2366             return -1;
2367         case 'W':
2368             if (create) root = has(UNICODE_CHARACTER_CLASS)
2369                                ? new Utype(UnicodeProp.WORD).complement()
2370                                : new Ctype(ASCII.WORD).complement();
2371             return -1;
2372         case 'X':
2373         case 'Y':
2374             break;
2375         case 'Z':
2376             if (inclass) break;
2377             if (create) {
2378                 if (has(UNIX_LINES))
2379                     root = new UnixDollar(false);
2380                 else
2381                     root = new Dollar(false);
2382             }
2383             return -1;
2384         case 'a':
2385             return '\007';
2386         case 'b':
2387             if (inclass) break;
2388             if (create) root = new Bound(Bound.BOTH, has(UNICODE_CHARACTER_CLASS));
2389             return -1;
2390         case 'c':
2391             return c();
2392         case 'd':
2393             if (create) root = has(UNICODE_CHARACTER_CLASS)
2394                                ? new Utype(UnicodeProp.DIGIT)
2395                                : new Ctype(ASCII.DIGIT);
2396             return -1;
2397         case 'e':
2398             return '\033';
2399         case 'f':
2400             return '\f';
2401         case 'g':
2402             break;
2403         case 'h':
2404             if (create) root = new HorizWS();
2405             return -1;
2406         case 'i':
2407         case 'j':
2408             break;
2409         case 'k':
2410             if (inclass)
2411                 break;
2412             if (read() != '<')
2413                 throw error("\\k is not followed by '<' for named capturing group");
2414             String name = groupname(read());
2415             if (!namedGroups().containsKey(name))
2416                 throw error("(named capturing group <"+ name+"> does not exit");
2417             if (create) {
2418                 if (has(CASE_INSENSITIVE))
2419                     root = new CIBackRef(namedGroups().get(name), has(UNICODE_CASE));
2420                 else
2421                     root = new BackRef(namedGroups().get(name));
2422             }
2423             return -1;
2424         case 'l':
2425         case 'm':
2426             break;
2427         case 'n':
2428             return '\n';
2429         case 'o':
2430         case 'p':
2431         case 'q':
2432             break;
2433         case 'r':
2434             return '\r';
2435         case 's':
2436             if (create) root = has(UNICODE_CHARACTER_CLASS)
2437                                ? new Utype(UnicodeProp.WHITE_SPACE)
2438                                : new Ctype(ASCII.SPACE);
2439             return -1;
2440         case 't':
2441             return '\t';
2442         case 'u':
2443             return u();
2444         case 'v':
2445             // '\v' was implemented as VT/0x0B in releases < 1.8 (though
2446             // undocumented). In JDK8 '\v' is specified as a predefined
2447             // character class for all vertical whitespace characters.
2448             // So [-1, root=VertWS node] pair is returned (instead of a
2449             // single 0x0B). This breaks the range if '\v' is used as
2450             // the start or end value, such as [\v-...] or [...-\v], in
2451             // which a single definite value (0x0B) is expected. For
2452             // compatibility concern '\013'/0x0B is returned if isrange.
2453             if (isrange)
2454                 return '\013';
2455             if (create) root = new VertWS();
2456             return -1;
2457         case 'w':
2458             if (create) root = has(UNICODE_CHARACTER_CLASS)
2459                                ? new Utype(UnicodeProp.WORD)
2460                                : new Ctype(ASCII.WORD);
2461             return -1;
2462         case 'x':
2463             return x();
2464         case 'y':
2465             break;
2466         case 'z':
2467             if (inclass) break;
2468             if (create) root = new End();
2469             return -1;
2470         default:
2471             return ch;
2472         }
2473         throw error("Illegal/unsupported escape sequence");
2474     }
2475 
2476     /**
2477      * Parse a character class, and return the node that matches it.
2478      *
2479      * Consumes a ] on the way out if consume is true. Usually consume
2480      * is true except for the case of [abc&&def] where def is a separate
2481      * right hand node with "understood" brackets.
2482      */
2483     private CharProperty clazz(boolean consume) {
2484         CharProperty prev = null;
2485         CharProperty node = null;
2486         BitClass bits = new BitClass();
2487         boolean include = true;
2488         boolean firstInClass = true;
2489         int ch = next();
2490         for (;;) {
2491             switch (ch) {
2492                 case '^':
2493                     // Negates if first char in a class, otherwise literal
2494                     if (firstInClass) {
2495                         if (temp[cursor-1] != '[')
2496                             break;
2497                         ch = next();
2498                         include = !include;
2499                         continue;
2500                     } else {
2501                         // ^ not first in class, treat as literal
2502                         break;
2503                     }
2504                 case '[':
2505                     firstInClass = false;
2506                     node = clazz(true);
2507                     if (prev == null)
2508                         prev = node;
2509                     else
2510                         prev = union(prev, node);
2511                     ch = peek();
2512                     continue;
2513                 case '&':
2514                     firstInClass = false;
2515                     ch = next();
2516                     if (ch == '&') {
2517                         ch = next();
2518                         CharProperty rightNode = null;
2519                         while (ch != ']' && ch != '&') {
2520                             if (ch == '[') {
2521                                 if (rightNode == null)
2522                                     rightNode = clazz(true);
2523                                 else
2524                                     rightNode = union(rightNode, clazz(true));
2525                             } else { // abc&&def
2526                                 unread();
2527                                 rightNode = clazz(false);
2528                             }
2529                             ch = peek();
2530                         }
2531                         if (rightNode != null)
2532                             node = rightNode;
2533                         if (prev == null) {
2534                             if (rightNode == null)
2535                                 throw error("Bad class syntax");
2536                             else
2537                                 prev = rightNode;
2538                         } else {
2539                             prev = intersection(prev, node);
2540                         }
2541                     } else {
2542                         // treat as a literal &
2543                         unread();
2544                         break;
2545                     }
2546                     continue;
2547                 case 0:
2548                     firstInClass = false;
2549                     if (cursor >= patternLength)
2550                         throw error("Unclosed character class");
2551                     break;
2552                 case ']':
2553                     firstInClass = false;
2554                     if (prev != null) {
2555                         if (consume)
2556                             next();
2557                         return prev;
2558                     }
2559                     break;
2560                 default:
2561                     firstInClass = false;
2562                     break;
2563             }
2564             node = range(bits);
2565             if (include) {
2566                 if (prev == null) {
2567                     prev = node;
2568                 } else {
2569                     if (prev != node)
2570                         prev = union(prev, node);
2571                 }
2572             } else {
2573                 if (prev == null) {
2574                     prev = node.complement();
2575                 } else {
2576                     if (prev != node)
2577                         prev = setDifference(prev, node);
2578                 }
2579             }
2580             ch = peek();
2581         }
2582     }
2583 
2584     private CharProperty bitsOrSingle(BitClass bits, int ch) {
2585         /* Bits can only handle codepoints in [u+0000-u+00ff] range.
2586            Use "single" node instead of bits when dealing with unicode
2587            case folding for codepoints listed below.
2588            (1)Uppercase out of range: u+00ff, u+00b5
2589               toUpperCase(u+00ff) -> u+0178
2590               toUpperCase(u+00b5) -> u+039c
2591            (2)LatinSmallLetterLongS u+17f
2592               toUpperCase(u+017f) -> u+0053
2593            (3)LatinSmallLetterDotlessI u+131
2594               toUpperCase(u+0131) -> u+0049
2595            (4)LatinCapitalLetterIWithDotAbove u+0130
2596               toLowerCase(u+0130) -> u+0069
2597            (5)KelvinSign u+212a
2598               toLowerCase(u+212a) ==> u+006B
2599            (6)AngstromSign u+212b
2600               toLowerCase(u+212b) ==> u+00e5
2601         */
2602         int d;
2603         if (ch < 256 &&
2604             !(has(CASE_INSENSITIVE) && has(UNICODE_CASE) &&
2605               (ch == 0xff || ch == 0xb5 ||
2606                ch == 0x49 || ch == 0x69 ||  //I and i
2607                ch == 0x53 || ch == 0x73 ||  //S and s
2608                ch == 0x4b || ch == 0x6b ||  //K and k
2609                ch == 0xc5 || ch == 0xe5)))  //A+ring
2610             return bits.add(ch, flags());
2611         return newSingle(ch);
2612     }
2613 
2614     /**
2615      * Parse a single character or a character range in a character class
2616      * and return its representative node.
2617      */
2618     private CharProperty range(BitClass bits) {
2619         int ch = peek();
2620         if (ch == '\\') {
2621             ch = nextEscaped();
2622             if (ch == 'p' || ch == 'P') { // A property
2623                 boolean comp = (ch == 'P');
2624                 boolean oneLetter = true;
2625                 // Consume { if present
2626                 ch = next();
2627                 if (ch != '{')
2628                     unread();
2629                 else
2630                     oneLetter = false;
2631                 return family(oneLetter, comp);
2632             } else { // ordinary escape
2633                 boolean isrange = temp[cursor+1] == '-';
2634                 unread();
2635                 ch = escape(true, true, isrange);
2636                 if (ch == -1)
2637                     return (CharProperty) root;
2638             }
2639         } else {
2640             next();
2641         }
2642         if (ch >= 0) {
2643             if (peek() == '-') {
2644                 int endRange = temp[cursor+1];
2645                 if (endRange == '[') {
2646                     return bitsOrSingle(bits, ch);
2647                 }
2648                 if (endRange != ']') {
2649                     next();
2650                     int m = peek();
2651                     if (m == '\\') {
2652                         m = escape(true, false, true);
2653                     } else {
2654                         next();
2655                     }
2656                     if (m < ch) {
2657                         throw error("Illegal character range");
2658                     }
2659                     if (has(CASE_INSENSITIVE))
2660                         return caseInsensitiveRangeFor(ch, m);
2661                     else
2662                         return rangeFor(ch, m);
2663                 }
2664             }
2665             return bitsOrSingle(bits, ch);
2666         }
2667         throw error("Unexpected character '"+((char)ch)+"'");
2668     }
2669 
2670     /**
2671      * Parses a Unicode character family and returns its representative node.
2672      */
2673     private CharProperty family(boolean singleLetter,
2674                                 boolean maybeComplement)
2675     {
2676         next();
2677         String name;
2678         CharProperty node = null;
2679 
2680         if (singleLetter) {
2681             int c = temp[cursor];
2682             if (!Character.isSupplementaryCodePoint(c)) {
2683                 name = String.valueOf((char)c);
2684             } else {
2685                 name = new String(temp, cursor, 1);
2686             }
2687             read();
2688         } else {
2689             int i = cursor;
2690             mark('}');
2691             while(read() != '}') {
2692             }
2693             mark('\000');
2694             int j = cursor;
2695             if (j > patternLength)
2696                 throw error("Unclosed character family");
2697             if (i + 1 >= j)
2698                 throw error("Empty character family");
2699             name = new String(temp, i, j-i-1);
2700         }
2701 
2702         int i = name.indexOf('=');
2703         if (i != -1) {
2704             // property construct \p{name=value}
2705             String value = name.substring(i + 1);
2706             name = name.substring(0, i).toLowerCase(Locale.ENGLISH);
2707             if ("sc".equals(name) || "script".equals(name)) {
2708                 node = unicodeScriptPropertyFor(value);
2709             } else if ("blk".equals(name) || "block".equals(name)) {
2710                 node = unicodeBlockPropertyFor(value);
2711             } else if ("gc".equals(name) || "general_category".equals(name)) {
2712                 node = charPropertyNodeFor(value);
2713             } else {
2714                 throw error("Unknown Unicode property {name=<" + name + ">, "
2715                              + "value=<" + value + ">}");
2716             }
2717         } else {
2718             if (name.startsWith("In")) {
2719                 // \p{inBlockName}
2720                 node = unicodeBlockPropertyFor(name.substring(2));
2721             } else if (name.startsWith("Is")) {
2722                 // \p{isGeneralCategory} and \p{isScriptName}
2723                 name = name.substring(2);
2724                 UnicodeProp uprop = UnicodeProp.forName(name);
2725                 if (uprop != null)
2726                     node = new Utype(uprop);
2727                 if (node == null)
2728                     node = CharPropertyNames.charPropertyFor(name);
2729                 if (node == null)
2730                     node = unicodeScriptPropertyFor(name);
2731             } else {
2732                 if (has(UNICODE_CHARACTER_CLASS)) {
2733                     UnicodeProp uprop = UnicodeProp.forPOSIXName(name);
2734                     if (uprop != null)
2735                         node = new Utype(uprop);
2736                 }
2737                 if (node == null)
2738                     node = charPropertyNodeFor(name);
2739             }
2740         }
2741         if (maybeComplement) {
2742             if (node instanceof Category || node instanceof Block)
2743                 hasSupplementary = true;
2744             node = node.complement();
2745         }
2746         return node;
2747     }
2748 
2749 
2750     /**
2751      * Returns a CharProperty matching all characters belong to
2752      * a UnicodeScript.
2753      */
2754     private CharProperty unicodeScriptPropertyFor(String name) {
2755         final Character.UnicodeScript script;
2756         try {
2757             script = Character.UnicodeScript.forName(name);
2758         } catch (IllegalArgumentException iae) {
2759             throw error("Unknown character script name {" + name + "}");
2760         }
2761         return new Script(script);
2762     }
2763 
2764     /**
2765      * Returns a CharProperty matching all characters in a UnicodeBlock.
2766      */
2767     private CharProperty unicodeBlockPropertyFor(String name) {
2768         final Character.UnicodeBlock block;
2769         try {
2770             block = Character.UnicodeBlock.forName(name);
2771         } catch (IllegalArgumentException iae) {
2772             throw error("Unknown character block name {" + name + "}");
2773         }
2774         return new Block(block);
2775     }
2776 
2777     /**
2778      * Returns a CharProperty matching all characters in a named property.
2779      */
2780     private CharProperty charPropertyNodeFor(String name) {
2781         CharProperty p = CharPropertyNames.charPropertyFor(name);
2782         if (p == null)
2783             throw error("Unknown character property name {" + name + "}");
2784         return p;
2785     }
2786 
2787     /**
2788      * Parses and returns the name of a "named capturing group", the trailing
2789      * ">" is consumed after parsing.
2790      */
2791     private String groupname(int ch) {
2792         StringBuilder sb = new StringBuilder();
2793         sb.append(Character.toChars(ch));
2794         while (ASCII.isLower(ch=read()) || ASCII.isUpper(ch) ||
2795                ASCII.isDigit(ch)) {
2796             sb.append(Character.toChars(ch));
2797         }
2798         if (sb.length() == 0)
2799             throw error("named capturing group has 0 length name");
2800         if (ch != '>')
2801             throw error("named capturing group is missing trailing '>'");
2802         return sb.toString();
2803     }
2804 
2805     /**
2806      * Parses a group and returns the head node of a set of nodes that process
2807      * the group. Sometimes a double return system is used where the tail is
2808      * returned in root.
2809      */
2810     private Node group0() {
2811         boolean capturingGroup = false;
2812         Node head = null;
2813         Node tail = null;
2814         int save = flags;
2815         root = null;
2816         int ch = next();
2817         if (ch == '?') {
2818             ch = skip();
2819             switch (ch) {
2820             case ':':   //  (?:xxx) pure group
2821                 head = createGroup(true);
2822                 tail = root;
2823                 head.next = expr(tail);
2824                 break;
2825             case '=':   // (?=xxx) and (?!xxx) lookahead
2826             case '!':
2827                 head = createGroup(true);
2828                 tail = root;
2829                 head.next = expr(tail);
2830                 if (ch == '=') {
2831                     head = tail = new Pos(head);
2832                 } else {
2833                     head = tail = new Neg(head);
2834                 }
2835                 break;
2836             case '>':   // (?>xxx)  independent group
2837                 head = createGroup(true);
2838                 tail = root;
2839                 head.next = expr(tail);
2840                 head = tail = new Ques(head, INDEPENDENT);
2841                 break;
2842             case '<':   // (?<xxx)  look behind
2843                 ch = read();
2844                 if (ASCII.isLower(ch) || ASCII.isUpper(ch)) {
2845                     // named captured group
2846                     String name = groupname(ch);
2847                     if (namedGroups().containsKey(name))
2848                         throw error("Named capturing group <" + name
2849                                     + "> is already defined");
2850                     capturingGroup = true;
2851                     head = createGroup(false);
2852                     tail = root;
2853                     namedGroups().put(name, capturingGroupCount-1);
2854                     head.next = expr(tail);
2855                     break;
2856                 }
2857                 int start = cursor;
2858                 head = createGroup(true);
2859                 tail = root;
2860                 head.next = expr(tail);
2861                 tail.next = lookbehindEnd;
2862                 TreeInfo info = new TreeInfo();
2863                 head.study(info);
2864                 if (info.maxValid == false) {
2865                     throw error("Look-behind group does not have "
2866                                 + "an obvious maximum length");
2867                 }
2868                 boolean hasSupplementary = findSupplementary(start, patternLength);
2869                 if (ch == '=') {
2870                     head = tail = (hasSupplementary ?
2871                                    new BehindS(head, info.maxLength,
2872                                                info.minLength) :
2873                                    new Behind(head, info.maxLength,
2874                                               info.minLength));
2875                 } else if (ch == '!') {
2876                     head = tail = (hasSupplementary ?
2877                                    new NotBehindS(head, info.maxLength,
2878                                                   info.minLength) :
2879                                    new NotBehind(head, info.maxLength,
2880                                                  info.minLength));
2881                 } else {
2882                     throw error("Unknown look-behind group");
2883                 }
2884                 break;
2885             case '$':
2886             case '@':
2887                 throw error("Unknown group type");
2888             default:    // (?xxx:) inlined match flags
2889                 unread();
2890                 addFlag();
2891                 ch = read();
2892                 if (ch == ')') {
2893                     return null;    // Inline modifier only
2894                 }
2895                 if (ch != ':') {
2896                     throw error("Unknown inline modifier");
2897                 }
2898                 head = createGroup(true);
2899                 tail = root;
2900                 head.next = expr(tail);
2901                 break;
2902             }
2903         } else { // (xxx) a regular group
2904             capturingGroup = true;
2905             head = createGroup(false);
2906             tail = root;
2907             head.next = expr(tail);
2908         }
2909 
2910         accept(')', "Unclosed group");
2911         flags = save;
2912 
2913         // Check for quantifiers
2914         Node node = closure(head);
2915         if (node == head) { // No closure
2916             root = tail;
2917             return node;    // Dual return
2918         }
2919         if (head == tail) { // Zero length assertion
2920             root = node;
2921             return node;    // Dual return
2922         }
2923 
2924         if (node instanceof Ques) {
2925             Ques ques = (Ques) node;
2926             if (ques.type == POSSESSIVE) {
2927                 root = node;
2928                 return node;
2929             }
2930             tail.next = new BranchConn();
2931             tail = tail.next;
2932             if (ques.type == GREEDY) {
2933                 head = new Branch(head, null, tail);
2934             } else { // Reluctant quantifier
2935                 head = new Branch(null, head, tail);
2936             }
2937             root = tail;
2938             return head;
2939         } else if (node instanceof Curly) {
2940             Curly curly = (Curly) node;
2941             if (curly.type == POSSESSIVE) {
2942                 root = node;
2943                 return node;
2944             }
2945             // Discover if the group is deterministic
2946             TreeInfo info = new TreeInfo();
2947             if (head.study(info)) { // Deterministic
2948                 GroupTail temp = (GroupTail) tail;
2949                 head = root = new GroupCurly(head.next, curly.cmin,
2950                                    curly.cmax, curly.type,
2951                                    ((GroupTail)tail).localIndex,
2952                                    ((GroupTail)tail).groupIndex,
2953                                              capturingGroup);
2954                 return head;
2955             } else { // Non-deterministic
2956                 int temp = ((GroupHead) head).localIndex;
2957                 Loop loop;
2958                 if (curly.type == GREEDY)
2959                     loop = new Loop(this.localCount, temp);
2960                 else  // Reluctant Curly
2961                     loop = new LazyLoop(this.localCount, temp);
2962                 Prolog prolog = new Prolog(loop);
2963                 this.localCount += 1;
2964                 loop.cmin = curly.cmin;
2965                 loop.cmax = curly.cmax;
2966                 loop.body = head;
2967                 tail.next = loop;
2968                 root = loop;
2969                 return prolog; // Dual return
2970             }
2971         }
2972         throw error("Internal logic error");
2973     }
2974 
2975     /**
2976      * Create group head and tail nodes using double return. If the group is
2977      * created with anonymous true then it is a pure group and should not
2978      * affect group counting.
2979      */
2980     private Node createGroup(boolean anonymous) {
2981         int localIndex = localCount++;
2982         int groupIndex = 0;
2983         if (!anonymous)
2984             groupIndex = capturingGroupCount++;
2985         GroupHead head = new GroupHead(localIndex);
2986         root = new GroupTail(localIndex, groupIndex);
2987         if (!anonymous && groupIndex < 10)
2988             groupNodes[groupIndex] = head;
2989         return head;
2990     }
2991 
2992     @SuppressWarnings("fallthrough")
2993     /**
2994      * Parses inlined match flags and set them appropriately.
2995      */
2996     private void addFlag() {
2997         int ch = peek();
2998         for (;;) {
2999             switch (ch) {
3000             case 'i':
3001                 flags |= CASE_INSENSITIVE;
3002                 break;
3003             case 'm':
3004                 flags |= MULTILINE;
3005                 break;
3006             case 's':
3007                 flags |= DOTALL;
3008                 break;
3009             case 'd':
3010                 flags |= UNIX_LINES;
3011                 break;
3012             case 'u':
3013                 flags |= UNICODE_CASE;
3014                 break;
3015             case 'c':
3016                 flags |= CANON_EQ;
3017                 break;
3018             case 'x':
3019                 flags |= COMMENTS;
3020                 break;
3021             case 'U':
3022                 flags |= (UNICODE_CHARACTER_CLASS | UNICODE_CASE);
3023                 break;
3024             case '-': // subFlag then fall through
3025                 ch = next();
3026                 subFlag();
3027             default:
3028                 return;
3029             }
3030             ch = next();
3031         }
3032     }
3033 
3034     @SuppressWarnings("fallthrough")
3035     /**
3036      * Parses the second part of inlined match flags and turns off
3037      * flags appropriately.
3038      */
3039     private void subFlag() {
3040         int ch = peek();
3041         for (;;) {
3042             switch (ch) {
3043             case 'i':
3044                 flags &= ~CASE_INSENSITIVE;
3045                 break;
3046             case 'm':
3047                 flags &= ~MULTILINE;
3048                 break;
3049             case 's':
3050                 flags &= ~DOTALL;
3051                 break;
3052             case 'd':
3053                 flags &= ~UNIX_LINES;
3054                 break;
3055             case 'u':
3056                 flags &= ~UNICODE_CASE;
3057                 break;
3058             case 'c':
3059                 flags &= ~CANON_EQ;
3060                 break;
3061             case 'x':
3062                 flags &= ~COMMENTS;
3063                 break;
3064             case 'U':
3065                 flags &= ~(UNICODE_CHARACTER_CLASS | UNICODE_CASE);
3066             default:
3067                 return;
3068             }
3069             ch = next();
3070         }
3071     }
3072 
3073     static final int MAX_REPS   = 0x7FFFFFFF;
3074 
3075     static final int GREEDY     = 0;
3076 
3077     static final int LAZY       = 1;
3078 
3079     static final int POSSESSIVE = 2;
3080 
3081     static final int INDEPENDENT = 3;
3082 
3083     /**
3084      * Processes repetition. If the next character peeked is a quantifier
3085      * then new nodes must be appended to handle the repetition.
3086      * Prev could be a single or a group, so it could be a chain of nodes.
3087      */
3088     private Node closure(Node prev) {
3089         Node atom;
3090         int ch = peek();
3091         switch (ch) {
3092         case '?':
3093             ch = next();
3094             if (ch == '?') {
3095                 next();
3096                 return new Ques(prev, LAZY);
3097             } else if (ch == '+') {
3098                 next();
3099                 return new Ques(prev, POSSESSIVE);
3100             }
3101             return new Ques(prev, GREEDY);
3102         case '*':
3103             ch = next();
3104             if (ch == '?') {
3105                 next();
3106                 return new Curly(prev, 0, MAX_REPS, LAZY);
3107             } else if (ch == '+') {
3108                 next();
3109                 return new Curly(prev, 0, MAX_REPS, POSSESSIVE);
3110             }
3111             return new Curly(prev, 0, MAX_REPS, GREEDY);
3112         case '+':
3113             ch = next();
3114             if (ch == '?') {
3115                 next();
3116                 return new Curly(prev, 1, MAX_REPS, LAZY);
3117             } else if (ch == '+') {
3118                 next();
3119                 return new Curly(prev, 1, MAX_REPS, POSSESSIVE);
3120             }
3121             return new Curly(prev, 1, MAX_REPS, GREEDY);
3122         case '{':
3123             ch = temp[cursor+1];
3124             if (ASCII.isDigit(ch)) {
3125                 skip();
3126                 int cmin = 0;
3127                 do {
3128                     cmin = cmin * 10 + (ch - '0');
3129                 } while (ASCII.isDigit(ch = read()));
3130                 int cmax = cmin;
3131                 if (ch == ',') {
3132                     ch = read();
3133                     cmax = MAX_REPS;
3134                     if (ch != '}') {
3135                         cmax = 0;
3136                         while (ASCII.isDigit(ch)) {
3137                             cmax = cmax * 10 + (ch - '0');
3138                             ch = read();
3139                         }
3140                     }
3141                 }
3142                 if (ch != '}')
3143                     throw error("Unclosed counted closure");
3144                 if (((cmin) | (cmax) | (cmax - cmin)) < 0)
3145                     throw error("Illegal repetition range");
3146                 Curly curly;
3147                 ch = peek();
3148                 if (ch == '?') {
3149                     next();
3150                     curly = new Curly(prev, cmin, cmax, LAZY);
3151                 } else if (ch == '+') {
3152                     next();
3153                     curly = new Curly(prev, cmin, cmax, POSSESSIVE);
3154                 } else {
3155                     curly = new Curly(prev, cmin, cmax, GREEDY);
3156                 }
3157                 return curly;
3158             } else {
3159                 throw error("Illegal repetition");
3160             }
3161         default:
3162             return prev;
3163         }
3164     }
3165 
3166     /**
3167      *  Utility method for parsing control escape sequences.
3168      */
3169     private int c() {
3170         if (cursor < patternLength) {
3171             return read() ^ 64;
3172         }
3173         throw error("Illegal control escape sequence");
3174     }
3175 
3176     /**
3177      *  Utility method for parsing octal escape sequences.
3178      */
3179     private int o() {
3180         int n = read();
3181         if (((n-'0')|('7'-n)) >= 0) {
3182             int m = read();
3183             if (((m-'0')|('7'-m)) >= 0) {
3184                 int o = read();
3185                 if ((((o-'0')|('7'-o)) >= 0) && (((n-'0')|('3'-n)) >= 0)) {
3186                     return (n - '0') * 64 + (m - '0') * 8 + (o - '0');
3187                 }
3188                 unread();
3189                 return (n - '0') * 8 + (m - '0');
3190             }
3191             unread();
3192             return (n - '0');
3193         }
3194         throw error("Illegal octal escape sequence");
3195     }
3196 
3197     /**
3198      *  Utility method for parsing hexadecimal escape sequences.
3199      */
3200     private int x() {
3201         int n = read();
3202         if (ASCII.isHexDigit(n)) {
3203             int m = read();
3204             if (ASCII.isHexDigit(m)) {
3205                 return ASCII.toDigit(n) * 16 + ASCII.toDigit(m);
3206             }
3207         } else if (n == '{' && ASCII.isHexDigit(peek())) {
3208             int ch = 0;
3209             while (ASCII.isHexDigit(n = read())) {
3210                 ch = (ch << 4) + ASCII.toDigit(n);
3211                 if (ch > Character.MAX_CODE_POINT)
3212                     throw error("Hexadecimal codepoint is too big");
3213             }
3214             if (n != '}')
3215                 throw error("Unclosed hexadecimal escape sequence");
3216             return ch;
3217         }
3218         throw error("Illegal hexadecimal escape sequence");
3219     }
3220 
3221     /**
3222      *  Utility method for parsing unicode escape sequences.
3223      */
3224     private int cursor() {
3225         return cursor;
3226     }
3227 
3228     private void setcursor(int pos) {
3229         cursor = pos;
3230     }
3231 
3232     private int uxxxx() {
3233         int n = 0;
3234         for (int i = 0; i < 4; i++) {
3235             int ch = read();
3236             if (!ASCII.isHexDigit(ch)) {
3237                 throw error("Illegal Unicode escape sequence");
3238             }
3239             n = n * 16 + ASCII.toDigit(ch);
3240         }
3241         return n;
3242     }
3243 
3244     private int u() {
3245         int n = uxxxx();
3246         if (Character.isHighSurrogate((char)n)) {
3247             int cur = cursor();
3248             if (read() == '\\' && read() == 'u') {
3249                 int n2 = uxxxx();
3250                 if (Character.isLowSurrogate((char)n2))
3251                     return Character.toCodePoint((char)n, (char)n2);
3252             }
3253             setcursor(cur);
3254         }
3255         return n;
3256     }
3257 
3258     //
3259     // Utility methods for code point support
3260     //
3261 
3262     private static final int countChars(CharSequence seq, int index,
3263                                         int lengthInCodePoints) {
3264         // optimization
3265         if (lengthInCodePoints == 1 && !Character.isHighSurrogate(seq.charAt(index))) {
3266             assert (index >= 0 && index < seq.length());
3267             return 1;
3268         }
3269         int length = seq.length();
3270         int x = index;
3271         if (lengthInCodePoints >= 0) {
3272             assert (index >= 0 && index < length);
3273             for (int i = 0; x < length && i < lengthInCodePoints; i++) {
3274                 if (Character.isHighSurrogate(seq.charAt(x++))) {
3275                     if (x < length && Character.isLowSurrogate(seq.charAt(x))) {
3276                         x++;
3277                     }
3278                 }
3279             }
3280             return x - index;
3281         }
3282 
3283         assert (index >= 0 && index <= length);
3284         if (index == 0) {
3285             return 0;
3286         }
3287         int len = -lengthInCodePoints;
3288         for (int i = 0; x > 0 && i < len; i++) {
3289             if (Character.isLowSurrogate(seq.charAt(--x))) {
3290                 if (x > 0 && Character.isHighSurrogate(seq.charAt(x-1))) {
3291                     x--;
3292                 }
3293             }
3294         }
3295         return index - x;
3296     }
3297 
3298     private static final int countCodePoints(CharSequence seq) {
3299         int length = seq.length();
3300         int n = 0;
3301         for (int i = 0; i < length; ) {
3302             n++;
3303             if (Character.isHighSurrogate(seq.charAt(i++))) {
3304                 if (i < length && Character.isLowSurrogate(seq.charAt(i))) {
3305                     i++;
3306                 }
3307             }
3308         }
3309         return n;
3310     }
3311 
3312     /**
3313      *  Creates a bit vector for matching Latin-1 values. A normal BitClass
3314      *  never matches values above Latin-1, and a complemented BitClass always
3315      *  matches values above Latin-1.
3316      */
3317     private static final class BitClass extends BmpCharProperty {
3318         final boolean[] bits;
3319         BitClass() { bits = new boolean[256]; }
3320         private BitClass(boolean[] bits) { this.bits = bits; }
3321         BitClass add(int c, int flags) {
3322             assert c >= 0 && c <= 255;
3323             if ((flags & CASE_INSENSITIVE) != 0) {
3324                 if (ASCII.isAscii(c)) {
3325                     bits[ASCII.toUpper(c)] = true;
3326                     bits[ASCII.toLower(c)] = true;
3327                 } else if ((flags & UNICODE_CASE) != 0) {
3328                     bits[Character.toLowerCase(c)] = true;
3329                     bits[Character.toUpperCase(c)] = true;
3330                 }
3331             }
3332             bits[c] = true;
3333             return this;
3334         }
3335         boolean isSatisfiedBy(int ch) {
3336             return ch < 256 && bits[ch];
3337         }
3338     }
3339 
3340     /**
3341      *  Returns a suitably optimized, single character matcher.
3342      */
3343     private CharProperty newSingle(final int ch) {
3344         if (has(CASE_INSENSITIVE)) {
3345             int lower, upper;
3346             if (has(UNICODE_CASE)) {
3347                 upper = Character.toUpperCase(ch);
3348                 lower = Character.toLowerCase(upper);
3349                 if (upper != lower)
3350                     return new SingleU(lower);
3351             } else if (ASCII.isAscii(ch)) {
3352                 lower = ASCII.toLower(ch);
3353                 upper = ASCII.toUpper(ch);
3354                 if (lower != upper)
3355                     return new SingleI(lower, upper);
3356             }
3357         }
3358         if (isSupplementary(ch))
3359             return new SingleS(ch);    // Match a given Unicode character
3360         return new Single(ch);         // Match a given BMP character
3361     }
3362 
3363     /**
3364      *  Utility method for creating a string slice matcher.
3365      */
3366     private Node newSlice(int[] buf, int count, boolean hasSupplementary) {
3367         int[] tmp = new int[count];
3368         if (has(CASE_INSENSITIVE)) {
3369             if (has(UNICODE_CASE)) {
3370                 for (int i = 0; i < count; i++) {
3371                     tmp[i] = Character.toLowerCase(
3372                                  Character.toUpperCase(buf[i]));
3373                 }
3374                 return hasSupplementary? new SliceUS(tmp) : new SliceU(tmp);
3375             }
3376             for (int i = 0; i < count; i++) {
3377                 tmp[i] = ASCII.toLower(buf[i]);
3378             }
3379             return hasSupplementary? new SliceIS(tmp) : new SliceI(tmp);
3380         }
3381         for (int i = 0; i < count; i++) {
3382             tmp[i] = buf[i];
3383         }
3384         return hasSupplementary ? new SliceS(tmp) : new Slice(tmp);
3385     }
3386 
3387     /**
3388      * The following classes are the building components of the object
3389      * tree that represents a compiled regular expression. The object tree
3390      * is made of individual elements that handle constructs in the Pattern.
3391      * Each type of object knows how to match its equivalent construct with
3392      * the match() method.
3393      */
3394 
3395     /**
3396      * Base class for all node classes. Subclasses should override the match()
3397      * method as appropriate. This class is an accepting node, so its match()
3398      * always returns true.
3399      */
3400     static class Node extends Object {
3401         Node next;
3402         Node() {
3403             next = Pattern.accept;
3404         }
3405         /**
3406          * This method implements the classic accept node.
3407          */
3408         boolean match(Matcher matcher, int i, CharSequence seq) {
3409             matcher.last = i;
3410             matcher.groups[0] = matcher.first;
3411             matcher.groups[1] = matcher.last;
3412             return true;
3413         }
3414         /**
3415          * This method is good for all zero length assertions.
3416          */
3417         boolean study(TreeInfo info) {
3418             if (next != null) {
3419                 return next.study(info);
3420             } else {
3421                 return info.deterministic;
3422             }
3423         }
3424     }
3425 
3426     static class LastNode extends Node {
3427         /**
3428          * This method implements the classic accept node with
3429          * the addition of a check to see if the match occurred
3430          * using all of the input.
3431          */
3432         boolean match(Matcher matcher, int i, CharSequence seq) {
3433             if (matcher.acceptMode == Matcher.ENDANCHOR && i != matcher.to)
3434                 return false;
3435             matcher.last = i;
3436             matcher.groups[0] = matcher.first;
3437             matcher.groups[1] = matcher.last;
3438             return true;
3439         }
3440     }
3441 
3442     /**
3443      * Used for REs that can start anywhere within the input string.
3444      * This basically tries to match repeatedly at each spot in the
3445      * input string, moving forward after each try. An anchored search
3446      * or a BnM will bypass this node completely.
3447      */
3448     static class Start extends Node {
3449         int minLength;
3450         Start(Node node) {
3451             this.next = node;
3452             TreeInfo info = new TreeInfo();
3453             next.study(info);
3454             minLength = info.minLength;
3455         }
3456         boolean match(Matcher matcher, int i, CharSequence seq) {
3457             if (i > matcher.to - minLength) {
3458                 matcher.hitEnd = true;
3459                 return false;
3460             }
3461             int guard = matcher.to - minLength;
3462             for (; i <= guard; i++) {
3463                 if (next.match(matcher, i, seq)) {
3464                     matcher.first = i;
3465                     matcher.groups[0] = matcher.first;
3466                     matcher.groups[1] = matcher.last;
3467                     return true;
3468                 }
3469             }
3470             matcher.hitEnd = true;
3471             return false;
3472         }
3473         boolean study(TreeInfo info) {
3474             next.study(info);
3475             info.maxValid = false;
3476             info.deterministic = false;
3477             return false;
3478         }
3479     }
3480 
3481     /*
3482      * StartS supports supplementary characters, including unpaired surrogates.
3483      */
3484     static final class StartS extends Start {
3485         StartS(Node node) {
3486             super(node);
3487         }
3488         boolean match(Matcher matcher, int i, CharSequence seq) {
3489             if (i > matcher.to - minLength) {
3490                 matcher.hitEnd = true;
3491                 return false;
3492             }
3493             int guard = matcher.to - minLength;
3494             while (i <= guard) {
3495                 //if ((ret = next.match(matcher, i, seq)) || i == guard)
3496                 if (next.match(matcher, i, seq)) {
3497                     matcher.first = i;
3498                     matcher.groups[0] = matcher.first;
3499                     matcher.groups[1] = matcher.last;
3500                     return true;
3501                 }
3502                 if (i == guard)
3503                     break;
3504                 // Optimization to move to the next character. This is
3505                 // faster than countChars(seq, i, 1).
3506                 if (Character.isHighSurrogate(seq.charAt(i++))) {
3507                     if (i < seq.length() &&
3508                         Character.isLowSurrogate(seq.charAt(i))) {
3509                         i++;
3510                     }
3511                 }
3512             }
3513             matcher.hitEnd = true;
3514             return false;
3515         }
3516     }
3517 
3518     /**
3519      * Node to anchor at the beginning of input. This object implements the
3520      * match for a \A sequence, and the caret anchor will use this if not in
3521      * multiline mode.
3522      */
3523     static final class Begin extends Node {
3524         boolean match(Matcher matcher, int i, CharSequence seq) {
3525             int fromIndex = (matcher.anchoringBounds) ?
3526                 matcher.from : 0;
3527             if (i == fromIndex && next.match(matcher, i, seq)) {
3528                 matcher.first = i;
3529                 matcher.groups[0] = i;
3530                 matcher.groups[1] = matcher.last;
3531                 return true;
3532             } else {
3533                 return false;
3534             }
3535         }
3536     }
3537 
3538     /**
3539      * Node to anchor at the end of input. This is the absolute end, so this
3540      * should not match at the last newline before the end as $ will.
3541      */
3542     static final class End extends Node {
3543         boolean match(Matcher matcher, int i, CharSequence seq) {
3544             int endIndex = (matcher.anchoringBounds) ?
3545                 matcher.to : matcher.getTextLength();
3546             if (i == endIndex) {
3547                 matcher.hitEnd = true;
3548                 return next.match(matcher, i, seq);
3549             }
3550             return false;
3551         }
3552     }
3553 
3554     /**
3555      * Node to anchor at the beginning of a line. This is essentially the
3556      * object to match for the multiline ^.
3557      */
3558     static final class Caret extends Node {
3559         boolean match(Matcher matcher, int i, CharSequence seq) {
3560             int startIndex = matcher.from;
3561             int endIndex = matcher.to;
3562             if (!matcher.anchoringBounds) {
3563                 startIndex = 0;
3564                 endIndex = matcher.getTextLength();
3565             }
3566             // Perl does not match ^ at end of input even after newline
3567             if (i == endIndex) {
3568                 matcher.hitEnd = true;
3569                 return false;
3570             }
3571             if (i > startIndex) {
3572                 char ch = seq.charAt(i-1);
3573                 if (ch != '\n' && ch != '\r'
3574                     && (ch|1) != '\u2029'
3575                     && ch != '\u0085' ) {
3576                     return false;
3577                 }
3578                 // Should treat /r/n as one newline
3579                 if (ch == '\r' && seq.charAt(i) == '\n')
3580                     return false;
3581             }
3582             return next.match(matcher, i, seq);
3583         }
3584     }
3585 
3586     /**
3587      * Node to anchor at the beginning of a line when in unixdot mode.
3588      */
3589     static final class UnixCaret extends Node {
3590         boolean match(Matcher matcher, int i, CharSequence seq) {
3591             int startIndex = matcher.from;
3592             int endIndex = matcher.to;
3593             if (!matcher.anchoringBounds) {
3594                 startIndex = 0;
3595                 endIndex = matcher.getTextLength();
3596             }
3597             // Perl does not match ^ at end of input even after newline
3598             if (i == endIndex) {
3599                 matcher.hitEnd = true;
3600                 return false;
3601             }
3602             if (i > startIndex) {
3603                 char ch = seq.charAt(i-1);
3604                 if (ch != '\n') {
3605                     return false;
3606                 }
3607             }
3608             return next.match(matcher, i, seq);
3609         }
3610     }
3611 
3612     /**
3613      * Node to match the location where the last match ended.
3614      * This is used for the \G construct.
3615      */
3616     static final class LastMatch extends Node {
3617         boolean match(Matcher matcher, int i, CharSequence seq) {
3618             if (i != matcher.oldLast)
3619                 return false;
3620             return next.match(matcher, i, seq);
3621         }
3622     }
3623 
3624     /**
3625      * Node to anchor at the end of a line or the end of input based on the
3626      * multiline mode.
3627      *
3628      * When not in multiline mode, the $ can only match at the very end
3629      * of the input, unless the input ends in a line terminator in which
3630      * it matches right before the last line terminator.
3631      *
3632      * Note that \r\n is considered an atomic line terminator.
3633      *
3634      * Like ^ the $ operator matches at a position, it does not match the
3635      * line terminators themselves.
3636      */
3637     static final class Dollar extends Node {
3638         boolean multiline;
3639         Dollar(boolean mul) {
3640             multiline = mul;
3641         }
3642         boolean match(Matcher matcher, int i, CharSequence seq) {
3643             int endIndex = (matcher.anchoringBounds) ?
3644                 matcher.to : matcher.getTextLength();
3645             if (!multiline) {
3646                 if (i < endIndex - 2)
3647                     return false;
3648                 if (i == endIndex - 2) {
3649                     char ch = seq.charAt(i);
3650                     if (ch != '\r')
3651                         return false;
3652                     ch = seq.charAt(i + 1);
3653                     if (ch != '\n')
3654                         return false;
3655                 }
3656             }
3657             // Matches before any line terminator; also matches at the
3658             // end of input
3659             // Before line terminator:
3660             // If multiline, we match here no matter what
3661             // If not multiline, fall through so that the end
3662             // is marked as hit; this must be a /r/n or a /n
3663             // at the very end so the end was hit; more input
3664             // could make this not match here
3665             if (i < endIndex) {
3666                 char ch = seq.charAt(i);
3667                  if (ch == '\n') {
3668                      // No match between \r\n
3669                      if (i > 0 && seq.charAt(i-1) == '\r')
3670                          return false;
3671                      if (multiline)
3672                          return next.match(matcher, i, seq);
3673                  } else if (ch == '\r' || ch == '\u0085' ||
3674                             (ch|1) == '\u2029') {
3675                      if (multiline)
3676                          return next.match(matcher, i, seq);
3677                  } else { // No line terminator, no match
3678                      return false;
3679                  }
3680             }
3681             // Matched at current end so hit end
3682             matcher.hitEnd = true;
3683             // If a $ matches because of end of input, then more input
3684             // could cause it to fail!
3685             matcher.requireEnd = true;
3686             return next.match(matcher, i, seq);
3687         }
3688         boolean study(TreeInfo info) {
3689             next.study(info);
3690             return info.deterministic;
3691         }
3692     }
3693 
3694     /**
3695      * Node to anchor at the end of a line or the end of input based on the
3696      * multiline mode when in unix lines mode.
3697      */
3698     static final class UnixDollar extends Node {
3699         boolean multiline;
3700         UnixDollar(boolean mul) {
3701             multiline = mul;
3702         }
3703         boolean match(Matcher matcher, int i, CharSequence seq) {
3704             int endIndex = (matcher.anchoringBounds) ?
3705                 matcher.to : matcher.getTextLength();
3706             if (i < endIndex) {
3707                 char ch = seq.charAt(i);
3708                 if (ch == '\n') {
3709                     // If not multiline, then only possible to
3710                     // match at very end or one before end
3711                     if (multiline == false && i != endIndex - 1)
3712                         return false;
3713                     // If multiline return next.match without setting
3714                     // matcher.hitEnd
3715                     if (multiline)
3716                         return next.match(matcher, i, seq);
3717                 } else {
3718                     return false;
3719                 }
3720             }
3721             // Matching because at the end or 1 before the end;
3722             // more input could change this so set hitEnd
3723             matcher.hitEnd = true;
3724             // If a $ matches because of end of input, then more input
3725             // could cause it to fail!
3726             matcher.requireEnd = true;
3727             return next.match(matcher, i, seq);
3728         }
3729         boolean study(TreeInfo info) {
3730             next.study(info);
3731             return info.deterministic;
3732         }
3733     }
3734 
3735     /**
3736      * Node class that matches a Unicode line ending '\R'
3737      */
3738     static final class LineEnding extends Node {
3739         boolean match(Matcher matcher, int i, CharSequence seq) {
3740             // (u+000Du+000A|[u+000Au+000Bu+000Cu+000Du+0085u+2028u+2029])
3741             if (i < matcher.to) {
3742                 int ch = seq.charAt(i);
3743                 if (ch == 0x0A || ch == 0x0B || ch == 0x0C ||
3744                     ch == 0x85 || ch == 0x2028 || ch == 0x2029)
3745                     return next.match(matcher, i + 1, seq);
3746                 if (ch == 0x0D) {
3747                     i++;
3748                     if (i < matcher.to && seq.charAt(i) == 0x0A)
3749                         i++;
3750                     return next.match(matcher, i, seq);
3751                 }
3752             } else {
3753                 matcher.hitEnd = true;
3754             }
3755             return false;
3756         }
3757         boolean study(TreeInfo info) {
3758             info.minLength++;
3759             info.maxLength += 2;
3760             return next.study(info);
3761         }
3762     }
3763 
3764     /**
3765      * Abstract node class to match one character satisfying some
3766      * boolean property.
3767      */
3768     private static abstract class CharProperty extends Node {
3769         abstract boolean isSatisfiedBy(int ch);
3770         CharProperty complement() {
3771             return new CharProperty() {
3772                     boolean isSatisfiedBy(int ch) {
3773                         return ! CharProperty.this.isSatisfiedBy(ch);}};
3774         }
3775         boolean match(Matcher matcher, int i, CharSequence seq) {
3776             if (i < matcher.to) {
3777                 int ch = Character.codePointAt(seq, i);
3778                 return isSatisfiedBy(ch)
3779                     && next.match(matcher, i+Character.charCount(ch), seq);
3780             } else {
3781                 matcher.hitEnd = true;
3782                 return false;
3783             }
3784         }
3785         boolean study(TreeInfo info) {
3786             info.minLength++;
3787             info.maxLength++;
3788             return next.study(info);
3789         }
3790     }
3791 
3792     /**
3793      * Optimized version of CharProperty that works only for
3794      * properties never satisfied by Supplementary characters.
3795      */
3796     private static abstract class BmpCharProperty extends CharProperty {
3797         boolean match(Matcher matcher, int i, CharSequence seq) {
3798             if (i < matcher.to) {
3799                 return isSatisfiedBy(seq.charAt(i))
3800                     && next.match(matcher, i+1, seq);
3801             } else {
3802                 matcher.hitEnd = true;
3803                 return false;
3804             }
3805         }
3806     }
3807 
3808     /**
3809      * Node class that matches a Supplementary Unicode character
3810      */
3811     static final class SingleS extends CharProperty {
3812         final int c;
3813         SingleS(int c) { this.c = c; }
3814         boolean isSatisfiedBy(int ch) {
3815             return ch == c;
3816         }
3817     }
3818 
3819     /**
3820      * Optimization -- matches a given BMP character
3821      */
3822     static final class Single extends BmpCharProperty {
3823         final int c;
3824         Single(int c) { this.c = c; }
3825         boolean isSatisfiedBy(int ch) {
3826             return ch == c;
3827         }
3828     }
3829 
3830     /**
3831      * Case insensitive matches a given BMP character
3832      */
3833     static final class SingleI extends BmpCharProperty {
3834         final int lower;
3835         final int upper;
3836         SingleI(int lower, int upper) {
3837             this.lower = lower;
3838             this.upper = upper;
3839         }
3840         boolean isSatisfiedBy(int ch) {
3841             return ch == lower || ch == upper;
3842         }
3843     }
3844 
3845     /**
3846      * Unicode case insensitive matches a given Unicode character
3847      */
3848     static final class SingleU extends CharProperty {
3849         final int lower;
3850         SingleU(int lower) {
3851             this.lower = lower;
3852         }
3853         boolean isSatisfiedBy(int ch) {
3854             return lower == ch ||
3855                 lower == Character.toLowerCase(Character.toUpperCase(ch));
3856         }
3857     }
3858 
3859     /**
3860      * Node class that matches a Unicode block.
3861      */
3862     static final class Block extends CharProperty {
3863         final Character.UnicodeBlock block;
3864         Block(Character.UnicodeBlock block) {
3865             this.block = block;
3866         }
3867         boolean isSatisfiedBy(int ch) {
3868             return block == Character.UnicodeBlock.of(ch);
3869         }
3870     }
3871 
3872     /**
3873      * Node class that matches a Unicode script
3874      */
3875     static final class Script extends CharProperty {
3876         final Character.UnicodeScript script;
3877         Script(Character.UnicodeScript script) {
3878             this.script = script;
3879         }
3880         boolean isSatisfiedBy(int ch) {
3881             return script == Character.UnicodeScript.of(ch);
3882         }
3883     }
3884 
3885     /**
3886      * Node class that matches a Unicode category.
3887      */
3888     static final class Category extends CharProperty {
3889         final int typeMask;
3890         Category(int typeMask) { this.typeMask = typeMask; }
3891         boolean isSatisfiedBy(int ch) {
3892             return (typeMask & (1 << Character.getType(ch))) != 0;
3893         }
3894     }
3895 
3896     /**
3897      * Node class that matches a Unicode "type"
3898      */
3899     static final class Utype extends CharProperty {
3900         final UnicodeProp uprop;
3901         Utype(UnicodeProp uprop) { this.uprop = uprop; }
3902         boolean isSatisfiedBy(int ch) {
3903             return uprop.is(ch);
3904         }
3905     }
3906 
3907     /**
3908      * Node class that matches a POSIX type.
3909      */
3910     static final class Ctype extends BmpCharProperty {
3911         final int ctype;
3912         Ctype(int ctype) { this.ctype = ctype; }
3913         boolean isSatisfiedBy(int ch) {
3914             return ch < 128 && ASCII.isType(ch, ctype);
3915         }
3916     }
3917 
3918     /**
3919      * Node class that matches a Perl vertical whitespace
3920      */
3921     static final class VertWS extends BmpCharProperty {
3922         boolean isSatisfiedBy(int cp) {
3923             return (cp >= 0x0A && cp <= 0x0D) ||
3924                    cp == 0x85 || cp == 0x2028 || cp == 0x2029;
3925         }
3926     }
3927 
3928     /**
3929      * Node class that matches a Perl horizontal whitespace
3930      */
3931     static final class HorizWS extends BmpCharProperty {
3932         boolean isSatisfiedBy(int cp) {
3933             return cp == 0x09 || cp == 0x20 || cp == 0xa0 ||
3934                    cp == 0x1680 || cp == 0x180e ||
3935                    cp >= 0x2000 && cp <= 0x200a ||
3936                    cp == 0x202f || cp == 0x205f || cp == 0x3000;
3937         }
3938     }
3939 
3940     /**
3941      * Base class for all Slice nodes
3942      */
3943     static class SliceNode extends Node {
3944         int[] buffer;
3945         SliceNode(int[] buf) {
3946             buffer = buf;
3947         }
3948         boolean study(TreeInfo info) {
3949             info.minLength += buffer.length;
3950             info.maxLength += buffer.length;
3951             return next.study(info);
3952         }
3953     }
3954 
3955     /**
3956      * Node class for a case sensitive/BMP-only sequence of literal
3957      * characters.
3958      */
3959     static final class Slice extends SliceNode {
3960         Slice(int[] buf) {
3961             super(buf);
3962         }
3963         boolean match(Matcher matcher, int i, CharSequence seq) {
3964             int[] buf = buffer;
3965             int len = buf.length;
3966             for (int j=0; j<len; j++) {
3967                 if ((i+j) >= matcher.to) {
3968                     matcher.hitEnd = true;
3969                     return false;
3970                 }
3971                 if (buf[j] != seq.charAt(i+j))
3972                     return false;
3973             }
3974             return next.match(matcher, i+len, seq);
3975         }
3976     }
3977 
3978     /**
3979      * Node class for a case_insensitive/BMP-only sequence of literal
3980      * characters.
3981      */
3982     static class SliceI extends SliceNode {
3983         SliceI(int[] buf) {
3984             super(buf);
3985         }
3986         boolean match(Matcher matcher, int i, CharSequence seq) {
3987             int[] buf = buffer;
3988             int len = buf.length;
3989             for (int j=0; j<len; j++) {
3990                 if ((i+j) >= matcher.to) {
3991                     matcher.hitEnd = true;
3992                     return false;
3993                 }
3994                 int c = seq.charAt(i+j);
3995                 if (buf[j] != c &&
3996                     buf[j] != ASCII.toLower(c))
3997                     return false;
3998             }
3999             return next.match(matcher, i+len, seq);
4000         }
4001     }
4002 
4003     /**
4004      * Node class for a unicode_case_insensitive/BMP-only sequence of
4005      * literal characters. Uses unicode case folding.
4006      */
4007     static final class SliceU extends SliceNode {
4008         SliceU(int[] buf) {
4009             super(buf);
4010         }
4011         boolean match(Matcher matcher, int i, CharSequence seq) {
4012             int[] buf = buffer;
4013             int len = buf.length;
4014             for (int j=0; j<len; j++) {
4015                 if ((i+j) >= matcher.to) {
4016                     matcher.hitEnd = true;
4017                     return false;
4018                 }
4019                 int c = seq.charAt(i+j);
4020                 if (buf[j] != c &&
4021                     buf[j] != Character.toLowerCase(Character.toUpperCase(c)))
4022                     return false;
4023             }
4024             return next.match(matcher, i+len, seq);
4025         }
4026     }
4027 
4028     /**
4029      * Node class for a case sensitive sequence of literal characters
4030      * including supplementary characters.
4031      */
4032     static final class SliceS extends SliceNode {
4033         SliceS(int[] buf) {
4034             super(buf);
4035         }
4036         boolean match(Matcher matcher, int i, CharSequence seq) {
4037             int[] buf = buffer;
4038             int x = i;
4039             for (int j = 0; j < buf.length; j++) {
4040                 if (x >= matcher.to) {
4041                     matcher.hitEnd = true;
4042                     return false;
4043                 }
4044                 int c = Character.codePointAt(seq, x);
4045                 if (buf[j] != c)
4046                     return false;
4047                 x += Character.charCount(c);
4048                 if (x > matcher.to) {
4049                     matcher.hitEnd = true;
4050                     return false;
4051                 }
4052             }
4053             return next.match(matcher, x, seq);
4054         }
4055     }
4056 
4057     /**
4058      * Node class for a case insensitive sequence of literal characters
4059      * including supplementary characters.
4060      */
4061     static class SliceIS extends SliceNode {
4062         SliceIS(int[] buf) {
4063             super(buf);
4064         }
4065         int toLower(int c) {
4066             return ASCII.toLower(c);
4067         }
4068         boolean match(Matcher matcher, int i, CharSequence seq) {
4069             int[] buf = buffer;
4070             int x = i;
4071             for (int j = 0; j < buf.length; j++) {
4072                 if (x >= matcher.to) {
4073                     matcher.hitEnd = true;
4074                     return false;
4075                 }
4076                 int c = Character.codePointAt(seq, x);
4077                 if (buf[j] != c && buf[j] != toLower(c))
4078                     return false;
4079                 x += Character.charCount(c);
4080                 if (x > matcher.to) {
4081                     matcher.hitEnd = true;
4082                     return false;
4083                 }
4084             }
4085             return next.match(matcher, x, seq);
4086         }
4087     }
4088 
4089     /**
4090      * Node class for a case insensitive sequence of literal characters.
4091      * Uses unicode case folding.
4092      */
4093     static final class SliceUS extends SliceIS {
4094         SliceUS(int[] buf) {
4095             super(buf);
4096         }
4097         int toLower(int c) {
4098             return Character.toLowerCase(Character.toUpperCase(c));
4099         }
4100     }
4101 
4102     private static boolean inRange(int lower, int ch, int upper) {
4103         return lower <= ch && ch <= upper;
4104     }
4105 
4106     /**
4107      * Returns node for matching characters within an explicit value range.
4108      */
4109     private static CharProperty rangeFor(final int lower,
4110                                          final int upper) {
4111         return new CharProperty() {
4112                 boolean isSatisfiedBy(int ch) {
4113                     return inRange(lower, ch, upper);}};
4114     }
4115 
4116     /**
4117      * Returns node for matching characters within an explicit value
4118      * range in a case insensitive manner.
4119      */
4120     private CharProperty caseInsensitiveRangeFor(final int lower,
4121                                                  final int upper) {
4122         if (has(UNICODE_CASE))
4123             return new CharProperty() {
4124                 boolean isSatisfiedBy(int ch) {
4125                     if (inRange(lower, ch, upper))
4126                         return true;
4127                     int up = Character.toUpperCase(ch);
4128                     return inRange(lower, up, upper) ||
4129                            inRange(lower, Character.toLowerCase(up), upper);}};
4130         return new CharProperty() {
4131             boolean isSatisfiedBy(int ch) {
4132                 return inRange(lower, ch, upper) ||
4133                     ASCII.isAscii(ch) &&
4134                         (inRange(lower, ASCII.toUpper(ch), upper) ||
4135                          inRange(lower, ASCII.toLower(ch), upper));
4136             }};
4137     }
4138 
4139     /**
4140      * Implements the Unicode category ALL and the dot metacharacter when
4141      * in dotall mode.
4142      */
4143     static final class All extends CharProperty {
4144         boolean isSatisfiedBy(int ch) {
4145             return true;
4146         }
4147     }
4148 
4149     /**
4150      * Node class for the dot metacharacter when dotall is not enabled.
4151      */
4152     static final class Dot extends CharProperty {
4153         boolean isSatisfiedBy(int ch) {
4154             return (ch != '\n' && ch != '\r'
4155                     && (ch|1) != '\u2029'
4156                     && ch != '\u0085');
4157         }
4158     }
4159 
4160     /**
4161      * Node class for the dot metacharacter when dotall is not enabled
4162      * but UNIX_LINES is enabled.
4163      */
4164     static final class UnixDot extends CharProperty {
4165         boolean isSatisfiedBy(int ch) {
4166             return ch != '\n';
4167         }
4168     }
4169 
4170     /**
4171      * The 0 or 1 quantifier. This one class implements all three types.
4172      */
4173     static final class Ques extends Node {
4174         Node atom;
4175         int type;
4176         Ques(Node node, int type) {
4177             this.atom = node;
4178             this.type = type;
4179         }
4180         boolean match(Matcher matcher, int i, CharSequence seq) {
4181             switch (type) {
4182             case GREEDY:
4183                 return (atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq))
4184                     || next.match(matcher, i, seq);
4185             case LAZY:
4186                 return next.match(matcher, i, seq)
4187                     || (atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq));
4188             case POSSESSIVE:
4189                 if (atom.match(matcher, i, seq)) i = matcher.last;
4190                 return next.match(matcher, i, seq);
4191             default:
4192                 return atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq);
4193             }
4194         }
4195         boolean study(TreeInfo info) {
4196             if (type != INDEPENDENT) {
4197                 int minL = info.minLength;
4198                 atom.study(info);
4199                 info.minLength = minL;
4200                 info.deterministic = false;
4201                 return next.study(info);
4202             } else {
4203                 atom.study(info);
4204                 return next.study(info);
4205             }
4206         }
4207     }
4208 
4209     /**
4210      * Handles the curly-brace style repetition with a specified minimum and
4211      * maximum occurrences. The * quantifier is handled as a special case.
4212      * This class handles the three types.
4213      */
4214     static final class Curly extends Node {
4215         Node atom;
4216         int type;
4217         int cmin;
4218         int cmax;
4219 
4220         Curly(Node node, int cmin, int cmax, int type) {
4221             this.atom = node;
4222             this.type = type;
4223             this.cmin = cmin;
4224             this.cmax = cmax;
4225         }
4226         boolean match(Matcher matcher, int i, CharSequence seq) {
4227             int j;
4228             for (j = 0; j < cmin; j++) {
4229                 if (atom.match(matcher, i, seq)) {
4230                     i = matcher.last;
4231                     continue;
4232                 }
4233                 return false;
4234             }
4235             if (type == GREEDY)
4236                 return match0(matcher, i, j, seq);
4237             else if (type == LAZY)
4238                 return match1(matcher, i, j, seq);
4239             else
4240                 return match2(matcher, i, j, seq);
4241         }
4242         // Greedy match.
4243         // i is the index to start matching at
4244         // j is the number of atoms that have matched
4245         boolean match0(Matcher matcher, int i, int j, CharSequence seq) {
4246             if (j >= cmax) {
4247                 // We have matched the maximum... continue with the rest of
4248                 // the regular expression
4249                 return next.match(matcher, i, seq);
4250             }
4251             int backLimit = j;
4252             while (atom.match(matcher, i, seq)) {
4253                 // k is the length of this match
4254                 int k = matcher.last - i;
4255                 if (k == 0) // Zero length match
4256                     break;
4257                 // Move up index and number matched
4258                 i = matcher.last;
4259                 j++;
4260                 // We are greedy so match as many as we can
4261                 while (j < cmax) {
4262                     if (!atom.match(matcher, i, seq))
4263                         break;
4264                     if (i + k != matcher.last) {
4265                         if (match0(matcher, matcher.last, j+1, seq))
4266                             return true;
4267                         break;
4268                     }
4269                     i += k;
4270                     j++;
4271                 }
4272                 // Handle backing off if match fails
4273                 while (j >= backLimit) {
4274                    if (next.match(matcher, i, seq))
4275                         return true;
4276                     i -= k;
4277                     j--;
4278                 }
4279                 return false;
4280             }
4281             return next.match(matcher, i, seq);
4282         }
4283         // Reluctant match. At this point, the minimum has been satisfied.
4284         // i is the index to start matching at
4285         // j is the number of atoms that have matched
4286         boolean match1(Matcher matcher, int i, int j, CharSequence seq) {
4287             for (;;) {
4288                 // Try finishing match without consuming any more
4289                 if (next.match(matcher, i, seq))
4290                     return true;
4291                 // At the maximum, no match found
4292                 if (j >= cmax)
4293                     return false;
4294                 // Okay, must try one more atom
4295                 if (!atom.match(matcher, i, seq))
4296                     return false;
4297                 // If we haven't moved forward then must break out
4298                 if (i == matcher.last)
4299                     return false;
4300                 // Move up index and number matched
4301                 i = matcher.last;
4302                 j++;
4303             }
4304         }
4305         boolean match2(Matcher matcher, int i, int j, CharSequence seq) {
4306             for (; j < cmax; j++) {
4307                 if (!atom.match(matcher, i, seq))
4308                     break;
4309                 if (i == matcher.last)
4310                     break;
4311                 i = matcher.last;
4312             }
4313             return next.match(matcher, i, seq);
4314         }
4315         boolean study(TreeInfo info) {
4316             // Save original info
4317             int minL = info.minLength;
4318             int maxL = info.maxLength;
4319             boolean maxV = info.maxValid;
4320             boolean detm = info.deterministic;
4321             info.reset();
4322 
4323             atom.study(info);
4324 
4325             int temp = info.minLength * cmin + minL;
4326             if (temp < minL) {
4327                 temp = 0xFFFFFFF; // arbitrary large number
4328             }
4329             info.minLength = temp;
4330 
4331             if (maxV & info.maxValid) {
4332                 temp = info.maxLength * cmax + maxL;
4333                 info.maxLength = temp;
4334                 if (temp < maxL) {
4335                     info.maxValid = false;
4336                 }
4337             } else {
4338                 info.maxValid = false;
4339             }
4340 
4341             if (info.deterministic && cmin == cmax)
4342                 info.deterministic = detm;
4343             else
4344                 info.deterministic = false;
4345             return next.study(info);
4346         }
4347     }
4348 
4349     /**
4350      * Handles the curly-brace style repetition with a specified minimum and
4351      * maximum occurrences in deterministic cases. This is an iterative
4352      * optimization over the Prolog and Loop system which would handle this
4353      * in a recursive way. The * quantifier is handled as a special case.
4354      * If capture is true then this class saves group settings and ensures
4355      * that groups are unset when backing off of a group match.
4356      */
4357     static final class GroupCurly extends Node {
4358         Node atom;
4359         int type;
4360         int cmin;
4361         int cmax;
4362         int localIndex;
4363         int groupIndex;
4364         boolean capture;
4365 
4366         GroupCurly(Node node, int cmin, int cmax, int type, int local,
4367                    int group, boolean capture) {
4368             this.atom = node;
4369             this.type = type;
4370             this.cmin = cmin;
4371             this.cmax = cmax;
4372             this.localIndex = local;
4373             this.groupIndex = group;
4374             this.capture = capture;
4375         }
4376         boolean match(Matcher matcher, int i, CharSequence seq) {
4377             int[] groups = matcher.groups;
4378             int[] locals = matcher.locals;
4379             int save0 = locals[localIndex];
4380             int save1 = 0;
4381             int save2 = 0;
4382 
4383             if (capture) {
4384                 save1 = groups[groupIndex];
4385                 save2 = groups[groupIndex+1];
4386             }
4387 
4388             // Notify GroupTail there is no need to setup group info
4389             // because it will be set here
4390             locals[localIndex] = -1;
4391 
4392             boolean ret = true;
4393             for (int j = 0; j < cmin; j++) {
4394                 if (atom.match(matcher, i, seq)) {
4395                     if (capture) {
4396                         groups[groupIndex] = i;
4397                         groups[groupIndex+1] = matcher.last;
4398                     }
4399                     i = matcher.last;
4400                 } else {
4401                     ret = false;
4402                     break;
4403                 }
4404             }
4405             if (ret) {
4406                 if (type == GREEDY) {
4407                     ret = match0(matcher, i, cmin, seq);
4408                 } else if (type == LAZY) {
4409                     ret = match1(matcher, i, cmin, seq);
4410                 } else {
4411                     ret = match2(matcher, i, cmin, seq);
4412                 }
4413             }
4414             if (!ret) {
4415                 locals[localIndex] = save0;
4416                 if (capture) {
4417                     groups[groupIndex] = save1;
4418                     groups[groupIndex+1] = save2;
4419                 }
4420             }
4421             return ret;
4422         }
4423         // Aggressive group match
4424         boolean match0(Matcher matcher, int i, int j, CharSequence seq) {
4425             // don't back off passing the starting "j"
4426             int min = j;
4427             int[] groups = matcher.groups;
4428             int save0 = 0;
4429             int save1 = 0;
4430             if (capture) {
4431                 save0 = groups[groupIndex];
4432                 save1 = groups[groupIndex+1];
4433             }
4434             for (;;) {
4435                 if (j >= cmax)
4436                     break;
4437                 if (!atom.match(matcher, i, seq))
4438                     break;
4439                 int k = matcher.last - i;
4440                 if (k <= 0) {
4441                     if (capture) {
4442                         groups[groupIndex] = i;
4443                         groups[groupIndex+1] = i + k;
4444                     }
4445                     i = i + k;
4446                     break;
4447                 }
4448                 for (;;) {
4449                     if (capture) {
4450                         groups[groupIndex] = i;
4451                         groups[groupIndex+1] = i + k;
4452                     }
4453                     i = i + k;
4454                     if (++j >= cmax)
4455                         break;
4456                     if (!atom.match(matcher, i, seq))
4457                         break;
4458                     if (i + k != matcher.last) {
4459                         if (match0(matcher, i, j, seq))
4460                             return true;
4461                         break;
4462                     }
4463                 }
4464                 while (j > min) {
4465                     if (next.match(matcher, i, seq)) {
4466                         if (capture) {
4467                             groups[groupIndex+1] = i;
4468                             groups[groupIndex] = i - k;
4469                         }
4470                         return true;
4471                     }
4472                     // backing off
4473                     i = i - k;
4474                     if (capture) {
4475                         groups[groupIndex+1] = i;
4476                         groups[groupIndex] = i - k;
4477                     }
4478                     j--;
4479 
4480                 }
4481                 break;
4482             }
4483             if (capture) {
4484                 groups[groupIndex] = save0;
4485                 groups[groupIndex+1] = save1;
4486             }
4487             return next.match(matcher, i, seq);
4488         }
4489         // Reluctant matching
4490         boolean match1(Matcher matcher, int i, int j, CharSequence seq) {
4491             for (;;) {
4492                 if (next.match(matcher, i, seq))
4493                     return true;
4494                 if (j >= cmax)
4495                     return false;
4496                 if (!atom.match(matcher, i, seq))
4497                     return false;
4498                 if (i == matcher.last)
4499                     return false;
4500                 if (capture) {
4501                     matcher.groups[groupIndex] = i;
4502                     matcher.groups[groupIndex+1] = matcher.last;
4503                 }
4504                 i = matcher.last;
4505                 j++;
4506             }
4507         }
4508         // Possessive matching
4509         boolean match2(Matcher matcher, int i, int j, CharSequence seq) {
4510             for (; j < cmax; j++) {
4511                 if (!atom.match(matcher, i, seq)) {
4512                     break;
4513                 }
4514                 if (capture) {
4515                     matcher.groups[groupIndex] = i;
4516                     matcher.groups[groupIndex+1] = matcher.last;
4517                 }
4518                 if (i == matcher.last) {
4519                     break;
4520                 }
4521                 i = matcher.last;
4522             }
4523             return next.match(matcher, i, seq);
4524         }
4525         boolean study(TreeInfo info) {
4526             // Save original info
4527             int minL = info.minLength;
4528             int maxL = info.maxLength;
4529             boolean maxV = info.maxValid;
4530             boolean detm = info.deterministic;
4531             info.reset();
4532 
4533             atom.study(info);
4534 
4535             int temp = info.minLength * cmin + minL;
4536             if (temp < minL) {
4537                 temp = 0xFFFFFFF; // Arbitrary large number
4538             }
4539             info.minLength = temp;
4540 
4541             if (maxV & info.maxValid) {
4542                 temp = info.maxLength * cmax + maxL;
4543                 info.maxLength = temp;
4544                 if (temp < maxL) {
4545                     info.maxValid = false;
4546                 }
4547             } else {
4548                 info.maxValid = false;
4549             }
4550 
4551             if (info.deterministic && cmin == cmax) {
4552                 info.deterministic = detm;
4553             } else {
4554                 info.deterministic = false;
4555             }
4556             return next.study(info);
4557         }
4558     }
4559 
4560     /**
4561      * A Guard node at the end of each atom node in a Branch. It
4562      * serves the purpose of chaining the "match" operation to
4563      * "next" but not the "study", so we can collect the TreeInfo
4564      * of each atom node without including the TreeInfo of the
4565      * "next".
4566      */
4567     static final class BranchConn extends Node {
4568         BranchConn() {};
4569         boolean match(Matcher matcher, int i, CharSequence seq) {
4570             return next.match(matcher, i, seq);
4571         }
4572         boolean study(TreeInfo info) {
4573             return info.deterministic;
4574         }
4575     }
4576 
4577     /**
4578      * Handles the branching of alternations. Note this is also used for
4579      * the ? quantifier to branch between the case where it matches once
4580      * and where it does not occur.
4581      */
4582     static final class Branch extends Node {
4583         Node[] atoms = new Node[2];
4584         int size = 2;
4585         Node conn;
4586         Branch(Node first, Node second, Node branchConn) {
4587             conn = branchConn;
4588             atoms[0] = first;
4589             atoms[1] = second;
4590         }
4591 
4592         void add(Node node) {
4593             if (size >= atoms.length) {
4594                 Node[] tmp = new Node[atoms.length*2];
4595                 System.arraycopy(atoms, 0, tmp, 0, atoms.length);
4596                 atoms = tmp;
4597             }
4598             atoms[size++] = node;
4599         }
4600 
4601         boolean match(Matcher matcher, int i, CharSequence seq) {
4602             for (int n = 0; n < size; n++) {
4603                 if (atoms[n] == null) {
4604                     if (conn.next.match(matcher, i, seq))
4605                         return true;
4606                 } else if (atoms[n].match(matcher, i, seq)) {
4607                     return true;
4608                 }
4609             }
4610             return false;
4611         }
4612 
4613         boolean study(TreeInfo info) {
4614             int minL = info.minLength;
4615             int maxL = info.maxLength;
4616             boolean maxV = info.maxValid;
4617 
4618             int minL2 = Integer.MAX_VALUE; //arbitrary large enough num
4619             int maxL2 = -1;
4620             for (int n = 0; n < size; n++) {
4621                 info.reset();
4622                 if (atoms[n] != null)
4623                     atoms[n].study(info);
4624                 minL2 = Math.min(minL2, info.minLength);
4625                 maxL2 = Math.max(maxL2, info.maxLength);
4626                 maxV = (maxV & info.maxValid);
4627             }
4628 
4629             minL += minL2;
4630             maxL += maxL2;
4631 
4632             info.reset();
4633             conn.next.study(info);
4634 
4635             info.minLength += minL;
4636             info.maxLength += maxL;
4637             info.maxValid &= maxV;
4638             info.deterministic = false;
4639             return false;
4640         }
4641     }
4642 
4643     /**
4644      * The GroupHead saves the location where the group begins in the locals
4645      * and restores them when the match is done.
4646      *
4647      * The matchRef is used when a reference to this group is accessed later
4648      * in the expression. The locals will have a negative value in them to
4649      * indicate that we do not want to unset the group if the reference
4650      * doesn't match.
4651      */
4652     static final class GroupHead extends Node {
4653         int localIndex;
4654         GroupHead(int localCount) {
4655             localIndex = localCount;
4656         }
4657         boolean match(Matcher matcher, int i, CharSequence seq) {
4658             int save = matcher.locals[localIndex];
4659             matcher.locals[localIndex] = i;
4660             boolean ret = next.match(matcher, i, seq);
4661             matcher.locals[localIndex] = save;
4662             return ret;
4663         }
4664         boolean matchRef(Matcher matcher, int i, CharSequence seq) {
4665             int save = matcher.locals[localIndex];
4666             matcher.locals[localIndex] = ~i; // HACK
4667             boolean ret = next.match(matcher, i, seq);
4668             matcher.locals[localIndex] = save;
4669             return ret;
4670         }
4671     }
4672 
4673     /**
4674      * Recursive reference to a group in the regular expression. It calls
4675      * matchRef because if the reference fails to match we would not unset
4676      * the group.
4677      */
4678     static final class GroupRef extends Node {
4679         GroupHead head;
4680         GroupRef(GroupHead head) {
4681             this.head = head;
4682         }
4683         boolean match(Matcher matcher, int i, CharSequence seq) {
4684             return head.matchRef(matcher, i, seq)
4685                 && next.match(matcher, matcher.last, seq);
4686         }
4687         boolean study(TreeInfo info) {
4688             info.maxValid = false;
4689             info.deterministic = false;
4690             return next.study(info);
4691         }
4692     }
4693 
4694     /**
4695      * The GroupTail handles the setting of group beginning and ending
4696      * locations when groups are successfully matched. It must also be able to
4697      * unset groups that have to be backed off of.
4698      *
4699      * The GroupTail node is also used when a previous group is referenced,
4700      * and in that case no group information needs to be set.
4701      */
4702     static final class GroupTail extends Node {
4703         int localIndex;
4704         int groupIndex;
4705         GroupTail(int localCount, int groupCount) {
4706             localIndex = localCount;
4707             groupIndex = groupCount + groupCount;
4708         }
4709         boolean match(Matcher matcher, int i, CharSequence seq) {
4710             int tmp = matcher.locals[localIndex];
4711             if (tmp >= 0) { // This is the normal group case.
4712                 // Save the group so we can unset it if it
4713                 // backs off of a match.
4714                 int groupStart = matcher.groups[groupIndex];
4715                 int groupEnd = matcher.groups[groupIndex+1];
4716 
4717                 matcher.groups[groupIndex] = tmp;
4718                 matcher.groups[groupIndex+1] = i;
4719                 if (next.match(matcher, i, seq)) {
4720                     return true;
4721                 }
4722                 matcher.groups[groupIndex] = groupStart;
4723                 matcher.groups[groupIndex+1] = groupEnd;
4724                 return false;
4725             } else {
4726                 // This is a group reference case. We don't need to save any
4727                 // group info because it isn't really a group.
4728                 matcher.last = i;
4729                 return true;
4730             }
4731         }
4732     }
4733 
4734     /**
4735      * This sets up a loop to handle a recursive quantifier structure.
4736      */
4737     static final class Prolog extends Node {
4738         Loop loop;
4739         Prolog(Loop loop) {
4740             this.loop = loop;
4741         }
4742         boolean match(Matcher matcher, int i, CharSequence seq) {
4743             return loop.matchInit(matcher, i, seq);
4744         }
4745         boolean study(TreeInfo info) {
4746             return loop.study(info);
4747         }
4748     }
4749 
4750     /**
4751      * Handles the repetition count for a greedy Curly. The matchInit
4752      * is called from the Prolog to save the index of where the group
4753      * beginning is stored. A zero length group check occurs in the
4754      * normal match but is skipped in the matchInit.
4755      */
4756     static class Loop extends Node {
4757         Node body;
4758         int countIndex; // local count index in matcher locals
4759         int beginIndex; // group beginning index
4760         int cmin, cmax;
4761         Loop(int countIndex, int beginIndex) {
4762             this.countIndex = countIndex;
4763             this.beginIndex = beginIndex;
4764         }
4765         boolean match(Matcher matcher, int i, CharSequence seq) {
4766             // Avoid infinite loop in zero-length case.
4767             if (i > matcher.locals[beginIndex]) {
4768                 int count = matcher.locals[countIndex];
4769 
4770                 // This block is for before we reach the minimum
4771                 // iterations required for the loop to match
4772                 if (count < cmin) {
4773                     matcher.locals[countIndex] = count + 1;
4774                     boolean b = body.match(matcher, i, seq);
4775                     // If match failed we must backtrack, so
4776                     // the loop count should NOT be incremented
4777                     if (!b)
4778                         matcher.locals[countIndex] = count;
4779                     // Return success or failure since we are under
4780                     // minimum
4781                     return b;
4782                 }
4783                 // This block is for after we have the minimum
4784                 // iterations required for the loop to match
4785                 if (count < cmax) {
4786                     matcher.locals[countIndex] = count + 1;
4787                     boolean b = body.match(matcher, i, seq);
4788                     // If match failed we must backtrack, so
4789                     // the loop count should NOT be incremented
4790                     if (!b)
4791                         matcher.locals[countIndex] = count;
4792                     else
4793                         return true;
4794                 }
4795             }
4796             return next.match(matcher, i, seq);
4797         }
4798         boolean matchInit(Matcher matcher, int i, CharSequence seq) {
4799             int save = matcher.locals[countIndex];
4800             boolean ret = false;
4801             if (0 < cmin) {
4802                 matcher.locals[countIndex] = 1;
4803                 ret = body.match(matcher, i, seq);
4804             } else if (0 < cmax) {
4805                 matcher.locals[countIndex] = 1;
4806                 ret = body.match(matcher, i, seq);
4807                 if (ret == false)
4808                     ret = next.match(matcher, i, seq);
4809             } else {
4810                 ret = next.match(matcher, i, seq);
4811             }
4812             matcher.locals[countIndex] = save;
4813             return ret;
4814         }
4815         boolean study(TreeInfo info) {
4816             info.maxValid = false;
4817             info.deterministic = false;
4818             return false;
4819         }
4820     }
4821 
4822     /**
4823      * Handles the repetition count for a reluctant Curly. The matchInit
4824      * is called from the Prolog to save the index of where the group
4825      * beginning is stored. A zero length group check occurs in the
4826      * normal match but is skipped in the matchInit.
4827      */
4828     static final class LazyLoop extends Loop {
4829         LazyLoop(int countIndex, int beginIndex) {
4830             super(countIndex, beginIndex);
4831         }
4832         boolean match(Matcher matcher, int i, CharSequence seq) {
4833             // Check for zero length group
4834             if (i > matcher.locals[beginIndex]) {
4835                 int count = matcher.locals[countIndex];
4836                 if (count < cmin) {
4837                     matcher.locals[countIndex] = count + 1;
4838                     boolean result = body.match(matcher, i, seq);
4839                     // If match failed we must backtrack, so
4840                     // the loop count should NOT be incremented
4841                     if (!result)
4842                         matcher.locals[countIndex] = count;
4843                     return result;
4844                 }
4845                 if (next.match(matcher, i, seq))
4846                     return true;
4847                 if (count < cmax) {
4848                     matcher.locals[countIndex] = count + 1;
4849                     boolean result = body.match(matcher, i, seq);
4850                     // If match failed we must backtrack, so
4851                     // the loop count should NOT be incremented
4852                     if (!result)
4853                         matcher.locals[countIndex] = count;
4854                     return result;
4855                 }
4856                 return false;
4857             }
4858             return next.match(matcher, i, seq);
4859         }
4860         boolean matchInit(Matcher matcher, int i, CharSequence seq) {
4861             int save = matcher.locals[countIndex];
4862             boolean ret = false;
4863             if (0 < cmin) {
4864                 matcher.locals[countIndex] = 1;
4865                 ret = body.match(matcher, i, seq);
4866             } else if (next.match(matcher, i, seq)) {
4867                 ret = true;
4868             } else if (0 < cmax) {
4869                 matcher.locals[countIndex] = 1;
4870                 ret = body.match(matcher, i, seq);
4871             }
4872             matcher.locals[countIndex] = save;
4873             return ret;
4874         }
4875         boolean study(TreeInfo info) {
4876             info.maxValid = false;
4877             info.deterministic = false;
4878             return false;
4879         }
4880     }
4881 
4882     /**
4883      * Refers to a group in the regular expression. Attempts to match
4884      * whatever the group referred to last matched.
4885      */
4886     static class BackRef extends Node {
4887         int groupIndex;
4888         BackRef(int groupCount) {
4889             super();
4890             groupIndex = groupCount + groupCount;
4891         }
4892         boolean match(Matcher matcher, int i, CharSequence seq) {
4893             int j = matcher.groups[groupIndex];
4894             int k = matcher.groups[groupIndex+1];
4895 
4896             int groupSize = k - j;
4897             // If the referenced group didn't match, neither can this
4898             if (j < 0)
4899                 return false;
4900 
4901             // If there isn't enough input left no match
4902             if (i + groupSize > matcher.to) {
4903                 matcher.hitEnd = true;
4904                 return false;
4905             }
4906             // Check each new char to make sure it matches what the group
4907             // referenced matched last time around
4908             for (int index=0; index<groupSize; index++)
4909                 if (seq.charAt(i+index) != seq.charAt(j+index))
4910                     return false;
4911 
4912             return next.match(matcher, i+groupSize, seq);
4913         }
4914         boolean study(TreeInfo info) {
4915             info.maxValid = false;
4916             return next.study(info);
4917         }
4918     }
4919 
4920     static class CIBackRef extends Node {
4921         int groupIndex;
4922         boolean doUnicodeCase;
4923         CIBackRef(int groupCount, boolean doUnicodeCase) {
4924             super();
4925             groupIndex = groupCount + groupCount;
4926             this.doUnicodeCase = doUnicodeCase;
4927         }
4928         boolean match(Matcher matcher, int i, CharSequence seq) {
4929             int j = matcher.groups[groupIndex];
4930             int k = matcher.groups[groupIndex+1];
4931 
4932             int groupSize = k - j;
4933 
4934             // If the referenced group didn't match, neither can this
4935             if (j < 0)
4936                 return false;
4937 
4938             // If there isn't enough input left no match
4939             if (i + groupSize > matcher.to) {
4940                 matcher.hitEnd = true;
4941                 return false;
4942             }
4943 
4944             // Check each new char to make sure it matches what the group
4945             // referenced matched last time around
4946             int x = i;
4947             for (int index=0; index<groupSize; index++) {
4948                 int c1 = Character.codePointAt(seq, x);
4949                 int c2 = Character.codePointAt(seq, j);
4950                 if (c1 != c2) {
4951                     if (doUnicodeCase) {
4952                         int cc1 = Character.toUpperCase(c1);
4953                         int cc2 = Character.toUpperCase(c2);
4954                         if (cc1 != cc2 &&
4955                             Character.toLowerCase(cc1) !=
4956                             Character.toLowerCase(cc2))
4957                             return false;
4958                     } else {
4959                         if (ASCII.toLower(c1) != ASCII.toLower(c2))
4960                             return false;
4961                     }
4962                 }
4963                 x += Character.charCount(c1);
4964                 j += Character.charCount(c2);
4965             }
4966 
4967             return next.match(matcher, i+groupSize, seq);
4968         }
4969         boolean study(TreeInfo info) {
4970             info.maxValid = false;
4971             return next.study(info);
4972         }
4973     }
4974 
4975     /**
4976      * Searches until the next instance of its atom. This is useful for
4977      * finding the atom efficiently without passing an instance of it
4978      * (greedy problem) and without a lot of wasted search time (reluctant
4979      * problem).
4980      */
4981     static final class First extends Node {
4982         Node atom;
4983         First(Node node) {
4984             this.atom = BnM.optimize(node);
4985         }
4986         boolean match(Matcher matcher, int i, CharSequence seq) {
4987             if (atom instanceof BnM) {
4988                 return atom.match(matcher, i, seq)
4989                     && next.match(matcher, matcher.last, seq);
4990             }
4991             for (;;) {
4992                 if (i > matcher.to) {
4993                     matcher.hitEnd = true;
4994                     return false;
4995                 }
4996                 if (atom.match(matcher, i, seq)) {
4997                     return next.match(matcher, matcher.last, seq);
4998                 }
4999                 i += countChars(seq, i, 1);
5000                 matcher.first++;
5001             }
5002         }
5003         boolean study(TreeInfo info) {
5004             atom.study(info);
5005             info.maxValid = false;
5006             info.deterministic = false;
5007             return next.study(info);
5008         }
5009     }
5010 
5011     static final class Conditional extends Node {
5012         Node cond, yes, not;
5013         Conditional(Node cond, Node yes, Node not) {
5014             this.cond = cond;
5015             this.yes = yes;
5016             this.not = not;
5017         }
5018         boolean match(Matcher matcher, int i, CharSequence seq) {
5019             if (cond.match(matcher, i, seq)) {
5020                 return yes.match(matcher, i, seq);
5021             } else {
5022                 return not.match(matcher, i, seq);
5023             }
5024         }
5025         boolean study(TreeInfo info) {
5026             int minL = info.minLength;
5027             int maxL = info.maxLength;
5028             boolean maxV = info.maxValid;
5029             info.reset();
5030             yes.study(info);
5031 
5032             int minL2 = info.minLength;
5033             int maxL2 = info.maxLength;
5034             boolean maxV2 = info.maxValid;
5035             info.reset();
5036             not.study(info);
5037 
5038             info.minLength = minL + Math.min(minL2, info.minLength);
5039             info.maxLength = maxL + Math.max(maxL2, info.maxLength);
5040             info.maxValid = (maxV & maxV2 & info.maxValid);
5041             info.deterministic = false;
5042             return next.study(info);
5043         }
5044     }
5045 
5046     /**
5047      * Zero width positive lookahead.
5048      */
5049     static final class Pos extends Node {
5050         Node cond;
5051         Pos(Node cond) {
5052             this.cond = cond;
5053         }
5054         boolean match(Matcher matcher, int i, CharSequence seq) {
5055             int savedTo = matcher.to;
5056             boolean conditionMatched = false;
5057 
5058             // Relax transparent region boundaries for lookahead
5059             if (matcher.transparentBounds)
5060                 matcher.to = matcher.getTextLength();
5061             try {
5062                 conditionMatched = cond.match(matcher, i, seq);
5063             } finally {
5064                 // Reinstate region boundaries
5065                 matcher.to = savedTo;
5066             }
5067             return conditionMatched && next.match(matcher, i, seq);
5068         }
5069     }
5070 
5071     /**
5072      * Zero width negative lookahead.
5073      */
5074     static final class Neg extends Node {
5075         Node cond;
5076         Neg(Node cond) {
5077             this.cond = cond;
5078         }
5079         boolean match(Matcher matcher, int i, CharSequence seq) {
5080             int savedTo = matcher.to;
5081             boolean conditionMatched = false;
5082 
5083             // Relax transparent region boundaries for lookahead
5084             if (matcher.transparentBounds)
5085                 matcher.to = matcher.getTextLength();
5086             try {
5087                 if (i < matcher.to) {
5088                     conditionMatched = !cond.match(matcher, i, seq);
5089                 } else {
5090                     // If a negative lookahead succeeds then more input
5091                     // could cause it to fail!
5092                     matcher.requireEnd = true;
5093                     conditionMatched = !cond.match(matcher, i, seq);
5094                 }
5095             } finally {
5096                 // Reinstate region boundaries
5097                 matcher.to = savedTo;
5098             }
5099             return conditionMatched && next.match(matcher, i, seq);
5100         }
5101     }
5102 
5103     /**
5104      * For use with lookbehinds; matches the position where the lookbehind
5105      * was encountered.
5106      */
5107     static Node lookbehindEnd = new Node() {
5108         boolean match(Matcher matcher, int i, CharSequence seq) {
5109             return i == matcher.lookbehindTo;
5110         }
5111     };
5112 
5113     /**
5114      * Zero width positive lookbehind.
5115      */
5116     static class Behind extends Node {
5117         Node cond;
5118         int rmax, rmin;
5119         Behind(Node cond, int rmax, int rmin) {
5120             this.cond = cond;
5121             this.rmax = rmax;
5122             this.rmin = rmin;
5123         }
5124 
5125         boolean match(Matcher matcher, int i, CharSequence seq) {
5126             int savedFrom = matcher.from;
5127             boolean conditionMatched = false;
5128             int startIndex = (!matcher.transparentBounds) ?
5129                              matcher.from : 0;
5130             int from = Math.max(i - rmax, startIndex);
5131             // Set end boundary
5132             int savedLBT = matcher.lookbehindTo;
5133             matcher.lookbehindTo = i;
5134             // Relax transparent region boundaries for lookbehind
5135             if (matcher.transparentBounds)
5136                 matcher.from = 0;
5137             for (int j = i - rmin; !conditionMatched && j >= from; j--) {
5138                 conditionMatched = cond.match(matcher, j, seq);
5139             }
5140             matcher.from = savedFrom;
5141             matcher.lookbehindTo = savedLBT;
5142             return conditionMatched && next.match(matcher, i, seq);
5143         }
5144     }
5145 
5146     /**
5147      * Zero width positive lookbehind, including supplementary
5148      * characters or unpaired surrogates.
5149      */
5150     static final class BehindS extends Behind {
5151         BehindS(Node cond, int rmax, int rmin) {
5152             super(cond, rmax, rmin);
5153         }
5154         boolean match(Matcher matcher, int i, CharSequence seq) {
5155             int rmaxChars = countChars(seq, i, -rmax);
5156             int rminChars = countChars(seq, i, -rmin);
5157             int savedFrom = matcher.from;
5158             int startIndex = (!matcher.transparentBounds) ?
5159                              matcher.from : 0;
5160             boolean conditionMatched = false;
5161             int from = Math.max(i - rmaxChars, startIndex);
5162             // Set end boundary
5163             int savedLBT = matcher.lookbehindTo;
5164             matcher.lookbehindTo = i;
5165             // Relax transparent region boundaries for lookbehind
5166             if (matcher.transparentBounds)
5167                 matcher.from = 0;
5168 
5169             for (int j = i - rminChars;
5170                  !conditionMatched && j >= from;
5171                  j -= j>from ? countChars(seq, j, -1) : 1) {
5172                 conditionMatched = cond.match(matcher, j, seq);
5173             }
5174             matcher.from = savedFrom;
5175             matcher.lookbehindTo = savedLBT;
5176             return conditionMatched && next.match(matcher, i, seq);
5177         }
5178     }
5179 
5180     /**
5181      * Zero width negative lookbehind.
5182      */
5183     static class NotBehind extends Node {
5184         Node cond;
5185         int rmax, rmin;
5186         NotBehind(Node cond, int rmax, int rmin) {
5187             this.cond = cond;
5188             this.rmax = rmax;
5189             this.rmin = rmin;
5190         }
5191 
5192         boolean match(Matcher matcher, int i, CharSequence seq) {
5193             int savedLBT = matcher.lookbehindTo;
5194             int savedFrom = matcher.from;
5195             boolean conditionMatched = false;
5196             int startIndex = (!matcher.transparentBounds) ?
5197                              matcher.from : 0;
5198             int from = Math.max(i - rmax, startIndex);
5199             matcher.lookbehindTo = i;
5200             // Relax transparent region boundaries for lookbehind
5201             if (matcher.transparentBounds)
5202                 matcher.from = 0;
5203             for (int j = i - rmin; !conditionMatched && j >= from; j--) {
5204                 conditionMatched = cond.match(matcher, j, seq);
5205             }
5206             // Reinstate region boundaries
5207             matcher.from = savedFrom;
5208             matcher.lookbehindTo = savedLBT;
5209             return !conditionMatched && next.match(matcher, i, seq);
5210         }
5211     }
5212 
5213     /**
5214      * Zero width negative lookbehind, including supplementary
5215      * characters or unpaired surrogates.
5216      */
5217     static final class NotBehindS extends NotBehind {
5218         NotBehindS(Node cond, int rmax, int rmin) {
5219             super(cond, rmax, rmin);
5220         }
5221         boolean match(Matcher matcher, int i, CharSequence seq) {
5222             int rmaxChars = countChars(seq, i, -rmax);
5223             int rminChars = countChars(seq, i, -rmin);
5224             int savedFrom = matcher.from;
5225             int savedLBT = matcher.lookbehindTo;
5226             boolean conditionMatched = false;
5227             int startIndex = (!matcher.transparentBounds) ?
5228                              matcher.from : 0;
5229             int from = Math.max(i - rmaxChars, startIndex);
5230             matcher.lookbehindTo = i;
5231             // Relax transparent region boundaries for lookbehind
5232             if (matcher.transparentBounds)
5233                 matcher.from = 0;
5234             for (int j = i - rminChars;
5235                  !conditionMatched && j >= from;
5236                  j -= j>from ? countChars(seq, j, -1) : 1) {
5237                 conditionMatched = cond.match(matcher, j, seq);
5238             }
5239             //Reinstate region boundaries
5240             matcher.from = savedFrom;
5241             matcher.lookbehindTo = savedLBT;
5242             return !conditionMatched && next.match(matcher, i, seq);
5243         }
5244     }
5245 
5246     /**
5247      * Returns the set union of two CharProperty nodes.
5248      */
5249     private static CharProperty union(final CharProperty lhs,
5250                                       final CharProperty rhs) {
5251         return new CharProperty() {
5252                 boolean isSatisfiedBy(int ch) {
5253                     return lhs.isSatisfiedBy(ch) || rhs.isSatisfiedBy(ch);}};
5254     }
5255 
5256     /**
5257      * Returns the set intersection of two CharProperty nodes.
5258      */
5259     private static CharProperty intersection(final CharProperty lhs,
5260                                              final CharProperty rhs) {
5261         return new CharProperty() {
5262                 boolean isSatisfiedBy(int ch) {
5263                     return lhs.isSatisfiedBy(ch) && rhs.isSatisfiedBy(ch);}};
5264     }
5265 
5266     /**
5267      * Returns the set difference of two CharProperty nodes.
5268      */
5269     private static CharProperty setDifference(final CharProperty lhs,
5270                                               final CharProperty rhs) {
5271         return new CharProperty() {
5272                 boolean isSatisfiedBy(int ch) {
5273                     return ! rhs.isSatisfiedBy(ch) && lhs.isSatisfiedBy(ch);}};
5274     }
5275 
5276     /**
5277      * Handles word boundaries. Includes a field to allow this one class to
5278      * deal with the different types of word boundaries we can match. The word
5279      * characters include underscores, letters, and digits. Non spacing marks
5280      * can are also part of a word if they have a base character, otherwise
5281      * they are ignored for purposes of finding word boundaries.
5282      */
5283     static final class Bound extends Node {
5284         static int LEFT = 0x1;
5285         static int RIGHT= 0x2;
5286         static int BOTH = 0x3;
5287         static int NONE = 0x4;
5288         int type;
5289         boolean useUWORD;
5290         Bound(int n, boolean useUWORD) {
5291             type = n;
5292             this.useUWORD = useUWORD;
5293         }
5294 
5295         boolean isWord(int ch) {
5296             return useUWORD ? UnicodeProp.WORD.is(ch)
5297                             : (ch == '_' || Character.isLetterOrDigit(ch));
5298         }
5299 
5300         int check(Matcher matcher, int i, CharSequence seq) {
5301             int ch;
5302             boolean left = false;
5303             int startIndex = matcher.from;
5304             int endIndex = matcher.to;
5305             if (matcher.transparentBounds) {
5306                 startIndex = 0;
5307                 endIndex = matcher.getTextLength();
5308             }
5309             if (i > startIndex) {
5310                 ch = Character.codePointBefore(seq, i);
5311                 left = (isWord(ch) ||
5312                     ((Character.getType(ch) == Character.NON_SPACING_MARK)
5313                      && hasBaseCharacter(matcher, i-1, seq)));
5314             }
5315             boolean right = false;
5316             if (i < endIndex) {
5317                 ch = Character.codePointAt(seq, i);
5318                 right = (isWord(ch) ||
5319                     ((Character.getType(ch) == Character.NON_SPACING_MARK)
5320                      && hasBaseCharacter(matcher, i, seq)));
5321             } else {
5322                 // Tried to access char past the end
5323                 matcher.hitEnd = true;
5324                 // The addition of another char could wreck a boundary
5325                 matcher.requireEnd = true;
5326             }
5327             return ((left ^ right) ? (right ? LEFT : RIGHT) : NONE);
5328         }
5329         boolean match(Matcher matcher, int i, CharSequence seq) {
5330             return (check(matcher, i, seq) & type) > 0
5331                 && next.match(matcher, i, seq);
5332         }
5333     }
5334 
5335     /**
5336      * Non spacing marks only count as word characters in bounds calculations
5337      * if they have a base character.
5338      */
5339     private static boolean hasBaseCharacter(Matcher matcher, int i,
5340                                             CharSequence seq)
5341     {
5342         int start = (!matcher.transparentBounds) ?
5343             matcher.from : 0;
5344         for (int x=i; x >= start; x--) {
5345             int ch = Character.codePointAt(seq, x);
5346             if (Character.isLetterOrDigit(ch))
5347                 return true;
5348             if (Character.getType(ch) == Character.NON_SPACING_MARK)
5349                 continue;
5350             return false;
5351         }
5352         return false;
5353     }
5354 
5355     /**
5356      * Attempts to match a slice in the input using the Boyer-Moore string
5357      * matching algorithm. The algorithm is based on the idea that the
5358      * pattern can be shifted farther ahead in the search text if it is
5359      * matched right to left.
5360      * <p>
5361      * The pattern is compared to the input one character at a time, from
5362      * the rightmost character in the pattern to the left. If the characters
5363      * all match the pattern has been found. If a character does not match,
5364      * the pattern is shifted right a distance that is the maximum of two
5365      * functions, the bad character shift and the good suffix shift. This
5366      * shift moves the attempted match position through the input more
5367      * quickly than a naive one position at a time check.
5368      * <p>
5369      * The bad character shift is based on the character from the text that
5370      * did not match. If the character does not appear in the pattern, the
5371      * pattern can be shifted completely beyond the bad character. If the
5372      * character does occur in the pattern, the pattern can be shifted to
5373      * line the pattern up with the next occurrence of that character.
5374      * <p>
5375      * The good suffix shift is based on the idea that some subset on the right
5376      * side of the pattern has matched. When a bad character is found, the
5377      * pattern can be shifted right by the pattern length if the subset does
5378      * not occur again in pattern, or by the amount of distance to the
5379      * next occurrence of the subset in the pattern.
5380      *
5381      * Boyer-Moore search methods adapted from code by Amy Yu.
5382      */
5383     static class BnM extends Node {
5384         int[] buffer;
5385         int[] lastOcc;
5386         int[] optoSft;
5387 
5388         /**
5389          * Pre calculates arrays needed to generate the bad character
5390          * shift and the good suffix shift. Only the last seven bits
5391          * are used to see if chars match; This keeps the tables small
5392          * and covers the heavily used ASCII range, but occasionally
5393          * results in an aliased match for the bad character shift.
5394          */
5395         static Node optimize(Node node) {
5396             if (!(node instanceof Slice)) {
5397                 return node;
5398             }
5399 
5400             int[] src = ((Slice) node).buffer;
5401             int patternLength = src.length;
5402             // The BM algorithm requires a bit of overhead;
5403             // If the pattern is short don't use it, since
5404             // a shift larger than the pattern length cannot
5405             // be used anyway.
5406             if (patternLength < 4) {
5407                 return node;
5408             }
5409             int i, j, k;
5410             int[] lastOcc = new int[128];
5411             int[] optoSft = new int[patternLength];
5412             // Precalculate part of the bad character shift
5413             // It is a table for where in the pattern each
5414             // lower 7-bit value occurs
5415             for (i = 0; i < patternLength; i++) {
5416                 lastOcc[src[i]&0x7F] = i + 1;
5417             }
5418             // Precalculate the good suffix shift
5419             // i is the shift amount being considered
5420 NEXT:       for (i = patternLength; i > 0; i--) {
5421                 // j is the beginning index of suffix being considered
5422                 for (j = patternLength - 1; j >= i; j--) {
5423                     // Testing for good suffix
5424                     if (src[j] == src[j-i]) {
5425                         // src[j..len] is a good suffix
5426                         optoSft[j-1] = i;
5427                     } else {
5428                         // No match. The array has already been
5429                         // filled up with correct values before.
5430                         continue NEXT;
5431                     }
5432                 }
5433                 // This fills up the remaining of optoSft
5434                 // any suffix can not have larger shift amount
5435                 // then its sub-suffix. Why???
5436                 while (j > 0) {
5437                     optoSft[--j] = i;
5438                 }
5439             }
5440             // Set the guard value because of unicode compression
5441             optoSft[patternLength-1] = 1;
5442             if (node instanceof SliceS)
5443                 return new BnMS(src, lastOcc, optoSft, node.next);
5444             return new BnM(src, lastOcc, optoSft, node.next);
5445         }
5446         BnM(int[] src, int[] lastOcc, int[] optoSft, Node next) {
5447             this.buffer = src;
5448             this.lastOcc = lastOcc;
5449             this.optoSft = optoSft;
5450             this.next = next;
5451         }
5452         boolean match(Matcher matcher, int i, CharSequence seq) {
5453             int[] src = buffer;
5454             int patternLength = src.length;
5455             int last = matcher.to - patternLength;
5456 
5457             // Loop over all possible match positions in text
5458 NEXT:       while (i <= last) {
5459                 // Loop over pattern from right to left
5460                 for (int j = patternLength - 1; j >= 0; j--) {
5461                     int ch = seq.charAt(i+j);
5462                     if (ch != src[j]) {
5463                         // Shift search to the right by the maximum of the
5464                         // bad character shift and the good suffix shift
5465                         i += Math.max(j + 1 - lastOcc[ch&0x7F], optoSft[j]);
5466                         continue NEXT;
5467                     }
5468                 }
5469                 // Entire pattern matched starting at i
5470                 matcher.first = i;
5471                 boolean ret = next.match(matcher, i + patternLength, seq);
5472                 if (ret) {
5473                     matcher.first = i;
5474                     matcher.groups[0] = matcher.first;
5475                     matcher.groups[1] = matcher.last;
5476                     return true;
5477                 }
5478                 i++;
5479             }
5480             // BnM is only used as the leading node in the unanchored case,
5481             // and it replaced its Start() which always searches to the end
5482             // if it doesn't find what it's looking for, so hitEnd is true.
5483             matcher.hitEnd = true;
5484             return false;
5485         }
5486         boolean study(TreeInfo info) {
5487             info.minLength += buffer.length;
5488             info.maxValid = false;
5489             return next.study(info);
5490         }
5491     }
5492 
5493     /**
5494      * Supplementary support version of BnM(). Unpaired surrogates are
5495      * also handled by this class.
5496      */
5497     static final class BnMS extends BnM {
5498         int lengthInChars;
5499 
5500         BnMS(int[] src, int[] lastOcc, int[] optoSft, Node next) {
5501             super(src, lastOcc, optoSft, next);
5502             for (int x = 0; x < buffer.length; x++) {
5503                 lengthInChars += Character.charCount(buffer[x]);
5504             }
5505         }
5506         boolean match(Matcher matcher, int i, CharSequence seq) {
5507             int[] src = buffer;
5508             int patternLength = src.length;
5509             int last = matcher.to - lengthInChars;
5510 
5511             // Loop over all possible match positions in text
5512 NEXT:       while (i <= last) {
5513                 // Loop over pattern from right to left
5514                 int ch;
5515                 for (int j = countChars(seq, i, patternLength), x = patternLength - 1;
5516                      j > 0; j -= Character.charCount(ch), x--) {
5517                     ch = Character.codePointBefore(seq, i+j);
5518                     if (ch != src[x]) {
5519                         // Shift search to the right by the maximum of the
5520                         // bad character shift and the good suffix shift
5521                         int n = Math.max(x + 1 - lastOcc[ch&0x7F], optoSft[x]);
5522                         i += countChars(seq, i, n);
5523                         continue NEXT;
5524                     }
5525                 }
5526                 // Entire pattern matched starting at i
5527                 matcher.first = i;
5528                 boolean ret = next.match(matcher, i + lengthInChars, seq);
5529                 if (ret) {
5530                     matcher.first = i;
5531                     matcher.groups[0] = matcher.first;
5532                     matcher.groups[1] = matcher.last;
5533                     return true;
5534                 }
5535                 i += countChars(seq, i, 1);
5536             }
5537             matcher.hitEnd = true;
5538             return false;
5539         }
5540     }
5541 
5542 ///////////////////////////////////////////////////////////////////////////////
5543 ///////////////////////////////////////////////////////////////////////////////
5544 
5545     /**
5546      *  This must be the very first initializer.
5547      */
5548     static Node accept = new Node();
5549 
5550     static Node lastAccept = new LastNode();
5551 
5552     private static class CharPropertyNames {
5553 
5554         static CharProperty charPropertyFor(String name) {
5555             CharPropertyFactory m = map.get(name);
5556             return m == null ? null : m.make();
5557         }
5558 
5559         private static abstract class CharPropertyFactory {
5560             abstract CharProperty make();
5561         }
5562 
5563         private static void defCategory(String name,
5564                                         final int typeMask) {
5565             map.put(name, new CharPropertyFactory() {
5566                     CharProperty make() { return new Category(typeMask);}});
5567         }
5568 
5569         private static void defRange(String name,
5570                                      final int lower, final int upper) {
5571             map.put(name, new CharPropertyFactory() {
5572                     CharProperty make() { return rangeFor(lower, upper);}});
5573         }
5574 
5575         private static void defCtype(String name,
5576                                      final int ctype) {
5577             map.put(name, new CharPropertyFactory() {
5578                     CharProperty make() { return new Ctype(ctype);}});
5579         }
5580 
5581         private static abstract class CloneableProperty
5582             extends CharProperty implements Cloneable
5583         {
5584             public CloneableProperty clone() {
5585                 try {
5586                     return (CloneableProperty) super.clone();
5587                 } catch (CloneNotSupportedException e) {
5588                     throw new AssertionError(e);
5589                 }
5590             }
5591         }
5592 
5593         private static void defClone(String name,
5594                                      final CloneableProperty p) {
5595             map.put(name, new CharPropertyFactory() {
5596                     CharProperty make() { return p.clone();}});
5597         }
5598 
5599         private static final HashMap<String, CharPropertyFactory> map
5600             = new HashMap<>();
5601 
5602         static {
5603             // Unicode character property aliases, defined in
5604             // http://www.unicode.org/Public/UNIDATA/PropertyValueAliases.txt
5605             defCategory("Cn", 1<<Character.UNASSIGNED);
5606             defCategory("Lu", 1<<Character.UPPERCASE_LETTER);
5607             defCategory("Ll", 1<<Character.LOWERCASE_LETTER);
5608             defCategory("Lt", 1<<Character.TITLECASE_LETTER);
5609             defCategory("Lm", 1<<Character.MODIFIER_LETTER);
5610             defCategory("Lo", 1<<Character.OTHER_LETTER);
5611             defCategory("Mn", 1<<Character.NON_SPACING_MARK);
5612             defCategory("Me", 1<<Character.ENCLOSING_MARK);
5613             defCategory("Mc", 1<<Character.COMBINING_SPACING_MARK);
5614             defCategory("Nd", 1<<Character.DECIMAL_DIGIT_NUMBER);
5615             defCategory("Nl", 1<<Character.LETTER_NUMBER);
5616             defCategory("No", 1<<Character.OTHER_NUMBER);
5617             defCategory("Zs", 1<<Character.SPACE_SEPARATOR);
5618             defCategory("Zl", 1<<Character.LINE_SEPARATOR);
5619             defCategory("Zp", 1<<Character.PARAGRAPH_SEPARATOR);
5620             defCategory("Cc", 1<<Character.CONTROL);
5621             defCategory("Cf", 1<<Character.FORMAT);
5622             defCategory("Co", 1<<Character.PRIVATE_USE);
5623             defCategory("Cs", 1<<Character.SURROGATE);
5624             defCategory("Pd", 1<<Character.DASH_PUNCTUATION);
5625             defCategory("Ps", 1<<Character.START_PUNCTUATION);
5626             defCategory("Pe", 1<<Character.END_PUNCTUATION);
5627             defCategory("Pc", 1<<Character.CONNECTOR_PUNCTUATION);
5628             defCategory("Po", 1<<Character.OTHER_PUNCTUATION);
5629             defCategory("Sm", 1<<Character.MATH_SYMBOL);
5630             defCategory("Sc", 1<<Character.CURRENCY_SYMBOL);
5631             defCategory("Sk", 1<<Character.MODIFIER_SYMBOL);
5632             defCategory("So", 1<<Character.OTHER_SYMBOL);
5633             defCategory("Pi", 1<<Character.INITIAL_QUOTE_PUNCTUATION);
5634             defCategory("Pf", 1<<Character.FINAL_QUOTE_PUNCTUATION);
5635             defCategory("L", ((1<<Character.UPPERCASE_LETTER) |
5636                               (1<<Character.LOWERCASE_LETTER) |
5637                               (1<<Character.TITLECASE_LETTER) |
5638                               (1<<Character.MODIFIER_LETTER)  |
5639                               (1<<Character.OTHER_LETTER)));
5640             defCategory("M", ((1<<Character.NON_SPACING_MARK) |
5641                               (1<<Character.ENCLOSING_MARK)   |
5642                               (1<<Character.COMBINING_SPACING_MARK)));
5643             defCategory("N", ((1<<Character.DECIMAL_DIGIT_NUMBER) |
5644                               (1<<Character.LETTER_NUMBER)        |
5645                               (1<<Character.OTHER_NUMBER)));
5646             defCategory("Z", ((1<<Character.SPACE_SEPARATOR) |
5647                               (1<<Character.LINE_SEPARATOR)  |
5648                               (1<<Character.PARAGRAPH_SEPARATOR)));
5649             defCategory("C", ((1<<Character.CONTROL)     |
5650                               (1<<Character.FORMAT)      |
5651                               (1<<Character.PRIVATE_USE) |
5652                               (1<<Character.SURROGATE))); // Other
5653             defCategory("P", ((1<<Character.DASH_PUNCTUATION)      |
5654                               (1<<Character.START_PUNCTUATION)     |
5655                               (1<<Character.END_PUNCTUATION)       |
5656                               (1<<Character.CONNECTOR_PUNCTUATION) |
5657                               (1<<Character.OTHER_PUNCTUATION)     |
5658                               (1<<Character.INITIAL_QUOTE_PUNCTUATION) |
5659                               (1<<Character.FINAL_QUOTE_PUNCTUATION)));
5660             defCategory("S", ((1<<Character.MATH_SYMBOL)     |
5661                               (1<<Character.CURRENCY_SYMBOL) |
5662                               (1<<Character.MODIFIER_SYMBOL) |
5663                               (1<<Character.OTHER_SYMBOL)));
5664             defCategory("LC", ((1<<Character.UPPERCASE_LETTER) |
5665                                (1<<Character.LOWERCASE_LETTER) |
5666                                (1<<Character.TITLECASE_LETTER)));
5667             defCategory("LD", ((1<<Character.UPPERCASE_LETTER) |
5668                                (1<<Character.LOWERCASE_LETTER) |
5669                                (1<<Character.TITLECASE_LETTER) |
5670                                (1<<Character.MODIFIER_LETTER)  |
5671                                (1<<Character.OTHER_LETTER)     |
5672                                (1<<Character.DECIMAL_DIGIT_NUMBER)));
5673             defRange("L1", 0x00, 0xFF); // Latin-1
5674             map.put("all", new CharPropertyFactory() {
5675                     CharProperty make() { return new All(); }});
5676 
5677             // Posix regular expression character classes, defined in
5678             // http://www.unix.org/onlinepubs/009695399/basedefs/xbd_chap09.html
5679             defRange("ASCII", 0x00, 0x7F);   // ASCII
5680             defCtype("Alnum", ASCII.ALNUM);  // Alphanumeric characters
5681             defCtype("Alpha", ASCII.ALPHA);  // Alphabetic characters
5682             defCtype("Blank", ASCII.BLANK);  // Space and tab characters
5683             defCtype("Cntrl", ASCII.CNTRL);  // Control characters
5684             defRange("Digit", '0', '9');     // Numeric characters
5685             defCtype("Graph", ASCII.GRAPH);  // printable and visible
5686             defRange("Lower", 'a', 'z');     // Lower-case alphabetic
5687             defRange("Print", 0x20, 0x7E);   // Printable characters
5688             defCtype("Punct", ASCII.PUNCT);  // Punctuation characters
5689             defCtype("Space", ASCII.SPACE);  // Space characters
5690             defRange("Upper", 'A', 'Z');     // Upper-case alphabetic
5691             defCtype("XDigit",ASCII.XDIGIT); // hexadecimal digits
5692 
5693             // Java character properties, defined by methods in Character.java
5694             defClone("javaLowerCase", new CloneableProperty() {
5695                 boolean isSatisfiedBy(int ch) {
5696                     return Character.isLowerCase(ch);}});
5697             defClone("javaUpperCase", new CloneableProperty() {
5698                 boolean isSatisfiedBy(int ch) {
5699                     return Character.isUpperCase(ch);}});
5700             defClone("javaAlphabetic", new CloneableProperty() {
5701                 boolean isSatisfiedBy(int ch) {
5702                     return Character.isAlphabetic(ch);}});
5703             defClone("javaIdeographic", new CloneableProperty() {
5704                 boolean isSatisfiedBy(int ch) {
5705                     return Character.isIdeographic(ch);}});
5706             defClone("javaTitleCase", new CloneableProperty() {
5707                 boolean isSatisfiedBy(int ch) {
5708                     return Character.isTitleCase(ch);}});
5709             defClone("javaDigit", new CloneableProperty() {
5710                 boolean isSatisfiedBy(int ch) {
5711                     return Character.isDigit(ch);}});
5712             defClone("javaDefined", new CloneableProperty() {
5713                 boolean isSatisfiedBy(int ch) {
5714                     return Character.isDefined(ch);}});
5715             defClone("javaLetter", new CloneableProperty() {
5716                 boolean isSatisfiedBy(int ch) {
5717                     return Character.isLetter(ch);}});
5718             defClone("javaLetterOrDigit", new CloneableProperty() {
5719                 boolean isSatisfiedBy(int ch) {
5720                     return Character.isLetterOrDigit(ch);}});
5721             defClone("javaJavaIdentifierStart", new CloneableProperty() {
5722                 boolean isSatisfiedBy(int ch) {
5723                     return Character.isJavaIdentifierStart(ch);}});
5724             defClone("javaJavaIdentifierPart", new CloneableProperty() {
5725                 boolean isSatisfiedBy(int ch) {
5726                     return Character.isJavaIdentifierPart(ch);}});
5727             defClone("javaUnicodeIdentifierStart", new CloneableProperty() {
5728                 boolean isSatisfiedBy(int ch) {
5729                     return Character.isUnicodeIdentifierStart(ch);}});
5730             defClone("javaUnicodeIdentifierPart", new CloneableProperty() {
5731                 boolean isSatisfiedBy(int ch) {
5732                     return Character.isUnicodeIdentifierPart(ch);}});
5733             defClone("javaIdentifierIgnorable", new CloneableProperty() {
5734                 boolean isSatisfiedBy(int ch) {
5735                     return Character.isIdentifierIgnorable(ch);}});
5736             defClone("javaSpaceChar", new CloneableProperty() {
5737                 boolean isSatisfiedBy(int ch) {
5738                     return Character.isSpaceChar(ch);}});
5739             defClone("javaWhitespace", new CloneableProperty() {
5740                 boolean isSatisfiedBy(int ch) {
5741                     return Character.isWhitespace(ch);}});
5742             defClone("javaISOControl", new CloneableProperty() {
5743                 boolean isSatisfiedBy(int ch) {
5744                     return Character.isISOControl(ch);}});
5745             defClone("javaMirrored", new CloneableProperty() {
5746                 boolean isSatisfiedBy(int ch) {
5747                     return Character.isMirrored(ch);}});
5748         }
5749     }
5750 
5751     /**
5752      * Creates a predicate which can be used to match a string.
5753      *
5754      * @return  The predicate which can be used for matching on a string
5755      * @since   1.8
5756      */
5757     public Predicate<String> asPredicate() {
5758         return s -> matcher(s).find();
5759     }
5760 
5761     /**
5762      * Creates a stream from the given input sequence around matches of this
5763      * pattern.
5764      *
5765      * <p> The stream returned by this method contains each substring of the
5766      * input sequence that is terminated by another subsequence that matches
5767      * this pattern or is terminated by the end of the input sequence.  The
5768      * substrings in the stream are in the order in which they occur in the
5769      * input. Trailing empty strings will be discarded and not encountered in
5770      * the stream.
5771      *
5772      * <p> If this pattern does not match any subsequence of the input then
5773      * the resulting stream has just one element, namely the input sequence in
5774      * string form.
5775      *
5776      * <p> When there is a positive-width match at the beginning of the input
5777      * sequence then an empty leading substring is included at the beginning
5778      * of the stream. A zero-width match at the beginning however never produces
5779      * such empty leading substring.
5780      *
5781      * <p> If the input sequence is mutable, it must remain constant during the
5782      * execution of the terminal stream operation.  Otherwise, the result of the
5783      * terminal stream operation is undefined.
5784      *
5785      * @param   input
5786      *          The character sequence to be split
5787      *
5788      * @return  The stream of strings computed by splitting the input
5789      *          around matches of this pattern
5790      * @see     #split(CharSequence)
5791      * @since   1.8
5792      */
5793     public Stream<String> splitAsStream(final CharSequence input) {
5794         class MatcherIterator implements Iterator<String> {
5795             private final Matcher matcher;
5796             // The start position of the next sub-sequence of input
5797             // when current == input.length there are no more elements
5798             private int current;
5799             // null if the next element, if any, needs to obtained
5800             private String nextElement;
5801             // > 0 if there are N next empty elements
5802             private int emptyElementCount;
5803 
5804             MatcherIterator() {
5805                 this.matcher = matcher(input);
5806             }
5807 
5808             public String next() {
5809                 if (!hasNext())
5810                     throw new NoSuchElementException();
5811 
5812                 if (emptyElementCount == 0) {
5813                     String n = nextElement;
5814                     nextElement = null;
5815                     return n;
5816                 } else {
5817                     emptyElementCount--;
5818                     return "";
5819                 }
5820             }
5821 
5822             public boolean hasNext() {
5823                 if (nextElement != null || emptyElementCount > 0)
5824                     return true;
5825 
5826                 if (current == input.length())
5827                     return false;
5828 
5829                 // Consume the next matching element
5830                 // Count sequence of matching empty elements
5831                 while (matcher.find()) {
5832                     nextElement = input.subSequence(current, matcher.start()).toString();
5833                     current = matcher.end();
5834                     if (!nextElement.isEmpty()) {
5835                         return true;
5836                     } else if (current > 0) { // no empty leading substring for zero-width
5837                                               // match at the beginning of the input
5838                         emptyElementCount++;
5839                     }
5840                 }
5841 
5842                 // Consume last matching element
5843                 nextElement = input.subSequence(current, input.length()).toString();
5844                 current = input.length();
5845                 if (!nextElement.isEmpty()) {
5846                     return true;
5847                 } else {
5848                     // Ignore a terminal sequence of matching empty elements
5849                     emptyElementCount = 0;
5850                     nextElement = null;
5851                     return false;
5852                 }
5853             }
5854         }
5855         return StreamSupport.stream(Spliterators.spliteratorUnknownSize(
5856                 new MatcherIterator(), Spliterator.ORDERED | Spliterator.NONNULL), false);
5857     }
5858 }