1 /*
   2  * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import jdk.internal.math.FloatingDecimal;
  29 import java.util.Arrays;
  30 import java.util.Spliterator;
  31 import java.util.stream.IntStream;
  32 import java.util.stream.StreamSupport;
  33 
  34 import static java.lang.String.COMPACT_STRINGS;
  35 import static java.lang.String.UTF16;
  36 import static java.lang.String.LATIN1;
  37 import static java.lang.String.checkIndex;
  38 import static java.lang.String.checkOffset;
  39 
  40 /**
  41  * A mutable sequence of characters.
  42  * <p>
  43  * Implements a modifiable string. At any point in time it contains some
  44  * particular sequence of characters, but the length and content of the
  45  * sequence can be changed through certain method calls.
  46  *
  47  * <p>Unless otherwise noted, passing a {@code null} argument to a constructor
  48  * or method in this class will cause a {@link NullPointerException} to be
  49  * thrown.
  50  *
  51  * @author      Michael McCloskey
  52  * @author      Martin Buchholz
  53  * @author      Ulf Zibis
  54  * @since       1.5
  55  */
  56 abstract class AbstractStringBuilder implements Appendable, CharSequence {
  57     /**
  58      * The value is used for character storage.
  59      */
  60     byte[] value;
  61 
  62     /**
  63      * The id of the encoding used to encode the bytes in {@code value}.
  64      */
  65     byte coder;
  66 
  67     /**
  68      * The count is the number of characters used.
  69      */
  70     int count;
  71 
  72     private static final byte[] EMPTYVALUE = new byte[0];
  73 
  74     /**
  75      * This no-arg constructor is necessary for serialization of subclasses.
  76      */
  77     AbstractStringBuilder() {
  78         value = EMPTYVALUE;
  79     }
  80 
  81     /**
  82      * Creates an AbstractStringBuilder of the specified capacity.
  83      */
  84     AbstractStringBuilder(int capacity) {
  85         if (COMPACT_STRINGS) {
  86             value = new byte[capacity];
  87             coder = LATIN1;
  88         } else {
  89             value = StringUTF16.newBytesFor(capacity);
  90             coder = UTF16;
  91         }
  92     }
  93 
  94     /**
  95      * Creates an AbstractStringBuilder with the specified coder
  96      * (coderHint is used when compact strings are enabled) and with
  97      * the initial capacity equal to the smaller of (length + addition)
  98      * and Integer.MAX_VALUE.
  99      */
 100     AbstractStringBuilder(byte coderHint, int length, int addition) {
 101         if (length < 0) {
 102             throw new NegativeArraySizeException("Negative length: " + length);
 103         }
 104         int capacity = (length < Integer.MAX_VALUE - addition)
 105                 ? length + addition : Integer.MAX_VALUE;
 106         if (COMPACT_STRINGS && coderHint == LATIN1) {
 107             value = new byte[capacity];
 108             coder = LATIN1;
 109         } else {
 110             value = StringUTF16.newBytesFor(capacity);
 111             coder = UTF16;
 112         }
 113     }
 114 
 115     /**
 116      * Compares the objects of two AbstractStringBuilder implementations lexicographically.
 117      *
 118      * @since 11
 119      */
 120     int compareTo(AbstractStringBuilder another) {
 121         if (this == another) {
 122             return 0;
 123         }
 124 
 125         byte val1[] = value;
 126         byte val2[] = another.value;
 127         int count1 = this.count;
 128         int count2 = another.count;
 129 
 130         if (coder == another.coder) {
 131             return isLatin1() ? StringLatin1.compareTo(val1, val2, count1, count2)
 132                               : StringUTF16.compareTo(val1, val2, count1, count2);
 133         }
 134         return isLatin1() ? StringLatin1.compareToUTF16(val1, val2, count1, count2)
 135                           : StringUTF16.compareToLatin1(val1, val2, count1, count2);
 136     }
 137 
 138     /**
 139      * Returns the length (character count).
 140      *
 141      * @return  the length of the sequence of characters currently
 142      *          represented by this object
 143      */
 144     @Override
 145     public int length() {
 146         return count;
 147     }
 148 
 149     /**
 150      * Returns the current capacity. The capacity is the amount of storage
 151      * available for newly inserted characters, beyond which an allocation
 152      * will occur.
 153      *
 154      * @return  the current capacity
 155      */
 156     public int capacity() {
 157         return value.length >> coder;
 158     }
 159 
 160     /**
 161      * Ensures that the capacity is at least equal to the specified minimum.
 162      * If the current capacity is less than the argument, then a new internal
 163      * array is allocated with greater capacity. The new capacity is the
 164      * larger of:
 165      * <ul>
 166      * <li>The {@code minimumCapacity} argument.
 167      * <li>Twice the old capacity, plus {@code 2}.
 168      * </ul>
 169      * If the {@code minimumCapacity} argument is nonpositive, this
 170      * method takes no action and simply returns.
 171      * Note that subsequent operations on this object can reduce the
 172      * actual capacity below that requested here.
 173      *
 174      * @param   minimumCapacity   the minimum desired capacity.
 175      */
 176     public void ensureCapacity(int minimumCapacity) {
 177         if (minimumCapacity > 0) {
 178             ensureCapacityInternal(minimumCapacity);
 179         }
 180     }
 181 
 182     /**
 183      * For positive values of {@code minimumCapacity}, this method
 184      * behaves like {@code ensureCapacity}, however it is never
 185      * synchronized.
 186      * If {@code minimumCapacity} is non positive due to numeric
 187      * overflow, this method throws {@code OutOfMemoryError}.
 188      */
 189     private void ensureCapacityInternal(int minimumCapacity) {
 190         // overflow-conscious code
 191         int oldCapacity = value.length >> coder;
 192         if (minimumCapacity - oldCapacity > 0) {
 193             value = Arrays.copyOf(value,
 194                     newCapacity(minimumCapacity) << coder);
 195         }
 196     }
 197 
 198     /**
 199      * The maximum size of array to allocate (unless necessary).
 200      * Some VMs reserve some header words in an array.
 201      * Attempts to allocate larger arrays may result in
 202      * OutOfMemoryError: Requested array size exceeds VM limit
 203      */
 204     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
 205 
 206     /**
 207      * Returns a capacity at least as large as the given minimum capacity.
 208      * Returns the current capacity increased by the same amount + 2 if
 209      * that suffices.
 210      * Will not return a capacity greater than
 211      * {@code (MAX_ARRAY_SIZE >> coder)} unless the given minimum capacity
 212      * is greater than that.
 213      *
 214      * @param  minCapacity the desired minimum capacity
 215      * @throws OutOfMemoryError if minCapacity is less than zero or
 216      *         greater than (Integer.MAX_VALUE >> coder)
 217      */
 218     private int newCapacity(int minCapacity) {
 219         // overflow-conscious code
 220         int oldCapacity = value.length >> coder;
 221         int newCapacity = (oldCapacity << 1) + 2;
 222         if (newCapacity - minCapacity < 0) {
 223             newCapacity = minCapacity;
 224         }
 225         int SAFE_BOUND = MAX_ARRAY_SIZE >> coder;
 226         return (newCapacity <= 0 || SAFE_BOUND - newCapacity < 0)
 227             ? hugeCapacity(minCapacity)
 228             : newCapacity;
 229     }
 230 
 231     private int hugeCapacity(int minCapacity) {
 232         int SAFE_BOUND = MAX_ARRAY_SIZE >> coder;
 233         int UNSAFE_BOUND = Integer.MAX_VALUE >> coder;
 234         if (UNSAFE_BOUND - minCapacity < 0) { // overflow
 235             throw new OutOfMemoryError();
 236         }
 237         return (minCapacity > SAFE_BOUND)
 238             ? minCapacity : SAFE_BOUND;
 239     }
 240 
 241     /**
 242      * If the coder is "isLatin1", this inflates the internal 8-bit storage
 243      * to 16-bit <hi=0, low> pair storage.
 244      */
 245     private void inflate() {
 246         if (!isLatin1()) {
 247             return;
 248         }
 249         byte[] buf = StringUTF16.newBytesFor(value.length);
 250         StringLatin1.inflate(value, 0, buf, 0, count);
 251         this.value = buf;
 252         this.coder = UTF16;
 253     }
 254 
 255     /**
 256      * Attempts to reduce storage used for the character sequence.
 257      * If the buffer is larger than necessary to hold its current sequence of
 258      * characters, then it may be resized to become more space efficient.
 259      * Calling this method may, but is not required to, affect the value
 260      * returned by a subsequent call to the {@link #capacity()} method.
 261      */
 262     public void trimToSize() {
 263         int length = count << coder;
 264         if (length < value.length) {
 265             value = Arrays.copyOf(value, length);
 266         }
 267     }
 268 
 269     /**
 270      * Sets the length of the character sequence.
 271      * The sequence is changed to a new character sequence
 272      * whose length is specified by the argument. For every nonnegative
 273      * index <i>k</i> less than {@code newLength}, the character at
 274      * index <i>k</i> in the new character sequence is the same as the
 275      * character at index <i>k</i> in the old sequence if <i>k</i> is less
 276      * than the length of the old character sequence; otherwise, it is the
 277      * null character {@code '\u005Cu0000'}.
 278      *
 279      * In other words, if the {@code newLength} argument is less than
 280      * the current length, the length is changed to the specified length.
 281      * <p>
 282      * If the {@code newLength} argument is greater than or equal
 283      * to the current length, sufficient null characters
 284      * ({@code '\u005Cu0000'}) are appended so that
 285      * length becomes the {@code newLength} argument.
 286      * <p>
 287      * The {@code newLength} argument must be greater than or equal
 288      * to {@code 0}.
 289      *
 290      * @param      newLength   the new length
 291      * @throws     IndexOutOfBoundsException  if the
 292      *               {@code newLength} argument is negative.
 293      */
 294     public void setLength(int newLength) {
 295         if (newLength < 0) {
 296             throw new StringIndexOutOfBoundsException(newLength);
 297         }
 298         ensureCapacityInternal(newLength);
 299         if (count < newLength) {
 300             if (isLatin1()) {
 301                 StringLatin1.fillNull(value, count, newLength);
 302             } else {
 303                 StringUTF16.fillNull(value, count, newLength);
 304             }
 305         }
 306         count = newLength;
 307     }
 308 
 309     /**
 310      * Returns the {@code char} value in this sequence at the specified index.
 311      * The first {@code char} value is at index {@code 0}, the next at index
 312      * {@code 1}, and so on, as in array indexing.
 313      * <p>
 314      * The index argument must be greater than or equal to
 315      * {@code 0}, and less than the length of this sequence.
 316      *
 317      * <p>If the {@code char} value specified by the index is a
 318      * <a href="Character.html#unicode">surrogate</a>, the surrogate
 319      * value is returned.
 320      *
 321      * @param      index   the index of the desired {@code char} value.
 322      * @return     the {@code char} value at the specified index.
 323      * @throws     IndexOutOfBoundsException  if {@code index} is
 324      *             negative or greater than or equal to {@code length()}.
 325      */
 326     @Override
 327     public char charAt(int index) {
 328         checkIndex(index, count);
 329         if (isLatin1()) {
 330             return (char)(value[index] & 0xff);
 331         }
 332         return StringUTF16.charAt(value, index);
 333     }
 334 
 335     /**
 336      * Returns the character (Unicode code point) at the specified
 337      * index. The index refers to {@code char} values
 338      * (Unicode code units) and ranges from {@code 0} to
 339      * {@link #length()}{@code  - 1}.
 340      *
 341      * <p> If the {@code char} value specified at the given index
 342      * is in the high-surrogate range, the following index is less
 343      * than the length of this sequence, and the
 344      * {@code char} value at the following index is in the
 345      * low-surrogate range, then the supplementary code point
 346      * corresponding to this surrogate pair is returned. Otherwise,
 347      * the {@code char} value at the given index is returned.
 348      *
 349      * @param      index the index to the {@code char} values
 350      * @return     the code point value of the character at the
 351      *             {@code index}
 352      * @throws     IndexOutOfBoundsException  if the {@code index}
 353      *             argument is negative or not less than the length of this
 354      *             sequence.
 355      */
 356     public int codePointAt(int index) {
 357         int count = this.count;
 358         byte[] value = this.value;
 359         checkIndex(index, count);
 360         if (isLatin1()) {
 361             return value[index] & 0xff;
 362         }
 363         return StringUTF16.codePointAtSB(value, index, count);
 364     }
 365 
 366     /**
 367      * Returns the character (Unicode code point) before the specified
 368      * index. The index refers to {@code char} values
 369      * (Unicode code units) and ranges from {@code 1} to {@link
 370      * #length()}.
 371      *
 372      * <p> If the {@code char} value at {@code (index - 1)}
 373      * is in the low-surrogate range, {@code (index - 2)} is not
 374      * negative, and the {@code char} value at {@code (index -
 375      * 2)} is in the high-surrogate range, then the
 376      * supplementary code point value of the surrogate pair is
 377      * returned. If the {@code char} value at {@code index -
 378      * 1} is an unpaired low-surrogate or a high-surrogate, the
 379      * surrogate value is returned.
 380      *
 381      * @param     index the index following the code point that should be returned
 382      * @return    the Unicode code point value before the given index.
 383      * @throws    IndexOutOfBoundsException if the {@code index}
 384      *            argument is less than 1 or greater than the length
 385      *            of this sequence.
 386      */
 387     public int codePointBefore(int index) {
 388         int i = index - 1;
 389         if (i < 0 || i >= count) {
 390             throw new StringIndexOutOfBoundsException(index);
 391         }
 392         if (isLatin1()) {
 393             return value[i] & 0xff;
 394         }
 395         return StringUTF16.codePointBeforeSB(value, index);
 396     }
 397 
 398     /**
 399      * Returns the number of Unicode code points in the specified text
 400      * range of this sequence. The text range begins at the specified
 401      * {@code beginIndex} and extends to the {@code char} at
 402      * index {@code endIndex - 1}. Thus the length (in
 403      * {@code char}s) of the text range is
 404      * {@code endIndex-beginIndex}. Unpaired surrogates within
 405      * this sequence count as one code point each.
 406      *
 407      * @param beginIndex the index to the first {@code char} of
 408      * the text range.
 409      * @param endIndex the index after the last {@code char} of
 410      * the text range.
 411      * @return the number of Unicode code points in the specified text
 412      * range
 413      * @throws    IndexOutOfBoundsException if the
 414      * {@code beginIndex} is negative, or {@code endIndex}
 415      * is larger than the length of this sequence, or
 416      * {@code beginIndex} is larger than {@code endIndex}.
 417      */
 418     public int codePointCount(int beginIndex, int endIndex) {
 419         if (beginIndex < 0 || endIndex > count || beginIndex > endIndex) {
 420             throw new IndexOutOfBoundsException();
 421         }
 422         if (isLatin1()) {
 423             return endIndex - beginIndex;
 424         }
 425         return StringUTF16.codePointCountSB(value, beginIndex, endIndex);
 426     }
 427 
 428     /**
 429      * Returns the index within this sequence that is offset from the
 430      * given {@code index} by {@code codePointOffset} code
 431      * points. Unpaired surrogates within the text range given by
 432      * {@code index} and {@code codePointOffset} count as
 433      * one code point each.
 434      *
 435      * @param index the index to be offset
 436      * @param codePointOffset the offset in code points
 437      * @return the index within this sequence
 438      * @throws    IndexOutOfBoundsException if {@code index}
 439      *   is negative or larger then the length of this sequence,
 440      *   or if {@code codePointOffset} is positive and the subsequence
 441      *   starting with {@code index} has fewer than
 442      *   {@code codePointOffset} code points,
 443      *   or if {@code codePointOffset} is negative and the subsequence
 444      *   before {@code index} has fewer than the absolute value of
 445      *   {@code codePointOffset} code points.
 446      */
 447     public int offsetByCodePoints(int index, int codePointOffset) {
 448         if (index < 0 || index > count) {
 449             throw new IndexOutOfBoundsException();
 450         }
 451         return Character.offsetByCodePoints(this,
 452                                             index, codePointOffset);
 453     }
 454 
 455     /**
 456      * Characters are copied from this sequence into the
 457      * destination character array {@code dst}. The first character to
 458      * be copied is at index {@code srcBegin}; the last character to
 459      * be copied is at index {@code srcEnd-1}. The total number of
 460      * characters to be copied is {@code srcEnd-srcBegin}. The
 461      * characters are copied into the subarray of {@code dst} starting
 462      * at index {@code dstBegin} and ending at index:
 463      * <pre>{@code
 464      * dstbegin + (srcEnd-srcBegin) - 1
 465      * }</pre>
 466      *
 467      * @param      srcBegin   start copying at this offset.
 468      * @param      srcEnd     stop copying at this offset.
 469      * @param      dst        the array to copy the data into.
 470      * @param      dstBegin   offset into {@code dst}.
 471      * @throws     IndexOutOfBoundsException  if any of the following is true:
 472      *             <ul>
 473      *             <li>{@code srcBegin} is negative
 474      *             <li>{@code dstBegin} is negative
 475      *             <li>the {@code srcBegin} argument is greater than
 476      *             the {@code srcEnd} argument.
 477      *             <li>{@code srcEnd} is greater than
 478      *             {@code this.length()}.
 479      *             <li>{@code dstBegin+srcEnd-srcBegin} is greater than
 480      *             {@code dst.length}
 481      *             </ul>
 482      */
 483     public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)
 484     {
 485         checkRangeSIOOBE(srcBegin, srcEnd, count);  // compatible to old version
 486         int n = srcEnd - srcBegin;
 487         checkRange(dstBegin, dstBegin + n, dst.length);
 488         if (isLatin1()) {
 489             StringLatin1.getChars(value, srcBegin, srcEnd, dst, dstBegin);
 490         } else {
 491             StringUTF16.getChars(value, srcBegin, srcEnd, dst, dstBegin);
 492         }
 493     }
 494 
 495     /**
 496      * The character at the specified index is set to {@code ch}. This
 497      * sequence is altered to represent a new character sequence that is
 498      * identical to the old character sequence, except that it contains the
 499      * character {@code ch} at position {@code index}.
 500      * <p>
 501      * The index argument must be greater than or equal to
 502      * {@code 0}, and less than the length of this sequence.
 503      *
 504      * @param      index   the index of the character to modify.
 505      * @param      ch      the new character.
 506      * @throws     IndexOutOfBoundsException  if {@code index} is
 507      *             negative or greater than or equal to {@code length()}.
 508      */
 509     public void setCharAt(int index, char ch) {
 510         checkIndex(index, count);
 511         if (isLatin1() && StringLatin1.canEncode(ch)) {
 512             value[index] = (byte)ch;
 513         } else {
 514             if (isLatin1()) {
 515                 inflate();
 516             }
 517             StringUTF16.putCharSB(value, index, ch);
 518         }
 519     }
 520 
 521     /**
 522      * Appends the string representation of the {@code Object} argument.
 523      * <p>
 524      * The overall effect is exactly as if the argument were converted
 525      * to a string by the method {@link String#valueOf(Object)},
 526      * and the characters of that string were then
 527      * {@link #append(String) appended} to this character sequence.
 528      *
 529      * @param   obj   an {@code Object}.
 530      * @return  a reference to this object.
 531      */
 532     public AbstractStringBuilder append(Object obj) {
 533         return append(String.valueOf(obj));
 534     }
 535 
 536     /**
 537      * Appends the specified string to this character sequence.
 538      * <p>
 539      * The characters of the {@code String} argument are appended, in
 540      * order, increasing the length of this sequence by the length of the
 541      * argument. If {@code str} is {@code null}, then the four
 542      * characters {@code "null"} are appended.
 543      * <p>
 544      * Let <i>n</i> be the length of this character sequence just prior to
 545      * execution of the {@code append} method. Then the character at
 546      * index <i>k</i> in the new character sequence is equal to the character
 547      * at index <i>k</i> in the old character sequence, if <i>k</i> is less
 548      * than <i>n</i>; otherwise, it is equal to the character at index
 549      * <i>k-n</i> in the argument {@code str}.
 550      *
 551      * @param   str   a string.
 552      * @return  a reference to this object.
 553      */
 554     public AbstractStringBuilder append(String str) {
 555         if (str == null) {
 556             return appendNull();
 557         }
 558         int len = str.length();
 559         ensureCapacityInternal(count + len);
 560         putStringAt(count, str);
 561         count += len;
 562         return this;
 563     }
 564 
 565     // Documentation in subclasses because of synchro difference
 566     public AbstractStringBuilder append(StringBuffer sb) {
 567         return this.append((AbstractStringBuilder)sb);
 568     }
 569 
 570     /**
 571      * @since 1.8
 572      */
 573     AbstractStringBuilder append(AbstractStringBuilder asb) {
 574         if (asb == null) {
 575             return appendNull();
 576         }
 577         int len = asb.length();
 578         ensureCapacityInternal(count + len);
 579         if (getCoder() != asb.getCoder()) {
 580             inflate();
 581         }
 582         asb.getBytes(value, count, coder);
 583         count += len;
 584         return this;
 585     }
 586 
 587     // Documentation in subclasses because of synchro difference
 588     @Override
 589     public AbstractStringBuilder append(CharSequence s) {
 590         if (s == null) {
 591             return appendNull();
 592         }
 593         if (s instanceof String) {
 594             return this.append((String)s);
 595         }
 596         if (s instanceof AbstractStringBuilder) {
 597             return this.append((AbstractStringBuilder)s);
 598         }
 599         return this.append(s, 0, s.length());
 600     }
 601 
 602     private AbstractStringBuilder appendNull() {
 603         ensureCapacityInternal(count + 4);
 604         int count = this.count;
 605         byte[] val = this.value;
 606         if (isLatin1()) {
 607             val[count++] = 'n';
 608             val[count++] = 'u';
 609             val[count++] = 'l';
 610             val[count++] = 'l';
 611         } else {
 612             count = StringUTF16.putCharsAt(val, count, 'n', 'u', 'l', 'l');
 613         }
 614         this.count = count;
 615         return this;
 616     }
 617 
 618     /**
 619      * Appends a subsequence of the specified {@code CharSequence} to this
 620      * sequence.
 621      * <p>
 622      * Characters of the argument {@code s}, starting at
 623      * index {@code start}, are appended, in order, to the contents of
 624      * this sequence up to the (exclusive) index {@code end}. The length
 625      * of this sequence is increased by the value of {@code end - start}.
 626      * <p>
 627      * Let <i>n</i> be the length of this character sequence just prior to
 628      * execution of the {@code append} method. Then the character at
 629      * index <i>k</i> in this character sequence becomes equal to the
 630      * character at index <i>k</i> in this sequence, if <i>k</i> is less than
 631      * <i>n</i>; otherwise, it is equal to the character at index
 632      * <i>k+start-n</i> in the argument {@code s}.
 633      * <p>
 634      * If {@code s} is {@code null}, then this method appends
 635      * characters as if the s parameter was a sequence containing the four
 636      * characters {@code "null"}.
 637      *
 638      * @param   s the sequence to append.
 639      * @param   start   the starting index of the subsequence to be appended.
 640      * @param   end     the end index of the subsequence to be appended.
 641      * @return  a reference to this object.
 642      * @throws     IndexOutOfBoundsException if
 643      *             {@code start} is negative, or
 644      *             {@code start} is greater than {@code end} or
 645      *             {@code end} is greater than {@code s.length()}
 646      */
 647     @Override
 648     public AbstractStringBuilder append(CharSequence s, int start, int end) {
 649         if (s == null) {
 650             s = "null";
 651         }
 652         checkRange(start, end, s.length());
 653         int len = end - start;
 654         ensureCapacityInternal(count + len);
 655         appendChars(s, start, end);
 656         return this;
 657     }
 658 
 659     /**
 660      * Appends the string representation of the {@code char} array
 661      * argument to this sequence.
 662      * <p>
 663      * The characters of the array argument are appended, in order, to
 664      * the contents of this sequence. The length of this sequence
 665      * increases by the length of the argument.
 666      * <p>
 667      * The overall effect is exactly as if the argument were converted
 668      * to a string by the method {@link String#valueOf(char[])},
 669      * and the characters of that string were then
 670      * {@link #append(String) appended} to this character sequence.
 671      *
 672      * @param   str   the characters to be appended.
 673      * @return  a reference to this object.
 674      */
 675     public AbstractStringBuilder append(char[] str) {
 676         int len = str.length;
 677         ensureCapacityInternal(count + len);
 678         appendChars(str, 0, len);
 679         return this;
 680     }
 681 
 682     /**
 683      * Appends the string representation of a subarray of the
 684      * {@code char} array argument to this sequence.
 685      * <p>
 686      * Characters of the {@code char} array {@code str}, starting at
 687      * index {@code offset}, are appended, in order, to the contents
 688      * of this sequence. The length of this sequence increases
 689      * by the value of {@code len}.
 690      * <p>
 691      * The overall effect is exactly as if the arguments were converted
 692      * to a string by the method {@link String#valueOf(char[],int,int)},
 693      * and the characters of that string were then
 694      * {@link #append(String) appended} to this character sequence.
 695      *
 696      * @param   str      the characters to be appended.
 697      * @param   offset   the index of the first {@code char} to append.
 698      * @param   len      the number of {@code char}s to append.
 699      * @return  a reference to this object.
 700      * @throws IndexOutOfBoundsException
 701      *         if {@code offset < 0} or {@code len < 0}
 702      *         or {@code offset+len > str.length}
 703      */
 704     public AbstractStringBuilder append(char str[], int offset, int len) {
 705         int end = offset + len;
 706         checkRange(offset, end, str.length);
 707         ensureCapacityInternal(count + len);
 708         appendChars(str, offset, end);
 709         return this;
 710     }
 711 
 712     /**
 713      * Appends the string representation of the {@code boolean}
 714      * argument to the sequence.
 715      * <p>
 716      * The overall effect is exactly as if the argument were converted
 717      * to a string by the method {@link String#valueOf(boolean)},
 718      * and the characters of that string were then
 719      * {@link #append(String) appended} to this character sequence.
 720      *
 721      * @param   b   a {@code boolean}.
 722      * @return  a reference to this object.
 723      */
 724     public AbstractStringBuilder append(boolean b) {
 725         ensureCapacityInternal(count + (b ? 4 : 5));
 726         int count = this.count;
 727         byte[] val = this.value;
 728         if (isLatin1()) {
 729             if (b) {
 730                 val[count++] = 't';
 731                 val[count++] = 'r';
 732                 val[count++] = 'u';
 733                 val[count++] = 'e';
 734             } else {
 735                 val[count++] = 'f';
 736                 val[count++] = 'a';
 737                 val[count++] = 'l';
 738                 val[count++] = 's';
 739                 val[count++] = 'e';
 740             }
 741         } else {
 742             if (b) {
 743                 count = StringUTF16.putCharsAt(val, count, 't', 'r', 'u', 'e');
 744             } else {
 745                 count = StringUTF16.putCharsAt(val, count, 'f', 'a', 'l', 's', 'e');
 746             }
 747         }
 748         this.count = count;
 749         return this;
 750     }
 751 
 752     /**
 753      * Appends the string representation of the {@code char}
 754      * argument to this sequence.
 755      * <p>
 756      * The argument is appended to the contents of this sequence.
 757      * The length of this sequence increases by {@code 1}.
 758      * <p>
 759      * The overall effect is exactly as if the argument were converted
 760      * to a string by the method {@link String#valueOf(char)},
 761      * and the character in that string were then
 762      * {@link #append(String) appended} to this character sequence.
 763      *
 764      * @param   c   a {@code char}.
 765      * @return  a reference to this object.
 766      */
 767     @Override
 768     public AbstractStringBuilder append(char c) {
 769         ensureCapacityInternal(count + 1);
 770         if (isLatin1() && StringLatin1.canEncode(c)) {
 771             value[count++] = (byte)c;
 772         } else {
 773             if (isLatin1()) {
 774                 inflate();
 775             }
 776             StringUTF16.putCharSB(value, count++, c);
 777         }
 778         return this;
 779     }
 780 
 781     /**
 782      * Appends the string representation of the {@code int}
 783      * argument to this sequence.
 784      * <p>
 785      * The overall effect is exactly as if the argument were converted
 786      * to a string by the method {@link String#valueOf(int)},
 787      * and the characters of that string were then
 788      * {@link #append(String) appended} to this character sequence.
 789      *
 790      * @param   i   an {@code int}.
 791      * @return  a reference to this object.
 792      */
 793     public AbstractStringBuilder append(int i) {
 794         int count = this.count;
 795         int spaceNeeded = count + Integer.stringSize(i);
 796         ensureCapacityInternal(spaceNeeded);
 797         if (isLatin1()) {
 798             Integer.getChars(i, spaceNeeded, value);
 799         } else {
 800             StringUTF16.getChars(i, count, spaceNeeded, value);
 801         }
 802         this.count = spaceNeeded;
 803         return this;
 804     }
 805 
 806     /**
 807      * Appends the string representation of the {@code long}
 808      * argument to this sequence.
 809      * <p>
 810      * The overall effect is exactly as if the argument were converted
 811      * to a string by the method {@link String#valueOf(long)},
 812      * and the characters of that string were then
 813      * {@link #append(String) appended} to this character sequence.
 814      *
 815      * @param   l   a {@code long}.
 816      * @return  a reference to this object.
 817      */
 818     public AbstractStringBuilder append(long l) {
 819         int count = this.count;
 820         int spaceNeeded = count + Long.stringSize(l);
 821         ensureCapacityInternal(spaceNeeded);
 822         if (isLatin1()) {
 823             Long.getChars(l, spaceNeeded, value);
 824         } else {
 825             StringUTF16.getChars(l, count, spaceNeeded, value);
 826         }
 827         this.count = spaceNeeded;
 828         return this;
 829     }
 830 
 831     /**
 832      * Appends the string representation of the {@code float}
 833      * argument to this sequence.
 834      * <p>
 835      * The overall effect is exactly as if the argument were converted
 836      * to a string by the method {@link String#valueOf(float)},
 837      * and the characters of that string were then
 838      * {@link #append(String) appended} to this character sequence.
 839      *
 840      * @param   f   a {@code float}.
 841      * @return  a reference to this object.
 842      */
 843     public AbstractStringBuilder append(float f) {
 844         FloatingDecimal.appendTo(f,this);
 845         return this;
 846     }
 847 
 848     /**
 849      * Appends the string representation of the {@code double}
 850      * argument to this sequence.
 851      * <p>
 852      * The overall effect is exactly as if the argument were converted
 853      * to a string by the method {@link String#valueOf(double)},
 854      * and the characters of that string were then
 855      * {@link #append(String) appended} to this character sequence.
 856      *
 857      * @param   d   a {@code double}.
 858      * @return  a reference to this object.
 859      */
 860     public AbstractStringBuilder append(double d) {
 861         FloatingDecimal.appendTo(d,this);
 862         return this;
 863     }
 864 
 865     /**
 866      * Removes the characters in a substring of this sequence.
 867      * The substring begins at the specified {@code start} and extends to
 868      * the character at index {@code end - 1} or to the end of the
 869      * sequence if no such character exists. If
 870      * {@code start} is equal to {@code end}, no changes are made.
 871      *
 872      * @param      start  The beginning index, inclusive.
 873      * @param      end    The ending index, exclusive.
 874      * @return     This object.
 875      * @throws     StringIndexOutOfBoundsException  if {@code start}
 876      *             is negative, greater than {@code length()}, or
 877      *             greater than {@code end}.
 878      */
 879     public AbstractStringBuilder delete(int start, int end) {
 880         int count = this.count;
 881         if (end > count) {
 882             end = count;
 883         }
 884         checkRangeSIOOBE(start, end, count);
 885         int len = end - start;
 886         if (len > 0) {
 887             shift(end, -len);
 888             this.count = count - len;
 889         }
 890         return this;
 891     }
 892 
 893     /**
 894      * Appends the string representation of the {@code codePoint}
 895      * argument to this sequence.
 896      *
 897      * <p> The argument is appended to the contents of this sequence.
 898      * The length of this sequence increases by
 899      * {@link Character#charCount(int) Character.charCount(codePoint)}.
 900      *
 901      * <p> The overall effect is exactly as if the argument were
 902      * converted to a {@code char} array by the method
 903      * {@link Character#toChars(int)} and the character in that array
 904      * were then {@link #append(char[]) appended} to this character
 905      * sequence.
 906      *
 907      * @param   codePoint   a Unicode code point
 908      * @return  a reference to this object.
 909      * @throws    IllegalArgumentException if the specified
 910      * {@code codePoint} isn't a valid Unicode code point
 911      */
 912     public AbstractStringBuilder appendCodePoint(int codePoint) {
 913         if (Character.isBmpCodePoint(codePoint)) {
 914             return append((char)codePoint);
 915         }
 916         return append(Character.toChars(codePoint));
 917     }
 918 
 919     /**
 920      * Removes the {@code char} at the specified position in this
 921      * sequence. This sequence is shortened by one {@code char}.
 922      *
 923      * <p>Note: If the character at the given index is a supplementary
 924      * character, this method does not remove the entire character. If
 925      * correct handling of supplementary characters is required,
 926      * determine the number of {@code char}s to remove by calling
 927      * {@code Character.charCount(thisSequence.codePointAt(index))},
 928      * where {@code thisSequence} is this sequence.
 929      *
 930      * @param       index  Index of {@code char} to remove
 931      * @return      This object.
 932      * @throws      StringIndexOutOfBoundsException  if the {@code index}
 933      *              is negative or greater than or equal to
 934      *              {@code length()}.
 935      */
 936     public AbstractStringBuilder deleteCharAt(int index) {
 937         checkIndex(index, count);
 938         shift(index + 1, -1);
 939         count--;
 940         return this;
 941     }
 942 
 943     /**
 944      * Replaces the characters in a substring of this sequence
 945      * with characters in the specified {@code String}. The substring
 946      * begins at the specified {@code start} and extends to the character
 947      * at index {@code end - 1} or to the end of the
 948      * sequence if no such character exists. First the
 949      * characters in the substring are removed and then the specified
 950      * {@code String} is inserted at {@code start}. (This
 951      * sequence will be lengthened to accommodate the
 952      * specified String if necessary.)
 953      *
 954      * @param      start    The beginning index, inclusive.
 955      * @param      end      The ending index, exclusive.
 956      * @param      str   String that will replace previous contents.
 957      * @return     This object.
 958      * @throws     StringIndexOutOfBoundsException  if {@code start}
 959      *             is negative, greater than {@code length()}, or
 960      *             greater than {@code end}.
 961      */
 962     public AbstractStringBuilder replace(int start, int end, String str) {
 963         int count = this.count;
 964         if (end > count) {
 965             end = count;
 966         }
 967         checkRangeSIOOBE(start, end, count);
 968         int len = str.length();
 969         int newCount = count + len - (end - start);
 970         ensureCapacityInternal(newCount);
 971         shift(end, newCount - count);
 972         this.count = newCount;
 973         putStringAt(start, str);
 974         return this;
 975     }
 976 
 977     /**
 978      * Returns a new {@code String} that contains a subsequence of
 979      * characters currently contained in this character sequence. The
 980      * substring begins at the specified index and extends to the end of
 981      * this sequence.
 982      *
 983      * @param      start    The beginning index, inclusive.
 984      * @return     The new string.
 985      * @throws     StringIndexOutOfBoundsException  if {@code start} is
 986      *             less than zero, or greater than the length of this object.
 987      */
 988     public String substring(int start) {
 989         return substring(start, count);
 990     }
 991 
 992     /**
 993      * Returns a new character sequence that is a subsequence of this sequence.
 994      *
 995      * <p> An invocation of this method of the form
 996      *
 997      * <pre>{@code
 998      * sb.subSequence(begin,&nbsp;end)}</pre>
 999      *
1000      * behaves in exactly the same way as the invocation
1001      *
1002      * <pre>{@code
1003      * sb.substring(begin,&nbsp;end)}</pre>
1004      *
1005      * This method is provided so that this class can
1006      * implement the {@link CharSequence} interface.
1007      *
1008      * @param      start   the start index, inclusive.
1009      * @param      end     the end index, exclusive.
1010      * @return     the specified subsequence.
1011      *
1012      * @throws  IndexOutOfBoundsException
1013      *          if {@code start} or {@code end} are negative,
1014      *          if {@code end} is greater than {@code length()},
1015      *          or if {@code start} is greater than {@code end}
1016      * @spec JSR-51
1017      */
1018     @Override
1019     public CharSequence subSequence(int start, int end) {
1020         return substring(start, end);
1021     }
1022 
1023     /**
1024      * Returns a new {@code String} that contains a subsequence of
1025      * characters currently contained in this sequence. The
1026      * substring begins at the specified {@code start} and
1027      * extends to the character at index {@code end - 1}.
1028      *
1029      * @param      start    The beginning index, inclusive.
1030      * @param      end      The ending index, exclusive.
1031      * @return     The new string.
1032      * @throws     StringIndexOutOfBoundsException  if {@code start}
1033      *             or {@code end} are negative or greater than
1034      *             {@code length()}, or {@code start} is
1035      *             greater than {@code end}.
1036      */
1037     public String substring(int start, int end) {
1038         checkRangeSIOOBE(start, end, count);
1039         if (isLatin1()) {
1040             return StringLatin1.newString(value, start, end - start);
1041         }
1042         return StringUTF16.newString(value, start, end - start);
1043     }
1044 
1045     private void shift(int offset, int n) {
1046         System.arraycopy(value, offset << coder,
1047                          value, (offset + n) << coder, (count - offset) << coder);
1048     }
1049 
1050     /**
1051      * Inserts the string representation of a subarray of the {@code str}
1052      * array argument into this sequence. The subarray begins at the
1053      * specified {@code offset} and extends {@code len} {@code char}s.
1054      * The characters of the subarray are inserted into this sequence at
1055      * the position indicated by {@code index}. The length of this
1056      * sequence increases by {@code len} {@code char}s.
1057      *
1058      * @param      index    position at which to insert subarray.
1059      * @param      str       A {@code char} array.
1060      * @param      offset   the index of the first {@code char} in subarray to
1061      *             be inserted.
1062      * @param      len      the number of {@code char}s in the subarray to
1063      *             be inserted.
1064      * @return     This object
1065      * @throws     StringIndexOutOfBoundsException  if {@code index}
1066      *             is negative or greater than {@code length()}, or
1067      *             {@code offset} or {@code len} are negative, or
1068      *             {@code (offset+len)} is greater than
1069      *             {@code str.length}.
1070      */
1071     public AbstractStringBuilder insert(int index, char[] str, int offset,
1072                                         int len)
1073     {
1074         checkOffset(index, count);
1075         checkRangeSIOOBE(offset, offset + len, str.length);
1076         ensureCapacityInternal(count + len);
1077         shift(index, len);
1078         count += len;
1079         putCharsAt(index, str, offset, offset + len);
1080         return this;
1081     }
1082 
1083     /**
1084      * Inserts the string representation of the {@code Object}
1085      * argument into this character sequence.
1086      * <p>
1087      * The overall effect is exactly as if the second argument were
1088      * converted to a string by the method {@link String#valueOf(Object)},
1089      * and the characters of that string were then
1090      * {@link #insert(int,String) inserted} into this character
1091      * sequence at the indicated offset.
1092      * <p>
1093      * The {@code offset} argument must be greater than or equal to
1094      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1095      * of this sequence.
1096      *
1097      * @param      offset   the offset.
1098      * @param      obj      an {@code Object}.
1099      * @return     a reference to this object.
1100      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1101      */
1102     public AbstractStringBuilder insert(int offset, Object obj) {
1103         return insert(offset, String.valueOf(obj));
1104     }
1105 
1106     /**
1107      * Inserts the string into this character sequence.
1108      * <p>
1109      * The characters of the {@code String} argument are inserted, in
1110      * order, into this sequence at the indicated offset, moving up any
1111      * characters originally above that position and increasing the length
1112      * of this sequence by the length of the argument. If
1113      * {@code str} is {@code null}, then the four characters
1114      * {@code "null"} are inserted into this sequence.
1115      * <p>
1116      * The character at index <i>k</i> in the new character sequence is
1117      * equal to:
1118      * <ul>
1119      * <li>the character at index <i>k</i> in the old character sequence, if
1120      * <i>k</i> is less than {@code offset}
1121      * <li>the character at index <i>k</i>{@code -offset} in the
1122      * argument {@code str}, if <i>k</i> is not less than
1123      * {@code offset} but is less than {@code offset+str.length()}
1124      * <li>the character at index <i>k</i>{@code -str.length()} in the
1125      * old character sequence, if <i>k</i> is not less than
1126      * {@code offset+str.length()}
1127      * </ul><p>
1128      * The {@code offset} argument must be greater than or equal to
1129      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1130      * of this sequence.
1131      *
1132      * @param      offset   the offset.
1133      * @param      str      a string.
1134      * @return     a reference to this object.
1135      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1136      */
1137     public AbstractStringBuilder insert(int offset, String str) {
1138         checkOffset(offset, count);
1139         if (str == null) {
1140             str = "null";
1141         }
1142         int len = str.length();
1143         ensureCapacityInternal(count + len);
1144         shift(offset, len);
1145         count += len;
1146         putStringAt(offset, str);
1147         return this;
1148     }
1149 
1150     /**
1151      * Inserts the string representation of the {@code char} array
1152      * argument into this sequence.
1153      * <p>
1154      * The characters of the array argument are inserted into the
1155      * contents of this sequence at the position indicated by
1156      * {@code offset}. The length of this sequence increases by
1157      * the length of the argument.
1158      * <p>
1159      * The overall effect is exactly as if the second argument were
1160      * converted to a string by the method {@link String#valueOf(char[])},
1161      * and the characters of that string were then
1162      * {@link #insert(int,String) inserted} into this character
1163      * sequence at the indicated offset.
1164      * <p>
1165      * The {@code offset} argument must be greater than or equal to
1166      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1167      * of this sequence.
1168      *
1169      * @param      offset   the offset.
1170      * @param      str      a character array.
1171      * @return     a reference to this object.
1172      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1173      */
1174     public AbstractStringBuilder insert(int offset, char[] str) {
1175         checkOffset(offset, count);
1176         int len = str.length;
1177         ensureCapacityInternal(count + len);
1178         shift(offset, len);
1179         count += len;
1180         putCharsAt(offset, str, 0, len);
1181         return this;
1182     }
1183 
1184     /**
1185      * Inserts the specified {@code CharSequence} into this sequence.
1186      * <p>
1187      * The characters of the {@code CharSequence} argument are inserted,
1188      * in order, into this sequence at the indicated offset, moving up
1189      * any characters originally above that position and increasing the length
1190      * of this sequence by the length of the argument s.
1191      * <p>
1192      * The result of this method is exactly the same as if it were an
1193      * invocation of this object's
1194      * {@link #insert(int,CharSequence,int,int) insert}(dstOffset, s, 0, s.length())
1195      * method.
1196      *
1197      * <p>If {@code s} is {@code null}, then the four characters
1198      * {@code "null"} are inserted into this sequence.
1199      *
1200      * @param      dstOffset   the offset.
1201      * @param      s the sequence to be inserted
1202      * @return     a reference to this object.
1203      * @throws     IndexOutOfBoundsException  if the offset is invalid.
1204      */
1205     public AbstractStringBuilder insert(int dstOffset, CharSequence s) {
1206         if (s == null) {
1207             s = "null";
1208         }
1209         if (s instanceof String) {
1210             return this.insert(dstOffset, (String)s);
1211         }
1212         return this.insert(dstOffset, s, 0, s.length());
1213     }
1214 
1215     /**
1216      * Inserts a subsequence of the specified {@code CharSequence} into
1217      * this sequence.
1218      * <p>
1219      * The subsequence of the argument {@code s} specified by
1220      * {@code start} and {@code end} are inserted,
1221      * in order, into this sequence at the specified destination offset, moving
1222      * up any characters originally above that position. The length of this
1223      * sequence is increased by {@code end - start}.
1224      * <p>
1225      * The character at index <i>k</i> in this sequence becomes equal to:
1226      * <ul>
1227      * <li>the character at index <i>k</i> in this sequence, if
1228      * <i>k</i> is less than {@code dstOffset}
1229      * <li>the character at index <i>k</i>{@code +start-dstOffset} in
1230      * the argument {@code s}, if <i>k</i> is greater than or equal to
1231      * {@code dstOffset} but is less than {@code dstOffset+end-start}
1232      * <li>the character at index <i>k</i>{@code -(end-start)} in this
1233      * sequence, if <i>k</i> is greater than or equal to
1234      * {@code dstOffset+end-start}
1235      * </ul><p>
1236      * The {@code dstOffset} argument must be greater than or equal to
1237      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1238      * of this sequence.
1239      * <p>The start argument must be nonnegative, and not greater than
1240      * {@code end}.
1241      * <p>The end argument must be greater than or equal to
1242      * {@code start}, and less than or equal to the length of s.
1243      *
1244      * <p>If {@code s} is {@code null}, then this method inserts
1245      * characters as if the s parameter was a sequence containing the four
1246      * characters {@code "null"}.
1247      *
1248      * @param      dstOffset   the offset in this sequence.
1249      * @param      s       the sequence to be inserted.
1250      * @param      start   the starting index of the subsequence to be inserted.
1251      * @param      end     the end index of the subsequence to be inserted.
1252      * @return     a reference to this object.
1253      * @throws     IndexOutOfBoundsException  if {@code dstOffset}
1254      *             is negative or greater than {@code this.length()}, or
1255      *              {@code start} or {@code end} are negative, or
1256      *              {@code start} is greater than {@code end} or
1257      *              {@code end} is greater than {@code s.length()}
1258      */
1259     public AbstractStringBuilder insert(int dstOffset, CharSequence s,
1260                                         int start, int end)
1261     {
1262         if (s == null) {
1263             s = "null";
1264         }
1265         checkOffset(dstOffset, count);
1266         checkRange(start, end, s.length());
1267         int len = end - start;
1268         ensureCapacityInternal(count + len);
1269         shift(dstOffset, len);
1270         count += len;
1271         putCharsAt(dstOffset, s, start, end);
1272         return this;
1273     }
1274 
1275     /**
1276      * Inserts the string representation of the {@code boolean}
1277      * argument into this sequence.
1278      * <p>
1279      * The overall effect is exactly as if the second argument were
1280      * converted to a string by the method {@link String#valueOf(boolean)},
1281      * and the characters of that string were then
1282      * {@link #insert(int,String) inserted} into this character
1283      * sequence at the indicated offset.
1284      * <p>
1285      * The {@code offset} argument must be greater than or equal to
1286      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1287      * of this sequence.
1288      *
1289      * @param      offset   the offset.
1290      * @param      b        a {@code boolean}.
1291      * @return     a reference to this object.
1292      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1293      */
1294     public AbstractStringBuilder insert(int offset, boolean b) {
1295         return insert(offset, String.valueOf(b));
1296     }
1297 
1298     /**
1299      * Inserts the string representation of the {@code char}
1300      * argument into this sequence.
1301      * <p>
1302      * The overall effect is exactly as if the second argument were
1303      * converted to a string by the method {@link String#valueOf(char)},
1304      * and the character in that string were then
1305      * {@link #insert(int,String) inserted} into this character
1306      * sequence at the indicated offset.
1307      * <p>
1308      * The {@code offset} argument must be greater than or equal to
1309      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1310      * of this sequence.
1311      *
1312      * @param      offset   the offset.
1313      * @param      c        a {@code char}.
1314      * @return     a reference to this object.
1315      * @throws     IndexOutOfBoundsException  if the offset is invalid.
1316      */
1317     public AbstractStringBuilder insert(int offset, char c) {
1318         checkOffset(offset, count);
1319         ensureCapacityInternal(count + 1);
1320         shift(offset, 1);
1321         count += 1;
1322         if (isLatin1() && StringLatin1.canEncode(c)) {
1323             value[offset] = (byte)c;
1324         } else {
1325             if (isLatin1()) {
1326                 inflate();
1327             }
1328             StringUTF16.putCharSB(value, offset, c);
1329         }
1330         return this;
1331     }
1332 
1333     /**
1334      * Inserts the string representation of the second {@code int}
1335      * argument into this sequence.
1336      * <p>
1337      * The overall effect is exactly as if the second argument were
1338      * converted to a string by the method {@link String#valueOf(int)},
1339      * and the characters of that string were then
1340      * {@link #insert(int,String) inserted} into this character
1341      * sequence at the indicated offset.
1342      * <p>
1343      * The {@code offset} argument must be greater than or equal to
1344      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1345      * of this sequence.
1346      *
1347      * @param      offset   the offset.
1348      * @param      i        an {@code int}.
1349      * @return     a reference to this object.
1350      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1351      */
1352     public AbstractStringBuilder insert(int offset, int i) {
1353         return insert(offset, String.valueOf(i));
1354     }
1355 
1356     /**
1357      * Inserts the string representation of the {@code long}
1358      * argument into this sequence.
1359      * <p>
1360      * The overall effect is exactly as if the second argument were
1361      * converted to a string by the method {@link String#valueOf(long)},
1362      * and the characters of that string were then
1363      * {@link #insert(int,String) inserted} into this character
1364      * sequence at the indicated offset.
1365      * <p>
1366      * The {@code offset} argument must be greater than or equal to
1367      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1368      * of this sequence.
1369      *
1370      * @param      offset   the offset.
1371      * @param      l        a {@code long}.
1372      * @return     a reference to this object.
1373      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1374      */
1375     public AbstractStringBuilder insert(int offset, long l) {
1376         return insert(offset, String.valueOf(l));
1377     }
1378 
1379     /**
1380      * Inserts the string representation of the {@code float}
1381      * argument into this sequence.
1382      * <p>
1383      * The overall effect is exactly as if the second argument were
1384      * converted to a string by the method {@link String#valueOf(float)},
1385      * and the characters of that string were then
1386      * {@link #insert(int,String) inserted} into this character
1387      * sequence at the indicated offset.
1388      * <p>
1389      * The {@code offset} argument must be greater than or equal to
1390      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1391      * of this sequence.
1392      *
1393      * @param      offset   the offset.
1394      * @param      f        a {@code float}.
1395      * @return     a reference to this object.
1396      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1397      */
1398     public AbstractStringBuilder insert(int offset, float f) {
1399         return insert(offset, String.valueOf(f));
1400     }
1401 
1402     /**
1403      * Inserts the string representation of the {@code double}
1404      * argument into this sequence.
1405      * <p>
1406      * The overall effect is exactly as if the second argument were
1407      * converted to a string by the method {@link String#valueOf(double)},
1408      * and the characters of that string were then
1409      * {@link #insert(int,String) inserted} into this character
1410      * sequence at the indicated offset.
1411      * <p>
1412      * The {@code offset} argument must be greater than or equal to
1413      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1414      * of this sequence.
1415      *
1416      * @param      offset   the offset.
1417      * @param      d        a {@code double}.
1418      * @return     a reference to this object.
1419      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1420      */
1421     public AbstractStringBuilder insert(int offset, double d) {
1422         return insert(offset, String.valueOf(d));
1423     }
1424 
1425     /**
1426      * Returns the index within this string of the first occurrence of the
1427      * specified substring.
1428      *
1429      * <p>The returned index is the smallest value {@code k} for which:
1430      * <pre>{@code
1431      * this.toString().startsWith(str, k)
1432      * }</pre>
1433      * If no such value of {@code k} exists, then {@code -1} is returned.
1434      *
1435      * @param   str   the substring to search for.
1436      * @return  the index of the first occurrence of the specified substring,
1437      *          or {@code -1} if there is no such occurrence.
1438      */
1439     public int indexOf(String str) {
1440         return indexOf(str, 0);
1441     }
1442 
1443     /**
1444      * Returns the index within this string of the first occurrence of the
1445      * specified substring, starting at the specified index.
1446      *
1447      * <p>The returned index is the smallest value {@code k} for which:
1448      * <pre>{@code
1449      *     k >= Math.min(fromIndex, this.length()) &&
1450      *                   this.toString().startsWith(str, k)
1451      * }</pre>
1452      * If no such value of {@code k} exists, then {@code -1} is returned.
1453      *
1454      * @param   str         the substring to search for.
1455      * @param   fromIndex   the index from which to start the search.
1456      * @return  the index of the first occurrence of the specified substring,
1457      *          starting at the specified index,
1458      *          or {@code -1} if there is no such occurrence.
1459      */
1460     public int indexOf(String str, int fromIndex) {
1461         return String.indexOf(value, coder, count, str, fromIndex);
1462     }
1463 
1464     /**
1465      * Returns the index within this string of the last occurrence of the
1466      * specified substring.  The last occurrence of the empty string "" is
1467      * considered to occur at the index value {@code this.length()}.
1468      *
1469      * <p>The returned index is the largest value {@code k} for which:
1470      * <pre>{@code
1471      * this.toString().startsWith(str, k)
1472      * }</pre>
1473      * If no such value of {@code k} exists, then {@code -1} is returned.
1474      *
1475      * @param   str   the substring to search for.
1476      * @return  the index of the last occurrence of the specified substring,
1477      *          or {@code -1} if there is no such occurrence.
1478      */
1479     public int lastIndexOf(String str) {
1480         return lastIndexOf(str, count);
1481     }
1482 
1483     /**
1484      * Returns the index within this string of the last occurrence of the
1485      * specified substring, searching backward starting at the specified index.
1486      *
1487      * <p>The returned index is the largest value {@code k} for which:
1488      * <pre>{@code
1489      *     k <= Math.min(fromIndex, this.length()) &&
1490      *                   this.toString().startsWith(str, k)
1491      * }</pre>
1492      * If no such value of {@code k} exists, then {@code -1} is returned.
1493      *
1494      * @param   str         the substring to search for.
1495      * @param   fromIndex   the index to start the search from.
1496      * @return  the index of the last occurrence of the specified substring,
1497      *          searching backward from the specified index,
1498      *          or {@code -1} if there is no such occurrence.
1499      */
1500     public int lastIndexOf(String str, int fromIndex) {
1501         return String.lastIndexOf(value, coder, count, str, fromIndex);
1502     }
1503 
1504     /**
1505      * Causes this character sequence to be replaced by the reverse of
1506      * the sequence. If there are any surrogate pairs included in the
1507      * sequence, these are treated as single characters for the
1508      * reverse operation. Thus, the order of the high-low surrogates
1509      * is never reversed.
1510      *
1511      * Let <i>n</i> be the character length of this character sequence
1512      * (not the length in {@code char} values) just prior to
1513      * execution of the {@code reverse} method. Then the
1514      * character at index <i>k</i> in the new character sequence is
1515      * equal to the character at index <i>n-k-1</i> in the old
1516      * character sequence.
1517      *
1518      * <p>Note that the reverse operation may result in producing
1519      * surrogate pairs that were unpaired low-surrogates and
1520      * high-surrogates before the operation. For example, reversing
1521      * "\u005CuDC00\u005CuD800" produces "\u005CuD800\u005CuDC00" which is
1522      * a valid surrogate pair.
1523      *
1524      * @return  a reference to this object.
1525      */
1526     public AbstractStringBuilder reverse() {
1527         byte[] val = this.value;
1528         int count = this.count;
1529         int coder = this.coder;
1530         int n = count - 1;
1531         if (COMPACT_STRINGS && coder == LATIN1) {
1532             for (int j = (n-1) >> 1; j >= 0; j--) {
1533                 int k = n - j;
1534                 byte cj = val[j];
1535                 val[j] = val[k];
1536                 val[k] = cj;
1537             }
1538         } else {
1539             StringUTF16.reverse(val, count);
1540         }
1541         return this;
1542     }
1543 
1544     /**
1545      * Returns a string representing the data in this sequence.
1546      * A new {@code String} object is allocated and initialized to
1547      * contain the character sequence currently represented by this
1548      * object. This {@code String} is then returned. Subsequent
1549      * changes to this sequence do not affect the contents of the
1550      * {@code String}.
1551      *
1552      * @return  a string representation of this sequence of characters.
1553      */
1554     @Override
1555     public abstract String toString();
1556 
1557     /**
1558      * {@inheritDoc}
1559      * @since 9
1560      */
1561     @Override
1562     public IntStream chars() {
1563         // Reuse String-based spliterator. This requires a supplier to
1564         // capture the value and count when the terminal operation is executed
1565         return StreamSupport.intStream(
1566                 () -> {
1567                     // The combined set of field reads are not atomic and thread
1568                     // safe but bounds checks will ensure no unsafe reads from
1569                     // the byte array
1570                     byte[] val = this.value;
1571                     int count = this.count;
1572                     byte coder = this.coder;
1573                     return coder == LATIN1
1574                            ? new StringLatin1.CharsSpliterator(val, 0, count, 0)
1575                            : new StringUTF16.CharsSpliterator(val, 0, count, 0);
1576                 },
1577                 Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED,
1578                 false);
1579     }
1580 
1581     /**
1582      * {@inheritDoc}
1583      * @since 9
1584      */
1585     @Override
1586     public IntStream codePoints() {
1587         // Reuse String-based spliterator. This requires a supplier to
1588         // capture the value and count when the terminal operation is executed
1589         return StreamSupport.intStream(
1590                 () -> {
1591                     // The combined set of field reads are not atomic and thread
1592                     // safe but bounds checks will ensure no unsafe reads from
1593                     // the byte array
1594                     byte[] val = this.value;
1595                     int count = this.count;
1596                     byte coder = this.coder;
1597                     return coder == LATIN1
1598                            ? new StringLatin1.CharsSpliterator(val, 0, count, 0)
1599                            : new StringUTF16.CodePointsSpliterator(val, 0, count, 0);
1600                 },
1601                 Spliterator.ORDERED,
1602                 false);
1603     }
1604 
1605     /**
1606      * Needed by {@code String} for the contentEquals method.
1607      */
1608     final byte[] getValue() {
1609         return value;
1610     }
1611 
1612     /*
1613      * Invoker guarantees it is in UTF16 (inflate itself for asb), if two
1614      * coders are different and the dstBegin has enough space
1615      *
1616      * @param dstBegin  the char index, not offset of byte[]
1617      * @param coder     the coder of dst[]
1618      */
1619     void getBytes(byte dst[], int dstBegin, byte coder) {
1620         if (this.coder == coder) {
1621             System.arraycopy(value, 0, dst, dstBegin << coder, count << coder);
1622         } else {        // this.coder == LATIN && coder == UTF16
1623             StringLatin1.inflate(value, 0, dst, dstBegin, count);
1624         }
1625     }
1626 
1627     /* for readObject() */
1628     void initBytes(char[] value, int off, int len) {
1629         if (String.COMPACT_STRINGS) {
1630             this.value = StringUTF16.compress(value, off, len);
1631             if (this.value != null) {
1632                 this.coder = LATIN1;
1633                 return;
1634             }
1635         }
1636         this.coder = UTF16;
1637         this.value = StringUTF16.toBytes(value, off, len);
1638     }
1639 
1640     final byte getCoder() {
1641         return COMPACT_STRINGS ? coder : UTF16;
1642     }
1643 
1644     final boolean isLatin1() {
1645         return COMPACT_STRINGS && coder == LATIN1;
1646     }
1647 
1648     private final void putCharsAt(int index, char[] s, int off, int end) {
1649         if (isLatin1()) {
1650             byte[] val = this.value;
1651             for (int i = off, j = index; i < end; i++) {
1652                 char c = s[i];
1653                 if (StringLatin1.canEncode(c)) {
1654                     val[j++] = (byte)c;
1655                 } else {
1656                     inflate();
1657                     StringUTF16.putCharsSB(this.value, j, s, i, end);
1658                     return;
1659                 }
1660             }
1661         } else {
1662             StringUTF16.putCharsSB(this.value, index, s, off, end);
1663         }
1664     }
1665 
1666     private final void putCharsAt(int index, CharSequence s, int off, int end) {
1667         if (isLatin1()) {
1668             byte[] val = this.value;
1669             for (int i = off, j = index; i < end; i++) {
1670                 char c = s.charAt(i);
1671                 if (StringLatin1.canEncode(c)) {
1672                     val[j++] = (byte)c;
1673                 } else {
1674                     inflate();
1675                     StringUTF16.putCharsSB(this.value, j, s, i, end);
1676                     return;
1677                 }
1678             }
1679         } else {
1680             StringUTF16.putCharsSB(this.value, index, s, off, end);
1681         }
1682     }
1683 
1684     private final void putStringAt(int index, String str) {
1685         if (getCoder() != str.coder()) {
1686             inflate();
1687         }
1688         str.getBytes(value, index, coder);
1689     }
1690 
1691     private final void appendChars(char[] s, int off, int end) {
1692         int count = this.count;
1693         if (isLatin1()) {
1694             byte[] val = this.value;
1695             for (int i = off, j = count; i < end; i++) {
1696                 char c = s[i];
1697                 if (StringLatin1.canEncode(c)) {
1698                     val[j++] = (byte)c;
1699                 } else {
1700                     this.count = count = j;
1701                     inflate();
1702                     StringUTF16.putCharsSB(this.value, j, s, i, end);
1703                     this.count = count + end - i;
1704                     return;
1705                 }
1706             }
1707         } else {
1708             StringUTF16.putCharsSB(this.value, count, s, off, end);
1709         }
1710         this.count = count + end - off;
1711     }
1712 
1713     private final void appendChars(CharSequence s, int off, int end) {
1714         if (isLatin1()) {
1715             byte[] val = this.value;
1716             for (int i = off, j = count; i < end; i++) {
1717                 char c = s.charAt(i);
1718                 if (StringLatin1.canEncode(c)) {
1719                     val[j++] = (byte)c;
1720                 } else {
1721                     count = j;
1722                     inflate();
1723                     StringUTF16.putCharsSB(this.value, j, s, i, end);
1724                     count += end - i;
1725                     return;
1726                 }
1727             }
1728         } else {
1729             StringUTF16.putCharsSB(this.value, count, s, off, end);
1730         }
1731         count += end - off;
1732     }
1733 
1734     /* IndexOutOfBoundsException, if out of bounds */
1735     private static void checkRange(int start, int end, int len) {
1736         if (start < 0 || start > end || end > len) {
1737             throw new IndexOutOfBoundsException(
1738                 "start " + start + ", end " + end + ", length " + len);
1739         }
1740     }
1741 
1742     /* StringIndexOutOfBoundsException, if out of bounds */
1743     private static void checkRangeSIOOBE(int start, int end, int len) {
1744         if (start < 0 || start > end || end > len) {
1745             throw new StringIndexOutOfBoundsException(
1746                 "start " + start + ", end " + end + ", length " + len);
1747         }
1748     }
1749 
1750     /**
1751      * Determines the "coder" of the given CharSequence.
1752      * If the coder cannot be determined, returns LATIN1.
1753      */
1754     static byte getCharSequenceCoderHint(CharSequence seq) {
1755         if (seq instanceof String) {
1756             return ((String)seq).coder();
1757         } else if (seq instanceof AbstractStringBuilder) {
1758             return ((AbstractStringBuilder)seq).getCoder();
1759         } else {
1760             return LATIN1;
1761         }
1762     }
1763 }