1 /*
   2  * Copyright (c) 1996, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 /*
  27  * Portions Copyright (c) 1995  Colin Plumb.  All rights reserved.
  28  */
  29 
  30 package java.math;
  31 
  32 import java.io.IOException;
  33 import java.io.ObjectInputStream;
  34 import java.io.ObjectOutputStream;
  35 import java.io.ObjectStreamField;
  36 import java.util.Arrays;
  37 import java.util.Objects;
  38 import java.util.Random;
  39 import java.util.concurrent.ThreadLocalRandom;
  40 
  41 import jdk.internal.math.DoubleConsts;
  42 import jdk.internal.math.FloatConsts;
  43 import jdk.internal.HotSpotIntrinsicCandidate;
  44 import jdk.internal.vm.annotation.Stable;
  45 
  46 /**
  47  * Immutable arbitrary-precision integers.  All operations behave as if
  48  * BigIntegers were represented in two's-complement notation (like Java's
  49  * primitive integer types).  BigInteger provides analogues to all of Java's
  50  * primitive integer operators, and all relevant methods from java.lang.Math.
  51  * Additionally, BigInteger provides operations for modular arithmetic, GCD
  52  * calculation, primality testing, prime generation, bit manipulation,
  53  * and a few other miscellaneous operations.
  54  *
  55  * <p>Semantics of arithmetic operations exactly mimic those of Java's integer
  56  * arithmetic operators, as defined in <i>The Java&trade; Language Specification</i>.
  57  * For example, division by zero throws an {@code ArithmeticException}, and
  58  * division of a negative by a positive yields a negative (or zero) remainder.
  59  *
  60  * <p>Semantics of shift operations extend those of Java's shift operators
  61  * to allow for negative shift distances.  A right-shift with a negative
  62  * shift distance results in a left shift, and vice-versa.  The unsigned
  63  * right shift operator ({@code >>>}) is omitted since this operation
  64  * only makes sense for a fixed sized word and not for a
  65  * representation conceptually having an infinite number of leading
  66  * virtual sign bits.
  67  *
  68  * <p>Semantics of bitwise logical operations exactly mimic those of Java's
  69  * bitwise integer operators.  The binary operators ({@code and},
  70  * {@code or}, {@code xor}) implicitly perform sign extension on the shorter
  71  * of the two operands prior to performing the operation.
  72  *
  73  * <p>Comparison operations perform signed integer comparisons, analogous to
  74  * those performed by Java's relational and equality operators.
  75  *
  76  * <p>Modular arithmetic operations are provided to compute residues, perform
  77  * exponentiation, and compute multiplicative inverses.  These methods always
  78  * return a non-negative result, between {@code 0} and {@code (modulus - 1)},
  79  * inclusive.
  80  *
  81  * <p>Bit operations operate on a single bit of the two's-complement
  82  * representation of their operand.  If necessary, the operand is sign-
  83  * extended so that it contains the designated bit.  None of the single-bit
  84  * operations can produce a BigInteger with a different sign from the
  85  * BigInteger being operated on, as they affect only a single bit, and the
  86  * arbitrarily large abstraction provided by this class ensures that conceptually
  87  * there are infinitely many "virtual sign bits" preceding each BigInteger.
  88  *
  89  * <p>For the sake of brevity and clarity, pseudo-code is used throughout the
  90  * descriptions of BigInteger methods.  The pseudo-code expression
  91  * {@code (i + j)} is shorthand for "a BigInteger whose value is
  92  * that of the BigInteger {@code i} plus that of the BigInteger {@code j}."
  93  * The pseudo-code expression {@code (i == j)} is shorthand for
  94  * "{@code true} if and only if the BigInteger {@code i} represents the same
  95  * value as the BigInteger {@code j}."  Other pseudo-code expressions are
  96  * interpreted similarly.
  97  *
  98  * <p>All methods and constructors in this class throw
  99  * {@code NullPointerException} when passed
 100  * a null object reference for any input parameter.
 101  *
 102  * BigInteger must support values in the range
 103  * -2<sup>{@code Integer.MAX_VALUE}</sup> (exclusive) to
 104  * +2<sup>{@code Integer.MAX_VALUE}</sup> (exclusive)
 105  * and may support values outside of that range.
 106  *
 107  * An {@code ArithmeticException} is thrown when a BigInteger
 108  * constructor or method would generate a value outside of the
 109  * supported range.
 110  *
 111  * The range of probable prime values is limited and may be less than
 112  * the full supported positive range of {@code BigInteger}.
 113  * The range must be at least 1 to 2<sup>500000000</sup>.
 114  *
 115  * @implNote
 116  * In the reference implementation, BigInteger constructors and
 117  * operations throw {@code ArithmeticException} when the result is out
 118  * of the supported range of
 119  * -2<sup>{@code Integer.MAX_VALUE}</sup> (exclusive) to
 120  * +2<sup>{@code Integer.MAX_VALUE}</sup> (exclusive).
 121  *
 122  * @see     BigDecimal
 123  * @jls     4.2.2 Integer Operations
 124  * @author  Josh Bloch
 125  * @author  Michael McCloskey
 126  * @author  Alan Eliasen
 127  * @author  Timothy Buktu
 128  * @since 1.1
 129  */
 130 
 131 public class BigInteger extends Number implements Comparable<BigInteger> {
 132     /**
 133      * The signum of this BigInteger: -1 for negative, 0 for zero, or
 134      * 1 for positive.  Note that the BigInteger zero <em>must</em> have
 135      * a signum of 0.  This is necessary to ensures that there is exactly one
 136      * representation for each BigInteger value.
 137      */
 138     final int signum;
 139 
 140     /**
 141      * The magnitude of this BigInteger, in <i>big-endian</i> order: the
 142      * zeroth element of this array is the most-significant int of the
 143      * magnitude.  The magnitude must be "minimal" in that the most-significant
 144      * int ({@code mag[0]}) must be non-zero.  This is necessary to
 145      * ensure that there is exactly one representation for each BigInteger
 146      * value.  Note that this implies that the BigInteger zero has a
 147      * zero-length mag array.
 148      */
 149     final int[] mag;
 150 
 151     // The following fields are stable variables. A stable variable's value
 152     // changes at most once from the default zero value to a non-zero stable
 153     // value. A stable value is calculated lazily on demand.
 154 
 155     /**
 156      * One plus the bitCount of this BigInteger. This is a stable variable.
 157      *
 158      * @see #bitCount
 159      */
 160     private int bitCountPlusOne;
 161 
 162     /**
 163      * One plus the bitLength of this BigInteger. This is a stable variable.
 164      * (either value is acceptable).
 165      *
 166      * @see #bitLength()
 167      */
 168     private int bitLengthPlusOne;
 169 
 170     /**
 171      * Two plus the lowest set bit of this BigInteger. This is a stable variable.
 172      *
 173      * @see #getLowestSetBit
 174      */
 175     private int lowestSetBitPlusTwo;
 176 
 177     /**
 178      * Two plus the index of the lowest-order int in the magnitude of this
 179      * BigInteger that contains a nonzero int. This is a stable variable. The
 180      * least significant int has int-number 0, the next int in order of
 181      * increasing significance has int-number 1, and so forth.
 182      *
 183      * <p>Note: never used for a BigInteger with a magnitude of zero.
 184      *
 185      * @see #firstNonzeroIntNum()
 186      */
 187     private int firstNonzeroIntNumPlusTwo;
 188 
 189     /**
 190      * This mask is used to obtain the value of an int as if it were unsigned.
 191      */
 192     static final long LONG_MASK = 0xffffffffL;
 193 
 194     /**
 195      * This constant limits {@code mag.length} of BigIntegers to the supported
 196      * range.
 197      */
 198     private static final int MAX_MAG_LENGTH = Integer.MAX_VALUE / Integer.SIZE + 1; // (1 << 26)
 199 
 200     /**
 201      * Bit lengths larger than this constant can cause overflow in searchLen
 202      * calculation and in BitSieve.singleSearch method.
 203      */
 204     private static final  int PRIME_SEARCH_BIT_LENGTH_LIMIT = 500000000;
 205 
 206     /**
 207      * The threshold value for using Karatsuba multiplication.  If the number
 208      * of ints in both mag arrays are greater than this number, then
 209      * Karatsuba multiplication will be used.   This value is found
 210      * experimentally to work well.
 211      */
 212     private static final int KARATSUBA_THRESHOLD = 80;
 213 
 214     /**
 215      * The threshold value for using 3-way Toom-Cook multiplication.
 216      * If the number of ints in each mag array is greater than the
 217      * Karatsuba threshold, and the number of ints in at least one of
 218      * the mag arrays is greater than this threshold, then Toom-Cook
 219      * multiplication will be used.
 220      */
 221     private static final int TOOM_COOK_THRESHOLD = 240;
 222 
 223     /**
 224      * The threshold value for using Karatsuba squaring.  If the number
 225      * of ints in the number are larger than this value,
 226      * Karatsuba squaring will be used.   This value is found
 227      * experimentally to work well.
 228      */
 229     private static final int KARATSUBA_SQUARE_THRESHOLD = 128;
 230 
 231     /**
 232      * The threshold value for using Toom-Cook squaring.  If the number
 233      * of ints in the number are larger than this value,
 234      * Toom-Cook squaring will be used.   This value is found
 235      * experimentally to work well.
 236      */
 237     private static final int TOOM_COOK_SQUARE_THRESHOLD = 216;
 238 
 239     /**
 240      * The threshold value for using Burnikel-Ziegler division.  If the number
 241      * of ints in the divisor are larger than this value, Burnikel-Ziegler
 242      * division may be used.  This value is found experimentally to work well.
 243      */
 244     static final int BURNIKEL_ZIEGLER_THRESHOLD = 80;
 245 
 246     /**
 247      * The offset value for using Burnikel-Ziegler division.  If the number
 248      * of ints in the divisor exceeds the Burnikel-Ziegler threshold, and the
 249      * number of ints in the dividend is greater than the number of ints in the
 250      * divisor plus this value, Burnikel-Ziegler division will be used.  This
 251      * value is found experimentally to work well.
 252      */
 253     static final int BURNIKEL_ZIEGLER_OFFSET = 40;
 254 
 255     /**
 256      * The threshold value for using Schoenhage recursive base conversion. If
 257      * the number of ints in the number are larger than this value,
 258      * the Schoenhage algorithm will be used.  In practice, it appears that the
 259      * Schoenhage routine is faster for any threshold down to 2, and is
 260      * relatively flat for thresholds between 2-25, so this choice may be
 261      * varied within this range for very small effect.
 262      */
 263     private static final int SCHOENHAGE_BASE_CONVERSION_THRESHOLD = 20;
 264 
 265     /**
 266      * The threshold value for using squaring code to perform multiplication
 267      * of a {@code BigInteger} instance by itself.  If the number of ints in
 268      * the number are larger than this value, {@code multiply(this)} will
 269      * return {@code square()}.
 270      */
 271     private static final int MULTIPLY_SQUARE_THRESHOLD = 20;
 272 
 273     /**
 274      * The threshold for using an intrinsic version of
 275      * implMontgomeryXXX to perform Montgomery multiplication.  If the
 276      * number of ints in the number is more than this value we do not
 277      * use the intrinsic.
 278      */
 279     private static final int MONTGOMERY_INTRINSIC_THRESHOLD = 512;
 280 
 281 
 282     // Constructors
 283 
 284     /**
 285      * Translates a byte sub-array containing the two's-complement binary
 286      * representation of a BigInteger into a BigInteger.  The sub-array is
 287      * specified via an offset into the array and a length.  The sub-array is
 288      * assumed to be in <i>big-endian</i> byte-order: the most significant
 289      * byte is the element at index {@code off}.  The {@code val} array is
 290      * assumed to be unchanged for the duration of the constructor call.
 291      *
 292      * An {@code IndexOutOfBoundsException} is thrown if the length of the array
 293      * {@code val} is non-zero and either {@code off} is negative, {@code len}
 294      * is negative, or {@code off+len} is greater than the length of
 295      * {@code val}.
 296      *
 297      * @param  val byte array containing a sub-array which is the big-endian
 298      *         two's-complement binary representation of a BigInteger.
 299      * @param  off the start offset of the binary representation.
 300      * @param  len the number of bytes to use.
 301      * @throws NumberFormatException {@code val} is zero bytes long.
 302      * @throws IndexOutOfBoundsException if the provided array offset and
 303      *         length would cause an index into the byte array to be
 304      *         negative or greater than or equal to the array length.
 305      * @since 9
 306      */
 307     public BigInteger(byte[] val, int off, int len) {
 308         if (val.length == 0) {
 309             throw new NumberFormatException("Zero length BigInteger");
 310         }
 311         Objects.checkFromIndexSize(off, len, val.length);
 312 
 313         if (val[off] < 0) {
 314             mag = makePositive(val, off, len);
 315             signum = -1;
 316         } else {
 317             mag = stripLeadingZeroBytes(val, off, len);
 318             signum = (mag.length == 0 ? 0 : 1);
 319         }
 320         if (mag.length >= MAX_MAG_LENGTH) {
 321             checkRange();
 322         }
 323     }
 324 
 325     /**
 326      * Translates a byte array containing the two's-complement binary
 327      * representation of a BigInteger into a BigInteger.  The input array is
 328      * assumed to be in <i>big-endian</i> byte-order: the most significant
 329      * byte is in the zeroth element.  The {@code val} array is assumed to be
 330      * unchanged for the duration of the constructor call.
 331      *
 332      * @param  val big-endian two's-complement binary representation of a
 333      *         BigInteger.
 334      * @throws NumberFormatException {@code val} is zero bytes long.
 335      */
 336     public BigInteger(byte[] val) {
 337         this(val, 0, val.length);
 338     }
 339 
 340     /**
 341      * This private constructor translates an int array containing the
 342      * two's-complement binary representation of a BigInteger into a
 343      * BigInteger. The input array is assumed to be in <i>big-endian</i>
 344      * int-order: the most significant int is in the zeroth element.  The
 345      * {@code val} array is assumed to be unchanged for the duration of
 346      * the constructor call.
 347      */
 348     private BigInteger(int[] val) {
 349         if (val.length == 0)
 350             throw new NumberFormatException("Zero length BigInteger");
 351 
 352         if (val[0] < 0) {
 353             mag = makePositive(val);
 354             signum = -1;
 355         } else {
 356             mag = trustedStripLeadingZeroInts(val);
 357             signum = (mag.length == 0 ? 0 : 1);
 358         }
 359         if (mag.length >= MAX_MAG_LENGTH) {
 360             checkRange();
 361         }
 362     }
 363 
 364     /**
 365      * Translates the sign-magnitude representation of a BigInteger into a
 366      * BigInteger.  The sign is represented as an integer signum value: -1 for
 367      * negative, 0 for zero, or 1 for positive.  The magnitude is a sub-array of
 368      * a byte array in <i>big-endian</i> byte-order: the most significant byte
 369      * is the element at index {@code off}.  A zero value of the length
 370      * {@code len} is permissible, and will result in a BigInteger value of 0,
 371      * whether signum is -1, 0 or 1.  The {@code magnitude} array is assumed to
 372      * be unchanged for the duration of the constructor call.
 373      *
 374      * An {@code IndexOutOfBoundsException} is thrown if the length of the array
 375      * {@code magnitude} is non-zero and either {@code off} is negative,
 376      * {@code len} is negative, or {@code off+len} is greater than the length of
 377      * {@code magnitude}.
 378      *
 379      * @param  signum signum of the number (-1 for negative, 0 for zero, 1
 380      *         for positive).
 381      * @param  magnitude big-endian binary representation of the magnitude of
 382      *         the number.
 383      * @param  off the start offset of the binary representation.
 384      * @param  len the number of bytes to use.
 385      * @throws NumberFormatException {@code signum} is not one of the three
 386      *         legal values (-1, 0, and 1), or {@code signum} is 0 and
 387      *         {@code magnitude} contains one or more non-zero bytes.
 388      * @throws IndexOutOfBoundsException if the provided array offset and
 389      *         length would cause an index into the byte array to be
 390      *         negative or greater than or equal to the array length.
 391      * @since 9
 392      */
 393     public BigInteger(int signum, byte[] magnitude, int off, int len) {
 394         if (signum < -1 || signum > 1) {
 395             throw(new NumberFormatException("Invalid signum value"));
 396         }
 397         Objects.checkFromIndexSize(off, len, magnitude.length);
 398 
 399         // stripLeadingZeroBytes() returns a zero length array if len == 0
 400         this.mag = stripLeadingZeroBytes(magnitude, off, len);
 401 
 402         if (this.mag.length == 0) {
 403             this.signum = 0;
 404         } else {
 405             if (signum == 0)
 406                 throw(new NumberFormatException("signum-magnitude mismatch"));
 407             this.signum = signum;
 408         }
 409         if (mag.length >= MAX_MAG_LENGTH) {
 410             checkRange();
 411         }
 412     }
 413 
 414     /**
 415      * Translates the sign-magnitude representation of a BigInteger into a
 416      * BigInteger.  The sign is represented as an integer signum value: -1 for
 417      * negative, 0 for zero, or 1 for positive.  The magnitude is a byte array
 418      * in <i>big-endian</i> byte-order: the most significant byte is the
 419      * zeroth element.  A zero-length magnitude array is permissible, and will
 420      * result in a BigInteger value of 0, whether signum is -1, 0 or 1.  The
 421      * {@code magnitude} array is assumed to be unchanged for the duration of
 422      * the constructor call.
 423      *
 424      * @param  signum signum of the number (-1 for negative, 0 for zero, 1
 425      *         for positive).
 426      * @param  magnitude big-endian binary representation of the magnitude of
 427      *         the number.
 428      * @throws NumberFormatException {@code signum} is not one of the three
 429      *         legal values (-1, 0, and 1), or {@code signum} is 0 and
 430      *         {@code magnitude} contains one or more non-zero bytes.
 431      */
 432     public BigInteger(int signum, byte[] magnitude) {
 433          this(signum, magnitude, 0, magnitude.length);
 434     }
 435 
 436     /**
 437      * A constructor for internal use that translates the sign-magnitude
 438      * representation of a BigInteger into a BigInteger. It checks the
 439      * arguments and copies the magnitude so this constructor would be
 440      * safe for external use.  The {@code magnitude} array is assumed to be
 441      * unchanged for the duration of the constructor call.
 442      */
 443     private BigInteger(int signum, int[] magnitude) {
 444         this.mag = stripLeadingZeroInts(magnitude);
 445 
 446         if (signum < -1 || signum > 1)
 447             throw(new NumberFormatException("Invalid signum value"));
 448 
 449         if (this.mag.length == 0) {
 450             this.signum = 0;
 451         } else {
 452             if (signum == 0)
 453                 throw(new NumberFormatException("signum-magnitude mismatch"));
 454             this.signum = signum;
 455         }
 456         if (mag.length >= MAX_MAG_LENGTH) {
 457             checkRange();
 458         }
 459     }
 460 
 461     /**
 462      * Translates the String representation of a BigInteger in the
 463      * specified radix into a BigInteger.  The String representation
 464      * consists of an optional minus or plus sign followed by a
 465      * sequence of one or more digits in the specified radix.  The
 466      * character-to-digit mapping is provided by {@code
 467      * Character.digit}.  The String may not contain any extraneous
 468      * characters (whitespace, for example).
 469      *
 470      * @param val String representation of BigInteger.
 471      * @param radix radix to be used in interpreting {@code val}.
 472      * @throws NumberFormatException {@code val} is not a valid representation
 473      *         of a BigInteger in the specified radix, or {@code radix} is
 474      *         outside the range from {@link Character#MIN_RADIX} to
 475      *         {@link Character#MAX_RADIX}, inclusive.
 476      * @see    Character#digit
 477      */
 478     public BigInteger(String val, int radix) {
 479         int cursor = 0, numDigits;
 480         final int len = val.length();
 481 
 482         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
 483             throw new NumberFormatException("Radix out of range");
 484         if (len == 0)
 485             throw new NumberFormatException("Zero length BigInteger");
 486 
 487         // Check for at most one leading sign
 488         int sign = 1;
 489         int index1 = val.lastIndexOf('-');
 490         int index2 = val.lastIndexOf('+');
 491         if (index1 >= 0) {
 492             if (index1 != 0 || index2 >= 0) {
 493                 throw new NumberFormatException("Illegal embedded sign character");
 494             }
 495             sign = -1;
 496             cursor = 1;
 497         } else if (index2 >= 0) {
 498             if (index2 != 0) {
 499                 throw new NumberFormatException("Illegal embedded sign character");
 500             }
 501             cursor = 1;
 502         }
 503         if (cursor == len)
 504             throw new NumberFormatException("Zero length BigInteger");
 505 
 506         // Skip leading zeros and compute number of digits in magnitude
 507         while (cursor < len &&
 508                Character.digit(val.charAt(cursor), radix) == 0) {
 509             cursor++;
 510         }
 511 
 512         if (cursor == len) {
 513             signum = 0;
 514             mag = ZERO.mag;
 515             return;
 516         }
 517 
 518         numDigits = len - cursor;
 519         signum = sign;
 520 
 521         // Pre-allocate array of expected size. May be too large but can
 522         // never be too small. Typically exact.
 523         long numBits = ((numDigits * bitsPerDigit[radix]) >>> 10) + 1;
 524         if (numBits + 31 >= (1L << 32)) {
 525             reportOverflow();
 526         }
 527         int numWords = (int) (numBits + 31) >>> 5;
 528         int[] magnitude = new int[numWords];
 529 
 530         // Process first (potentially short) digit group
 531         int firstGroupLen = numDigits % digitsPerInt[radix];
 532         if (firstGroupLen == 0)
 533             firstGroupLen = digitsPerInt[radix];
 534         String group = val.substring(cursor, cursor += firstGroupLen);
 535         magnitude[numWords - 1] = Integer.parseInt(group, radix);
 536         if (magnitude[numWords - 1] < 0)
 537             throw new NumberFormatException("Illegal digit");
 538 
 539         // Process remaining digit groups
 540         int superRadix = intRadix[radix];
 541         int groupVal = 0;
 542         while (cursor < len) {
 543             group = val.substring(cursor, cursor += digitsPerInt[radix]);
 544             groupVal = Integer.parseInt(group, radix);
 545             if (groupVal < 0)
 546                 throw new NumberFormatException("Illegal digit");
 547             destructiveMulAdd(magnitude, superRadix, groupVal);
 548         }
 549         // Required for cases where the array was overallocated.
 550         mag = trustedStripLeadingZeroInts(magnitude);
 551         if (mag.length >= MAX_MAG_LENGTH) {
 552             checkRange();
 553         }
 554     }
 555 
 556     /*
 557      * Constructs a new BigInteger using a char array with radix=10.
 558      * Sign is precalculated outside and not allowed in the val. The {@code val}
 559      * array is assumed to be unchanged for the duration of the constructor
 560      * call.
 561      */
 562     BigInteger(char[] val, int sign, int len) {
 563         int cursor = 0, numDigits;
 564 
 565         // Skip leading zeros and compute number of digits in magnitude
 566         while (cursor < len && Character.digit(val[cursor], 10) == 0) {
 567             cursor++;
 568         }
 569         if (cursor == len) {
 570             signum = 0;
 571             mag = ZERO.mag;
 572             return;
 573         }
 574 
 575         numDigits = len - cursor;
 576         signum = sign;
 577         // Pre-allocate array of expected size
 578         int numWords;
 579         if (len < 10) {
 580             numWords = 1;
 581         } else {
 582             long numBits = ((numDigits * bitsPerDigit[10]) >>> 10) + 1;
 583             if (numBits + 31 >= (1L << 32)) {
 584                 reportOverflow();
 585             }
 586             numWords = (int) (numBits + 31) >>> 5;
 587         }
 588         int[] magnitude = new int[numWords];
 589 
 590         // Process first (potentially short) digit group
 591         int firstGroupLen = numDigits % digitsPerInt[10];
 592         if (firstGroupLen == 0)
 593             firstGroupLen = digitsPerInt[10];
 594         magnitude[numWords - 1] = parseInt(val, cursor,  cursor += firstGroupLen);
 595 
 596         // Process remaining digit groups
 597         while (cursor < len) {
 598             int groupVal = parseInt(val, cursor, cursor += digitsPerInt[10]);
 599             destructiveMulAdd(magnitude, intRadix[10], groupVal);
 600         }
 601         mag = trustedStripLeadingZeroInts(magnitude);
 602         if (mag.length >= MAX_MAG_LENGTH) {
 603             checkRange();
 604         }
 605     }
 606 
 607     // Create an integer with the digits between the two indexes
 608     // Assumes start < end. The result may be negative, but it
 609     // is to be treated as an unsigned value.
 610     private int parseInt(char[] source, int start, int end) {
 611         int result = Character.digit(source[start++], 10);
 612         if (result == -1)
 613             throw new NumberFormatException(new String(source));
 614 
 615         for (int index = start; index < end; index++) {
 616             int nextVal = Character.digit(source[index], 10);
 617             if (nextVal == -1)
 618                 throw new NumberFormatException(new String(source));
 619             result = 10*result + nextVal;
 620         }
 621 
 622         return result;
 623     }
 624 
 625     // bitsPerDigit in the given radix times 1024
 626     // Rounded up to avoid underallocation.
 627     private static long bitsPerDigit[] = { 0, 0,
 628         1024, 1624, 2048, 2378, 2648, 2875, 3072, 3247, 3402, 3543, 3672,
 629         3790, 3899, 4001, 4096, 4186, 4271, 4350, 4426, 4498, 4567, 4633,
 630         4696, 4756, 4814, 4870, 4923, 4975, 5025, 5074, 5120, 5166, 5210,
 631                                            5253, 5295};
 632 
 633     // Multiply x array times word y in place, and add word z
 634     private static void destructiveMulAdd(int[] x, int y, int z) {
 635         // Perform the multiplication word by word
 636         long ylong = y & LONG_MASK;
 637         long zlong = z & LONG_MASK;
 638         int len = x.length;
 639 
 640         long product = 0;
 641         long carry = 0;
 642         for (int i = len-1; i >= 0; i--) {
 643             product = ylong * (x[i] & LONG_MASK) + carry;
 644             x[i] = (int)product;
 645             carry = product >>> 32;
 646         }
 647 
 648         // Perform the addition
 649         long sum = (x[len-1] & LONG_MASK) + zlong;
 650         x[len-1] = (int)sum;
 651         carry = sum >>> 32;
 652         for (int i = len-2; i >= 0; i--) {
 653             sum = (x[i] & LONG_MASK) + carry;
 654             x[i] = (int)sum;
 655             carry = sum >>> 32;
 656         }
 657     }
 658 
 659     /**
 660      * Translates the decimal String representation of a BigInteger into a
 661      * BigInteger.  The String representation consists of an optional minus
 662      * sign followed by a sequence of one or more decimal digits.  The
 663      * character-to-digit mapping is provided by {@code Character.digit}.
 664      * The String may not contain any extraneous characters (whitespace, for
 665      * example).
 666      *
 667      * @param val decimal String representation of BigInteger.
 668      * @throws NumberFormatException {@code val} is not a valid representation
 669      *         of a BigInteger.
 670      * @see    Character#digit
 671      */
 672     public BigInteger(String val) {
 673         this(val, 10);
 674     }
 675 
 676     /**
 677      * Constructs a randomly generated BigInteger, uniformly distributed over
 678      * the range 0 to (2<sup>{@code numBits}</sup> - 1), inclusive.
 679      * The uniformity of the distribution assumes that a fair source of random
 680      * bits is provided in {@code rnd}.  Note that this constructor always
 681      * constructs a non-negative BigInteger.
 682      *
 683      * @param  numBits maximum bitLength of the new BigInteger.
 684      * @param  rnd source of randomness to be used in computing the new
 685      *         BigInteger.
 686      * @throws IllegalArgumentException {@code numBits} is negative.
 687      * @see #bitLength()
 688      */
 689     public BigInteger(int numBits, Random rnd) {
 690         this(1, randomBits(numBits, rnd));
 691     }
 692 
 693     private static byte[] randomBits(int numBits, Random rnd) {
 694         if (numBits < 0)
 695             throw new IllegalArgumentException("numBits must be non-negative");
 696         int numBytes = (int)(((long)numBits+7)/8); // avoid overflow
 697         byte[] randomBits = new byte[numBytes];
 698 
 699         // Generate random bytes and mask out any excess bits
 700         if (numBytes > 0) {
 701             rnd.nextBytes(randomBits);
 702             int excessBits = 8*numBytes - numBits;
 703             randomBits[0] &= (1 << (8-excessBits)) - 1;
 704         }
 705         return randomBits;
 706     }
 707 
 708     /**
 709      * Constructs a randomly generated positive BigInteger that is probably
 710      * prime, with the specified bitLength.
 711      *
 712      * @apiNote It is recommended that the {@link #probablePrime probablePrime}
 713      * method be used in preference to this constructor unless there
 714      * is a compelling need to specify a certainty.
 715      *
 716      * @param  bitLength bitLength of the returned BigInteger.
 717      * @param  certainty a measure of the uncertainty that the caller is
 718      *         willing to tolerate.  The probability that the new BigInteger
 719      *         represents a prime number will exceed
 720      *         (1 - 1/2<sup>{@code certainty}</sup>).  The execution time of
 721      *         this constructor is proportional to the value of this parameter.
 722      * @param  rnd source of random bits used to select candidates to be
 723      *         tested for primality.
 724      * @throws ArithmeticException {@code bitLength < 2} or {@code bitLength} is too large.
 725      * @see    #bitLength()
 726      */
 727     public BigInteger(int bitLength, int certainty, Random rnd) {
 728         BigInteger prime;
 729 
 730         if (bitLength < 2)
 731             throw new ArithmeticException("bitLength < 2");
 732         prime = (bitLength < SMALL_PRIME_THRESHOLD
 733                                 ? smallPrime(bitLength, certainty, rnd)
 734                                 : largePrime(bitLength, certainty, rnd));
 735         signum = 1;
 736         mag = prime.mag;
 737     }
 738 
 739     // Minimum size in bits that the requested prime number has
 740     // before we use the large prime number generating algorithms.
 741     // The cutoff of 95 was chosen empirically for best performance.
 742     private static final int SMALL_PRIME_THRESHOLD = 95;
 743 
 744     // Certainty required to meet the spec of probablePrime
 745     private static final int DEFAULT_PRIME_CERTAINTY = 100;
 746 
 747     /**
 748      * Returns a positive BigInteger that is probably prime, with the
 749      * specified bitLength. The probability that a BigInteger returned
 750      * by this method is composite does not exceed 2<sup>-100</sup>.
 751      *
 752      * @param  bitLength bitLength of the returned BigInteger.
 753      * @param  rnd source of random bits used to select candidates to be
 754      *         tested for primality.
 755      * @return a BigInteger of {@code bitLength} bits that is probably prime
 756      * @throws ArithmeticException {@code bitLength < 2} or {@code bitLength} is too large.
 757      * @see    #bitLength()
 758      * @since 1.4
 759      */
 760     public static BigInteger probablePrime(int bitLength, Random rnd) {
 761         if (bitLength < 2)
 762             throw new ArithmeticException("bitLength < 2");
 763 
 764         return (bitLength < SMALL_PRIME_THRESHOLD ?
 765                 smallPrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd) :
 766                 largePrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd));
 767     }
 768 
 769     /**
 770      * Find a random number of the specified bitLength that is probably prime.
 771      * This method is used for smaller primes, its performance degrades on
 772      * larger bitlengths.
 773      *
 774      * This method assumes bitLength > 1.
 775      */
 776     private static BigInteger smallPrime(int bitLength, int certainty, Random rnd) {
 777         int magLen = (bitLength + 31) >>> 5;
 778         int temp[] = new int[magLen];
 779         int highBit = 1 << ((bitLength+31) & 0x1f);  // High bit of high int
 780         int highMask = (highBit << 1) - 1;  // Bits to keep in high int
 781 
 782         while (true) {
 783             // Construct a candidate
 784             for (int i=0; i < magLen; i++)
 785                 temp[i] = rnd.nextInt();
 786             temp[0] = (temp[0] & highMask) | highBit;  // Ensure exact length
 787             if (bitLength > 2)
 788                 temp[magLen-1] |= 1;  // Make odd if bitlen > 2
 789 
 790             BigInteger p = new BigInteger(temp, 1);
 791 
 792             // Do cheap "pre-test" if applicable
 793             if (bitLength > 6) {
 794                 long r = p.remainder(SMALL_PRIME_PRODUCT).longValue();
 795                 if ((r%3==0)  || (r%5==0)  || (r%7==0)  || (r%11==0) ||
 796                     (r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) ||
 797                     (r%29==0) || (r%31==0) || (r%37==0) || (r%41==0))
 798                     continue; // Candidate is composite; try another
 799             }
 800 
 801             // All candidates of bitLength 2 and 3 are prime by this point
 802             if (bitLength < 4)
 803                 return p;
 804 
 805             // Do expensive test if we survive pre-test (or it's inapplicable)
 806             if (p.primeToCertainty(certainty, rnd))
 807                 return p;
 808         }
 809     }
 810 
 811     private static final BigInteger SMALL_PRIME_PRODUCT
 812                        = valueOf(3L*5*7*11*13*17*19*23*29*31*37*41);
 813 
 814     /**
 815      * Find a random number of the specified bitLength that is probably prime.
 816      * This method is more appropriate for larger bitlengths since it uses
 817      * a sieve to eliminate most composites before using a more expensive
 818      * test.
 819      */
 820     private static BigInteger largePrime(int bitLength, int certainty, Random rnd) {
 821         BigInteger p;
 822         p = new BigInteger(bitLength, rnd).setBit(bitLength-1);
 823         p.mag[p.mag.length-1] &= 0xfffffffe;
 824 
 825         // Use a sieve length likely to contain the next prime number
 826         int searchLen = getPrimeSearchLen(bitLength);
 827         BitSieve searchSieve = new BitSieve(p, searchLen);
 828         BigInteger candidate = searchSieve.retrieve(p, certainty, rnd);
 829 
 830         while ((candidate == null) || (candidate.bitLength() != bitLength)) {
 831             p = p.add(BigInteger.valueOf(2*searchLen));
 832             if (p.bitLength() != bitLength)
 833                 p = new BigInteger(bitLength, rnd).setBit(bitLength-1);
 834             p.mag[p.mag.length-1] &= 0xfffffffe;
 835             searchSieve = new BitSieve(p, searchLen);
 836             candidate = searchSieve.retrieve(p, certainty, rnd);
 837         }
 838         return candidate;
 839     }
 840 
 841    /**
 842     * Returns the first integer greater than this {@code BigInteger} that
 843     * is probably prime.  The probability that the number returned by this
 844     * method is composite does not exceed 2<sup>-100</sup>. This method will
 845     * never skip over a prime when searching: if it returns {@code p}, there
 846     * is no prime {@code q} such that {@code this < q < p}.
 847     *
 848     * @return the first integer greater than this {@code BigInteger} that
 849     *         is probably prime.
 850     * @throws ArithmeticException {@code this < 0} or {@code this} is too large.
 851     * @since 1.5
 852     */
 853     public BigInteger nextProbablePrime() {
 854         if (this.signum < 0)
 855             throw new ArithmeticException("start < 0: " + this);
 856 
 857         // Handle trivial cases
 858         if ((this.signum == 0) || this.equals(ONE))
 859             return TWO;
 860 
 861         BigInteger result = this.add(ONE);
 862 
 863         // Fastpath for small numbers
 864         if (result.bitLength() < SMALL_PRIME_THRESHOLD) {
 865 
 866             // Ensure an odd number
 867             if (!result.testBit(0))
 868                 result = result.add(ONE);
 869 
 870             while (true) {
 871                 // Do cheap "pre-test" if applicable
 872                 if (result.bitLength() > 6) {
 873                     long r = result.remainder(SMALL_PRIME_PRODUCT).longValue();
 874                     if ((r%3==0)  || (r%5==0)  || (r%7==0)  || (r%11==0) ||
 875                         (r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) ||
 876                         (r%29==0) || (r%31==0) || (r%37==0) || (r%41==0)) {
 877                         result = result.add(TWO);
 878                         continue; // Candidate is composite; try another
 879                     }
 880                 }
 881 
 882                 // All candidates of bitLength 2 and 3 are prime by this point
 883                 if (result.bitLength() < 4)
 884                     return result;
 885 
 886                 // The expensive test
 887                 if (result.primeToCertainty(DEFAULT_PRIME_CERTAINTY, null))
 888                     return result;
 889 
 890                 result = result.add(TWO);
 891             }
 892         }
 893 
 894         // Start at previous even number
 895         if (result.testBit(0))
 896             result = result.subtract(ONE);
 897 
 898         // Looking for the next large prime
 899         int searchLen = getPrimeSearchLen(result.bitLength());
 900 
 901         while (true) {
 902            BitSieve searchSieve = new BitSieve(result, searchLen);
 903            BigInteger candidate = searchSieve.retrieve(result,
 904                                                  DEFAULT_PRIME_CERTAINTY, null);
 905            if (candidate != null)
 906                return candidate;
 907            result = result.add(BigInteger.valueOf(2 * searchLen));
 908         }
 909     }
 910 
 911     private static int getPrimeSearchLen(int bitLength) {
 912         if (bitLength > PRIME_SEARCH_BIT_LENGTH_LIMIT + 1) {
 913             throw new ArithmeticException("Prime search implementation restriction on bitLength");
 914         }
 915         return bitLength / 20 * 64;
 916     }
 917 
 918     /**
 919      * Returns {@code true} if this BigInteger is probably prime,
 920      * {@code false} if it's definitely composite.
 921      *
 922      * This method assumes bitLength > 2.
 923      *
 924      * @param  certainty a measure of the uncertainty that the caller is
 925      *         willing to tolerate: if the call returns {@code true}
 926      *         the probability that this BigInteger is prime exceeds
 927      *         {@code (1 - 1/2<sup>certainty</sup>)}.  The execution time of
 928      *         this method is proportional to the value of this parameter.
 929      * @return {@code true} if this BigInteger is probably prime,
 930      *         {@code false} if it's definitely composite.
 931      */
 932     boolean primeToCertainty(int certainty, Random random) {
 933         int rounds = 0;
 934         int n = (Math.min(certainty, Integer.MAX_VALUE-1)+1)/2;
 935 
 936         // The relationship between the certainty and the number of rounds
 937         // we perform is given in the draft standard ANSI X9.80, "PRIME
 938         // NUMBER GENERATION, PRIMALITY TESTING, AND PRIMALITY CERTIFICATES".
 939         int sizeInBits = this.bitLength();
 940         if (sizeInBits < 100) {
 941             rounds = 50;
 942             rounds = n < rounds ? n : rounds;
 943             return passesMillerRabin(rounds, random);
 944         }
 945 
 946         if (sizeInBits < 256) {
 947             rounds = 27;
 948         } else if (sizeInBits < 512) {
 949             rounds = 15;
 950         } else if (sizeInBits < 768) {
 951             rounds = 8;
 952         } else if (sizeInBits < 1024) {
 953             rounds = 4;
 954         } else {
 955             rounds = 2;
 956         }
 957         rounds = n < rounds ? n : rounds;
 958 
 959         return passesMillerRabin(rounds, random) && passesLucasLehmer();
 960     }
 961 
 962     /**
 963      * Returns true iff this BigInteger is a Lucas-Lehmer probable prime.
 964      *
 965      * The following assumptions are made:
 966      * This BigInteger is a positive, odd number.
 967      */
 968     private boolean passesLucasLehmer() {
 969         BigInteger thisPlusOne = this.add(ONE);
 970 
 971         // Step 1
 972         int d = 5;
 973         while (jacobiSymbol(d, this) != -1) {
 974             // 5, -7, 9, -11, ...
 975             d = (d < 0) ? Math.abs(d)+2 : -(d+2);
 976         }
 977 
 978         // Step 2
 979         BigInteger u = lucasLehmerSequence(d, thisPlusOne, this);
 980 
 981         // Step 3
 982         return u.mod(this).equals(ZERO);
 983     }
 984 
 985     /**
 986      * Computes Jacobi(p,n).
 987      * Assumes n positive, odd, n>=3.
 988      */
 989     private static int jacobiSymbol(int p, BigInteger n) {
 990         if (p == 0)
 991             return 0;
 992 
 993         // Algorithm and comments adapted from Colin Plumb's C library.
 994         int j = 1;
 995         int u = n.mag[n.mag.length-1];
 996 
 997         // Make p positive
 998         if (p < 0) {
 999             p = -p;
1000             int n8 = u & 7;
1001             if ((n8 == 3) || (n8 == 7))
1002                 j = -j; // 3 (011) or 7 (111) mod 8
1003         }
1004 
1005         // Get rid of factors of 2 in p
1006         while ((p & 3) == 0)
1007             p >>= 2;
1008         if ((p & 1) == 0) {
1009             p >>= 1;
1010             if (((u ^ (u>>1)) & 2) != 0)
1011                 j = -j; // 3 (011) or 5 (101) mod 8
1012         }
1013         if (p == 1)
1014             return j;
1015         // Then, apply quadratic reciprocity
1016         if ((p & u & 2) != 0)   // p = u = 3 (mod 4)?
1017             j = -j;
1018         // And reduce u mod p
1019         u = n.mod(BigInteger.valueOf(p)).intValue();
1020 
1021         // Now compute Jacobi(u,p), u < p
1022         while (u != 0) {
1023             while ((u & 3) == 0)
1024                 u >>= 2;
1025             if ((u & 1) == 0) {
1026                 u >>= 1;
1027                 if (((p ^ (p>>1)) & 2) != 0)
1028                     j = -j;     // 3 (011) or 5 (101) mod 8
1029             }
1030             if (u == 1)
1031                 return j;
1032             // Now both u and p are odd, so use quadratic reciprocity
1033             assert (u < p);
1034             int t = u; u = p; p = t;
1035             if ((u & p & 2) != 0) // u = p = 3 (mod 4)?
1036                 j = -j;
1037             // Now u >= p, so it can be reduced
1038             u %= p;
1039         }
1040         return 0;
1041     }
1042 
1043     private static BigInteger lucasLehmerSequence(int z, BigInteger k, BigInteger n) {
1044         BigInteger d = BigInteger.valueOf(z);
1045         BigInteger u = ONE; BigInteger u2;
1046         BigInteger v = ONE; BigInteger v2;
1047 
1048         for (int i=k.bitLength()-2; i >= 0; i--) {
1049             u2 = u.multiply(v).mod(n);
1050 
1051             v2 = v.square().add(d.multiply(u.square())).mod(n);
1052             if (v2.testBit(0))
1053                 v2 = v2.subtract(n);
1054 
1055             v2 = v2.shiftRight(1);
1056 
1057             u = u2; v = v2;
1058             if (k.testBit(i)) {
1059                 u2 = u.add(v).mod(n);
1060                 if (u2.testBit(0))
1061                     u2 = u2.subtract(n);
1062 
1063                 u2 = u2.shiftRight(1);
1064                 v2 = v.add(d.multiply(u)).mod(n);
1065                 if (v2.testBit(0))
1066                     v2 = v2.subtract(n);
1067                 v2 = v2.shiftRight(1);
1068 
1069                 u = u2; v = v2;
1070             }
1071         }
1072         return u;
1073     }
1074 
1075     /**
1076      * Returns true iff this BigInteger passes the specified number of
1077      * Miller-Rabin tests. This test is taken from the DSA spec (NIST FIPS
1078      * 186-2).
1079      *
1080      * The following assumptions are made:
1081      * This BigInteger is a positive, odd number greater than 2.
1082      * iterations<=50.
1083      */
1084     private boolean passesMillerRabin(int iterations, Random rnd) {
1085         // Find a and m such that m is odd and this == 1 + 2**a * m
1086         BigInteger thisMinusOne = this.subtract(ONE);
1087         BigInteger m = thisMinusOne;
1088         int a = m.getLowestSetBit();
1089         m = m.shiftRight(a);
1090 
1091         // Do the tests
1092         if (rnd == null) {
1093             rnd = ThreadLocalRandom.current();
1094         }
1095         for (int i=0; i < iterations; i++) {
1096             // Generate a uniform random on (1, this)
1097             BigInteger b;
1098             do {
1099                 b = new BigInteger(this.bitLength(), rnd);
1100             } while (b.compareTo(ONE) <= 0 || b.compareTo(this) >= 0);
1101 
1102             int j = 0;
1103             BigInteger z = b.modPow(m, this);
1104             while (!((j == 0 && z.equals(ONE)) || z.equals(thisMinusOne))) {
1105                 if (j > 0 && z.equals(ONE) || ++j == a)
1106                     return false;
1107                 z = z.modPow(TWO, this);
1108             }
1109         }
1110         return true;
1111     }
1112 
1113     /**
1114      * This internal constructor differs from its public cousin
1115      * with the arguments reversed in two ways: it assumes that its
1116      * arguments are correct, and it doesn't copy the magnitude array.
1117      */
1118     BigInteger(int[] magnitude, int signum) {
1119         this.signum = (magnitude.length == 0 ? 0 : signum);
1120         this.mag = magnitude;
1121         if (mag.length >= MAX_MAG_LENGTH) {
1122             checkRange();
1123         }
1124     }
1125 
1126     /**
1127      * This private constructor is for internal use and assumes that its
1128      * arguments are correct.  The {@code magnitude} array is assumed to be
1129      * unchanged for the duration of the constructor call.
1130      */
1131     private BigInteger(byte[] magnitude, int signum) {
1132         this.signum = (magnitude.length == 0 ? 0 : signum);
1133         this.mag = stripLeadingZeroBytes(magnitude, 0, magnitude.length);
1134         if (mag.length >= MAX_MAG_LENGTH) {
1135             checkRange();
1136         }
1137     }
1138 
1139     /**
1140      * Throws an {@code ArithmeticException} if the {@code BigInteger} would be
1141      * out of the supported range.
1142      *
1143      * @throws ArithmeticException if {@code this} exceeds the supported range.
1144      */
1145     private void checkRange() {
1146         if (mag.length > MAX_MAG_LENGTH || mag.length == MAX_MAG_LENGTH && mag[0] < 0) {
1147             reportOverflow();
1148         }
1149     }
1150 
1151     private static void reportOverflow() {
1152         throw new ArithmeticException("BigInteger would overflow supported range");
1153     }
1154 
1155     //Static Factory Methods
1156 
1157     /**
1158      * Returns a BigInteger whose value is equal to that of the
1159      * specified {@code long}.
1160      *
1161      * @apiNote This static factory method is provided in preference
1162      * to a ({@code long}) constructor because it allows for reuse of
1163      * frequently used BigIntegers.
1164      *
1165      * @param  val value of the BigInteger to return.
1166      * @return a BigInteger with the specified value.
1167      */
1168     public static BigInteger valueOf(long val) {
1169         // If -MAX_CONSTANT < val < MAX_CONSTANT, return stashed constant
1170         if (val == 0)
1171             return ZERO;
1172         if (val > 0 && val <= MAX_CONSTANT)
1173             return posConst[(int) val];
1174         else if (val < 0 && val >= -MAX_CONSTANT)
1175             return negConst[(int) -val];
1176 
1177         return new BigInteger(val);
1178     }
1179 
1180     /**
1181      * Constructs a BigInteger with the specified value, which may not be zero.
1182      */
1183     private BigInteger(long val) {
1184         if (val < 0) {
1185             val = -val;
1186             signum = -1;
1187         } else {
1188             signum = 1;
1189         }
1190 
1191         int highWord = (int)(val >>> 32);
1192         if (highWord == 0) {
1193             mag = new int[1];
1194             mag[0] = (int)val;
1195         } else {
1196             mag = new int[2];
1197             mag[0] = highWord;
1198             mag[1] = (int)val;
1199         }
1200     }
1201 
1202     /**
1203      * Returns a BigInteger with the given two's complement representation.
1204      * Assumes that the input array will not be modified (the returned
1205      * BigInteger will reference the input array if feasible).
1206      */
1207     private static BigInteger valueOf(int val[]) {
1208         return (val[0] > 0 ? new BigInteger(val, 1) : new BigInteger(val));
1209     }
1210 
1211     // Constants
1212 
1213     /**
1214      * Initialize static constant array when class is loaded.
1215      */
1216     private static final int MAX_CONSTANT = 16;
1217     @Stable
1218     private static final BigInteger[] posConst = new BigInteger[MAX_CONSTANT+1];
1219     @Stable
1220     private static final BigInteger[] negConst = new BigInteger[MAX_CONSTANT+1];
1221 
1222     /**
1223      * The cache of powers of each radix.  This allows us to not have to
1224      * recalculate powers of radix^(2^n) more than once.  This speeds
1225      * Schoenhage recursive base conversion significantly.
1226      */
1227     private static volatile BigInteger[][] powerCache;
1228 
1229     /** The cache of logarithms of radices for base conversion. */
1230     private static final double[] logCache;
1231 
1232     /** The natural log of 2.  This is used in computing cache indices. */
1233     private static final double LOG_TWO = Math.log(2.0);
1234 
1235     static {
1236         assert 0 < KARATSUBA_THRESHOLD
1237             && KARATSUBA_THRESHOLD < TOOM_COOK_THRESHOLD
1238             && TOOM_COOK_THRESHOLD < Integer.MAX_VALUE
1239             && 0 < KARATSUBA_SQUARE_THRESHOLD
1240             && KARATSUBA_SQUARE_THRESHOLD < TOOM_COOK_SQUARE_THRESHOLD
1241             && TOOM_COOK_SQUARE_THRESHOLD < Integer.MAX_VALUE :
1242             "Algorithm thresholds are inconsistent";
1243 
1244         for (int i = 1; i <= MAX_CONSTANT; i++) {
1245             int[] magnitude = new int[1];
1246             magnitude[0] = i;
1247             posConst[i] = new BigInteger(magnitude,  1);
1248             negConst[i] = new BigInteger(magnitude, -1);
1249         }
1250 
1251         /*
1252          * Initialize the cache of radix^(2^x) values used for base conversion
1253          * with just the very first value.  Additional values will be created
1254          * on demand.
1255          */
1256         powerCache = new BigInteger[Character.MAX_RADIX+1][];
1257         logCache = new double[Character.MAX_RADIX+1];
1258 
1259         for (int i=Character.MIN_RADIX; i <= Character.MAX_RADIX; i++) {
1260             powerCache[i] = new BigInteger[] { BigInteger.valueOf(i) };
1261             logCache[i] = Math.log(i);
1262         }
1263     }
1264 
1265     /**
1266      * The BigInteger constant zero.
1267      *
1268      * @since   1.2
1269      */
1270     public static final BigInteger ZERO = new BigInteger(new int[0], 0);
1271 
1272     /**
1273      * The BigInteger constant one.
1274      *
1275      * @since   1.2
1276      */
1277     public static final BigInteger ONE = valueOf(1);
1278 
1279     /**
1280      * The BigInteger constant two.
1281      *
1282      * @since   9
1283      */
1284     public static final BigInteger TWO = valueOf(2);
1285 
1286     /**
1287      * The BigInteger constant -1.  (Not exported.)
1288      */
1289     private static final BigInteger NEGATIVE_ONE = valueOf(-1);
1290 
1291     /**
1292      * The BigInteger constant ten.
1293      *
1294      * @since   1.5
1295      */
1296     public static final BigInteger TEN = valueOf(10);
1297 
1298     // Arithmetic Operations
1299 
1300     /**
1301      * Returns a BigInteger whose value is {@code (this + val)}.
1302      *
1303      * @param  val value to be added to this BigInteger.
1304      * @return {@code this + val}
1305      */
1306     public BigInteger add(BigInteger val) {
1307         if (val.signum == 0)
1308             return this;
1309         if (signum == 0)
1310             return val;
1311         if (val.signum == signum)
1312             return new BigInteger(add(mag, val.mag), signum);
1313 
1314         int cmp = compareMagnitude(val);
1315         if (cmp == 0)
1316             return ZERO;
1317         int[] resultMag = (cmp > 0 ? subtract(mag, val.mag)
1318                            : subtract(val.mag, mag));
1319         resultMag = trustedStripLeadingZeroInts(resultMag);
1320 
1321         return new BigInteger(resultMag, cmp == signum ? 1 : -1);
1322     }
1323 
1324     /**
1325      * Package private methods used by BigDecimal code to add a BigInteger
1326      * with a long. Assumes val is not equal to INFLATED.
1327      */
1328     BigInteger add(long val) {
1329         if (val == 0)
1330             return this;
1331         if (signum == 0)
1332             return valueOf(val);
1333         if (Long.signum(val) == signum)
1334             return new BigInteger(add(mag, Math.abs(val)), signum);
1335         int cmp = compareMagnitude(val);
1336         if (cmp == 0)
1337             return ZERO;
1338         int[] resultMag = (cmp > 0 ? subtract(mag, Math.abs(val)) : subtract(Math.abs(val), mag));
1339         resultMag = trustedStripLeadingZeroInts(resultMag);
1340         return new BigInteger(resultMag, cmp == signum ? 1 : -1);
1341     }
1342 
1343     /**
1344      * Adds the contents of the int array x and long value val. This
1345      * method allocates a new int array to hold the answer and returns
1346      * a reference to that array.  Assumes x.length &gt; 0 and val is
1347      * non-negative
1348      */
1349     private static int[] add(int[] x, long val) {
1350         int[] y;
1351         long sum = 0;
1352         int xIndex = x.length;
1353         int[] result;
1354         int highWord = (int)(val >>> 32);
1355         if (highWord == 0) {
1356             result = new int[xIndex];
1357             sum = (x[--xIndex] & LONG_MASK) + val;
1358             result[xIndex] = (int)sum;
1359         } else {
1360             if (xIndex == 1) {
1361                 result = new int[2];
1362                 sum = val  + (x[0] & LONG_MASK);
1363                 result[1] = (int)sum;
1364                 result[0] = (int)(sum >>> 32);
1365                 return result;
1366             } else {
1367                 result = new int[xIndex];
1368                 sum = (x[--xIndex] & LONG_MASK) + (val & LONG_MASK);
1369                 result[xIndex] = (int)sum;
1370                 sum = (x[--xIndex] & LONG_MASK) + (highWord & LONG_MASK) + (sum >>> 32);
1371                 result[xIndex] = (int)sum;
1372             }
1373         }
1374         // Copy remainder of longer number while carry propagation is required
1375         boolean carry = (sum >>> 32 != 0);
1376         while (xIndex > 0 && carry)
1377             carry = ((result[--xIndex] = x[xIndex] + 1) == 0);
1378         // Copy remainder of longer number
1379         while (xIndex > 0)
1380             result[--xIndex] = x[xIndex];
1381         // Grow result if necessary
1382         if (carry) {
1383             int bigger[] = new int[result.length + 1];
1384             System.arraycopy(result, 0, bigger, 1, result.length);
1385             bigger[0] = 0x01;
1386             return bigger;
1387         }
1388         return result;
1389     }
1390 
1391     /**
1392      * Adds the contents of the int arrays x and y. This method allocates
1393      * a new int array to hold the answer and returns a reference to that
1394      * array.
1395      */
1396     private static int[] add(int[] x, int[] y) {
1397         // If x is shorter, swap the two arrays
1398         if (x.length < y.length) {
1399             int[] tmp = x;
1400             x = y;
1401             y = tmp;
1402         }
1403 
1404         int xIndex = x.length;
1405         int yIndex = y.length;
1406         int result[] = new int[xIndex];
1407         long sum = 0;
1408         if (yIndex == 1) {
1409             sum = (x[--xIndex] & LONG_MASK) + (y[0] & LONG_MASK) ;
1410             result[xIndex] = (int)sum;
1411         } else {
1412             // Add common parts of both numbers
1413             while (yIndex > 0) {
1414                 sum = (x[--xIndex] & LONG_MASK) +
1415                       (y[--yIndex] & LONG_MASK) + (sum >>> 32);
1416                 result[xIndex] = (int)sum;
1417             }
1418         }
1419         // Copy remainder of longer number while carry propagation is required
1420         boolean carry = (sum >>> 32 != 0);
1421         while (xIndex > 0 && carry)
1422             carry = ((result[--xIndex] = x[xIndex] + 1) == 0);
1423 
1424         // Copy remainder of longer number
1425         while (xIndex > 0)
1426             result[--xIndex] = x[xIndex];
1427 
1428         // Grow result if necessary
1429         if (carry) {
1430             int bigger[] = new int[result.length + 1];
1431             System.arraycopy(result, 0, bigger, 1, result.length);
1432             bigger[0] = 0x01;
1433             return bigger;
1434         }
1435         return result;
1436     }
1437 
1438     private static int[] subtract(long val, int[] little) {
1439         int highWord = (int)(val >>> 32);
1440         if (highWord == 0) {
1441             int result[] = new int[1];
1442             result[0] = (int)(val - (little[0] & LONG_MASK));
1443             return result;
1444         } else {
1445             int result[] = new int[2];
1446             if (little.length == 1) {
1447                 long difference = ((int)val & LONG_MASK) - (little[0] & LONG_MASK);
1448                 result[1] = (int)difference;
1449                 // Subtract remainder of longer number while borrow propagates
1450                 boolean borrow = (difference >> 32 != 0);
1451                 if (borrow) {
1452                     result[0] = highWord - 1;
1453                 } else {        // Copy remainder of longer number
1454                     result[0] = highWord;
1455                 }
1456                 return result;
1457             } else { // little.length == 2
1458                 long difference = ((int)val & LONG_MASK) - (little[1] & LONG_MASK);
1459                 result[1] = (int)difference;
1460                 difference = (highWord & LONG_MASK) - (little[0] & LONG_MASK) + (difference >> 32);
1461                 result[0] = (int)difference;
1462                 return result;
1463             }
1464         }
1465     }
1466 
1467     /**
1468      * Subtracts the contents of the second argument (val) from the
1469      * first (big).  The first int array (big) must represent a larger number
1470      * than the second.  This method allocates the space necessary to hold the
1471      * answer.
1472      * assumes val &gt;= 0
1473      */
1474     private static int[] subtract(int[] big, long val) {
1475         int highWord = (int)(val >>> 32);
1476         int bigIndex = big.length;
1477         int result[] = new int[bigIndex];
1478         long difference = 0;
1479 
1480         if (highWord == 0) {
1481             difference = (big[--bigIndex] & LONG_MASK) - val;
1482             result[bigIndex] = (int)difference;
1483         } else {
1484             difference = (big[--bigIndex] & LONG_MASK) - (val & LONG_MASK);
1485             result[bigIndex] = (int)difference;
1486             difference = (big[--bigIndex] & LONG_MASK) - (highWord & LONG_MASK) + (difference >> 32);
1487             result[bigIndex] = (int)difference;
1488         }
1489 
1490         // Subtract remainder of longer number while borrow propagates
1491         boolean borrow = (difference >> 32 != 0);
1492         while (bigIndex > 0 && borrow)
1493             borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1);
1494 
1495         // Copy remainder of longer number
1496         while (bigIndex > 0)
1497             result[--bigIndex] = big[bigIndex];
1498 
1499         return result;
1500     }
1501 
1502     /**
1503      * Returns a BigInteger whose value is {@code (this - val)}.
1504      *
1505      * @param  val value to be subtracted from this BigInteger.
1506      * @return {@code this - val}
1507      */
1508     public BigInteger subtract(BigInteger val) {
1509         if (val.signum == 0)
1510             return this;
1511         if (signum == 0)
1512             return val.negate();
1513         if (val.signum != signum)
1514             return new BigInteger(add(mag, val.mag), signum);
1515 
1516         int cmp = compareMagnitude(val);
1517         if (cmp == 0)
1518             return ZERO;
1519         int[] resultMag = (cmp > 0 ? subtract(mag, val.mag)
1520                            : subtract(val.mag, mag));
1521         resultMag = trustedStripLeadingZeroInts(resultMag);
1522         return new BigInteger(resultMag, cmp == signum ? 1 : -1);
1523     }
1524 
1525     /**
1526      * Subtracts the contents of the second int arrays (little) from the
1527      * first (big).  The first int array (big) must represent a larger number
1528      * than the second.  This method allocates the space necessary to hold the
1529      * answer.
1530      */
1531     private static int[] subtract(int[] big, int[] little) {
1532         int bigIndex = big.length;
1533         int result[] = new int[bigIndex];
1534         int littleIndex = little.length;
1535         long difference = 0;
1536 
1537         // Subtract common parts of both numbers
1538         while (littleIndex > 0) {
1539             difference = (big[--bigIndex] & LONG_MASK) -
1540                          (little[--littleIndex] & LONG_MASK) +
1541                          (difference >> 32);
1542             result[bigIndex] = (int)difference;
1543         }
1544 
1545         // Subtract remainder of longer number while borrow propagates
1546         boolean borrow = (difference >> 32 != 0);
1547         while (bigIndex > 0 && borrow)
1548             borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1);
1549 
1550         // Copy remainder of longer number
1551         while (bigIndex > 0)
1552             result[--bigIndex] = big[bigIndex];
1553 
1554         return result;
1555     }
1556 
1557     /**
1558      * Returns a BigInteger whose value is {@code (this * val)}.
1559      *
1560      * @implNote An implementation may offer better algorithmic
1561      * performance when {@code val == this}.
1562      *
1563      * @param  val value to be multiplied by this BigInteger.
1564      * @return {@code this * val}
1565      */
1566     public BigInteger multiply(BigInteger val) {
1567         return multiply(val, false);
1568     }
1569 
1570     /**
1571      * Returns a BigInteger whose value is {@code (this * val)}.  If
1572      * the invocation is recursive certain overflow checks are skipped.
1573      *
1574      * @param  val value to be multiplied by this BigInteger.
1575      * @param  isRecursion whether this is a recursive invocation
1576      * @return {@code this * val}
1577      */
1578     private BigInteger multiply(BigInteger val, boolean isRecursion) {
1579         if (val.signum == 0 || signum == 0)
1580             return ZERO;
1581 
1582         int xlen = mag.length;
1583 
1584         if (val == this && xlen > MULTIPLY_SQUARE_THRESHOLD) {
1585             return square();
1586         }
1587 
1588         int ylen = val.mag.length;
1589 
1590         if ((xlen < KARATSUBA_THRESHOLD) || (ylen < KARATSUBA_THRESHOLD)) {
1591             int resultSign = signum == val.signum ? 1 : -1;
1592             if (val.mag.length == 1) {
1593                 return multiplyByInt(mag,val.mag[0], resultSign);
1594             }
1595             if (mag.length == 1) {
1596                 return multiplyByInt(val.mag,mag[0], resultSign);
1597             }
1598             int[] result = multiplyToLen(mag, xlen,
1599                                          val.mag, ylen, null);
1600             result = trustedStripLeadingZeroInts(result);
1601             return new BigInteger(result, resultSign);
1602         } else {
1603             if ((xlen < TOOM_COOK_THRESHOLD) && (ylen < TOOM_COOK_THRESHOLD)) {
1604                 return multiplyKaratsuba(this, val);
1605             } else {
1606                 //
1607                 // In "Hacker's Delight" section 2-13, p.33, it is explained
1608                 // that if x and y are unsigned 32-bit quantities and m and n
1609                 // are their respective numbers of leading zeros within 32 bits,
1610                 // then the number of leading zeros within their product as a
1611                 // 64-bit unsigned quantity is either m + n or m + n + 1. If
1612                 // their product is not to overflow, it cannot exceed 32 bits,
1613                 // and so the number of leading zeros of the product within 64
1614                 // bits must be at least 32, i.e., the leftmost set bit is at
1615                 // zero-relative position 31 or less.
1616                 //
1617                 // From the above there are three cases:
1618                 //
1619                 //     m + n    leftmost set bit    condition
1620                 //     -----    ----------------    ---------
1621                 //     >= 32    x <= 64 - 32 = 32   no overflow
1622                 //     == 31    x >= 64 - 32 = 32   possible overflow
1623                 //     <= 30    x >= 64 - 31 = 33   definite overflow
1624                 //
1625                 // The "possible overflow" condition cannot be detected by
1626                 // examning data lengths alone and requires further calculation.
1627                 //
1628                 // By analogy, if 'this' and 'val' have m and n as their
1629                 // respective numbers of leading zeros within 32*MAX_MAG_LENGTH
1630                 // bits, then:
1631                 //
1632                 //     m + n >= 32*MAX_MAG_LENGTH        no overflow
1633                 //     m + n == 32*MAX_MAG_LENGTH - 1    possible overflow
1634                 //     m + n <= 32*MAX_MAG_LENGTH - 2    definite overflow
1635                 //
1636                 // Note however that if the number of ints in the result
1637                 // were to be MAX_MAG_LENGTH and mag[0] < 0, then there would
1638                 // be overflow. As a result the leftmost bit (of mag[0]) cannot
1639                 // be used and the constraints must be adjusted by one bit to:
1640                 //
1641                 //     m + n >  32*MAX_MAG_LENGTH        no overflow
1642                 //     m + n == 32*MAX_MAG_LENGTH        possible overflow
1643                 //     m + n <  32*MAX_MAG_LENGTH        definite overflow
1644                 //
1645                 // The foregoing leading zero-based discussion is for clarity
1646                 // only. The actual calculations use the estimated bit length
1647                 // of the product as this is more natural to the internal
1648                 // array representation of the magnitude which has no leading
1649                 // zero elements.
1650                 //
1651                 if (!isRecursion) {
1652                     // The bitLength() instance method is not used here as we
1653                     // are only considering the magnitudes as non-negative. The
1654                     // Toom-Cook multiplication algorithm determines the sign
1655                     // at its end from the two signum values.
1656                     if (bitLength(mag, mag.length) +
1657                         bitLength(val.mag, val.mag.length) >
1658                         32L*MAX_MAG_LENGTH) {
1659                         reportOverflow();
1660                     }
1661                 }
1662 
1663                 return multiplyToomCook3(this, val);
1664             }
1665         }
1666     }
1667 
1668     private static BigInteger multiplyByInt(int[] x, int y, int sign) {
1669         if (Integer.bitCount(y) == 1) {
1670             return new BigInteger(shiftLeft(x,Integer.numberOfTrailingZeros(y)), sign);
1671         }
1672         int xlen = x.length;
1673         int[] rmag =  new int[xlen + 1];
1674         long carry = 0;
1675         long yl = y & LONG_MASK;
1676         int rstart = rmag.length - 1;
1677         for (int i = xlen - 1; i >= 0; i--) {
1678             long product = (x[i] & LONG_MASK) * yl + carry;
1679             rmag[rstart--] = (int)product;
1680             carry = product >>> 32;
1681         }
1682         if (carry == 0L) {
1683             rmag = java.util.Arrays.copyOfRange(rmag, 1, rmag.length);
1684         } else {
1685             rmag[rstart] = (int)carry;
1686         }
1687         return new BigInteger(rmag, sign);
1688     }
1689 
1690     /**
1691      * Package private methods used by BigDecimal code to multiply a BigInteger
1692      * with a long. Assumes v is not equal to INFLATED.
1693      */
1694     BigInteger multiply(long v) {
1695         if (v == 0 || signum == 0)
1696           return ZERO;
1697         if (v == BigDecimal.INFLATED)
1698             return multiply(BigInteger.valueOf(v));
1699         int rsign = (v > 0 ? signum : -signum);
1700         if (v < 0)
1701             v = -v;
1702         long dh = v >>> 32;      // higher order bits
1703         long dl = v & LONG_MASK; // lower order bits
1704 
1705         int xlen = mag.length;
1706         int[] value = mag;
1707         int[] rmag = (dh == 0L) ? (new int[xlen + 1]) : (new int[xlen + 2]);
1708         long carry = 0;
1709         int rstart = rmag.length - 1;
1710         for (int i = xlen - 1; i >= 0; i--) {
1711             long product = (value[i] & LONG_MASK) * dl + carry;
1712             rmag[rstart--] = (int)product;
1713             carry = product >>> 32;
1714         }
1715         rmag[rstart] = (int)carry;
1716         if (dh != 0L) {
1717             carry = 0;
1718             rstart = rmag.length - 2;
1719             for (int i = xlen - 1; i >= 0; i--) {
1720                 long product = (value[i] & LONG_MASK) * dh +
1721                     (rmag[rstart] & LONG_MASK) + carry;
1722                 rmag[rstart--] = (int)product;
1723                 carry = product >>> 32;
1724             }
1725             rmag[0] = (int)carry;
1726         }
1727         if (carry == 0L)
1728             rmag = java.util.Arrays.copyOfRange(rmag, 1, rmag.length);
1729         return new BigInteger(rmag, rsign);
1730     }
1731 
1732     /**
1733      * Multiplies int arrays x and y to the specified lengths and places
1734      * the result into z. There will be no leading zeros in the resultant array.
1735      */
1736     private static int[] multiplyToLen(int[] x, int xlen, int[] y, int ylen, int[] z) {
1737         multiplyToLenCheck(x, xlen);
1738         multiplyToLenCheck(y, ylen);
1739         return implMultiplyToLen(x, xlen, y, ylen, z);
1740     }
1741 
1742     @HotSpotIntrinsicCandidate
1743     private static int[] implMultiplyToLen(int[] x, int xlen, int[] y, int ylen, int[] z) {
1744         int xstart = xlen - 1;
1745         int ystart = ylen - 1;
1746 
1747         if (z == null || z.length < (xlen+ ylen))
1748              z = new int[xlen+ylen];
1749 
1750         long carry = 0;
1751         for (int j=ystart, k=ystart+1+xstart; j >= 0; j--, k--) {
1752             long product = (y[j] & LONG_MASK) *
1753                            (x[xstart] & LONG_MASK) + carry;
1754             z[k] = (int)product;
1755             carry = product >>> 32;
1756         }
1757         z[xstart] = (int)carry;
1758 
1759         for (int i = xstart-1; i >= 0; i--) {
1760             carry = 0;
1761             for (int j=ystart, k=ystart+1+i; j >= 0; j--, k--) {
1762                 long product = (y[j] & LONG_MASK) *
1763                                (x[i] & LONG_MASK) +
1764                                (z[k] & LONG_MASK) + carry;
1765                 z[k] = (int)product;
1766                 carry = product >>> 32;
1767             }
1768             z[i] = (int)carry;
1769         }
1770         return z;
1771     }
1772 
1773     private static void multiplyToLenCheck(int[] array, int length) {
1774         if (length <= 0) {
1775             return;  // not an error because multiplyToLen won't execute if len <= 0
1776         }
1777 
1778         Objects.requireNonNull(array);
1779 
1780         if (length > array.length) {
1781             throw new ArrayIndexOutOfBoundsException(length - 1);
1782         }
1783     }
1784 
1785     /**
1786      * Multiplies two BigIntegers using the Karatsuba multiplication
1787      * algorithm.  This is a recursive divide-and-conquer algorithm which is
1788      * more efficient for large numbers than what is commonly called the
1789      * "grade-school" algorithm used in multiplyToLen.  If the numbers to be
1790      * multiplied have length n, the "grade-school" algorithm has an
1791      * asymptotic complexity of O(n^2).  In contrast, the Karatsuba algorithm
1792      * has complexity of O(n^(log2(3))), or O(n^1.585).  It achieves this
1793      * increased performance by doing 3 multiplies instead of 4 when
1794      * evaluating the product.  As it has some overhead, should be used when
1795      * both numbers are larger than a certain threshold (found
1796      * experimentally).
1797      *
1798      * See:  http://en.wikipedia.org/wiki/Karatsuba_algorithm
1799      */
1800     private static BigInteger multiplyKaratsuba(BigInteger x, BigInteger y) {
1801         int xlen = x.mag.length;
1802         int ylen = y.mag.length;
1803 
1804         // The number of ints in each half of the number.
1805         int half = (Math.max(xlen, ylen)+1) / 2;
1806 
1807         // xl and yl are the lower halves of x and y respectively,
1808         // xh and yh are the upper halves.
1809         BigInteger xl = x.getLower(half);
1810         BigInteger xh = x.getUpper(half);
1811         BigInteger yl = y.getLower(half);
1812         BigInteger yh = y.getUpper(half);
1813 
1814         BigInteger p1 = xh.multiply(yh);  // p1 = xh*yh
1815         BigInteger p2 = xl.multiply(yl);  // p2 = xl*yl
1816 
1817         // p3=(xh+xl)*(yh+yl)
1818         BigInteger p3 = xh.add(xl).multiply(yh.add(yl));
1819 
1820         // result = p1 * 2^(32*2*half) + (p3 - p1 - p2) * 2^(32*half) + p2
1821         BigInteger result = p1.shiftLeft(32*half).add(p3.subtract(p1).subtract(p2)).shiftLeft(32*half).add(p2);
1822 
1823         if (x.signum != y.signum) {
1824             return result.negate();
1825         } else {
1826             return result;
1827         }
1828     }
1829 
1830     /**
1831      * Multiplies two BigIntegers using a 3-way Toom-Cook multiplication
1832      * algorithm.  This is a recursive divide-and-conquer algorithm which is
1833      * more efficient for large numbers than what is commonly called the
1834      * "grade-school" algorithm used in multiplyToLen.  If the numbers to be
1835      * multiplied have length n, the "grade-school" algorithm has an
1836      * asymptotic complexity of O(n^2).  In contrast, 3-way Toom-Cook has a
1837      * complexity of about O(n^1.465).  It achieves this increased asymptotic
1838      * performance by breaking each number into three parts and by doing 5
1839      * multiplies instead of 9 when evaluating the product.  Due to overhead
1840      * (additions, shifts, and one division) in the Toom-Cook algorithm, it
1841      * should only be used when both numbers are larger than a certain
1842      * threshold (found experimentally).  This threshold is generally larger
1843      * than that for Karatsuba multiplication, so this algorithm is generally
1844      * only used when numbers become significantly larger.
1845      *
1846      * The algorithm used is the "optimal" 3-way Toom-Cook algorithm outlined
1847      * by Marco Bodrato.
1848      *
1849      *  See: http://bodrato.it/toom-cook/
1850      *       http://bodrato.it/papers/#WAIFI2007
1851      *
1852      * "Towards Optimal Toom-Cook Multiplication for Univariate and
1853      * Multivariate Polynomials in Characteristic 2 and 0." by Marco BODRATO;
1854      * In C.Carlet and B.Sunar, Eds., "WAIFI'07 proceedings", p. 116-133,
1855      * LNCS #4547. Springer, Madrid, Spain, June 21-22, 2007.
1856      *
1857      */
1858     private static BigInteger multiplyToomCook3(BigInteger a, BigInteger b) {
1859         int alen = a.mag.length;
1860         int blen = b.mag.length;
1861 
1862         int largest = Math.max(alen, blen);
1863 
1864         // k is the size (in ints) of the lower-order slices.
1865         int k = (largest+2)/3;   // Equal to ceil(largest/3)
1866 
1867         // r is the size (in ints) of the highest-order slice.
1868         int r = largest - 2*k;
1869 
1870         // Obtain slices of the numbers. a2 and b2 are the most significant
1871         // bits of the numbers a and b, and a0 and b0 the least significant.
1872         BigInteger a0, a1, a2, b0, b1, b2;
1873         a2 = a.getToomSlice(k, r, 0, largest);
1874         a1 = a.getToomSlice(k, r, 1, largest);
1875         a0 = a.getToomSlice(k, r, 2, largest);
1876         b2 = b.getToomSlice(k, r, 0, largest);
1877         b1 = b.getToomSlice(k, r, 1, largest);
1878         b0 = b.getToomSlice(k, r, 2, largest);
1879 
1880         BigInteger v0, v1, v2, vm1, vinf, t1, t2, tm1, da1, db1;
1881 
1882         v0 = a0.multiply(b0, true);
1883         da1 = a2.add(a0);
1884         db1 = b2.add(b0);
1885         vm1 = da1.subtract(a1).multiply(db1.subtract(b1), true);
1886         da1 = da1.add(a1);
1887         db1 = db1.add(b1);
1888         v1 = da1.multiply(db1, true);
1889         v2 = da1.add(a2).shiftLeft(1).subtract(a0).multiply(
1890              db1.add(b2).shiftLeft(1).subtract(b0), true);
1891         vinf = a2.multiply(b2, true);
1892 
1893         // The algorithm requires two divisions by 2 and one by 3.
1894         // All divisions are known to be exact, that is, they do not produce
1895         // remainders, and all results are positive.  The divisions by 2 are
1896         // implemented as right shifts which are relatively efficient, leaving
1897         // only an exact division by 3, which is done by a specialized
1898         // linear-time algorithm.
1899         t2 = v2.subtract(vm1).exactDivideBy3();
1900         tm1 = v1.subtract(vm1).shiftRight(1);
1901         t1 = v1.subtract(v0);
1902         t2 = t2.subtract(t1).shiftRight(1);
1903         t1 = t1.subtract(tm1).subtract(vinf);
1904         t2 = t2.subtract(vinf.shiftLeft(1));
1905         tm1 = tm1.subtract(t2);
1906 
1907         // Number of bits to shift left.
1908         int ss = k*32;
1909 
1910         BigInteger result = vinf.shiftLeft(ss).add(t2).shiftLeft(ss).add(t1).shiftLeft(ss).add(tm1).shiftLeft(ss).add(v0);
1911 
1912         if (a.signum != b.signum) {
1913             return result.negate();
1914         } else {
1915             return result;
1916         }
1917     }
1918 
1919 
1920     /**
1921      * Returns a slice of a BigInteger for use in Toom-Cook multiplication.
1922      *
1923      * @param lowerSize The size of the lower-order bit slices.
1924      * @param upperSize The size of the higher-order bit slices.
1925      * @param slice The index of which slice is requested, which must be a
1926      * number from 0 to size-1. Slice 0 is the highest-order bits, and slice
1927      * size-1 are the lowest-order bits. Slice 0 may be of different size than
1928      * the other slices.
1929      * @param fullsize The size of the larger integer array, used to align
1930      * slices to the appropriate position when multiplying different-sized
1931      * numbers.
1932      */
1933     private BigInteger getToomSlice(int lowerSize, int upperSize, int slice,
1934                                     int fullsize) {
1935         int start, end, sliceSize, len, offset;
1936 
1937         len = mag.length;
1938         offset = fullsize - len;
1939 
1940         if (slice == 0) {
1941             start = 0 - offset;
1942             end = upperSize - 1 - offset;
1943         } else {
1944             start = upperSize + (slice-1)*lowerSize - offset;
1945             end = start + lowerSize - 1;
1946         }
1947 
1948         if (start < 0) {
1949             start = 0;
1950         }
1951         if (end < 0) {
1952            return ZERO;
1953         }
1954 
1955         sliceSize = (end-start) + 1;
1956 
1957         if (sliceSize <= 0) {
1958             return ZERO;
1959         }
1960 
1961         // While performing Toom-Cook, all slices are positive and
1962         // the sign is adjusted when the final number is composed.
1963         if (start == 0 && sliceSize >= len) {
1964             return this.abs();
1965         }
1966 
1967         int intSlice[] = new int[sliceSize];
1968         System.arraycopy(mag, start, intSlice, 0, sliceSize);
1969 
1970         return new BigInteger(trustedStripLeadingZeroInts(intSlice), 1);
1971     }
1972 
1973     /**
1974      * Does an exact division (that is, the remainder is known to be zero)
1975      * of the specified number by 3.  This is used in Toom-Cook
1976      * multiplication.  This is an efficient algorithm that runs in linear
1977      * time.  If the argument is not exactly divisible by 3, results are
1978      * undefined.  Note that this is expected to be called with positive
1979      * arguments only.
1980      */
1981     private BigInteger exactDivideBy3() {
1982         int len = mag.length;
1983         int[] result = new int[len];
1984         long x, w, q, borrow;
1985         borrow = 0L;
1986         for (int i=len-1; i >= 0; i--) {
1987             x = (mag[i] & LONG_MASK);
1988             w = x - borrow;
1989             if (borrow > x) {      // Did we make the number go negative?
1990                 borrow = 1L;
1991             } else {
1992                 borrow = 0L;
1993             }
1994 
1995             // 0xAAAAAAAB is the modular inverse of 3 (mod 2^32).  Thus,
1996             // the effect of this is to divide by 3 (mod 2^32).
1997             // This is much faster than division on most architectures.
1998             q = (w * 0xAAAAAAABL) & LONG_MASK;
1999             result[i] = (int) q;
2000 
2001             // Now check the borrow. The second check can of course be
2002             // eliminated if the first fails.
2003             if (q >= 0x55555556L) {
2004                 borrow++;
2005                 if (q >= 0xAAAAAAABL)
2006                     borrow++;
2007             }
2008         }
2009         result = trustedStripLeadingZeroInts(result);
2010         return new BigInteger(result, signum);
2011     }
2012 
2013     /**
2014      * Returns a new BigInteger representing n lower ints of the number.
2015      * This is used by Karatsuba multiplication and Karatsuba squaring.
2016      */
2017     private BigInteger getLower(int n) {
2018         int len = mag.length;
2019 
2020         if (len <= n) {
2021             return abs();
2022         }
2023 
2024         int lowerInts[] = new int[n];
2025         System.arraycopy(mag, len-n, lowerInts, 0, n);
2026 
2027         return new BigInteger(trustedStripLeadingZeroInts(lowerInts), 1);
2028     }
2029 
2030     /**
2031      * Returns a new BigInteger representing mag.length-n upper
2032      * ints of the number.  This is used by Karatsuba multiplication and
2033      * Karatsuba squaring.
2034      */
2035     private BigInteger getUpper(int n) {
2036         int len = mag.length;
2037 
2038         if (len <= n) {
2039             return ZERO;
2040         }
2041 
2042         int upperLen = len - n;
2043         int upperInts[] = new int[upperLen];
2044         System.arraycopy(mag, 0, upperInts, 0, upperLen);
2045 
2046         return new BigInteger(trustedStripLeadingZeroInts(upperInts), 1);
2047     }
2048 
2049     // Squaring
2050 
2051     /**
2052      * Returns a BigInteger whose value is {@code (this<sup>2</sup>)}.
2053      *
2054      * @return {@code this<sup>2</sup>}
2055      */
2056     private BigInteger square() {
2057         return square(false);
2058     }
2059 
2060     /**
2061      * Returns a BigInteger whose value is {@code (this<sup>2</sup>)}. If
2062      * the invocation is recursive certain overflow checks are skipped.
2063      *
2064      * @param isRecursion whether this is a recursive invocation
2065      * @return {@code this<sup>2</sup>}
2066      */
2067     private BigInteger square(boolean isRecursion) {
2068         if (signum == 0) {
2069             return ZERO;
2070         }
2071         int len = mag.length;
2072 
2073         if (len < KARATSUBA_SQUARE_THRESHOLD) {
2074             int[] z = squareToLen(mag, len, null);
2075             return new BigInteger(trustedStripLeadingZeroInts(z), 1);
2076         } else {
2077             if (len < TOOM_COOK_SQUARE_THRESHOLD) {
2078                 return squareKaratsuba();
2079             } else {
2080                 //
2081                 // For a discussion of overflow detection see multiply()
2082                 //
2083                 if (!isRecursion) {
2084                     if (bitLength(mag, mag.length) > 16L*MAX_MAG_LENGTH) {
2085                         reportOverflow();
2086                     }
2087                 }
2088 
2089                 return squareToomCook3();
2090             }
2091         }
2092     }
2093 
2094     /**
2095      * Squares the contents of the int array x. The result is placed into the
2096      * int array z.  The contents of x are not changed.
2097      */
2098     private static final int[] squareToLen(int[] x, int len, int[] z) {
2099          int zlen = len << 1;
2100          if (z == null || z.length < zlen)
2101              z = new int[zlen];
2102 
2103          // Execute checks before calling intrinsified method.
2104          implSquareToLenChecks(x, len, z, zlen);
2105          return implSquareToLen(x, len, z, zlen);
2106      }
2107 
2108      /**
2109       * Parameters validation.
2110       */
2111      private static void implSquareToLenChecks(int[] x, int len, int[] z, int zlen) throws RuntimeException {
2112          if (len < 1) {
2113              throw new IllegalArgumentException("invalid input length: " + len);
2114          }
2115          if (len > x.length) {
2116              throw new IllegalArgumentException("input length out of bound: " +
2117                                         len + " > " + x.length);
2118          }
2119          if (len * 2 > z.length) {
2120              throw new IllegalArgumentException("input length out of bound: " +
2121                                         (len * 2) + " > " + z.length);
2122          }
2123          if (zlen < 1) {
2124              throw new IllegalArgumentException("invalid input length: " + zlen);
2125          }
2126          if (zlen > z.length) {
2127              throw new IllegalArgumentException("input length out of bound: " +
2128                                         len + " > " + z.length);
2129          }
2130      }
2131 
2132      /**
2133       * Java Runtime may use intrinsic for this method.
2134       */
2135      @HotSpotIntrinsicCandidate
2136      private static final int[] implSquareToLen(int[] x, int len, int[] z, int zlen) {
2137         /*
2138          * The algorithm used here is adapted from Colin Plumb's C library.
2139          * Technique: Consider the partial products in the multiplication
2140          * of "abcde" by itself:
2141          *
2142          *               a  b  c  d  e
2143          *            *  a  b  c  d  e
2144          *          ==================
2145          *              ae be ce de ee
2146          *           ad bd cd dd de
2147          *        ac bc cc cd ce
2148          *     ab bb bc bd be
2149          *  aa ab ac ad ae
2150          *
2151          * Note that everything above the main diagonal:
2152          *              ae be ce de = (abcd) * e
2153          *           ad bd cd       = (abc) * d
2154          *        ac bc             = (ab) * c
2155          *     ab                   = (a) * b
2156          *
2157          * is a copy of everything below the main diagonal:
2158          *                       de
2159          *                 cd ce
2160          *           bc bd be
2161          *     ab ac ad ae
2162          *
2163          * Thus, the sum is 2 * (off the diagonal) + diagonal.
2164          *
2165          * This is accumulated beginning with the diagonal (which
2166          * consist of the squares of the digits of the input), which is then
2167          * divided by two, the off-diagonal added, and multiplied by two
2168          * again.  The low bit is simply a copy of the low bit of the
2169          * input, so it doesn't need special care.
2170          */
2171 
2172         // Store the squares, right shifted one bit (i.e., divided by 2)
2173         int lastProductLowWord = 0;
2174         for (int j=0, i=0; j < len; j++) {
2175             long piece = (x[j] & LONG_MASK);
2176             long product = piece * piece;
2177             z[i++] = (lastProductLowWord << 31) | (int)(product >>> 33);
2178             z[i++] = (int)(product >>> 1);
2179             lastProductLowWord = (int)product;
2180         }
2181 
2182         // Add in off-diagonal sums
2183         for (int i=len, offset=1; i > 0; i--, offset+=2) {
2184             int t = x[i-1];
2185             t = mulAdd(z, x, offset, i-1, t);
2186             addOne(z, offset-1, i, t);
2187         }
2188 
2189         // Shift back up and set low bit
2190         primitiveLeftShift(z, zlen, 1);
2191         z[zlen-1] |= x[len-1] & 1;
2192 
2193         return z;
2194     }
2195 
2196     /**
2197      * Squares a BigInteger using the Karatsuba squaring algorithm.  It should
2198      * be used when both numbers are larger than a certain threshold (found
2199      * experimentally).  It is a recursive divide-and-conquer algorithm that
2200      * has better asymptotic performance than the algorithm used in
2201      * squareToLen.
2202      */
2203     private BigInteger squareKaratsuba() {
2204         int half = (mag.length+1) / 2;
2205 
2206         BigInteger xl = getLower(half);
2207         BigInteger xh = getUpper(half);
2208 
2209         BigInteger xhs = xh.square();  // xhs = xh^2
2210         BigInteger xls = xl.square();  // xls = xl^2
2211 
2212         // xh^2 << 64  +  (((xl+xh)^2 - (xh^2 + xl^2)) << 32) + xl^2
2213         return xhs.shiftLeft(half*32).add(xl.add(xh).square().subtract(xhs.add(xls))).shiftLeft(half*32).add(xls);
2214     }
2215 
2216     /**
2217      * Squares a BigInteger using the 3-way Toom-Cook squaring algorithm.  It
2218      * should be used when both numbers are larger than a certain threshold
2219      * (found experimentally).  It is a recursive divide-and-conquer algorithm
2220      * that has better asymptotic performance than the algorithm used in
2221      * squareToLen or squareKaratsuba.
2222      */
2223     private BigInteger squareToomCook3() {
2224         int len = mag.length;
2225 
2226         // k is the size (in ints) of the lower-order slices.
2227         int k = (len+2)/3;   // Equal to ceil(largest/3)
2228 
2229         // r is the size (in ints) of the highest-order slice.
2230         int r = len - 2*k;
2231 
2232         // Obtain slices of the numbers. a2 is the most significant
2233         // bits of the number, and a0 the least significant.
2234         BigInteger a0, a1, a2;
2235         a2 = getToomSlice(k, r, 0, len);
2236         a1 = getToomSlice(k, r, 1, len);
2237         a0 = getToomSlice(k, r, 2, len);
2238         BigInteger v0, v1, v2, vm1, vinf, t1, t2, tm1, da1;
2239 
2240         v0 = a0.square(true);
2241         da1 = a2.add(a0);
2242         vm1 = da1.subtract(a1).square(true);
2243         da1 = da1.add(a1);
2244         v1 = da1.square(true);
2245         vinf = a2.square(true);
2246         v2 = da1.add(a2).shiftLeft(1).subtract(a0).square(true);
2247 
2248         // The algorithm requires two divisions by 2 and one by 3.
2249         // All divisions are known to be exact, that is, they do not produce
2250         // remainders, and all results are positive.  The divisions by 2 are
2251         // implemented as right shifts which are relatively efficient, leaving
2252         // only a division by 3.
2253         // The division by 3 is done by an optimized algorithm for this case.
2254         t2 = v2.subtract(vm1).exactDivideBy3();
2255         tm1 = v1.subtract(vm1).shiftRight(1);
2256         t1 = v1.subtract(v0);
2257         t2 = t2.subtract(t1).shiftRight(1);
2258         t1 = t1.subtract(tm1).subtract(vinf);
2259         t2 = t2.subtract(vinf.shiftLeft(1));
2260         tm1 = tm1.subtract(t2);
2261 
2262         // Number of bits to shift left.
2263         int ss = k*32;
2264 
2265         return vinf.shiftLeft(ss).add(t2).shiftLeft(ss).add(t1).shiftLeft(ss).add(tm1).shiftLeft(ss).add(v0);
2266     }
2267 
2268     // Division
2269 
2270     /**
2271      * Returns a BigInteger whose value is {@code (this / val)}.
2272      *
2273      * @param  val value by which this BigInteger is to be divided.
2274      * @return {@code this / val}
2275      * @throws ArithmeticException if {@code val} is zero.
2276      */
2277     public BigInteger divide(BigInteger val) {
2278         if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD ||
2279                 mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) {
2280             return divideKnuth(val);
2281         } else {
2282             return divideBurnikelZiegler(val);
2283         }
2284     }
2285 
2286     /**
2287      * Returns a BigInteger whose value is {@code (this / val)} using an O(n^2) algorithm from Knuth.
2288      *
2289      * @param  val value by which this BigInteger is to be divided.
2290      * @return {@code this / val}
2291      * @throws ArithmeticException if {@code val} is zero.
2292      * @see MutableBigInteger#divideKnuth(MutableBigInteger, MutableBigInteger, boolean)
2293      */
2294     private BigInteger divideKnuth(BigInteger val) {
2295         MutableBigInteger q = new MutableBigInteger(),
2296                           a = new MutableBigInteger(this.mag),
2297                           b = new MutableBigInteger(val.mag);
2298 
2299         a.divideKnuth(b, q, false);
2300         return q.toBigInteger(this.signum * val.signum);
2301     }
2302 
2303     /**
2304      * Returns an array of two BigIntegers containing {@code (this / val)}
2305      * followed by {@code (this % val)}.
2306      *
2307      * @param  val value by which this BigInteger is to be divided, and the
2308      *         remainder computed.
2309      * @return an array of two BigIntegers: the quotient {@code (this / val)}
2310      *         is the initial element, and the remainder {@code (this % val)}
2311      *         is the final element.
2312      * @throws ArithmeticException if {@code val} is zero.
2313      */
2314     public BigInteger[] divideAndRemainder(BigInteger val) {
2315         if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD ||
2316                 mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) {
2317             return divideAndRemainderKnuth(val);
2318         } else {
2319             return divideAndRemainderBurnikelZiegler(val);
2320         }
2321     }
2322 
2323     /** Long division */
2324     private BigInteger[] divideAndRemainderKnuth(BigInteger val) {
2325         BigInteger[] result = new BigInteger[2];
2326         MutableBigInteger q = new MutableBigInteger(),
2327                           a = new MutableBigInteger(this.mag),
2328                           b = new MutableBigInteger(val.mag);
2329         MutableBigInteger r = a.divideKnuth(b, q);
2330         result[0] = q.toBigInteger(this.signum == val.signum ? 1 : -1);
2331         result[1] = r.toBigInteger(this.signum);
2332         return result;
2333     }
2334 
2335     /**
2336      * Returns a BigInteger whose value is {@code (this % val)}.
2337      *
2338      * @param  val value by which this BigInteger is to be divided, and the
2339      *         remainder computed.
2340      * @return {@code this % val}
2341      * @throws ArithmeticException if {@code val} is zero.
2342      */
2343     public BigInteger remainder(BigInteger val) {
2344         if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD ||
2345                 mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) {
2346             return remainderKnuth(val);
2347         } else {
2348             return remainderBurnikelZiegler(val);
2349         }
2350     }
2351 
2352     /** Long division */
2353     private BigInteger remainderKnuth(BigInteger val) {
2354         MutableBigInteger q = new MutableBigInteger(),
2355                           a = new MutableBigInteger(this.mag),
2356                           b = new MutableBigInteger(val.mag);
2357 
2358         return a.divideKnuth(b, q).toBigInteger(this.signum);
2359     }
2360 
2361     /**
2362      * Calculates {@code this / val} using the Burnikel-Ziegler algorithm.
2363      * @param  val the divisor
2364      * @return {@code this / val}
2365      */
2366     private BigInteger divideBurnikelZiegler(BigInteger val) {
2367         return divideAndRemainderBurnikelZiegler(val)[0];
2368     }
2369 
2370     /**
2371      * Calculates {@code this % val} using the Burnikel-Ziegler algorithm.
2372      * @param val the divisor
2373      * @return {@code this % val}
2374      */
2375     private BigInteger remainderBurnikelZiegler(BigInteger val) {
2376         return divideAndRemainderBurnikelZiegler(val)[1];
2377     }
2378 
2379     /**
2380      * Computes {@code this / val} and {@code this % val} using the
2381      * Burnikel-Ziegler algorithm.
2382      * @param val the divisor
2383      * @return an array containing the quotient and remainder
2384      */
2385     private BigInteger[] divideAndRemainderBurnikelZiegler(BigInteger val) {
2386         MutableBigInteger q = new MutableBigInteger();
2387         MutableBigInteger r = new MutableBigInteger(this).divideAndRemainderBurnikelZiegler(new MutableBigInteger(val), q);
2388         BigInteger qBigInt = q.isZero() ? ZERO : q.toBigInteger(signum*val.signum);
2389         BigInteger rBigInt = r.isZero() ? ZERO : r.toBigInteger(signum);
2390         return new BigInteger[] {qBigInt, rBigInt};
2391     }
2392 
2393     /**
2394      * Returns a BigInteger whose value is <code>(this<sup>exponent</sup>)</code>.
2395      * Note that {@code exponent} is an integer rather than a BigInteger.
2396      *
2397      * @param  exponent exponent to which this BigInteger is to be raised.
2398      * @return <code>this<sup>exponent</sup></code>
2399      * @throws ArithmeticException {@code exponent} is negative.  (This would
2400      *         cause the operation to yield a non-integer value.)
2401      */
2402     public BigInteger pow(int exponent) {
2403         if (exponent < 0) {
2404             throw new ArithmeticException("Negative exponent");
2405         }
2406         if (signum == 0) {
2407             return (exponent == 0 ? ONE : this);
2408         }
2409 
2410         BigInteger partToSquare = this.abs();
2411 
2412         // Factor out powers of two from the base, as the exponentiation of
2413         // these can be done by left shifts only.
2414         // The remaining part can then be exponentiated faster.  The
2415         // powers of two will be multiplied back at the end.
2416         int powersOfTwo = partToSquare.getLowestSetBit();
2417         long bitsToShiftLong = (long)powersOfTwo * exponent;
2418         if (bitsToShiftLong > Integer.MAX_VALUE) {
2419             reportOverflow();
2420         }
2421         int bitsToShift = (int)bitsToShiftLong;
2422 
2423         int remainingBits;
2424 
2425         // Factor the powers of two out quickly by shifting right, if needed.
2426         if (powersOfTwo > 0) {
2427             partToSquare = partToSquare.shiftRight(powersOfTwo);
2428             remainingBits = partToSquare.bitLength();
2429             if (remainingBits == 1) {  // Nothing left but +/- 1?
2430                 if (signum < 0 && (exponent&1) == 1) {
2431                     return NEGATIVE_ONE.shiftLeft(bitsToShift);
2432                 } else {
2433                     return ONE.shiftLeft(bitsToShift);
2434                 }
2435             }
2436         } else {
2437             remainingBits = partToSquare.bitLength();
2438             if (remainingBits == 1) { // Nothing left but +/- 1?
2439                 if (signum < 0  && (exponent&1) == 1) {
2440                     return NEGATIVE_ONE;
2441                 } else {
2442                     return ONE;
2443                 }
2444             }
2445         }
2446 
2447         // This is a quick way to approximate the size of the result,
2448         // similar to doing log2[n] * exponent.  This will give an upper bound
2449         // of how big the result can be, and which algorithm to use.
2450         long scaleFactor = (long)remainingBits * exponent;
2451 
2452         // Use slightly different algorithms for small and large operands.
2453         // See if the result will safely fit into a long. (Largest 2^63-1)
2454         if (partToSquare.mag.length == 1 && scaleFactor <= 62) {
2455             // Small number algorithm.  Everything fits into a long.
2456             int newSign = (signum <0  && (exponent&1) == 1 ? -1 : 1);
2457             long result = 1;
2458             long baseToPow2 = partToSquare.mag[0] & LONG_MASK;
2459 
2460             int workingExponent = exponent;
2461 
2462             // Perform exponentiation using repeated squaring trick
2463             while (workingExponent != 0) {
2464                 if ((workingExponent & 1) == 1) {
2465                     result = result * baseToPow2;
2466                 }
2467 
2468                 if ((workingExponent >>>= 1) != 0) {
2469                     baseToPow2 = baseToPow2 * baseToPow2;
2470                 }
2471             }
2472 
2473             // Multiply back the powers of two (quickly, by shifting left)
2474             if (powersOfTwo > 0) {
2475                 if (bitsToShift + scaleFactor <= 62) { // Fits in long?
2476                     return valueOf((result << bitsToShift) * newSign);
2477                 } else {
2478                     return valueOf(result*newSign).shiftLeft(bitsToShift);
2479                 }
2480             } else {
2481                 return valueOf(result*newSign);
2482             }
2483         } else {
2484             if ((long)bitLength() * exponent / Integer.SIZE > MAX_MAG_LENGTH) {
2485                 reportOverflow();
2486             }
2487 
2488             // Large number algorithm.  This is basically identical to
2489             // the algorithm above, but calls multiply() and square()
2490             // which may use more efficient algorithms for large numbers.
2491             BigInteger answer = ONE;
2492 
2493             int workingExponent = exponent;
2494             // Perform exponentiation using repeated squaring trick
2495             while (workingExponent != 0) {
2496                 if ((workingExponent & 1) == 1) {
2497                     answer = answer.multiply(partToSquare);
2498                 }
2499 
2500                 if ((workingExponent >>>= 1) != 0) {
2501                     partToSquare = partToSquare.square();
2502                 }
2503             }
2504             // Multiply back the (exponentiated) powers of two (quickly,
2505             // by shifting left)
2506             if (powersOfTwo > 0) {
2507                 answer = answer.shiftLeft(bitsToShift);
2508             }
2509 
2510             if (signum < 0 && (exponent&1) == 1) {
2511                 return answer.negate();
2512             } else {
2513                 return answer;
2514             }
2515         }
2516     }
2517 
2518     /**
2519      * Returns the integer square root of this BigInteger.  The integer square
2520      * root of the corresponding mathematical integer {@code n} is the largest
2521      * mathematical integer {@code s} such that {@code s*s <= n}.  It is equal
2522      * to the value of {@code floor(sqrt(n))}, where {@code sqrt(n)} denotes the
2523      * real square root of {@code n} treated as a real.  Note that the integer
2524      * square root will be less than the real square root if the latter is not
2525      * representable as an integral value.
2526      *
2527      * @return the integer square root of {@code this}
2528      * @throws ArithmeticException if {@code this} is negative.  (The square
2529      *         root of a negative integer {@code val} is
2530      *         {@code (i * sqrt(-val))} where <i>i</i> is the
2531      *         <i>imaginary unit</i> and is equal to
2532      *         {@code sqrt(-1)}.)
2533      * @since  9
2534      */
2535     public BigInteger sqrt() {
2536         if (this.signum < 0) {
2537             throw new ArithmeticException("Negative BigInteger");
2538         }
2539 
2540         return new MutableBigInteger(this.mag).sqrt().toBigInteger();
2541     }
2542 
2543     /**
2544      * Returns an array of two BigIntegers containing the integer square root
2545      * {@code s} of {@code this} and its remainder {@code this - s*s},
2546      * respectively.
2547      *
2548      * @return an array of two BigIntegers with the integer square root at
2549      *         offset 0 and the remainder at offset 1
2550      * @throws ArithmeticException if {@code this} is negative.  (The square
2551      *         root of a negative integer {@code val} is
2552      *         {@code (i * sqrt(-val))} where <i>i</i> is the
2553      *         <i>imaginary unit</i> and is equal to
2554      *         {@code sqrt(-1)}.)
2555      * @see #sqrt()
2556      * @since  9
2557      */
2558     public BigInteger[] sqrtAndRemainder() {
2559         BigInteger s = sqrt();
2560         BigInteger r = this.subtract(s.square());
2561         assert r.compareTo(BigInteger.ZERO) >= 0;
2562         return new BigInteger[] {s, r};
2563     }
2564 
2565     /**
2566      * Returns a BigInteger whose value is the greatest common divisor of
2567      * {@code abs(this)} and {@code abs(val)}.  Returns 0 if
2568      * {@code this == 0 && val == 0}.
2569      *
2570      * @param  val value with which the GCD is to be computed.
2571      * @return {@code GCD(abs(this), abs(val))}
2572      */
2573     public BigInteger gcd(BigInteger val) {
2574         if (val.signum == 0)
2575             return this.abs();
2576         else if (this.signum == 0)
2577             return val.abs();
2578 
2579         MutableBigInteger a = new MutableBigInteger(this);
2580         MutableBigInteger b = new MutableBigInteger(val);
2581 
2582         MutableBigInteger result = a.hybridGCD(b);
2583 
2584         return result.toBigInteger(1);
2585     }
2586 
2587     /**
2588      * Package private method to return bit length for an integer.
2589      */
2590     static int bitLengthForInt(int n) {
2591         return 32 - Integer.numberOfLeadingZeros(n);
2592     }
2593 
2594     /**
2595      * Left shift int array a up to len by n bits. Returns the array that
2596      * results from the shift since space may have to be reallocated.
2597      */
2598     private static int[] leftShift(int[] a, int len, int n) {
2599         int nInts = n >>> 5;
2600         int nBits = n&0x1F;
2601         int bitsInHighWord = bitLengthForInt(a[0]);
2602 
2603         // If shift can be done without recopy, do so
2604         if (n <= (32-bitsInHighWord)) {
2605             primitiveLeftShift(a, len, nBits);
2606             return a;
2607         } else { // Array must be resized
2608             if (nBits <= (32-bitsInHighWord)) {
2609                 int result[] = new int[nInts+len];
2610                 System.arraycopy(a, 0, result, 0, len);
2611                 primitiveLeftShift(result, result.length, nBits);
2612                 return result;
2613             } else {
2614                 int result[] = new int[nInts+len+1];
2615                 System.arraycopy(a, 0, result, 0, len);
2616                 primitiveRightShift(result, result.length, 32 - nBits);
2617                 return result;
2618             }
2619         }
2620     }
2621 
2622     // shifts a up to len right n bits assumes no leading zeros, 0<n<32
2623     static void primitiveRightShift(int[] a, int len, int n) {
2624         int n2 = 32 - n;
2625         for (int i=len-1, c=a[i]; i > 0; i--) {
2626             int b = c;
2627             c = a[i-1];
2628             a[i] = (c << n2) | (b >>> n);
2629         }
2630         a[0] >>>= n;
2631     }
2632 
2633     // shifts a up to len left n bits assumes no leading zeros, 0<=n<32
2634     static void primitiveLeftShift(int[] a, int len, int n) {
2635         if (len == 0 || n == 0)
2636             return;
2637 
2638         int n2 = 32 - n;
2639         for (int i=0, c=a[i], m=i+len-1; i < m; i++) {
2640             int b = c;
2641             c = a[i+1];
2642             a[i] = (b << n) | (c >>> n2);
2643         }
2644         a[len-1] <<= n;
2645     }
2646 
2647     /**
2648      * Calculate bitlength of contents of the first len elements an int array,
2649      * assuming there are no leading zero ints.
2650      */
2651     private static int bitLength(int[] val, int len) {
2652         if (len == 0)
2653             return 0;
2654         return ((len - 1) << 5) + bitLengthForInt(val[0]);
2655     }
2656 
2657     /**
2658      * Returns a BigInteger whose value is the absolute value of this
2659      * BigInteger.
2660      *
2661      * @return {@code abs(this)}
2662      */
2663     public BigInteger abs() {
2664         return (signum >= 0 ? this : this.negate());
2665     }
2666 
2667     /**
2668      * Returns a BigInteger whose value is {@code (-this)}.
2669      *
2670      * @return {@code -this}
2671      */
2672     public BigInteger negate() {
2673         return new BigInteger(this.mag, -this.signum);
2674     }
2675 
2676     /**
2677      * Returns the signum function of this BigInteger.
2678      *
2679      * @return -1, 0 or 1 as the value of this BigInteger is negative, zero or
2680      *         positive.
2681      */
2682     public int signum() {
2683         return this.signum;
2684     }
2685 
2686     // Modular Arithmetic Operations
2687 
2688     /**
2689      * Returns a BigInteger whose value is {@code (this mod m}).  This method
2690      * differs from {@code remainder} in that it always returns a
2691      * <i>non-negative</i> BigInteger.
2692      *
2693      * @param  m the modulus.
2694      * @return {@code this mod m}
2695      * @throws ArithmeticException {@code m} &le; 0
2696      * @see    #remainder
2697      */
2698     public BigInteger mod(BigInteger m) {
2699         if (m.signum <= 0)
2700             throw new ArithmeticException("BigInteger: modulus not positive");
2701 
2702         BigInteger result = this.remainder(m);
2703         return (result.signum >= 0 ? result : result.add(m));
2704     }
2705 
2706     /**
2707      * Returns a BigInteger whose value is
2708      * <code>(this<sup>exponent</sup> mod m)</code>.  (Unlike {@code pow}, this
2709      * method permits negative exponents.)
2710      *
2711      * @param  exponent the exponent.
2712      * @param  m the modulus.
2713      * @return <code>this<sup>exponent</sup> mod m</code>
2714      * @throws ArithmeticException {@code m} &le; 0 or the exponent is
2715      *         negative and this BigInteger is not <i>relatively
2716      *         prime</i> to {@code m}.
2717      * @see    #modInverse
2718      */
2719     public BigInteger modPow(BigInteger exponent, BigInteger m) {
2720         if (m.signum <= 0)
2721             throw new ArithmeticException("BigInteger: modulus not positive");
2722 
2723         // Trivial cases
2724         if (exponent.signum == 0)
2725             return (m.equals(ONE) ? ZERO : ONE);
2726 
2727         if (this.equals(ONE))
2728             return (m.equals(ONE) ? ZERO : ONE);
2729 
2730         if (this.equals(ZERO) && exponent.signum >= 0)
2731             return ZERO;
2732 
2733         if (this.equals(negConst[1]) && (!exponent.testBit(0)))
2734             return (m.equals(ONE) ? ZERO : ONE);
2735 
2736         boolean invertResult;
2737         if ((invertResult = (exponent.signum < 0)))
2738             exponent = exponent.negate();
2739 
2740         BigInteger base = (this.signum < 0 || this.compareTo(m) >= 0
2741                            ? this.mod(m) : this);
2742         BigInteger result;
2743         if (m.testBit(0)) { // odd modulus
2744             result = base.oddModPow(exponent, m);
2745         } else {
2746             /*
2747              * Even modulus.  Tear it into an "odd part" (m1) and power of two
2748              * (m2), exponentiate mod m1, manually exponentiate mod m2, and
2749              * use Chinese Remainder Theorem to combine results.
2750              */
2751 
2752             // Tear m apart into odd part (m1) and power of 2 (m2)
2753             int p = m.getLowestSetBit();   // Max pow of 2 that divides m
2754 
2755             BigInteger m1 = m.shiftRight(p);  // m/2**p
2756             BigInteger m2 = ONE.shiftLeft(p); // 2**p
2757 
2758             // Calculate new base from m1
2759             BigInteger base2 = (this.signum < 0 || this.compareTo(m1) >= 0
2760                                 ? this.mod(m1) : this);
2761 
2762             // Caculate (base ** exponent) mod m1.
2763             BigInteger a1 = (m1.equals(ONE) ? ZERO :
2764                              base2.oddModPow(exponent, m1));
2765 
2766             // Calculate (this ** exponent) mod m2
2767             BigInteger a2 = base.modPow2(exponent, p);
2768 
2769             // Combine results using Chinese Remainder Theorem
2770             BigInteger y1 = m2.modInverse(m1);
2771             BigInteger y2 = m1.modInverse(m2);
2772 
2773             if (m.mag.length < MAX_MAG_LENGTH / 2) {
2774                 result = a1.multiply(m2).multiply(y1).add(a2.multiply(m1).multiply(y2)).mod(m);
2775             } else {
2776                 MutableBigInteger t1 = new MutableBigInteger();
2777                 new MutableBigInteger(a1.multiply(m2)).multiply(new MutableBigInteger(y1), t1);
2778                 MutableBigInteger t2 = new MutableBigInteger();
2779                 new MutableBigInteger(a2.multiply(m1)).multiply(new MutableBigInteger(y2), t2);
2780                 t1.add(t2);
2781                 MutableBigInteger q = new MutableBigInteger();
2782                 result = t1.divide(new MutableBigInteger(m), q).toBigInteger();
2783             }
2784         }
2785 
2786         return (invertResult ? result.modInverse(m) : result);
2787     }
2788 
2789     // Montgomery multiplication.  These are wrappers for
2790     // implMontgomeryXX routines which are expected to be replaced by
2791     // virtual machine intrinsics.  We don't use the intrinsics for
2792     // very large operands: MONTGOMERY_INTRINSIC_THRESHOLD should be
2793     // larger than any reasonable crypto key.
2794     private static int[] montgomeryMultiply(int[] a, int[] b, int[] n, int len, long inv,
2795                                             int[] product) {
2796         implMontgomeryMultiplyChecks(a, b, n, len, product);
2797         if (len > MONTGOMERY_INTRINSIC_THRESHOLD) {
2798             // Very long argument: do not use an intrinsic
2799             product = multiplyToLen(a, len, b, len, product);
2800             return montReduce(product, n, len, (int)inv);
2801         } else {
2802             return implMontgomeryMultiply(a, b, n, len, inv, materialize(product, len));
2803         }
2804     }
2805     private static int[] montgomerySquare(int[] a, int[] n, int len, long inv,
2806                                           int[] product) {
2807         implMontgomeryMultiplyChecks(a, a, n, len, product);
2808         if (len > MONTGOMERY_INTRINSIC_THRESHOLD) {
2809             // Very long argument: do not use an intrinsic
2810             product = squareToLen(a, len, product);
2811             return montReduce(product, n, len, (int)inv);
2812         } else {
2813             return implMontgomerySquare(a, n, len, inv, materialize(product, len));
2814         }
2815     }
2816 
2817     // Range-check everything.
2818     private static void implMontgomeryMultiplyChecks
2819         (int[] a, int[] b, int[] n, int len, int[] product) throws RuntimeException {
2820         if (len % 2 != 0) {
2821             throw new IllegalArgumentException("input array length must be even: " + len);
2822         }
2823 
2824         if (len < 1) {
2825             throw new IllegalArgumentException("invalid input length: " + len);
2826         }
2827 
2828         if (len > a.length ||
2829             len > b.length ||
2830             len > n.length ||
2831             (product != null && len > product.length)) {
2832             throw new IllegalArgumentException("input array length out of bound: " + len);
2833         }
2834     }
2835 
2836     // Make sure that the int array z (which is expected to contain
2837     // the result of a Montgomery multiplication) is present and
2838     // sufficiently large.
2839     private static int[] materialize(int[] z, int len) {
2840          if (z == null || z.length < len)
2841              z = new int[len];
2842          return z;
2843     }
2844 
2845     // These methods are intended to be replaced by virtual machine
2846     // intrinsics.
2847     @HotSpotIntrinsicCandidate
2848     private static int[] implMontgomeryMultiply(int[] a, int[] b, int[] n, int len,
2849                                          long inv, int[] product) {
2850         product = multiplyToLen(a, len, b, len, product);
2851         return montReduce(product, n, len, (int)inv);
2852     }
2853     @HotSpotIntrinsicCandidate
2854     private static int[] implMontgomerySquare(int[] a, int[] n, int len,
2855                                        long inv, int[] product) {
2856         product = squareToLen(a, len, product);
2857         return montReduce(product, n, len, (int)inv);
2858     }
2859 
2860     static int[] bnExpModThreshTable = {7, 25, 81, 241, 673, 1793,
2861                                                 Integer.MAX_VALUE}; // Sentinel
2862 
2863     /**
2864      * Returns a BigInteger whose value is x to the power of y mod z.
2865      * Assumes: z is odd && x < z.
2866      */
2867     private BigInteger oddModPow(BigInteger y, BigInteger z) {
2868     /*
2869      * The algorithm is adapted from Colin Plumb's C library.
2870      *
2871      * The window algorithm:
2872      * The idea is to keep a running product of b1 = n^(high-order bits of exp)
2873      * and then keep appending exponent bits to it.  The following patterns
2874      * apply to a 3-bit window (k = 3):
2875      * To append   0: square
2876      * To append   1: square, multiply by n^1
2877      * To append  10: square, multiply by n^1, square
2878      * To append  11: square, square, multiply by n^3
2879      * To append 100: square, multiply by n^1, square, square
2880      * To append 101: square, square, square, multiply by n^5
2881      * To append 110: square, square, multiply by n^3, square
2882      * To append 111: square, square, square, multiply by n^7
2883      *
2884      * Since each pattern involves only one multiply, the longer the pattern
2885      * the better, except that a 0 (no multiplies) can be appended directly.
2886      * We precompute a table of odd powers of n, up to 2^k, and can then
2887      * multiply k bits of exponent at a time.  Actually, assuming random
2888      * exponents, there is on average one zero bit between needs to
2889      * multiply (1/2 of the time there's none, 1/4 of the time there's 1,
2890      * 1/8 of the time, there's 2, 1/32 of the time, there's 3, etc.), so
2891      * you have to do one multiply per k+1 bits of exponent.
2892      *
2893      * The loop walks down the exponent, squaring the result buffer as
2894      * it goes.  There is a wbits+1 bit lookahead buffer, buf, that is
2895      * filled with the upcoming exponent bits.  (What is read after the
2896      * end of the exponent is unimportant, but it is filled with zero here.)
2897      * When the most-significant bit of this buffer becomes set, i.e.
2898      * (buf & tblmask) != 0, we have to decide what pattern to multiply
2899      * by, and when to do it.  We decide, remember to do it in future
2900      * after a suitable number of squarings have passed (e.g. a pattern
2901      * of "100" in the buffer requires that we multiply by n^1 immediately;
2902      * a pattern of "110" calls for multiplying by n^3 after one more
2903      * squaring), clear the buffer, and continue.
2904      *
2905      * When we start, there is one more optimization: the result buffer
2906      * is implcitly one, so squaring it or multiplying by it can be
2907      * optimized away.  Further, if we start with a pattern like "100"
2908      * in the lookahead window, rather than placing n into the buffer
2909      * and then starting to square it, we have already computed n^2
2910      * to compute the odd-powers table, so we can place that into
2911      * the buffer and save a squaring.
2912      *
2913      * This means that if you have a k-bit window, to compute n^z,
2914      * where z is the high k bits of the exponent, 1/2 of the time
2915      * it requires no squarings.  1/4 of the time, it requires 1
2916      * squaring, ... 1/2^(k-1) of the time, it reqires k-2 squarings.
2917      * And the remaining 1/2^(k-1) of the time, the top k bits are a
2918      * 1 followed by k-1 0 bits, so it again only requires k-2
2919      * squarings, not k-1.  The average of these is 1.  Add that
2920      * to the one squaring we have to do to compute the table,
2921      * and you'll see that a k-bit window saves k-2 squarings
2922      * as well as reducing the multiplies.  (It actually doesn't
2923      * hurt in the case k = 1, either.)
2924      */
2925         // Special case for exponent of one
2926         if (y.equals(ONE))
2927             return this;
2928 
2929         // Special case for base of zero
2930         if (signum == 0)
2931             return ZERO;
2932 
2933         int[] base = mag.clone();
2934         int[] exp = y.mag;
2935         int[] mod = z.mag;
2936         int modLen = mod.length;
2937 
2938         // Make modLen even. It is conventional to use a cryptographic
2939         // modulus that is 512, 768, 1024, or 2048 bits, so this code
2940         // will not normally be executed. However, it is necessary for
2941         // the correct functioning of the HotSpot intrinsics.
2942         if ((modLen & 1) != 0) {
2943             int[] x = new int[modLen + 1];
2944             System.arraycopy(mod, 0, x, 1, modLen);
2945             mod = x;
2946             modLen++;
2947         }
2948 
2949         // Select an appropriate window size
2950         int wbits = 0;
2951         int ebits = bitLength(exp, exp.length);
2952         // if exponent is 65537 (0x10001), use minimum window size
2953         if ((ebits != 17) || (exp[0] != 65537)) {
2954             while (ebits > bnExpModThreshTable[wbits]) {
2955                 wbits++;
2956             }
2957         }
2958 
2959         // Calculate appropriate table size
2960         int tblmask = 1 << wbits;
2961 
2962         // Allocate table for precomputed odd powers of base in Montgomery form
2963         int[][] table = new int[tblmask][];
2964         for (int i=0; i < tblmask; i++)
2965             table[i] = new int[modLen];
2966 
2967         // Compute the modular inverse of the least significant 64-bit
2968         // digit of the modulus
2969         long n0 = (mod[modLen-1] & LONG_MASK) + ((mod[modLen-2] & LONG_MASK) << 32);
2970         long inv = -MutableBigInteger.inverseMod64(n0);
2971 
2972         // Convert base to Montgomery form
2973         int[] a = leftShift(base, base.length, modLen << 5);
2974 
2975         MutableBigInteger q = new MutableBigInteger(),
2976                           a2 = new MutableBigInteger(a),
2977                           b2 = new MutableBigInteger(mod);
2978         b2.normalize(); // MutableBigInteger.divide() assumes that its
2979                         // divisor is in normal form.
2980 
2981         MutableBigInteger r= a2.divide(b2, q);
2982         table[0] = r.toIntArray();
2983 
2984         // Pad table[0] with leading zeros so its length is at least modLen
2985         if (table[0].length < modLen) {
2986            int offset = modLen - table[0].length;
2987            int[] t2 = new int[modLen];
2988            System.arraycopy(table[0], 0, t2, offset, table[0].length);
2989            table[0] = t2;
2990         }
2991 
2992         // Set b to the square of the base
2993         int[] b = montgomerySquare(table[0], mod, modLen, inv, null);
2994 
2995         // Set t to high half of b
2996         int[] t = Arrays.copyOf(b, modLen);
2997 
2998         // Fill in the table with odd powers of the base
2999         for (int i=1; i < tblmask; i++) {
3000             table[i] = montgomeryMultiply(t, table[i-1], mod, modLen, inv, null);
3001         }
3002 
3003         // Pre load the window that slides over the exponent
3004         int bitpos = 1 << ((ebits-1) & (32-1));
3005 
3006         int buf = 0;
3007         int elen = exp.length;
3008         int eIndex = 0;
3009         for (int i = 0; i <= wbits; i++) {
3010             buf = (buf << 1) | (((exp[eIndex] & bitpos) != 0)?1:0);
3011             bitpos >>>= 1;
3012             if (bitpos == 0) {
3013                 eIndex++;
3014                 bitpos = 1 << (32-1);
3015                 elen--;
3016             }
3017         }
3018 
3019         int multpos = ebits;
3020 
3021         // The first iteration, which is hoisted out of the main loop
3022         ebits--;
3023         boolean isone = true;
3024 
3025         multpos = ebits - wbits;
3026         while ((buf & 1) == 0) {
3027             buf >>>= 1;
3028             multpos++;
3029         }
3030 
3031         int[] mult = table[buf >>> 1];
3032 
3033         buf = 0;
3034         if (multpos == ebits)
3035             isone = false;
3036 
3037         // The main loop
3038         while (true) {
3039             ebits--;
3040             // Advance the window
3041             buf <<= 1;
3042 
3043             if (elen != 0) {
3044                 buf |= ((exp[eIndex] & bitpos) != 0) ? 1 : 0;
3045                 bitpos >>>= 1;
3046                 if (bitpos == 0) {
3047                     eIndex++;
3048                     bitpos = 1 << (32-1);
3049                     elen--;
3050                 }
3051             }
3052 
3053             // Examine the window for pending multiplies
3054             if ((buf & tblmask) != 0) {
3055                 multpos = ebits - wbits;
3056                 while ((buf & 1) == 0) {
3057                     buf >>>= 1;
3058                     multpos++;
3059                 }
3060                 mult = table[buf >>> 1];
3061                 buf = 0;
3062             }
3063 
3064             // Perform multiply
3065             if (ebits == multpos) {
3066                 if (isone) {
3067                     b = mult.clone();
3068                     isone = false;
3069                 } else {
3070                     t = b;
3071                     a = montgomeryMultiply(t, mult, mod, modLen, inv, a);
3072                     t = a; a = b; b = t;
3073                 }
3074             }
3075 
3076             // Check if done
3077             if (ebits == 0)
3078                 break;
3079 
3080             // Square the input
3081             if (!isone) {
3082                 t = b;
3083                 a = montgomerySquare(t, mod, modLen, inv, a);
3084                 t = a; a = b; b = t;
3085             }
3086         }
3087 
3088         // Convert result out of Montgomery form and return
3089         int[] t2 = new int[2*modLen];
3090         System.arraycopy(b, 0, t2, modLen, modLen);
3091 
3092         b = montReduce(t2, mod, modLen, (int)inv);
3093 
3094         t2 = Arrays.copyOf(b, modLen);
3095 
3096         return new BigInteger(1, t2);
3097     }
3098 
3099     /**
3100      * Montgomery reduce n, modulo mod.  This reduces modulo mod and divides
3101      * by 2^(32*mlen). Adapted from Colin Plumb's C library.
3102      */
3103     private static int[] montReduce(int[] n, int[] mod, int mlen, int inv) {
3104         int c=0;
3105         int len = mlen;
3106         int offset=0;
3107 
3108         do {
3109             int nEnd = n[n.length-1-offset];
3110             int carry = mulAdd(n, mod, offset, mlen, inv * nEnd);
3111             c += addOne(n, offset, mlen, carry);
3112             offset++;
3113         } while (--len > 0);
3114 
3115         while (c > 0)
3116             c += subN(n, mod, mlen);
3117 
3118         while (intArrayCmpToLen(n, mod, mlen) >= 0)
3119             subN(n, mod, mlen);
3120 
3121         return n;
3122     }
3123 
3124 
3125     /*
3126      * Returns -1, 0 or +1 as big-endian unsigned int array arg1 is less than,
3127      * equal to, or greater than arg2 up to length len.
3128      */
3129     private static int intArrayCmpToLen(int[] arg1, int[] arg2, int len) {
3130         for (int i=0; i < len; i++) {
3131             long b1 = arg1[i] & LONG_MASK;
3132             long b2 = arg2[i] & LONG_MASK;
3133             if (b1 < b2)
3134                 return -1;
3135             if (b1 > b2)
3136                 return 1;
3137         }
3138         return 0;
3139     }
3140 
3141     /**
3142      * Subtracts two numbers of same length, returning borrow.
3143      */
3144     private static int subN(int[] a, int[] b, int len) {
3145         long sum = 0;
3146 
3147         while (--len >= 0) {
3148             sum = (a[len] & LONG_MASK) -
3149                  (b[len] & LONG_MASK) + (sum >> 32);
3150             a[len] = (int)sum;
3151         }
3152 
3153         return (int)(sum >> 32);
3154     }
3155 
3156     /**
3157      * Multiply an array by one word k and add to result, return the carry
3158      */
3159     static int mulAdd(int[] out, int[] in, int offset, int len, int k) {
3160         implMulAddCheck(out, in, offset, len, k);
3161         return implMulAdd(out, in, offset, len, k);
3162     }
3163 
3164     /**
3165      * Parameters validation.
3166      */
3167     private static void implMulAddCheck(int[] out, int[] in, int offset, int len, int k) {
3168         if (len > in.length) {
3169             throw new IllegalArgumentException("input length is out of bound: " + len + " > " + in.length);
3170         }
3171         if (offset < 0) {
3172             throw new IllegalArgumentException("input offset is invalid: " + offset);
3173         }
3174         if (offset > (out.length - 1)) {
3175             throw new IllegalArgumentException("input offset is out of bound: " + offset + " > " + (out.length - 1));
3176         }
3177         if (len > (out.length - offset)) {
3178             throw new IllegalArgumentException("input len is out of bound: " + len + " > " + (out.length - offset));
3179         }
3180     }
3181 
3182     /**
3183      * Java Runtime may use intrinsic for this method.
3184      */
3185     @HotSpotIntrinsicCandidate
3186     private static int implMulAdd(int[] out, int[] in, int offset, int len, int k) {
3187         long kLong = k & LONG_MASK;
3188         long carry = 0;
3189 
3190         offset = out.length-offset - 1;
3191         for (int j=len-1; j >= 0; j--) {
3192             long product = (in[j] & LONG_MASK) * kLong +
3193                            (out[offset] & LONG_MASK) + carry;
3194             out[offset--] = (int)product;
3195             carry = product >>> 32;
3196         }
3197         return (int)carry;
3198     }
3199 
3200     /**
3201      * Add one word to the number a mlen words into a. Return the resulting
3202      * carry.
3203      */
3204     static int addOne(int[] a, int offset, int mlen, int carry) {
3205         offset = a.length-1-mlen-offset;
3206         long t = (a[offset] & LONG_MASK) + (carry & LONG_MASK);
3207 
3208         a[offset] = (int)t;
3209         if ((t >>> 32) == 0)
3210             return 0;
3211         while (--mlen >= 0) {
3212             if (--offset < 0) { // Carry out of number
3213                 return 1;
3214             } else {
3215                 a[offset]++;
3216                 if (a[offset] != 0)
3217                     return 0;
3218             }
3219         }
3220         return 1;
3221     }
3222 
3223     /**
3224      * Returns a BigInteger whose value is (this ** exponent) mod (2**p)
3225      */
3226     private BigInteger modPow2(BigInteger exponent, int p) {
3227         /*
3228          * Perform exponentiation using repeated squaring trick, chopping off
3229          * high order bits as indicated by modulus.
3230          */
3231         BigInteger result = ONE;
3232         BigInteger baseToPow2 = this.mod2(p);
3233         int expOffset = 0;
3234 
3235         int limit = exponent.bitLength();
3236 
3237         if (this.testBit(0))
3238            limit = (p-1) < limit ? (p-1) : limit;
3239 
3240         while (expOffset < limit) {
3241             if (exponent.testBit(expOffset))
3242                 result = result.multiply(baseToPow2).mod2(p);
3243             expOffset++;
3244             if (expOffset < limit)
3245                 baseToPow2 = baseToPow2.square().mod2(p);
3246         }
3247 
3248         return result;
3249     }
3250 
3251     /**
3252      * Returns a BigInteger whose value is this mod(2**p).
3253      * Assumes that this {@code BigInteger >= 0} and {@code p > 0}.
3254      */
3255     private BigInteger mod2(int p) {
3256         if (bitLength() <= p)
3257             return this;
3258 
3259         // Copy remaining ints of mag
3260         int numInts = (p + 31) >>> 5;
3261         int[] mag = new int[numInts];
3262         System.arraycopy(this.mag, (this.mag.length - numInts), mag, 0, numInts);
3263 
3264         // Mask out any excess bits
3265         int excessBits = (numInts << 5) - p;
3266         mag[0] &= (1L << (32-excessBits)) - 1;
3267 
3268         return (mag[0] == 0 ? new BigInteger(1, mag) : new BigInteger(mag, 1));
3269     }
3270 
3271     /**
3272      * Returns a BigInteger whose value is {@code (this}<sup>-1</sup> {@code mod m)}.
3273      *
3274      * @param  m the modulus.
3275      * @return {@code this}<sup>-1</sup> {@code mod m}.
3276      * @throws ArithmeticException {@code  m} &le; 0, or this BigInteger
3277      *         has no multiplicative inverse mod m (that is, this BigInteger
3278      *         is not <i>relatively prime</i> to m).
3279      */
3280     public BigInteger modInverse(BigInteger m) {
3281         if (m.signum != 1)
3282             throw new ArithmeticException("BigInteger: modulus not positive");
3283 
3284         if (m.equals(ONE))
3285             return ZERO;
3286 
3287         // Calculate (this mod m)
3288         BigInteger modVal = this;
3289         if (signum < 0 || (this.compareMagnitude(m) >= 0))
3290             modVal = this.mod(m);
3291 
3292         if (modVal.equals(ONE))
3293             return ONE;
3294 
3295         MutableBigInteger a = new MutableBigInteger(modVal);
3296         MutableBigInteger b = new MutableBigInteger(m);
3297 
3298         MutableBigInteger result = a.mutableModInverse(b);
3299         return result.toBigInteger(1);
3300     }
3301 
3302     // Shift Operations
3303 
3304     /**
3305      * Returns a BigInteger whose value is {@code (this << n)}.
3306      * The shift distance, {@code n}, may be negative, in which case
3307      * this method performs a right shift.
3308      * (Computes <code>floor(this * 2<sup>n</sup>)</code>.)
3309      *
3310      * @param  n shift distance, in bits.
3311      * @return {@code this << n}
3312      * @see #shiftRight
3313      */
3314     public BigInteger shiftLeft(int n) {
3315         if (signum == 0)
3316             return ZERO;
3317         if (n > 0) {
3318             return new BigInteger(shiftLeft(mag, n), signum);
3319         } else if (n == 0) {
3320             return this;
3321         } else {
3322             // Possible int overflow in (-n) is not a trouble,
3323             // because shiftRightImpl considers its argument unsigned
3324             return shiftRightImpl(-n);
3325         }
3326     }
3327 
3328     /**
3329      * Returns a magnitude array whose value is {@code (mag << n)}.
3330      * The shift distance, {@code n}, is considered unnsigned.
3331      * (Computes <code>this * 2<sup>n</sup></code>.)
3332      *
3333      * @param mag magnitude, the most-significant int ({@code mag[0]}) must be non-zero.
3334      * @param  n unsigned shift distance, in bits.
3335      * @return {@code mag << n}
3336      */
3337     private static int[] shiftLeft(int[] mag, int n) {
3338         int nInts = n >>> 5;
3339         int nBits = n & 0x1f;
3340         int magLen = mag.length;
3341         int newMag[] = null;
3342 
3343         if (nBits == 0) {
3344             newMag = new int[magLen + nInts];
3345             System.arraycopy(mag, 0, newMag, 0, magLen);
3346         } else {
3347             int i = 0;
3348             int nBits2 = 32 - nBits;
3349             int highBits = mag[0] >>> nBits2;
3350             if (highBits != 0) {
3351                 newMag = new int[magLen + nInts + 1];
3352                 newMag[i++] = highBits;
3353             } else {
3354                 newMag = new int[magLen + nInts];
3355             }
3356             int j=0;
3357             while (j < magLen-1)
3358                 newMag[i++] = mag[j++] << nBits | mag[j] >>> nBits2;
3359             newMag[i] = mag[j] << nBits;
3360         }
3361         return newMag;
3362     }
3363 
3364     /**
3365      * Returns a BigInteger whose value is {@code (this >> n)}.  Sign
3366      * extension is performed.  The shift distance, {@code n}, may be
3367      * negative, in which case this method performs a left shift.
3368      * (Computes <code>floor(this / 2<sup>n</sup>)</code>.)
3369      *
3370      * @param  n shift distance, in bits.
3371      * @return {@code this >> n}
3372      * @see #shiftLeft
3373      */
3374     public BigInteger shiftRight(int n) {
3375         if (signum == 0)
3376             return ZERO;
3377         if (n > 0) {
3378             return shiftRightImpl(n);
3379         } else if (n == 0) {
3380             return this;
3381         } else {
3382             // Possible int overflow in {@code -n} is not a trouble,
3383             // because shiftLeft considers its argument unsigned
3384             return new BigInteger(shiftLeft(mag, -n), signum);
3385         }
3386     }
3387 
3388     /**
3389      * Returns a BigInteger whose value is {@code (this >> n)}. The shift
3390      * distance, {@code n}, is considered unsigned.
3391      * (Computes <code>floor(this * 2<sup>-n</sup>)</code>.)
3392      *
3393      * @param  n unsigned shift distance, in bits.
3394      * @return {@code this >> n}
3395      */
3396     private BigInteger shiftRightImpl(int n) {
3397         int nInts = n >>> 5;
3398         int nBits = n & 0x1f;
3399         int magLen = mag.length;
3400         int newMag[] = null;
3401 
3402         // Special case: entire contents shifted off the end
3403         if (nInts >= magLen)
3404             return (signum >= 0 ? ZERO : negConst[1]);
3405 
3406         if (nBits == 0) {
3407             int newMagLen = magLen - nInts;
3408             newMag = Arrays.copyOf(mag, newMagLen);
3409         } else {
3410             int i = 0;
3411             int highBits = mag[0] >>> nBits;
3412             if (highBits != 0) {
3413                 newMag = new int[magLen - nInts];
3414                 newMag[i++] = highBits;
3415             } else {
3416                 newMag = new int[magLen - nInts -1];
3417             }
3418 
3419             int nBits2 = 32 - nBits;
3420             int j=0;
3421             while (j < magLen - nInts - 1)
3422                 newMag[i++] = (mag[j++] << nBits2) | (mag[j] >>> nBits);
3423         }
3424 
3425         if (signum < 0) {
3426             // Find out whether any one-bits were shifted off the end.
3427             boolean onesLost = false;
3428             for (int i=magLen-1, j=magLen-nInts; i >= j && !onesLost; i--)
3429                 onesLost = (mag[i] != 0);
3430             if (!onesLost && nBits != 0)
3431                 onesLost = (mag[magLen - nInts - 1] << (32 - nBits) != 0);
3432 
3433             if (onesLost)
3434                 newMag = javaIncrement(newMag);
3435         }
3436 
3437         return new BigInteger(newMag, signum);
3438     }
3439 
3440     int[] javaIncrement(int[] val) {
3441         int lastSum = 0;
3442         for (int i=val.length-1;  i >= 0 && lastSum == 0; i--)
3443             lastSum = (val[i] += 1);
3444         if (lastSum == 0) {
3445             val = new int[val.length+1];
3446             val[0] = 1;
3447         }
3448         return val;
3449     }
3450 
3451     // Bitwise Operations
3452 
3453     /**
3454      * Returns a BigInteger whose value is {@code (this & val)}.  (This
3455      * method returns a negative BigInteger if and only if this and val are
3456      * both negative.)
3457      *
3458      * @param val value to be AND'ed with this BigInteger.
3459      * @return {@code this & val}
3460      */
3461     public BigInteger and(BigInteger val) {
3462         int[] result = new int[Math.max(intLength(), val.intLength())];
3463         for (int i=0; i < result.length; i++)
3464             result[i] = (getInt(result.length-i-1)
3465                          & val.getInt(result.length-i-1));
3466 
3467         return valueOf(result);
3468     }
3469 
3470     /**
3471      * Returns a BigInteger whose value is {@code (this | val)}.  (This method
3472      * returns a negative BigInteger if and only if either this or val is
3473      * negative.)
3474      *
3475      * @param val value to be OR'ed with this BigInteger.
3476      * @return {@code this | val}
3477      */
3478     public BigInteger or(BigInteger val) {
3479         int[] result = new int[Math.max(intLength(), val.intLength())];
3480         for (int i=0; i < result.length; i++)
3481             result[i] = (getInt(result.length-i-1)
3482                          | val.getInt(result.length-i-1));
3483 
3484         return valueOf(result);
3485     }
3486 
3487     /**
3488      * Returns a BigInteger whose value is {@code (this ^ val)}.  (This method
3489      * returns a negative BigInteger if and only if exactly one of this and
3490      * val are negative.)
3491      *
3492      * @param val value to be XOR'ed with this BigInteger.
3493      * @return {@code this ^ val}
3494      */
3495     public BigInteger xor(BigInteger val) {
3496         int[] result = new int[Math.max(intLength(), val.intLength())];
3497         for (int i=0; i < result.length; i++)
3498             result[i] = (getInt(result.length-i-1)
3499                          ^ val.getInt(result.length-i-1));
3500 
3501         return valueOf(result);
3502     }
3503 
3504     /**
3505      * Returns a BigInteger whose value is {@code (~this)}.  (This method
3506      * returns a negative value if and only if this BigInteger is
3507      * non-negative.)
3508      *
3509      * @return {@code ~this}
3510      */
3511     public BigInteger not() {
3512         int[] result = new int[intLength()];
3513         for (int i=0; i < result.length; i++)
3514             result[i] = ~getInt(result.length-i-1);
3515 
3516         return valueOf(result);
3517     }
3518 
3519     /**
3520      * Returns a BigInteger whose value is {@code (this & ~val)}.  This
3521      * method, which is equivalent to {@code and(val.not())}, is provided as
3522      * a convenience for masking operations.  (This method returns a negative
3523      * BigInteger if and only if {@code this} is negative and {@code val} is
3524      * positive.)
3525      *
3526      * @param val value to be complemented and AND'ed with this BigInteger.
3527      * @return {@code this & ~val}
3528      */
3529     public BigInteger andNot(BigInteger val) {
3530         int[] result = new int[Math.max(intLength(), val.intLength())];
3531         for (int i=0; i < result.length; i++)
3532             result[i] = (getInt(result.length-i-1)
3533                          & ~val.getInt(result.length-i-1));
3534 
3535         return valueOf(result);
3536     }
3537 
3538 
3539     // Single Bit Operations
3540 
3541     /**
3542      * Returns {@code true} if and only if the designated bit is set.
3543      * (Computes {@code ((this & (1<<n)) != 0)}.)
3544      *
3545      * @param  n index of bit to test.
3546      * @return {@code true} if and only if the designated bit is set.
3547      * @throws ArithmeticException {@code n} is negative.
3548      */
3549     public boolean testBit(int n) {
3550         if (n < 0)
3551             throw new ArithmeticException("Negative bit address");
3552 
3553         return (getInt(n >>> 5) & (1 << (n & 31))) != 0;
3554     }
3555 
3556     /**
3557      * Returns a BigInteger whose value is equivalent to this BigInteger
3558      * with the designated bit set.  (Computes {@code (this | (1<<n))}.)
3559      *
3560      * @param  n index of bit to set.
3561      * @return {@code this | (1<<n)}
3562      * @throws ArithmeticException {@code n} is negative.
3563      */
3564     public BigInteger setBit(int n) {
3565         if (n < 0)
3566             throw new ArithmeticException("Negative bit address");
3567 
3568         int intNum = n >>> 5;
3569         int[] result = new int[Math.max(intLength(), intNum+2)];
3570 
3571         for (int i=0; i < result.length; i++)
3572             result[result.length-i-1] = getInt(i);
3573 
3574         result[result.length-intNum-1] |= (1 << (n & 31));
3575 
3576         return valueOf(result);
3577     }
3578 
3579     /**
3580      * Returns a BigInteger whose value is equivalent to this BigInteger
3581      * with the designated bit cleared.
3582      * (Computes {@code (this & ~(1<<n))}.)
3583      *
3584      * @param  n index of bit to clear.
3585      * @return {@code this & ~(1<<n)}
3586      * @throws ArithmeticException {@code n} is negative.
3587      */
3588     public BigInteger clearBit(int n) {
3589         if (n < 0)
3590             throw new ArithmeticException("Negative bit address");
3591 
3592         int intNum = n >>> 5;
3593         int[] result = new int[Math.max(intLength(), ((n + 1) >>> 5) + 1)];
3594 
3595         for (int i=0; i < result.length; i++)
3596             result[result.length-i-1] = getInt(i);
3597 
3598         result[result.length-intNum-1] &= ~(1 << (n & 31));
3599 
3600         return valueOf(result);
3601     }
3602 
3603     /**
3604      * Returns a BigInteger whose value is equivalent to this BigInteger
3605      * with the designated bit flipped.
3606      * (Computes {@code (this ^ (1<<n))}.)
3607      *
3608      * @param  n index of bit to flip.
3609      * @return {@code this ^ (1<<n)}
3610      * @throws ArithmeticException {@code n} is negative.
3611      */
3612     public BigInteger flipBit(int n) {
3613         if (n < 0)
3614             throw new ArithmeticException("Negative bit address");
3615 
3616         int intNum = n >>> 5;
3617         int[] result = new int[Math.max(intLength(), intNum+2)];
3618 
3619         for (int i=0; i < result.length; i++)
3620             result[result.length-i-1] = getInt(i);
3621 
3622         result[result.length-intNum-1] ^= (1 << (n & 31));
3623 
3624         return valueOf(result);
3625     }
3626 
3627     /**
3628      * Returns the index of the rightmost (lowest-order) one bit in this
3629      * BigInteger (the number of zero bits to the right of the rightmost
3630      * one bit).  Returns -1 if this BigInteger contains no one bits.
3631      * (Computes {@code (this == 0? -1 : log2(this & -this))}.)
3632      *
3633      * @return index of the rightmost one bit in this BigInteger.
3634      */
3635     public int getLowestSetBit() {
3636         int lsb = lowestSetBitPlusTwo - 2;
3637         if (lsb == -2) {  // lowestSetBit not initialized yet
3638             lsb = 0;
3639             if (signum == 0) {
3640                 lsb -= 1;
3641             } else {
3642                 // Search for lowest order nonzero int
3643                 int i,b;
3644                 for (i=0; (b = getInt(i)) == 0; i++)
3645                     ;
3646                 lsb += (i << 5) + Integer.numberOfTrailingZeros(b);
3647             }
3648             lowestSetBitPlusTwo = lsb + 2;
3649         }
3650         return lsb;
3651     }
3652 
3653 
3654     // Miscellaneous Bit Operations
3655 
3656     /**
3657      * Returns the number of bits in the minimal two's-complement
3658      * representation of this BigInteger, <em>excluding</em> a sign bit.
3659      * For positive BigIntegers, this is equivalent to the number of bits in
3660      * the ordinary binary representation.  For zero this method returns
3661      * {@code 0}.  (Computes {@code (ceil(log2(this < 0 ? -this : this+1)))}.)
3662      *
3663      * @return number of bits in the minimal two's-complement
3664      *         representation of this BigInteger, <em>excluding</em> a sign bit.
3665      */
3666     public int bitLength() {
3667         int n = bitLengthPlusOne - 1;
3668         if (n == -1) { // bitLength not initialized yet
3669             int[] m = mag;
3670             int len = m.length;
3671             if (len == 0) {
3672                 n = 0; // offset by one to initialize
3673             }  else {
3674                 // Calculate the bit length of the magnitude
3675                 int magBitLength = ((len - 1) << 5) + bitLengthForInt(mag[0]);
3676                  if (signum < 0) {
3677                      // Check if magnitude is a power of two
3678                      boolean pow2 = (Integer.bitCount(mag[0]) == 1);
3679                      for (int i=1; i< len && pow2; i++)
3680                          pow2 = (mag[i] == 0);
3681 
3682                      n = (pow2 ? magBitLength - 1 : magBitLength);
3683                  } else {
3684                      n = magBitLength;
3685                  }
3686             }
3687             bitLengthPlusOne = n + 1;
3688         }
3689         return n;
3690     }
3691 
3692     /**
3693      * Returns the number of bits in the two's complement representation
3694      * of this BigInteger that differ from its sign bit.  This method is
3695      * useful when implementing bit-vector style sets atop BigIntegers.
3696      *
3697      * @return number of bits in the two's complement representation
3698      *         of this BigInteger that differ from its sign bit.
3699      */
3700     public int bitCount() {
3701         int bc = bitCountPlusOne - 1;
3702         if (bc == -1) {  // bitCount not initialized yet
3703             bc = 0;      // offset by one to initialize
3704             // Count the bits in the magnitude
3705             for (int i=0; i < mag.length; i++)
3706                 bc += Integer.bitCount(mag[i]);
3707             if (signum < 0) {
3708                 // Count the trailing zeros in the magnitude
3709                 int magTrailingZeroCount = 0, j;
3710                 for (j=mag.length-1; mag[j] == 0; j--)
3711                     magTrailingZeroCount += 32;
3712                 magTrailingZeroCount += Integer.numberOfTrailingZeros(mag[j]);
3713                 bc += magTrailingZeroCount - 1;
3714             }
3715             bitCountPlusOne = bc + 1;
3716         }
3717         return bc;
3718     }
3719 
3720     // Primality Testing
3721 
3722     /**
3723      * Returns {@code true} if this BigInteger is probably prime,
3724      * {@code false} if it's definitely composite.  If
3725      * {@code certainty} is &le; 0, {@code true} is
3726      * returned.
3727      *
3728      * @param  certainty a measure of the uncertainty that the caller is
3729      *         willing to tolerate: if the call returns {@code true}
3730      *         the probability that this BigInteger is prime exceeds
3731      *         (1 - 1/2<sup>{@code certainty}</sup>).  The execution time of
3732      *         this method is proportional to the value of this parameter.
3733      * @return {@code true} if this BigInteger is probably prime,
3734      *         {@code false} if it's definitely composite.
3735      */
3736     public boolean isProbablePrime(int certainty) {
3737         if (certainty <= 0)
3738             return true;
3739         BigInteger w = this.abs();
3740         if (w.equals(TWO))
3741             return true;
3742         if (!w.testBit(0) || w.equals(ONE))
3743             return false;
3744 
3745         return w.primeToCertainty(certainty, null);
3746     }
3747 
3748     // Comparison Operations
3749 
3750     /**
3751      * Compares this BigInteger with the specified BigInteger.  This
3752      * method is provided in preference to individual methods for each
3753      * of the six boolean comparison operators ({@literal <}, ==,
3754      * {@literal >}, {@literal >=}, !=, {@literal <=}).  The suggested
3755      * idiom for performing these comparisons is: {@code
3756      * (x.compareTo(y)} &lt;<i>op</i>&gt; {@code 0)}, where
3757      * &lt;<i>op</i>&gt; is one of the six comparison operators.
3758      *
3759      * @param  val BigInteger to which this BigInteger is to be compared.
3760      * @return -1, 0 or 1 as this BigInteger is numerically less than, equal
3761      *         to, or greater than {@code val}.
3762      */
3763     public int compareTo(BigInteger val) {
3764         if (signum == val.signum) {
3765             switch (signum) {
3766             case 1:
3767                 return compareMagnitude(val);
3768             case -1:
3769                 return val.compareMagnitude(this);
3770             default:
3771                 return 0;
3772             }
3773         }
3774         return signum > val.signum ? 1 : -1;
3775     }
3776 
3777     /**
3778      * Compares the magnitude array of this BigInteger with the specified
3779      * BigInteger's. This is the version of compareTo ignoring sign.
3780      *
3781      * @param val BigInteger whose magnitude array to be compared.
3782      * @return -1, 0 or 1 as this magnitude array is less than, equal to or
3783      *         greater than the magnitude aray for the specified BigInteger's.
3784      */
3785     final int compareMagnitude(BigInteger val) {
3786         int[] m1 = mag;
3787         int len1 = m1.length;
3788         int[] m2 = val.mag;
3789         int len2 = m2.length;
3790         if (len1 < len2)
3791             return -1;
3792         if (len1 > len2)
3793             return 1;
3794         for (int i = 0; i < len1; i++) {
3795             int a = m1[i];
3796             int b = m2[i];
3797             if (a != b)
3798                 return ((a & LONG_MASK) < (b & LONG_MASK)) ? -1 : 1;
3799         }
3800         return 0;
3801     }
3802 
3803     /**
3804      * Version of compareMagnitude that compares magnitude with long value.
3805      * val can't be Long.MIN_VALUE.
3806      */
3807     final int compareMagnitude(long val) {
3808         assert val != Long.MIN_VALUE;
3809         int[] m1 = mag;
3810         int len = m1.length;
3811         if (len > 2) {
3812             return 1;
3813         }
3814         if (val < 0) {
3815             val = -val;
3816         }
3817         int highWord = (int)(val >>> 32);
3818         if (highWord == 0) {
3819             if (len < 1)
3820                 return -1;
3821             if (len > 1)
3822                 return 1;
3823             int a = m1[0];
3824             int b = (int)val;
3825             if (a != b) {
3826                 return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1;
3827             }
3828             return 0;
3829         } else {
3830             if (len < 2)
3831                 return -1;
3832             int a = m1[0];
3833             int b = highWord;
3834             if (a != b) {
3835                 return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1;
3836             }
3837             a = m1[1];
3838             b = (int)val;
3839             if (a != b) {
3840                 return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1;
3841             }
3842             return 0;
3843         }
3844     }
3845 
3846     /**
3847      * Compares this BigInteger with the specified Object for equality.
3848      *
3849      * @param  x Object to which this BigInteger is to be compared.
3850      * @return {@code true} if and only if the specified Object is a
3851      *         BigInteger whose value is numerically equal to this BigInteger.
3852      */
3853     public boolean equals(Object x) {
3854         // This test is just an optimization, which may or may not help
3855         if (x == this)
3856             return true;
3857 
3858         if (!(x instanceof BigInteger))
3859             return false;
3860 
3861         BigInteger xInt = (BigInteger) x;
3862         if (xInt.signum != signum)
3863             return false;
3864 
3865         int[] m = mag;
3866         int len = m.length;
3867         int[] xm = xInt.mag;
3868         if (len != xm.length)
3869             return false;
3870 
3871         for (int i = 0; i < len; i++)
3872             if (xm[i] != m[i])
3873                 return false;
3874 
3875         return true;
3876     }
3877 
3878     /**
3879      * Returns the minimum of this BigInteger and {@code val}.
3880      *
3881      * @param  val value with which the minimum is to be computed.
3882      * @return the BigInteger whose value is the lesser of this BigInteger and
3883      *         {@code val}.  If they are equal, either may be returned.
3884      */
3885     public BigInteger min(BigInteger val) {
3886         return (compareTo(val) < 0 ? this : val);
3887     }
3888 
3889     /**
3890      * Returns the maximum of this BigInteger and {@code val}.
3891      *
3892      * @param  val value with which the maximum is to be computed.
3893      * @return the BigInteger whose value is the greater of this and
3894      *         {@code val}.  If they are equal, either may be returned.
3895      */
3896     public BigInteger max(BigInteger val) {
3897         return (compareTo(val) > 0 ? this : val);
3898     }
3899 
3900 
3901     // Hash Function
3902 
3903     /**
3904      * Returns the hash code for this BigInteger.
3905      *
3906      * @return hash code for this BigInteger.
3907      */
3908     public int hashCode() {
3909         int hashCode = 0;
3910 
3911         for (int i=0; i < mag.length; i++)
3912             hashCode = (int)(31*hashCode + (mag[i] & LONG_MASK));
3913 
3914         return hashCode * signum;
3915     }
3916 
3917     /**
3918      * Returns the String representation of this BigInteger in the
3919      * given radix.  If the radix is outside the range from {@link
3920      * Character#MIN_RADIX} to {@link Character#MAX_RADIX} inclusive,
3921      * it will default to 10 (as is the case for
3922      * {@code Integer.toString}).  The digit-to-character mapping
3923      * provided by {@code Character.forDigit} is used, and a minus
3924      * sign is prepended if appropriate.  (This representation is
3925      * compatible with the {@link #BigInteger(String, int) (String,
3926      * int)} constructor.)
3927      *
3928      * @param  radix  radix of the String representation.
3929      * @return String representation of this BigInteger in the given radix.
3930      * @see    Integer#toString
3931      * @see    Character#forDigit
3932      * @see    #BigInteger(java.lang.String, int)
3933      */
3934     public String toString(int radix) {
3935         if (signum == 0)
3936             return "0";
3937         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
3938             radix = 10;
3939 
3940         BigInteger abs = this.abs();
3941 
3942         // Ensure buffer capacity sufficient to contain string representation
3943         //     floor(bitLength*log(2)/log(radix)) + 1
3944         // plus an additional character for the sign if negative.
3945         int b = abs.bitLength();
3946         int numChars = (int)(Math.floor(b*LOG_TWO/logCache[radix]) + 1) +
3947             (signum < 0 ? 1 : 0);
3948 
3949         // The results will be concatenated into this StringBuilder
3950         StringBuilder sb = new StringBuilder(numChars);
3951 
3952         // Put sign (if any) into result buffer
3953         if (signum < 0) {
3954             sb.append('-');
3955         }
3956 
3957         // Use recursive toString.
3958         toString(abs, sb, radix, 1);
3959         return sb.toString();
3960     }
3961 
3962     /**
3963      * If {@code numLeadingZeros > 0}, appends that many zeros to the
3964      * specified StringBuilder.
3965      * Otherwise, does nothing.
3966      *
3967      * @param sb               The StringBuilder that will be appended to.
3968      * @param numLeadingZeros  The number of zeros to append.
3969      */
3970     private static void padWithZeros(StringBuilder buf, int numLeadingZeros) {
3971         while (numLeadingZeros >= NUM_ZEROS) {
3972             buf.append(ZEROS);
3973             numLeadingZeros -= NUM_ZEROS;
3974         }
3975         if (numLeadingZeros > 0) {
3976             buf.append(ZEROS, 0, numLeadingZeros);
3977         }
3978     }
3979 
3980     /**
3981      * This method is used to perform toString when arguments are small.
3982      * A negative sign will be prepended if and only if {@code this < 0}.
3983      * If {@code digits <= 0} no padding (pre-pending with zeros) will be
3984      * effected.
3985      *
3986      * This method can only be called for non-negative numbers.
3987      *
3988      * @param radix  The base to convert to.
3989      * @param sb     The StringBuilder that will be appended to in place.
3990      * @param digits The minimum number of digits to pad to.
3991      */
3992     private void smallToString(int radix, StringBuilder buf, int digits) {
3993         if (signum == 0) {
3994             padWithZeros(buf, digits);
3995             return;
3996         }
3997 
3998         // Compute upper bound on number of digit groups and allocate space
3999         int maxNumDigitGroups = (4*mag.length + 6)/7;
4000         long[] digitGroups = new long[maxNumDigitGroups];
4001 
4002         // Translate number to string, a digit group at a time
4003         BigInteger tmp = this;
4004         int numGroups = 0;
4005         while (tmp.signum != 0) {
4006             BigInteger d = longRadix[radix];
4007 
4008             MutableBigInteger q = new MutableBigInteger(),
4009                               a = new MutableBigInteger(tmp.mag),
4010                               b = new MutableBigInteger(d.mag);
4011             MutableBigInteger r = a.divide(b, q);
4012             BigInteger q2 = q.toBigInteger(tmp.signum * d.signum);
4013             BigInteger r2 = r.toBigInteger(tmp.signum * d.signum);
4014 
4015             digitGroups[numGroups++] = r2.longValue();
4016             tmp = q2;
4017         }
4018 
4019         // Get string version of first digit group
4020         String s = Long.toString(digitGroups[numGroups-1], radix);
4021 
4022         // Pad with internal zeros if necessary.
4023         padWithZeros(buf, digits - s.length() + (numGroups - 1) * digitsPerLong[radix]);
4024 
4025         // Put first digit group into result buffer
4026         buf.append(s);
4027 
4028         // Append remaining digit groups each padded with leading zeros
4029         for (int i=numGroups-2; i >= 0; i--) {
4030             // Prepend (any) leading zeros for this digit group
4031             s = Long.toString(digitGroups[i], radix);
4032             int numLeadingZeros = digitsPerLong[radix] - s.length();
4033             if (numLeadingZeros != 0) {
4034                 buf.append(ZEROS, 0, numLeadingZeros);
4035             }
4036             buf.append(s);
4037         }
4038     }
4039 
4040     /**
4041      * Converts the specified BigInteger to a string and appends to
4042      * {@code sb}.  This implements the recursive Schoenhage algorithm
4043      * for base conversions.
4044      *
4045      * This method can only be called for non-negative numbers.
4046      *
4047      * <p>
4048      * See Knuth, Donald,  _The Art of Computer Programming_, Vol. 2,
4049      * Answers to Exercises (4.4) Question 14.
4050      *
4051      * @param u      The number to convert to a string.
4052      * @param sb     The StringBuilder that will be appended to in place.
4053      * @param radix  The base to convert to.
4054      * @param digits The minimum number of digits to pad to.
4055      */
4056     private static void toString(BigInteger u, StringBuilder sb,
4057                                  int radix, int digits) {
4058         // If we're smaller than a certain threshold, use the smallToString
4059         // method, padding with leading zeroes when necessary unless we're
4060         // at the beginning of the string or digits <= 0. As u.signum() >= 0,
4061         // smallToString() will not prepend a negative sign.
4062         if (u.mag.length <= SCHOENHAGE_BASE_CONVERSION_THRESHOLD) {
4063             u.smallToString(radix, sb, digits);
4064             return;
4065         }
4066 
4067         // Calculate a value for n in the equation radix^(2^n) = u
4068         // and subtract 1 from that value.  This is used to find the
4069         // cache index that contains the best value to divide u.
4070         int b = u.bitLength();
4071         int n = (int) Math.round(Math.log(b * LOG_TWO / logCache[radix]) /
4072                                  LOG_TWO - 1.0);
4073 
4074         BigInteger v = getRadixConversionCache(radix, n);
4075         BigInteger[] results;
4076         results = u.divideAndRemainder(v);
4077 
4078         int expectedDigits = 1 << n;
4079 
4080         // Now recursively build the two halves of each number.
4081         toString(results[0], sb, radix, digits - expectedDigits);
4082         toString(results[1], sb, radix, expectedDigits);
4083     }
4084 
4085     /**
4086      * Returns the value radix^(2^exponent) from the cache.
4087      * If this value doesn't already exist in the cache, it is added.
4088      * <p>
4089      * This could be changed to a more complicated caching method using
4090      * {@code Future}.
4091      */
4092     private static BigInteger getRadixConversionCache(int radix, int exponent) {
4093         BigInteger[] cacheLine = powerCache[radix]; // volatile read
4094         if (exponent < cacheLine.length) {
4095             return cacheLine[exponent];
4096         }
4097 
4098         int oldLength = cacheLine.length;
4099         cacheLine = Arrays.copyOf(cacheLine, exponent + 1);
4100         for (int i = oldLength; i <= exponent; i++) {
4101             cacheLine[i] = cacheLine[i - 1].pow(2);
4102         }
4103 
4104         BigInteger[][] pc = powerCache; // volatile read again
4105         if (exponent >= pc[radix].length) {
4106             pc = pc.clone();
4107             pc[radix] = cacheLine;
4108             powerCache = pc; // volatile write, publish
4109         }
4110         return cacheLine[exponent];
4111     }
4112 
4113     /* Size of ZEROS string. */
4114     private static int NUM_ZEROS = 63;
4115 
4116     /* ZEROS is a string of NUM_ZEROS consecutive zeros. */
4117     private static final String ZEROS = "0".repeat(NUM_ZEROS);
4118 
4119     /**
4120      * Returns the decimal String representation of this BigInteger.
4121      * The digit-to-character mapping provided by
4122      * {@code Character.forDigit} is used, and a minus sign is
4123      * prepended if appropriate.  (This representation is compatible
4124      * with the {@link #BigInteger(String) (String)} constructor, and
4125      * allows for String concatenation with Java's + operator.)
4126      *
4127      * @return decimal String representation of this BigInteger.
4128      * @see    Character#forDigit
4129      * @see    #BigInteger(java.lang.String)
4130      */
4131     public String toString() {
4132         return toString(10);
4133     }
4134 
4135     /**
4136      * Returns a byte array containing the two's-complement
4137      * representation of this BigInteger.  The byte array will be in
4138      * <i>big-endian</i> byte-order: the most significant byte is in
4139      * the zeroth element.  The array will contain the minimum number
4140      * of bytes required to represent this BigInteger, including at
4141      * least one sign bit, which is {@code (ceil((this.bitLength() +
4142      * 1)/8))}.  (This representation is compatible with the
4143      * {@link #BigInteger(byte[]) (byte[])} constructor.)
4144      *
4145      * @return a byte array containing the two's-complement representation of
4146      *         this BigInteger.
4147      * @see    #BigInteger(byte[])
4148      */
4149     public byte[] toByteArray() {
4150         int byteLen = bitLength()/8 + 1;
4151         byte[] byteArray = new byte[byteLen];
4152 
4153         for (int i=byteLen-1, bytesCopied=4, nextInt=0, intIndex=0; i >= 0; i--) {
4154             if (bytesCopied == 4) {
4155                 nextInt = getInt(intIndex++);
4156                 bytesCopied = 1;
4157             } else {
4158                 nextInt >>>= 8;
4159                 bytesCopied++;
4160             }
4161             byteArray[i] = (byte)nextInt;
4162         }
4163         return byteArray;
4164     }
4165 
4166     /**
4167      * Converts this BigInteger to an {@code int}.  This
4168      * conversion is analogous to a
4169      * <i>narrowing primitive conversion</i> from {@code long} to
4170      * {@code int} as defined in
4171      * <cite>The Java&trade; Language Specification</cite>:
4172      * if this BigInteger is too big to fit in an
4173      * {@code int}, only the low-order 32 bits are returned.
4174      * Note that this conversion can lose information about the
4175      * overall magnitude of the BigInteger value as well as return a
4176      * result with the opposite sign.
4177      *
4178      * @return this BigInteger converted to an {@code int}.
4179      * @see #intValueExact()
4180      * @jls 5.1.3 Narrowing Primitive Conversion
4181      */
4182     public int intValue() {
4183         int result = 0;
4184         result = getInt(0);
4185         return result;
4186     }
4187 
4188     /**
4189      * Converts this BigInteger to a {@code long}.  This
4190      * conversion is analogous to a
4191      * <i>narrowing primitive conversion</i> from {@code long} to
4192      * {@code int} as defined in
4193      * <cite>The Java&trade; Language Specification</cite>:
4194      * if this BigInteger is too big to fit in a
4195      * {@code long}, only the low-order 64 bits are returned.
4196      * Note that this conversion can lose information about the
4197      * overall magnitude of the BigInteger value as well as return a
4198      * result with the opposite sign.
4199      *
4200      * @return this BigInteger converted to a {@code long}.
4201      * @see #longValueExact()
4202      * @jls 5.1.3 Narrowing Primitive Conversion
4203      */
4204     public long longValue() {
4205         long result = 0;
4206 
4207         for (int i=1; i >= 0; i--)
4208             result = (result << 32) + (getInt(i) & LONG_MASK);
4209         return result;
4210     }
4211 
4212     /**
4213      * Converts this BigInteger to a {@code float}.  This
4214      * conversion is similar to the
4215      * <i>narrowing primitive conversion</i> from {@code double} to
4216      * {@code float} as defined in
4217      * <cite>The Java&trade; Language Specification</cite>:
4218      * if this BigInteger has too great a magnitude
4219      * to represent as a {@code float}, it will be converted to
4220      * {@link Float#NEGATIVE_INFINITY} or {@link
4221      * Float#POSITIVE_INFINITY} as appropriate.  Note that even when
4222      * the return value is finite, this conversion can lose
4223      * information about the precision of the BigInteger value.
4224      *
4225      * @return this BigInteger converted to a {@code float}.
4226      * @jls 5.1.3 Narrowing Primitive Conversion
4227      */
4228     public float floatValue() {
4229         if (signum == 0) {
4230             return 0.0f;
4231         }
4232 
4233         int exponent = ((mag.length - 1) << 5) + bitLengthForInt(mag[0]) - 1;
4234 
4235         // exponent == floor(log2(abs(this)))
4236         if (exponent < Long.SIZE - 1) {
4237             return longValue();
4238         } else if (exponent > Float.MAX_EXPONENT) {
4239             return signum > 0 ? Float.POSITIVE_INFINITY : Float.NEGATIVE_INFINITY;
4240         }
4241 
4242         /*
4243          * We need the top SIGNIFICAND_WIDTH bits, including the "implicit"
4244          * one bit. To make rounding easier, we pick out the top
4245          * SIGNIFICAND_WIDTH + 1 bits, so we have one to help us round up or
4246          * down. twiceSignifFloor will contain the top SIGNIFICAND_WIDTH + 1
4247          * bits, and signifFloor the top SIGNIFICAND_WIDTH.
4248          *
4249          * It helps to consider the real number signif = abs(this) *
4250          * 2^(SIGNIFICAND_WIDTH - 1 - exponent).
4251          */
4252         int shift = exponent - FloatConsts.SIGNIFICAND_WIDTH;
4253 
4254         int twiceSignifFloor;
4255         // twiceSignifFloor will be == abs().shiftRight(shift).intValue()
4256         // We do the shift into an int directly to improve performance.
4257 
4258         int nBits = shift & 0x1f;
4259         int nBits2 = 32 - nBits;
4260 
4261         if (nBits == 0) {
4262             twiceSignifFloor = mag[0];
4263         } else {
4264             twiceSignifFloor = mag[0] >>> nBits;
4265             if (twiceSignifFloor == 0) {
4266                 twiceSignifFloor = (mag[0] << nBits2) | (mag[1] >>> nBits);
4267             }
4268         }
4269 
4270         int signifFloor = twiceSignifFloor >> 1;
4271         signifFloor &= FloatConsts.SIGNIF_BIT_MASK; // remove the implied bit
4272 
4273         /*
4274          * We round up if either the fractional part of signif is strictly
4275          * greater than 0.5 (which is true if the 0.5 bit is set and any lower
4276          * bit is set), or if the fractional part of signif is >= 0.5 and
4277          * signifFloor is odd (which is true if both the 0.5 bit and the 1 bit
4278          * are set). This is equivalent to the desired HALF_EVEN rounding.
4279          */
4280         boolean increment = (twiceSignifFloor & 1) != 0
4281                 && ((signifFloor & 1) != 0 || abs().getLowestSetBit() < shift);
4282         int signifRounded = increment ? signifFloor + 1 : signifFloor;
4283         int bits = ((exponent + FloatConsts.EXP_BIAS))
4284                 << (FloatConsts.SIGNIFICAND_WIDTH - 1);
4285         bits += signifRounded;
4286         /*
4287          * If signifRounded == 2^24, we'd need to set all of the significand
4288          * bits to zero and add 1 to the exponent. This is exactly the behavior
4289          * we get from just adding signifRounded to bits directly. If the
4290          * exponent is Float.MAX_EXPONENT, we round up (correctly) to
4291          * Float.POSITIVE_INFINITY.
4292          */
4293         bits |= signum & FloatConsts.SIGN_BIT_MASK;
4294         return Float.intBitsToFloat(bits);
4295     }
4296 
4297     /**
4298      * Converts this BigInteger to a {@code double}.  This
4299      * conversion is similar to the
4300      * <i>narrowing primitive conversion</i> from {@code double} to
4301      * {@code float} as defined in
4302      * <cite>The Java&trade; Language Specification</cite>:
4303      * if this BigInteger has too great a magnitude
4304      * to represent as a {@code double}, it will be converted to
4305      * {@link Double#NEGATIVE_INFINITY} or {@link
4306      * Double#POSITIVE_INFINITY} as appropriate.  Note that even when
4307      * the return value is finite, this conversion can lose
4308      * information about the precision of the BigInteger value.
4309      *
4310      * @return this BigInteger converted to a {@code double}.
4311      * @jls 5.1.3 Narrowing Primitive Conversion
4312      */
4313     public double doubleValue() {
4314         if (signum == 0) {
4315             return 0.0;
4316         }
4317 
4318         int exponent = ((mag.length - 1) << 5) + bitLengthForInt(mag[0]) - 1;
4319 
4320         // exponent == floor(log2(abs(this))Double)
4321         if (exponent < Long.SIZE - 1) {
4322             return longValue();
4323         } else if (exponent > Double.MAX_EXPONENT) {
4324             return signum > 0 ? Double.POSITIVE_INFINITY : Double.NEGATIVE_INFINITY;
4325         }
4326 
4327         /*
4328          * We need the top SIGNIFICAND_WIDTH bits, including the "implicit"
4329          * one bit. To make rounding easier, we pick out the top
4330          * SIGNIFICAND_WIDTH + 1 bits, so we have one to help us round up or
4331          * down. twiceSignifFloor will contain the top SIGNIFICAND_WIDTH + 1
4332          * bits, and signifFloor the top SIGNIFICAND_WIDTH.
4333          *
4334          * It helps to consider the real number signif = abs(this) *
4335          * 2^(SIGNIFICAND_WIDTH - 1 - exponent).
4336          */
4337         int shift = exponent - DoubleConsts.SIGNIFICAND_WIDTH;
4338 
4339         long twiceSignifFloor;
4340         // twiceSignifFloor will be == abs().shiftRight(shift).longValue()
4341         // We do the shift into a long directly to improve performance.
4342 
4343         int nBits = shift & 0x1f;
4344         int nBits2 = 32 - nBits;
4345 
4346         int highBits;
4347         int lowBits;
4348         if (nBits == 0) {
4349             highBits = mag[0];
4350             lowBits = mag[1];
4351         } else {
4352             highBits = mag[0] >>> nBits;
4353             lowBits = (mag[0] << nBits2) | (mag[1] >>> nBits);
4354             if (highBits == 0) {
4355                 highBits = lowBits;
4356                 lowBits = (mag[1] << nBits2) | (mag[2] >>> nBits);
4357             }
4358         }
4359 
4360         twiceSignifFloor = ((highBits & LONG_MASK) << 32)
4361                 | (lowBits & LONG_MASK);
4362 
4363         long signifFloor = twiceSignifFloor >> 1;
4364         signifFloor &= DoubleConsts.SIGNIF_BIT_MASK; // remove the implied bit
4365 
4366         /*
4367          * We round up if either the fractional part of signif is strictly
4368          * greater than 0.5 (which is true if the 0.5 bit is set and any lower
4369          * bit is set), or if the fractional part of signif is >= 0.5 and
4370          * signifFloor is odd (which is true if both the 0.5 bit and the 1 bit
4371          * are set). This is equivalent to the desired HALF_EVEN rounding.
4372          */
4373         boolean increment = (twiceSignifFloor & 1) != 0
4374                 && ((signifFloor & 1) != 0 || abs().getLowestSetBit() < shift);
4375         long signifRounded = increment ? signifFloor + 1 : signifFloor;
4376         long bits = (long) ((exponent + DoubleConsts.EXP_BIAS))
4377                 << (DoubleConsts.SIGNIFICAND_WIDTH - 1);
4378         bits += signifRounded;
4379         /*
4380          * If signifRounded == 2^53, we'd need to set all of the significand
4381          * bits to zero and add 1 to the exponent. This is exactly the behavior
4382          * we get from just adding signifRounded to bits directly. If the
4383          * exponent is Double.MAX_EXPONENT, we round up (correctly) to
4384          * Double.POSITIVE_INFINITY.
4385          */
4386         bits |= signum & DoubleConsts.SIGN_BIT_MASK;
4387         return Double.longBitsToDouble(bits);
4388     }
4389 
4390     /**
4391      * Returns a copy of the input array stripped of any leading zero bytes.
4392      */
4393     private static int[] stripLeadingZeroInts(int val[]) {
4394         int vlen = val.length;
4395         int keep;
4396 
4397         // Find first nonzero byte
4398         for (keep = 0; keep < vlen && val[keep] == 0; keep++)
4399             ;
4400         return java.util.Arrays.copyOfRange(val, keep, vlen);
4401     }
4402 
4403     /**
4404      * Returns the input array stripped of any leading zero bytes.
4405      * Since the source is trusted the copying may be skipped.
4406      */
4407     private static int[] trustedStripLeadingZeroInts(int val[]) {
4408         int vlen = val.length;
4409         int keep;
4410 
4411         // Find first nonzero byte
4412         for (keep = 0; keep < vlen && val[keep] == 0; keep++)
4413             ;
4414         return keep == 0 ? val : java.util.Arrays.copyOfRange(val, keep, vlen);
4415     }
4416 
4417     /**
4418      * Returns a copy of the input array stripped of any leading zero bytes.
4419      */
4420     private static int[] stripLeadingZeroBytes(byte a[], int off, int len) {
4421         int indexBound = off + len;
4422         int keep;
4423 
4424         // Find first nonzero byte
4425         for (keep = off; keep < indexBound && a[keep] == 0; keep++)
4426             ;
4427 
4428         // Allocate new array and copy relevant part of input array
4429         int intLength = ((indexBound - keep) + 3) >>> 2;
4430         int[] result = new int[intLength];
4431         int b = indexBound - 1;
4432         for (int i = intLength-1; i >= 0; i--) {
4433             result[i] = a[b--] & 0xff;
4434             int bytesRemaining = b - keep + 1;
4435             int bytesToTransfer = Math.min(3, bytesRemaining);
4436             for (int j=8; j <= (bytesToTransfer << 3); j += 8)
4437                 result[i] |= ((a[b--] & 0xff) << j);
4438         }
4439         return result;
4440     }
4441 
4442     /**
4443      * Takes an array a representing a negative 2's-complement number and
4444      * returns the minimal (no leading zero bytes) unsigned whose value is -a.
4445      */
4446     private static int[] makePositive(byte a[], int off, int len) {
4447         int keep, k;
4448         int indexBound = off + len;
4449 
4450         // Find first non-sign (0xff) byte of input
4451         for (keep=off; keep < indexBound && a[keep] == -1; keep++)
4452             ;
4453 
4454 
4455         /* Allocate output array.  If all non-sign bytes are 0x00, we must
4456          * allocate space for one extra output byte. */
4457         for (k=keep; k < indexBound && a[k] == 0; k++)
4458             ;
4459 
4460         int extraByte = (k == indexBound) ? 1 : 0;
4461         int intLength = ((indexBound - keep + extraByte) + 3) >>> 2;
4462         int result[] = new int[intLength];
4463 
4464         /* Copy one's complement of input into output, leaving extra
4465          * byte (if it exists) == 0x00 */
4466         int b = indexBound - 1;
4467         for (int i = intLength-1; i >= 0; i--) {
4468             result[i] = a[b--] & 0xff;
4469             int numBytesToTransfer = Math.min(3, b-keep+1);
4470             if (numBytesToTransfer < 0)
4471                 numBytesToTransfer = 0;
4472             for (int j=8; j <= 8*numBytesToTransfer; j += 8)
4473                 result[i] |= ((a[b--] & 0xff) << j);
4474 
4475             // Mask indicates which bits must be complemented
4476             int mask = -1 >>> (8*(3-numBytesToTransfer));
4477             result[i] = ~result[i] & mask;
4478         }
4479 
4480         // Add one to one's complement to generate two's complement
4481         for (int i=result.length-1; i >= 0; i--) {
4482             result[i] = (int)((result[i] & LONG_MASK) + 1);
4483             if (result[i] != 0)
4484                 break;
4485         }
4486 
4487         return result;
4488     }
4489 
4490     /**
4491      * Takes an array a representing a negative 2's-complement number and
4492      * returns the minimal (no leading zero ints) unsigned whose value is -a.
4493      */
4494     private static int[] makePositive(int a[]) {
4495         int keep, j;
4496 
4497         // Find first non-sign (0xffffffff) int of input
4498         for (keep=0; keep < a.length && a[keep] == -1; keep++)
4499             ;
4500 
4501         /* Allocate output array.  If all non-sign ints are 0x00, we must
4502          * allocate space for one extra output int. */
4503         for (j=keep; j < a.length && a[j] == 0; j++)
4504             ;
4505         int extraInt = (j == a.length ? 1 : 0);
4506         int result[] = new int[a.length - keep + extraInt];
4507 
4508         /* Copy one's complement of input into output, leaving extra
4509          * int (if it exists) == 0x00 */
4510         for (int i = keep; i < a.length; i++)
4511             result[i - keep + extraInt] = ~a[i];
4512 
4513         // Add one to one's complement to generate two's complement
4514         for (int i=result.length-1; ++result[i] == 0; i--)
4515             ;
4516 
4517         return result;
4518     }
4519 
4520     /*
4521      * The following two arrays are used for fast String conversions.  Both
4522      * are indexed by radix.  The first is the number of digits of the given
4523      * radix that can fit in a Java long without "going negative", i.e., the
4524      * highest integer n such that radix**n < 2**63.  The second is the
4525      * "long radix" that tears each number into "long digits", each of which
4526      * consists of the number of digits in the corresponding element in
4527      * digitsPerLong (longRadix[i] = i**digitPerLong[i]).  Both arrays have
4528      * nonsense values in their 0 and 1 elements, as radixes 0 and 1 are not
4529      * used.
4530      */
4531     private static int digitsPerLong[] = {0, 0,
4532         62, 39, 31, 27, 24, 22, 20, 19, 18, 18, 17, 17, 16, 16, 15, 15, 15, 14,
4533         14, 14, 14, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12};
4534 
4535     private static BigInteger longRadix[] = {null, null,
4536         valueOf(0x4000000000000000L), valueOf(0x383d9170b85ff80bL),
4537         valueOf(0x4000000000000000L), valueOf(0x6765c793fa10079dL),
4538         valueOf(0x41c21cb8e1000000L), valueOf(0x3642798750226111L),
4539         valueOf(0x1000000000000000L), valueOf(0x12bf307ae81ffd59L),
4540         valueOf( 0xde0b6b3a7640000L), valueOf(0x4d28cb56c33fa539L),
4541         valueOf(0x1eca170c00000000L), valueOf(0x780c7372621bd74dL),
4542         valueOf(0x1e39a5057d810000L), valueOf(0x5b27ac993df97701L),
4543         valueOf(0x1000000000000000L), valueOf(0x27b95e997e21d9f1L),
4544         valueOf(0x5da0e1e53c5c8000L), valueOf( 0xb16a458ef403f19L),
4545         valueOf(0x16bcc41e90000000L), valueOf(0x2d04b7fdd9c0ef49L),
4546         valueOf(0x5658597bcaa24000L), valueOf( 0x6feb266931a75b7L),
4547         valueOf( 0xc29e98000000000L), valueOf(0x14adf4b7320334b9L),
4548         valueOf(0x226ed36478bfa000L), valueOf(0x383d9170b85ff80bL),
4549         valueOf(0x5a3c23e39c000000L), valueOf( 0x4e900abb53e6b71L),
4550         valueOf( 0x7600ec618141000L), valueOf( 0xaee5720ee830681L),
4551         valueOf(0x1000000000000000L), valueOf(0x172588ad4f5f0981L),
4552         valueOf(0x211e44f7d02c1000L), valueOf(0x2ee56725f06e5c71L),
4553         valueOf(0x41c21cb8e1000000L)};
4554 
4555     /*
4556      * These two arrays are the integer analogue of above.
4557      */
4558     private static int digitsPerInt[] = {0, 0, 30, 19, 15, 13, 11,
4559         11, 10, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6,
4560         6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5};
4561 
4562     private static int intRadix[] = {0, 0,
4563         0x40000000, 0x4546b3db, 0x40000000, 0x48c27395, 0x159fd800,
4564         0x75db9c97, 0x40000000, 0x17179149, 0x3b9aca00, 0xcc6db61,
4565         0x19a10000, 0x309f1021, 0x57f6c100, 0xa2f1b6f,  0x10000000,
4566         0x18754571, 0x247dbc80, 0x3547667b, 0x4c4b4000, 0x6b5a6e1d,
4567         0x6c20a40,  0x8d2d931,  0xb640000,  0xe8d4a51,  0x1269ae40,
4568         0x17179149, 0x1cb91000, 0x23744899, 0x2b73a840, 0x34e63b41,
4569         0x40000000, 0x4cfa3cc1, 0x5c13d840, 0x6d91b519, 0x39aa400
4570     };
4571 
4572     /**
4573      * These routines provide access to the two's complement representation
4574      * of BigIntegers.
4575      */
4576 
4577     /**
4578      * Returns the length of the two's complement representation in ints,
4579      * including space for at least one sign bit.
4580      */
4581     private int intLength() {
4582         return (bitLength() >>> 5) + 1;
4583     }
4584 
4585     /* Returns sign bit */
4586     private int signBit() {
4587         return signum < 0 ? 1 : 0;
4588     }
4589 
4590     /* Returns an int of sign bits */
4591     private int signInt() {
4592         return signum < 0 ? -1 : 0;
4593     }
4594 
4595     /**
4596      * Returns the specified int of the little-endian two's complement
4597      * representation (int 0 is the least significant).  The int number can
4598      * be arbitrarily high (values are logically preceded by infinitely many
4599      * sign ints).
4600      */
4601     private int getInt(int n) {
4602         if (n < 0)
4603             return 0;
4604         if (n >= mag.length)
4605             return signInt();
4606 
4607         int magInt = mag[mag.length-n-1];
4608 
4609         return (signum >= 0 ? magInt :
4610                 (n <= firstNonzeroIntNum() ? -magInt : ~magInt));
4611     }
4612 
4613     /**
4614     * Returns the index of the int that contains the first nonzero int in the
4615     * little-endian binary representation of the magnitude (int 0 is the
4616     * least significant). If the magnitude is zero, return value is undefined.
4617     *
4618     * <p>Note: never used for a BigInteger with a magnitude of zero.
4619     * @see #getInt.
4620     */
4621     private int firstNonzeroIntNum() {
4622         int fn = firstNonzeroIntNumPlusTwo - 2;
4623         if (fn == -2) { // firstNonzeroIntNum not initialized yet
4624             // Search for the first nonzero int
4625             int i;
4626             int mlen = mag.length;
4627             for (i = mlen - 1; i >= 0 && mag[i] == 0; i--)
4628                 ;
4629             fn = mlen - i - 1;
4630             firstNonzeroIntNumPlusTwo = fn + 2; // offset by two to initialize
4631         }
4632         return fn;
4633     }
4634 
4635     /** use serialVersionUID from JDK 1.1. for interoperability */
4636     private static final long serialVersionUID = -8287574255936472291L;
4637 
4638     /**
4639      * Serializable fields for BigInteger.
4640      *
4641      * @serialField signum  int
4642      *              signum of this BigInteger
4643      * @serialField magnitude byte[]
4644      *              magnitude array of this BigInteger
4645      * @serialField bitCount  int
4646      *              appears in the serialized form for backward compatibility
4647      * @serialField bitLength int
4648      *              appears in the serialized form for backward compatibility
4649      * @serialField firstNonzeroByteNum int
4650      *              appears in the serialized form for backward compatibility
4651      * @serialField lowestSetBit int
4652      *              appears in the serialized form for backward compatibility
4653      */
4654     private static final ObjectStreamField[] serialPersistentFields = {
4655         new ObjectStreamField("signum", Integer.TYPE),
4656         new ObjectStreamField("magnitude", byte[].class),
4657         new ObjectStreamField("bitCount", Integer.TYPE),
4658         new ObjectStreamField("bitLength", Integer.TYPE),
4659         new ObjectStreamField("firstNonzeroByteNum", Integer.TYPE),
4660         new ObjectStreamField("lowestSetBit", Integer.TYPE)
4661         };
4662 
4663     /**
4664      * Reconstitute the {@code BigInteger} instance from a stream (that is,
4665      * deserialize it). The magnitude is read in as an array of bytes
4666      * for historical reasons, but it is converted to an array of ints
4667      * and the byte array is discarded.
4668      * Note:
4669      * The current convention is to initialize the cache fields, bitCountPlusOne,
4670      * bitLengthPlusOne and lowestSetBitPlusTwo, to 0 rather than some other
4671      * marker value. Therefore, no explicit action to set these fields needs to
4672      * be taken in readObject because those fields already have a 0 value by
4673      * default since defaultReadObject is not being used.
4674      */
4675     private void readObject(java.io.ObjectInputStream s)
4676         throws java.io.IOException, ClassNotFoundException {
4677         // prepare to read the alternate persistent fields
4678         ObjectInputStream.GetField fields = s.readFields();
4679 
4680         // Read the alternate persistent fields that we care about
4681         int sign = fields.get("signum", -2);
4682         byte[] magnitude = (byte[])fields.get("magnitude", null);
4683 
4684         // Validate signum
4685         if (sign < -1 || sign > 1) {
4686             String message = "BigInteger: Invalid signum value";
4687             if (fields.defaulted("signum"))
4688                 message = "BigInteger: Signum not present in stream";
4689             throw new java.io.StreamCorruptedException(message);
4690         }
4691         int[] mag = stripLeadingZeroBytes(magnitude, 0, magnitude.length);
4692         if ((mag.length == 0) != (sign == 0)) {
4693             String message = "BigInteger: signum-magnitude mismatch";
4694             if (fields.defaulted("magnitude"))
4695                 message = "BigInteger: Magnitude not present in stream";
4696             throw new java.io.StreamCorruptedException(message);
4697         }
4698 
4699         // Commit final fields via Unsafe
4700         UnsafeHolder.putSign(this, sign);
4701 
4702         // Calculate mag field from magnitude and discard magnitude
4703         UnsafeHolder.putMag(this, mag);
4704         if (mag.length >= MAX_MAG_LENGTH) {
4705             try {
4706                 checkRange();
4707             } catch (ArithmeticException e) {
4708                 throw new java.io.StreamCorruptedException("BigInteger: Out of the supported range");
4709             }
4710         }
4711     }
4712 
4713     // Support for resetting final fields while deserializing
4714     private static class UnsafeHolder {
4715         private static final jdk.internal.misc.Unsafe unsafe
4716                 = jdk.internal.misc.Unsafe.getUnsafe();
4717         private static final long signumOffset
4718                 = unsafe.objectFieldOffset(BigInteger.class, "signum");
4719         private static final long magOffset
4720                 = unsafe.objectFieldOffset(BigInteger.class, "mag");
4721 
4722         static void putSign(BigInteger bi, int sign) {
4723             unsafe.putInt(bi, signumOffset, sign);
4724         }
4725 
4726         static void putMag(BigInteger bi, int[] magnitude) {
4727             unsafe.putReference(bi, magOffset, magnitude);
4728         }
4729     }
4730 
4731     /**
4732      * Save the {@code BigInteger} instance to a stream.  The magnitude of a
4733      * {@code BigInteger} is serialized as a byte array for historical reasons.
4734      * To maintain compatibility with older implementations, the integers
4735      * -1, -1, -2, and -2 are written as the values of the obsolete fields
4736      * {@code bitCount}, {@code bitLength}, {@code lowestSetBit}, and
4737      * {@code firstNonzeroByteNum}, respectively.  These values are compatible
4738      * with older implementations, but will be ignored by current
4739      * implementations.
4740      */
4741     private void writeObject(ObjectOutputStream s) throws IOException {
4742         // set the values of the Serializable fields
4743         ObjectOutputStream.PutField fields = s.putFields();
4744         fields.put("signum", signum);
4745         fields.put("magnitude", magSerializedForm());
4746         // The values written for cached fields are compatible with older
4747         // versions, but are ignored in readObject so don't otherwise matter.
4748         fields.put("bitCount", -1);
4749         fields.put("bitLength", -1);
4750         fields.put("lowestSetBit", -2);
4751         fields.put("firstNonzeroByteNum", -2);
4752 
4753         // save them
4754         s.writeFields();
4755     }
4756 
4757     /**
4758      * Returns the mag array as an array of bytes.
4759      */
4760     private byte[] magSerializedForm() {
4761         int len = mag.length;
4762 
4763         int bitLen = (len == 0 ? 0 : ((len - 1) << 5) + bitLengthForInt(mag[0]));
4764         int byteLen = (bitLen + 7) >>> 3;
4765         byte[] result = new byte[byteLen];
4766 
4767         for (int i = byteLen - 1, bytesCopied = 4, intIndex = len - 1, nextInt = 0;
4768              i >= 0; i--) {
4769             if (bytesCopied == 4) {
4770                 nextInt = mag[intIndex--];
4771                 bytesCopied = 1;
4772             } else {
4773                 nextInt >>>= 8;
4774                 bytesCopied++;
4775             }
4776             result[i] = (byte)nextInt;
4777         }
4778         return result;
4779     }
4780 
4781     /**
4782      * Converts this {@code BigInteger} to a {@code long}, checking
4783      * for lost information.  If the value of this {@code BigInteger}
4784      * is out of the range of the {@code long} type, then an
4785      * {@code ArithmeticException} is thrown.
4786      *
4787      * @return this {@code BigInteger} converted to a {@code long}.
4788      * @throws ArithmeticException if the value of {@code this} will
4789      * not exactly fit in a {@code long}.
4790      * @see BigInteger#longValue
4791      * @since  1.8
4792      */
4793     public long longValueExact() {
4794         if (mag.length <= 2 && bitLength() <= 63)
4795             return longValue();
4796         else
4797             throw new ArithmeticException("BigInteger out of long range");
4798     }
4799 
4800     /**
4801      * Converts this {@code BigInteger} to an {@code int}, checking
4802      * for lost information.  If the value of this {@code BigInteger}
4803      * is out of the range of the {@code int} type, then an
4804      * {@code ArithmeticException} is thrown.
4805      *
4806      * @return this {@code BigInteger} converted to an {@code int}.
4807      * @throws ArithmeticException if the value of {@code this} will
4808      * not exactly fit in an {@code int}.
4809      * @see BigInteger#intValue
4810      * @since  1.8
4811      */
4812     public int intValueExact() {
4813         if (mag.length <= 1 && bitLength() <= 31)
4814             return intValue();
4815         else
4816             throw new ArithmeticException("BigInteger out of int range");
4817     }
4818 
4819     /**
4820      * Converts this {@code BigInteger} to a {@code short}, checking
4821      * for lost information.  If the value of this {@code BigInteger}
4822      * is out of the range of the {@code short} type, then an
4823      * {@code ArithmeticException} is thrown.
4824      *
4825      * @return this {@code BigInteger} converted to a {@code short}.
4826      * @throws ArithmeticException if the value of {@code this} will
4827      * not exactly fit in a {@code short}.
4828      * @see BigInteger#shortValue
4829      * @since  1.8
4830      */
4831     public short shortValueExact() {
4832         if (mag.length <= 1 && bitLength() <= 31) {
4833             int value = intValue();
4834             if (value >= Short.MIN_VALUE && value <= Short.MAX_VALUE)
4835                 return shortValue();
4836         }
4837         throw new ArithmeticException("BigInteger out of short range");
4838     }
4839 
4840     /**
4841      * Converts this {@code BigInteger} to a {@code byte}, checking
4842      * for lost information.  If the value of this {@code BigInteger}
4843      * is out of the range of the {@code byte} type, then an
4844      * {@code ArithmeticException} is thrown.
4845      *
4846      * @return this {@code BigInteger} converted to a {@code byte}.
4847      * @throws ArithmeticException if the value of {@code this} will
4848      * not exactly fit in a {@code byte}.
4849      * @see BigInteger#byteValue
4850      * @since  1.8
4851      */
4852     public byte byteValueExact() {
4853         if (mag.length <= 1 && bitLength() <= 31) {
4854             int value = intValue();
4855             if (value >= Byte.MIN_VALUE && value <= Byte.MAX_VALUE)
4856                 return byteValue();
4857         }
4858         throw new ArithmeticException("BigInteger out of byte range");
4859     }
4860 }