1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/filemap.hpp"
  40 #include "mutex_windows.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "os_windows.inline.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm.h"
  46 #include "prims/jvm_misc.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.inline.hpp"
  49 #include "runtime/extendedPC.hpp"
  50 #include "runtime/globals.hpp"
  51 #include "runtime/interfaceSupport.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/orderAccess.inline.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/perfMemory.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/statSampler.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/thread.inline.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "semaphore_windows.hpp"
  67 #include "services/attachListener.hpp"
  68 #include "services/memTracker.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/decoder.hpp"
  71 #include "utilities/defaultStream.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/vmError.hpp"
  75 
  76 #ifdef _DEBUG
  77 #include <crtdbg.h>
  78 #endif
  79 
  80 
  81 #include <windows.h>
  82 #include <sys/types.h>
  83 #include <sys/stat.h>
  84 #include <sys/timeb.h>
  85 #include <objidl.h>
  86 #include <shlobj.h>
  87 
  88 #include <malloc.h>
  89 #include <signal.h>
  90 #include <direct.h>
  91 #include <errno.h>
  92 #include <fcntl.h>
  93 #include <io.h>
  94 #include <process.h>              // For _beginthreadex(), _endthreadex()
  95 #if _MSC_VER >= 1900
  96 #pragma warning( disable : 4091 ) // typedef ignored on left when no variable is declared
  97 #endif
  98 #include <imagehlp.h>             // For os::dll_address_to_function_name
  99 // for enumerating dll libraries
 100 #include <vdmdbg.h>
 101 
 102 // for timer info max values which include all bits
 103 #define ALL_64_BITS CONST64(-1)
 104 
 105 // For DLL loading/load error detection
 106 // Values of PE COFF
 107 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 108 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 109 
 110 static HANDLE main_process;
 111 static HANDLE main_thread;
 112 static int    main_thread_id;
 113 
 114 static FILETIME process_creation_time;
 115 static FILETIME process_exit_time;
 116 static FILETIME process_user_time;
 117 static FILETIME process_kernel_time;
 118 
 119 #ifdef _M_IA64
 120   #define __CPU__ ia64
 121 #else
 122   #ifdef _M_AMD64
 123     #define __CPU__ amd64
 124   #else
 125     #define __CPU__ i486
 126   #endif
 127 #endif
 128 
 129 // save DLL module handle, used by GetModuleFileName
 130 
 131 HINSTANCE vm_lib_handle;
 132 
 133 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 134   switch (reason) {
 135   case DLL_PROCESS_ATTACH:
 136     vm_lib_handle = hinst;
 137     if (ForceTimeHighResolution) {
 138       timeBeginPeriod(1L);
 139     }
 140     break;
 141   case DLL_PROCESS_DETACH:
 142     if (ForceTimeHighResolution) {
 143       timeEndPeriod(1L);
 144     }
 145     break;
 146   default:
 147     break;
 148   }
 149   return true;
 150 }
 151 
 152 static inline double fileTimeAsDouble(FILETIME* time) {
 153   const double high  = (double) ((unsigned int) ~0);
 154   const double split = 10000000.0;
 155   double result = (time->dwLowDateTime / split) +
 156                    time->dwHighDateTime * (high/split);
 157   return result;
 158 }
 159 
 160 // Implementation of os
 161 
 162 bool os::unsetenv(const char* name) {
 163   assert(name != NULL, "Null pointer");
 164   return (SetEnvironmentVariable(name, NULL) == TRUE);
 165 }
 166 
 167 // No setuid programs under Windows.
 168 bool os::have_special_privileges() {
 169   return false;
 170 }
 171 
 172 
 173 // This method is  a periodic task to check for misbehaving JNI applications
 174 // under CheckJNI, we can add any periodic checks here.
 175 // For Windows at the moment does nothing
 176 void os::run_periodic_checks() {
 177   return;
 178 }
 179 
 180 // previous UnhandledExceptionFilter, if there is one
 181 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 182 
 183 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 184 
 185 void os::init_system_properties_values() {
 186   // sysclasspath, java_home, dll_dir
 187   {
 188     char *home_path;
 189     char *dll_path;
 190     char *pslash;
 191     char *bin = "\\bin";
 192     char home_dir[MAX_PATH + 1];
 193     char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
 194 
 195     if (alt_home_dir != NULL)  {
 196       strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
 197       home_dir[MAX_PATH] = '\0';
 198     } else {
 199       os::jvm_path(home_dir, sizeof(home_dir));
 200       // Found the full path to jvm.dll.
 201       // Now cut the path to <java_home>/jre if we can.
 202       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 203       pslash = strrchr(home_dir, '\\');
 204       if (pslash != NULL) {
 205         *pslash = '\0';                   // get rid of \{client|server}
 206         pslash = strrchr(home_dir, '\\');
 207         if (pslash != NULL) {
 208           *pslash = '\0';                 // get rid of \bin
 209         }
 210       }
 211     }
 212 
 213     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 214     if (home_path == NULL) {
 215       return;
 216     }
 217     strcpy(home_path, home_dir);
 218     Arguments::set_java_home(home_path);
 219     FREE_C_HEAP_ARRAY(char, home_path);
 220 
 221     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 222                                 mtInternal);
 223     if (dll_path == NULL) {
 224       return;
 225     }
 226     strcpy(dll_path, home_dir);
 227     strcat(dll_path, bin);
 228     Arguments::set_dll_dir(dll_path);
 229     FREE_C_HEAP_ARRAY(char, dll_path);
 230 
 231     if (!set_boot_path('\\', ';')) {
 232       return;
 233     }
 234   }
 235 
 236 // library_path
 237 #define EXT_DIR "\\lib\\ext"
 238 #define BIN_DIR "\\bin"
 239 #define PACKAGE_DIR "\\Sun\\Java"
 240   {
 241     // Win32 library search order (See the documentation for LoadLibrary):
 242     //
 243     // 1. The directory from which application is loaded.
 244     // 2. The system wide Java Extensions directory (Java only)
 245     // 3. System directory (GetSystemDirectory)
 246     // 4. Windows directory (GetWindowsDirectory)
 247     // 5. The PATH environment variable
 248     // 6. The current directory
 249 
 250     char *library_path;
 251     char tmp[MAX_PATH];
 252     char *path_str = ::getenv("PATH");
 253 
 254     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 255                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 256 
 257     library_path[0] = '\0';
 258 
 259     GetModuleFileName(NULL, tmp, sizeof(tmp));
 260     *(strrchr(tmp, '\\')) = '\0';
 261     strcat(library_path, tmp);
 262 
 263     GetWindowsDirectory(tmp, sizeof(tmp));
 264     strcat(library_path, ";");
 265     strcat(library_path, tmp);
 266     strcat(library_path, PACKAGE_DIR BIN_DIR);
 267 
 268     GetSystemDirectory(tmp, sizeof(tmp));
 269     strcat(library_path, ";");
 270     strcat(library_path, tmp);
 271 
 272     GetWindowsDirectory(tmp, sizeof(tmp));
 273     strcat(library_path, ";");
 274     strcat(library_path, tmp);
 275 
 276     if (path_str) {
 277       strcat(library_path, ";");
 278       strcat(library_path, path_str);
 279     }
 280 
 281     strcat(library_path, ";.");
 282 
 283     Arguments::set_library_path(library_path);
 284     FREE_C_HEAP_ARRAY(char, library_path);
 285   }
 286 
 287   // Default extensions directory
 288   {
 289     char path[MAX_PATH];
 290     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 291     GetWindowsDirectory(path, MAX_PATH);
 292     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 293             path, PACKAGE_DIR, EXT_DIR);
 294     Arguments::set_ext_dirs(buf);
 295   }
 296   #undef EXT_DIR
 297   #undef BIN_DIR
 298   #undef PACKAGE_DIR
 299 
 300 #ifndef _WIN64
 301   // set our UnhandledExceptionFilter and save any previous one
 302   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 303 #endif
 304 
 305   // Done
 306   return;
 307 }
 308 
 309 void os::breakpoint() {
 310   DebugBreak();
 311 }
 312 
 313 // Invoked from the BREAKPOINT Macro
 314 extern "C" void breakpoint() {
 315   os::breakpoint();
 316 }
 317 
 318 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 319 // So far, this method is only used by Native Memory Tracking, which is
 320 // only supported on Windows XP or later.
 321 //
 322 int os::get_native_stack(address* stack, int frames, int toSkip) {
 323 #ifdef _NMT_NOINLINE_
 324   toSkip++;
 325 #endif
 326   int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
 327                                                        (PVOID*)stack, NULL);
 328   for (int index = captured; index < frames; index ++) {
 329     stack[index] = NULL;
 330   }
 331   return captured;
 332 }
 333 
 334 
 335 // os::current_stack_base()
 336 //
 337 //   Returns the base of the stack, which is the stack's
 338 //   starting address.  This function must be called
 339 //   while running on the stack of the thread being queried.
 340 
 341 address os::current_stack_base() {
 342   MEMORY_BASIC_INFORMATION minfo;
 343   address stack_bottom;
 344   size_t stack_size;
 345 
 346   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 347   stack_bottom =  (address)minfo.AllocationBase;
 348   stack_size = minfo.RegionSize;
 349 
 350   // Add up the sizes of all the regions with the same
 351   // AllocationBase.
 352   while (1) {
 353     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 354     if (stack_bottom == (address)minfo.AllocationBase) {
 355       stack_size += minfo.RegionSize;
 356     } else {
 357       break;
 358     }
 359   }
 360 
 361 #ifdef _M_IA64
 362   // IA64 has memory and register stacks
 363   //
 364   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 365   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 366   // growing downwards, 2MB summed up)
 367   //
 368   // ...
 369   // ------- top of stack (high address) -----
 370   // |
 371   // |      1MB
 372   // |      Backing Store (Register Stack)
 373   // |
 374   // |         / \
 375   // |          |
 376   // |          |
 377   // |          |
 378   // ------------------------ stack base -----
 379   // |      1MB
 380   // |      Memory Stack
 381   // |
 382   // |          |
 383   // |          |
 384   // |          |
 385   // |         \ /
 386   // |
 387   // ----- bottom of stack (low address) -----
 388   // ...
 389 
 390   stack_size = stack_size / 2;
 391 #endif
 392   return stack_bottom + stack_size;
 393 }
 394 
 395 size_t os::current_stack_size() {
 396   size_t sz;
 397   MEMORY_BASIC_INFORMATION minfo;
 398   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 399   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 400   return sz;
 401 }
 402 
 403 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 404   const struct tm* time_struct_ptr = localtime(clock);
 405   if (time_struct_ptr != NULL) {
 406     *res = *time_struct_ptr;
 407     return res;
 408   }
 409   return NULL;
 410 }
 411 
 412 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 413 
 414 // Thread start routine for all new Java threads
 415 static unsigned __stdcall java_start(Thread* thread) {
 416   // Try to randomize the cache line index of hot stack frames.
 417   // This helps when threads of the same stack traces evict each other's
 418   // cache lines. The threads can be either from the same JVM instance, or
 419   // from different JVM instances. The benefit is especially true for
 420   // processors with hyperthreading technology.
 421   static int counter = 0;
 422   int pid = os::current_process_id();
 423   _alloca(((pid ^ counter++) & 7) * 128);
 424 
 425   OSThread* osthr = thread->osthread();
 426   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 427 
 428   if (UseNUMA) {
 429     int lgrp_id = os::numa_get_group_id();
 430     if (lgrp_id != -1) {
 431       thread->set_lgrp_id(lgrp_id);
 432     }
 433   }
 434 
 435   // Diagnostic code to investigate JDK-6573254
 436   int res = 30115;  // non-java thread
 437   if (thread->is_Java_thread()) {
 438     res = 20115;    // java thread
 439   }
 440 
 441   // Install a win32 structured exception handler around every thread created
 442   // by VM, so VM can generate error dump when an exception occurred in non-
 443   // Java thread (e.g. VM thread).
 444   __try {
 445     thread->run();
 446   } __except(topLevelExceptionFilter(
 447                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 448     // Nothing to do.
 449   }
 450 
 451   // One less thread is executing
 452   // When the VMThread gets here, the main thread may have already exited
 453   // which frees the CodeHeap containing the Atomic::add code
 454   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 455     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 456   }
 457 
 458   // Thread must not return from exit_process_or_thread(), but if it does,
 459   // let it proceed to exit normally
 460   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 461 }
 462 
 463 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 464                                   int thread_id) {
 465   // Allocate the OSThread object
 466   OSThread* osthread = new OSThread(NULL, NULL);
 467   if (osthread == NULL) return NULL;
 468 
 469   // Initialize support for Java interrupts
 470   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 471   if (interrupt_event == NULL) {
 472     delete osthread;
 473     return NULL;
 474   }
 475   osthread->set_interrupt_event(interrupt_event);
 476 
 477   // Store info on the Win32 thread into the OSThread
 478   osthread->set_thread_handle(thread_handle);
 479   osthread->set_thread_id(thread_id);
 480 
 481   if (UseNUMA) {
 482     int lgrp_id = os::numa_get_group_id();
 483     if (lgrp_id != -1) {
 484       thread->set_lgrp_id(lgrp_id);
 485     }
 486   }
 487 
 488   // Initial thread state is INITIALIZED, not SUSPENDED
 489   osthread->set_state(INITIALIZED);
 490 
 491   return osthread;
 492 }
 493 
 494 
 495 bool os::create_attached_thread(JavaThread* thread) {
 496 #ifdef ASSERT
 497   thread->verify_not_published();
 498 #endif
 499   HANDLE thread_h;
 500   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 501                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 502     fatal("DuplicateHandle failed\n");
 503   }
 504   OSThread* osthread = create_os_thread(thread, thread_h,
 505                                         (int)current_thread_id());
 506   if (osthread == NULL) {
 507     return false;
 508   }
 509 
 510   // Initial thread state is RUNNABLE
 511   osthread->set_state(RUNNABLE);
 512 
 513   thread->set_osthread(osthread);
 514   return true;
 515 }
 516 
 517 bool os::create_main_thread(JavaThread* thread) {
 518 #ifdef ASSERT
 519   thread->verify_not_published();
 520 #endif
 521   if (_starting_thread == NULL) {
 522     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 523     if (_starting_thread == NULL) {
 524       return false;
 525     }
 526   }
 527 
 528   // The primordial thread is runnable from the start)
 529   _starting_thread->set_state(RUNNABLE);
 530 
 531   thread->set_osthread(_starting_thread);
 532   return true;
 533 }
 534 
 535 // Allocate and initialize a new OSThread
 536 bool os::create_thread(Thread* thread, ThreadType thr_type,
 537                        size_t stack_size) {
 538   unsigned thread_id;
 539 
 540   // Allocate the OSThread object
 541   OSThread* osthread = new OSThread(NULL, NULL);
 542   if (osthread == NULL) {
 543     return false;
 544   }
 545 
 546   // Initialize support for Java interrupts
 547   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 548   if (interrupt_event == NULL) {
 549     delete osthread;
 550     return NULL;
 551   }
 552   osthread->set_interrupt_event(interrupt_event);
 553   osthread->set_interrupted(false);
 554 
 555   thread->set_osthread(osthread);
 556 
 557   if (stack_size == 0) {
 558     switch (thr_type) {
 559     case os::java_thread:
 560       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 561       if (JavaThread::stack_size_at_create() > 0) {
 562         stack_size = JavaThread::stack_size_at_create();
 563       }
 564       break;
 565     case os::compiler_thread:
 566       if (CompilerThreadStackSize > 0) {
 567         stack_size = (size_t)(CompilerThreadStackSize * K);
 568         break;
 569       } // else fall through:
 570         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 571     case os::vm_thread:
 572     case os::pgc_thread:
 573     case os::cgc_thread:
 574     case os::watcher_thread:
 575       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 576       break;
 577     }
 578   }
 579 
 580   // Create the Win32 thread
 581   //
 582   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 583   // does not specify stack size. Instead, it specifies the size of
 584   // initially committed space. The stack size is determined by
 585   // PE header in the executable. If the committed "stack_size" is larger
 586   // than default value in the PE header, the stack is rounded up to the
 587   // nearest multiple of 1MB. For example if the launcher has default
 588   // stack size of 320k, specifying any size less than 320k does not
 589   // affect the actual stack size at all, it only affects the initial
 590   // commitment. On the other hand, specifying 'stack_size' larger than
 591   // default value may cause significant increase in memory usage, because
 592   // not only the stack space will be rounded up to MB, but also the
 593   // entire space is committed upfront.
 594   //
 595   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 596   // for CreateThread() that can treat 'stack_size' as stack size. However we
 597   // are not supposed to call CreateThread() directly according to MSDN
 598   // document because JVM uses C runtime library. The good news is that the
 599   // flag appears to work with _beginthredex() as well.
 600 
 601 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 602   #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 603 #endif
 604 
 605   HANDLE thread_handle =
 606     (HANDLE)_beginthreadex(NULL,
 607                            (unsigned)stack_size,
 608                            (unsigned (__stdcall *)(void*)) java_start,
 609                            thread,
 610                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 611                            &thread_id);
 612   if (thread_handle == NULL) {
 613     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 614     // without the flag.
 615     thread_handle =
 616       (HANDLE)_beginthreadex(NULL,
 617                              (unsigned)stack_size,
 618                              (unsigned (__stdcall *)(void*)) java_start,
 619                              thread,
 620                              CREATE_SUSPENDED,
 621                              &thread_id);
 622   }
 623   if (thread_handle == NULL) {
 624     // Need to clean up stuff we've allocated so far
 625     CloseHandle(osthread->interrupt_event());
 626     thread->set_osthread(NULL);
 627     delete osthread;
 628     return NULL;
 629   }
 630 
 631   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 632 
 633   // Store info on the Win32 thread into the OSThread
 634   osthread->set_thread_handle(thread_handle);
 635   osthread->set_thread_id(thread_id);
 636 
 637   // Initial thread state is INITIALIZED, not SUSPENDED
 638   osthread->set_state(INITIALIZED);
 639 
 640   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 641   return true;
 642 }
 643 
 644 
 645 // Free Win32 resources related to the OSThread
 646 void os::free_thread(OSThread* osthread) {
 647   assert(osthread != NULL, "osthread not set");
 648   CloseHandle(osthread->thread_handle());
 649   CloseHandle(osthread->interrupt_event());
 650   delete osthread;
 651 }
 652 
 653 static jlong first_filetime;
 654 static jlong initial_performance_count;
 655 static jlong performance_frequency;
 656 
 657 
 658 jlong as_long(LARGE_INTEGER x) {
 659   jlong result = 0; // initialization to avoid warning
 660   set_high(&result, x.HighPart);
 661   set_low(&result, x.LowPart);
 662   return result;
 663 }
 664 
 665 
 666 jlong os::elapsed_counter() {
 667   LARGE_INTEGER count;
 668   if (win32::_has_performance_count) {
 669     QueryPerformanceCounter(&count);
 670     return as_long(count) - initial_performance_count;
 671   } else {
 672     FILETIME wt;
 673     GetSystemTimeAsFileTime(&wt);
 674     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 675   }
 676 }
 677 
 678 
 679 jlong os::elapsed_frequency() {
 680   if (win32::_has_performance_count) {
 681     return performance_frequency;
 682   } else {
 683     // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 684     return 10000000;
 685   }
 686 }
 687 
 688 
 689 julong os::available_memory() {
 690   return win32::available_memory();
 691 }
 692 
 693 julong os::win32::available_memory() {
 694   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 695   // value if total memory is larger than 4GB
 696   MEMORYSTATUSEX ms;
 697   ms.dwLength = sizeof(ms);
 698   GlobalMemoryStatusEx(&ms);
 699 
 700   return (julong)ms.ullAvailPhys;
 701 }
 702 
 703 julong os::physical_memory() {
 704   return win32::physical_memory();
 705 }
 706 
 707 bool os::has_allocatable_memory_limit(julong* limit) {
 708   MEMORYSTATUSEX ms;
 709   ms.dwLength = sizeof(ms);
 710   GlobalMemoryStatusEx(&ms);
 711 #ifdef _LP64
 712   *limit = (julong)ms.ullAvailVirtual;
 713   return true;
 714 #else
 715   // Limit to 1400m because of the 2gb address space wall
 716   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 717   return true;
 718 #endif
 719 }
 720 
 721 // VC6 lacks DWORD_PTR
 722 #if _MSC_VER < 1300
 723 typedef UINT_PTR DWORD_PTR;
 724 #endif
 725 
 726 int os::active_processor_count() {
 727   DWORD_PTR lpProcessAffinityMask = 0;
 728   DWORD_PTR lpSystemAffinityMask = 0;
 729   int proc_count = processor_count();
 730   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 731       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 732     // Nof active processors is number of bits in process affinity mask
 733     int bitcount = 0;
 734     while (lpProcessAffinityMask != 0) {
 735       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 736       bitcount++;
 737     }
 738     return bitcount;
 739   } else {
 740     return proc_count;
 741   }
 742 }
 743 
 744 void os::set_native_thread_name(const char *name) {
 745 
 746   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 747   //
 748   // Note that unfortunately this only works if the process
 749   // is already attached to a debugger; debugger must observe
 750   // the exception below to show the correct name.
 751 
 752   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 753   struct {
 754     DWORD dwType;     // must be 0x1000
 755     LPCSTR szName;    // pointer to name (in user addr space)
 756     DWORD dwThreadID; // thread ID (-1=caller thread)
 757     DWORD dwFlags;    // reserved for future use, must be zero
 758   } info;
 759 
 760   info.dwType = 0x1000;
 761   info.szName = name;
 762   info.dwThreadID = -1;
 763   info.dwFlags = 0;
 764 
 765   __try {
 766     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 767   } __except(EXCEPTION_CONTINUE_EXECUTION) {}
 768 }
 769 
 770 bool os::distribute_processes(uint length, uint* distribution) {
 771   // Not yet implemented.
 772   return false;
 773 }
 774 
 775 bool os::bind_to_processor(uint processor_id) {
 776   // Not yet implemented.
 777   return false;
 778 }
 779 
 780 void os::win32::initialize_performance_counter() {
 781   LARGE_INTEGER count;
 782   if (QueryPerformanceFrequency(&count)) {
 783     win32::_has_performance_count = 1;
 784     performance_frequency = as_long(count);
 785     QueryPerformanceCounter(&count);
 786     initial_performance_count = as_long(count);
 787   } else {
 788     win32::_has_performance_count = 0;
 789     FILETIME wt;
 790     GetSystemTimeAsFileTime(&wt);
 791     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 792   }
 793 }
 794 
 795 
 796 double os::elapsedTime() {
 797   return (double) elapsed_counter() / (double) elapsed_frequency();
 798 }
 799 
 800 
 801 // Windows format:
 802 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 803 // Java format:
 804 //   Java standards require the number of milliseconds since 1/1/1970
 805 
 806 // Constant offset - calculated using offset()
 807 static jlong  _offset   = 116444736000000000;
 808 // Fake time counter for reproducible results when debugging
 809 static jlong  fake_time = 0;
 810 
 811 #ifdef ASSERT
 812 // Just to be safe, recalculate the offset in debug mode
 813 static jlong _calculated_offset = 0;
 814 static int   _has_calculated_offset = 0;
 815 
 816 jlong offset() {
 817   if (_has_calculated_offset) return _calculated_offset;
 818   SYSTEMTIME java_origin;
 819   java_origin.wYear          = 1970;
 820   java_origin.wMonth         = 1;
 821   java_origin.wDayOfWeek     = 0; // ignored
 822   java_origin.wDay           = 1;
 823   java_origin.wHour          = 0;
 824   java_origin.wMinute        = 0;
 825   java_origin.wSecond        = 0;
 826   java_origin.wMilliseconds  = 0;
 827   FILETIME jot;
 828   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 829     fatal("Error = %d\nWindows error", GetLastError());
 830   }
 831   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 832   _has_calculated_offset = 1;
 833   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 834   return _calculated_offset;
 835 }
 836 #else
 837 jlong offset() {
 838   return _offset;
 839 }
 840 #endif
 841 
 842 jlong windows_to_java_time(FILETIME wt) {
 843   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 844   return (a - offset()) / 10000;
 845 }
 846 
 847 // Returns time ticks in (10th of micro seconds)
 848 jlong windows_to_time_ticks(FILETIME wt) {
 849   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 850   return (a - offset());
 851 }
 852 
 853 FILETIME java_to_windows_time(jlong l) {
 854   jlong a = (l * 10000) + offset();
 855   FILETIME result;
 856   result.dwHighDateTime = high(a);
 857   result.dwLowDateTime  = low(a);
 858   return result;
 859 }
 860 
 861 bool os::supports_vtime() { return true; }
 862 bool os::enable_vtime() { return false; }
 863 bool os::vtime_enabled() { return false; }
 864 
 865 double os::elapsedVTime() {
 866   FILETIME created;
 867   FILETIME exited;
 868   FILETIME kernel;
 869   FILETIME user;
 870   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 871     // the resolution of windows_to_java_time() should be sufficient (ms)
 872     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 873   } else {
 874     return elapsedTime();
 875   }
 876 }
 877 
 878 jlong os::javaTimeMillis() {
 879   if (UseFakeTimers) {
 880     return fake_time++;
 881   } else {
 882     FILETIME wt;
 883     GetSystemTimeAsFileTime(&wt);
 884     return windows_to_java_time(wt);
 885   }
 886 }
 887 
 888 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 889   FILETIME wt;
 890   GetSystemTimeAsFileTime(&wt);
 891   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 892   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 893   seconds = secs;
 894   nanos = jlong(ticks - (secs*10000000)) * 100;
 895 }
 896 
 897 jlong os::javaTimeNanos() {
 898   if (!win32::_has_performance_count) {
 899     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
 900   } else {
 901     LARGE_INTEGER current_count;
 902     QueryPerformanceCounter(&current_count);
 903     double current = as_long(current_count);
 904     double freq = performance_frequency;
 905     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 906     return time;
 907   }
 908 }
 909 
 910 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 911   if (!win32::_has_performance_count) {
 912     // javaTimeMillis() doesn't have much percision,
 913     // but it is not going to wrap -- so all 64 bits
 914     info_ptr->max_value = ALL_64_BITS;
 915 
 916     // this is a wall clock timer, so may skip
 917     info_ptr->may_skip_backward = true;
 918     info_ptr->may_skip_forward = true;
 919   } else {
 920     jlong freq = performance_frequency;
 921     if (freq < NANOSECS_PER_SEC) {
 922       // the performance counter is 64 bits and we will
 923       // be multiplying it -- so no wrap in 64 bits
 924       info_ptr->max_value = ALL_64_BITS;
 925     } else if (freq > NANOSECS_PER_SEC) {
 926       // use the max value the counter can reach to
 927       // determine the max value which could be returned
 928       julong max_counter = (julong)ALL_64_BITS;
 929       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 930     } else {
 931       // the performance counter is 64 bits and we will
 932       // be using it directly -- so no wrap in 64 bits
 933       info_ptr->max_value = ALL_64_BITS;
 934     }
 935 
 936     // using a counter, so no skipping
 937     info_ptr->may_skip_backward = false;
 938     info_ptr->may_skip_forward = false;
 939   }
 940   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 941 }
 942 
 943 char* os::local_time_string(char *buf, size_t buflen) {
 944   SYSTEMTIME st;
 945   GetLocalTime(&st);
 946   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 947                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 948   return buf;
 949 }
 950 
 951 bool os::getTimesSecs(double* process_real_time,
 952                       double* process_user_time,
 953                       double* process_system_time) {
 954   HANDLE h_process = GetCurrentProcess();
 955   FILETIME create_time, exit_time, kernel_time, user_time;
 956   BOOL result = GetProcessTimes(h_process,
 957                                 &create_time,
 958                                 &exit_time,
 959                                 &kernel_time,
 960                                 &user_time);
 961   if (result != 0) {
 962     FILETIME wt;
 963     GetSystemTimeAsFileTime(&wt);
 964     jlong rtc_millis = windows_to_java_time(wt);
 965     jlong user_millis = windows_to_java_time(user_time);
 966     jlong system_millis = windows_to_java_time(kernel_time);
 967     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 968     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 969     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 970     return true;
 971   } else {
 972     return false;
 973   }
 974 }
 975 
 976 void os::shutdown() {
 977   // allow PerfMemory to attempt cleanup of any persistent resources
 978   perfMemory_exit();
 979 
 980   // flush buffered output, finish log files
 981   ostream_abort();
 982 
 983   // Check for abort hook
 984   abort_hook_t abort_hook = Arguments::abort_hook();
 985   if (abort_hook != NULL) {
 986     abort_hook();
 987   }
 988 }
 989 
 990 
 991 static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
 992                                          PMINIDUMP_EXCEPTION_INFORMATION,
 993                                          PMINIDUMP_USER_STREAM_INFORMATION,
 994                                          PMINIDUMP_CALLBACK_INFORMATION);
 995 
 996 static HANDLE dumpFile = NULL;
 997 
 998 // Check if dump file can be created.
 999 void os::check_dump_limit(char* buffer, size_t buffsz) {
1000   bool status = true;
1001   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
1002     jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
1003     status = false;
1004   }
1005 
1006 #ifndef ASSERT
1007   if (!os::win32::is_windows_server() && FLAG_IS_DEFAULT(CreateCoredumpOnCrash)) {
1008     jio_snprintf(buffer, buffsz, "Minidumps are not enabled by default on client versions of Windows");
1009     status = false;
1010   }
1011 #endif
1012 
1013   if (status) {
1014     const char* cwd = get_current_directory(NULL, 0);
1015     int pid = current_process_id();
1016     if (cwd != NULL) {
1017       jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1018     } else {
1019       jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1020     }
1021 
1022     if (dumpFile == NULL &&
1023        (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1024                  == INVALID_HANDLE_VALUE) {
1025       jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1026       status = false;
1027     }
1028   }
1029   VMError::record_coredump_status(buffer, status);
1030 }
1031 
1032 void os::abort(bool dump_core, void* siginfo, void* context) {
1033   HINSTANCE dbghelp;
1034   EXCEPTION_POINTERS ep;
1035   MINIDUMP_EXCEPTION_INFORMATION mei;
1036   MINIDUMP_EXCEPTION_INFORMATION* pmei;
1037 
1038   HANDLE hProcess = GetCurrentProcess();
1039   DWORD processId = GetCurrentProcessId();
1040   MINIDUMP_TYPE dumpType;
1041 
1042   shutdown();
1043   if (!dump_core || dumpFile == NULL) {
1044     if (dumpFile != NULL) {
1045       CloseHandle(dumpFile);
1046     }
1047     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1048   }
1049 
1050   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1051 
1052   if (dbghelp == NULL) {
1053     jio_fprintf(stderr, "Failed to load dbghelp.dll\n");
1054     CloseHandle(dumpFile);
1055     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1056   }
1057 
1058   _MiniDumpWriteDump =
1059       CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1060                                     PMINIDUMP_EXCEPTION_INFORMATION,
1061                                     PMINIDUMP_USER_STREAM_INFORMATION,
1062                                     PMINIDUMP_CALLBACK_INFORMATION),
1063                                     GetProcAddress(dbghelp,
1064                                     "MiniDumpWriteDump"));
1065 
1066   if (_MiniDumpWriteDump == NULL) {
1067     jio_fprintf(stderr, "Failed to find MiniDumpWriteDump() in module dbghelp.dll.\n");
1068     CloseHandle(dumpFile);
1069     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1070   }
1071 
1072   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
1073 
1074   // Older versions of dbghelp.h do not contain all the dumptypes we want, dbghelp.h with
1075   // API_VERSION_NUMBER 11 or higher contains the ones we want though
1076 #if API_VERSION_NUMBER >= 11
1077   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
1078                              MiniDumpWithUnloadedModules);
1079 #endif
1080 
1081   if (siginfo != NULL && context != NULL) {
1082     ep.ContextRecord = (PCONTEXT) context;
1083     ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1084 
1085     mei.ThreadId = GetCurrentThreadId();
1086     mei.ExceptionPointers = &ep;
1087     pmei = &mei;
1088   } else {
1089     pmei = NULL;
1090   }
1091 
1092   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1093   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1094   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1095       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1096     jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1097   }
1098   CloseHandle(dumpFile);
1099   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1100 }
1101 
1102 // Die immediately, no exit hook, no abort hook, no cleanup.
1103 void os::die() {
1104   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1105 }
1106 
1107 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1108 //  * dirent_md.c       1.15 00/02/02
1109 //
1110 // The declarations for DIR and struct dirent are in jvm_win32.h.
1111 
1112 // Caller must have already run dirname through JVM_NativePath, which removes
1113 // duplicate slashes and converts all instances of '/' into '\\'.
1114 
1115 DIR * os::opendir(const char *dirname) {
1116   assert(dirname != NULL, "just checking");   // hotspot change
1117   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1118   DWORD fattr;                                // hotspot change
1119   char alt_dirname[4] = { 0, 0, 0, 0 };
1120 
1121   if (dirp == 0) {
1122     errno = ENOMEM;
1123     return 0;
1124   }
1125 
1126   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1127   // as a directory in FindFirstFile().  We detect this case here and
1128   // prepend the current drive name.
1129   //
1130   if (dirname[1] == '\0' && dirname[0] == '\\') {
1131     alt_dirname[0] = _getdrive() + 'A' - 1;
1132     alt_dirname[1] = ':';
1133     alt_dirname[2] = '\\';
1134     alt_dirname[3] = '\0';
1135     dirname = alt_dirname;
1136   }
1137 
1138   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1139   if (dirp->path == 0) {
1140     free(dirp);
1141     errno = ENOMEM;
1142     return 0;
1143   }
1144   strcpy(dirp->path, dirname);
1145 
1146   fattr = GetFileAttributes(dirp->path);
1147   if (fattr == 0xffffffff) {
1148     free(dirp->path);
1149     free(dirp);
1150     errno = ENOENT;
1151     return 0;
1152   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1153     free(dirp->path);
1154     free(dirp);
1155     errno = ENOTDIR;
1156     return 0;
1157   }
1158 
1159   // Append "*.*", or possibly "\\*.*", to path
1160   if (dirp->path[1] == ':' &&
1161       (dirp->path[2] == '\0' ||
1162       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1163     // No '\\' needed for cases like "Z:" or "Z:\"
1164     strcat(dirp->path, "*.*");
1165   } else {
1166     strcat(dirp->path, "\\*.*");
1167   }
1168 
1169   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1170   if (dirp->handle == INVALID_HANDLE_VALUE) {
1171     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1172       free(dirp->path);
1173       free(dirp);
1174       errno = EACCES;
1175       return 0;
1176     }
1177   }
1178   return dirp;
1179 }
1180 
1181 // parameter dbuf unused on Windows
1182 struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1183   assert(dirp != NULL, "just checking");      // hotspot change
1184   if (dirp->handle == INVALID_HANDLE_VALUE) {
1185     return 0;
1186   }
1187 
1188   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1189 
1190   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1191     if (GetLastError() == ERROR_INVALID_HANDLE) {
1192       errno = EBADF;
1193       return 0;
1194     }
1195     FindClose(dirp->handle);
1196     dirp->handle = INVALID_HANDLE_VALUE;
1197   }
1198 
1199   return &dirp->dirent;
1200 }
1201 
1202 int os::closedir(DIR *dirp) {
1203   assert(dirp != NULL, "just checking");      // hotspot change
1204   if (dirp->handle != INVALID_HANDLE_VALUE) {
1205     if (!FindClose(dirp->handle)) {
1206       errno = EBADF;
1207       return -1;
1208     }
1209     dirp->handle = INVALID_HANDLE_VALUE;
1210   }
1211   free(dirp->path);
1212   free(dirp);
1213   return 0;
1214 }
1215 
1216 // This must be hard coded because it's the system's temporary
1217 // directory not the java application's temp directory, ala java.io.tmpdir.
1218 const char* os::get_temp_directory() {
1219   static char path_buf[MAX_PATH];
1220   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1221     return path_buf;
1222   } else {
1223     path_buf[0] = '\0';
1224     return path_buf;
1225   }
1226 }
1227 
1228 static bool file_exists(const char* filename) {
1229   if (filename == NULL || strlen(filename) == 0) {
1230     return false;
1231   }
1232   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1233 }
1234 
1235 bool os::dll_build_name(char *buffer, size_t buflen,
1236                         const char* pname, const char* fname) {
1237   bool retval = false;
1238   const size_t pnamelen = pname ? strlen(pname) : 0;
1239   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1240 
1241   // Return error on buffer overflow.
1242   if (pnamelen + strlen(fname) + 10 > buflen) {
1243     return retval;
1244   }
1245 
1246   if (pnamelen == 0) {
1247     jio_snprintf(buffer, buflen, "%s.dll", fname);
1248     retval = true;
1249   } else if (c == ':' || c == '\\') {
1250     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1251     retval = true;
1252   } else if (strchr(pname, *os::path_separator()) != NULL) {
1253     int n;
1254     char** pelements = split_path(pname, &n);
1255     if (pelements == NULL) {
1256       return false;
1257     }
1258     for (int i = 0; i < n; i++) {
1259       char* path = pelements[i];
1260       // Really shouldn't be NULL, but check can't hurt
1261       size_t plen = (path == NULL) ? 0 : strlen(path);
1262       if (plen == 0) {
1263         continue; // skip the empty path values
1264       }
1265       const char lastchar = path[plen - 1];
1266       if (lastchar == ':' || lastchar == '\\') {
1267         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1268       } else {
1269         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1270       }
1271       if (file_exists(buffer)) {
1272         retval = true;
1273         break;
1274       }
1275     }
1276     // release the storage
1277     for (int i = 0; i < n; i++) {
1278       if (pelements[i] != NULL) {
1279         FREE_C_HEAP_ARRAY(char, pelements[i]);
1280       }
1281     }
1282     if (pelements != NULL) {
1283       FREE_C_HEAP_ARRAY(char*, pelements);
1284     }
1285   } else {
1286     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1287     retval = true;
1288   }
1289   return retval;
1290 }
1291 
1292 // Needs to be in os specific directory because windows requires another
1293 // header file <direct.h>
1294 const char* os::get_current_directory(char *buf, size_t buflen) {
1295   int n = static_cast<int>(buflen);
1296   if (buflen > INT_MAX)  n = INT_MAX;
1297   return _getcwd(buf, n);
1298 }
1299 
1300 //-----------------------------------------------------------
1301 // Helper functions for fatal error handler
1302 #ifdef _WIN64
1303 // Helper routine which returns true if address in
1304 // within the NTDLL address space.
1305 //
1306 static bool _addr_in_ntdll(address addr) {
1307   HMODULE hmod;
1308   MODULEINFO minfo;
1309 
1310   hmod = GetModuleHandle("NTDLL.DLL");
1311   if (hmod == NULL) return false;
1312   if (!os::PSApiDll::GetModuleInformation(GetCurrentProcess(), hmod,
1313                                           &minfo, sizeof(MODULEINFO))) {
1314     return false;
1315   }
1316 
1317   if ((addr >= minfo.lpBaseOfDll) &&
1318       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1319     return true;
1320   } else {
1321     return false;
1322   }
1323 }
1324 #endif
1325 
1326 struct _modinfo {
1327   address addr;
1328   char*   full_path;   // point to a char buffer
1329   int     buflen;      // size of the buffer
1330   address base_addr;
1331 };
1332 
1333 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1334                                   address top_address, void * param) {
1335   struct _modinfo *pmod = (struct _modinfo *)param;
1336   if (!pmod) return -1;
1337 
1338   if (base_addr   <= pmod->addr &&
1339       top_address > pmod->addr) {
1340     // if a buffer is provided, copy path name to the buffer
1341     if (pmod->full_path) {
1342       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1343     }
1344     pmod->base_addr = base_addr;
1345     return 1;
1346   }
1347   return 0;
1348 }
1349 
1350 bool os::dll_address_to_library_name(address addr, char* buf,
1351                                      int buflen, int* offset) {
1352   // buf is not optional, but offset is optional
1353   assert(buf != NULL, "sanity check");
1354 
1355 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1356 //       return the full path to the DLL file, sometimes it returns path
1357 //       to the corresponding PDB file (debug info); sometimes it only
1358 //       returns partial path, which makes life painful.
1359 
1360   struct _modinfo mi;
1361   mi.addr      = addr;
1362   mi.full_path = buf;
1363   mi.buflen    = buflen;
1364   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1365     // buf already contains path name
1366     if (offset) *offset = addr - mi.base_addr;
1367     return true;
1368   }
1369 
1370   buf[0] = '\0';
1371   if (offset) *offset = -1;
1372   return false;
1373 }
1374 
1375 bool os::dll_address_to_function_name(address addr, char *buf,
1376                                       int buflen, int *offset,
1377                                       bool demangle) {
1378   // buf is not optional, but offset is optional
1379   assert(buf != NULL, "sanity check");
1380 
1381   if (Decoder::decode(addr, buf, buflen, offset, demangle)) {
1382     return true;
1383   }
1384   if (offset != NULL)  *offset  = -1;
1385   buf[0] = '\0';
1386   return false;
1387 }
1388 
1389 // save the start and end address of jvm.dll into param[0] and param[1]
1390 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1391                            address top_address, void * param) {
1392   if (!param) return -1;
1393 
1394   if (base_addr   <= (address)_locate_jvm_dll &&
1395       top_address > (address)_locate_jvm_dll) {
1396     ((address*)param)[0] = base_addr;
1397     ((address*)param)[1] = top_address;
1398     return 1;
1399   }
1400   return 0;
1401 }
1402 
1403 address vm_lib_location[2];    // start and end address of jvm.dll
1404 
1405 // check if addr is inside jvm.dll
1406 bool os::address_is_in_vm(address addr) {
1407   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1408     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1409       assert(false, "Can't find jvm module.");
1410       return false;
1411     }
1412   }
1413 
1414   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1415 }
1416 
1417 // print module info; param is outputStream*
1418 static int _print_module(const char* fname, address base_address,
1419                          address top_address, void* param) {
1420   if (!param) return -1;
1421 
1422   outputStream* st = (outputStream*)param;
1423 
1424   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1425   return 0;
1426 }
1427 
1428 // Loads .dll/.so and
1429 // in case of error it checks if .dll/.so was built for the
1430 // same architecture as Hotspot is running on
1431 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1432   void * result = LoadLibrary(name);
1433   if (result != NULL) {
1434     return result;
1435   }
1436 
1437   DWORD errcode = GetLastError();
1438   if (errcode == ERROR_MOD_NOT_FOUND) {
1439     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1440     ebuf[ebuflen - 1] = '\0';
1441     return NULL;
1442   }
1443 
1444   // Parsing dll below
1445   // If we can read dll-info and find that dll was built
1446   // for an architecture other than Hotspot is running in
1447   // - then print to buffer "DLL was built for a different architecture"
1448   // else call os::lasterror to obtain system error message
1449 
1450   // Read system error message into ebuf
1451   // It may or may not be overwritten below (in the for loop and just above)
1452   lasterror(ebuf, (size_t) ebuflen);
1453   ebuf[ebuflen - 1] = '\0';
1454   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1455   if (fd < 0) {
1456     return NULL;
1457   }
1458 
1459   uint32_t signature_offset;
1460   uint16_t lib_arch = 0;
1461   bool failed_to_get_lib_arch =
1462     ( // Go to position 3c in the dll
1463      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1464      ||
1465      // Read location of signature
1466      (sizeof(signature_offset) !=
1467      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1468      ||
1469      // Go to COFF File Header in dll
1470      // that is located after "signature" (4 bytes long)
1471      (os::seek_to_file_offset(fd,
1472      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1473      ||
1474      // Read field that contains code of architecture
1475      // that dll was built for
1476      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1477     );
1478 
1479   ::close(fd);
1480   if (failed_to_get_lib_arch) {
1481     // file i/o error - report os::lasterror(...) msg
1482     return NULL;
1483   }
1484 
1485   typedef struct {
1486     uint16_t arch_code;
1487     char* arch_name;
1488   } arch_t;
1489 
1490   static const arch_t arch_array[] = {
1491     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1492     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1493     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1494   };
1495 #if   (defined _M_IA64)
1496   static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1497 #elif (defined _M_AMD64)
1498   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1499 #elif (defined _M_IX86)
1500   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1501 #else
1502   #error Method os::dll_load requires that one of following \
1503          is defined :_M_IA64,_M_AMD64 or _M_IX86
1504 #endif
1505 
1506 
1507   // Obtain a string for printf operation
1508   // lib_arch_str shall contain string what platform this .dll was built for
1509   // running_arch_str shall string contain what platform Hotspot was built for
1510   char *running_arch_str = NULL, *lib_arch_str = NULL;
1511   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1512     if (lib_arch == arch_array[i].arch_code) {
1513       lib_arch_str = arch_array[i].arch_name;
1514     }
1515     if (running_arch == arch_array[i].arch_code) {
1516       running_arch_str = arch_array[i].arch_name;
1517     }
1518   }
1519 
1520   assert(running_arch_str,
1521          "Didn't find running architecture code in arch_array");
1522 
1523   // If the architecture is right
1524   // but some other error took place - report os::lasterror(...) msg
1525   if (lib_arch == running_arch) {
1526     return NULL;
1527   }
1528 
1529   if (lib_arch_str != NULL) {
1530     ::_snprintf(ebuf, ebuflen - 1,
1531                 "Can't load %s-bit .dll on a %s-bit platform",
1532                 lib_arch_str, running_arch_str);
1533   } else {
1534     // don't know what architecture this dll was build for
1535     ::_snprintf(ebuf, ebuflen - 1,
1536                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1537                 lib_arch, running_arch_str);
1538   }
1539 
1540   return NULL;
1541 }
1542 
1543 void os::print_dll_info(outputStream *st) {
1544   st->print_cr("Dynamic libraries:");
1545   get_loaded_modules_info(_print_module, (void *)st);
1546 }
1547 
1548 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1549   HANDLE   hProcess;
1550 
1551 # define MAX_NUM_MODULES 128
1552   HMODULE     modules[MAX_NUM_MODULES];
1553   static char filename[MAX_PATH];
1554   int         result = 0;
1555 
1556   if (!os::PSApiDll::PSApiAvailable()) {
1557     return 0;
1558   }
1559 
1560   int pid = os::current_process_id();
1561   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1562                          FALSE, pid);
1563   if (hProcess == NULL) return 0;
1564 
1565   DWORD size_needed;
1566   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1567                                         sizeof(modules), &size_needed)) {
1568     CloseHandle(hProcess);
1569     return 0;
1570   }
1571 
1572   // number of modules that are currently loaded
1573   int num_modules = size_needed / sizeof(HMODULE);
1574 
1575   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1576     // Get Full pathname:
1577     if (!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1578                                            filename, sizeof(filename))) {
1579       filename[0] = '\0';
1580     }
1581 
1582     MODULEINFO modinfo;
1583     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1584                                             &modinfo, sizeof(modinfo))) {
1585       modinfo.lpBaseOfDll = NULL;
1586       modinfo.SizeOfImage = 0;
1587     }
1588 
1589     // Invoke callback function
1590     result = callback(filename, (address)modinfo.lpBaseOfDll,
1591                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1592     if (result) break;
1593   }
1594 
1595   CloseHandle(hProcess);
1596   return result;
1597 }
1598 
1599 #ifndef PRODUCT
1600 bool os::get_host_name(char* buf, size_t buflen) {
1601   DWORD size = (DWORD)buflen;
1602   return (GetComputerNameEx(ComputerNameDnsHostname, buf, &size) == TRUE);
1603 }
1604 #endif // PRODUCT
1605 
1606 void os::get_summary_os_info(char* buf, size_t buflen) {
1607   stringStream sst(buf, buflen);
1608   os::win32::print_windows_version(&sst);
1609   // chop off newline character
1610   char* nl = strchr(buf, '\n');
1611   if (nl != NULL) *nl = '\0';
1612 }
1613 
1614 int os::log_vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
1615   int ret = vsnprintf(buf, len, fmt, args);
1616   // Get the correct buffer size if buf is too small
1617   if (ret < 0) {
1618     return _vscprintf(fmt, args);
1619   }
1620   return ret;
1621 }
1622 
1623 void os::print_os_info_brief(outputStream* st) {
1624   os::print_os_info(st);
1625 }
1626 
1627 void os::print_os_info(outputStream* st) {
1628 #ifdef ASSERT
1629   char buffer[1024];
1630   st->print("HostName: ");
1631   if (get_host_name(buffer, sizeof(buffer))) {
1632     st->print("%s ", buffer);
1633   } else {
1634     st->print("N/A ");
1635   }
1636 #endif
1637   st->print("OS:");
1638   os::win32::print_windows_version(st);
1639 }
1640 
1641 void os::win32::print_windows_version(outputStream* st) {
1642   OSVERSIONINFOEX osvi;
1643   VS_FIXEDFILEINFO *file_info;
1644   TCHAR kernel32_path[MAX_PATH];
1645   UINT len, ret;
1646 
1647   // Use the GetVersionEx information to see if we're on a server or
1648   // workstation edition of Windows. Starting with Windows 8.1 we can't
1649   // trust the OS version information returned by this API.
1650   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1651   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1652   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1653     st->print_cr("Call to GetVersionEx failed");
1654     return;
1655   }
1656   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1657 
1658   // Get the full path to \Windows\System32\kernel32.dll and use that for
1659   // determining what version of Windows we're running on.
1660   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1661   ret = GetSystemDirectory(kernel32_path, len);
1662   if (ret == 0 || ret > len) {
1663     st->print_cr("Call to GetSystemDirectory failed");
1664     return;
1665   }
1666   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1667 
1668   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1669   if (version_size == 0) {
1670     st->print_cr("Call to GetFileVersionInfoSize failed");
1671     return;
1672   }
1673 
1674   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1675   if (version_info == NULL) {
1676     st->print_cr("Failed to allocate version_info");
1677     return;
1678   }
1679 
1680   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1681     os::free(version_info);
1682     st->print_cr("Call to GetFileVersionInfo failed");
1683     return;
1684   }
1685 
1686   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1687     os::free(version_info);
1688     st->print_cr("Call to VerQueryValue failed");
1689     return;
1690   }
1691 
1692   int major_version = HIWORD(file_info->dwProductVersionMS);
1693   int minor_version = LOWORD(file_info->dwProductVersionMS);
1694   int build_number = HIWORD(file_info->dwProductVersionLS);
1695   int build_minor = LOWORD(file_info->dwProductVersionLS);
1696   int os_vers = major_version * 1000 + minor_version;
1697   os::free(version_info);
1698 
1699   st->print(" Windows ");
1700   switch (os_vers) {
1701 
1702   case 6000:
1703     if (is_workstation) {
1704       st->print("Vista");
1705     } else {
1706       st->print("Server 2008");
1707     }
1708     break;
1709 
1710   case 6001:
1711     if (is_workstation) {
1712       st->print("7");
1713     } else {
1714       st->print("Server 2008 R2");
1715     }
1716     break;
1717 
1718   case 6002:
1719     if (is_workstation) {
1720       st->print("8");
1721     } else {
1722       st->print("Server 2012");
1723     }
1724     break;
1725 
1726   case 6003:
1727     if (is_workstation) {
1728       st->print("8.1");
1729     } else {
1730       st->print("Server 2012 R2");
1731     }
1732     break;
1733 
1734   case 10000:
1735     if (is_workstation) {
1736       st->print("10");
1737     } else {
1738       // The server version name of Windows 10 is not known at this time
1739       st->print("%d.%d", major_version, minor_version);
1740     }
1741     break;
1742 
1743   default:
1744     // Unrecognized windows, print out its major and minor versions
1745     st->print("%d.%d", major_version, minor_version);
1746     break;
1747   }
1748 
1749   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1750   // find out whether we are running on 64 bit processor or not
1751   SYSTEM_INFO si;
1752   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1753   os::Kernel32Dll::GetNativeSystemInfo(&si);
1754   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1755     st->print(" , 64 bit");
1756   }
1757 
1758   st->print(" Build %d", build_number);
1759   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1760   st->cr();
1761 }
1762 
1763 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1764   // Nothing to do for now.
1765 }
1766 
1767 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1768   HKEY key;
1769   DWORD status = RegOpenKey(HKEY_LOCAL_MACHINE,
1770                "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", &key);
1771   if (status == ERROR_SUCCESS) {
1772     DWORD size = (DWORD)buflen;
1773     status = RegQueryValueEx(key, "ProcessorNameString", NULL, NULL, (byte*)buf, &size);
1774     if (status != ERROR_SUCCESS) {
1775         strncpy(buf, "## __CPU__", buflen);
1776     }
1777     RegCloseKey(key);
1778   } else {
1779     // Put generic cpu info to return
1780     strncpy(buf, "## __CPU__", buflen);
1781   }
1782 }
1783 
1784 void os::print_memory_info(outputStream* st) {
1785   st->print("Memory:");
1786   st->print(" %dk page", os::vm_page_size()>>10);
1787 
1788   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1789   // value if total memory is larger than 4GB
1790   MEMORYSTATUSEX ms;
1791   ms.dwLength = sizeof(ms);
1792   GlobalMemoryStatusEx(&ms);
1793 
1794   st->print(", physical %uk", os::physical_memory() >> 10);
1795   st->print("(%uk free)", os::available_memory() >> 10);
1796 
1797   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1798   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1799   st->cr();
1800 }
1801 
1802 void os::print_siginfo(outputStream *st, void *siginfo) {
1803   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1804   st->print("siginfo:");
1805   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1806 
1807   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1808       er->NumberParameters >= 2) {
1809     switch (er->ExceptionInformation[0]) {
1810     case 0: st->print(", reading address"); break;
1811     case 1: st->print(", writing address"); break;
1812     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1813                        er->ExceptionInformation[0]);
1814     }
1815     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1816   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1817              er->NumberParameters >= 2 && UseSharedSpaces) {
1818     FileMapInfo* mapinfo = FileMapInfo::current_info();
1819     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1820       st->print("\n\nError accessing class data sharing archive."       \
1821                 " Mapped file inaccessible during execution, "          \
1822                 " possible disk/network problem.");
1823     }
1824   } else {
1825     int num = er->NumberParameters;
1826     if (num > 0) {
1827       st->print(", ExceptionInformation=");
1828       for (int i = 0; i < num; i++) {
1829         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1830       }
1831     }
1832   }
1833   st->cr();
1834 }
1835 
1836 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1837   // do nothing
1838 }
1839 
1840 static char saved_jvm_path[MAX_PATH] = {0};
1841 
1842 // Find the full path to the current module, jvm.dll
1843 void os::jvm_path(char *buf, jint buflen) {
1844   // Error checking.
1845   if (buflen < MAX_PATH) {
1846     assert(false, "must use a large-enough buffer");
1847     buf[0] = '\0';
1848     return;
1849   }
1850   // Lazy resolve the path to current module.
1851   if (saved_jvm_path[0] != 0) {
1852     strcpy(buf, saved_jvm_path);
1853     return;
1854   }
1855 
1856   buf[0] = '\0';
1857   if (Arguments::sun_java_launcher_is_altjvm()) {
1858     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1859     // for a JAVA_HOME environment variable and fix up the path so it
1860     // looks like jvm.dll is installed there (append a fake suffix
1861     // hotspot/jvm.dll).
1862     char* java_home_var = ::getenv("JAVA_HOME");
1863     if (java_home_var != NULL && java_home_var[0] != 0 &&
1864         strlen(java_home_var) < (size_t)buflen) {
1865       strncpy(buf, java_home_var, buflen);
1866 
1867       // determine if this is a legacy image or modules image
1868       // modules image doesn't have "jre" subdirectory
1869       size_t len = strlen(buf);
1870       char* jrebin_p = buf + len;
1871       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1872       if (0 != _access(buf, 0)) {
1873         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1874       }
1875       len = strlen(buf);
1876       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1877     }
1878   }
1879 
1880   if (buf[0] == '\0') {
1881     GetModuleFileName(vm_lib_handle, buf, buflen);
1882   }
1883   strncpy(saved_jvm_path, buf, MAX_PATH);
1884   saved_jvm_path[MAX_PATH - 1] = '\0';
1885 }
1886 
1887 
1888 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1889 #ifndef _WIN64
1890   st->print("_");
1891 #endif
1892 }
1893 
1894 
1895 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1896 #ifndef _WIN64
1897   st->print("@%d", args_size  * sizeof(int));
1898 #endif
1899 }
1900 
1901 // This method is a copy of JDK's sysGetLastErrorString
1902 // from src/windows/hpi/src/system_md.c
1903 
1904 size_t os::lasterror(char* buf, size_t len) {
1905   DWORD errval;
1906 
1907   if ((errval = GetLastError()) != 0) {
1908     // DOS error
1909     size_t n = (size_t)FormatMessage(
1910                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1911                                      NULL,
1912                                      errval,
1913                                      0,
1914                                      buf,
1915                                      (DWORD)len,
1916                                      NULL);
1917     if (n > 3) {
1918       // Drop final '.', CR, LF
1919       if (buf[n - 1] == '\n') n--;
1920       if (buf[n - 1] == '\r') n--;
1921       if (buf[n - 1] == '.') n--;
1922       buf[n] = '\0';
1923     }
1924     return n;
1925   }
1926 
1927   if (errno != 0) {
1928     // C runtime error that has no corresponding DOS error code
1929     const char* s = strerror(errno);
1930     size_t n = strlen(s);
1931     if (n >= len) n = len - 1;
1932     strncpy(buf, s, n);
1933     buf[n] = '\0';
1934     return n;
1935   }
1936 
1937   return 0;
1938 }
1939 
1940 int os::get_last_error() {
1941   DWORD error = GetLastError();
1942   if (error == 0) {
1943     error = errno;
1944   }
1945   return (int)error;
1946 }
1947 
1948 WindowsSemaphore::WindowsSemaphore(uint value) {
1949   _semaphore = ::CreateSemaphore(NULL, value, LONG_MAX, NULL);
1950 
1951   guarantee(_semaphore != NULL, "CreateSemaphore failed with error code: %lu", GetLastError());
1952 }
1953 
1954 WindowsSemaphore::~WindowsSemaphore() {
1955   ::CloseHandle(_semaphore);
1956 }
1957 
1958 void WindowsSemaphore::signal(uint count) {
1959   if (count > 0) {
1960     BOOL ret = ::ReleaseSemaphore(_semaphore, count, NULL);
1961 
1962     assert(ret != 0, "ReleaseSemaphore failed with error code: %lu", GetLastError());
1963   }
1964 }
1965 
1966 void WindowsSemaphore::wait() {
1967   DWORD ret = ::WaitForSingleObject(_semaphore, INFINITE);
1968   assert(ret != WAIT_FAILED,   "WaitForSingleObject failed with error code: %lu", GetLastError());
1969   assert(ret == WAIT_OBJECT_0, "WaitForSingleObject failed with return value: %lu", ret);
1970 }
1971 
1972 // sun.misc.Signal
1973 // NOTE that this is a workaround for an apparent kernel bug where if
1974 // a signal handler for SIGBREAK is installed then that signal handler
1975 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1976 // See bug 4416763.
1977 static void (*sigbreakHandler)(int) = NULL;
1978 
1979 static void UserHandler(int sig, void *siginfo, void *context) {
1980   os::signal_notify(sig);
1981   // We need to reinstate the signal handler each time...
1982   os::signal(sig, (void*)UserHandler);
1983 }
1984 
1985 void* os::user_handler() {
1986   return (void*) UserHandler;
1987 }
1988 
1989 void* os::signal(int signal_number, void* handler) {
1990   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1991     void (*oldHandler)(int) = sigbreakHandler;
1992     sigbreakHandler = (void (*)(int)) handler;
1993     return (void*) oldHandler;
1994   } else {
1995     return (void*)::signal(signal_number, (void (*)(int))handler);
1996   }
1997 }
1998 
1999 void os::signal_raise(int signal_number) {
2000   raise(signal_number);
2001 }
2002 
2003 // The Win32 C runtime library maps all console control events other than ^C
2004 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
2005 // logoff, and shutdown events.  We therefore install our own console handler
2006 // that raises SIGTERM for the latter cases.
2007 //
2008 static BOOL WINAPI consoleHandler(DWORD event) {
2009   switch (event) {
2010   case CTRL_C_EVENT:
2011     if (is_error_reported()) {
2012       // Ctrl-C is pressed during error reporting, likely because the error
2013       // handler fails to abort. Let VM die immediately.
2014       os::die();
2015     }
2016 
2017     os::signal_raise(SIGINT);
2018     return TRUE;
2019     break;
2020   case CTRL_BREAK_EVENT:
2021     if (sigbreakHandler != NULL) {
2022       (*sigbreakHandler)(SIGBREAK);
2023     }
2024     return TRUE;
2025     break;
2026   case CTRL_LOGOFF_EVENT: {
2027     // Don't terminate JVM if it is running in a non-interactive session,
2028     // such as a service process.
2029     USEROBJECTFLAGS flags;
2030     HANDLE handle = GetProcessWindowStation();
2031     if (handle != NULL &&
2032         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
2033         sizeof(USEROBJECTFLAGS), NULL)) {
2034       // If it is a non-interactive session, let next handler to deal
2035       // with it.
2036       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
2037         return FALSE;
2038       }
2039     }
2040   }
2041   case CTRL_CLOSE_EVENT:
2042   case CTRL_SHUTDOWN_EVENT:
2043     os::signal_raise(SIGTERM);
2044     return TRUE;
2045     break;
2046   default:
2047     break;
2048   }
2049   return FALSE;
2050 }
2051 
2052 // The following code is moved from os.cpp for making this
2053 // code platform specific, which it is by its very nature.
2054 
2055 // Return maximum OS signal used + 1 for internal use only
2056 // Used as exit signal for signal_thread
2057 int os::sigexitnum_pd() {
2058   return NSIG;
2059 }
2060 
2061 // a counter for each possible signal value, including signal_thread exit signal
2062 static volatile jint pending_signals[NSIG+1] = { 0 };
2063 static HANDLE sig_sem = NULL;
2064 
2065 void os::signal_init_pd() {
2066   // Initialize signal structures
2067   memset((void*)pending_signals, 0, sizeof(pending_signals));
2068 
2069   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2070 
2071   // Programs embedding the VM do not want it to attempt to receive
2072   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2073   // shutdown hooks mechanism introduced in 1.3.  For example, when
2074   // the VM is run as part of a Windows NT service (i.e., a servlet
2075   // engine in a web server), the correct behavior is for any console
2076   // control handler to return FALSE, not TRUE, because the OS's
2077   // "final" handler for such events allows the process to continue if
2078   // it is a service (while terminating it if it is not a service).
2079   // To make this behavior uniform and the mechanism simpler, we
2080   // completely disable the VM's usage of these console events if -Xrs
2081   // (=ReduceSignalUsage) is specified.  This means, for example, that
2082   // the CTRL-BREAK thread dump mechanism is also disabled in this
2083   // case.  See bugs 4323062, 4345157, and related bugs.
2084 
2085   if (!ReduceSignalUsage) {
2086     // Add a CTRL-C handler
2087     SetConsoleCtrlHandler(consoleHandler, TRUE);
2088   }
2089 }
2090 
2091 void os::signal_notify(int signal_number) {
2092   BOOL ret;
2093   if (sig_sem != NULL) {
2094     Atomic::inc(&pending_signals[signal_number]);
2095     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2096     assert(ret != 0, "ReleaseSemaphore() failed");
2097   }
2098 }
2099 
2100 static int check_pending_signals(bool wait_for_signal) {
2101   DWORD ret;
2102   while (true) {
2103     for (int i = 0; i < NSIG + 1; i++) {
2104       jint n = pending_signals[i];
2105       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2106         return i;
2107       }
2108     }
2109     if (!wait_for_signal) {
2110       return -1;
2111     }
2112 
2113     JavaThread *thread = JavaThread::current();
2114 
2115     ThreadBlockInVM tbivm(thread);
2116 
2117     bool threadIsSuspended;
2118     do {
2119       thread->set_suspend_equivalent();
2120       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2121       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2122       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2123 
2124       // were we externally suspended while we were waiting?
2125       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2126       if (threadIsSuspended) {
2127         // The semaphore has been incremented, but while we were waiting
2128         // another thread suspended us. We don't want to continue running
2129         // while suspended because that would surprise the thread that
2130         // suspended us.
2131         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2132         assert(ret != 0, "ReleaseSemaphore() failed");
2133 
2134         thread->java_suspend_self();
2135       }
2136     } while (threadIsSuspended);
2137   }
2138 }
2139 
2140 int os::signal_lookup() {
2141   return check_pending_signals(false);
2142 }
2143 
2144 int os::signal_wait() {
2145   return check_pending_signals(true);
2146 }
2147 
2148 // Implicit OS exception handling
2149 
2150 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2151                       address handler) {
2152   JavaThread* thread = JavaThread::current();
2153   // Save pc in thread
2154 #ifdef _M_IA64
2155   // Do not blow up if no thread info available.
2156   if (thread) {
2157     // Saving PRECISE pc (with slot information) in thread.
2158     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2159     // Convert precise PC into "Unix" format
2160     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2161     thread->set_saved_exception_pc((address)precise_pc);
2162   }
2163   // Set pc to handler
2164   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2165   // Clear out psr.ri (= Restart Instruction) in order to continue
2166   // at the beginning of the target bundle.
2167   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2168   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2169 #else
2170   #ifdef _M_AMD64
2171   // Do not blow up if no thread info available.
2172   if (thread) {
2173     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2174   }
2175   // Set pc to handler
2176   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2177   #else
2178   // Do not blow up if no thread info available.
2179   if (thread) {
2180     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2181   }
2182   // Set pc to handler
2183   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2184   #endif
2185 #endif
2186 
2187   // Continue the execution
2188   return EXCEPTION_CONTINUE_EXECUTION;
2189 }
2190 
2191 
2192 // Used for PostMortemDump
2193 extern "C" void safepoints();
2194 extern "C" void find(int x);
2195 extern "C" void events();
2196 
2197 // According to Windows API documentation, an illegal instruction sequence should generate
2198 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2199 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2200 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2201 
2202 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2203 
2204 // From "Execution Protection in the Windows Operating System" draft 0.35
2205 // Once a system header becomes available, the "real" define should be
2206 // included or copied here.
2207 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2208 
2209 // Handle NAT Bit consumption on IA64.
2210 #ifdef _M_IA64
2211   #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2212 #endif
2213 
2214 // Windows Vista/2008 heap corruption check
2215 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2216 
2217 #if _MSC_VER >= 1900
2218 #define def_excpt(val) #val, (int) val
2219 #else
2220 #define def_excpt(val) #val, val
2221 #endif
2222 
2223 struct siglabel {
2224   char *name;
2225   int   number;
2226 };
2227 
2228 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2229 // C++ compiler contain this error code. Because this is a compiler-generated
2230 // error, the code is not listed in the Win32 API header files.
2231 // The code is actually a cryptic mnemonic device, with the initial "E"
2232 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2233 // ASCII values of "msc".
2234 
2235 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2236 
2237 
2238 struct siglabel exceptlabels[] = {
2239     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2240     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2241     def_excpt(EXCEPTION_BREAKPOINT),
2242     def_excpt(EXCEPTION_SINGLE_STEP),
2243     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2244     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2245     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2246     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2247     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2248     def_excpt(EXCEPTION_FLT_OVERFLOW),
2249     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2250     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2251     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2252     def_excpt(EXCEPTION_INT_OVERFLOW),
2253     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2254     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2255     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2256     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2257     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2258     def_excpt(EXCEPTION_STACK_OVERFLOW),
2259     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2260     def_excpt(EXCEPTION_GUARD_PAGE),
2261     def_excpt(EXCEPTION_INVALID_HANDLE),
2262     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2263     def_excpt(EXCEPTION_HEAP_CORRUPTION),
2264 #ifdef _M_IA64
2265     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2266 #endif
2267     NULL, 0
2268 };
2269 
2270 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2271   for (int i = 0; exceptlabels[i].name != NULL; i++) {
2272     if (exceptlabels[i].number == exception_code) {
2273       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2274       return buf;
2275     }
2276   }
2277 
2278   return NULL;
2279 }
2280 
2281 //-----------------------------------------------------------------------------
2282 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2283   // handle exception caused by idiv; should only happen for -MinInt/-1
2284   // (division by zero is handled explicitly)
2285 #ifdef _M_IA64
2286   assert(0, "Fix Handle_IDiv_Exception");
2287 #else
2288   #ifdef  _M_AMD64
2289   PCONTEXT ctx = exceptionInfo->ContextRecord;
2290   address pc = (address)ctx->Rip;
2291   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && pc[1] == 0xF7 || pc[0] == 0xF7, "not an idiv opcode");
2292   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && (pc[2] & ~0x7) == 0xF8 || (pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2293   if (pc[0] == 0xF7) {
2294     // set correct result values and continue after idiv instruction
2295     ctx->Rip = (DWORD64)pc + 2;        // idiv reg, reg  is 2 bytes
2296   } else {
2297     ctx->Rip = (DWORD64)pc + 3;        // REX idiv reg, reg  is 3 bytes
2298   }
2299   // Do not set ctx->Rax as it already contains the correct value (either 32 or 64 bit, depending on the operation)
2300   // this is the case because the exception only happens for -MinValue/-1 and -MinValue is always in rax because of the
2301   // idiv opcode (0xF7).
2302   ctx->Rdx = (DWORD)0;             // remainder
2303   // Continue the execution
2304   #else
2305   PCONTEXT ctx = exceptionInfo->ContextRecord;
2306   address pc = (address)ctx->Eip;
2307   assert(pc[0] == 0xF7, "not an idiv opcode");
2308   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2309   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2310   // set correct result values and continue after idiv instruction
2311   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2312   ctx->Eax = (DWORD)min_jint;      // result
2313   ctx->Edx = (DWORD)0;             // remainder
2314   // Continue the execution
2315   #endif
2316 #endif
2317   return EXCEPTION_CONTINUE_EXECUTION;
2318 }
2319 
2320 //-----------------------------------------------------------------------------
2321 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2322   PCONTEXT ctx = exceptionInfo->ContextRecord;
2323 #ifndef  _WIN64
2324   // handle exception caused by native method modifying control word
2325   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2326 
2327   switch (exception_code) {
2328   case EXCEPTION_FLT_DENORMAL_OPERAND:
2329   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2330   case EXCEPTION_FLT_INEXACT_RESULT:
2331   case EXCEPTION_FLT_INVALID_OPERATION:
2332   case EXCEPTION_FLT_OVERFLOW:
2333   case EXCEPTION_FLT_STACK_CHECK:
2334   case EXCEPTION_FLT_UNDERFLOW:
2335     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2336     if (fp_control_word != ctx->FloatSave.ControlWord) {
2337       // Restore FPCW and mask out FLT exceptions
2338       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2339       // Mask out pending FLT exceptions
2340       ctx->FloatSave.StatusWord &=  0xffffff00;
2341       return EXCEPTION_CONTINUE_EXECUTION;
2342     }
2343   }
2344 
2345   if (prev_uef_handler != NULL) {
2346     // We didn't handle this exception so pass it to the previous
2347     // UnhandledExceptionFilter.
2348     return (prev_uef_handler)(exceptionInfo);
2349   }
2350 #else // !_WIN64
2351   // On Windows, the mxcsr control bits are non-volatile across calls
2352   // See also CR 6192333
2353   //
2354   jint MxCsr = INITIAL_MXCSR;
2355   // we can't use StubRoutines::addr_mxcsr_std()
2356   // because in Win64 mxcsr is not saved there
2357   if (MxCsr != ctx->MxCsr) {
2358     ctx->MxCsr = MxCsr;
2359     return EXCEPTION_CONTINUE_EXECUTION;
2360   }
2361 #endif // !_WIN64
2362 
2363   return EXCEPTION_CONTINUE_SEARCH;
2364 }
2365 
2366 static inline void report_error(Thread* t, DWORD exception_code,
2367                                 address addr, void* siginfo, void* context) {
2368   VMError::report_and_die(t, exception_code, addr, siginfo, context);
2369 
2370   // If UseOsErrorReporting, this will return here and save the error file
2371   // somewhere where we can find it in the minidump.
2372 }
2373 
2374 //-----------------------------------------------------------------------------
2375 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2376   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2377   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2378 #ifdef _M_IA64
2379   // On Itanium, we need the "precise pc", which has the slot number coded
2380   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2381   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2382   // Convert the pc to "Unix format", which has the slot number coded
2383   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2384   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2385   // information is saved in the Unix format.
2386   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2387 #else
2388   #ifdef _M_AMD64
2389   address pc = (address) exceptionInfo->ContextRecord->Rip;
2390   #else
2391   address pc = (address) exceptionInfo->ContextRecord->Eip;
2392   #endif
2393 #endif
2394   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2395 
2396   // Handle SafeFetch32 and SafeFetchN exceptions.
2397   if (StubRoutines::is_safefetch_fault(pc)) {
2398     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2399   }
2400 
2401 #ifndef _WIN64
2402   // Execution protection violation - win32 running on AMD64 only
2403   // Handled first to avoid misdiagnosis as a "normal" access violation;
2404   // This is safe to do because we have a new/unique ExceptionInformation
2405   // code for this condition.
2406   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2407     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2408     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2409     address addr = (address) exceptionRecord->ExceptionInformation[1];
2410 
2411     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2412       int page_size = os::vm_page_size();
2413 
2414       // Make sure the pc and the faulting address are sane.
2415       //
2416       // If an instruction spans a page boundary, and the page containing
2417       // the beginning of the instruction is executable but the following
2418       // page is not, the pc and the faulting address might be slightly
2419       // different - we still want to unguard the 2nd page in this case.
2420       //
2421       // 15 bytes seems to be a (very) safe value for max instruction size.
2422       bool pc_is_near_addr =
2423         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2424       bool instr_spans_page_boundary =
2425         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2426                          (intptr_t) page_size) > 0);
2427 
2428       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2429         static volatile address last_addr =
2430           (address) os::non_memory_address_word();
2431 
2432         // In conservative mode, don't unguard unless the address is in the VM
2433         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2434             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2435 
2436           // Set memory to RWX and retry
2437           address page_start =
2438             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2439           bool res = os::protect_memory((char*) page_start, page_size,
2440                                         os::MEM_PROT_RWX);
2441 
2442           if (PrintMiscellaneous && Verbose) {
2443             char buf[256];
2444             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2445                          "at " INTPTR_FORMAT
2446                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2447                          page_start, (res ? "success" : strerror(errno)));
2448             tty->print_raw_cr(buf);
2449           }
2450 
2451           // Set last_addr so if we fault again at the same address, we don't
2452           // end up in an endless loop.
2453           //
2454           // There are two potential complications here.  Two threads trapping
2455           // at the same address at the same time could cause one of the
2456           // threads to think it already unguarded, and abort the VM.  Likely
2457           // very rare.
2458           //
2459           // The other race involves two threads alternately trapping at
2460           // different addresses and failing to unguard the page, resulting in
2461           // an endless loop.  This condition is probably even more unlikely
2462           // than the first.
2463           //
2464           // Although both cases could be avoided by using locks or thread
2465           // local last_addr, these solutions are unnecessary complication:
2466           // this handler is a best-effort safety net, not a complete solution.
2467           // It is disabled by default and should only be used as a workaround
2468           // in case we missed any no-execute-unsafe VM code.
2469 
2470           last_addr = addr;
2471 
2472           return EXCEPTION_CONTINUE_EXECUTION;
2473         }
2474       }
2475 
2476       // Last unguard failed or not unguarding
2477       tty->print_raw_cr("Execution protection violation");
2478       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2479                    exceptionInfo->ContextRecord);
2480       return EXCEPTION_CONTINUE_SEARCH;
2481     }
2482   }
2483 #endif // _WIN64
2484 
2485   // Check to see if we caught the safepoint code in the
2486   // process of write protecting the memory serialization page.
2487   // It write enables the page immediately after protecting it
2488   // so just return.
2489   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2490     JavaThread* thread = (JavaThread*) t;
2491     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2492     address addr = (address) exceptionRecord->ExceptionInformation[1];
2493     if (os::is_memory_serialize_page(thread, addr)) {
2494       // Block current thread until the memory serialize page permission restored.
2495       os::block_on_serialize_page_trap();
2496       return EXCEPTION_CONTINUE_EXECUTION;
2497     }
2498   }
2499 
2500   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2501       VM_Version::is_cpuinfo_segv_addr(pc)) {
2502     // Verify that OS save/restore AVX registers.
2503     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2504   }
2505 
2506   if (t != NULL && t->is_Java_thread()) {
2507     JavaThread* thread = (JavaThread*) t;
2508     bool in_java = thread->thread_state() == _thread_in_Java;
2509 
2510     // Handle potential stack overflows up front.
2511     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2512       if (os::uses_stack_guard_pages()) {
2513 #ifdef _M_IA64
2514         // Use guard page for register stack.
2515         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2516         address addr = (address) exceptionRecord->ExceptionInformation[1];
2517         // Check for a register stack overflow on Itanium
2518         if (thread->addr_inside_register_stack_red_zone(addr)) {
2519           // Fatal red zone violation happens if the Java program
2520           // catches a StackOverflow error and does so much processing
2521           // that it runs beyond the unprotected yellow guard zone. As
2522           // a result, we are out of here.
2523           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2524         } else if(thread->addr_inside_register_stack(addr)) {
2525           // Disable the yellow zone which sets the state that
2526           // we've got a stack overflow problem.
2527           if (thread->stack_yellow_zone_enabled()) {
2528             thread->disable_stack_yellow_zone();
2529           }
2530           // Give us some room to process the exception.
2531           thread->disable_register_stack_guard();
2532           // Tracing with +Verbose.
2533           if (Verbose) {
2534             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2535             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2536             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2537             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2538                           thread->register_stack_base(),
2539                           thread->register_stack_base() + thread->stack_size());
2540           }
2541 
2542           // Reguard the permanent register stack red zone just to be sure.
2543           // We saw Windows silently disabling this without telling us.
2544           thread->enable_register_stack_red_zone();
2545 
2546           return Handle_Exception(exceptionInfo,
2547                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2548         }
2549 #endif
2550         if (thread->stack_yellow_zone_enabled()) {
2551           // Yellow zone violation.  The o/s has unprotected the first yellow
2552           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2553           // update the enabled status, even if the zone contains only one page.
2554           thread->disable_stack_yellow_zone();
2555           // If not in java code, return and hope for the best.
2556           return in_java
2557               ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2558               :  EXCEPTION_CONTINUE_EXECUTION;
2559         } else {
2560           // Fatal red zone violation.
2561           thread->disable_stack_red_zone();
2562           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2563           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2564                        exceptionInfo->ContextRecord);
2565           return EXCEPTION_CONTINUE_SEARCH;
2566         }
2567       } else if (in_java) {
2568         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2569         // a one-time-only guard page, which it has released to us.  The next
2570         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2571         return Handle_Exception(exceptionInfo,
2572                                 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2573       } else {
2574         // Can only return and hope for the best.  Further stack growth will
2575         // result in an ACCESS_VIOLATION.
2576         return EXCEPTION_CONTINUE_EXECUTION;
2577       }
2578     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2579       // Either stack overflow or null pointer exception.
2580       if (in_java) {
2581         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2582         address addr = (address) exceptionRecord->ExceptionInformation[1];
2583         address stack_end = thread->stack_base() - thread->stack_size();
2584         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2585           // Stack overflow.
2586           assert(!os::uses_stack_guard_pages(),
2587                  "should be caught by red zone code above.");
2588           return Handle_Exception(exceptionInfo,
2589                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2590         }
2591         // Check for safepoint polling and implicit null
2592         // We only expect null pointers in the stubs (vtable)
2593         // the rest are checked explicitly now.
2594         CodeBlob* cb = CodeCache::find_blob(pc);
2595         if (cb != NULL) {
2596           if (os::is_poll_address(addr)) {
2597             address stub = SharedRuntime::get_poll_stub(pc);
2598             return Handle_Exception(exceptionInfo, stub);
2599           }
2600         }
2601         {
2602 #ifdef _WIN64
2603           // If it's a legal stack address map the entire region in
2604           //
2605           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2606           address addr = (address) exceptionRecord->ExceptionInformation[1];
2607           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base()) {
2608             addr = (address)((uintptr_t)addr &
2609                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2610             os::commit_memory((char *)addr, thread->stack_base() - addr,
2611                               !ExecMem);
2612             return EXCEPTION_CONTINUE_EXECUTION;
2613           } else
2614 #endif
2615           {
2616             // Null pointer exception.
2617 #ifdef _M_IA64
2618             // Process implicit null checks in compiled code. Note: Implicit null checks
2619             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2620             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2621               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2622               // Handle implicit null check in UEP method entry
2623               if (cb && (cb->is_frame_complete_at(pc) ||
2624                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2625                 if (Verbose) {
2626                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2627                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2628                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2629                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2630                                 *(bundle_start + 1), *bundle_start);
2631                 }
2632                 return Handle_Exception(exceptionInfo,
2633                                         SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2634               }
2635             }
2636 
2637             // Implicit null checks were processed above.  Hence, we should not reach
2638             // here in the usual case => die!
2639             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2640             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2641                          exceptionInfo->ContextRecord);
2642             return EXCEPTION_CONTINUE_SEARCH;
2643 
2644 #else // !IA64
2645 
2646             // Windows 98 reports faulting addresses incorrectly
2647             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2648                 !os::win32::is_nt()) {
2649               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2650               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2651             }
2652             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2653                          exceptionInfo->ContextRecord);
2654             return EXCEPTION_CONTINUE_SEARCH;
2655 #endif
2656           }
2657         }
2658       }
2659 
2660 #ifdef _WIN64
2661       // Special care for fast JNI field accessors.
2662       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2663       // in and the heap gets shrunk before the field access.
2664       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2665         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2666         if (addr != (address)-1) {
2667           return Handle_Exception(exceptionInfo, addr);
2668         }
2669       }
2670 #endif
2671 
2672       // Stack overflow or null pointer exception in native code.
2673       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2674                    exceptionInfo->ContextRecord);
2675       return EXCEPTION_CONTINUE_SEARCH;
2676     } // /EXCEPTION_ACCESS_VIOLATION
2677     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2678 #if defined _M_IA64
2679     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2680               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2681       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2682 
2683       // Compiled method patched to be non entrant? Following conditions must apply:
2684       // 1. must be first instruction in bundle
2685       // 2. must be a break instruction with appropriate code
2686       if ((((uint64_t) pc & 0x0F) == 0) &&
2687           (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2688         return Handle_Exception(exceptionInfo,
2689                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2690       }
2691     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2692 #endif
2693 
2694 
2695     if (in_java) {
2696       switch (exception_code) {
2697       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2698         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2699 
2700       case EXCEPTION_INT_OVERFLOW:
2701         return Handle_IDiv_Exception(exceptionInfo);
2702 
2703       } // switch
2704     }
2705     if (((thread->thread_state() == _thread_in_Java) ||
2706          (thread->thread_state() == _thread_in_native)) &&
2707          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2708       LONG result=Handle_FLT_Exception(exceptionInfo);
2709       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2710     }
2711   }
2712 
2713   if (exception_code != EXCEPTION_BREAKPOINT) {
2714     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2715                  exceptionInfo->ContextRecord);
2716   }
2717   return EXCEPTION_CONTINUE_SEARCH;
2718 }
2719 
2720 #ifndef _WIN64
2721 // Special care for fast JNI accessors.
2722 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2723 // the heap gets shrunk before the field access.
2724 // Need to install our own structured exception handler since native code may
2725 // install its own.
2726 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2727   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2728   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2729     address pc = (address) exceptionInfo->ContextRecord->Eip;
2730     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2731     if (addr != (address)-1) {
2732       return Handle_Exception(exceptionInfo, addr);
2733     }
2734   }
2735   return EXCEPTION_CONTINUE_SEARCH;
2736 }
2737 
2738 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2739   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2740                                                      jobject obj,           \
2741                                                      jfieldID fieldID) {    \
2742     __try {                                                                 \
2743       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2744                                                                  obj,       \
2745                                                                  fieldID);  \
2746     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2747                                               _exception_info())) {         \
2748     }                                                                       \
2749     return 0;                                                               \
2750   }
2751 
2752 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2753 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2754 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2755 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2756 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2757 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2758 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2759 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2760 
2761 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2762   switch (type) {
2763   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2764   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2765   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2766   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2767   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2768   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2769   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2770   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2771   default:        ShouldNotReachHere();
2772   }
2773   return (address)-1;
2774 }
2775 #endif
2776 
2777 // Virtual Memory
2778 
2779 int os::vm_page_size() { return os::win32::vm_page_size(); }
2780 int os::vm_allocation_granularity() {
2781   return os::win32::vm_allocation_granularity();
2782 }
2783 
2784 // Windows large page support is available on Windows 2003. In order to use
2785 // large page memory, the administrator must first assign additional privilege
2786 // to the user:
2787 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2788 //   + select Local Policies -> User Rights Assignment
2789 //   + double click "Lock pages in memory", add users and/or groups
2790 //   + reboot
2791 // Note the above steps are needed for administrator as well, as administrators
2792 // by default do not have the privilege to lock pages in memory.
2793 //
2794 // Note about Windows 2003: although the API supports committing large page
2795 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2796 // scenario, I found through experiment it only uses large page if the entire
2797 // memory region is reserved and committed in a single VirtualAlloc() call.
2798 // This makes Windows large page support more or less like Solaris ISM, in
2799 // that the entire heap must be committed upfront. This probably will change
2800 // in the future, if so the code below needs to be revisited.
2801 
2802 #ifndef MEM_LARGE_PAGES
2803   #define MEM_LARGE_PAGES 0x20000000
2804 #endif
2805 
2806 static HANDLE    _hProcess;
2807 static HANDLE    _hToken;
2808 
2809 // Container for NUMA node list info
2810 class NUMANodeListHolder {
2811  private:
2812   int *_numa_used_node_list;  // allocated below
2813   int _numa_used_node_count;
2814 
2815   void free_node_list() {
2816     if (_numa_used_node_list != NULL) {
2817       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2818     }
2819   }
2820 
2821  public:
2822   NUMANodeListHolder() {
2823     _numa_used_node_count = 0;
2824     _numa_used_node_list = NULL;
2825     // do rest of initialization in build routine (after function pointers are set up)
2826   }
2827 
2828   ~NUMANodeListHolder() {
2829     free_node_list();
2830   }
2831 
2832   bool build() {
2833     DWORD_PTR proc_aff_mask;
2834     DWORD_PTR sys_aff_mask;
2835     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2836     ULONG highest_node_number;
2837     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2838     free_node_list();
2839     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2840     for (unsigned int i = 0; i <= highest_node_number; i++) {
2841       ULONGLONG proc_mask_numa_node;
2842       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2843       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2844         _numa_used_node_list[_numa_used_node_count++] = i;
2845       }
2846     }
2847     return (_numa_used_node_count > 1);
2848   }
2849 
2850   int get_count() { return _numa_used_node_count; }
2851   int get_node_list_entry(int n) {
2852     // for indexes out of range, returns -1
2853     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2854   }
2855 
2856 } numa_node_list_holder;
2857 
2858 
2859 
2860 static size_t _large_page_size = 0;
2861 
2862 static bool resolve_functions_for_large_page_init() {
2863   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2864     os::Advapi32Dll::AdvapiAvailable();
2865 }
2866 
2867 static bool request_lock_memory_privilege() {
2868   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2869                           os::current_process_id());
2870 
2871   LUID luid;
2872   if (_hProcess != NULL &&
2873       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2874       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2875 
2876     TOKEN_PRIVILEGES tp;
2877     tp.PrivilegeCount = 1;
2878     tp.Privileges[0].Luid = luid;
2879     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2880 
2881     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2882     // privilege. Check GetLastError() too. See MSDN document.
2883     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2884         (GetLastError() == ERROR_SUCCESS)) {
2885       return true;
2886     }
2887   }
2888 
2889   return false;
2890 }
2891 
2892 static void cleanup_after_large_page_init() {
2893   if (_hProcess) CloseHandle(_hProcess);
2894   _hProcess = NULL;
2895   if (_hToken) CloseHandle(_hToken);
2896   _hToken = NULL;
2897 }
2898 
2899 static bool numa_interleaving_init() {
2900   bool success = false;
2901   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2902 
2903   // print a warning if UseNUMAInterleaving flag is specified on command line
2904   bool warn_on_failure = use_numa_interleaving_specified;
2905 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2906 
2907   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2908   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2909   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2910 
2911   if (os::Kernel32Dll::NumaCallsAvailable()) {
2912     if (numa_node_list_holder.build()) {
2913       if (PrintMiscellaneous && Verbose) {
2914         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2915         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2916           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2917         }
2918         tty->print("\n");
2919       }
2920       success = true;
2921     } else {
2922       WARN("Process does not cover multiple NUMA nodes.");
2923     }
2924   } else {
2925     WARN("NUMA Interleaving is not supported by the operating system.");
2926   }
2927   if (!success) {
2928     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2929   }
2930   return success;
2931 #undef WARN
2932 }
2933 
2934 // this routine is used whenever we need to reserve a contiguous VA range
2935 // but we need to make separate VirtualAlloc calls for each piece of the range
2936 // Reasons for doing this:
2937 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2938 //  * UseNUMAInterleaving requires a separate node for each piece
2939 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2940                                          DWORD prot,
2941                                          bool should_inject_error = false) {
2942   char * p_buf;
2943   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2944   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2945   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2946 
2947   // first reserve enough address space in advance since we want to be
2948   // able to break a single contiguous virtual address range into multiple
2949   // large page commits but WS2003 does not allow reserving large page space
2950   // so we just use 4K pages for reserve, this gives us a legal contiguous
2951   // address space. then we will deallocate that reservation, and re alloc
2952   // using large pages
2953   const size_t size_of_reserve = bytes + chunk_size;
2954   if (bytes > size_of_reserve) {
2955     // Overflowed.
2956     return NULL;
2957   }
2958   p_buf = (char *) VirtualAlloc(addr,
2959                                 size_of_reserve,  // size of Reserve
2960                                 MEM_RESERVE,
2961                                 PAGE_READWRITE);
2962   // If reservation failed, return NULL
2963   if (p_buf == NULL) return NULL;
2964   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2965   os::release_memory(p_buf, bytes + chunk_size);
2966 
2967   // we still need to round up to a page boundary (in case we are using large pages)
2968   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2969   // instead we handle this in the bytes_to_rq computation below
2970   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2971 
2972   // now go through and allocate one chunk at a time until all bytes are
2973   // allocated
2974   size_t  bytes_remaining = bytes;
2975   // An overflow of align_size_up() would have been caught above
2976   // in the calculation of size_of_reserve.
2977   char * next_alloc_addr = p_buf;
2978   HANDLE hProc = GetCurrentProcess();
2979 
2980 #ifdef ASSERT
2981   // Variable for the failure injection
2982   long ran_num = os::random();
2983   size_t fail_after = ran_num % bytes;
2984 #endif
2985 
2986   int count=0;
2987   while (bytes_remaining) {
2988     // select bytes_to_rq to get to the next chunk_size boundary
2989 
2990     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2991     // Note allocate and commit
2992     char * p_new;
2993 
2994 #ifdef ASSERT
2995     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2996 #else
2997     const bool inject_error_now = false;
2998 #endif
2999 
3000     if (inject_error_now) {
3001       p_new = NULL;
3002     } else {
3003       if (!UseNUMAInterleaving) {
3004         p_new = (char *) VirtualAlloc(next_alloc_addr,
3005                                       bytes_to_rq,
3006                                       flags,
3007                                       prot);
3008       } else {
3009         // get the next node to use from the used_node_list
3010         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
3011         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
3012         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
3013                                                             next_alloc_addr,
3014                                                             bytes_to_rq,
3015                                                             flags,
3016                                                             prot,
3017                                                             node);
3018       }
3019     }
3020 
3021     if (p_new == NULL) {
3022       // Free any allocated pages
3023       if (next_alloc_addr > p_buf) {
3024         // Some memory was committed so release it.
3025         size_t bytes_to_release = bytes - bytes_remaining;
3026         // NMT has yet to record any individual blocks, so it
3027         // need to create a dummy 'reserve' record to match
3028         // the release.
3029         MemTracker::record_virtual_memory_reserve((address)p_buf,
3030                                                   bytes_to_release, CALLER_PC);
3031         os::release_memory(p_buf, bytes_to_release);
3032       }
3033 #ifdef ASSERT
3034       if (should_inject_error) {
3035         if (TracePageSizes && Verbose) {
3036           tty->print_cr("Reserving pages individually failed.");
3037         }
3038       }
3039 #endif
3040       return NULL;
3041     }
3042 
3043     bytes_remaining -= bytes_to_rq;
3044     next_alloc_addr += bytes_to_rq;
3045     count++;
3046   }
3047   // Although the memory is allocated individually, it is returned as one.
3048   // NMT records it as one block.
3049   if ((flags & MEM_COMMIT) != 0) {
3050     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
3051   } else {
3052     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
3053   }
3054 
3055   // made it this far, success
3056   return p_buf;
3057 }
3058 
3059 
3060 
3061 void os::large_page_init() {
3062   if (!UseLargePages) return;
3063 
3064   // print a warning if any large page related flag is specified on command line
3065   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3066                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3067   bool success = false;
3068 
3069 #define WARN(msg) if (warn_on_failure) { warning(msg); }
3070   if (resolve_functions_for_large_page_init()) {
3071     if (request_lock_memory_privilege()) {
3072       size_t s = os::Kernel32Dll::GetLargePageMinimum();
3073       if (s) {
3074 #if defined(IA32) || defined(AMD64)
3075         if (s > 4*M || LargePageSizeInBytes > 4*M) {
3076           WARN("JVM cannot use large pages bigger than 4mb.");
3077         } else {
3078 #endif
3079           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3080             _large_page_size = LargePageSizeInBytes;
3081           } else {
3082             _large_page_size = s;
3083           }
3084           success = true;
3085 #if defined(IA32) || defined(AMD64)
3086         }
3087 #endif
3088       } else {
3089         WARN("Large page is not supported by the processor.");
3090       }
3091     } else {
3092       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3093     }
3094   } else {
3095     WARN("Large page is not supported by the operating system.");
3096   }
3097 #undef WARN
3098 
3099   const size_t default_page_size = (size_t) vm_page_size();
3100   if (success && _large_page_size > default_page_size) {
3101     _page_sizes[0] = _large_page_size;
3102     _page_sizes[1] = default_page_size;
3103     _page_sizes[2] = 0;
3104   }
3105 
3106   cleanup_after_large_page_init();
3107   UseLargePages = success;
3108 }
3109 
3110 // On win32, one cannot release just a part of reserved memory, it's an
3111 // all or nothing deal.  When we split a reservation, we must break the
3112 // reservation into two reservations.
3113 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3114                                   bool realloc) {
3115   if (size > 0) {
3116     release_memory(base, size);
3117     if (realloc) {
3118       reserve_memory(split, base);
3119     }
3120     if (size != split) {
3121       reserve_memory(size - split, base + split);
3122     }
3123   }
3124 }
3125 
3126 // Multiple threads can race in this code but it's not possible to unmap small sections of
3127 // virtual space to get requested alignment, like posix-like os's.
3128 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3129 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3130   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3131          "Alignment must be a multiple of allocation granularity (page size)");
3132   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3133 
3134   size_t extra_size = size + alignment;
3135   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3136 
3137   char* aligned_base = NULL;
3138 
3139   do {
3140     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3141     if (extra_base == NULL) {
3142       return NULL;
3143     }
3144     // Do manual alignment
3145     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3146 
3147     os::release_memory(extra_base, extra_size);
3148 
3149     aligned_base = os::reserve_memory(size, aligned_base);
3150 
3151   } while (aligned_base == NULL);
3152 
3153   return aligned_base;
3154 }
3155 
3156 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3157   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3158          "reserve alignment");
3159   assert(bytes % os::vm_page_size() == 0, "reserve page size");
3160   char* res;
3161   // note that if UseLargePages is on, all the areas that require interleaving
3162   // will go thru reserve_memory_special rather than thru here.
3163   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3164   if (!use_individual) {
3165     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3166   } else {
3167     elapsedTimer reserveTimer;
3168     if (Verbose && PrintMiscellaneous) reserveTimer.start();
3169     // in numa interleaving, we have to allocate pages individually
3170     // (well really chunks of NUMAInterleaveGranularity size)
3171     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3172     if (res == NULL) {
3173       warning("NUMA page allocation failed");
3174     }
3175     if (Verbose && PrintMiscellaneous) {
3176       reserveTimer.stop();
3177       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3178                     reserveTimer.milliseconds(), reserveTimer.ticks());
3179     }
3180   }
3181   assert(res == NULL || addr == NULL || addr == res,
3182          "Unexpected address from reserve.");
3183 
3184   return res;
3185 }
3186 
3187 // Reserve memory at an arbitrary address, only if that area is
3188 // available (and not reserved for something else).
3189 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3190   // Windows os::reserve_memory() fails of the requested address range is
3191   // not avilable.
3192   return reserve_memory(bytes, requested_addr);
3193 }
3194 
3195 size_t os::large_page_size() {
3196   return _large_page_size;
3197 }
3198 
3199 bool os::can_commit_large_page_memory() {
3200   // Windows only uses large page memory when the entire region is reserved
3201   // and committed in a single VirtualAlloc() call. This may change in the
3202   // future, but with Windows 2003 it's not possible to commit on demand.
3203   return false;
3204 }
3205 
3206 bool os::can_execute_large_page_memory() {
3207   return true;
3208 }
3209 
3210 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3211                                  bool exec) {
3212   assert(UseLargePages, "only for large pages");
3213 
3214   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3215     return NULL; // Fallback to small pages.
3216   }
3217 
3218   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3219   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3220 
3221   // with large pages, there are two cases where we need to use Individual Allocation
3222   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3223   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3224   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3225     if (TracePageSizes && Verbose) {
3226       tty->print_cr("Reserving large pages individually.");
3227     }
3228     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3229     if (p_buf == NULL) {
3230       // give an appropriate warning message
3231       if (UseNUMAInterleaving) {
3232         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3233       }
3234       if (UseLargePagesIndividualAllocation) {
3235         warning("Individually allocated large pages failed, "
3236                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3237       }
3238       return NULL;
3239     }
3240 
3241     return p_buf;
3242 
3243   } else {
3244     if (TracePageSizes && Verbose) {
3245       tty->print_cr("Reserving large pages in a single large chunk.");
3246     }
3247     // normal policy just allocate it all at once
3248     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3249     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3250     if (res != NULL) {
3251       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3252     }
3253 
3254     return res;
3255   }
3256 }
3257 
3258 bool os::release_memory_special(char* base, size_t bytes) {
3259   assert(base != NULL, "Sanity check");
3260   return release_memory(base, bytes);
3261 }
3262 
3263 void os::print_statistics() {
3264 }
3265 
3266 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3267   int err = os::get_last_error();
3268   char buf[256];
3269   size_t buf_len = os::lasterror(buf, sizeof(buf));
3270   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3271           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3272           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3273 }
3274 
3275 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3276   if (bytes == 0) {
3277     // Don't bother the OS with noops.
3278     return true;
3279   }
3280   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3281   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3282   // Don't attempt to print anything if the OS call fails. We're
3283   // probably low on resources, so the print itself may cause crashes.
3284 
3285   // unless we have NUMAInterleaving enabled, the range of a commit
3286   // is always within a reserve covered by a single VirtualAlloc
3287   // in that case we can just do a single commit for the requested size
3288   if (!UseNUMAInterleaving) {
3289     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3290       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3291       return false;
3292     }
3293     if (exec) {
3294       DWORD oldprot;
3295       // Windows doc says to use VirtualProtect to get execute permissions
3296       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3297         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3298         return false;
3299       }
3300     }
3301     return true;
3302   } else {
3303 
3304     // when NUMAInterleaving is enabled, the commit might cover a range that
3305     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3306     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3307     // returns represents the number of bytes that can be committed in one step.
3308     size_t bytes_remaining = bytes;
3309     char * next_alloc_addr = addr;
3310     while (bytes_remaining > 0) {
3311       MEMORY_BASIC_INFORMATION alloc_info;
3312       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3313       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3314       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3315                        PAGE_READWRITE) == NULL) {
3316         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3317                                             exec);)
3318         return false;
3319       }
3320       if (exec) {
3321         DWORD oldprot;
3322         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3323                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3324           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3325                                               exec);)
3326           return false;
3327         }
3328       }
3329       bytes_remaining -= bytes_to_rq;
3330       next_alloc_addr += bytes_to_rq;
3331     }
3332   }
3333   // if we made it this far, return true
3334   return true;
3335 }
3336 
3337 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3338                           bool exec) {
3339   // alignment_hint is ignored on this OS
3340   return pd_commit_memory(addr, size, exec);
3341 }
3342 
3343 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3344                                   const char* mesg) {
3345   assert(mesg != NULL, "mesg must be specified");
3346   if (!pd_commit_memory(addr, size, exec)) {
3347     warn_fail_commit_memory(addr, size, exec);
3348     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
3349   }
3350 }
3351 
3352 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3353                                   size_t alignment_hint, bool exec,
3354                                   const char* mesg) {
3355   // alignment_hint is ignored on this OS
3356   pd_commit_memory_or_exit(addr, size, exec, mesg);
3357 }
3358 
3359 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3360   if (bytes == 0) {
3361     // Don't bother the OS with noops.
3362     return true;
3363   }
3364   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3365   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3366   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3367 }
3368 
3369 bool os::pd_release_memory(char* addr, size_t bytes) {
3370   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3371 }
3372 
3373 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3374   return os::commit_memory(addr, size, !ExecMem);
3375 }
3376 
3377 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3378   return os::uncommit_memory(addr, size);
3379 }
3380 
3381 // Set protections specified
3382 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3383                         bool is_committed) {
3384   unsigned int p = 0;
3385   switch (prot) {
3386   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3387   case MEM_PROT_READ: p = PAGE_READONLY; break;
3388   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3389   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3390   default:
3391     ShouldNotReachHere();
3392   }
3393 
3394   DWORD old_status;
3395 
3396   // Strange enough, but on Win32 one can change protection only for committed
3397   // memory, not a big deal anyway, as bytes less or equal than 64K
3398   if (!is_committed) {
3399     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3400                           "cannot commit protection page");
3401   }
3402   // One cannot use os::guard_memory() here, as on Win32 guard page
3403   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3404   //
3405   // Pages in the region become guard pages. Any attempt to access a guard page
3406   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3407   // the guard page status. Guard pages thus act as a one-time access alarm.
3408   return VirtualProtect(addr, bytes, p, &old_status) != 0;
3409 }
3410 
3411 bool os::guard_memory(char* addr, size_t bytes) {
3412   DWORD old_status;
3413   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3414 }
3415 
3416 bool os::unguard_memory(char* addr, size_t bytes) {
3417   DWORD old_status;
3418   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3419 }
3420 
3421 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3422 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3423 void os::numa_make_global(char *addr, size_t bytes)    { }
3424 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3425 bool os::numa_topology_changed()                       { return false; }
3426 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3427 int os::numa_get_group_id()                            { return 0; }
3428 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3429   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3430     // Provide an answer for UMA systems
3431     ids[0] = 0;
3432     return 1;
3433   } else {
3434     // check for size bigger than actual groups_num
3435     size = MIN2(size, numa_get_groups_num());
3436     for (int i = 0; i < (int)size; i++) {
3437       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3438     }
3439     return size;
3440   }
3441 }
3442 
3443 bool os::get_page_info(char *start, page_info* info) {
3444   return false;
3445 }
3446 
3447 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3448                      page_info* page_found) {
3449   return end;
3450 }
3451 
3452 char* os::non_memory_address_word() {
3453   // Must never look like an address returned by reserve_memory,
3454   // even in its subfields (as defined by the CPU immediate fields,
3455   // if the CPU splits constants across multiple instructions).
3456   return (char*)-1;
3457 }
3458 
3459 #define MAX_ERROR_COUNT 100
3460 #define SYS_THREAD_ERROR 0xffffffffUL
3461 
3462 void os::pd_start_thread(Thread* thread) {
3463   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3464   // Returns previous suspend state:
3465   // 0:  Thread was not suspended
3466   // 1:  Thread is running now
3467   // >1: Thread is still suspended.
3468   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3469 }
3470 
3471 class HighResolutionInterval : public CHeapObj<mtThread> {
3472   // The default timer resolution seems to be 10 milliseconds.
3473   // (Where is this written down?)
3474   // If someone wants to sleep for only a fraction of the default,
3475   // then we set the timer resolution down to 1 millisecond for
3476   // the duration of their interval.
3477   // We carefully set the resolution back, since otherwise we
3478   // seem to incur an overhead (3%?) that we don't need.
3479   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3480   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3481   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3482   // timeBeginPeriod() if the relative error exceeded some threshold.
3483   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3484   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3485   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3486   // resolution timers running.
3487  private:
3488   jlong resolution;
3489  public:
3490   HighResolutionInterval(jlong ms) {
3491     resolution = ms % 10L;
3492     if (resolution != 0) {
3493       MMRESULT result = timeBeginPeriod(1L);
3494     }
3495   }
3496   ~HighResolutionInterval() {
3497     if (resolution != 0) {
3498       MMRESULT result = timeEndPeriod(1L);
3499     }
3500     resolution = 0L;
3501   }
3502 };
3503 
3504 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3505   jlong limit = (jlong) MAXDWORD;
3506 
3507   while (ms > limit) {
3508     int res;
3509     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3510       return res;
3511     }
3512     ms -= limit;
3513   }
3514 
3515   assert(thread == Thread::current(), "thread consistency check");
3516   OSThread* osthread = thread->osthread();
3517   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3518   int result;
3519   if (interruptable) {
3520     assert(thread->is_Java_thread(), "must be java thread");
3521     JavaThread *jt = (JavaThread *) thread;
3522     ThreadBlockInVM tbivm(jt);
3523 
3524     jt->set_suspend_equivalent();
3525     // cleared by handle_special_suspend_equivalent_condition() or
3526     // java_suspend_self() via check_and_wait_while_suspended()
3527 
3528     HANDLE events[1];
3529     events[0] = osthread->interrupt_event();
3530     HighResolutionInterval *phri=NULL;
3531     if (!ForceTimeHighResolution) {
3532       phri = new HighResolutionInterval(ms);
3533     }
3534     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3535       result = OS_TIMEOUT;
3536     } else {
3537       ResetEvent(osthread->interrupt_event());
3538       osthread->set_interrupted(false);
3539       result = OS_INTRPT;
3540     }
3541     delete phri; //if it is NULL, harmless
3542 
3543     // were we externally suspended while we were waiting?
3544     jt->check_and_wait_while_suspended();
3545   } else {
3546     assert(!thread->is_Java_thread(), "must not be java thread");
3547     Sleep((long) ms);
3548     result = OS_TIMEOUT;
3549   }
3550   return result;
3551 }
3552 
3553 // Short sleep, direct OS call.
3554 //
3555 // ms = 0, means allow others (if any) to run.
3556 //
3557 void os::naked_short_sleep(jlong ms) {
3558   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3559   Sleep(ms);
3560 }
3561 
3562 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3563 void os::infinite_sleep() {
3564   while (true) {    // sleep forever ...
3565     Sleep(100000);  // ... 100 seconds at a time
3566   }
3567 }
3568 
3569 typedef BOOL (WINAPI * STTSignature)(void);
3570 
3571 void os::naked_yield() {
3572   // Use either SwitchToThread() or Sleep(0)
3573   // Consider passing back the return value from SwitchToThread().
3574   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3575     SwitchToThread();
3576   } else {
3577     Sleep(0);
3578   }
3579 }
3580 
3581 // Win32 only gives you access to seven real priorities at a time,
3582 // so we compress Java's ten down to seven.  It would be better
3583 // if we dynamically adjusted relative priorities.
3584 
3585 int os::java_to_os_priority[CriticalPriority + 1] = {
3586   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3587   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3588   THREAD_PRIORITY_LOWEST,                       // 2
3589   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3590   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3591   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3592   THREAD_PRIORITY_NORMAL,                       // 6
3593   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3594   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3595   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3596   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3597   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3598 };
3599 
3600 int prio_policy1[CriticalPriority + 1] = {
3601   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3602   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3603   THREAD_PRIORITY_LOWEST,                       // 2
3604   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3605   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3606   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3607   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3608   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3609   THREAD_PRIORITY_HIGHEST,                      // 8
3610   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3611   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3612   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3613 };
3614 
3615 static int prio_init() {
3616   // If ThreadPriorityPolicy is 1, switch tables
3617   if (ThreadPriorityPolicy == 1) {
3618     int i;
3619     for (i = 0; i < CriticalPriority + 1; i++) {
3620       os::java_to_os_priority[i] = prio_policy1[i];
3621     }
3622   }
3623   if (UseCriticalJavaThreadPriority) {
3624     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3625   }
3626   return 0;
3627 }
3628 
3629 OSReturn os::set_native_priority(Thread* thread, int priority) {
3630   if (!UseThreadPriorities) return OS_OK;
3631   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3632   return ret ? OS_OK : OS_ERR;
3633 }
3634 
3635 OSReturn os::get_native_priority(const Thread* const thread,
3636                                  int* priority_ptr) {
3637   if (!UseThreadPriorities) {
3638     *priority_ptr = java_to_os_priority[NormPriority];
3639     return OS_OK;
3640   }
3641   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3642   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3643     assert(false, "GetThreadPriority failed");
3644     return OS_ERR;
3645   }
3646   *priority_ptr = os_prio;
3647   return OS_OK;
3648 }
3649 
3650 
3651 // Hint to the underlying OS that a task switch would not be good.
3652 // Void return because it's a hint and can fail.
3653 void os::hint_no_preempt() {}
3654 
3655 void os::interrupt(Thread* thread) {
3656   assert(!thread->is_Java_thread() || Thread::current() == thread ||
3657          Threads_lock->owned_by_self(),
3658          "possibility of dangling Thread pointer");
3659 
3660   OSThread* osthread = thread->osthread();
3661   osthread->set_interrupted(true);
3662   // More than one thread can get here with the same value of osthread,
3663   // resulting in multiple notifications.  We do, however, want the store
3664   // to interrupted() to be visible to other threads before we post
3665   // the interrupt event.
3666   OrderAccess::release();
3667   SetEvent(osthread->interrupt_event());
3668   // For JSR166:  unpark after setting status
3669   if (thread->is_Java_thread()) {
3670     ((JavaThread*)thread)->parker()->unpark();
3671   }
3672 
3673   ParkEvent * ev = thread->_ParkEvent;
3674   if (ev != NULL) ev->unpark();
3675 }
3676 
3677 
3678 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3679   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3680          "possibility of dangling Thread pointer");
3681 
3682   OSThread* osthread = thread->osthread();
3683   // There is no synchronization between the setting of the interrupt
3684   // and it being cleared here. It is critical - see 6535709 - that
3685   // we only clear the interrupt state, and reset the interrupt event,
3686   // if we are going to report that we were indeed interrupted - else
3687   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3688   // depending on the timing. By checking thread interrupt event to see
3689   // if the thread gets real interrupt thus prevent spurious wakeup.
3690   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3691   if (interrupted && clear_interrupted) {
3692     osthread->set_interrupted(false);
3693     ResetEvent(osthread->interrupt_event());
3694   } // Otherwise leave the interrupted state alone
3695 
3696   return interrupted;
3697 }
3698 
3699 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3700 ExtendedPC os::get_thread_pc(Thread* thread) {
3701   CONTEXT context;
3702   context.ContextFlags = CONTEXT_CONTROL;
3703   HANDLE handle = thread->osthread()->thread_handle();
3704 #ifdef _M_IA64
3705   assert(0, "Fix get_thread_pc");
3706   return ExtendedPC(NULL);
3707 #else
3708   if (GetThreadContext(handle, &context)) {
3709 #ifdef _M_AMD64
3710     return ExtendedPC((address) context.Rip);
3711 #else
3712     return ExtendedPC((address) context.Eip);
3713 #endif
3714   } else {
3715     return ExtendedPC(NULL);
3716   }
3717 #endif
3718 }
3719 
3720 // GetCurrentThreadId() returns DWORD
3721 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3722 
3723 static int _initial_pid = 0;
3724 
3725 int os::current_process_id() {
3726   return (_initial_pid ? _initial_pid : _getpid());
3727 }
3728 
3729 int    os::win32::_vm_page_size              = 0;
3730 int    os::win32::_vm_allocation_granularity = 0;
3731 int    os::win32::_processor_type            = 0;
3732 // Processor level is not available on non-NT systems, use vm_version instead
3733 int    os::win32::_processor_level           = 0;
3734 julong os::win32::_physical_memory           = 0;
3735 size_t os::win32::_default_stack_size        = 0;
3736 
3737 intx          os::win32::_os_thread_limit    = 0;
3738 volatile intx os::win32::_os_thread_count    = 0;
3739 
3740 bool   os::win32::_is_nt                     = false;
3741 bool   os::win32::_is_windows_2003           = false;
3742 bool   os::win32::_is_windows_server         = false;
3743 
3744 // 6573254
3745 // Currently, the bug is observed across all the supported Windows releases,
3746 // including the latest one (as of this writing - Windows Server 2012 R2)
3747 bool   os::win32::_has_exit_bug              = true;
3748 bool   os::win32::_has_performance_count     = 0;
3749 
3750 void os::win32::initialize_system_info() {
3751   SYSTEM_INFO si;
3752   GetSystemInfo(&si);
3753   _vm_page_size    = si.dwPageSize;
3754   _vm_allocation_granularity = si.dwAllocationGranularity;
3755   _processor_type  = si.dwProcessorType;
3756   _processor_level = si.wProcessorLevel;
3757   set_processor_count(si.dwNumberOfProcessors);
3758 
3759   MEMORYSTATUSEX ms;
3760   ms.dwLength = sizeof(ms);
3761 
3762   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3763   // dwMemoryLoad (% of memory in use)
3764   GlobalMemoryStatusEx(&ms);
3765   _physical_memory = ms.ullTotalPhys;
3766 
3767   OSVERSIONINFOEX oi;
3768   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3769   GetVersionEx((OSVERSIONINFO*)&oi);
3770   switch (oi.dwPlatformId) {
3771   case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3772   case VER_PLATFORM_WIN32_NT:
3773     _is_nt = true;
3774     {
3775       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3776       if (os_vers == 5002) {
3777         _is_windows_2003 = true;
3778       }
3779       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3780           oi.wProductType == VER_NT_SERVER) {
3781         _is_windows_server = true;
3782       }
3783     }
3784     break;
3785   default: fatal("Unknown platform");
3786   }
3787 
3788   _default_stack_size = os::current_stack_size();
3789   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3790   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3791          "stack size not a multiple of page size");
3792 
3793   initialize_performance_counter();
3794 }
3795 
3796 
3797 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3798                                       int ebuflen) {
3799   char path[MAX_PATH];
3800   DWORD size;
3801   DWORD pathLen = (DWORD)sizeof(path);
3802   HINSTANCE result = NULL;
3803 
3804   // only allow library name without path component
3805   assert(strchr(name, '\\') == NULL, "path not allowed");
3806   assert(strchr(name, ':') == NULL, "path not allowed");
3807   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3808     jio_snprintf(ebuf, ebuflen,
3809                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3810     return NULL;
3811   }
3812 
3813   // search system directory
3814   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3815     if (size >= pathLen) {
3816       return NULL; // truncated
3817     }
3818     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3819       return NULL; // truncated
3820     }
3821     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3822       return result;
3823     }
3824   }
3825 
3826   // try Windows directory
3827   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3828     if (size >= pathLen) {
3829       return NULL; // truncated
3830     }
3831     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3832       return NULL; // truncated
3833     }
3834     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3835       return result;
3836     }
3837   }
3838 
3839   jio_snprintf(ebuf, ebuflen,
3840                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3841   return NULL;
3842 }
3843 
3844 #define EXIT_TIMEOUT 300000 /* 5 minutes */
3845 
3846 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3847   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3848   return TRUE;
3849 }
3850 
3851 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3852   // Basic approach:
3853   //  - Each exiting thread registers its intent to exit and then does so.
3854   //  - A thread trying to terminate the process must wait for all
3855   //    threads currently exiting to complete their exit.
3856 
3857   if (os::win32::has_exit_bug()) {
3858     // The array holds handles of the threads that have started exiting by calling
3859     // _endthreadex().
3860     // Should be large enough to avoid blocking the exiting thread due to lack of
3861     // a free slot.
3862     static HANDLE handles[MAXIMUM_WAIT_OBJECTS];
3863     static int handle_count = 0;
3864 
3865     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3866     static CRITICAL_SECTION crit_sect;
3867     static volatile jint process_exiting = 0;
3868     int i, j;
3869     DWORD res;
3870     HANDLE hproc, hthr;
3871 
3872     // The first thread that reached this point, initializes the critical section.
3873     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3874       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3875     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3876       EnterCriticalSection(&crit_sect);
3877 
3878       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3879         // Remove from the array those handles of the threads that have completed exiting.
3880         for (i = 0, j = 0; i < handle_count; ++i) {
3881           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3882           if (res == WAIT_TIMEOUT) {
3883             handles[j++] = handles[i];
3884           } else {
3885             if (res == WAIT_FAILED) {
3886               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3887                       GetLastError(), __FILE__, __LINE__);
3888             }
3889             // Don't keep the handle, if we failed waiting for it.
3890             CloseHandle(handles[i]);
3891           }
3892         }
3893 
3894         // If there's no free slot in the array of the kept handles, we'll have to
3895         // wait until at least one thread completes exiting.
3896         if ((handle_count = j) == MAXIMUM_WAIT_OBJECTS) {
3897           // Raise the priority of the oldest exiting thread to increase its chances
3898           // to complete sooner.
3899           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3900           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3901           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3902             i = (res - WAIT_OBJECT_0);
3903             handle_count = MAXIMUM_WAIT_OBJECTS - 1;
3904             for (; i < handle_count; ++i) {
3905               handles[i] = handles[i + 1];
3906             }
3907           } else {
3908             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3909                     (res == WAIT_FAILED ? "failed" : "timed out"),
3910                     GetLastError(), __FILE__, __LINE__);
3911             // Don't keep handles, if we failed waiting for them.
3912             for (i = 0; i < MAXIMUM_WAIT_OBJECTS; ++i) {
3913               CloseHandle(handles[i]);
3914             }
3915             handle_count = 0;
3916           }
3917         }
3918 
3919         // Store a duplicate of the current thread handle in the array of handles.
3920         hproc = GetCurrentProcess();
3921         hthr = GetCurrentThread();
3922         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3923                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3924           warning("DuplicateHandle failed (%u) in %s: %d\n",
3925                   GetLastError(), __FILE__, __LINE__);
3926         } else {
3927           ++handle_count;
3928         }
3929 
3930         // The current exiting thread has stored its handle in the array, and now
3931         // should leave the critical section before calling _endthreadex().
3932 
3933       } else if (what != EPT_THREAD) {
3934         if (handle_count > 0) {
3935           // Before ending the process, make sure all the threads that had called
3936           // _endthreadex() completed.
3937 
3938           // Set the priority level of the current thread to the same value as
3939           // the priority level of exiting threads.
3940           // This is to ensure it will be given a fair chance to execute if
3941           // the timeout expires.
3942           hthr = GetCurrentThread();
3943           SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3944           for (i = 0; i < handle_count; ++i) {
3945             SetThreadPriority(handles[i], THREAD_PRIORITY_ABOVE_NORMAL);
3946           }
3947           res = WaitForMultipleObjects(handle_count, handles, TRUE, EXIT_TIMEOUT);
3948           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3949             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3950                     (res == WAIT_FAILED ? "failed" : "timed out"),
3951                     GetLastError(), __FILE__, __LINE__);
3952           }
3953           for (i = 0; i < handle_count; ++i) {
3954             CloseHandle(handles[i]);
3955           }
3956           handle_count = 0;
3957         }
3958 
3959         OrderAccess::release_store(&process_exiting, 1);
3960       }
3961 
3962       LeaveCriticalSection(&crit_sect);
3963     }
3964 
3965     if (what == EPT_THREAD) {
3966       while (OrderAccess::load_acquire(&process_exiting) != 0) {
3967         // Some other thread is about to call exit(), so we
3968         // don't let the current thread proceed to _endthreadex()
3969         SuspendThread(GetCurrentThread());
3970         // Avoid busy-wait loop, if SuspendThread() failed.
3971         Sleep(EXIT_TIMEOUT);
3972       }
3973     }
3974   }
3975 
3976   // We are here if either
3977   // - there's no 'race at exit' bug on this OS release;
3978   // - initialization of the critical section failed (unlikely);
3979   // - the current thread has stored its handle and left the critical section;
3980   // - the process-exiting thread has raised the flag and left the critical section.
3981   if (what == EPT_THREAD) {
3982     _endthreadex((unsigned)exit_code);
3983   } else if (what == EPT_PROCESS) {
3984     ::exit(exit_code);
3985   } else {
3986     _exit(exit_code);
3987   }
3988 
3989   // Should not reach here
3990   return exit_code;
3991 }
3992 
3993 #undef EXIT_TIMEOUT
3994 
3995 void os::win32::setmode_streams() {
3996   _setmode(_fileno(stdin), _O_BINARY);
3997   _setmode(_fileno(stdout), _O_BINARY);
3998   _setmode(_fileno(stderr), _O_BINARY);
3999 }
4000 
4001 
4002 bool os::is_debugger_attached() {
4003   return IsDebuggerPresent() ? true : false;
4004 }
4005 
4006 
4007 void os::wait_for_keypress_at_exit(void) {
4008   if (PauseAtExit) {
4009     fprintf(stderr, "Press any key to continue...\n");
4010     fgetc(stdin);
4011   }
4012 }
4013 
4014 
4015 int os::message_box(const char* title, const char* message) {
4016   int result = MessageBox(NULL, message, title,
4017                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
4018   return result == IDYES;
4019 }
4020 
4021 int os::allocate_thread_local_storage() {
4022   return TlsAlloc();
4023 }
4024 
4025 
4026 void os::free_thread_local_storage(int index) {
4027   TlsFree(index);
4028 }
4029 
4030 
4031 void os::thread_local_storage_at_put(int index, void* value) {
4032   TlsSetValue(index, value);
4033   assert(thread_local_storage_at(index) == value, "Just checking");
4034 }
4035 
4036 
4037 void* os::thread_local_storage_at(int index) {
4038   return TlsGetValue(index);
4039 }
4040 
4041 
4042 #ifndef PRODUCT
4043 #ifndef _WIN64
4044 // Helpers to check whether NX protection is enabled
4045 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
4046   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
4047       pex->ExceptionRecord->NumberParameters > 0 &&
4048       pex->ExceptionRecord->ExceptionInformation[0] ==
4049       EXCEPTION_INFO_EXEC_VIOLATION) {
4050     return EXCEPTION_EXECUTE_HANDLER;
4051   }
4052   return EXCEPTION_CONTINUE_SEARCH;
4053 }
4054 
4055 void nx_check_protection() {
4056   // If NX is enabled we'll get an exception calling into code on the stack
4057   char code[] = { (char)0xC3 }; // ret
4058   void *code_ptr = (void *)code;
4059   __try {
4060     __asm call code_ptr
4061   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
4062     tty->print_raw_cr("NX protection detected.");
4063   }
4064 }
4065 #endif // _WIN64
4066 #endif // PRODUCT
4067 
4068 // this is called _before_ the global arguments have been parsed
4069 void os::init(void) {
4070   _initial_pid = _getpid();
4071 
4072   init_random(1234567);
4073 
4074   win32::initialize_system_info();
4075   win32::setmode_streams();
4076   init_page_sizes((size_t) win32::vm_page_size());
4077 
4078   // This may be overridden later when argument processing is done.
4079   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
4080                 os::win32::is_windows_2003());
4081 
4082   // Initialize main_process and main_thread
4083   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4084   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4085                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4086     fatal("DuplicateHandle failed\n");
4087   }
4088   main_thread_id = (int) GetCurrentThreadId();
4089 }
4090 
4091 // To install functions for atexit processing
4092 extern "C" {
4093   static void perfMemory_exit_helper() {
4094     perfMemory_exit();
4095   }
4096 }
4097 
4098 static jint initSock();
4099 
4100 // this is called _after_ the global arguments have been parsed
4101 jint os::init_2(void) {
4102   // Allocate a single page and mark it as readable for safepoint polling
4103   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4104   guarantee(polling_page != NULL, "Reserve Failed for polling page");
4105 
4106   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4107   guarantee(return_page != NULL, "Commit Failed for polling page");
4108 
4109   os::set_polling_page(polling_page);
4110 
4111 #ifndef PRODUCT
4112   if (Verbose && PrintMiscellaneous) {
4113     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4114                (intptr_t)polling_page);
4115   }
4116 #endif
4117 
4118   if (!UseMembar) {
4119     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4120     guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4121 
4122     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4123     guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4124 
4125     os::set_memory_serialize_page(mem_serialize_page);
4126 
4127 #ifndef PRODUCT
4128     if (Verbose && PrintMiscellaneous) {
4129       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4130                  (intptr_t)mem_serialize_page);
4131     }
4132 #endif
4133   }
4134 
4135   // Setup Windows Exceptions
4136 
4137   // for debugging float code generation bugs
4138   if (ForceFloatExceptions) {
4139 #ifndef  _WIN64
4140     static long fp_control_word = 0;
4141     __asm { fstcw fp_control_word }
4142     // see Intel PPro Manual, Vol. 2, p 7-16
4143     const long precision = 0x20;
4144     const long underflow = 0x10;
4145     const long overflow  = 0x08;
4146     const long zero_div  = 0x04;
4147     const long denorm    = 0x02;
4148     const long invalid   = 0x01;
4149     fp_control_word |= invalid;
4150     __asm { fldcw fp_control_word }
4151 #endif
4152   }
4153 
4154   // If stack_commit_size is 0, windows will reserve the default size,
4155   // but only commit a small portion of it.
4156   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4157   size_t default_reserve_size = os::win32::default_stack_size();
4158   size_t actual_reserve_size = stack_commit_size;
4159   if (stack_commit_size < default_reserve_size) {
4160     // If stack_commit_size == 0, we want this too
4161     actual_reserve_size = default_reserve_size;
4162   }
4163 
4164   // Check minimum allowable stack size for thread creation and to initialize
4165   // the java system classes, including StackOverflowError - depends on page
4166   // size.  Add a page for compiler2 recursion in main thread.
4167   // Add in 2*BytesPerWord times page size to account for VM stack during
4168   // class initialization depending on 32 or 64 bit VM.
4169   size_t min_stack_allowed =
4170             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4171                      2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
4172   if (actual_reserve_size < min_stack_allowed) {
4173     tty->print_cr("\nThe stack size specified is too small, "
4174                   "Specify at least %dk",
4175                   min_stack_allowed / K);
4176     return JNI_ERR;
4177   }
4178 
4179   JavaThread::set_stack_size_at_create(stack_commit_size);
4180 
4181   // Calculate theoretical max. size of Threads to guard gainst artifical
4182   // out-of-memory situations, where all available address-space has been
4183   // reserved by thread stacks.
4184   assert(actual_reserve_size != 0, "Must have a stack");
4185 
4186   // Calculate the thread limit when we should start doing Virtual Memory
4187   // banging. Currently when the threads will have used all but 200Mb of space.
4188   //
4189   // TODO: consider performing a similar calculation for commit size instead
4190   // as reserve size, since on a 64-bit platform we'll run into that more
4191   // often than running out of virtual memory space.  We can use the
4192   // lower value of the two calculations as the os_thread_limit.
4193   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4194   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4195 
4196   // at exit methods are called in the reverse order of their registration.
4197   // there is no limit to the number of functions registered. atexit does
4198   // not set errno.
4199 
4200   if (PerfAllowAtExitRegistration) {
4201     // only register atexit functions if PerfAllowAtExitRegistration is set.
4202     // atexit functions can be delayed until process exit time, which
4203     // can be problematic for embedded VM situations. Embedded VMs should
4204     // call DestroyJavaVM() to assure that VM resources are released.
4205 
4206     // note: perfMemory_exit_helper atexit function may be removed in
4207     // the future if the appropriate cleanup code can be added to the
4208     // VM_Exit VMOperation's doit method.
4209     if (atexit(perfMemory_exit_helper) != 0) {
4210       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4211     }
4212   }
4213 
4214 #ifndef _WIN64
4215   // Print something if NX is enabled (win32 on AMD64)
4216   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4217 #endif
4218 
4219   // initialize thread priority policy
4220   prio_init();
4221 
4222   if (UseNUMA && !ForceNUMA) {
4223     UseNUMA = false; // We don't fully support this yet
4224   }
4225 
4226   if (UseNUMAInterleaving) {
4227     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4228     bool success = numa_interleaving_init();
4229     if (!success) UseNUMAInterleaving = false;
4230   }
4231 
4232   if (initSock() != JNI_OK) {
4233     return JNI_ERR;
4234   }
4235 
4236   return JNI_OK;
4237 }
4238 
4239 // Mark the polling page as unreadable
4240 void os::make_polling_page_unreadable(void) {
4241   DWORD old_status;
4242   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4243                       PAGE_NOACCESS, &old_status)) {
4244     fatal("Could not disable polling page");
4245   }
4246 }
4247 
4248 // Mark the polling page as readable
4249 void os::make_polling_page_readable(void) {
4250   DWORD old_status;
4251   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4252                       PAGE_READONLY, &old_status)) {
4253     fatal("Could not enable polling page");
4254   }
4255 }
4256 
4257 
4258 int os::stat(const char *path, struct stat *sbuf) {
4259   char pathbuf[MAX_PATH];
4260   if (strlen(path) > MAX_PATH - 1) {
4261     errno = ENAMETOOLONG;
4262     return -1;
4263   }
4264   os::native_path(strcpy(pathbuf, path));
4265   int ret = ::stat(pathbuf, sbuf);
4266   if (sbuf != NULL && UseUTCFileTimestamp) {
4267     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4268     // the system timezone and so can return different values for the
4269     // same file if/when daylight savings time changes.  This adjustment
4270     // makes sure the same timestamp is returned regardless of the TZ.
4271     //
4272     // See:
4273     // http://msdn.microsoft.com/library/
4274     //   default.asp?url=/library/en-us/sysinfo/base/
4275     //   time_zone_information_str.asp
4276     // and
4277     // http://msdn.microsoft.com/library/default.asp?url=
4278     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4279     //
4280     // NOTE: there is a insidious bug here:  If the timezone is changed
4281     // after the call to stat() but before 'GetTimeZoneInformation()', then
4282     // the adjustment we do here will be wrong and we'll return the wrong
4283     // value (which will likely end up creating an invalid class data
4284     // archive).  Absent a better API for this, or some time zone locking
4285     // mechanism, we'll have to live with this risk.
4286     TIME_ZONE_INFORMATION tz;
4287     DWORD tzid = GetTimeZoneInformation(&tz);
4288     int daylightBias =
4289       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4290     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4291   }
4292   return ret;
4293 }
4294 
4295 
4296 #define FT2INT64(ft) \
4297   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4298 
4299 
4300 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4301 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4302 // of a thread.
4303 //
4304 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4305 // the fast estimate available on the platform.
4306 
4307 // current_thread_cpu_time() is not optimized for Windows yet
4308 jlong os::current_thread_cpu_time() {
4309   // return user + sys since the cost is the same
4310   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4311 }
4312 
4313 jlong os::thread_cpu_time(Thread* thread) {
4314   // consistent with what current_thread_cpu_time() returns.
4315   return os::thread_cpu_time(thread, true /* user+sys */);
4316 }
4317 
4318 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4319   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4320 }
4321 
4322 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4323   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4324   // If this function changes, os::is_thread_cpu_time_supported() should too
4325   if (os::win32::is_nt()) {
4326     FILETIME CreationTime;
4327     FILETIME ExitTime;
4328     FILETIME KernelTime;
4329     FILETIME UserTime;
4330 
4331     if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4332                        &ExitTime, &KernelTime, &UserTime) == 0) {
4333       return -1;
4334     } else if (user_sys_cpu_time) {
4335       return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4336     } else {
4337       return FT2INT64(UserTime) * 100;
4338     }
4339   } else {
4340     return (jlong) timeGetTime() * 1000000;
4341   }
4342 }
4343 
4344 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4345   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4346   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4347   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4348   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4349 }
4350 
4351 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4352   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4353   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4354   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4355   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4356 }
4357 
4358 bool os::is_thread_cpu_time_supported() {
4359   // see os::thread_cpu_time
4360   if (os::win32::is_nt()) {
4361     FILETIME CreationTime;
4362     FILETIME ExitTime;
4363     FILETIME KernelTime;
4364     FILETIME UserTime;
4365 
4366     if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4367                        &KernelTime, &UserTime) == 0) {
4368       return false;
4369     } else {
4370       return true;
4371     }
4372   } else {
4373     return false;
4374   }
4375 }
4376 
4377 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4378 // It does have primitives (PDH API) to get CPU usage and run queue length.
4379 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4380 // If we wanted to implement loadavg on Windows, we have a few options:
4381 //
4382 // a) Query CPU usage and run queue length and "fake" an answer by
4383 //    returning the CPU usage if it's under 100%, and the run queue
4384 //    length otherwise.  It turns out that querying is pretty slow
4385 //    on Windows, on the order of 200 microseconds on a fast machine.
4386 //    Note that on the Windows the CPU usage value is the % usage
4387 //    since the last time the API was called (and the first call
4388 //    returns 100%), so we'd have to deal with that as well.
4389 //
4390 // b) Sample the "fake" answer using a sampling thread and store
4391 //    the answer in a global variable.  The call to loadavg would
4392 //    just return the value of the global, avoiding the slow query.
4393 //
4394 // c) Sample a better answer using exponential decay to smooth the
4395 //    value.  This is basically the algorithm used by UNIX kernels.
4396 //
4397 // Note that sampling thread starvation could affect both (b) and (c).
4398 int os::loadavg(double loadavg[], int nelem) {
4399   return -1;
4400 }
4401 
4402 
4403 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4404 bool os::dont_yield() {
4405   return DontYieldALot;
4406 }
4407 
4408 // This method is a slightly reworked copy of JDK's sysOpen
4409 // from src/windows/hpi/src/sys_api_md.c
4410 
4411 int os::open(const char *path, int oflag, int mode) {
4412   char pathbuf[MAX_PATH];
4413 
4414   if (strlen(path) > MAX_PATH - 1) {
4415     errno = ENAMETOOLONG;
4416     return -1;
4417   }
4418   os::native_path(strcpy(pathbuf, path));
4419   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4420 }
4421 
4422 FILE* os::open(int fd, const char* mode) {
4423   return ::_fdopen(fd, mode);
4424 }
4425 
4426 // Is a (classpath) directory empty?
4427 bool os::dir_is_empty(const char* path) {
4428   WIN32_FIND_DATA fd;
4429   HANDLE f = FindFirstFile(path, &fd);
4430   if (f == INVALID_HANDLE_VALUE) {
4431     return true;
4432   }
4433   FindClose(f);
4434   return false;
4435 }
4436 
4437 // create binary file, rewriting existing file if required
4438 int os::create_binary_file(const char* path, bool rewrite_existing) {
4439   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4440   if (!rewrite_existing) {
4441     oflags |= _O_EXCL;
4442   }
4443   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4444 }
4445 
4446 // return current position of file pointer
4447 jlong os::current_file_offset(int fd) {
4448   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4449 }
4450 
4451 // move file pointer to the specified offset
4452 jlong os::seek_to_file_offset(int fd, jlong offset) {
4453   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4454 }
4455 
4456 
4457 jlong os::lseek(int fd, jlong offset, int whence) {
4458   return (jlong) ::_lseeki64(fd, offset, whence);
4459 }
4460 
4461 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4462   OVERLAPPED ov;
4463   DWORD nread;
4464   BOOL result;
4465 
4466   ZeroMemory(&ov, sizeof(ov));
4467   ov.Offset = (DWORD)offset;
4468   ov.OffsetHigh = (DWORD)(offset >> 32);
4469 
4470   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4471 
4472   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4473 
4474   return result ? nread : 0;
4475 }
4476 
4477 
4478 // This method is a slightly reworked copy of JDK's sysNativePath
4479 // from src/windows/hpi/src/path_md.c
4480 
4481 // Convert a pathname to native format.  On win32, this involves forcing all
4482 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4483 // sometimes rejects '/') and removing redundant separators.  The input path is
4484 // assumed to have been converted into the character encoding used by the local
4485 // system.  Because this might be a double-byte encoding, care is taken to
4486 // treat double-byte lead characters correctly.
4487 //
4488 // This procedure modifies the given path in place, as the result is never
4489 // longer than the original.  There is no error return; this operation always
4490 // succeeds.
4491 char * os::native_path(char *path) {
4492   char *src = path, *dst = path, *end = path;
4493   char *colon = NULL;  // If a drive specifier is found, this will
4494                        // point to the colon following the drive letter
4495 
4496   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4497   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4498           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4499 
4500   // Check for leading separators
4501 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4502   while (isfilesep(*src)) {
4503     src++;
4504   }
4505 
4506   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4507     // Remove leading separators if followed by drive specifier.  This
4508     // hack is necessary to support file URLs containing drive
4509     // specifiers (e.g., "file://c:/path").  As a side effect,
4510     // "/c:/path" can be used as an alternative to "c:/path".
4511     *dst++ = *src++;
4512     colon = dst;
4513     *dst++ = ':';
4514     src++;
4515   } else {
4516     src = path;
4517     if (isfilesep(src[0]) && isfilesep(src[1])) {
4518       // UNC pathname: Retain first separator; leave src pointed at
4519       // second separator so that further separators will be collapsed
4520       // into the second separator.  The result will be a pathname
4521       // beginning with "\\\\" followed (most likely) by a host name.
4522       src = dst = path + 1;
4523       path[0] = '\\';     // Force first separator to '\\'
4524     }
4525   }
4526 
4527   end = dst;
4528 
4529   // Remove redundant separators from remainder of path, forcing all
4530   // separators to be '\\' rather than '/'. Also, single byte space
4531   // characters are removed from the end of the path because those
4532   // are not legal ending characters on this operating system.
4533   //
4534   while (*src != '\0') {
4535     if (isfilesep(*src)) {
4536       *dst++ = '\\'; src++;
4537       while (isfilesep(*src)) src++;
4538       if (*src == '\0') {
4539         // Check for trailing separator
4540         end = dst;
4541         if (colon == dst - 2) break;  // "z:\\"
4542         if (dst == path + 1) break;   // "\\"
4543         if (dst == path + 2 && isfilesep(path[0])) {
4544           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4545           // beginning of a UNC pathname.  Even though it is not, by
4546           // itself, a valid UNC pathname, we leave it as is in order
4547           // to be consistent with the path canonicalizer as well
4548           // as the win32 APIs, which treat this case as an invalid
4549           // UNC pathname rather than as an alias for the root
4550           // directory of the current drive.
4551           break;
4552         }
4553         end = --dst;  // Path does not denote a root directory, so
4554                       // remove trailing separator
4555         break;
4556       }
4557       end = dst;
4558     } else {
4559       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4560         *dst++ = *src++;
4561         if (*src) *dst++ = *src++;
4562         end = dst;
4563       } else {  // Copy a single-byte character
4564         char c = *src++;
4565         *dst++ = c;
4566         // Space is not a legal ending character
4567         if (c != ' ') end = dst;
4568       }
4569     }
4570   }
4571 
4572   *end = '\0';
4573 
4574   // For "z:", add "." to work around a bug in the C runtime library
4575   if (colon == dst - 1) {
4576     path[2] = '.';
4577     path[3] = '\0';
4578   }
4579 
4580   return path;
4581 }
4582 
4583 // This code is a copy of JDK's sysSetLength
4584 // from src/windows/hpi/src/sys_api_md.c
4585 
4586 int os::ftruncate(int fd, jlong length) {
4587   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4588   long high = (long)(length >> 32);
4589   DWORD ret;
4590 
4591   if (h == (HANDLE)(-1)) {
4592     return -1;
4593   }
4594 
4595   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4596   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4597     return -1;
4598   }
4599 
4600   if (::SetEndOfFile(h) == FALSE) {
4601     return -1;
4602   }
4603 
4604   return 0;
4605 }
4606 
4607 
4608 // This code is a copy of JDK's sysSync
4609 // from src/windows/hpi/src/sys_api_md.c
4610 // except for the legacy workaround for a bug in Win 98
4611 
4612 int os::fsync(int fd) {
4613   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4614 
4615   if ((!::FlushFileBuffers(handle)) &&
4616       (GetLastError() != ERROR_ACCESS_DENIED)) {
4617     // from winerror.h
4618     return -1;
4619   }
4620   return 0;
4621 }
4622 
4623 static int nonSeekAvailable(int, long *);
4624 static int stdinAvailable(int, long *);
4625 
4626 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4627 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4628 
4629 // This code is a copy of JDK's sysAvailable
4630 // from src/windows/hpi/src/sys_api_md.c
4631 
4632 int os::available(int fd, jlong *bytes) {
4633   jlong cur, end;
4634   struct _stati64 stbuf64;
4635 
4636   if (::_fstati64(fd, &stbuf64) >= 0) {
4637     int mode = stbuf64.st_mode;
4638     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4639       int ret;
4640       long lpbytes;
4641       if (fd == 0) {
4642         ret = stdinAvailable(fd, &lpbytes);
4643       } else {
4644         ret = nonSeekAvailable(fd, &lpbytes);
4645       }
4646       (*bytes) = (jlong)(lpbytes);
4647       return ret;
4648     }
4649     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4650       return FALSE;
4651     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4652       return FALSE;
4653     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4654       return FALSE;
4655     }
4656     *bytes = end - cur;
4657     return TRUE;
4658   } else {
4659     return FALSE;
4660   }
4661 }
4662 
4663 // This code is a copy of JDK's nonSeekAvailable
4664 // from src/windows/hpi/src/sys_api_md.c
4665 
4666 static int nonSeekAvailable(int fd, long *pbytes) {
4667   // This is used for available on non-seekable devices
4668   // (like both named and anonymous pipes, such as pipes
4669   //  connected to an exec'd process).
4670   // Standard Input is a special case.
4671   HANDLE han;
4672 
4673   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4674     return FALSE;
4675   }
4676 
4677   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4678     // PeekNamedPipe fails when at EOF.  In that case we
4679     // simply make *pbytes = 0 which is consistent with the
4680     // behavior we get on Solaris when an fd is at EOF.
4681     // The only alternative is to raise an Exception,
4682     // which isn't really warranted.
4683     //
4684     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4685       return FALSE;
4686     }
4687     *pbytes = 0;
4688   }
4689   return TRUE;
4690 }
4691 
4692 #define MAX_INPUT_EVENTS 2000
4693 
4694 // This code is a copy of JDK's stdinAvailable
4695 // from src/windows/hpi/src/sys_api_md.c
4696 
4697 static int stdinAvailable(int fd, long *pbytes) {
4698   HANDLE han;
4699   DWORD numEventsRead = 0;  // Number of events read from buffer
4700   DWORD numEvents = 0;      // Number of events in buffer
4701   DWORD i = 0;              // Loop index
4702   DWORD curLength = 0;      // Position marker
4703   DWORD actualLength = 0;   // Number of bytes readable
4704   BOOL error = FALSE;       // Error holder
4705   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4706 
4707   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4708     return FALSE;
4709   }
4710 
4711   // Construct an array of input records in the console buffer
4712   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4713   if (error == 0) {
4714     return nonSeekAvailable(fd, pbytes);
4715   }
4716 
4717   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4718   if (numEvents > MAX_INPUT_EVENTS) {
4719     numEvents = MAX_INPUT_EVENTS;
4720   }
4721 
4722   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4723   if (lpBuffer == NULL) {
4724     return FALSE;
4725   }
4726 
4727   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4728   if (error == 0) {
4729     os::free(lpBuffer);
4730     return FALSE;
4731   }
4732 
4733   // Examine input records for the number of bytes available
4734   for (i=0; i<numEvents; i++) {
4735     if (lpBuffer[i].EventType == KEY_EVENT) {
4736 
4737       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4738                                       &(lpBuffer[i].Event);
4739       if (keyRecord->bKeyDown == TRUE) {
4740         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4741         curLength++;
4742         if (*keyPressed == '\r') {
4743           actualLength = curLength;
4744         }
4745       }
4746     }
4747   }
4748 
4749   if (lpBuffer != NULL) {
4750     os::free(lpBuffer);
4751   }
4752 
4753   *pbytes = (long) actualLength;
4754   return TRUE;
4755 }
4756 
4757 // Map a block of memory.
4758 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4759                         char *addr, size_t bytes, bool read_only,
4760                         bool allow_exec) {
4761   HANDLE hFile;
4762   char* base;
4763 
4764   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4765                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4766   if (hFile == NULL) {
4767     if (PrintMiscellaneous && Verbose) {
4768       DWORD err = GetLastError();
4769       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4770     }
4771     return NULL;
4772   }
4773 
4774   if (allow_exec) {
4775     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4776     // unless it comes from a PE image (which the shared archive is not.)
4777     // Even VirtualProtect refuses to give execute access to mapped memory
4778     // that was not previously executable.
4779     //
4780     // Instead, stick the executable region in anonymous memory.  Yuck.
4781     // Penalty is that ~4 pages will not be shareable - in the future
4782     // we might consider DLLizing the shared archive with a proper PE
4783     // header so that mapping executable + sharing is possible.
4784 
4785     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4786                                 PAGE_READWRITE);
4787     if (base == NULL) {
4788       if (PrintMiscellaneous && Verbose) {
4789         DWORD err = GetLastError();
4790         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4791       }
4792       CloseHandle(hFile);
4793       return NULL;
4794     }
4795 
4796     DWORD bytes_read;
4797     OVERLAPPED overlapped;
4798     overlapped.Offset = (DWORD)file_offset;
4799     overlapped.OffsetHigh = 0;
4800     overlapped.hEvent = NULL;
4801     // ReadFile guarantees that if the return value is true, the requested
4802     // number of bytes were read before returning.
4803     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4804     if (!res) {
4805       if (PrintMiscellaneous && Verbose) {
4806         DWORD err = GetLastError();
4807         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4808       }
4809       release_memory(base, bytes);
4810       CloseHandle(hFile);
4811       return NULL;
4812     }
4813   } else {
4814     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4815                                     NULL /* file_name */);
4816     if (hMap == NULL) {
4817       if (PrintMiscellaneous && Verbose) {
4818         DWORD err = GetLastError();
4819         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4820       }
4821       CloseHandle(hFile);
4822       return NULL;
4823     }
4824 
4825     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4826     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4827                                   (DWORD)bytes, addr);
4828     if (base == NULL) {
4829       if (PrintMiscellaneous && Verbose) {
4830         DWORD err = GetLastError();
4831         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4832       }
4833       CloseHandle(hMap);
4834       CloseHandle(hFile);
4835       return NULL;
4836     }
4837 
4838     if (CloseHandle(hMap) == 0) {
4839       if (PrintMiscellaneous && Verbose) {
4840         DWORD err = GetLastError();
4841         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4842       }
4843       CloseHandle(hFile);
4844       return base;
4845     }
4846   }
4847 
4848   if (allow_exec) {
4849     DWORD old_protect;
4850     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4851     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4852 
4853     if (!res) {
4854       if (PrintMiscellaneous && Verbose) {
4855         DWORD err = GetLastError();
4856         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4857       }
4858       // Don't consider this a hard error, on IA32 even if the
4859       // VirtualProtect fails, we should still be able to execute
4860       CloseHandle(hFile);
4861       return base;
4862     }
4863   }
4864 
4865   if (CloseHandle(hFile) == 0) {
4866     if (PrintMiscellaneous && Verbose) {
4867       DWORD err = GetLastError();
4868       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4869     }
4870     return base;
4871   }
4872 
4873   return base;
4874 }
4875 
4876 
4877 // Remap a block of memory.
4878 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4879                           char *addr, size_t bytes, bool read_only,
4880                           bool allow_exec) {
4881   // This OS does not allow existing memory maps to be remapped so we
4882   // have to unmap the memory before we remap it.
4883   if (!os::unmap_memory(addr, bytes)) {
4884     return NULL;
4885   }
4886 
4887   // There is a very small theoretical window between the unmap_memory()
4888   // call above and the map_memory() call below where a thread in native
4889   // code may be able to access an address that is no longer mapped.
4890 
4891   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4892                         read_only, allow_exec);
4893 }
4894 
4895 
4896 // Unmap a block of memory.
4897 // Returns true=success, otherwise false.
4898 
4899 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4900   MEMORY_BASIC_INFORMATION mem_info;
4901   if (VirtualQuery(addr, &mem_info, sizeof(mem_info)) == 0) {
4902     if (PrintMiscellaneous && Verbose) {
4903       DWORD err = GetLastError();
4904       tty->print_cr("VirtualQuery() failed: GetLastError->%ld.", err);
4905     }
4906     return false;
4907   }
4908 
4909   // Executable memory was not mapped using CreateFileMapping/MapViewOfFileEx.
4910   // Instead, executable region was allocated using VirtualAlloc(). See
4911   // pd_map_memory() above.
4912   //
4913   // The following flags should match the 'exec_access' flages used for
4914   // VirtualProtect() in pd_map_memory().
4915   if (mem_info.Protect == PAGE_EXECUTE_READ ||
4916       mem_info.Protect == PAGE_EXECUTE_READWRITE) {
4917     return pd_release_memory(addr, bytes);
4918   }
4919 
4920   BOOL result = UnmapViewOfFile(addr);
4921   if (result == 0) {
4922     if (PrintMiscellaneous && Verbose) {
4923       DWORD err = GetLastError();
4924       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4925     }
4926     return false;
4927   }
4928   return true;
4929 }
4930 
4931 void os::pause() {
4932   char filename[MAX_PATH];
4933   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4934     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4935   } else {
4936     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4937   }
4938 
4939   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4940   if (fd != -1) {
4941     struct stat buf;
4942     ::close(fd);
4943     while (::stat(filename, &buf) == 0) {
4944       Sleep(100);
4945     }
4946   } else {
4947     jio_fprintf(stderr,
4948                 "Could not open pause file '%s', continuing immediately.\n", filename);
4949   }
4950 }
4951 
4952 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4953   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4954 }
4955 
4956 // See the caveats for this class in os_windows.hpp
4957 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4958 // into this method and returns false. If no OS EXCEPTION was raised, returns
4959 // true.
4960 // The callback is supposed to provide the method that should be protected.
4961 //
4962 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4963   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4964   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4965          "crash_protection already set?");
4966 
4967   bool success = true;
4968   __try {
4969     WatcherThread::watcher_thread()->set_crash_protection(this);
4970     cb.call();
4971   } __except(EXCEPTION_EXECUTE_HANDLER) {
4972     // only for protection, nothing to do
4973     success = false;
4974   }
4975   WatcherThread::watcher_thread()->set_crash_protection(NULL);
4976   return success;
4977 }
4978 
4979 // An Event wraps a win32 "CreateEvent" kernel handle.
4980 //
4981 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4982 //
4983 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4984 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4985 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4986 //     In addition, an unpark() operation might fetch the handle field, but the
4987 //     event could recycle between the fetch and the SetEvent() operation.
4988 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4989 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4990 //     on an stale but recycled handle would be harmless, but in practice this might
4991 //     confuse other non-Sun code, so it's not a viable approach.
4992 //
4993 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4994 //     with the Event.  The event handle is never closed.  This could be construed
4995 //     as handle leakage, but only up to the maximum # of threads that have been extant
4996 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4997 //     permit a process to have hundreds of thousands of open handles.
4998 //
4999 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
5000 //     and release unused handles.
5001 //
5002 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
5003 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
5004 //
5005 // 5.  Use an RCU-like mechanism (Read-Copy Update).
5006 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
5007 //
5008 // We use (2).
5009 //
5010 // TODO-FIXME:
5011 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
5012 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
5013 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
5014 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
5015 //     into a single win32 CreateEvent() handle.
5016 //
5017 // Assumption:
5018 //    Only one parker can exist on an event, which is why we allocate
5019 //    them per-thread. Multiple unparkers can coexist.
5020 //
5021 // _Event transitions in park()
5022 //   -1 => -1 : illegal
5023 //    1 =>  0 : pass - return immediately
5024 //    0 => -1 : block; then set _Event to 0 before returning
5025 //
5026 // _Event transitions in unpark()
5027 //    0 => 1 : just return
5028 //    1 => 1 : just return
5029 //   -1 => either 0 or 1; must signal target thread
5030 //         That is, we can safely transition _Event from -1 to either
5031 //         0 or 1.
5032 //
5033 // _Event serves as a restricted-range semaphore.
5034 //   -1 : thread is blocked, i.e. there is a waiter
5035 //    0 : neutral: thread is running or ready,
5036 //        could have been signaled after a wait started
5037 //    1 : signaled - thread is running or ready
5038 //
5039 // Another possible encoding of _Event would be with
5040 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5041 //
5042 
5043 int os::PlatformEvent::park(jlong Millis) {
5044   // Transitions for _Event:
5045   //   -1 => -1 : illegal
5046   //    1 =>  0 : pass - return immediately
5047   //    0 => -1 : block; then set _Event to 0 before returning
5048 
5049   guarantee(_ParkHandle != NULL , "Invariant");
5050   guarantee(Millis > 0          , "Invariant");
5051 
5052   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
5053   // the initial park() operation.
5054   // Consider: use atomic decrement instead of CAS-loop
5055 
5056   int v;
5057   for (;;) {
5058     v = _Event;
5059     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5060   }
5061   guarantee((v == 0) || (v == 1), "invariant");
5062   if (v != 0) return OS_OK;
5063 
5064   // Do this the hard way by blocking ...
5065   // TODO: consider a brief spin here, gated on the success of recent
5066   // spin attempts by this thread.
5067   //
5068   // We decompose long timeouts into series of shorter timed waits.
5069   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
5070   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
5071   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
5072   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
5073   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
5074   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
5075   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
5076   // for the already waited time.  This policy does not admit any new outcomes.
5077   // In the future, however, we might want to track the accumulated wait time and
5078   // adjust Millis accordingly if we encounter a spurious wakeup.
5079 
5080   const int MAXTIMEOUT = 0x10000000;
5081   DWORD rv = WAIT_TIMEOUT;
5082   while (_Event < 0 && Millis > 0) {
5083     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5084     if (Millis > MAXTIMEOUT) {
5085       prd = MAXTIMEOUT;
5086     }
5087     rv = ::WaitForSingleObject(_ParkHandle, prd);
5088     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5089     if (rv == WAIT_TIMEOUT) {
5090       Millis -= prd;
5091     }
5092   }
5093   v = _Event;
5094   _Event = 0;
5095   // see comment at end of os::PlatformEvent::park() below:
5096   OrderAccess::fence();
5097   // If we encounter a nearly simultanous timeout expiry and unpark()
5098   // we return OS_OK indicating we awoke via unpark().
5099   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5100   return (v >= 0) ? OS_OK : OS_TIMEOUT;
5101 }
5102 
5103 void os::PlatformEvent::park() {
5104   // Transitions for _Event:
5105   //   -1 => -1 : illegal
5106   //    1 =>  0 : pass - return immediately
5107   //    0 => -1 : block; then set _Event to 0 before returning
5108 
5109   guarantee(_ParkHandle != NULL, "Invariant");
5110   // Invariant: Only the thread associated with the Event/PlatformEvent
5111   // may call park().
5112   // Consider: use atomic decrement instead of CAS-loop
5113   int v;
5114   for (;;) {
5115     v = _Event;
5116     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5117   }
5118   guarantee((v == 0) || (v == 1), "invariant");
5119   if (v != 0) return;
5120 
5121   // Do this the hard way by blocking ...
5122   // TODO: consider a brief spin here, gated on the success of recent
5123   // spin attempts by this thread.
5124   while (_Event < 0) {
5125     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5126     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5127   }
5128 
5129   // Usually we'll find _Event == 0 at this point, but as
5130   // an optional optimization we clear it, just in case can
5131   // multiple unpark() operations drove _Event up to 1.
5132   _Event = 0;
5133   OrderAccess::fence();
5134   guarantee(_Event >= 0, "invariant");
5135 }
5136 
5137 void os::PlatformEvent::unpark() {
5138   guarantee(_ParkHandle != NULL, "Invariant");
5139 
5140   // Transitions for _Event:
5141   //    0 => 1 : just return
5142   //    1 => 1 : just return
5143   //   -1 => either 0 or 1; must signal target thread
5144   //         That is, we can safely transition _Event from -1 to either
5145   //         0 or 1.
5146   // See also: "Semaphores in Plan 9" by Mullender & Cox
5147   //
5148   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5149   // that it will take two back-to-back park() calls for the owning
5150   // thread to block. This has the benefit of forcing a spurious return
5151   // from the first park() call after an unpark() call which will help
5152   // shake out uses of park() and unpark() without condition variables.
5153 
5154   if (Atomic::xchg(1, &_Event) >= 0) return;
5155 
5156   ::SetEvent(_ParkHandle);
5157 }
5158 
5159 
5160 // JSR166
5161 // -------------------------------------------------------
5162 
5163 // The Windows implementation of Park is very straightforward: Basic
5164 // operations on Win32 Events turn out to have the right semantics to
5165 // use them directly. We opportunistically resuse the event inherited
5166 // from Monitor.
5167 
5168 void Parker::park(bool isAbsolute, jlong time) {
5169   guarantee(_ParkEvent != NULL, "invariant");
5170   // First, demultiplex/decode time arguments
5171   if (time < 0) { // don't wait
5172     return;
5173   } else if (time == 0 && !isAbsolute) {
5174     time = INFINITE;
5175   } else if (isAbsolute) {
5176     time -= os::javaTimeMillis(); // convert to relative time
5177     if (time <= 0) {  // already elapsed
5178       return;
5179     }
5180   } else { // relative
5181     time /= 1000000;  // Must coarsen from nanos to millis
5182     if (time == 0) {  // Wait for the minimal time unit if zero
5183       time = 1;
5184     }
5185   }
5186 
5187   JavaThread* thread = (JavaThread*)(Thread::current());
5188   assert(thread->is_Java_thread(), "Must be JavaThread");
5189   JavaThread *jt = (JavaThread *)thread;
5190 
5191   // Don't wait if interrupted or already triggered
5192   if (Thread::is_interrupted(thread, false) ||
5193       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5194     ResetEvent(_ParkEvent);
5195     return;
5196   } else {
5197     ThreadBlockInVM tbivm(jt);
5198     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5199     jt->set_suspend_equivalent();
5200 
5201     WaitForSingleObject(_ParkEvent, time);
5202     ResetEvent(_ParkEvent);
5203 
5204     // If externally suspended while waiting, re-suspend
5205     if (jt->handle_special_suspend_equivalent_condition()) {
5206       jt->java_suspend_self();
5207     }
5208   }
5209 }
5210 
5211 void Parker::unpark() {
5212   guarantee(_ParkEvent != NULL, "invariant");
5213   SetEvent(_ParkEvent);
5214 }
5215 
5216 // Run the specified command in a separate process. Return its exit value,
5217 // or -1 on failure (e.g. can't create a new process).
5218 int os::fork_and_exec(char* cmd) {
5219   STARTUPINFO si;
5220   PROCESS_INFORMATION pi;
5221 
5222   memset(&si, 0, sizeof(si));
5223   si.cb = sizeof(si);
5224   memset(&pi, 0, sizeof(pi));
5225   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5226                             cmd,    // command line
5227                             NULL,   // process security attribute
5228                             NULL,   // thread security attribute
5229                             TRUE,   // inherits system handles
5230                             0,      // no creation flags
5231                             NULL,   // use parent's environment block
5232                             NULL,   // use parent's starting directory
5233                             &si,    // (in) startup information
5234                             &pi);   // (out) process information
5235 
5236   if (rslt) {
5237     // Wait until child process exits.
5238     WaitForSingleObject(pi.hProcess, INFINITE);
5239 
5240     DWORD exit_code;
5241     GetExitCodeProcess(pi.hProcess, &exit_code);
5242 
5243     // Close process and thread handles.
5244     CloseHandle(pi.hProcess);
5245     CloseHandle(pi.hThread);
5246 
5247     return (int)exit_code;
5248   } else {
5249     return -1;
5250   }
5251 }
5252 
5253 //--------------------------------------------------------------------------------------------------
5254 // Non-product code
5255 
5256 static int mallocDebugIntervalCounter = 0;
5257 static int mallocDebugCounter = 0;
5258 bool os::check_heap(bool force) {
5259   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5260   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5261     // Note: HeapValidate executes two hardware breakpoints when it finds something
5262     // wrong; at these points, eax contains the address of the offending block (I think).
5263     // To get to the exlicit error message(s) below, just continue twice.
5264     HANDLE heap = GetProcessHeap();
5265 
5266     // If we fail to lock the heap, then gflags.exe has been used
5267     // or some other special heap flag has been set that prevents
5268     // locking. We don't try to walk a heap we can't lock.
5269     if (HeapLock(heap) != 0) {
5270       PROCESS_HEAP_ENTRY phe;
5271       phe.lpData = NULL;
5272       while (HeapWalk(heap, &phe) != 0) {
5273         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5274             !HeapValidate(heap, 0, phe.lpData)) {
5275           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5276           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5277           fatal("corrupted C heap");
5278         }
5279       }
5280       DWORD err = GetLastError();
5281       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5282         fatal("heap walk aborted with error %d", err);
5283       }
5284       HeapUnlock(heap);
5285     }
5286     mallocDebugIntervalCounter = 0;
5287   }
5288   return true;
5289 }
5290 
5291 
5292 bool os::find(address addr, outputStream* st) {
5293   // Nothing yet
5294   return false;
5295 }
5296 
5297 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5298   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5299 
5300   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5301     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5302     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5303     address addr = (address) exceptionRecord->ExceptionInformation[1];
5304 
5305     if (os::is_memory_serialize_page(thread, addr)) {
5306       return EXCEPTION_CONTINUE_EXECUTION;
5307     }
5308   }
5309 
5310   return EXCEPTION_CONTINUE_SEARCH;
5311 }
5312 
5313 // We don't build a headless jre for Windows
5314 bool os::is_headless_jre() { return false; }
5315 
5316 static jint initSock() {
5317   WSADATA wsadata;
5318 
5319   if (!os::WinSock2Dll::WinSock2Available()) {
5320     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5321                 ::GetLastError());
5322     return JNI_ERR;
5323   }
5324 
5325   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5326     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5327                 ::GetLastError());
5328     return JNI_ERR;
5329   }
5330   return JNI_OK;
5331 }
5332 
5333 struct hostent* os::get_host_by_name(char* name) {
5334   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5335 }
5336 
5337 int os::socket_close(int fd) {
5338   return ::closesocket(fd);
5339 }
5340 
5341 int os::socket(int domain, int type, int protocol) {
5342   return ::socket(domain, type, protocol);
5343 }
5344 
5345 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5346   return ::connect(fd, him, len);
5347 }
5348 
5349 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5350   return ::recv(fd, buf, (int)nBytes, flags);
5351 }
5352 
5353 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5354   return ::send(fd, buf, (int)nBytes, flags);
5355 }
5356 
5357 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5358   return ::send(fd, buf, (int)nBytes, flags);
5359 }
5360 
5361 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5362 #if defined(IA32)
5363   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5364 #elif defined (AMD64)
5365   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5366 #endif
5367 
5368 // returns true if thread could be suspended,
5369 // false otherwise
5370 static bool do_suspend(HANDLE* h) {
5371   if (h != NULL) {
5372     if (SuspendThread(*h) != ~0) {
5373       return true;
5374     }
5375   }
5376   return false;
5377 }
5378 
5379 // resume the thread
5380 // calling resume on an active thread is a no-op
5381 static void do_resume(HANDLE* h) {
5382   if (h != NULL) {
5383     ResumeThread(*h);
5384   }
5385 }
5386 
5387 // retrieve a suspend/resume context capable handle
5388 // from the tid. Caller validates handle return value.
5389 void get_thread_handle_for_extended_context(HANDLE* h,
5390                                             OSThread::thread_id_t tid) {
5391   if (h != NULL) {
5392     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5393   }
5394 }
5395 
5396 // Thread sampling implementation
5397 //
5398 void os::SuspendedThreadTask::internal_do_task() {
5399   CONTEXT    ctxt;
5400   HANDLE     h = NULL;
5401 
5402   // get context capable handle for thread
5403   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5404 
5405   // sanity
5406   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5407     return;
5408   }
5409 
5410   // suspend the thread
5411   if (do_suspend(&h)) {
5412     ctxt.ContextFlags = sampling_context_flags;
5413     // get thread context
5414     GetThreadContext(h, &ctxt);
5415     SuspendedThreadTaskContext context(_thread, &ctxt);
5416     // pass context to Thread Sampling impl
5417     do_task(context);
5418     // resume thread
5419     do_resume(&h);
5420   }
5421 
5422   // close handle
5423   CloseHandle(h);
5424 }
5425 
5426 
5427 // Kernel32 API
5428 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5429 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn)(HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5430 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn)(PULONG);
5431 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn)(UCHAR, PULONGLONG);
5432 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5433 
5434 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5435 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5436 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5437 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5438 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5439 
5440 
5441 BOOL                        os::Kernel32Dll::initialized = FALSE;
5442 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5443   assert(initialized && _GetLargePageMinimum != NULL,
5444          "GetLargePageMinimumAvailable() not yet called");
5445   return _GetLargePageMinimum();
5446 }
5447 
5448 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5449   if (!initialized) {
5450     initialize();
5451   }
5452   return _GetLargePageMinimum != NULL;
5453 }
5454 
5455 BOOL os::Kernel32Dll::NumaCallsAvailable() {
5456   if (!initialized) {
5457     initialize();
5458   }
5459   return _VirtualAllocExNuma != NULL;
5460 }
5461 
5462 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr,
5463                                            SIZE_T bytes, DWORD flags,
5464                                            DWORD prot, DWORD node) {
5465   assert(initialized && _VirtualAllocExNuma != NULL,
5466          "NUMACallsAvailable() not yet called");
5467 
5468   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5469 }
5470 
5471 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5472   assert(initialized && _GetNumaHighestNodeNumber != NULL,
5473          "NUMACallsAvailable() not yet called");
5474 
5475   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5476 }
5477 
5478 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node,
5479                                                PULONGLONG proc_mask) {
5480   assert(initialized && _GetNumaNodeProcessorMask != NULL,
5481          "NUMACallsAvailable() not yet called");
5482 
5483   return _GetNumaNodeProcessorMask(node, proc_mask);
5484 }
5485 
5486 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5487                                                  ULONG FrameToCapture,
5488                                                  PVOID* BackTrace,
5489                                                  PULONG BackTraceHash) {
5490   if (!initialized) {
5491     initialize();
5492   }
5493 
5494   if (_RtlCaptureStackBackTrace != NULL) {
5495     return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5496                                      BackTrace, BackTraceHash);
5497   } else {
5498     return 0;
5499   }
5500 }
5501 
5502 void os::Kernel32Dll::initializeCommon() {
5503   if (!initialized) {
5504     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5505     assert(handle != NULL, "Just check");
5506     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5507     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5508     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5509     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5510     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5511     initialized = TRUE;
5512   }
5513 }
5514 
5515 
5516 
5517 #ifndef JDK6_OR_EARLIER
5518 
5519 void os::Kernel32Dll::initialize() {
5520   initializeCommon();
5521 }
5522 
5523 
5524 // Kernel32 API
5525 inline BOOL os::Kernel32Dll::SwitchToThread() {
5526   return ::SwitchToThread();
5527 }
5528 
5529 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5530   return true;
5531 }
5532 
5533 // Help tools
5534 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5535   return true;
5536 }
5537 
5538 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5539                                                         DWORD th32ProcessId) {
5540   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5541 }
5542 
5543 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,
5544                                            LPMODULEENTRY32 lpme) {
5545   return ::Module32First(hSnapshot, lpme);
5546 }
5547 
5548 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5549                                           LPMODULEENTRY32 lpme) {
5550   return ::Module32Next(hSnapshot, lpme);
5551 }
5552 
5553 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5554   ::GetNativeSystemInfo(lpSystemInfo);
5555 }
5556 
5557 // PSAPI API
5558 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess,
5559                                              HMODULE *lpModule, DWORD cb,
5560                                              LPDWORD lpcbNeeded) {
5561   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5562 }
5563 
5564 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess,
5565                                                HMODULE hModule,
5566                                                LPTSTR lpFilename,
5567                                                DWORD nSize) {
5568   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5569 }
5570 
5571 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess,
5572                                                HMODULE hModule,
5573                                                LPMODULEINFO lpmodinfo,
5574                                                DWORD cb) {
5575   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5576 }
5577 
5578 inline BOOL os::PSApiDll::PSApiAvailable() {
5579   return true;
5580 }
5581 
5582 
5583 // WinSock2 API
5584 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested,
5585                                         LPWSADATA lpWSAData) {
5586   return ::WSAStartup(wVersionRequested, lpWSAData);
5587 }
5588 
5589 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5590   return ::gethostbyname(name);
5591 }
5592 
5593 inline BOOL os::WinSock2Dll::WinSock2Available() {
5594   return true;
5595 }
5596 
5597 // Advapi API
5598 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5599                                                    BOOL DisableAllPrivileges,
5600                                                    PTOKEN_PRIVILEGES NewState,
5601                                                    DWORD BufferLength,
5602                                                    PTOKEN_PRIVILEGES PreviousState,
5603                                                    PDWORD ReturnLength) {
5604   return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5605                                  BufferLength, PreviousState, ReturnLength);
5606 }
5607 
5608 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5609                                               DWORD DesiredAccess,
5610                                               PHANDLE TokenHandle) {
5611   return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5612 }
5613 
5614 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5615                                                   LPCTSTR lpName,
5616                                                   PLUID lpLuid) {
5617   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5618 }
5619 
5620 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5621   return true;
5622 }
5623 
5624 void* os::get_default_process_handle() {
5625   return (void*)GetModuleHandle(NULL);
5626 }
5627 
5628 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5629 // which is used to find statically linked in agents.
5630 // Additionally for windows, takes into account __stdcall names.
5631 // Parameters:
5632 //            sym_name: Symbol in library we are looking for
5633 //            lib_name: Name of library to look in, NULL for shared libs.
5634 //            is_absolute_path == true if lib_name is absolute path to agent
5635 //                                     such as "C:/a/b/L.dll"
5636 //            == false if only the base name of the library is passed in
5637 //               such as "L"
5638 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5639                                     bool is_absolute_path) {
5640   char *agent_entry_name;
5641   size_t len;
5642   size_t name_len;
5643   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5644   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5645   const char *start;
5646 
5647   if (lib_name != NULL) {
5648     len = name_len = strlen(lib_name);
5649     if (is_absolute_path) {
5650       // Need to strip path, prefix and suffix
5651       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5652         lib_name = ++start;
5653       } else {
5654         // Need to check for drive prefix
5655         if ((start = strchr(lib_name, ':')) != NULL) {
5656           lib_name = ++start;
5657         }
5658       }
5659       if (len <= (prefix_len + suffix_len)) {
5660         return NULL;
5661       }
5662       lib_name += prefix_len;
5663       name_len = strlen(lib_name) - suffix_len;
5664     }
5665   }
5666   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5667   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5668   if (agent_entry_name == NULL) {
5669     return NULL;
5670   }
5671   if (lib_name != NULL) {
5672     const char *p = strrchr(sym_name, '@');
5673     if (p != NULL && p != sym_name) {
5674       // sym_name == _Agent_OnLoad@XX
5675       strncpy(agent_entry_name, sym_name, (p - sym_name));
5676       agent_entry_name[(p-sym_name)] = '\0';
5677       // agent_entry_name == _Agent_OnLoad
5678       strcat(agent_entry_name, "_");
5679       strncat(agent_entry_name, lib_name, name_len);
5680       strcat(agent_entry_name, p);
5681       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5682     } else {
5683       strcpy(agent_entry_name, sym_name);
5684       strcat(agent_entry_name, "_");
5685       strncat(agent_entry_name, lib_name, name_len);
5686     }
5687   } else {
5688     strcpy(agent_entry_name, sym_name);
5689   }
5690   return agent_entry_name;
5691 }
5692 
5693 #else
5694 // Kernel32 API
5695 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5696 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD, DWORD);
5697 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE, LPMODULEENTRY32);
5698 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE, LPMODULEENTRY32);
5699 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5700 
5701 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5702 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5703 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5704 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5705 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5706 
5707 void os::Kernel32Dll::initialize() {
5708   if (!initialized) {
5709     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5710     assert(handle != NULL, "Just check");
5711 
5712     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5713     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5714       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5715     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5716     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5717     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5718     initializeCommon();  // resolve the functions that always need resolving
5719 
5720     initialized = TRUE;
5721   }
5722 }
5723 
5724 BOOL os::Kernel32Dll::SwitchToThread() {
5725   assert(initialized && _SwitchToThread != NULL,
5726          "SwitchToThreadAvailable() not yet called");
5727   return _SwitchToThread();
5728 }
5729 
5730 
5731 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5732   if (!initialized) {
5733     initialize();
5734   }
5735   return _SwitchToThread != NULL;
5736 }
5737 
5738 // Help tools
5739 BOOL os::Kernel32Dll::HelpToolsAvailable() {
5740   if (!initialized) {
5741     initialize();
5742   }
5743   return _CreateToolhelp32Snapshot != NULL &&
5744          _Module32First != NULL &&
5745          _Module32Next != NULL;
5746 }
5747 
5748 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5749                                                  DWORD th32ProcessId) {
5750   assert(initialized && _CreateToolhelp32Snapshot != NULL,
5751          "HelpToolsAvailable() not yet called");
5752 
5753   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5754 }
5755 
5756 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5757   assert(initialized && _Module32First != NULL,
5758          "HelpToolsAvailable() not yet called");
5759 
5760   return _Module32First(hSnapshot, lpme);
5761 }
5762 
5763 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5764                                           LPMODULEENTRY32 lpme) {
5765   assert(initialized && _Module32Next != NULL,
5766          "HelpToolsAvailable() not yet called");
5767 
5768   return _Module32Next(hSnapshot, lpme);
5769 }
5770 
5771 
5772 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5773   if (!initialized) {
5774     initialize();
5775   }
5776   return _GetNativeSystemInfo != NULL;
5777 }
5778 
5779 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5780   assert(initialized && _GetNativeSystemInfo != NULL,
5781          "GetNativeSystemInfoAvailable() not yet called");
5782 
5783   _GetNativeSystemInfo(lpSystemInfo);
5784 }
5785 
5786 // PSAPI API
5787 
5788 
5789 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5790 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);
5791 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5792 
5793 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5794 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5795 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5796 BOOL                    os::PSApiDll::initialized = FALSE;
5797 
5798 void os::PSApiDll::initialize() {
5799   if (!initialized) {
5800     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5801     if (handle != NULL) {
5802       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5803                                                                     "EnumProcessModules");
5804       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5805                                                                       "GetModuleFileNameExA");
5806       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5807                                                                         "GetModuleInformation");
5808     }
5809     initialized = TRUE;
5810   }
5811 }
5812 
5813 
5814 
5815 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule,
5816                                       DWORD cb, LPDWORD lpcbNeeded) {
5817   assert(initialized && _EnumProcessModules != NULL,
5818          "PSApiAvailable() not yet called");
5819   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5820 }
5821 
5822 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule,
5823                                         LPTSTR lpFilename, DWORD nSize) {
5824   assert(initialized && _GetModuleFileNameEx != NULL,
5825          "PSApiAvailable() not yet called");
5826   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5827 }
5828 
5829 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule,
5830                                         LPMODULEINFO lpmodinfo, DWORD cb) {
5831   assert(initialized && _GetModuleInformation != NULL,
5832          "PSApiAvailable() not yet called");
5833   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5834 }
5835 
5836 BOOL os::PSApiDll::PSApiAvailable() {
5837   if (!initialized) {
5838     initialize();
5839   }
5840   return _EnumProcessModules != NULL &&
5841     _GetModuleFileNameEx != NULL &&
5842     _GetModuleInformation != NULL;
5843 }
5844 
5845 
5846 // WinSock2 API
5847 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5848 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5849 
5850 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5851 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5852 BOOL             os::WinSock2Dll::initialized = FALSE;
5853 
5854 void os::WinSock2Dll::initialize() {
5855   if (!initialized) {
5856     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5857     if (handle != NULL) {
5858       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5859       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5860     }
5861     initialized = TRUE;
5862   }
5863 }
5864 
5865 
5866 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5867   assert(initialized && _WSAStartup != NULL,
5868          "WinSock2Available() not yet called");
5869   return _WSAStartup(wVersionRequested, lpWSAData);
5870 }
5871 
5872 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5873   assert(initialized && _gethostbyname != NULL,
5874          "WinSock2Available() not yet called");
5875   return _gethostbyname(name);
5876 }
5877 
5878 BOOL os::WinSock2Dll::WinSock2Available() {
5879   if (!initialized) {
5880     initialize();
5881   }
5882   return _WSAStartup != NULL &&
5883     _gethostbyname != NULL;
5884 }
5885 
5886 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5887 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5888 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5889 
5890 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5891 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5892 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5893 BOOL                     os::Advapi32Dll::initialized = FALSE;
5894 
5895 void os::Advapi32Dll::initialize() {
5896   if (!initialized) {
5897     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5898     if (handle != NULL) {
5899       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5900                                                                           "AdjustTokenPrivileges");
5901       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5902                                                                 "OpenProcessToken");
5903       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5904                                                                         "LookupPrivilegeValueA");
5905     }
5906     initialized = TRUE;
5907   }
5908 }
5909 
5910 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5911                                             BOOL DisableAllPrivileges,
5912                                             PTOKEN_PRIVILEGES NewState,
5913                                             DWORD BufferLength,
5914                                             PTOKEN_PRIVILEGES PreviousState,
5915                                             PDWORD ReturnLength) {
5916   assert(initialized && _AdjustTokenPrivileges != NULL,
5917          "AdvapiAvailable() not yet called");
5918   return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5919                                 BufferLength, PreviousState, ReturnLength);
5920 }
5921 
5922 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5923                                        DWORD DesiredAccess,
5924                                        PHANDLE TokenHandle) {
5925   assert(initialized && _OpenProcessToken != NULL,
5926          "AdvapiAvailable() not yet called");
5927   return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5928 }
5929 
5930 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5931                                            LPCTSTR lpName, PLUID lpLuid) {
5932   assert(initialized && _LookupPrivilegeValue != NULL,
5933          "AdvapiAvailable() not yet called");
5934   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5935 }
5936 
5937 BOOL os::Advapi32Dll::AdvapiAvailable() {
5938   if (!initialized) {
5939     initialize();
5940   }
5941   return _AdjustTokenPrivileges != NULL &&
5942     _OpenProcessToken != NULL &&
5943     _LookupPrivilegeValue != NULL;
5944 }
5945 
5946 #endif
5947 
5948 #ifndef PRODUCT
5949 
5950 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5951 // contiguous memory block at a particular address.
5952 // The test first tries to find a good approximate address to allocate at by using the same
5953 // method to allocate some memory at any address. The test then tries to allocate memory in
5954 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5955 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5956 // the previously allocated memory is available for allocation. The only actual failure
5957 // that is reported is when the test tries to allocate at a particular location but gets a
5958 // different valid one. A NULL return value at this point is not considered an error but may
5959 // be legitimate.
5960 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5961 void TestReserveMemorySpecial_test() {
5962   if (!UseLargePages) {
5963     if (VerboseInternalVMTests) {
5964       gclog_or_tty->print("Skipping test because large pages are disabled");
5965     }
5966     return;
5967   }
5968   // save current value of globals
5969   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5970   bool old_use_numa_interleaving = UseNUMAInterleaving;
5971 
5972   // set globals to make sure we hit the correct code path
5973   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5974 
5975   // do an allocation at an address selected by the OS to get a good one.
5976   const size_t large_allocation_size = os::large_page_size() * 4;
5977   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5978   if (result == NULL) {
5979     if (VerboseInternalVMTests) {
5980       gclog_or_tty->print("Failed to allocate control block with size " SIZE_FORMAT ". Skipping remainder of test.",
5981                           large_allocation_size);
5982     }
5983   } else {
5984     os::release_memory_special(result, large_allocation_size);
5985 
5986     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5987     // we managed to get it once.
5988     const size_t expected_allocation_size = os::large_page_size();
5989     char* expected_location = result + os::large_page_size();
5990     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5991     if (actual_location == NULL) {
5992       if (VerboseInternalVMTests) {
5993         gclog_or_tty->print("Failed to allocate any memory at " PTR_FORMAT " size " SIZE_FORMAT ". Skipping remainder of test.",
5994                             expected_location, large_allocation_size);
5995       }
5996     } else {
5997       // release memory
5998       os::release_memory_special(actual_location, expected_allocation_size);
5999       // only now check, after releasing any memory to avoid any leaks.
6000       assert(actual_location == expected_location,
6001              "Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
6002              expected_location, expected_allocation_size, actual_location);
6003     }
6004   }
6005 
6006   // restore globals
6007   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
6008   UseNUMAInterleaving = old_use_numa_interleaving;
6009 }
6010 #endif // PRODUCT