1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_ALLOCATION_HPP
  26 #define SHARE_VM_MEMORY_ALLOCATION_HPP
  27 
  28 #include "runtime/globals.hpp"
  29 #include "utilities/globalDefinitions.hpp"
  30 #include "utilities/macros.hpp"
  31 #ifdef COMPILER1
  32 #include "c1/c1_globals.hpp"
  33 #endif
  34 #ifdef COMPILER2
  35 #include "opto/c2_globals.hpp"
  36 #endif
  37 
  38 #if defined _WINDOWS && _MSC_VER >= 1900
  39  // 'noexcept' used with no exception handling mode specified; termination on exception is not guaranteed. Specify /EHsc
  40 #pragma warning( disable : 4577 )
  41 #endif
  42 
  43 #include <new>
  44 
  45 #define ARENA_ALIGN_M1 (((size_t)(ARENA_AMALLOC_ALIGNMENT)) - 1)
  46 #define ARENA_ALIGN_MASK (~((size_t)ARENA_ALIGN_M1))
  47 #define ARENA_ALIGN(x) ((((size_t)(x)) + ARENA_ALIGN_M1) & ARENA_ALIGN_MASK)
  48 
  49 
  50 // noinline attribute
  51 #ifdef _WINDOWS
  52   #define _NOINLINE_  __declspec(noinline)
  53 #else
  54   #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
  55     #define _NOINLINE_
  56   #else
  57     #define _NOINLINE_ __attribute__ ((noinline))
  58   #endif
  59 #endif
  60 
  61 class AllocFailStrategy {
  62 public:
  63   enum AllocFailEnum { EXIT_OOM, RETURN_NULL };
  64 };
  65 typedef AllocFailStrategy::AllocFailEnum AllocFailType;
  66 
  67 // All classes in the virtual machine must be subclassed
  68 // by one of the following allocation classes:
  69 //
  70 // For objects allocated in the resource area (see resourceArea.hpp).
  71 // - ResourceObj
  72 //
  73 // For objects allocated in the C-heap (managed by: free & malloc).
  74 // - CHeapObj
  75 //
  76 // For objects allocated on the stack.
  77 // - StackObj
  78 //
  79 // For embedded objects.
  80 // - ValueObj
  81 //
  82 // For classes used as name spaces.
  83 // - AllStatic
  84 //
  85 // For classes in Metaspace (class data)
  86 // - MetaspaceObj
  87 //
  88 // The printable subclasses are used for debugging and define virtual
  89 // member functions for printing. Classes that avoid allocating the
  90 // vtbl entries in the objects should therefore not be the printable
  91 // subclasses.
  92 //
  93 // The following macros and function should be used to allocate memory
  94 // directly in the resource area or in the C-heap, The _OBJ variants
  95 // of the NEW/FREE_C_HEAP macros are used for alloc/dealloc simple
  96 // objects which are not inherited from CHeapObj, note constructor and
  97 // destructor are not called. The preferable way to allocate objects
  98 // is using the new operator.
  99 //
 100 // WARNING: The array variant must only be used for a homogenous array
 101 // where all objects are of the exact type specified. If subtypes are
 102 // stored in the array then must pay attention to calling destructors
 103 // at needed.
 104 //
 105 //   NEW_RESOURCE_ARRAY(type, size)
 106 //   NEW_RESOURCE_OBJ(type)
 107 //   NEW_C_HEAP_ARRAY(type, size)
 108 //   NEW_C_HEAP_OBJ(type, memflags)
 109 //   FREE_C_HEAP_ARRAY(type, old)
 110 //   FREE_C_HEAP_OBJ(objname, type, memflags)
 111 //   char* AllocateHeap(size_t size, const char* name);
 112 //   void  FreeHeap(void* p);
 113 //
 114 // C-heap allocation can be traced using +PrintHeapAllocation.
 115 // malloc and free should therefore never called directly.
 116 
 117 // Base class for objects allocated in the C-heap.
 118 
 119 // In non product mode we introduce a super class for all allocation classes
 120 // that supports printing.
 121 // We avoid the superclass in product mode since some C++ compilers add
 122 // a word overhead for empty super classes.
 123 
 124 #ifdef PRODUCT
 125 #define ALLOCATION_SUPER_CLASS_SPEC
 126 #else
 127 #define ALLOCATION_SUPER_CLASS_SPEC : public AllocatedObj
 128 class AllocatedObj {
 129  public:
 130   // Printing support
 131   void print() const;
 132   void print_value() const;
 133 
 134   virtual void print_on(outputStream* st) const;
 135   virtual void print_value_on(outputStream* st) const;
 136 };
 137 #endif
 138 
 139 
 140 /*
 141  * Memory types
 142  */
 143 enum MemoryType {
 144   // Memory type by sub systems. It occupies lower byte.
 145   mtJavaHeap          = 0x00,  // Java heap
 146   mtClass             = 0x01,  // memory class for Java classes
 147   mtThread            = 0x02,  // memory for thread objects
 148   mtThreadStack       = 0x03,
 149   mtCode              = 0x04,  // memory for generated code
 150   mtGC                = 0x05,  // memory for GC
 151   mtCompiler          = 0x06,  // memory for compiler
 152   mtInternal          = 0x07,  // memory used by VM, but does not belong to
 153                                  // any of above categories, and not used for
 154                                  // native memory tracking
 155   mtOther             = 0x08,  // memory not used by VM
 156   mtSymbol            = 0x09,  // symbol
 157   mtNMT               = 0x0A,  // memory used by native memory tracking
 158   mtClassShared       = 0x0B,  // class data sharing
 159   mtChunk             = 0x0C,  // chunk that holds content of arenas
 160   mtTest              = 0x0D,  // Test type for verifying NMT
 161   mtTracing           = 0x0E,  // memory used for Tracing
 162   mtLogging           = 0x0F,  // memory for logging
 163   mtNone              = 0x10,  // undefined
 164   mt_number_of_types  = 0x11   // number of memory types (mtDontTrack
 165                                  // is not included as validate type)
 166 };
 167 
 168 typedef MemoryType MEMFLAGS;
 169 
 170 
 171 #if INCLUDE_NMT
 172 
 173 extern bool NMT_track_callsite;
 174 
 175 #else
 176 
 177 const bool NMT_track_callsite = false;
 178 
 179 #endif // INCLUDE_NMT
 180 
 181 class NativeCallStack;
 182 
 183 
 184 template <MEMFLAGS F> class CHeapObj ALLOCATION_SUPER_CLASS_SPEC {
 185  public:
 186   _NOINLINE_ void* operator new(size_t size, const NativeCallStack& stack) throw();
 187   _NOINLINE_ void* operator new(size_t size) throw();
 188   _NOINLINE_ void* operator new (size_t size, const std::nothrow_t&  nothrow_constant,
 189                                const NativeCallStack& stack) throw();
 190   _NOINLINE_ void* operator new (size_t size, const std::nothrow_t&  nothrow_constant)
 191                                throw();
 192   _NOINLINE_ void* operator new [](size_t size, const NativeCallStack& stack) throw();
 193   _NOINLINE_ void* operator new [](size_t size) throw();
 194   _NOINLINE_ void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
 195                                const NativeCallStack& stack) throw();
 196   _NOINLINE_ void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant)
 197                                throw();
 198   void  operator delete(void* p);
 199   void  operator delete [] (void* p);
 200 };
 201 
 202 // Base class for objects allocated on the stack only.
 203 // Calling new or delete will result in fatal error.
 204 
 205 class StackObj ALLOCATION_SUPER_CLASS_SPEC {
 206  private:
 207   void* operator new(size_t size) throw();
 208   void* operator new [](size_t size) throw();
 209 #ifdef __IBMCPP__
 210  public:
 211 #endif
 212   void  operator delete(void* p);
 213   void  operator delete [](void* p);
 214 };
 215 
 216 // Base class for objects used as value objects.
 217 // Calling new or delete will result in fatal error.
 218 //
 219 // Portability note: Certain compilers (e.g. gcc) will
 220 // always make classes bigger if it has a superclass, even
 221 // if the superclass does not have any virtual methods or
 222 // instance fields. The HotSpot implementation relies on this
 223 // not to happen. So never make a ValueObj class a direct subclass
 224 // of this object, but use the VALUE_OBJ_CLASS_SPEC class instead, e.g.,
 225 // like this:
 226 //
 227 //   class A VALUE_OBJ_CLASS_SPEC {
 228 //     ...
 229 //   }
 230 //
 231 // With gcc and possible other compilers the VALUE_OBJ_CLASS_SPEC can
 232 // be defined as a an empty string "".
 233 //
 234 class _ValueObj {
 235  private:
 236   void* operator new(size_t size) throw();
 237   void  operator delete(void* p);
 238   void* operator new [](size_t size) throw();
 239   void  operator delete [](void* p);
 240 };
 241 
 242 
 243 // Base class for objects stored in Metaspace.
 244 // Calling delete will result in fatal error.
 245 //
 246 // Do not inherit from something with a vptr because this class does
 247 // not introduce one.  This class is used to allocate both shared read-only
 248 // and shared read-write classes.
 249 //
 250 
 251 class ClassLoaderData;
 252 
 253 class MetaspaceObj {
 254  public:
 255   bool is_metaspace_object() const;
 256   bool is_shared() const;
 257   void print_address_on(outputStream* st) const;  // nonvirtual address printing
 258 
 259 #define METASPACE_OBJ_TYPES_DO(f) \
 260   f(Unknown) \
 261   f(Class) \
 262   f(Symbol) \
 263   f(TypeArrayU1) \
 264   f(TypeArrayU2) \
 265   f(TypeArrayU4) \
 266   f(TypeArrayU8) \
 267   f(TypeArrayOther) \
 268   f(Method) \
 269   f(ConstMethod) \
 270   f(MethodData) \
 271   f(ConstantPool) \
 272   f(ConstantPoolCache) \
 273   f(Annotation) \
 274   f(MethodCounters) \
 275   f(Deallocated)
 276 
 277 #define METASPACE_OBJ_TYPE_DECLARE(name) name ## Type,
 278 #define METASPACE_OBJ_TYPE_NAME_CASE(name) case name ## Type: return #name;
 279 
 280   enum Type {
 281     // Types are MetaspaceObj::ClassType, MetaspaceObj::SymbolType, etc
 282     METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_DECLARE)
 283     _number_of_types
 284   };
 285 
 286   static const char * type_name(Type type) {
 287     switch(type) {
 288     METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_NAME_CASE)
 289     default:
 290       ShouldNotReachHere();
 291       return NULL;
 292     }
 293   }
 294 
 295   static MetaspaceObj::Type array_type(size_t elem_size) {
 296     switch (elem_size) {
 297     case 1: return TypeArrayU1Type;
 298     case 2: return TypeArrayU2Type;
 299     case 4: return TypeArrayU4Type;
 300     case 8: return TypeArrayU8Type;
 301     default:
 302       return TypeArrayOtherType;
 303     }
 304   }
 305 
 306   void* operator new(size_t size, ClassLoaderData* loader_data,
 307                      size_t word_size, bool read_only,
 308                      Type type, Thread* thread) throw();
 309                      // can't use TRAPS from this header file.
 310   void operator delete(void* p) { ShouldNotCallThis(); }
 311 };
 312 
 313 // Base class for classes that constitute name spaces.
 314 
 315 class AllStatic {
 316  public:
 317   AllStatic()  { ShouldNotCallThis(); }
 318   ~AllStatic() { ShouldNotCallThis(); }
 319 };
 320 
 321 
 322 //------------------------------Chunk------------------------------------------
 323 // Linked list of raw memory chunks
 324 class Chunk: CHeapObj<mtChunk> {
 325   friend class VMStructs;
 326 
 327  protected:
 328   Chunk*       _next;     // Next Chunk in list
 329   const size_t _len;      // Size of this Chunk
 330  public:
 331   void* operator new(size_t size, AllocFailType alloc_failmode, size_t length) throw();
 332   void  operator delete(void* p);
 333   Chunk(size_t length);
 334 
 335   enum {
 336     // default sizes; make them slightly smaller than 2**k to guard against
 337     // buddy-system style malloc implementations
 338 #ifdef _LP64
 339     slack      = 40,            // [RGV] Not sure if this is right, but make it
 340                                 //       a multiple of 8.
 341 #else
 342     slack      = 20,            // suspected sizeof(Chunk) + internal malloc headers
 343 #endif
 344 
 345     tiny_size  =  256  - slack, // Size of first chunk (tiny)
 346     init_size  =  1*K  - slack, // Size of first chunk (normal aka small)
 347     medium_size= 10*K  - slack, // Size of medium-sized chunk
 348     size       = 32*K  - slack, // Default size of an Arena chunk (following the first)
 349     non_pool_size = init_size + 32 // An initial size which is not one of above
 350   };
 351 
 352   void chop();                  // Chop this chunk
 353   void next_chop();             // Chop next chunk
 354   static size_t aligned_overhead_size(void) { return ARENA_ALIGN(sizeof(Chunk)); }
 355   static size_t aligned_overhead_size(size_t byte_size) { return ARENA_ALIGN(byte_size); }
 356 
 357   size_t length() const         { return _len;  }
 358   Chunk* next() const           { return _next;  }
 359   void set_next(Chunk* n)       { _next = n;  }
 360   // Boundaries of data area (possibly unused)
 361   char* bottom() const          { return ((char*) this) + aligned_overhead_size();  }
 362   char* top()    const          { return bottom() + _len; }
 363   bool contains(char* p) const  { return bottom() <= p && p <= top(); }
 364 
 365   // Start the chunk_pool cleaner task
 366   static void start_chunk_pool_cleaner_task();
 367 
 368   static void clean_chunk_pool();
 369 };
 370 
 371 //------------------------------Arena------------------------------------------
 372 // Fast allocation of memory
 373 class Arena : public CHeapObj<mtNone> {
 374 protected:
 375   friend class ResourceMark;
 376   friend class HandleMark;
 377   friend class NoHandleMark;
 378   friend class VMStructs;
 379 
 380   MEMFLAGS    _flags;           // Memory tracking flags
 381 
 382   Chunk *_first;                // First chunk
 383   Chunk *_chunk;                // current chunk
 384   char *_hwm, *_max;            // High water mark and max in current chunk
 385   // Get a new Chunk of at least size x
 386   void* grow(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 387   size_t _size_in_bytes;        // Size of arena (used for native memory tracking)
 388 
 389   NOT_PRODUCT(static julong _bytes_allocated;) // total #bytes allocated since start
 390   friend class AllocStats;
 391   debug_only(void* malloc(size_t size);)
 392   debug_only(void* internal_malloc_4(size_t x);)
 393   NOT_PRODUCT(void inc_bytes_allocated(size_t x);)
 394 
 395   void signal_out_of_memory(size_t request, const char* whence) const;
 396 
 397   bool check_for_overflow(size_t request, const char* whence,
 398       AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) const {
 399     if (UINTPTR_MAX - request < (uintptr_t)_hwm) {
 400       if (alloc_failmode == AllocFailStrategy::RETURN_NULL) {
 401         return false;
 402       }
 403       signal_out_of_memory(request, whence);
 404     }
 405     return true;
 406  }
 407 
 408  public:
 409   Arena(MEMFLAGS memflag);
 410   Arena(MEMFLAGS memflag, size_t init_size);
 411   ~Arena();
 412   void  destruct_contents();
 413   char* hwm() const             { return _hwm; }
 414 
 415   // new operators
 416   void* operator new (size_t size) throw();
 417   void* operator new (size_t size, const std::nothrow_t& nothrow_constant) throw();
 418 
 419   // dynamic memory type tagging
 420   void* operator new(size_t size, MEMFLAGS flags) throw();
 421   void* operator new(size_t size, const std::nothrow_t& nothrow_constant, MEMFLAGS flags) throw();
 422   void  operator delete(void* p);
 423 
 424   // Fast allocate in the arena.  Common case is: pointer test + increment.
 425   void* Amalloc(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
 426     assert(is_power_of_2(ARENA_AMALLOC_ALIGNMENT) , "should be a power of 2");
 427     x = ARENA_ALIGN(x);
 428     debug_only(if (UseMallocOnly) return malloc(x);)
 429     if (!check_for_overflow(x, "Arena::Amalloc", alloc_failmode))
 430       return NULL;
 431     NOT_PRODUCT(inc_bytes_allocated(x);)
 432     if (_hwm + x > _max) {
 433       return grow(x, alloc_failmode);
 434     } else {
 435       char *old = _hwm;
 436       _hwm += x;
 437       return old;
 438     }
 439   }
 440   // Further assume size is padded out to words
 441   void *Amalloc_4(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
 442     assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
 443     debug_only(if (UseMallocOnly) return malloc(x);)
 444     if (!check_for_overflow(x, "Arena::Amalloc_4", alloc_failmode))
 445       return NULL;
 446     NOT_PRODUCT(inc_bytes_allocated(x);)
 447     if (_hwm + x > _max) {
 448       return grow(x, alloc_failmode);
 449     } else {
 450       char *old = _hwm;
 451       _hwm += x;
 452       return old;
 453     }
 454   }
 455 
 456   // Allocate with 'double' alignment. It is 8 bytes on sparc.
 457   // In other cases Amalloc_D() should be the same as Amalloc_4().
 458   void* Amalloc_D(size_t x, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM) {
 459     assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
 460     debug_only(if (UseMallocOnly) return malloc(x);)
 461 #if defined(SPARC) && !defined(_LP64)
 462 #define DALIGN_M1 7
 463     size_t delta = (((size_t)_hwm + DALIGN_M1) & ~DALIGN_M1) - (size_t)_hwm;
 464     x += delta;
 465 #endif
 466     if (!check_for_overflow(x, "Arena::Amalloc_D", alloc_failmode))
 467       return NULL;
 468     NOT_PRODUCT(inc_bytes_allocated(x);)
 469     if (_hwm + x > _max) {
 470       return grow(x, alloc_failmode); // grow() returns a result aligned >= 8 bytes.
 471     } else {
 472       char *old = _hwm;
 473       _hwm += x;
 474 #if defined(SPARC) && !defined(_LP64)
 475       old += delta; // align to 8-bytes
 476 #endif
 477       return old;
 478     }
 479   }
 480 
 481   // Fast delete in area.  Common case is: NOP (except for storage reclaimed)
 482   void Afree(void *ptr, size_t size) {
 483 #ifdef ASSERT
 484     if (ZapResourceArea) memset(ptr, badResourceValue, size); // zap freed memory
 485     if (UseMallocOnly) return;
 486 #endif
 487     if (((char*)ptr) + size == _hwm) _hwm = (char*)ptr;
 488   }
 489 
 490   void *Arealloc( void *old_ptr, size_t old_size, size_t new_size,
 491       AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 492 
 493   // Move contents of this arena into an empty arena
 494   Arena *move_contents(Arena *empty_arena);
 495 
 496   // Determine if pointer belongs to this Arena or not.
 497   bool contains( const void *ptr ) const;
 498 
 499   // Total of all chunks in use (not thread-safe)
 500   size_t used() const;
 501 
 502   // Total # of bytes used
 503   size_t size_in_bytes() const         {  return _size_in_bytes; };
 504   void set_size_in_bytes(size_t size);
 505 
 506   static void free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2)  PRODUCT_RETURN;
 507   static void free_all(char** start, char** end)                                     PRODUCT_RETURN;
 508 
 509 private:
 510   // Reset this Arena to empty, access will trigger grow if necessary
 511   void   reset(void) {
 512     _first = _chunk = NULL;
 513     _hwm = _max = NULL;
 514     set_size_in_bytes(0);
 515   }
 516 };
 517 
 518 // One of the following macros must be used when allocating
 519 // an array or object from an arena
 520 #define NEW_ARENA_ARRAY(arena, type, size) \
 521   (type*) (arena)->Amalloc((size) * sizeof(type))
 522 
 523 #define REALLOC_ARENA_ARRAY(arena, type, old, old_size, new_size)    \
 524   (type*) (arena)->Arealloc((char*)(old), (old_size) * sizeof(type), \
 525                             (new_size) * sizeof(type) )
 526 
 527 #define FREE_ARENA_ARRAY(arena, type, old, size) \
 528   (arena)->Afree((char*)(old), (size) * sizeof(type))
 529 
 530 #define NEW_ARENA_OBJ(arena, type) \
 531   NEW_ARENA_ARRAY(arena, type, 1)
 532 
 533 
 534 //%note allocation_1
 535 extern char* resource_allocate_bytes(size_t size,
 536     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 537 extern char* resource_allocate_bytes(Thread* thread, size_t size,
 538     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 539 extern char* resource_reallocate_bytes( char *old, size_t old_size, size_t new_size,
 540     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 541 extern void resource_free_bytes( char *old, size_t size );
 542 
 543 //----------------------------------------------------------------------
 544 // Base class for objects allocated in the resource area per default.
 545 // Optionally, objects may be allocated on the C heap with
 546 // new(ResourceObj::C_HEAP) Foo(...) or in an Arena with new (&arena)
 547 // ResourceObj's can be allocated within other objects, but don't use
 548 // new or delete (allocation_type is unknown).  If new is used to allocate,
 549 // use delete to deallocate.
 550 class ResourceObj ALLOCATION_SUPER_CLASS_SPEC {
 551  public:
 552   enum allocation_type { STACK_OR_EMBEDDED = 0, RESOURCE_AREA, C_HEAP, ARENA, allocation_mask = 0x3 };
 553   static void set_allocation_type(address res, allocation_type type) NOT_DEBUG_RETURN;
 554 #ifdef ASSERT
 555  private:
 556   // When this object is allocated on stack the new() operator is not
 557   // called but garbage on stack may look like a valid allocation_type.
 558   // Store negated 'this' pointer when new() is called to distinguish cases.
 559   // Use second array's element for verification value to distinguish garbage.
 560   uintptr_t _allocation_t[2];
 561   bool is_type_set() const;
 562  public:
 563   allocation_type get_allocation_type() const;
 564   bool allocated_on_stack()    const { return get_allocation_type() == STACK_OR_EMBEDDED; }
 565   bool allocated_on_res_area() const { return get_allocation_type() == RESOURCE_AREA; }
 566   bool allocated_on_C_heap()   const { return get_allocation_type() == C_HEAP; }
 567   bool allocated_on_arena()    const { return get_allocation_type() == ARENA; }
 568   ResourceObj(); // default constructor
 569   ResourceObj(const ResourceObj& r); // default copy constructor
 570   ResourceObj& operator=(const ResourceObj& r); // default copy assignment
 571   ~ResourceObj();
 572 #endif // ASSERT
 573 
 574  public:
 575   void* operator new(size_t size, allocation_type type, MEMFLAGS flags) throw();
 576   void* operator new [](size_t size, allocation_type type, MEMFLAGS flags) throw();
 577   void* operator new(size_t size, const std::nothrow_t&  nothrow_constant,
 578       allocation_type type, MEMFLAGS flags) throw();
 579   void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
 580       allocation_type type, MEMFLAGS flags) throw();
 581 
 582   void* operator new(size_t size, Arena *arena) throw() {
 583       address res = (address)arena->Amalloc(size);
 584       DEBUG_ONLY(set_allocation_type(res, ARENA);)
 585       return res;
 586   }
 587 
 588   void* operator new [](size_t size, Arena *arena) throw() {
 589       address res = (address)arena->Amalloc(size);
 590       DEBUG_ONLY(set_allocation_type(res, ARENA);)
 591       return res;
 592   }
 593 
 594   void* operator new(size_t size) throw() {
 595       address res = (address)resource_allocate_bytes(size);
 596       DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
 597       return res;
 598   }
 599 
 600   void* operator new(size_t size, const std::nothrow_t& nothrow_constant) throw() {
 601       address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
 602       DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
 603       return res;
 604   }
 605 
 606   void* operator new [](size_t size) throw() {
 607       address res = (address)resource_allocate_bytes(size);
 608       DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
 609       return res;
 610   }
 611 
 612   void* operator new [](size_t size, const std::nothrow_t& nothrow_constant) throw() {
 613       address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
 614       DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
 615       return res;
 616   }
 617 
 618   void  operator delete(void* p);
 619   void  operator delete [](void* p);
 620 };
 621 
 622 // One of the following macros must be used when allocating an array
 623 // or object to determine whether it should reside in the C heap on in
 624 // the resource area.
 625 
 626 #define NEW_RESOURCE_ARRAY(type, size)\
 627   (type*) resource_allocate_bytes((size) * sizeof(type))
 628 
 629 #define NEW_RESOURCE_ARRAY_RETURN_NULL(type, size)\
 630   (type*) resource_allocate_bytes((size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
 631 
 632 #define NEW_RESOURCE_ARRAY_IN_THREAD(thread, type, size)\
 633   (type*) resource_allocate_bytes(thread, (size) * sizeof(type))
 634 
 635 #define NEW_RESOURCE_ARRAY_IN_THREAD_RETURN_NULL(thread, type, size)\
 636   (type*) resource_allocate_bytes(thread, (size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
 637 
 638 #define REALLOC_RESOURCE_ARRAY(type, old, old_size, new_size)\
 639   (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type), (new_size) * sizeof(type))
 640 
 641 #define REALLOC_RESOURCE_ARRAY_RETURN_NULL(type, old, old_size, new_size)\
 642   (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type),\
 643                                     (new_size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
 644 
 645 #define FREE_RESOURCE_ARRAY(type, old, size)\
 646   resource_free_bytes((char*)(old), (size) * sizeof(type))
 647 
 648 #define FREE_FAST(old)\
 649     /* nop */
 650 
 651 #define NEW_RESOURCE_OBJ(type)\
 652   NEW_RESOURCE_ARRAY(type, 1)
 653 
 654 #define NEW_RESOURCE_OBJ_RETURN_NULL(type)\
 655   NEW_RESOURCE_ARRAY_RETURN_NULL(type, 1)
 656 
 657 #define NEW_C_HEAP_ARRAY3(type, size, memflags, pc, allocfail)\
 658   (type*) AllocateHeap((size) * sizeof(type), memflags, pc, allocfail)
 659 
 660 #define NEW_C_HEAP_ARRAY2(type, size, memflags, pc)\
 661   (type*) (AllocateHeap((size) * sizeof(type), memflags, pc))
 662 
 663 #define NEW_C_HEAP_ARRAY(type, size, memflags)\
 664   (type*) (AllocateHeap((size) * sizeof(type), memflags))
 665 
 666 #define NEW_C_HEAP_ARRAY2_RETURN_NULL(type, size, memflags, pc)\
 667   NEW_C_HEAP_ARRAY3(type, (size), memflags, pc, AllocFailStrategy::RETURN_NULL)
 668 
 669 #define NEW_C_HEAP_ARRAY_RETURN_NULL(type, size, memflags)\
 670   NEW_C_HEAP_ARRAY3(type, (size), memflags, CURRENT_PC, AllocFailStrategy::RETURN_NULL)
 671 
 672 #define REALLOC_C_HEAP_ARRAY(type, old, size, memflags)\
 673   (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags))
 674 
 675 #define REALLOC_C_HEAP_ARRAY_RETURN_NULL(type, old, size, memflags)\
 676   (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags, AllocFailStrategy::RETURN_NULL))
 677 
 678 #define FREE_C_HEAP_ARRAY(type, old) \
 679   FreeHeap((char*)(old))
 680 
 681 // allocate type in heap without calling ctor
 682 #define NEW_C_HEAP_OBJ(type, memflags)\
 683   NEW_C_HEAP_ARRAY(type, 1, memflags)
 684 
 685 #define NEW_C_HEAP_OBJ_RETURN_NULL(type, memflags)\
 686   NEW_C_HEAP_ARRAY_RETURN_NULL(type, 1, memflags)
 687 
 688 // deallocate obj of type in heap without calling dtor
 689 #define FREE_C_HEAP_OBJ(objname)\
 690   FreeHeap((char*)objname);
 691 
 692 // for statistics
 693 #ifndef PRODUCT
 694 class AllocStats : StackObj {
 695   julong start_mallocs, start_frees;
 696   julong start_malloc_bytes, start_mfree_bytes, start_res_bytes;
 697  public:
 698   AllocStats();
 699 
 700   julong num_mallocs();    // since creation of receiver
 701   julong alloc_bytes();
 702   julong num_frees();
 703   julong free_bytes();
 704   julong resource_bytes();
 705   void   print();
 706 };
 707 #endif
 708 
 709 
 710 //------------------------------ReallocMark---------------------------------
 711 // Code which uses REALLOC_RESOURCE_ARRAY should check an associated
 712 // ReallocMark, which is declared in the same scope as the reallocated
 713 // pointer.  Any operation that could __potentially__ cause a reallocation
 714 // should check the ReallocMark.
 715 class ReallocMark: public StackObj {
 716 protected:
 717   NOT_PRODUCT(int _nesting;)
 718 
 719 public:
 720   ReallocMark()   PRODUCT_RETURN;
 721   void check()    PRODUCT_RETURN;
 722 };
 723 
 724 // Helper class to allocate arrays that may become large.
 725 // Uses the OS malloc for allocations smaller than ArrayAllocatorMallocLimit
 726 // and uses mapped memory for larger allocations.
 727 // Most OS mallocs do something similar but Solaris malloc does not revert
 728 // to mapped memory for large allocations. By default ArrayAllocatorMallocLimit
 729 // is set so that we always use malloc except for Solaris where we set the
 730 // limit to get mapped memory.
 731 template <class E, MEMFLAGS F>
 732 class ArrayAllocator VALUE_OBJ_CLASS_SPEC {
 733   char* _addr;
 734   bool _use_malloc;
 735   size_t _size;
 736   bool _free_in_destructor;
 737 
 738   static bool should_use_malloc(size_t size) {
 739     return size < ArrayAllocatorMallocLimit;
 740   }
 741 
 742   static char* allocate_inner(size_t& size, bool& use_malloc);
 743  public:
 744   ArrayAllocator(bool free_in_destructor = true) :
 745     _addr(NULL), _use_malloc(false), _size(0), _free_in_destructor(free_in_destructor) { }
 746 
 747   ~ArrayAllocator() {
 748     if (_free_in_destructor) {
 749       free();
 750     }
 751   }
 752 
 753   E* allocate(size_t length);
 754   E* reallocate(size_t new_length);
 755   void free();
 756 };
 757 
 758 #endif // SHARE_VM_MEMORY_ALLOCATION_HPP