1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "gc/shared/gcLocker.hpp"
  32 #include "libadt/dict.hpp"
  33 #include "memory/oopFactory.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/instanceKlass.hpp"
  36 #include "oops/instanceMirrorKlass.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "oops/typeArrayKlass.hpp"
  39 #include "opto/matcher.hpp"
  40 #include "opto/node.hpp"
  41 #include "opto/opcodes.hpp"
  42 #include "opto/type.hpp"
  43 
  44 // Portions of code courtesy of Clifford Click
  45 
  46 // Optimization - Graph Style
  47 
  48 // Dictionary of types shared among compilations.
  49 Dict* Type::_shared_type_dict = NULL;
  50 
  51 // Array which maps compiler types to Basic Types
  52 Type::TypeInfo Type::_type_info[Type::lastype] = {
  53   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  54   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  55   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  56   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  57   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  58   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  59   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  60   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  61   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  62   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  63 
  64 #ifdef SPARC
  65   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  66   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
  67   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  68   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  69   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  70 #elif defined(PPC64)
  71   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  72   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  73   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  74   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  75   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  76 #else // all other
  77   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  78   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  79   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  80   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  81   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
  82 #endif
  83   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  84   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
  85   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  86   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
  87   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
  88   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
  89   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
  90   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
  91   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
  92   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
  93   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
  94   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
  95   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
  96   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
  97   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
  98   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
  99   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 100   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 101 };
 102 
 103 // Map ideal registers (machine types) to ideal types
 104 const Type *Type::mreg2type[_last_machine_leaf];
 105 
 106 // Map basic types to canonical Type* pointers.
 107 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 108 
 109 // Map basic types to constant-zero Types.
 110 const Type* Type::            _zero_type[T_CONFLICT+1];
 111 
 112 // Map basic types to array-body alias types.
 113 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 114 
 115 //=============================================================================
 116 // Convenience common pre-built types.
 117 const Type *Type::ABIO;         // State-of-machine only
 118 const Type *Type::BOTTOM;       // All values
 119 const Type *Type::CONTROL;      // Control only
 120 const Type *Type::DOUBLE;       // All doubles
 121 const Type *Type::FLOAT;        // All floats
 122 const Type *Type::HALF;         // Placeholder half of doublewide type
 123 const Type *Type::MEMORY;       // Abstract store only
 124 const Type *Type::RETURN_ADDRESS;
 125 const Type *Type::TOP;          // No values in set
 126 
 127 //------------------------------get_const_type---------------------------
 128 const Type* Type::get_const_type(ciType* type) {
 129   if (type == NULL) {
 130     return NULL;
 131   } else if (type->is_primitive_type()) {
 132     return get_const_basic_type(type->basic_type());
 133   } else {
 134     return TypeOopPtr::make_from_klass(type->as_klass());
 135   }
 136 }
 137 
 138 //---------------------------array_element_basic_type---------------------------------
 139 // Mapping to the array element's basic type.
 140 BasicType Type::array_element_basic_type() const {
 141   BasicType bt = basic_type();
 142   if (bt == T_INT) {
 143     if (this == TypeInt::INT)   return T_INT;
 144     if (this == TypeInt::CHAR)  return T_CHAR;
 145     if (this == TypeInt::BYTE)  return T_BYTE;
 146     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 147     if (this == TypeInt::SHORT) return T_SHORT;
 148     return T_VOID;
 149   }
 150   return bt;
 151 }
 152 
 153 //---------------------------get_typeflow_type---------------------------------
 154 // Import a type produced by ciTypeFlow.
 155 const Type* Type::get_typeflow_type(ciType* type) {
 156   switch (type->basic_type()) {
 157 
 158   case ciTypeFlow::StateVector::T_BOTTOM:
 159     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 160     return Type::BOTTOM;
 161 
 162   case ciTypeFlow::StateVector::T_TOP:
 163     assert(type == ciTypeFlow::StateVector::top_type(), "");
 164     return Type::TOP;
 165 
 166   case ciTypeFlow::StateVector::T_NULL:
 167     assert(type == ciTypeFlow::StateVector::null_type(), "");
 168     return TypePtr::NULL_PTR;
 169 
 170   case ciTypeFlow::StateVector::T_LONG2:
 171     // The ciTypeFlow pass pushes a long, then the half.
 172     // We do the same.
 173     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 174     return TypeInt::TOP;
 175 
 176   case ciTypeFlow::StateVector::T_DOUBLE2:
 177     // The ciTypeFlow pass pushes double, then the half.
 178     // Our convention is the same.
 179     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 180     return Type::TOP;
 181 
 182   case T_ADDRESS:
 183     assert(type->is_return_address(), "");
 184     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 185 
 186   default:
 187     // make sure we did not mix up the cases:
 188     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 189     assert(type != ciTypeFlow::StateVector::top_type(), "");
 190     assert(type != ciTypeFlow::StateVector::null_type(), "");
 191     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 192     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 193     assert(!type->is_return_address(), "");
 194 
 195     return Type::get_const_type(type);
 196   }
 197 }
 198 
 199 
 200 //-----------------------make_from_constant------------------------------------
 201 const Type* Type::make_from_constant(ciConstant constant, bool require_constant) {
 202   switch (constant.basic_type()) {
 203   case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 204   case T_CHAR:     return TypeInt::make(constant.as_char());
 205   case T_BYTE:     return TypeInt::make(constant.as_byte());
 206   case T_SHORT:    return TypeInt::make(constant.as_short());
 207   case T_INT:      return TypeInt::make(constant.as_int());
 208   case T_LONG:     return TypeLong::make(constant.as_long());
 209   case T_FLOAT:    return TypeF::make(constant.as_float());
 210   case T_DOUBLE:   return TypeD::make(constant.as_double());
 211   case T_ARRAY:
 212   case T_OBJECT:
 213     {
 214       // cases:
 215       //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 216       //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 217       // An oop is not scavengable if it is in the perm gen.
 218       ciObject* oop_constant = constant.as_object();
 219       if (oop_constant->is_null_object()) {
 220         return Type::get_zero_type(T_OBJECT);
 221       } else if (require_constant || oop_constant->should_be_constant()) {
 222         return TypeOopPtr::make_from_constant(oop_constant, require_constant);
 223       }
 224     }
 225   case T_ILLEGAL:
 226     // Invalid ciConstant returned due to OutOfMemoryError in the CI
 227     assert(Compile::current()->env()->failing(), "otherwise should not see this");
 228     return NULL;
 229   }
 230   // Fall through to failure
 231   return NULL;
 232 }
 233 
 234 
 235 const Type* Type::make_constant(ciField* field, Node* obj) {
 236   if (!field->is_constant())  return NULL;
 237 
 238   const Type* con_type = NULL;
 239   if (field->is_static()) {
 240     // final static field
 241     con_type = Type::make_from_constant(field->constant_value(), /*require_const=*/true);
 242     if (Compile::current()->eliminate_boxing() && field->is_autobox_cache() && con_type != NULL) {
 243       con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
 244     }
 245   } else {
 246     // final or stable non-static field
 247     // Treat final non-static fields of trusted classes (classes in
 248     // java.lang.invoke and sun.invoke packages and subpackages) as
 249     // compile time constants.
 250     if (obj->is_Con()) {
 251       const TypeOopPtr* oop_ptr = obj->bottom_type()->isa_oopptr();
 252       ciObject* constant_oop = oop_ptr->const_oop();
 253       ciConstant constant = field->constant_value_of(constant_oop);
 254       con_type = Type::make_from_constant(constant, /*require_const=*/true);
 255     }
 256   }
 257   if (FoldStableValues && field->is_stable() && con_type != NULL) {
 258     if (con_type->is_zero_type()) {
 259       return NULL; // the field hasn't been initialized yet
 260     } else if (con_type->isa_oopptr()) {
 261       const Type* stable_type = Type::get_const_type(field->type());
 262       if (field->type()->is_array_klass()) {
 263         int stable_dimension = field->type()->as_array_klass()->dimension();
 264         stable_type = stable_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 265       }
 266       if (stable_type != NULL) {
 267         con_type = con_type->join_speculative(stable_type);
 268       }
 269     }
 270   }
 271   return con_type;
 272 }
 273 
 274 //------------------------------make-------------------------------------------
 275 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 276 // and look for an existing copy in the type dictionary.
 277 const Type *Type::make( enum TYPES t ) {
 278   return (new Type(t))->hashcons();
 279 }
 280 
 281 //------------------------------cmp--------------------------------------------
 282 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 283   if( t1->_base != t2->_base )
 284     return 1;                   // Missed badly
 285   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 286   return !t1->eq(t2);           // Return ZERO if equal
 287 }
 288 
 289 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 290   if (!include_speculative) {
 291     return remove_speculative();
 292   }
 293   return this;
 294 }
 295 
 296 //------------------------------hash-------------------------------------------
 297 int Type::uhash( const Type *const t ) {
 298   return t->hash();
 299 }
 300 
 301 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 302 
 303 //--------------------------Initialize_shared----------------------------------
 304 void Type::Initialize_shared(Compile* current) {
 305   // This method does not need to be locked because the first system
 306   // compilations (stub compilations) occur serially.  If they are
 307   // changed to proceed in parallel, then this section will need
 308   // locking.
 309 
 310   Arena* save = current->type_arena();
 311   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 312 
 313   current->set_type_arena(shared_type_arena);
 314   _shared_type_dict =
 315     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 316                                   shared_type_arena, 128 );
 317   current->set_type_dict(_shared_type_dict);
 318 
 319   // Make shared pre-built types.
 320   CONTROL = make(Control);      // Control only
 321   TOP     = make(Top);          // No values in set
 322   MEMORY  = make(Memory);       // Abstract store only
 323   ABIO    = make(Abio);         // State-of-machine only
 324   RETURN_ADDRESS=make(Return_Address);
 325   FLOAT   = make(FloatBot);     // All floats
 326   DOUBLE  = make(DoubleBot);    // All doubles
 327   BOTTOM  = make(Bottom);       // Everything
 328   HALF    = make(Half);         // Placeholder half of doublewide type
 329 
 330   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 331   TypeF::ONE  = TypeF::make(1.0); // Float 1
 332 
 333   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 334   TypeD::ONE  = TypeD::make(1.0); // Double 1
 335 
 336   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 337   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 338   TypeInt::ONE     = TypeInt::make( 1);  //  1
 339   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 340   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 341   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 342   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 343   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 344   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 345   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 346   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 347   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 348   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 349   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 350   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 351   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 352   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 353   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 354   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 355   // CmpL is overloaded both as the bytecode computation returning
 356   // a trinary (-1,0,+1) integer result AND as an efficient long
 357   // compare returning optimizer ideal-type flags.
 358   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 359   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 360   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 361   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 362   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 363 
 364   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 365   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 366   TypeLong::ONE     = TypeLong::make( 1);        //  1
 367   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 368   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 369   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 370   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 371   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 372 
 373   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 374   fboth[0] = Type::CONTROL;
 375   fboth[1] = Type::CONTROL;
 376   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 377 
 378   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 379   ffalse[0] = Type::CONTROL;
 380   ffalse[1] = Type::TOP;
 381   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 382 
 383   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 384   fneither[0] = Type::TOP;
 385   fneither[1] = Type::TOP;
 386   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 387 
 388   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 389   ftrue[0] = Type::TOP;
 390   ftrue[1] = Type::CONTROL;
 391   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 392 
 393   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 394   floop[0] = Type::CONTROL;
 395   floop[1] = TypeInt::INT;
 396   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 397 
 398   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
 399   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
 400   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
 401 
 402   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 403   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 404 
 405   const Type **fmembar = TypeTuple::fields(0);
 406   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 407 
 408   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 409   fsc[0] = TypeInt::CC;
 410   fsc[1] = Type::MEMORY;
 411   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 412 
 413   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 414   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 415   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 416   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 417                                            false, 0, oopDesc::mark_offset_in_bytes());
 418   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 419                                            false, 0, oopDesc::klass_offset_in_bytes());
 420   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 421 
 422   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
 423 
 424   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 425   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 426 
 427   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 428 
 429   mreg2type[Op_Node] = Type::BOTTOM;
 430   mreg2type[Op_Set ] = 0;
 431   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 432   mreg2type[Op_RegI] = TypeInt::INT;
 433   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 434   mreg2type[Op_RegF] = Type::FLOAT;
 435   mreg2type[Op_RegD] = Type::DOUBLE;
 436   mreg2type[Op_RegL] = TypeLong::LONG;
 437   mreg2type[Op_RegFlags] = TypeInt::CC;
 438 
 439   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 440 
 441   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 442 
 443 #ifdef _LP64
 444   if (UseCompressedOops) {
 445     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 446     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 447   } else
 448 #endif
 449   {
 450     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 451     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 452   }
 453   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 454   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 455   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 456   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 457   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 458   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 459   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 460 
 461   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 462   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 463   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 464   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 465   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 466   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 467   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 468   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 469   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 470   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 471   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 472   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 473 
 474   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 475   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 476 
 477   const Type **fi2c = TypeTuple::fields(2);
 478   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 479   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 480   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 481 
 482   const Type **intpair = TypeTuple::fields(2);
 483   intpair[0] = TypeInt::INT;
 484   intpair[1] = TypeInt::INT;
 485   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 486 
 487   const Type **longpair = TypeTuple::fields(2);
 488   longpair[0] = TypeLong::LONG;
 489   longpair[1] = TypeLong::LONG;
 490   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 491 
 492   const Type **intccpair = TypeTuple::fields(2);
 493   intccpair[0] = TypeInt::INT;
 494   intccpair[1] = TypeInt::CC;
 495   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 496 
 497   const Type **longccpair = TypeTuple::fields(2);
 498   longccpair[0] = TypeLong::LONG;
 499   longccpair[1] = TypeInt::CC;
 500   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 501 
 502   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 503   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 504   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 505   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 506   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 507   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 508   _const_basic_type[T_INT]         = TypeInt::INT;
 509   _const_basic_type[T_LONG]        = TypeLong::LONG;
 510   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 511   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 512   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 513   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 514   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 515   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 516   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 517 
 518   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 519   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 520   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 521   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 522   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 523   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 524   _zero_type[T_INT]         = TypeInt::ZERO;
 525   _zero_type[T_LONG]        = TypeLong::ZERO;
 526   _zero_type[T_FLOAT]       = TypeF::ZERO;
 527   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 528   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 529   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 530   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 531   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 532 
 533   // get_zero_type() should not happen for T_CONFLICT
 534   _zero_type[T_CONFLICT]= NULL;
 535 
 536   // Vector predefined types, it needs initialized _const_basic_type[].
 537   if (Matcher::vector_size_supported(T_BYTE,4)) {
 538     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 539   }
 540   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 541     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 542   }
 543   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 544     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 545   }
 546   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 547     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 548   }
 549   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 550     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 551   }
 552   mreg2type[Op_VecS] = TypeVect::VECTS;
 553   mreg2type[Op_VecD] = TypeVect::VECTD;
 554   mreg2type[Op_VecX] = TypeVect::VECTX;
 555   mreg2type[Op_VecY] = TypeVect::VECTY;
 556   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 557 
 558   // Restore working type arena.
 559   current->set_type_arena(save);
 560   current->set_type_dict(NULL);
 561 }
 562 
 563 //------------------------------Initialize-------------------------------------
 564 void Type::Initialize(Compile* current) {
 565   assert(current->type_arena() != NULL, "must have created type arena");
 566 
 567   if (_shared_type_dict == NULL) {
 568     Initialize_shared(current);
 569   }
 570 
 571   Arena* type_arena = current->type_arena();
 572 
 573   // Create the hash-cons'ing dictionary with top-level storage allocation
 574   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 575   current->set_type_dict(tdic);
 576 
 577   // Transfer the shared types.
 578   DictI i(_shared_type_dict);
 579   for( ; i.test(); ++i ) {
 580     Type* t = (Type*)i._value;
 581     tdic->Insert(t,t);  // New Type, insert into Type table
 582   }
 583 }
 584 
 585 //------------------------------hashcons---------------------------------------
 586 // Do the hash-cons trick.  If the Type already exists in the type table,
 587 // delete the current Type and return the existing Type.  Otherwise stick the
 588 // current Type in the Type table.
 589 const Type *Type::hashcons(void) {
 590   debug_only(base());           // Check the assertion in Type::base().
 591   // Look up the Type in the Type dictionary
 592   Dict *tdic = type_dict();
 593   Type* old = (Type*)(tdic->Insert(this, this, false));
 594   if( old ) {                   // Pre-existing Type?
 595     if( old != this )           // Yes, this guy is not the pre-existing?
 596       delete this;              // Yes, Nuke this guy
 597     assert( old->_dual, "" );
 598     return old;                 // Return pre-existing
 599   }
 600 
 601   // Every type has a dual (to make my lattice symmetric).
 602   // Since we just discovered a new Type, compute its dual right now.
 603   assert( !_dual, "" );         // No dual yet
 604   _dual = xdual();              // Compute the dual
 605   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 606     _dual = this;
 607     return this;
 608   }
 609   assert( !_dual->_dual, "" );  // No reverse dual yet
 610   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 611   // New Type, insert into Type table
 612   tdic->Insert((void*)_dual,(void*)_dual);
 613   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 614 #ifdef ASSERT
 615   Type *dual_dual = (Type*)_dual->xdual();
 616   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 617   delete dual_dual;
 618 #endif
 619   return this;                  // Return new Type
 620 }
 621 
 622 //------------------------------eq---------------------------------------------
 623 // Structural equality check for Type representations
 624 bool Type::eq( const Type * ) const {
 625   return true;                  // Nothing else can go wrong
 626 }
 627 
 628 //------------------------------hash-------------------------------------------
 629 // Type-specific hashing function.
 630 int Type::hash(void) const {
 631   return _base;
 632 }
 633 
 634 //------------------------------is_finite--------------------------------------
 635 // Has a finite value
 636 bool Type::is_finite() const {
 637   return false;
 638 }
 639 
 640 //------------------------------is_nan-----------------------------------------
 641 // Is not a number (NaN)
 642 bool Type::is_nan()    const {
 643   return false;
 644 }
 645 
 646 //----------------------interface_vs_oop---------------------------------------
 647 #ifdef ASSERT
 648 bool Type::interface_vs_oop_helper(const Type *t) const {
 649   bool result = false;
 650 
 651   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 652   const TypePtr*    t_ptr =    t->make_ptr();
 653   if( this_ptr == NULL || t_ptr == NULL )
 654     return result;
 655 
 656   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 657   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 658   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 659     bool this_interface = this_inst->klass()->is_interface();
 660     bool    t_interface =    t_inst->klass()->is_interface();
 661     result = this_interface ^ t_interface;
 662   }
 663 
 664   return result;
 665 }
 666 
 667 bool Type::interface_vs_oop(const Type *t) const {
 668   if (interface_vs_oop_helper(t)) {
 669     return true;
 670   }
 671   // Now check the speculative parts as well
 672   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 673   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 674   if (this_spec != NULL && t_spec != NULL) {
 675     if (this_spec->interface_vs_oop_helper(t_spec)) {
 676       return true;
 677     }
 678     return false;
 679   }
 680   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 681     return true;
 682   }
 683   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 684     return true;
 685   }
 686   return false;
 687 }
 688 
 689 #endif
 690 
 691 //------------------------------meet-------------------------------------------
 692 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 693 // commutative and the lattice is symmetric.
 694 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 695   if (isa_narrowoop() && t->isa_narrowoop()) {
 696     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 697     return result->make_narrowoop();
 698   }
 699   if (isa_narrowklass() && t->isa_narrowklass()) {
 700     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 701     return result->make_narrowklass();
 702   }
 703 
 704   const Type *this_t = maybe_remove_speculative(include_speculative);
 705   t = t->maybe_remove_speculative(include_speculative);
 706 
 707   const Type *mt = this_t->xmeet(t);
 708   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 709   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 710 #ifdef ASSERT
 711   assert(mt == t->xmeet(this_t), "meet not commutative");
 712   const Type* dual_join = mt->_dual;
 713   const Type *t2t    = dual_join->xmeet(t->_dual);
 714   const Type *t2this = dual_join->xmeet(this_t->_dual);
 715 
 716   // Interface meet Oop is Not Symmetric:
 717   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 718   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 719 
 720   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 721     tty->print_cr("=== Meet Not Symmetric ===");
 722     tty->print("t   =                   ");              t->dump(); tty->cr();
 723     tty->print("this=                   ");         this_t->dump(); tty->cr();
 724     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 725 
 726     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 727     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 728     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 729 
 730     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 731     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 732 
 733     fatal("meet not symmetric" );
 734   }
 735 #endif
 736   return mt;
 737 }
 738 
 739 //------------------------------xmeet------------------------------------------
 740 // Compute the MEET of two types.  It returns a new Type object.
 741 const Type *Type::xmeet( const Type *t ) const {
 742   // Perform a fast test for common case; meeting the same types together.
 743   if( this == t ) return this;  // Meeting same type-rep?
 744 
 745   // Meeting TOP with anything?
 746   if( _base == Top ) return t;
 747 
 748   // Meeting BOTTOM with anything?
 749   if( _base == Bottom ) return BOTTOM;
 750 
 751   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 752   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 753   switch (t->base()) {  // Switch on original type
 754 
 755   // Cut in half the number of cases I must handle.  Only need cases for when
 756   // the given enum "t->type" is less than or equal to the local enum "type".
 757   case FloatCon:
 758   case DoubleCon:
 759   case Int:
 760   case Long:
 761     return t->xmeet(this);
 762 
 763   case OopPtr:
 764     return t->xmeet(this);
 765 
 766   case InstPtr:
 767     return t->xmeet(this);
 768 
 769   case MetadataPtr:
 770   case KlassPtr:
 771     return t->xmeet(this);
 772 
 773   case AryPtr:
 774     return t->xmeet(this);
 775 
 776   case NarrowOop:
 777     return t->xmeet(this);
 778 
 779   case NarrowKlass:
 780     return t->xmeet(this);
 781 
 782   case Bad:                     // Type check
 783   default:                      // Bogus type not in lattice
 784     typerr(t);
 785     return Type::BOTTOM;
 786 
 787   case Bottom:                  // Ye Olde Default
 788     return t;
 789 
 790   case FloatTop:
 791     if( _base == FloatTop ) return this;
 792   case FloatBot:                // Float
 793     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 794     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 795     typerr(t);
 796     return Type::BOTTOM;
 797 
 798   case DoubleTop:
 799     if( _base == DoubleTop ) return this;
 800   case DoubleBot:               // Double
 801     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 802     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 803     typerr(t);
 804     return Type::BOTTOM;
 805 
 806   // These next few cases must match exactly or it is a compile-time error.
 807   case Control:                 // Control of code
 808   case Abio:                    // State of world outside of program
 809   case Memory:
 810     if( _base == t->_base )  return this;
 811     typerr(t);
 812     return Type::BOTTOM;
 813 
 814   case Top:                     // Top of the lattice
 815     return this;
 816   }
 817 
 818   // The type is unchanged
 819   return this;
 820 }
 821 
 822 //-----------------------------filter------------------------------------------
 823 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
 824   const Type* ft = join_helper(kills, include_speculative);
 825   if (ft->empty())
 826     return Type::TOP;           // Canonical empty value
 827   return ft;
 828 }
 829 
 830 //------------------------------xdual------------------------------------------
 831 // Compute dual right now.
 832 const Type::TYPES Type::dual_type[Type::lastype] = {
 833   Bad,          // Bad
 834   Control,      // Control
 835   Bottom,       // Top
 836   Bad,          // Int - handled in v-call
 837   Bad,          // Long - handled in v-call
 838   Half,         // Half
 839   Bad,          // NarrowOop - handled in v-call
 840   Bad,          // NarrowKlass - handled in v-call
 841 
 842   Bad,          // Tuple - handled in v-call
 843   Bad,          // Array - handled in v-call
 844   Bad,          // VectorS - handled in v-call
 845   Bad,          // VectorD - handled in v-call
 846   Bad,          // VectorX - handled in v-call
 847   Bad,          // VectorY - handled in v-call
 848   Bad,          // VectorZ - handled in v-call
 849 
 850   Bad,          // AnyPtr - handled in v-call
 851   Bad,          // RawPtr - handled in v-call
 852   Bad,          // OopPtr - handled in v-call
 853   Bad,          // InstPtr - handled in v-call
 854   Bad,          // AryPtr - handled in v-call
 855 
 856   Bad,          //  MetadataPtr - handled in v-call
 857   Bad,          // KlassPtr - handled in v-call
 858 
 859   Bad,          // Function - handled in v-call
 860   Abio,         // Abio
 861   Return_Address,// Return_Address
 862   Memory,       // Memory
 863   FloatBot,     // FloatTop
 864   FloatCon,     // FloatCon
 865   FloatTop,     // FloatBot
 866   DoubleBot,    // DoubleTop
 867   DoubleCon,    // DoubleCon
 868   DoubleTop,    // DoubleBot
 869   Top           // Bottom
 870 };
 871 
 872 const Type *Type::xdual() const {
 873   // Note: the base() accessor asserts the sanity of _base.
 874   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
 875   return new Type(_type_info[_base].dual_type);
 876 }
 877 
 878 //------------------------------has_memory-------------------------------------
 879 bool Type::has_memory() const {
 880   Type::TYPES tx = base();
 881   if (tx == Memory) return true;
 882   if (tx == Tuple) {
 883     const TypeTuple *t = is_tuple();
 884     for (uint i=0; i < t->cnt(); i++) {
 885       tx = t->field_at(i)->base();
 886       if (tx == Memory)  return true;
 887     }
 888   }
 889   return false;
 890 }
 891 
 892 #ifndef PRODUCT
 893 //------------------------------dump2------------------------------------------
 894 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
 895   st->print("%s", _type_info[_base].msg);
 896 }
 897 
 898 //------------------------------dump-------------------------------------------
 899 void Type::dump_on(outputStream *st) const {
 900   ResourceMark rm;
 901   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
 902   dump2(d,1, st);
 903   if (is_ptr_to_narrowoop()) {
 904     st->print(" [narrow]");
 905   } else if (is_ptr_to_narrowklass()) {
 906     st->print(" [narrowklass]");
 907   }
 908 }
 909 #endif
 910 
 911 //------------------------------singleton--------------------------------------
 912 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 913 // constants (Ldi nodes).  Singletons are integer, float or double constants.
 914 bool Type::singleton(void) const {
 915   return _base == Top || _base == Half;
 916 }
 917 
 918 //------------------------------empty------------------------------------------
 919 // TRUE if Type is a type with no values, FALSE otherwise.
 920 bool Type::empty(void) const {
 921   switch (_base) {
 922   case DoubleTop:
 923   case FloatTop:
 924   case Top:
 925     return true;
 926 
 927   case Half:
 928   case Abio:
 929   case Return_Address:
 930   case Memory:
 931   case Bottom:
 932   case FloatBot:
 933   case DoubleBot:
 934     return false;  // never a singleton, therefore never empty
 935   }
 936 
 937   ShouldNotReachHere();
 938   return false;
 939 }
 940 
 941 //------------------------------dump_stats-------------------------------------
 942 // Dump collected statistics to stderr
 943 #ifndef PRODUCT
 944 void Type::dump_stats() {
 945   tty->print("Types made: %d\n", type_dict()->Size());
 946 }
 947 #endif
 948 
 949 //------------------------------typerr-----------------------------------------
 950 void Type::typerr( const Type *t ) const {
 951 #ifndef PRODUCT
 952   tty->print("\nError mixing types: ");
 953   dump();
 954   tty->print(" and ");
 955   t->dump();
 956   tty->print("\n");
 957 #endif
 958   ShouldNotReachHere();
 959 }
 960 
 961 
 962 //=============================================================================
 963 // Convenience common pre-built types.
 964 const TypeF *TypeF::ZERO;       // Floating point zero
 965 const TypeF *TypeF::ONE;        // Floating point one
 966 
 967 //------------------------------make-------------------------------------------
 968 // Create a float constant
 969 const TypeF *TypeF::make(float f) {
 970   return (TypeF*)(new TypeF(f))->hashcons();
 971 }
 972 
 973 //------------------------------meet-------------------------------------------
 974 // Compute the MEET of two types.  It returns a new Type object.
 975 const Type *TypeF::xmeet( const Type *t ) const {
 976   // Perform a fast test for common case; meeting the same types together.
 977   if( this == t ) return this;  // Meeting same type-rep?
 978 
 979   // Current "this->_base" is FloatCon
 980   switch (t->base()) {          // Switch on original type
 981   case AnyPtr:                  // Mixing with oops happens when javac
 982   case RawPtr:                  // reuses local variables
 983   case OopPtr:
 984   case InstPtr:
 985   case AryPtr:
 986   case MetadataPtr:
 987   case KlassPtr:
 988   case NarrowOop:
 989   case NarrowKlass:
 990   case Int:
 991   case Long:
 992   case DoubleTop:
 993   case DoubleCon:
 994   case DoubleBot:
 995   case Bottom:                  // Ye Olde Default
 996     return Type::BOTTOM;
 997 
 998   case FloatBot:
 999     return t;
1000 
1001   default:                      // All else is a mistake
1002     typerr(t);
1003 
1004   case FloatCon:                // Float-constant vs Float-constant?
1005     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1006                                 // must compare bitwise as positive zero, negative zero and NaN have
1007                                 // all the same representation in C++
1008       return FLOAT;             // Return generic float
1009                                 // Equal constants
1010   case Top:
1011   case FloatTop:
1012     break;                      // Return the float constant
1013   }
1014   return this;                  // Return the float constant
1015 }
1016 
1017 //------------------------------xdual------------------------------------------
1018 // Dual: symmetric
1019 const Type *TypeF::xdual() const {
1020   return this;
1021 }
1022 
1023 //------------------------------eq---------------------------------------------
1024 // Structural equality check for Type representations
1025 bool TypeF::eq(const Type *t) const {
1026   // Bitwise comparison to distinguish between +/-0. These values must be treated
1027   // as different to be consistent with C1 and the interpreter.
1028   return (jint_cast(_f) == jint_cast(t->getf()));
1029 }
1030 
1031 //------------------------------hash-------------------------------------------
1032 // Type-specific hashing function.
1033 int TypeF::hash(void) const {
1034   return *(int*)(&_f);
1035 }
1036 
1037 //------------------------------is_finite--------------------------------------
1038 // Has a finite value
1039 bool TypeF::is_finite() const {
1040   return g_isfinite(getf()) != 0;
1041 }
1042 
1043 //------------------------------is_nan-----------------------------------------
1044 // Is not a number (NaN)
1045 bool TypeF::is_nan()    const {
1046   return g_isnan(getf()) != 0;
1047 }
1048 
1049 //------------------------------dump2------------------------------------------
1050 // Dump float constant Type
1051 #ifndef PRODUCT
1052 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1053   Type::dump2(d,depth, st);
1054   st->print("%f", _f);
1055 }
1056 #endif
1057 
1058 //------------------------------singleton--------------------------------------
1059 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1060 // constants (Ldi nodes).  Singletons are integer, float or double constants
1061 // or a single symbol.
1062 bool TypeF::singleton(void) const {
1063   return true;                  // Always a singleton
1064 }
1065 
1066 bool TypeF::empty(void) const {
1067   return false;                 // always exactly a singleton
1068 }
1069 
1070 //=============================================================================
1071 // Convenience common pre-built types.
1072 const TypeD *TypeD::ZERO;       // Floating point zero
1073 const TypeD *TypeD::ONE;        // Floating point one
1074 
1075 //------------------------------make-------------------------------------------
1076 const TypeD *TypeD::make(double d) {
1077   return (TypeD*)(new TypeD(d))->hashcons();
1078 }
1079 
1080 //------------------------------meet-------------------------------------------
1081 // Compute the MEET of two types.  It returns a new Type object.
1082 const Type *TypeD::xmeet( const Type *t ) const {
1083   // Perform a fast test for common case; meeting the same types together.
1084   if( this == t ) return this;  // Meeting same type-rep?
1085 
1086   // Current "this->_base" is DoubleCon
1087   switch (t->base()) {          // Switch on original type
1088   case AnyPtr:                  // Mixing with oops happens when javac
1089   case RawPtr:                  // reuses local variables
1090   case OopPtr:
1091   case InstPtr:
1092   case AryPtr:
1093   case MetadataPtr:
1094   case KlassPtr:
1095   case NarrowOop:
1096   case NarrowKlass:
1097   case Int:
1098   case Long:
1099   case FloatTop:
1100   case FloatCon:
1101   case FloatBot:
1102   case Bottom:                  // Ye Olde Default
1103     return Type::BOTTOM;
1104 
1105   case DoubleBot:
1106     return t;
1107 
1108   default:                      // All else is a mistake
1109     typerr(t);
1110 
1111   case DoubleCon:               // Double-constant vs Double-constant?
1112     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1113       return DOUBLE;            // Return generic double
1114   case Top:
1115   case DoubleTop:
1116     break;
1117   }
1118   return this;                  // Return the double constant
1119 }
1120 
1121 //------------------------------xdual------------------------------------------
1122 // Dual: symmetric
1123 const Type *TypeD::xdual() const {
1124   return this;
1125 }
1126 
1127 //------------------------------eq---------------------------------------------
1128 // Structural equality check for Type representations
1129 bool TypeD::eq(const Type *t) const {
1130   // Bitwise comparison to distinguish between +/-0. These values must be treated
1131   // as different to be consistent with C1 and the interpreter.
1132   return (jlong_cast(_d) == jlong_cast(t->getd()));
1133 }
1134 
1135 //------------------------------hash-------------------------------------------
1136 // Type-specific hashing function.
1137 int TypeD::hash(void) const {
1138   return *(int*)(&_d);
1139 }
1140 
1141 //------------------------------is_finite--------------------------------------
1142 // Has a finite value
1143 bool TypeD::is_finite() const {
1144   return g_isfinite(getd()) != 0;
1145 }
1146 
1147 //------------------------------is_nan-----------------------------------------
1148 // Is not a number (NaN)
1149 bool TypeD::is_nan()    const {
1150   return g_isnan(getd()) != 0;
1151 }
1152 
1153 //------------------------------dump2------------------------------------------
1154 // Dump double constant Type
1155 #ifndef PRODUCT
1156 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1157   Type::dump2(d,depth,st);
1158   st->print("%f", _d);
1159 }
1160 #endif
1161 
1162 //------------------------------singleton--------------------------------------
1163 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1164 // constants (Ldi nodes).  Singletons are integer, float or double constants
1165 // or a single symbol.
1166 bool TypeD::singleton(void) const {
1167   return true;                  // Always a singleton
1168 }
1169 
1170 bool TypeD::empty(void) const {
1171   return false;                 // always exactly a singleton
1172 }
1173 
1174 //=============================================================================
1175 // Convience common pre-built types.
1176 const TypeInt *TypeInt::MINUS_1;// -1
1177 const TypeInt *TypeInt::ZERO;   // 0
1178 const TypeInt *TypeInt::ONE;    // 1
1179 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1180 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1181 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1182 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1183 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1184 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1185 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1186 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1187 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1188 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1189 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1190 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1191 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1192 const TypeInt *TypeInt::INT;    // 32-bit integers
1193 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1194 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1195 
1196 //------------------------------TypeInt----------------------------------------
1197 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1198 }
1199 
1200 //------------------------------make-------------------------------------------
1201 const TypeInt *TypeInt::make( jint lo ) {
1202   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1203 }
1204 
1205 static int normalize_int_widen( jint lo, jint hi, int w ) {
1206   // Certain normalizations keep us sane when comparing types.
1207   // The 'SMALLINT' covers constants and also CC and its relatives.
1208   if (lo <= hi) {
1209     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1210     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1211   } else {
1212     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1213     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1214   }
1215   return w;
1216 }
1217 
1218 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1219   w = normalize_int_widen(lo, hi, w);
1220   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1221 }
1222 
1223 //------------------------------meet-------------------------------------------
1224 // Compute the MEET of two types.  It returns a new Type representation object
1225 // with reference count equal to the number of Types pointing at it.
1226 // Caller should wrap a Types around it.
1227 const Type *TypeInt::xmeet( const Type *t ) const {
1228   // Perform a fast test for common case; meeting the same types together.
1229   if( this == t ) return this;  // Meeting same type?
1230 
1231   // Currently "this->_base" is a TypeInt
1232   switch (t->base()) {          // Switch on original type
1233   case AnyPtr:                  // Mixing with oops happens when javac
1234   case RawPtr:                  // reuses local variables
1235   case OopPtr:
1236   case InstPtr:
1237   case AryPtr:
1238   case MetadataPtr:
1239   case KlassPtr:
1240   case NarrowOop:
1241   case NarrowKlass:
1242   case Long:
1243   case FloatTop:
1244   case FloatCon:
1245   case FloatBot:
1246   case DoubleTop:
1247   case DoubleCon:
1248   case DoubleBot:
1249   case Bottom:                  // Ye Olde Default
1250     return Type::BOTTOM;
1251   default:                      // All else is a mistake
1252     typerr(t);
1253   case Top:                     // No change
1254     return this;
1255   case Int:                     // Int vs Int?
1256     break;
1257   }
1258 
1259   // Expand covered set
1260   const TypeInt *r = t->is_int();
1261   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1262 }
1263 
1264 //------------------------------xdual------------------------------------------
1265 // Dual: reverse hi & lo; flip widen
1266 const Type *TypeInt::xdual() const {
1267   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1268   return new TypeInt(_hi,_lo,w);
1269 }
1270 
1271 //------------------------------widen------------------------------------------
1272 // Only happens for optimistic top-down optimizations.
1273 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1274   // Coming from TOP or such; no widening
1275   if( old->base() != Int ) return this;
1276   const TypeInt *ot = old->is_int();
1277 
1278   // If new guy is equal to old guy, no widening
1279   if( _lo == ot->_lo && _hi == ot->_hi )
1280     return old;
1281 
1282   // If new guy contains old, then we widened
1283   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1284     // New contains old
1285     // If new guy is already wider than old, no widening
1286     if( _widen > ot->_widen ) return this;
1287     // If old guy was a constant, do not bother
1288     if (ot->_lo == ot->_hi)  return this;
1289     // Now widen new guy.
1290     // Check for widening too far
1291     if (_widen == WidenMax) {
1292       int max = max_jint;
1293       int min = min_jint;
1294       if (limit->isa_int()) {
1295         max = limit->is_int()->_hi;
1296         min = limit->is_int()->_lo;
1297       }
1298       if (min < _lo && _hi < max) {
1299         // If neither endpoint is extremal yet, push out the endpoint
1300         // which is closer to its respective limit.
1301         if (_lo >= 0 ||                 // easy common case
1302             (juint)(_lo - min) >= (juint)(max - _hi)) {
1303           // Try to widen to an unsigned range type of 31 bits:
1304           return make(_lo, max, WidenMax);
1305         } else {
1306           return make(min, _hi, WidenMax);
1307         }
1308       }
1309       return TypeInt::INT;
1310     }
1311     // Returned widened new guy
1312     return make(_lo,_hi,_widen+1);
1313   }
1314 
1315   // If old guy contains new, then we probably widened too far & dropped to
1316   // bottom.  Return the wider fellow.
1317   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1318     return old;
1319 
1320   //fatal("Integer value range is not subset");
1321   //return this;
1322   return TypeInt::INT;
1323 }
1324 
1325 //------------------------------narrow---------------------------------------
1326 // Only happens for pessimistic optimizations.
1327 const Type *TypeInt::narrow( const Type *old ) const {
1328   if (_lo >= _hi)  return this;   // already narrow enough
1329   if (old == NULL)  return this;
1330   const TypeInt* ot = old->isa_int();
1331   if (ot == NULL)  return this;
1332   jint olo = ot->_lo;
1333   jint ohi = ot->_hi;
1334 
1335   // If new guy is equal to old guy, no narrowing
1336   if (_lo == olo && _hi == ohi)  return old;
1337 
1338   // If old guy was maximum range, allow the narrowing
1339   if (olo == min_jint && ohi == max_jint)  return this;
1340 
1341   if (_lo < olo || _hi > ohi)
1342     return this;                // doesn't narrow; pretty wierd
1343 
1344   // The new type narrows the old type, so look for a "death march".
1345   // See comments on PhaseTransform::saturate.
1346   juint nrange = _hi - _lo;
1347   juint orange = ohi - olo;
1348   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1349     // Use the new type only if the range shrinks a lot.
1350     // We do not want the optimizer computing 2^31 point by point.
1351     return old;
1352   }
1353 
1354   return this;
1355 }
1356 
1357 //-----------------------------filter------------------------------------------
1358 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1359   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1360   if (ft == NULL || ft->empty())
1361     return Type::TOP;           // Canonical empty value
1362   if (ft->_widen < this->_widen) {
1363     // Do not allow the value of kill->_widen to affect the outcome.
1364     // The widen bits must be allowed to run freely through the graph.
1365     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1366   }
1367   return ft;
1368 }
1369 
1370 //------------------------------eq---------------------------------------------
1371 // Structural equality check for Type representations
1372 bool TypeInt::eq( const Type *t ) const {
1373   const TypeInt *r = t->is_int(); // Handy access
1374   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1375 }
1376 
1377 //------------------------------hash-------------------------------------------
1378 // Type-specific hashing function.
1379 int TypeInt::hash(void) const {
1380   return _lo+_hi+_widen+(int)Type::Int;
1381 }
1382 
1383 //------------------------------is_finite--------------------------------------
1384 // Has a finite value
1385 bool TypeInt::is_finite() const {
1386   return true;
1387 }
1388 
1389 //------------------------------dump2------------------------------------------
1390 // Dump TypeInt
1391 #ifndef PRODUCT
1392 static const char* intname(char* buf, jint n) {
1393   if (n == min_jint)
1394     return "min";
1395   else if (n < min_jint + 10000)
1396     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1397   else if (n == max_jint)
1398     return "max";
1399   else if (n > max_jint - 10000)
1400     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1401   else
1402     sprintf(buf, INT32_FORMAT, n);
1403   return buf;
1404 }
1405 
1406 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1407   char buf[40], buf2[40];
1408   if (_lo == min_jint && _hi == max_jint)
1409     st->print("int");
1410   else if (is_con())
1411     st->print("int:%s", intname(buf, get_con()));
1412   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1413     st->print("bool");
1414   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1415     st->print("byte");
1416   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1417     st->print("char");
1418   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1419     st->print("short");
1420   else if (_hi == max_jint)
1421     st->print("int:>=%s", intname(buf, _lo));
1422   else if (_lo == min_jint)
1423     st->print("int:<=%s", intname(buf, _hi));
1424   else
1425     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1426 
1427   if (_widen != 0 && this != TypeInt::INT)
1428     st->print(":%.*s", _widen, "wwww");
1429 }
1430 #endif
1431 
1432 //------------------------------singleton--------------------------------------
1433 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1434 // constants.
1435 bool TypeInt::singleton(void) const {
1436   return _lo >= _hi;
1437 }
1438 
1439 bool TypeInt::empty(void) const {
1440   return _lo > _hi;
1441 }
1442 
1443 //=============================================================================
1444 // Convenience common pre-built types.
1445 const TypeLong *TypeLong::MINUS_1;// -1
1446 const TypeLong *TypeLong::ZERO; // 0
1447 const TypeLong *TypeLong::ONE;  // 1
1448 const TypeLong *TypeLong::POS;  // >=0
1449 const TypeLong *TypeLong::LONG; // 64-bit integers
1450 const TypeLong *TypeLong::INT;  // 32-bit subrange
1451 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1452 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1453 
1454 //------------------------------TypeLong---------------------------------------
1455 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1456 }
1457 
1458 //------------------------------make-------------------------------------------
1459 const TypeLong *TypeLong::make( jlong lo ) {
1460   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1461 }
1462 
1463 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1464   // Certain normalizations keep us sane when comparing types.
1465   // The 'SMALLINT' covers constants.
1466   if (lo <= hi) {
1467     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1468     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1469   } else {
1470     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1471     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1472   }
1473   return w;
1474 }
1475 
1476 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1477   w = normalize_long_widen(lo, hi, w);
1478   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1479 }
1480 
1481 
1482 //------------------------------meet-------------------------------------------
1483 // Compute the MEET of two types.  It returns a new Type representation object
1484 // with reference count equal to the number of Types pointing at it.
1485 // Caller should wrap a Types around it.
1486 const Type *TypeLong::xmeet( const Type *t ) const {
1487   // Perform a fast test for common case; meeting the same types together.
1488   if( this == t ) return this;  // Meeting same type?
1489 
1490   // Currently "this->_base" is a TypeLong
1491   switch (t->base()) {          // Switch on original type
1492   case AnyPtr:                  // Mixing with oops happens when javac
1493   case RawPtr:                  // reuses local variables
1494   case OopPtr:
1495   case InstPtr:
1496   case AryPtr:
1497   case MetadataPtr:
1498   case KlassPtr:
1499   case NarrowOop:
1500   case NarrowKlass:
1501   case Int:
1502   case FloatTop:
1503   case FloatCon:
1504   case FloatBot:
1505   case DoubleTop:
1506   case DoubleCon:
1507   case DoubleBot:
1508   case Bottom:                  // Ye Olde Default
1509     return Type::BOTTOM;
1510   default:                      // All else is a mistake
1511     typerr(t);
1512   case Top:                     // No change
1513     return this;
1514   case Long:                    // Long vs Long?
1515     break;
1516   }
1517 
1518   // Expand covered set
1519   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1520   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1521 }
1522 
1523 //------------------------------xdual------------------------------------------
1524 // Dual: reverse hi & lo; flip widen
1525 const Type *TypeLong::xdual() const {
1526   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1527   return new TypeLong(_hi,_lo,w);
1528 }
1529 
1530 //------------------------------widen------------------------------------------
1531 // Only happens for optimistic top-down optimizations.
1532 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1533   // Coming from TOP or such; no widening
1534   if( old->base() != Long ) return this;
1535   const TypeLong *ot = old->is_long();
1536 
1537   // If new guy is equal to old guy, no widening
1538   if( _lo == ot->_lo && _hi == ot->_hi )
1539     return old;
1540 
1541   // If new guy contains old, then we widened
1542   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1543     // New contains old
1544     // If new guy is already wider than old, no widening
1545     if( _widen > ot->_widen ) return this;
1546     // If old guy was a constant, do not bother
1547     if (ot->_lo == ot->_hi)  return this;
1548     // Now widen new guy.
1549     // Check for widening too far
1550     if (_widen == WidenMax) {
1551       jlong max = max_jlong;
1552       jlong min = min_jlong;
1553       if (limit->isa_long()) {
1554         max = limit->is_long()->_hi;
1555         min = limit->is_long()->_lo;
1556       }
1557       if (min < _lo && _hi < max) {
1558         // If neither endpoint is extremal yet, push out the endpoint
1559         // which is closer to its respective limit.
1560         if (_lo >= 0 ||                 // easy common case
1561             (julong)(_lo - min) >= (julong)(max - _hi)) {
1562           // Try to widen to an unsigned range type of 32/63 bits:
1563           if (max >= max_juint && _hi < max_juint)
1564             return make(_lo, max_juint, WidenMax);
1565           else
1566             return make(_lo, max, WidenMax);
1567         } else {
1568           return make(min, _hi, WidenMax);
1569         }
1570       }
1571       return TypeLong::LONG;
1572     }
1573     // Returned widened new guy
1574     return make(_lo,_hi,_widen+1);
1575   }
1576 
1577   // If old guy contains new, then we probably widened too far & dropped to
1578   // bottom.  Return the wider fellow.
1579   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1580     return old;
1581 
1582   //  fatal("Long value range is not subset");
1583   // return this;
1584   return TypeLong::LONG;
1585 }
1586 
1587 //------------------------------narrow----------------------------------------
1588 // Only happens for pessimistic optimizations.
1589 const Type *TypeLong::narrow( const Type *old ) const {
1590   if (_lo >= _hi)  return this;   // already narrow enough
1591   if (old == NULL)  return this;
1592   const TypeLong* ot = old->isa_long();
1593   if (ot == NULL)  return this;
1594   jlong olo = ot->_lo;
1595   jlong ohi = ot->_hi;
1596 
1597   // If new guy is equal to old guy, no narrowing
1598   if (_lo == olo && _hi == ohi)  return old;
1599 
1600   // If old guy was maximum range, allow the narrowing
1601   if (olo == min_jlong && ohi == max_jlong)  return this;
1602 
1603   if (_lo < olo || _hi > ohi)
1604     return this;                // doesn't narrow; pretty wierd
1605 
1606   // The new type narrows the old type, so look for a "death march".
1607   // See comments on PhaseTransform::saturate.
1608   julong nrange = _hi - _lo;
1609   julong orange = ohi - olo;
1610   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1611     // Use the new type only if the range shrinks a lot.
1612     // We do not want the optimizer computing 2^31 point by point.
1613     return old;
1614   }
1615 
1616   return this;
1617 }
1618 
1619 //-----------------------------filter------------------------------------------
1620 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1621   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1622   if (ft == NULL || ft->empty())
1623     return Type::TOP;           // Canonical empty value
1624   if (ft->_widen < this->_widen) {
1625     // Do not allow the value of kill->_widen to affect the outcome.
1626     // The widen bits must be allowed to run freely through the graph.
1627     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1628   }
1629   return ft;
1630 }
1631 
1632 //------------------------------eq---------------------------------------------
1633 // Structural equality check for Type representations
1634 bool TypeLong::eq( const Type *t ) const {
1635   const TypeLong *r = t->is_long(); // Handy access
1636   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1637 }
1638 
1639 //------------------------------hash-------------------------------------------
1640 // Type-specific hashing function.
1641 int TypeLong::hash(void) const {
1642   return (int)(_lo+_hi+_widen+(int)Type::Long);
1643 }
1644 
1645 //------------------------------is_finite--------------------------------------
1646 // Has a finite value
1647 bool TypeLong::is_finite() const {
1648   return true;
1649 }
1650 
1651 //------------------------------dump2------------------------------------------
1652 // Dump TypeLong
1653 #ifndef PRODUCT
1654 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1655   if (n > x) {
1656     if (n >= x + 10000)  return NULL;
1657     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1658   } else if (n < x) {
1659     if (n <= x - 10000)  return NULL;
1660     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1661   } else {
1662     return xname;
1663   }
1664   return buf;
1665 }
1666 
1667 static const char* longname(char* buf, jlong n) {
1668   const char* str;
1669   if (n == min_jlong)
1670     return "min";
1671   else if (n < min_jlong + 10000)
1672     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1673   else if (n == max_jlong)
1674     return "max";
1675   else if (n > max_jlong - 10000)
1676     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1677   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1678     return str;
1679   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1680     return str;
1681   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1682     return str;
1683   else
1684     sprintf(buf, JLONG_FORMAT, n);
1685   return buf;
1686 }
1687 
1688 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1689   char buf[80], buf2[80];
1690   if (_lo == min_jlong && _hi == max_jlong)
1691     st->print("long");
1692   else if (is_con())
1693     st->print("long:%s", longname(buf, get_con()));
1694   else if (_hi == max_jlong)
1695     st->print("long:>=%s", longname(buf, _lo));
1696   else if (_lo == min_jlong)
1697     st->print("long:<=%s", longname(buf, _hi));
1698   else
1699     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1700 
1701   if (_widen != 0 && this != TypeLong::LONG)
1702     st->print(":%.*s", _widen, "wwww");
1703 }
1704 #endif
1705 
1706 //------------------------------singleton--------------------------------------
1707 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1708 // constants
1709 bool TypeLong::singleton(void) const {
1710   return _lo >= _hi;
1711 }
1712 
1713 bool TypeLong::empty(void) const {
1714   return _lo > _hi;
1715 }
1716 
1717 //=============================================================================
1718 // Convenience common pre-built types.
1719 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1720 const TypeTuple *TypeTuple::IFFALSE;
1721 const TypeTuple *TypeTuple::IFTRUE;
1722 const TypeTuple *TypeTuple::IFNEITHER;
1723 const TypeTuple *TypeTuple::LOOPBODY;
1724 const TypeTuple *TypeTuple::MEMBAR;
1725 const TypeTuple *TypeTuple::STORECONDITIONAL;
1726 const TypeTuple *TypeTuple::START_I2C;
1727 const TypeTuple *TypeTuple::INT_PAIR;
1728 const TypeTuple *TypeTuple::LONG_PAIR;
1729 const TypeTuple *TypeTuple::INT_CC_PAIR;
1730 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1731 
1732 
1733 //------------------------------make-------------------------------------------
1734 // Make a TypeTuple from the range of a method signature
1735 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1736   ciType* return_type = sig->return_type();
1737   uint arg_cnt = return_type->size();
1738   const Type **field_array = fields(arg_cnt);
1739   switch (return_type->basic_type()) {
1740   case T_LONG:
1741     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1742     field_array[TypeFunc::Parms+1] = Type::HALF;
1743     break;
1744   case T_DOUBLE:
1745     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1746     field_array[TypeFunc::Parms+1] = Type::HALF;
1747     break;
1748   case T_OBJECT:
1749   case T_ARRAY:
1750   case T_BOOLEAN:
1751   case T_CHAR:
1752   case T_FLOAT:
1753   case T_BYTE:
1754   case T_SHORT:
1755   case T_INT:
1756     field_array[TypeFunc::Parms] = get_const_type(return_type);
1757     break;
1758   case T_VOID:
1759     break;
1760   default:
1761     ShouldNotReachHere();
1762   }
1763   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1764 }
1765 
1766 // Make a TypeTuple from the domain of a method signature
1767 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1768   uint arg_cnt = sig->size();
1769 
1770   uint pos = TypeFunc::Parms;
1771   const Type **field_array;
1772   if (recv != NULL) {
1773     arg_cnt++;
1774     field_array = fields(arg_cnt);
1775     // Use get_const_type here because it respects UseUniqueSubclasses:
1776     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
1777   } else {
1778     field_array = fields(arg_cnt);
1779   }
1780 
1781   int i = 0;
1782   while (pos < TypeFunc::Parms + arg_cnt) {
1783     ciType* type = sig->type_at(i);
1784 
1785     switch (type->basic_type()) {
1786     case T_LONG:
1787       field_array[pos++] = TypeLong::LONG;
1788       field_array[pos++] = Type::HALF;
1789       break;
1790     case T_DOUBLE:
1791       field_array[pos++] = Type::DOUBLE;
1792       field_array[pos++] = Type::HALF;
1793       break;
1794     case T_OBJECT:
1795     case T_ARRAY:
1796     case T_BOOLEAN:
1797     case T_CHAR:
1798     case T_FLOAT:
1799     case T_BYTE:
1800     case T_SHORT:
1801     case T_INT:
1802       field_array[pos++] = get_const_type(type);
1803       break;
1804     default:
1805       ShouldNotReachHere();
1806     }
1807     i++;
1808   }
1809 
1810   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1811 }
1812 
1813 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1814   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1815 }
1816 
1817 //------------------------------fields-----------------------------------------
1818 // Subroutine call type with space allocated for argument types
1819 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
1820 const Type **TypeTuple::fields( uint arg_cnt ) {
1821   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1822   flds[TypeFunc::Control  ] = Type::CONTROL;
1823   flds[TypeFunc::I_O      ] = Type::ABIO;
1824   flds[TypeFunc::Memory   ] = Type::MEMORY;
1825   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1826   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1827 
1828   return flds;
1829 }
1830 
1831 //------------------------------meet-------------------------------------------
1832 // Compute the MEET of two types.  It returns a new Type object.
1833 const Type *TypeTuple::xmeet( const Type *t ) const {
1834   // Perform a fast test for common case; meeting the same types together.
1835   if( this == t ) return this;  // Meeting same type-rep?
1836 
1837   // Current "this->_base" is Tuple
1838   switch (t->base()) {          // switch on original type
1839 
1840   case Bottom:                  // Ye Olde Default
1841     return t;
1842 
1843   default:                      // All else is a mistake
1844     typerr(t);
1845 
1846   case Tuple: {                 // Meeting 2 signatures?
1847     const TypeTuple *x = t->is_tuple();
1848     assert( _cnt == x->_cnt, "" );
1849     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1850     for( uint i=0; i<_cnt; i++ )
1851       fields[i] = field_at(i)->xmeet( x->field_at(i) );
1852     return TypeTuple::make(_cnt,fields);
1853   }
1854   case Top:
1855     break;
1856   }
1857   return this;                  // Return the double constant
1858 }
1859 
1860 //------------------------------xdual------------------------------------------
1861 // Dual: compute field-by-field dual
1862 const Type *TypeTuple::xdual() const {
1863   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1864   for( uint i=0; i<_cnt; i++ )
1865     fields[i] = _fields[i]->dual();
1866   return new TypeTuple(_cnt,fields);
1867 }
1868 
1869 //------------------------------eq---------------------------------------------
1870 // Structural equality check for Type representations
1871 bool TypeTuple::eq( const Type *t ) const {
1872   const TypeTuple *s = (const TypeTuple *)t;
1873   if (_cnt != s->_cnt)  return false;  // Unequal field counts
1874   for (uint i = 0; i < _cnt; i++)
1875     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1876       return false;             // Missed
1877   return true;
1878 }
1879 
1880 //------------------------------hash-------------------------------------------
1881 // Type-specific hashing function.
1882 int TypeTuple::hash(void) const {
1883   intptr_t sum = _cnt;
1884   for( uint i=0; i<_cnt; i++ )
1885     sum += (intptr_t)_fields[i];     // Hash on pointers directly
1886   return sum;
1887 }
1888 
1889 //------------------------------dump2------------------------------------------
1890 // Dump signature Type
1891 #ifndef PRODUCT
1892 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1893   st->print("{");
1894   if( !depth || d[this] ) {     // Check for recursive print
1895     st->print("...}");
1896     return;
1897   }
1898   d.Insert((void*)this, (void*)this);   // Stop recursion
1899   if( _cnt ) {
1900     uint i;
1901     for( i=0; i<_cnt-1; i++ ) {
1902       st->print("%d:", i);
1903       _fields[i]->dump2(d, depth-1, st);
1904       st->print(", ");
1905     }
1906     st->print("%d:", i);
1907     _fields[i]->dump2(d, depth-1, st);
1908   }
1909   st->print("}");
1910 }
1911 #endif
1912 
1913 //------------------------------singleton--------------------------------------
1914 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1915 // constants (Ldi nodes).  Singletons are integer, float or double constants
1916 // or a single symbol.
1917 bool TypeTuple::singleton(void) const {
1918   return false;                 // Never a singleton
1919 }
1920 
1921 bool TypeTuple::empty(void) const {
1922   for( uint i=0; i<_cnt; i++ ) {
1923     if (_fields[i]->empty())  return true;
1924   }
1925   return false;
1926 }
1927 
1928 //=============================================================================
1929 // Convenience common pre-built types.
1930 
1931 inline const TypeInt* normalize_array_size(const TypeInt* size) {
1932   // Certain normalizations keep us sane when comparing types.
1933   // We do not want arrayOop variables to differ only by the wideness
1934   // of their index types.  Pick minimum wideness, since that is the
1935   // forced wideness of small ranges anyway.
1936   if (size->_widen != Type::WidenMin)
1937     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
1938   else
1939     return size;
1940 }
1941 
1942 //------------------------------make-------------------------------------------
1943 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
1944   if (UseCompressedOops && elem->isa_oopptr()) {
1945     elem = elem->make_narrowoop();
1946   }
1947   size = normalize_array_size(size);
1948   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
1949 }
1950 
1951 //------------------------------meet-------------------------------------------
1952 // Compute the MEET of two types.  It returns a new Type object.
1953 const Type *TypeAry::xmeet( const Type *t ) const {
1954   // Perform a fast test for common case; meeting the same types together.
1955   if( this == t ) return this;  // Meeting same type-rep?
1956 
1957   // Current "this->_base" is Ary
1958   switch (t->base()) {          // switch on original type
1959 
1960   case Bottom:                  // Ye Olde Default
1961     return t;
1962 
1963   default:                      // All else is a mistake
1964     typerr(t);
1965 
1966   case Array: {                 // Meeting 2 arrays?
1967     const TypeAry *a = t->is_ary();
1968     return TypeAry::make(_elem->meet_speculative(a->_elem),
1969                          _size->xmeet(a->_size)->is_int(),
1970                          _stable & a->_stable);
1971   }
1972   case Top:
1973     break;
1974   }
1975   return this;                  // Return the double constant
1976 }
1977 
1978 //------------------------------xdual------------------------------------------
1979 // Dual: compute field-by-field dual
1980 const Type *TypeAry::xdual() const {
1981   const TypeInt* size_dual = _size->dual()->is_int();
1982   size_dual = normalize_array_size(size_dual);
1983   return new TypeAry(_elem->dual(), size_dual, !_stable);
1984 }
1985 
1986 //------------------------------eq---------------------------------------------
1987 // Structural equality check for Type representations
1988 bool TypeAry::eq( const Type *t ) const {
1989   const TypeAry *a = (const TypeAry*)t;
1990   return _elem == a->_elem &&
1991     _stable == a->_stable &&
1992     _size == a->_size;
1993 }
1994 
1995 //------------------------------hash-------------------------------------------
1996 // Type-specific hashing function.
1997 int TypeAry::hash(void) const {
1998   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
1999 }
2000 
2001 /**
2002  * Return same type without a speculative part in the element
2003  */
2004 const Type* TypeAry::remove_speculative() const {
2005   return make(_elem->remove_speculative(), _size, _stable);
2006 }
2007 
2008 /**
2009  * Return same type with cleaned up speculative part of element
2010  */
2011 const Type* TypeAry::cleanup_speculative() const {
2012   return make(_elem->cleanup_speculative(), _size, _stable);
2013 }
2014 
2015 /**
2016  * Return same type but with a different inline depth (used for speculation)
2017  *
2018  * @param depth  depth to meet with
2019  */
2020 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2021   if (!UseInlineDepthForSpeculativeTypes) {
2022     return this;
2023   }
2024   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2025 }
2026 
2027 //----------------------interface_vs_oop---------------------------------------
2028 #ifdef ASSERT
2029 bool TypeAry::interface_vs_oop(const Type *t) const {
2030   const TypeAry* t_ary = t->is_ary();
2031   if (t_ary) {
2032     return _elem->interface_vs_oop(t_ary->_elem);
2033   }
2034   return false;
2035 }
2036 #endif
2037 
2038 //------------------------------dump2------------------------------------------
2039 #ifndef PRODUCT
2040 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2041   if (_stable)  st->print("stable:");
2042   _elem->dump2(d, depth, st);
2043   st->print("[");
2044   _size->dump2(d, depth, st);
2045   st->print("]");
2046 }
2047 #endif
2048 
2049 //------------------------------singleton--------------------------------------
2050 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2051 // constants (Ldi nodes).  Singletons are integer, float or double constants
2052 // or a single symbol.
2053 bool TypeAry::singleton(void) const {
2054   return false;                 // Never a singleton
2055 }
2056 
2057 bool TypeAry::empty(void) const {
2058   return _elem->empty() || _size->empty();
2059 }
2060 
2061 //--------------------------ary_must_be_exact----------------------------------
2062 bool TypeAry::ary_must_be_exact() const {
2063   if (!UseExactTypes)       return false;
2064   // This logic looks at the element type of an array, and returns true
2065   // if the element type is either a primitive or a final instance class.
2066   // In such cases, an array built on this ary must have no subclasses.
2067   if (_elem == BOTTOM)      return false;  // general array not exact
2068   if (_elem == TOP   )      return false;  // inverted general array not exact
2069   const TypeOopPtr*  toop = NULL;
2070   if (UseCompressedOops && _elem->isa_narrowoop()) {
2071     toop = _elem->make_ptr()->isa_oopptr();
2072   } else {
2073     toop = _elem->isa_oopptr();
2074   }
2075   if (!toop)                return true;   // a primitive type, like int
2076   ciKlass* tklass = toop->klass();
2077   if (tklass == NULL)       return false;  // unloaded class
2078   if (!tklass->is_loaded()) return false;  // unloaded class
2079   const TypeInstPtr* tinst;
2080   if (_elem->isa_narrowoop())
2081     tinst = _elem->make_ptr()->isa_instptr();
2082   else
2083     tinst = _elem->isa_instptr();
2084   if (tinst)
2085     return tklass->as_instance_klass()->is_final();
2086   const TypeAryPtr*  tap;
2087   if (_elem->isa_narrowoop())
2088     tap = _elem->make_ptr()->isa_aryptr();
2089   else
2090     tap = _elem->isa_aryptr();
2091   if (tap)
2092     return tap->ary()->ary_must_be_exact();
2093   return false;
2094 }
2095 
2096 //==============================TypeVect=======================================
2097 // Convenience common pre-built types.
2098 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2099 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2100 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2101 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2102 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2103 
2104 //------------------------------make-------------------------------------------
2105 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2106   BasicType elem_bt = elem->array_element_basic_type();
2107   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2108   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2109   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2110   int size = length * type2aelembytes(elem_bt);
2111   switch (Matcher::vector_ideal_reg(size)) {
2112   case Op_VecS:
2113     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2114   case Op_RegL:
2115   case Op_VecD:
2116   case Op_RegD:
2117     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2118   case Op_VecX:
2119     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2120   case Op_VecY:
2121     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2122   case Op_VecZ:
2123     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2124   }
2125  ShouldNotReachHere();
2126   return NULL;
2127 }
2128 
2129 //------------------------------meet-------------------------------------------
2130 // Compute the MEET of two types.  It returns a new Type object.
2131 const Type *TypeVect::xmeet( const Type *t ) const {
2132   // Perform a fast test for common case; meeting the same types together.
2133   if( this == t ) return this;  // Meeting same type-rep?
2134 
2135   // Current "this->_base" is Vector
2136   switch (t->base()) {          // switch on original type
2137 
2138   case Bottom:                  // Ye Olde Default
2139     return t;
2140 
2141   default:                      // All else is a mistake
2142     typerr(t);
2143 
2144   case VectorS:
2145   case VectorD:
2146   case VectorX:
2147   case VectorY:
2148   case VectorZ: {                // Meeting 2 vectors?
2149     const TypeVect* v = t->is_vect();
2150     assert(  base() == v->base(), "");
2151     assert(length() == v->length(), "");
2152     assert(element_basic_type() == v->element_basic_type(), "");
2153     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2154   }
2155   case Top:
2156     break;
2157   }
2158   return this;
2159 }
2160 
2161 //------------------------------xdual------------------------------------------
2162 // Dual: compute field-by-field dual
2163 const Type *TypeVect::xdual() const {
2164   return new TypeVect(base(), _elem->dual(), _length);
2165 }
2166 
2167 //------------------------------eq---------------------------------------------
2168 // Structural equality check for Type representations
2169 bool TypeVect::eq(const Type *t) const {
2170   const TypeVect *v = t->is_vect();
2171   return (_elem == v->_elem) && (_length == v->_length);
2172 }
2173 
2174 //------------------------------hash-------------------------------------------
2175 // Type-specific hashing function.
2176 int TypeVect::hash(void) const {
2177   return (intptr_t)_elem + (intptr_t)_length;
2178 }
2179 
2180 //------------------------------singleton--------------------------------------
2181 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2182 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2183 // constant value (when vector is created with Replicate code).
2184 bool TypeVect::singleton(void) const {
2185 // There is no Con node for vectors yet.
2186 //  return _elem->singleton();
2187   return false;
2188 }
2189 
2190 bool TypeVect::empty(void) const {
2191   return _elem->empty();
2192 }
2193 
2194 //------------------------------dump2------------------------------------------
2195 #ifndef PRODUCT
2196 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2197   switch (base()) {
2198   case VectorS:
2199     st->print("vectors["); break;
2200   case VectorD:
2201     st->print("vectord["); break;
2202   case VectorX:
2203     st->print("vectorx["); break;
2204   case VectorY:
2205     st->print("vectory["); break;
2206   case VectorZ:
2207     st->print("vectorz["); break;
2208   default:
2209     ShouldNotReachHere();
2210   }
2211   st->print("%d]:{", _length);
2212   _elem->dump2(d, depth, st);
2213   st->print("}");
2214 }
2215 #endif
2216 
2217 
2218 //=============================================================================
2219 // Convenience common pre-built types.
2220 const TypePtr *TypePtr::NULL_PTR;
2221 const TypePtr *TypePtr::NOTNULL;
2222 const TypePtr *TypePtr::BOTTOM;
2223 
2224 //------------------------------meet-------------------------------------------
2225 // Meet over the PTR enum
2226 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2227   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2228   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2229   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2230   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2231   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2232   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2233   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2234 };
2235 
2236 //------------------------------make-------------------------------------------
2237 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2238   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2239 }
2240 
2241 //------------------------------cast_to_ptr_type-------------------------------
2242 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2243   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2244   if( ptr == _ptr ) return this;
2245   return make(_base, ptr, _offset, _speculative, _inline_depth);
2246 }
2247 
2248 //------------------------------get_con----------------------------------------
2249 intptr_t TypePtr::get_con() const {
2250   assert( _ptr == Null, "" );
2251   return _offset;
2252 }
2253 
2254 //------------------------------meet-------------------------------------------
2255 // Compute the MEET of two types.  It returns a new Type object.
2256 const Type *TypePtr::xmeet(const Type *t) const {
2257   const Type* res = xmeet_helper(t);
2258   if (res->isa_ptr() == NULL) {
2259     return res;
2260   }
2261 
2262   const TypePtr* res_ptr = res->is_ptr();
2263   if (res_ptr->speculative() != NULL) {
2264     // type->speculative() == NULL means that speculation is no better
2265     // than type, i.e. type->speculative() == type. So there are 2
2266     // ways to represent the fact that we have no useful speculative
2267     // data and we should use a single one to be able to test for
2268     // equality between types. Check whether type->speculative() ==
2269     // type and set speculative to NULL if it is the case.
2270     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2271       return res_ptr->remove_speculative();
2272     }
2273   }
2274 
2275   return res;
2276 }
2277 
2278 const Type *TypePtr::xmeet_helper(const Type *t) const {
2279   // Perform a fast test for common case; meeting the same types together.
2280   if( this == t ) return this;  // Meeting same type-rep?
2281 
2282   // Current "this->_base" is AnyPtr
2283   switch (t->base()) {          // switch on original type
2284   case Int:                     // Mixing ints & oops happens when javac
2285   case Long:                    // reuses local variables
2286   case FloatTop:
2287   case FloatCon:
2288   case FloatBot:
2289   case DoubleTop:
2290   case DoubleCon:
2291   case DoubleBot:
2292   case NarrowOop:
2293   case NarrowKlass:
2294   case Bottom:                  // Ye Olde Default
2295     return Type::BOTTOM;
2296   case Top:
2297     return this;
2298 
2299   case AnyPtr: {                // Meeting to AnyPtrs
2300     const TypePtr *tp = t->is_ptr();
2301     const TypePtr* speculative = xmeet_speculative(tp);
2302     int depth = meet_inline_depth(tp->inline_depth());
2303     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2304   }
2305   case RawPtr:                  // For these, flip the call around to cut down
2306   case OopPtr:
2307   case InstPtr:                 // on the cases I have to handle.
2308   case AryPtr:
2309   case MetadataPtr:
2310   case KlassPtr:
2311     return t->xmeet(this);      // Call in reverse direction
2312   default:                      // All else is a mistake
2313     typerr(t);
2314 
2315   }
2316   return this;
2317 }
2318 
2319 //------------------------------meet_offset------------------------------------
2320 int TypePtr::meet_offset( int offset ) const {
2321   // Either is 'TOP' offset?  Return the other offset!
2322   if( _offset == OffsetTop ) return offset;
2323   if( offset == OffsetTop ) return _offset;
2324   // If either is different, return 'BOTTOM' offset
2325   if( _offset != offset ) return OffsetBot;
2326   return _offset;
2327 }
2328 
2329 //------------------------------dual_offset------------------------------------
2330 int TypePtr::dual_offset( ) const {
2331   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2332   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2333   return _offset;               // Map everything else into self
2334 }
2335 
2336 //------------------------------xdual------------------------------------------
2337 // Dual: compute field-by-field dual
2338 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2339   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2340 };
2341 const Type *TypePtr::xdual() const {
2342   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2343 }
2344 
2345 //------------------------------xadd_offset------------------------------------
2346 int TypePtr::xadd_offset( intptr_t offset ) const {
2347   // Adding to 'TOP' offset?  Return 'TOP'!
2348   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2349   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2350   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2351   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2352   offset += (intptr_t)_offset;
2353   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2354 
2355   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2356   // It is possible to construct a negative offset during PhaseCCP
2357 
2358   return (int)offset;        // Sum valid offsets
2359 }
2360 
2361 //------------------------------add_offset-------------------------------------
2362 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2363   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2364 }
2365 
2366 //------------------------------eq---------------------------------------------
2367 // Structural equality check for Type representations
2368 bool TypePtr::eq( const Type *t ) const {
2369   const TypePtr *a = (const TypePtr*)t;
2370   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2371 }
2372 
2373 //------------------------------hash-------------------------------------------
2374 // Type-specific hashing function.
2375 int TypePtr::hash(void) const {
2376   return _ptr + _offset + hash_speculative() + _inline_depth;
2377 ;
2378 }
2379 
2380 /**
2381  * Return same type without a speculative part
2382  */
2383 const Type* TypePtr::remove_speculative() const {
2384   if (_speculative == NULL) {
2385     return this;
2386   }
2387   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2388   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2389 }
2390 
2391 /**
2392  * Return same type but drop speculative part if we know we won't use
2393  * it
2394  */
2395 const Type* TypePtr::cleanup_speculative() const {
2396   if (speculative() == NULL) {
2397     return this;
2398   }
2399   const Type* no_spec = remove_speculative();
2400   // If this is NULL_PTR then we don't need the speculative type
2401   // (with_inline_depth in case the current type inline depth is
2402   // InlineDepthTop)
2403   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2404     return no_spec;
2405   }
2406   if (above_centerline(speculative()->ptr())) {
2407     return no_spec;
2408   }
2409   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2410   // If the speculative may be null and is an inexact klass then it
2411   // doesn't help
2412   if (speculative()->maybe_null() && (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2413     return no_spec;
2414   }
2415   return this;
2416 }
2417 
2418 /**
2419  * dual of the speculative part of the type
2420  */
2421 const TypePtr* TypePtr::dual_speculative() const {
2422   if (_speculative == NULL) {
2423     return NULL;
2424   }
2425   return _speculative->dual()->is_ptr();
2426 }
2427 
2428 /**
2429  * meet of the speculative parts of 2 types
2430  *
2431  * @param other  type to meet with
2432  */
2433 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2434   bool this_has_spec = (_speculative != NULL);
2435   bool other_has_spec = (other->speculative() != NULL);
2436 
2437   if (!this_has_spec && !other_has_spec) {
2438     return NULL;
2439   }
2440 
2441   // If we are at a point where control flow meets and one branch has
2442   // a speculative type and the other has not, we meet the speculative
2443   // type of one branch with the actual type of the other. If the
2444   // actual type is exact and the speculative is as well, then the
2445   // result is a speculative type which is exact and we can continue
2446   // speculation further.
2447   const TypePtr* this_spec = _speculative;
2448   const TypePtr* other_spec = other->speculative();
2449 
2450   if (!this_has_spec) {
2451     this_spec = this;
2452   }
2453 
2454   if (!other_has_spec) {
2455     other_spec = other;
2456   }
2457 
2458   return this_spec->meet(other_spec)->is_ptr();
2459 }
2460 
2461 /**
2462  * dual of the inline depth for this type (used for speculation)
2463  */
2464 int TypePtr::dual_inline_depth() const {
2465   return -inline_depth();
2466 }
2467 
2468 /**
2469  * meet of 2 inline depths (used for speculation)
2470  *
2471  * @param depth  depth to meet with
2472  */
2473 int TypePtr::meet_inline_depth(int depth) const {
2474   return MAX2(inline_depth(), depth);
2475 }
2476 
2477 /**
2478  * Are the speculative parts of 2 types equal?
2479  *
2480  * @param other  type to compare this one to
2481  */
2482 bool TypePtr::eq_speculative(const TypePtr* other) const {
2483   if (_speculative == NULL || other->speculative() == NULL) {
2484     return _speculative == other->speculative();
2485   }
2486 
2487   if (_speculative->base() != other->speculative()->base()) {
2488     return false;
2489   }
2490 
2491   return _speculative->eq(other->speculative());
2492 }
2493 
2494 /**
2495  * Hash of the speculative part of the type
2496  */
2497 int TypePtr::hash_speculative() const {
2498   if (_speculative == NULL) {
2499     return 0;
2500   }
2501 
2502   return _speculative->hash();
2503 }
2504 
2505 /**
2506  * add offset to the speculative part of the type
2507  *
2508  * @param offset  offset to add
2509  */
2510 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2511   if (_speculative == NULL) {
2512     return NULL;
2513   }
2514   return _speculative->add_offset(offset)->is_ptr();
2515 }
2516 
2517 /**
2518  * return exact klass from the speculative type if there's one
2519  */
2520 ciKlass* TypePtr::speculative_type() const {
2521   if (_speculative != NULL && _speculative->isa_oopptr()) {
2522     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2523     if (speculative->klass_is_exact()) {
2524       return speculative->klass();
2525     }
2526   }
2527   return NULL;
2528 }
2529 
2530 /**
2531  * return true if speculative type may be null
2532  */
2533 bool TypePtr::speculative_maybe_null() const {
2534   if (_speculative != NULL) {
2535     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2536     return speculative->maybe_null();
2537   }
2538   return true;
2539 }
2540 
2541 /**
2542  * Same as TypePtr::speculative_type() but return the klass only if
2543  * the speculative tells us is not null
2544  */
2545 ciKlass* TypePtr::speculative_type_not_null() const {
2546   if (speculative_maybe_null()) {
2547     return NULL;
2548   }
2549   return speculative_type();
2550 }
2551 
2552 /**
2553  * Check whether new profiling would improve speculative type
2554  *
2555  * @param   exact_kls    class from profiling
2556  * @param   inline_depth inlining depth of profile point
2557  *
2558  * @return  true if type profile is valuable
2559  */
2560 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2561   // no profiling?
2562   if (exact_kls == NULL) {
2563     return false;
2564   }
2565   // no speculative type or non exact speculative type?
2566   if (speculative_type() == NULL) {
2567     return true;
2568   }
2569   // If the node already has an exact speculative type keep it,
2570   // unless it was provided by profiling that is at a deeper
2571   // inlining level. Profiling at a higher inlining depth is
2572   // expected to be less accurate.
2573   if (_speculative->inline_depth() == InlineDepthBottom) {
2574     return false;
2575   }
2576   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2577   return inline_depth < _speculative->inline_depth();
2578 }
2579 
2580 /**
2581  * Check whether new profiling would improve ptr (= tells us it is non
2582  * null)
2583  *
2584  * @param   maybe_null true if profiling tells the ptr may be null
2585  *
2586  * @return  true if ptr profile is valuable
2587  */
2588 bool TypePtr::would_improve_ptr(bool maybe_null) const {
2589   // profiling doesn't tell us anything useful
2590   if (maybe_null) {
2591     return false;
2592   }
2593   // We already know this is not be null
2594   if (!this->maybe_null()) {
2595     return false;
2596   }
2597   // We already know the speculative type cannot be null
2598   if (!speculative_maybe_null()) {
2599     return false;
2600   }
2601   return true;
2602 }
2603 
2604 //------------------------------dump2------------------------------------------
2605 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2606   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2607 };
2608 
2609 #ifndef PRODUCT
2610 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2611   if( _ptr == Null ) st->print("NULL");
2612   else st->print("%s *", ptr_msg[_ptr]);
2613   if( _offset == OffsetTop ) st->print("+top");
2614   else if( _offset == OffsetBot ) st->print("+bot");
2615   else if( _offset ) st->print("+%d", _offset);
2616   dump_inline_depth(st);
2617   dump_speculative(st);
2618 }
2619 
2620 /**
2621  *dump the speculative part of the type
2622  */
2623 void TypePtr::dump_speculative(outputStream *st) const {
2624   if (_speculative != NULL) {
2625     st->print(" (speculative=");
2626     _speculative->dump_on(st);
2627     st->print(")");
2628   }
2629 }
2630 
2631 /**
2632  *dump the inline depth of the type
2633  */
2634 void TypePtr::dump_inline_depth(outputStream *st) const {
2635   if (_inline_depth != InlineDepthBottom) {
2636     if (_inline_depth == InlineDepthTop) {
2637       st->print(" (inline_depth=InlineDepthTop)");
2638     } else {
2639       st->print(" (inline_depth=%d)", _inline_depth);
2640     }
2641   }
2642 }
2643 #endif
2644 
2645 //------------------------------singleton--------------------------------------
2646 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2647 // constants
2648 bool TypePtr::singleton(void) const {
2649   // TopPTR, Null, AnyNull, Constant are all singletons
2650   return (_offset != OffsetBot) && !below_centerline(_ptr);
2651 }
2652 
2653 bool TypePtr::empty(void) const {
2654   return (_offset == OffsetTop) || above_centerline(_ptr);
2655 }
2656 
2657 //=============================================================================
2658 // Convenience common pre-built types.
2659 const TypeRawPtr *TypeRawPtr::BOTTOM;
2660 const TypeRawPtr *TypeRawPtr::NOTNULL;
2661 
2662 //------------------------------make-------------------------------------------
2663 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2664   assert( ptr != Constant, "what is the constant?" );
2665   assert( ptr != Null, "Use TypePtr for NULL" );
2666   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2667 }
2668 
2669 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2670   assert( bits, "Use TypePtr for NULL" );
2671   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2672 }
2673 
2674 //------------------------------cast_to_ptr_type-------------------------------
2675 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2676   assert( ptr != Constant, "what is the constant?" );
2677   assert( ptr != Null, "Use TypePtr for NULL" );
2678   assert( _bits==0, "Why cast a constant address?");
2679   if( ptr == _ptr ) return this;
2680   return make(ptr);
2681 }
2682 
2683 //------------------------------get_con----------------------------------------
2684 intptr_t TypeRawPtr::get_con() const {
2685   assert( _ptr == Null || _ptr == Constant, "" );
2686   return (intptr_t)_bits;
2687 }
2688 
2689 //------------------------------meet-------------------------------------------
2690 // Compute the MEET of two types.  It returns a new Type object.
2691 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2692   // Perform a fast test for common case; meeting the same types together.
2693   if( this == t ) return this;  // Meeting same type-rep?
2694 
2695   // Current "this->_base" is RawPtr
2696   switch( t->base() ) {         // switch on original type
2697   case Bottom:                  // Ye Olde Default
2698     return t;
2699   case Top:
2700     return this;
2701   case AnyPtr:                  // Meeting to AnyPtrs
2702     break;
2703   case RawPtr: {                // might be top, bot, any/not or constant
2704     enum PTR tptr = t->is_ptr()->ptr();
2705     enum PTR ptr = meet_ptr( tptr );
2706     if( ptr == Constant ) {     // Cannot be equal constants, so...
2707       if( tptr == Constant && _ptr != Constant)  return t;
2708       if( _ptr == Constant && tptr != Constant)  return this;
2709       ptr = NotNull;            // Fall down in lattice
2710     }
2711     return make( ptr );
2712   }
2713 
2714   case OopPtr:
2715   case InstPtr:
2716   case AryPtr:
2717   case MetadataPtr:
2718   case KlassPtr:
2719     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2720   default:                      // All else is a mistake
2721     typerr(t);
2722   }
2723 
2724   // Found an AnyPtr type vs self-RawPtr type
2725   const TypePtr *tp = t->is_ptr();
2726   switch (tp->ptr()) {
2727   case TypePtr::TopPTR:  return this;
2728   case TypePtr::BotPTR:  return t;
2729   case TypePtr::Null:
2730     if( _ptr == TypePtr::TopPTR ) return t;
2731     return TypeRawPtr::BOTTOM;
2732   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
2733   case TypePtr::AnyNull:
2734     if( _ptr == TypePtr::Constant) return this;
2735     return make( meet_ptr(TypePtr::AnyNull) );
2736   default: ShouldNotReachHere();
2737   }
2738   return this;
2739 }
2740 
2741 //------------------------------xdual------------------------------------------
2742 // Dual: compute field-by-field dual
2743 const Type *TypeRawPtr::xdual() const {
2744   return new TypeRawPtr( dual_ptr(), _bits );
2745 }
2746 
2747 //------------------------------add_offset-------------------------------------
2748 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2749   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2750   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2751   if( offset == 0 ) return this; // No change
2752   switch (_ptr) {
2753   case TypePtr::TopPTR:
2754   case TypePtr::BotPTR:
2755   case TypePtr::NotNull:
2756     return this;
2757   case TypePtr::Null:
2758   case TypePtr::Constant: {
2759     address bits = _bits+offset;
2760     if ( bits == 0 ) return TypePtr::NULL_PTR;
2761     return make( bits );
2762   }
2763   default:  ShouldNotReachHere();
2764   }
2765   return NULL;                  // Lint noise
2766 }
2767 
2768 //------------------------------eq---------------------------------------------
2769 // Structural equality check for Type representations
2770 bool TypeRawPtr::eq( const Type *t ) const {
2771   const TypeRawPtr *a = (const TypeRawPtr*)t;
2772   return _bits == a->_bits && TypePtr::eq(t);
2773 }
2774 
2775 //------------------------------hash-------------------------------------------
2776 // Type-specific hashing function.
2777 int TypeRawPtr::hash(void) const {
2778   return (intptr_t)_bits + TypePtr::hash();
2779 }
2780 
2781 //------------------------------dump2------------------------------------------
2782 #ifndef PRODUCT
2783 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2784   if( _ptr == Constant )
2785     st->print(INTPTR_FORMAT, p2i(_bits));
2786   else
2787     st->print("rawptr:%s", ptr_msg[_ptr]);
2788 }
2789 #endif
2790 
2791 //=============================================================================
2792 // Convenience common pre-built type.
2793 const TypeOopPtr *TypeOopPtr::BOTTOM;
2794 
2795 //------------------------------TypeOopPtr-------------------------------------
2796 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
2797                        int instance_id, const TypePtr* speculative, int inline_depth)
2798   : TypePtr(t, ptr, offset, speculative, inline_depth),
2799     _const_oop(o), _klass(k),
2800     _klass_is_exact(xk),
2801     _is_ptr_to_narrowoop(false),
2802     _is_ptr_to_narrowklass(false),
2803     _is_ptr_to_boxed_value(false),
2804     _instance_id(instance_id) {
2805   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2806       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2807     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2808   }
2809 #ifdef _LP64
2810   if (_offset != 0) {
2811     if (_offset == oopDesc::klass_offset_in_bytes()) {
2812       _is_ptr_to_narrowklass = UseCompressedClassPointers;
2813     } else if (klass() == NULL) {
2814       // Array with unknown body type
2815       assert(this->isa_aryptr(), "only arrays without klass");
2816       _is_ptr_to_narrowoop = UseCompressedOops;
2817     } else if (this->isa_aryptr()) {
2818       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
2819                              _offset != arrayOopDesc::length_offset_in_bytes());
2820     } else if (klass()->is_instance_klass()) {
2821       ciInstanceKlass* ik = klass()->as_instance_klass();
2822       ciField* field = NULL;
2823       if (this->isa_klassptr()) {
2824         // Perm objects don't use compressed references
2825       } else if (_offset == OffsetBot || _offset == OffsetTop) {
2826         // unsafe access
2827         _is_ptr_to_narrowoop = UseCompressedOops;
2828       } else { // exclude unsafe ops
2829         assert(this->isa_instptr(), "must be an instance ptr.");
2830 
2831         if (klass() == ciEnv::current()->Class_klass() &&
2832             (_offset == java_lang_Class::klass_offset_in_bytes() ||
2833              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2834           // Special hidden fields from the Class.
2835           assert(this->isa_instptr(), "must be an instance ptr.");
2836           _is_ptr_to_narrowoop = false;
2837         } else if (klass() == ciEnv::current()->Class_klass() &&
2838                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
2839           // Static fields
2840           assert(o != NULL, "must be constant");
2841           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
2842           ciField* field = k->get_field_by_offset(_offset, true);
2843           assert(field != NULL, "missing field");
2844           BasicType basic_elem_type = field->layout_type();
2845           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2846                                                        basic_elem_type == T_ARRAY);
2847         } else {
2848           // Instance fields which contains a compressed oop references.
2849           field = ik->get_field_by_offset(_offset, false);
2850           if (field != NULL) {
2851             BasicType basic_elem_type = field->layout_type();
2852             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2853                                                          basic_elem_type == T_ARRAY);
2854           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
2855             // Compile::find_alias_type() cast exactness on all types to verify
2856             // that it does not affect alias type.
2857             _is_ptr_to_narrowoop = UseCompressedOops;
2858           } else {
2859             // Type for the copy start in LibraryCallKit::inline_native_clone().
2860             _is_ptr_to_narrowoop = UseCompressedOops;
2861           }
2862         }
2863       }
2864     }
2865   }
2866 #endif
2867 }
2868 
2869 //------------------------------make-------------------------------------------
2870 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
2871                                      const TypePtr* speculative, int inline_depth) {
2872   assert(ptr != Constant, "no constant generic pointers");
2873   ciKlass*  k = Compile::current()->env()->Object_klass();
2874   bool      xk = false;
2875   ciObject* o = NULL;
2876   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
2877 }
2878 
2879 
2880 //------------------------------cast_to_ptr_type-------------------------------
2881 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
2882   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
2883   if( ptr == _ptr ) return this;
2884   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
2885 }
2886 
2887 //-----------------------------cast_to_instance_id----------------------------
2888 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
2889   // There are no instances of a general oop.
2890   // Return self unchanged.
2891   return this;
2892 }
2893 
2894 //-----------------------------cast_to_exactness-------------------------------
2895 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
2896   // There is no such thing as an exact general oop.
2897   // Return self unchanged.
2898   return this;
2899 }
2900 
2901 
2902 //------------------------------as_klass_type----------------------------------
2903 // Return the klass type corresponding to this instance or array type.
2904 // It is the type that is loaded from an object of this type.
2905 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
2906   ciKlass* k = klass();
2907   bool    xk = klass_is_exact();
2908   if (k == NULL)
2909     return TypeKlassPtr::OBJECT;
2910   else
2911     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
2912 }
2913 
2914 //------------------------------meet-------------------------------------------
2915 // Compute the MEET of two types.  It returns a new Type object.
2916 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
2917   // Perform a fast test for common case; meeting the same types together.
2918   if( this == t ) return this;  // Meeting same type-rep?
2919 
2920   // Current "this->_base" is OopPtr
2921   switch (t->base()) {          // switch on original type
2922 
2923   case Int:                     // Mixing ints & oops happens when javac
2924   case Long:                    // reuses local variables
2925   case FloatTop:
2926   case FloatCon:
2927   case FloatBot:
2928   case DoubleTop:
2929   case DoubleCon:
2930   case DoubleBot:
2931   case NarrowOop:
2932   case NarrowKlass:
2933   case Bottom:                  // Ye Olde Default
2934     return Type::BOTTOM;
2935   case Top:
2936     return this;
2937 
2938   default:                      // All else is a mistake
2939     typerr(t);
2940 
2941   case RawPtr:
2942   case MetadataPtr:
2943   case KlassPtr:
2944     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2945 
2946   case AnyPtr: {
2947     // Found an AnyPtr type vs self-OopPtr type
2948     const TypePtr *tp = t->is_ptr();
2949     int offset = meet_offset(tp->offset());
2950     PTR ptr = meet_ptr(tp->ptr());
2951     const TypePtr* speculative = xmeet_speculative(tp);
2952     int depth = meet_inline_depth(tp->inline_depth());
2953     switch (tp->ptr()) {
2954     case Null:
2955       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
2956       // else fall through:
2957     case TopPTR:
2958     case AnyNull: {
2959       int instance_id = meet_instance_id(InstanceTop);
2960       return make(ptr, offset, instance_id, speculative, depth);
2961     }
2962     case BotPTR:
2963     case NotNull:
2964       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
2965     default: typerr(t);
2966     }
2967   }
2968 
2969   case OopPtr: {                 // Meeting to other OopPtrs
2970     const TypeOopPtr *tp = t->is_oopptr();
2971     int instance_id = meet_instance_id(tp->instance_id());
2972     const TypePtr* speculative = xmeet_speculative(tp);
2973     int depth = meet_inline_depth(tp->inline_depth());
2974     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
2975   }
2976 
2977   case InstPtr:                  // For these, flip the call around to cut down
2978   case AryPtr:
2979     return t->xmeet(this);      // Call in reverse direction
2980 
2981   } // End of switch
2982   return this;                  // Return the double constant
2983 }
2984 
2985 
2986 //------------------------------xdual------------------------------------------
2987 // Dual of a pure heap pointer.  No relevant klass or oop information.
2988 const Type *TypeOopPtr::xdual() const {
2989   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
2990   assert(const_oop() == NULL,             "no constants here");
2991   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
2992 }
2993 
2994 //--------------------------make_from_klass_common-----------------------------
2995 // Computes the element-type given a klass.
2996 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
2997   if (klass->is_instance_klass()) {
2998     Compile* C = Compile::current();
2999     Dependencies* deps = C->dependencies();
3000     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3001     // Element is an instance
3002     bool klass_is_exact = false;
3003     if (klass->is_loaded()) {
3004       // Try to set klass_is_exact.
3005       ciInstanceKlass* ik = klass->as_instance_klass();
3006       klass_is_exact = ik->is_final();
3007       if (!klass_is_exact && klass_change
3008           && deps != NULL && UseUniqueSubclasses) {
3009         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3010         if (sub != NULL) {
3011           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3012           klass = ik = sub;
3013           klass_is_exact = sub->is_final();
3014         }
3015       }
3016       if (!klass_is_exact && try_for_exact
3017           && deps != NULL && UseExactTypes) {
3018         if (!ik->is_interface() && !ik->has_subklass()) {
3019           // Add a dependence; if concrete subclass added we need to recompile
3020           deps->assert_leaf_type(ik);
3021           klass_is_exact = true;
3022         }
3023       }
3024     }
3025     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
3026   } else if (klass->is_obj_array_klass()) {
3027     // Element is an object array. Recursively call ourself.
3028     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
3029     bool xk = etype->klass_is_exact();
3030     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3031     // We used to pass NotNull in here, asserting that the sub-arrays
3032     // are all not-null.  This is not true in generally, as code can
3033     // slam NULLs down in the subarrays.
3034     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
3035     return arr;
3036   } else if (klass->is_type_array_klass()) {
3037     // Element is an typeArray
3038     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3039     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3040     // We used to pass NotNull in here, asserting that the array pointer
3041     // is not-null. That was not true in general.
3042     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3043     return arr;
3044   } else {
3045     ShouldNotReachHere();
3046     return NULL;
3047   }
3048 }
3049 
3050 //------------------------------make_from_constant-----------------------------
3051 // Make a java pointer from an oop constant
3052 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3053   assert(!o->is_null_object(), "null object not yet handled here.");
3054   ciKlass* klass = o->klass();
3055   if (klass->is_instance_klass()) {
3056     // Element is an instance
3057     if (require_constant) {
3058       if (!o->can_be_constant())  return NULL;
3059     } else if (!o->should_be_constant()) {
3060       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
3061     }
3062     return TypeInstPtr::make(o);
3063   } else if (klass->is_obj_array_klass()) {
3064     // Element is an object array. Recursively call ourself.
3065     const TypeOopPtr *etype =
3066       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
3067     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3068     // We used to pass NotNull in here, asserting that the sub-arrays
3069     // are all not-null.  This is not true in generally, as code can
3070     // slam NULLs down in the subarrays.
3071     if (require_constant) {
3072       if (!o->can_be_constant())  return NULL;
3073     } else if (!o->should_be_constant()) {
3074       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3075     }
3076     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3077     return arr;
3078   } else if (klass->is_type_array_klass()) {
3079     // Element is an typeArray
3080     const Type* etype =
3081       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3082     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3083     // We used to pass NotNull in here, asserting that the array pointer
3084     // is not-null. That was not true in general.
3085     if (require_constant) {
3086       if (!o->can_be_constant())  return NULL;
3087     } else if (!o->should_be_constant()) {
3088       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3089     }
3090     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3091     return arr;
3092   }
3093 
3094   fatal("unhandled object type");
3095   return NULL;
3096 }
3097 
3098 //------------------------------get_con----------------------------------------
3099 intptr_t TypeOopPtr::get_con() const {
3100   assert( _ptr == Null || _ptr == Constant, "" );
3101   assert( _offset >= 0, "" );
3102 
3103   if (_offset != 0) {
3104     // After being ported to the compiler interface, the compiler no longer
3105     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3106     // to a handle at compile time.  This handle is embedded in the generated
3107     // code and dereferenced at the time the nmethod is made.  Until that time,
3108     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3109     // have access to the addresses!).  This does not seem to currently happen,
3110     // but this assertion here is to help prevent its occurence.
3111     tty->print_cr("Found oop constant with non-zero offset");
3112     ShouldNotReachHere();
3113   }
3114 
3115   return (intptr_t)const_oop()->constant_encoding();
3116 }
3117 
3118 
3119 //-----------------------------filter------------------------------------------
3120 // Do not allow interface-vs.-noninterface joins to collapse to top.
3121 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3122 
3123   const Type* ft = join_helper(kills, include_speculative);
3124   const TypeInstPtr* ftip = ft->isa_instptr();
3125   const TypeInstPtr* ktip = kills->isa_instptr();
3126 
3127   if (ft->empty()) {
3128     // Check for evil case of 'this' being a class and 'kills' expecting an
3129     // interface.  This can happen because the bytecodes do not contain
3130     // enough type info to distinguish a Java-level interface variable
3131     // from a Java-level object variable.  If we meet 2 classes which
3132     // both implement interface I, but their meet is at 'j/l/O' which
3133     // doesn't implement I, we have no way to tell if the result should
3134     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3135     // into a Phi which "knows" it's an Interface type we'll have to
3136     // uplift the type.
3137     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
3138       return kills;             // Uplift to interface
3139 
3140     return Type::TOP;           // Canonical empty value
3141   }
3142 
3143   // If we have an interface-typed Phi or cast and we narrow to a class type,
3144   // the join should report back the class.  However, if we have a J/L/Object
3145   // class-typed Phi and an interface flows in, it's possible that the meet &
3146   // join report an interface back out.  This isn't possible but happens
3147   // because the type system doesn't interact well with interfaces.
3148   if (ftip != NULL && ktip != NULL &&
3149       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3150       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3151     assert(!ftip->klass_is_exact(), "interface could not be exact");
3152     return ktip->cast_to_ptr_type(ftip->ptr());
3153   }
3154 
3155   return ft;
3156 }
3157 
3158 //------------------------------eq---------------------------------------------
3159 // Structural equality check for Type representations
3160 bool TypeOopPtr::eq( const Type *t ) const {
3161   const TypeOopPtr *a = (const TypeOopPtr*)t;
3162   if (_klass_is_exact != a->_klass_is_exact ||
3163       _instance_id != a->_instance_id)  return false;
3164   ciObject* one = const_oop();
3165   ciObject* two = a->const_oop();
3166   if (one == NULL || two == NULL) {
3167     return (one == two) && TypePtr::eq(t);
3168   } else {
3169     return one->equals(two) && TypePtr::eq(t);
3170   }
3171 }
3172 
3173 //------------------------------hash-------------------------------------------
3174 // Type-specific hashing function.
3175 int TypeOopPtr::hash(void) const {
3176   return
3177     (const_oop() ? const_oop()->hash() : 0) +
3178     _klass_is_exact +
3179     _instance_id +
3180     TypePtr::hash();
3181 }
3182 
3183 //------------------------------dump2------------------------------------------
3184 #ifndef PRODUCT
3185 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3186   st->print("oopptr:%s", ptr_msg[_ptr]);
3187   if( _klass_is_exact ) st->print(":exact");
3188   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3189   switch( _offset ) {
3190   case OffsetTop: st->print("+top"); break;
3191   case OffsetBot: st->print("+any"); break;
3192   case         0: break;
3193   default:        st->print("+%d",_offset); break;
3194   }
3195   if (_instance_id == InstanceTop)
3196     st->print(",iid=top");
3197   else if (_instance_id != InstanceBot)
3198     st->print(",iid=%d",_instance_id);
3199 
3200   dump_inline_depth(st);
3201   dump_speculative(st);
3202 }
3203 #endif
3204 
3205 //------------------------------singleton--------------------------------------
3206 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3207 // constants
3208 bool TypeOopPtr::singleton(void) const {
3209   // detune optimizer to not generate constant oop + constant offset as a constant!
3210   // TopPTR, Null, AnyNull, Constant are all singletons
3211   return (_offset == 0) && !below_centerline(_ptr);
3212 }
3213 
3214 //------------------------------add_offset-------------------------------------
3215 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3216   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3217 }
3218 
3219 /**
3220  * Return same type without a speculative part
3221  */
3222 const Type* TypeOopPtr::remove_speculative() const {
3223   if (_speculative == NULL) {
3224     return this;
3225   }
3226   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3227   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3228 }
3229 
3230 /**
3231  * Return same type but drop speculative part if we know we won't use
3232  * it
3233  */
3234 const Type* TypeOopPtr::cleanup_speculative() const {
3235   // If the klass is exact and the ptr is not null then there's
3236   // nothing that the speculative type can help us with
3237   if (klass_is_exact() && !maybe_null()) {
3238     return remove_speculative();
3239   }
3240   return TypePtr::cleanup_speculative();
3241 }
3242 
3243 /**
3244  * Return same type but with a different inline depth (used for speculation)
3245  *
3246  * @param depth  depth to meet with
3247  */
3248 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3249   if (!UseInlineDepthForSpeculativeTypes) {
3250     return this;
3251   }
3252   return make(_ptr, _offset, _instance_id, _speculative, depth);
3253 }
3254 
3255 //------------------------------meet_instance_id--------------------------------
3256 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3257   // Either is 'TOP' instance?  Return the other instance!
3258   if( _instance_id == InstanceTop ) return  instance_id;
3259   if(  instance_id == InstanceTop ) return _instance_id;
3260   // If either is different, return 'BOTTOM' instance
3261   if( _instance_id != instance_id ) return InstanceBot;
3262   return _instance_id;
3263 }
3264 
3265 //------------------------------dual_instance_id--------------------------------
3266 int TypeOopPtr::dual_instance_id( ) const {
3267   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3268   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3269   return _instance_id;              // Map everything else into self
3270 }
3271 
3272 /**
3273  * Check whether new profiling would improve speculative type
3274  *
3275  * @param   exact_kls    class from profiling
3276  * @param   inline_depth inlining depth of profile point
3277  *
3278  * @return  true if type profile is valuable
3279  */
3280 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3281   // no way to improve an already exact type
3282   if (klass_is_exact()) {
3283     return false;
3284   }
3285   return TypePtr::would_improve_type(exact_kls, inline_depth);
3286 }
3287 
3288 //=============================================================================
3289 // Convenience common pre-built types.
3290 const TypeInstPtr *TypeInstPtr::NOTNULL;
3291 const TypeInstPtr *TypeInstPtr::BOTTOM;
3292 const TypeInstPtr *TypeInstPtr::MIRROR;
3293 const TypeInstPtr *TypeInstPtr::MARK;
3294 const TypeInstPtr *TypeInstPtr::KLASS;
3295 
3296 //------------------------------TypeInstPtr-------------------------------------
3297 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off,
3298                          int instance_id, const TypePtr* speculative, int inline_depth)
3299   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth),
3300     _name(k->name()) {
3301    assert(k != NULL &&
3302           (k->is_loaded() || o == NULL),
3303           "cannot have constants with non-loaded klass");
3304 };
3305 
3306 //------------------------------make-------------------------------------------
3307 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3308                                      ciKlass* k,
3309                                      bool xk,
3310                                      ciObject* o,
3311                                      int offset,
3312                                      int instance_id,
3313                                      const TypePtr* speculative,
3314                                      int inline_depth) {
3315   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3316   // Either const_oop() is NULL or else ptr is Constant
3317   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3318           "constant pointers must have a value supplied" );
3319   // Ptr is never Null
3320   assert( ptr != Null, "NULL pointers are not typed" );
3321 
3322   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3323   if (!UseExactTypes)  xk = false;
3324   if (ptr == Constant) {
3325     // Note:  This case includes meta-object constants, such as methods.
3326     xk = true;
3327   } else if (k->is_loaded()) {
3328     ciInstanceKlass* ik = k->as_instance_klass();
3329     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3330     if (xk && ik->is_interface())  xk = false;  // no exact interface
3331   }
3332 
3333   // Now hash this baby
3334   TypeInstPtr *result =
3335     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3336 
3337   return result;
3338 }
3339 
3340 /**
3341  *  Create constant type for a constant boxed value
3342  */
3343 const Type* TypeInstPtr::get_const_boxed_value() const {
3344   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3345   assert((const_oop() != NULL), "should be called only for constant object");
3346   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3347   BasicType bt = constant.basic_type();
3348   switch (bt) {
3349     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3350     case T_INT:      return TypeInt::make(constant.as_int());
3351     case T_CHAR:     return TypeInt::make(constant.as_char());
3352     case T_BYTE:     return TypeInt::make(constant.as_byte());
3353     case T_SHORT:    return TypeInt::make(constant.as_short());
3354     case T_FLOAT:    return TypeF::make(constant.as_float());
3355     case T_DOUBLE:   return TypeD::make(constant.as_double());
3356     case T_LONG:     return TypeLong::make(constant.as_long());
3357     default:         break;
3358   }
3359   fatal("Invalid boxed value type '%s'", type2name(bt));
3360   return NULL;
3361 }
3362 
3363 //------------------------------cast_to_ptr_type-------------------------------
3364 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3365   if( ptr == _ptr ) return this;
3366   // Reconstruct _sig info here since not a problem with later lazy
3367   // construction, _sig will show up on demand.
3368   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3369 }
3370 
3371 
3372 //-----------------------------cast_to_exactness-------------------------------
3373 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3374   if( klass_is_exact == _klass_is_exact ) return this;
3375   if (!UseExactTypes)  return this;
3376   if (!_klass->is_loaded())  return this;
3377   ciInstanceKlass* ik = _klass->as_instance_klass();
3378   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3379   if( ik->is_interface() )              return this;  // cannot set xk
3380   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3381 }
3382 
3383 //-----------------------------cast_to_instance_id----------------------------
3384 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3385   if( instance_id == _instance_id ) return this;
3386   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3387 }
3388 
3389 //------------------------------xmeet_unloaded---------------------------------
3390 // Compute the MEET of two InstPtrs when at least one is unloaded.
3391 // Assume classes are different since called after check for same name/class-loader
3392 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3393     int off = meet_offset(tinst->offset());
3394     PTR ptr = meet_ptr(tinst->ptr());
3395     int instance_id = meet_instance_id(tinst->instance_id());
3396     const TypePtr* speculative = xmeet_speculative(tinst);
3397     int depth = meet_inline_depth(tinst->inline_depth());
3398 
3399     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3400     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3401     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3402       //
3403       // Meet unloaded class with java/lang/Object
3404       //
3405       // Meet
3406       //          |                     Unloaded Class
3407       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3408       //  ===================================================================
3409       //   TOP    | ..........................Unloaded......................|
3410       //  AnyNull |  U-AN    |................Unloaded......................|
3411       // Constant | ... O-NN .................................. |   O-BOT   |
3412       //  NotNull | ... O-NN .................................. |   O-BOT   |
3413       //  BOTTOM  | ........................Object-BOTTOM ..................|
3414       //
3415       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3416       //
3417       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3418       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3419       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3420       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3421         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3422         else                                      { return TypeInstPtr::NOTNULL; }
3423       }
3424       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3425 
3426       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3427     }
3428 
3429     // Both are unloaded, not the same class, not Object
3430     // Or meet unloaded with a different loaded class, not java/lang/Object
3431     if( ptr != TypePtr::BotPTR ) {
3432       return TypeInstPtr::NOTNULL;
3433     }
3434     return TypeInstPtr::BOTTOM;
3435 }
3436 
3437 
3438 //------------------------------meet-------------------------------------------
3439 // Compute the MEET of two types.  It returns a new Type object.
3440 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3441   // Perform a fast test for common case; meeting the same types together.
3442   if( this == t ) return this;  // Meeting same type-rep?
3443 
3444   // Current "this->_base" is Pointer
3445   switch (t->base()) {          // switch on original type
3446 
3447   case Int:                     // Mixing ints & oops happens when javac
3448   case Long:                    // reuses local variables
3449   case FloatTop:
3450   case FloatCon:
3451   case FloatBot:
3452   case DoubleTop:
3453   case DoubleCon:
3454   case DoubleBot:
3455   case NarrowOop:
3456   case NarrowKlass:
3457   case Bottom:                  // Ye Olde Default
3458     return Type::BOTTOM;
3459   case Top:
3460     return this;
3461 
3462   default:                      // All else is a mistake
3463     typerr(t);
3464 
3465   case MetadataPtr:
3466   case KlassPtr:
3467   case RawPtr: return TypePtr::BOTTOM;
3468 
3469   case AryPtr: {                // All arrays inherit from Object class
3470     const TypeAryPtr *tp = t->is_aryptr();
3471     int offset = meet_offset(tp->offset());
3472     PTR ptr = meet_ptr(tp->ptr());
3473     int instance_id = meet_instance_id(tp->instance_id());
3474     const TypePtr* speculative = xmeet_speculative(tp);
3475     int depth = meet_inline_depth(tp->inline_depth());
3476     switch (ptr) {
3477     case TopPTR:
3478     case AnyNull:                // Fall 'down' to dual of object klass
3479       // For instances when a subclass meets a superclass we fall
3480       // below the centerline when the superclass is exact. We need to
3481       // do the same here.
3482       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3483         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3484       } else {
3485         // cannot subclass, so the meet has to fall badly below the centerline
3486         ptr = NotNull;
3487         instance_id = InstanceBot;
3488         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3489       }
3490     case Constant:
3491     case NotNull:
3492     case BotPTR:                // Fall down to object klass
3493       // LCA is object_klass, but if we subclass from the top we can do better
3494       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3495         // If 'this' (InstPtr) is above the centerline and it is Object class
3496         // then we can subclass in the Java class hierarchy.
3497         // For instances when a subclass meets a superclass we fall
3498         // below the centerline when the superclass is exact. We need
3499         // to do the same here.
3500         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3501           // that is, tp's array type is a subtype of my klass
3502           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3503                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3504         }
3505       }
3506       // The other case cannot happen, since I cannot be a subtype of an array.
3507       // The meet falls down to Object class below centerline.
3508       if( ptr == Constant )
3509          ptr = NotNull;
3510       instance_id = InstanceBot;
3511       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3512     default: typerr(t);
3513     }
3514   }
3515 
3516   case OopPtr: {                // Meeting to OopPtrs
3517     // Found a OopPtr type vs self-InstPtr type
3518     const TypeOopPtr *tp = t->is_oopptr();
3519     int offset = meet_offset(tp->offset());
3520     PTR ptr = meet_ptr(tp->ptr());
3521     switch (tp->ptr()) {
3522     case TopPTR:
3523     case AnyNull: {
3524       int instance_id = meet_instance_id(InstanceTop);
3525       const TypePtr* speculative = xmeet_speculative(tp);
3526       int depth = meet_inline_depth(tp->inline_depth());
3527       return make(ptr, klass(), klass_is_exact(),
3528                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3529     }
3530     case NotNull:
3531     case BotPTR: {
3532       int instance_id = meet_instance_id(tp->instance_id());
3533       const TypePtr* speculative = xmeet_speculative(tp);
3534       int depth = meet_inline_depth(tp->inline_depth());
3535       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3536     }
3537     default: typerr(t);
3538     }
3539   }
3540 
3541   case AnyPtr: {                // Meeting to AnyPtrs
3542     // Found an AnyPtr type vs self-InstPtr type
3543     const TypePtr *tp = t->is_ptr();
3544     int offset = meet_offset(tp->offset());
3545     PTR ptr = meet_ptr(tp->ptr());
3546     int instance_id = meet_instance_id(InstanceTop);
3547     const TypePtr* speculative = xmeet_speculative(tp);
3548     int depth = meet_inline_depth(tp->inline_depth());
3549     switch (tp->ptr()) {
3550     case Null:
3551       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3552       // else fall through to AnyNull
3553     case TopPTR:
3554     case AnyNull: {
3555       return make(ptr, klass(), klass_is_exact(),
3556                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3557     }
3558     case NotNull:
3559     case BotPTR:
3560       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3561     default: typerr(t);
3562     }
3563   }
3564 
3565   /*
3566                  A-top         }
3567                /   |   \       }  Tops
3568            B-top A-any C-top   }
3569               | /  |  \ |      }  Any-nulls
3570            B-any   |   C-any   }
3571               |    |    |
3572            B-con A-con C-con   } constants; not comparable across classes
3573               |    |    |
3574            B-not   |   C-not   }
3575               | \  |  / |      }  not-nulls
3576            B-bot A-not C-bot   }
3577                \   |   /       }  Bottoms
3578                  A-bot         }
3579   */
3580 
3581   case InstPtr: {                // Meeting 2 Oops?
3582     // Found an InstPtr sub-type vs self-InstPtr type
3583     const TypeInstPtr *tinst = t->is_instptr();
3584     int off = meet_offset( tinst->offset() );
3585     PTR ptr = meet_ptr( tinst->ptr() );
3586     int instance_id = meet_instance_id(tinst->instance_id());
3587     const TypePtr* speculative = xmeet_speculative(tinst);
3588     int depth = meet_inline_depth(tinst->inline_depth());
3589 
3590     // Check for easy case; klasses are equal (and perhaps not loaded!)
3591     // If we have constants, then we created oops so classes are loaded
3592     // and we can handle the constants further down.  This case handles
3593     // both-not-loaded or both-loaded classes
3594     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3595       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3596     }
3597 
3598     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3599     ciKlass* tinst_klass = tinst->klass();
3600     ciKlass* this_klass  = this->klass();
3601     bool tinst_xk = tinst->klass_is_exact();
3602     bool this_xk  = this->klass_is_exact();
3603     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3604       // One of these classes has not been loaded
3605       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3606 #ifndef PRODUCT
3607       if( PrintOpto && Verbose ) {
3608         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3609         tty->print("  this == "); this->dump(); tty->cr();
3610         tty->print(" tinst == "); tinst->dump(); tty->cr();
3611       }
3612 #endif
3613       return unloaded_meet;
3614     }
3615 
3616     // Handle mixing oops and interfaces first.
3617     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3618                                         tinst_klass == ciEnv::current()->Object_klass())) {
3619       ciKlass *tmp = tinst_klass; // Swap interface around
3620       tinst_klass = this_klass;
3621       this_klass = tmp;
3622       bool tmp2 = tinst_xk;
3623       tinst_xk = this_xk;
3624       this_xk = tmp2;
3625     }
3626     if (tinst_klass->is_interface() &&
3627         !(this_klass->is_interface() ||
3628           // Treat java/lang/Object as an honorary interface,
3629           // because we need a bottom for the interface hierarchy.
3630           this_klass == ciEnv::current()->Object_klass())) {
3631       // Oop meets interface!
3632 
3633       // See if the oop subtypes (implements) interface.
3634       ciKlass *k;
3635       bool xk;
3636       if( this_klass->is_subtype_of( tinst_klass ) ) {
3637         // Oop indeed subtypes.  Now keep oop or interface depending
3638         // on whether we are both above the centerline or either is
3639         // below the centerline.  If we are on the centerline
3640         // (e.g., Constant vs. AnyNull interface), use the constant.
3641         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3642         // If we are keeping this_klass, keep its exactness too.
3643         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3644       } else {                  // Does not implement, fall to Object
3645         // Oop does not implement interface, so mixing falls to Object
3646         // just like the verifier does (if both are above the
3647         // centerline fall to interface)
3648         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3649         xk = above_centerline(ptr) ? tinst_xk : false;
3650         // Watch out for Constant vs. AnyNull interface.
3651         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3652         instance_id = InstanceBot;
3653       }
3654       ciObject* o = NULL;  // the Constant value, if any
3655       if (ptr == Constant) {
3656         // Find out which constant.
3657         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3658       }
3659       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
3660     }
3661 
3662     // Either oop vs oop or interface vs interface or interface vs Object
3663 
3664     // !!! Here's how the symmetry requirement breaks down into invariants:
3665     // If we split one up & one down AND they subtype, take the down man.
3666     // If we split one up & one down AND they do NOT subtype, "fall hard".
3667     // If both are up and they subtype, take the subtype class.
3668     // If both are up and they do NOT subtype, "fall hard".
3669     // If both are down and they subtype, take the supertype class.
3670     // If both are down and they do NOT subtype, "fall hard".
3671     // Constants treated as down.
3672 
3673     // Now, reorder the above list; observe that both-down+subtype is also
3674     // "fall hard"; "fall hard" becomes the default case:
3675     // If we split one up & one down AND they subtype, take the down man.
3676     // If both are up and they subtype, take the subtype class.
3677 
3678     // If both are down and they subtype, "fall hard".
3679     // If both are down and they do NOT subtype, "fall hard".
3680     // If both are up and they do NOT subtype, "fall hard".
3681     // If we split one up & one down AND they do NOT subtype, "fall hard".
3682 
3683     // If a proper subtype is exact, and we return it, we return it exactly.
3684     // If a proper supertype is exact, there can be no subtyping relationship!
3685     // If both types are equal to the subtype, exactness is and-ed below the
3686     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3687 
3688     // Check for subtyping:
3689     ciKlass *subtype = NULL;
3690     bool subtype_exact = false;
3691     if( tinst_klass->equals(this_klass) ) {
3692       subtype = this_klass;
3693       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3694     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3695       subtype = this_klass;     // Pick subtyping class
3696       subtype_exact = this_xk;
3697     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3698       subtype = tinst_klass;    // Pick subtyping class
3699       subtype_exact = tinst_xk;
3700     }
3701 
3702     if( subtype ) {
3703       if( above_centerline(ptr) ) { // both are up?
3704         this_klass = tinst_klass = subtype;
3705         this_xk = tinst_xk = subtype_exact;
3706       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3707         this_klass = tinst_klass; // tinst is down; keep down man
3708         this_xk = tinst_xk;
3709       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3710         tinst_klass = this_klass; // this is down; keep down man
3711         tinst_xk = this_xk;
3712       } else {
3713         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3714       }
3715     }
3716 
3717     // Check for classes now being equal
3718     if (tinst_klass->equals(this_klass)) {
3719       // If the klasses are equal, the constants may still differ.  Fall to
3720       // NotNull if they do (neither constant is NULL; that is a special case
3721       // handled elsewhere).
3722       ciObject* o = NULL;             // Assume not constant when done
3723       ciObject* this_oop  = const_oop();
3724       ciObject* tinst_oop = tinst->const_oop();
3725       if( ptr == Constant ) {
3726         if (this_oop != NULL && tinst_oop != NULL &&
3727             this_oop->equals(tinst_oop) )
3728           o = this_oop;
3729         else if (above_centerline(this ->_ptr))
3730           o = tinst_oop;
3731         else if (above_centerline(tinst ->_ptr))
3732           o = this_oop;
3733         else
3734           ptr = NotNull;
3735       }
3736       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
3737     } // Else classes are not equal
3738 
3739     // Since klasses are different, we require a LCA in the Java
3740     // class hierarchy - which means we have to fall to at least NotNull.
3741     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3742       ptr = NotNull;
3743 
3744     instance_id = InstanceBot;
3745 
3746     // Now we find the LCA of Java classes
3747     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3748     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
3749   } // End of case InstPtr
3750 
3751   } // End of switch
3752   return this;                  // Return the double constant
3753 }
3754 
3755 
3756 //------------------------java_mirror_type--------------------------------------
3757 ciType* TypeInstPtr::java_mirror_type() const {
3758   // must be a singleton type
3759   if( const_oop() == NULL )  return NULL;
3760 
3761   // must be of type java.lang.Class
3762   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3763 
3764   return const_oop()->as_instance()->java_mirror_type();
3765 }
3766 
3767 
3768 //------------------------------xdual------------------------------------------
3769 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3770 // inheritance mechanism.
3771 const Type *TypeInstPtr::xdual() const {
3772   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3773 }
3774 
3775 //------------------------------eq---------------------------------------------
3776 // Structural equality check for Type representations
3777 bool TypeInstPtr::eq( const Type *t ) const {
3778   const TypeInstPtr *p = t->is_instptr();
3779   return
3780     klass()->equals(p->klass()) &&
3781     TypeOopPtr::eq(p);          // Check sub-type stuff
3782 }
3783 
3784 //------------------------------hash-------------------------------------------
3785 // Type-specific hashing function.
3786 int TypeInstPtr::hash(void) const {
3787   int hash = klass()->hash() + TypeOopPtr::hash();
3788   return hash;
3789 }
3790 
3791 //------------------------------dump2------------------------------------------
3792 // Dump oop Type
3793 #ifndef PRODUCT
3794 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3795   // Print the name of the klass.
3796   klass()->print_name_on(st);
3797 
3798   switch( _ptr ) {
3799   case Constant:
3800     // TO DO: Make CI print the hex address of the underlying oop.
3801     if (WizardMode || Verbose) {
3802       const_oop()->print_oop(st);
3803     }
3804   case BotPTR:
3805     if (!WizardMode && !Verbose) {
3806       if( _klass_is_exact ) st->print(":exact");
3807       break;
3808     }
3809   case TopPTR:
3810   case AnyNull:
3811   case NotNull:
3812     st->print(":%s", ptr_msg[_ptr]);
3813     if( _klass_is_exact ) st->print(":exact");
3814     break;
3815   }
3816 
3817   if( _offset ) {               // Dump offset, if any
3818     if( _offset == OffsetBot )      st->print("+any");
3819     else if( _offset == OffsetTop ) st->print("+unknown");
3820     else st->print("+%d", _offset);
3821   }
3822 
3823   st->print(" *");
3824   if (_instance_id == InstanceTop)
3825     st->print(",iid=top");
3826   else if (_instance_id != InstanceBot)
3827     st->print(",iid=%d",_instance_id);
3828 
3829   dump_inline_depth(st);
3830   dump_speculative(st);
3831 }
3832 #endif
3833 
3834 //------------------------------add_offset-------------------------------------
3835 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
3836   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
3837               _instance_id, add_offset_speculative(offset), _inline_depth);
3838 }
3839 
3840 const Type *TypeInstPtr::remove_speculative() const {
3841   if (_speculative == NULL) {
3842     return this;
3843   }
3844   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3845   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
3846               _instance_id, NULL, _inline_depth);
3847 }
3848 
3849 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
3850   if (!UseInlineDepthForSpeculativeTypes) {
3851     return this;
3852   }
3853   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
3854 }
3855 
3856 //=============================================================================
3857 // Convenience common pre-built types.
3858 const TypeAryPtr *TypeAryPtr::RANGE;
3859 const TypeAryPtr *TypeAryPtr::OOPS;
3860 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
3861 const TypeAryPtr *TypeAryPtr::BYTES;
3862 const TypeAryPtr *TypeAryPtr::SHORTS;
3863 const TypeAryPtr *TypeAryPtr::CHARS;
3864 const TypeAryPtr *TypeAryPtr::INTS;
3865 const TypeAryPtr *TypeAryPtr::LONGS;
3866 const TypeAryPtr *TypeAryPtr::FLOATS;
3867 const TypeAryPtr *TypeAryPtr::DOUBLES;
3868 
3869 //------------------------------make-------------------------------------------
3870 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
3871                                    int instance_id, const TypePtr* speculative, int inline_depth) {
3872   assert(!(k == NULL && ary->_elem->isa_int()),
3873          "integral arrays must be pre-equipped with a class");
3874   if (!xk)  xk = ary->ary_must_be_exact();
3875   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3876   if (!UseExactTypes)  xk = (ptr == Constant);
3877   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
3878 }
3879 
3880 //------------------------------make-------------------------------------------
3881 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
3882                                    int instance_id, const TypePtr* speculative, int inline_depth,
3883                                    bool is_autobox_cache) {
3884   assert(!(k == NULL && ary->_elem->isa_int()),
3885          "integral arrays must be pre-equipped with a class");
3886   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
3887   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
3888   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3889   if (!UseExactTypes)  xk = (ptr == Constant);
3890   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
3891 }
3892 
3893 //------------------------------cast_to_ptr_type-------------------------------
3894 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
3895   if( ptr == _ptr ) return this;
3896   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3897 }
3898 
3899 
3900 //-----------------------------cast_to_exactness-------------------------------
3901 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
3902   if( klass_is_exact == _klass_is_exact ) return this;
3903   if (!UseExactTypes)  return this;
3904   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
3905   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
3906 }
3907 
3908 //-----------------------------cast_to_instance_id----------------------------
3909 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
3910   if( instance_id == _instance_id ) return this;
3911   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
3912 }
3913 
3914 //-----------------------------narrow_size_type-------------------------------
3915 // Local cache for arrayOopDesc::max_array_length(etype),
3916 // which is kind of slow (and cached elsewhere by other users).
3917 static jint max_array_length_cache[T_CONFLICT+1];
3918 static jint max_array_length(BasicType etype) {
3919   jint& cache = max_array_length_cache[etype];
3920   jint res = cache;
3921   if (res == 0) {
3922     switch (etype) {
3923     case T_NARROWOOP:
3924       etype = T_OBJECT;
3925       break;
3926     case T_NARROWKLASS:
3927     case T_CONFLICT:
3928     case T_ILLEGAL:
3929     case T_VOID:
3930       etype = T_BYTE;           // will produce conservatively high value
3931     }
3932     cache = res = arrayOopDesc::max_array_length(etype);
3933   }
3934   return res;
3935 }
3936 
3937 // Narrow the given size type to the index range for the given array base type.
3938 // Return NULL if the resulting int type becomes empty.
3939 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
3940   jint hi = size->_hi;
3941   jint lo = size->_lo;
3942   jint min_lo = 0;
3943   jint max_hi = max_array_length(elem()->basic_type());
3944   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
3945   bool chg = false;
3946   if (lo < min_lo) {
3947     lo = min_lo;
3948     if (size->is_con()) {
3949       hi = lo;
3950     }
3951     chg = true;
3952   }
3953   if (hi > max_hi) {
3954     hi = max_hi;
3955     if (size->is_con()) {
3956       lo = hi;
3957     }
3958     chg = true;
3959   }
3960   // Negative length arrays will produce weird intermediate dead fast-path code
3961   if (lo > hi)
3962     return TypeInt::ZERO;
3963   if (!chg)
3964     return size;
3965   return TypeInt::make(lo, hi, Type::WidenMin);
3966 }
3967 
3968 //-------------------------------cast_to_size----------------------------------
3969 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
3970   assert(new_size != NULL, "");
3971   new_size = narrow_size_type(new_size);
3972   if (new_size == size())  return this;
3973   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
3974   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3975 }
3976 
3977 //------------------------------cast_to_stable---------------------------------
3978 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
3979   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
3980     return this;
3981 
3982   const Type* elem = this->elem();
3983   const TypePtr* elem_ptr = elem->make_ptr();
3984 
3985   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
3986     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
3987     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
3988   }
3989 
3990   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
3991 
3992   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3993 }
3994 
3995 //-----------------------------stable_dimension--------------------------------
3996 int TypeAryPtr::stable_dimension() const {
3997   if (!is_stable())  return 0;
3998   int dim = 1;
3999   const TypePtr* elem_ptr = elem()->make_ptr();
4000   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4001     dim += elem_ptr->is_aryptr()->stable_dimension();
4002   return dim;
4003 }
4004 
4005 //----------------------cast_to_autobox_cache-----------------------------------
4006 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
4007   if (is_autobox_cache() == cache)  return this;
4008   const TypeOopPtr* etype = elem()->make_oopptr();
4009   if (etype == NULL)  return this;
4010   // The pointers in the autobox arrays are always non-null.
4011   TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
4012   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4013   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4014   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, cache);
4015 }
4016 
4017 //------------------------------eq---------------------------------------------
4018 // Structural equality check for Type representations
4019 bool TypeAryPtr::eq( const Type *t ) const {
4020   const TypeAryPtr *p = t->is_aryptr();
4021   return
4022     _ary == p->_ary &&  // Check array
4023     TypeOopPtr::eq(p);  // Check sub-parts
4024 }
4025 
4026 //------------------------------hash-------------------------------------------
4027 // Type-specific hashing function.
4028 int TypeAryPtr::hash(void) const {
4029   return (intptr_t)_ary + TypeOopPtr::hash();
4030 }
4031 
4032 //------------------------------meet-------------------------------------------
4033 // Compute the MEET of two types.  It returns a new Type object.
4034 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4035   // Perform a fast test for common case; meeting the same types together.
4036   if( this == t ) return this;  // Meeting same type-rep?
4037   // Current "this->_base" is Pointer
4038   switch (t->base()) {          // switch on original type
4039 
4040   // Mixing ints & oops happens when javac reuses local variables
4041   case Int:
4042   case Long:
4043   case FloatTop:
4044   case FloatCon:
4045   case FloatBot:
4046   case DoubleTop:
4047   case DoubleCon:
4048   case DoubleBot:
4049   case NarrowOop:
4050   case NarrowKlass:
4051   case Bottom:                  // Ye Olde Default
4052     return Type::BOTTOM;
4053   case Top:
4054     return this;
4055 
4056   default:                      // All else is a mistake
4057     typerr(t);
4058 
4059   case OopPtr: {                // Meeting to OopPtrs
4060     // Found a OopPtr type vs self-AryPtr type
4061     const TypeOopPtr *tp = t->is_oopptr();
4062     int offset = meet_offset(tp->offset());
4063     PTR ptr = meet_ptr(tp->ptr());
4064     int depth = meet_inline_depth(tp->inline_depth());
4065     const TypePtr* speculative = xmeet_speculative(tp);
4066     switch (tp->ptr()) {
4067     case TopPTR:
4068     case AnyNull: {
4069       int instance_id = meet_instance_id(InstanceTop);
4070       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4071                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4072     }
4073     case BotPTR:
4074     case NotNull: {
4075       int instance_id = meet_instance_id(tp->instance_id());
4076       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4077     }
4078     default: ShouldNotReachHere();
4079     }
4080   }
4081 
4082   case AnyPtr: {                // Meeting two AnyPtrs
4083     // Found an AnyPtr type vs self-AryPtr type
4084     const TypePtr *tp = t->is_ptr();
4085     int offset = meet_offset(tp->offset());
4086     PTR ptr = meet_ptr(tp->ptr());
4087     const TypePtr* speculative = xmeet_speculative(tp);
4088     int depth = meet_inline_depth(tp->inline_depth());
4089     switch (tp->ptr()) {
4090     case TopPTR:
4091       return this;
4092     case BotPTR:
4093     case NotNull:
4094       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4095     case Null:
4096       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4097       // else fall through to AnyNull
4098     case AnyNull: {
4099       int instance_id = meet_instance_id(InstanceTop);
4100       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4101                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4102     }
4103     default: ShouldNotReachHere();
4104     }
4105   }
4106 
4107   case MetadataPtr:
4108   case KlassPtr:
4109   case RawPtr: return TypePtr::BOTTOM;
4110 
4111   case AryPtr: {                // Meeting 2 references?
4112     const TypeAryPtr *tap = t->is_aryptr();
4113     int off = meet_offset(tap->offset());
4114     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4115     PTR ptr = meet_ptr(tap->ptr());
4116     int instance_id = meet_instance_id(tap->instance_id());
4117     const TypePtr* speculative = xmeet_speculative(tap);
4118     int depth = meet_inline_depth(tap->inline_depth());
4119     ciKlass* lazy_klass = NULL;
4120     if (tary->_elem->isa_int()) {
4121       // Integral array element types have irrelevant lattice relations.
4122       // It is the klass that determines array layout, not the element type.
4123       if (_klass == NULL)
4124         lazy_klass = tap->_klass;
4125       else if (tap->_klass == NULL || tap->_klass == _klass) {
4126         lazy_klass = _klass;
4127       } else {
4128         // Something like byte[int+] meets char[int+].
4129         // This must fall to bottom, not (int[-128..65535])[int+].
4130         instance_id = InstanceBot;
4131         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4132       }
4133     } else // Non integral arrays.
4134       // Must fall to bottom if exact klasses in upper lattice
4135       // are not equal or super klass is exact.
4136       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4137           // meet with top[] and bottom[] are processed further down:
4138           tap->_klass != NULL  && this->_klass != NULL   &&
4139           // both are exact and not equal:
4140           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4141            // 'tap'  is exact and super or unrelated:
4142            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4143            // 'this' is exact and super or unrelated:
4144            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4145       if (above_centerline(ptr)) {
4146         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4147       }
4148       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot, speculative, depth);
4149     }
4150 
4151     bool xk = false;
4152     switch (tap->ptr()) {
4153     case AnyNull:
4154     case TopPTR:
4155       // Compute new klass on demand, do not use tap->_klass
4156       if (below_centerline(this->_ptr)) {
4157         xk = this->_klass_is_exact;
4158       } else {
4159         xk = (tap->_klass_is_exact | this->_klass_is_exact);
4160       }
4161       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
4162     case Constant: {
4163       ciObject* o = const_oop();
4164       if( _ptr == Constant ) {
4165         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4166           xk = (klass() == tap->klass());
4167           ptr = NotNull;
4168           o = NULL;
4169           instance_id = InstanceBot;
4170         } else {
4171           xk = true;
4172         }
4173       } else if(above_centerline(_ptr)) {
4174         o = tap->const_oop();
4175         xk = true;
4176       } else {
4177         // Only precise for identical arrays
4178         xk = this->_klass_is_exact && (klass() == tap->klass());
4179       }
4180       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4181     }
4182     case NotNull:
4183     case BotPTR:
4184       // Compute new klass on demand, do not use tap->_klass
4185       if (above_centerline(this->_ptr))
4186             xk = tap->_klass_is_exact;
4187       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4188               (klass() == tap->klass()); // Only precise for identical arrays
4189       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4190     default: ShouldNotReachHere();
4191     }
4192   }
4193 
4194   // All arrays inherit from Object class
4195   case InstPtr: {
4196     const TypeInstPtr *tp = t->is_instptr();
4197     int offset = meet_offset(tp->offset());
4198     PTR ptr = meet_ptr(tp->ptr());
4199     int instance_id = meet_instance_id(tp->instance_id());
4200     const TypePtr* speculative = xmeet_speculative(tp);
4201     int depth = meet_inline_depth(tp->inline_depth());
4202     switch (ptr) {
4203     case TopPTR:
4204     case AnyNull:                // Fall 'down' to dual of object klass
4205       // For instances when a subclass meets a superclass we fall
4206       // below the centerline when the superclass is exact. We need to
4207       // do the same here.
4208       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4209         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4210       } else {
4211         // cannot subclass, so the meet has to fall badly below the centerline
4212         ptr = NotNull;
4213         instance_id = InstanceBot;
4214         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4215       }
4216     case Constant:
4217     case NotNull:
4218     case BotPTR:                // Fall down to object klass
4219       // LCA is object_klass, but if we subclass from the top we can do better
4220       if (above_centerline(tp->ptr())) {
4221         // If 'tp'  is above the centerline and it is Object class
4222         // then we can subclass in the Java class hierarchy.
4223         // For instances when a subclass meets a superclass we fall
4224         // below the centerline when the superclass is exact. We need
4225         // to do the same here.
4226         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4227           // that is, my array type is a subtype of 'tp' klass
4228           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4229                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4230         }
4231       }
4232       // The other case cannot happen, since t cannot be a subtype of an array.
4233       // The meet falls down to Object class below centerline.
4234       if( ptr == Constant )
4235          ptr = NotNull;
4236       instance_id = InstanceBot;
4237       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4238     default: typerr(t);
4239     }
4240   }
4241   }
4242   return this;                  // Lint noise
4243 }
4244 
4245 //------------------------------xdual------------------------------------------
4246 // Dual: compute field-by-field dual
4247 const Type *TypeAryPtr::xdual() const {
4248   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4249 }
4250 
4251 //----------------------interface_vs_oop---------------------------------------
4252 #ifdef ASSERT
4253 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4254   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4255   if (t_aryptr) {
4256     return _ary->interface_vs_oop(t_aryptr->_ary);
4257   }
4258   return false;
4259 }
4260 #endif
4261 
4262 //------------------------------dump2------------------------------------------
4263 #ifndef PRODUCT
4264 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4265   _ary->dump2(d,depth,st);
4266   switch( _ptr ) {
4267   case Constant:
4268     const_oop()->print(st);
4269     break;
4270   case BotPTR:
4271     if (!WizardMode && !Verbose) {
4272       if( _klass_is_exact ) st->print(":exact");
4273       break;
4274     }
4275   case TopPTR:
4276   case AnyNull:
4277   case NotNull:
4278     st->print(":%s", ptr_msg[_ptr]);
4279     if( _klass_is_exact ) st->print(":exact");
4280     break;
4281   }
4282 
4283   if( _offset != 0 ) {
4284     int header_size = objArrayOopDesc::header_size() * wordSize;
4285     if( _offset == OffsetTop )       st->print("+undefined");
4286     else if( _offset == OffsetBot )  st->print("+any");
4287     else if( _offset < header_size ) st->print("+%d", _offset);
4288     else {
4289       BasicType basic_elem_type = elem()->basic_type();
4290       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4291       int elem_size = type2aelembytes(basic_elem_type);
4292       st->print("[%d]", (_offset - array_base)/elem_size);
4293     }
4294   }
4295   st->print(" *");
4296   if (_instance_id == InstanceTop)
4297     st->print(",iid=top");
4298   else if (_instance_id != InstanceBot)
4299     st->print(",iid=%d",_instance_id);
4300 
4301   dump_inline_depth(st);
4302   dump_speculative(st);
4303 }
4304 #endif
4305 
4306 bool TypeAryPtr::empty(void) const {
4307   if (_ary->empty())       return true;
4308   return TypeOopPtr::empty();
4309 }
4310 
4311 //------------------------------add_offset-------------------------------------
4312 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4313   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4314 }
4315 
4316 const Type *TypeAryPtr::remove_speculative() const {
4317   if (_speculative == NULL) {
4318     return this;
4319   }
4320   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4321   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
4322 }
4323 
4324 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4325   if (!UseInlineDepthForSpeculativeTypes) {
4326     return this;
4327   }
4328   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
4329 }
4330 
4331 //=============================================================================
4332 
4333 //------------------------------hash-------------------------------------------
4334 // Type-specific hashing function.
4335 int TypeNarrowPtr::hash(void) const {
4336   return _ptrtype->hash() + 7;
4337 }
4338 
4339 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4340   return _ptrtype->singleton();
4341 }
4342 
4343 bool TypeNarrowPtr::empty(void) const {
4344   return _ptrtype->empty();
4345 }
4346 
4347 intptr_t TypeNarrowPtr::get_con() const {
4348   return _ptrtype->get_con();
4349 }
4350 
4351 bool TypeNarrowPtr::eq( const Type *t ) const {
4352   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4353   if (tc != NULL) {
4354     if (_ptrtype->base() != tc->_ptrtype->base()) {
4355       return false;
4356     }
4357     return tc->_ptrtype->eq(_ptrtype);
4358   }
4359   return false;
4360 }
4361 
4362 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4363   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4364   return make_same_narrowptr(odual);
4365 }
4366 
4367 
4368 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4369   if (isa_same_narrowptr(kills)) {
4370     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4371     if (ft->empty())
4372       return Type::TOP;           // Canonical empty value
4373     if (ft->isa_ptr()) {
4374       return make_hash_same_narrowptr(ft->isa_ptr());
4375     }
4376     return ft;
4377   } else if (kills->isa_ptr()) {
4378     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4379     if (ft->empty())
4380       return Type::TOP;           // Canonical empty value
4381     return ft;
4382   } else {
4383     return Type::TOP;
4384   }
4385 }
4386 
4387 //------------------------------xmeet------------------------------------------
4388 // Compute the MEET of two types.  It returns a new Type object.
4389 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4390   // Perform a fast test for common case; meeting the same types together.
4391   if( this == t ) return this;  // Meeting same type-rep?
4392 
4393   if (t->base() == base()) {
4394     const Type* result = _ptrtype->xmeet(t->make_ptr());
4395     if (result->isa_ptr()) {
4396       return make_hash_same_narrowptr(result->is_ptr());
4397     }
4398     return result;
4399   }
4400 
4401   // Current "this->_base" is NarrowKlass or NarrowOop
4402   switch (t->base()) {          // switch on original type
4403 
4404   case Int:                     // Mixing ints & oops happens when javac
4405   case Long:                    // reuses local variables
4406   case FloatTop:
4407   case FloatCon:
4408   case FloatBot:
4409   case DoubleTop:
4410   case DoubleCon:
4411   case DoubleBot:
4412   case AnyPtr:
4413   case RawPtr:
4414   case OopPtr:
4415   case InstPtr:
4416   case AryPtr:
4417   case MetadataPtr:
4418   case KlassPtr:
4419   case NarrowOop:
4420   case NarrowKlass:
4421 
4422   case Bottom:                  // Ye Olde Default
4423     return Type::BOTTOM;
4424   case Top:
4425     return this;
4426 
4427   default:                      // All else is a mistake
4428     typerr(t);
4429 
4430   } // End of switch
4431 
4432   return this;
4433 }
4434 
4435 #ifndef PRODUCT
4436 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4437   _ptrtype->dump2(d, depth, st);
4438 }
4439 #endif
4440 
4441 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4442 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4443 
4444 
4445 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4446   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4447 }
4448 
4449 const Type* TypeNarrowOop::remove_speculative() const {
4450   return make(_ptrtype->remove_speculative()->is_ptr());
4451 }
4452 
4453 const Type* TypeNarrowOop::cleanup_speculative() const {
4454   return make(_ptrtype->cleanup_speculative()->is_ptr());
4455 }
4456 
4457 #ifndef PRODUCT
4458 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4459   st->print("narrowoop: ");
4460   TypeNarrowPtr::dump2(d, depth, st);
4461 }
4462 #endif
4463 
4464 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4465 
4466 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4467   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4468 }
4469 
4470 #ifndef PRODUCT
4471 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4472   st->print("narrowklass: ");
4473   TypeNarrowPtr::dump2(d, depth, st);
4474 }
4475 #endif
4476 
4477 
4478 //------------------------------eq---------------------------------------------
4479 // Structural equality check for Type representations
4480 bool TypeMetadataPtr::eq( const Type *t ) const {
4481   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4482   ciMetadata* one = metadata();
4483   ciMetadata* two = a->metadata();
4484   if (one == NULL || two == NULL) {
4485     return (one == two) && TypePtr::eq(t);
4486   } else {
4487     return one->equals(two) && TypePtr::eq(t);
4488   }
4489 }
4490 
4491 //------------------------------hash-------------------------------------------
4492 // Type-specific hashing function.
4493 int TypeMetadataPtr::hash(void) const {
4494   return
4495     (metadata() ? metadata()->hash() : 0) +
4496     TypePtr::hash();
4497 }
4498 
4499 //------------------------------singleton--------------------------------------
4500 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4501 // constants
4502 bool TypeMetadataPtr::singleton(void) const {
4503   // detune optimizer to not generate constant metadata + constant offset as a constant!
4504   // TopPTR, Null, AnyNull, Constant are all singletons
4505   return (_offset == 0) && !below_centerline(_ptr);
4506 }
4507 
4508 //------------------------------add_offset-------------------------------------
4509 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4510   return make( _ptr, _metadata, xadd_offset(offset));
4511 }
4512 
4513 //-----------------------------filter------------------------------------------
4514 // Do not allow interface-vs.-noninterface joins to collapse to top.
4515 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4516   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4517   if (ft == NULL || ft->empty())
4518     return Type::TOP;           // Canonical empty value
4519   return ft;
4520 }
4521 
4522  //------------------------------get_con----------------------------------------
4523 intptr_t TypeMetadataPtr::get_con() const {
4524   assert( _ptr == Null || _ptr == Constant, "" );
4525   assert( _offset >= 0, "" );
4526 
4527   if (_offset != 0) {
4528     // After being ported to the compiler interface, the compiler no longer
4529     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4530     // to a handle at compile time.  This handle is embedded in the generated
4531     // code and dereferenced at the time the nmethod is made.  Until that time,
4532     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4533     // have access to the addresses!).  This does not seem to currently happen,
4534     // but this assertion here is to help prevent its occurence.
4535     tty->print_cr("Found oop constant with non-zero offset");
4536     ShouldNotReachHere();
4537   }
4538 
4539   return (intptr_t)metadata()->constant_encoding();
4540 }
4541 
4542 //------------------------------cast_to_ptr_type-------------------------------
4543 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4544   if( ptr == _ptr ) return this;
4545   return make(ptr, metadata(), _offset);
4546 }
4547 
4548 //------------------------------meet-------------------------------------------
4549 // Compute the MEET of two types.  It returns a new Type object.
4550 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4551   // Perform a fast test for common case; meeting the same types together.
4552   if( this == t ) return this;  // Meeting same type-rep?
4553 
4554   // Current "this->_base" is OopPtr
4555   switch (t->base()) {          // switch on original type
4556 
4557   case Int:                     // Mixing ints & oops happens when javac
4558   case Long:                    // reuses local variables
4559   case FloatTop:
4560   case FloatCon:
4561   case FloatBot:
4562   case DoubleTop:
4563   case DoubleCon:
4564   case DoubleBot:
4565   case NarrowOop:
4566   case NarrowKlass:
4567   case Bottom:                  // Ye Olde Default
4568     return Type::BOTTOM;
4569   case Top:
4570     return this;
4571 
4572   default:                      // All else is a mistake
4573     typerr(t);
4574 
4575   case AnyPtr: {
4576     // Found an AnyPtr type vs self-OopPtr type
4577     const TypePtr *tp = t->is_ptr();
4578     int offset = meet_offset(tp->offset());
4579     PTR ptr = meet_ptr(tp->ptr());
4580     switch (tp->ptr()) {
4581     case Null:
4582       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4583       // else fall through:
4584     case TopPTR:
4585     case AnyNull: {
4586       return make(ptr, _metadata, offset);
4587     }
4588     case BotPTR:
4589     case NotNull:
4590       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4591     default: typerr(t);
4592     }
4593   }
4594 
4595   case RawPtr:
4596   case KlassPtr:
4597   case OopPtr:
4598   case InstPtr:
4599   case AryPtr:
4600     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4601 
4602   case MetadataPtr: {
4603     const TypeMetadataPtr *tp = t->is_metadataptr();
4604     int offset = meet_offset(tp->offset());
4605     PTR tptr = tp->ptr();
4606     PTR ptr = meet_ptr(tptr);
4607     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4608     if (tptr == TopPTR || _ptr == TopPTR ||
4609         metadata()->equals(tp->metadata())) {
4610       return make(ptr, md, offset);
4611     }
4612     // metadata is different
4613     if( ptr == Constant ) {  // Cannot be equal constants, so...
4614       if( tptr == Constant && _ptr != Constant)  return t;
4615       if( _ptr == Constant && tptr != Constant)  return this;
4616       ptr = NotNull;            // Fall down in lattice
4617     }
4618     return make(ptr, NULL, offset);
4619     break;
4620   }
4621   } // End of switch
4622   return this;                  // Return the double constant
4623 }
4624 
4625 
4626 //------------------------------xdual------------------------------------------
4627 // Dual of a pure metadata pointer.
4628 const Type *TypeMetadataPtr::xdual() const {
4629   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4630 }
4631 
4632 //------------------------------dump2------------------------------------------
4633 #ifndef PRODUCT
4634 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4635   st->print("metadataptr:%s", ptr_msg[_ptr]);
4636   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
4637   switch( _offset ) {
4638   case OffsetTop: st->print("+top"); break;
4639   case OffsetBot: st->print("+any"); break;
4640   case         0: break;
4641   default:        st->print("+%d",_offset); break;
4642   }
4643 }
4644 #endif
4645 
4646 
4647 //=============================================================================
4648 // Convenience common pre-built type.
4649 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4650 
4651 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4652   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4653 }
4654 
4655 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4656   return make(Constant, m, 0);
4657 }
4658 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4659   return make(Constant, m, 0);
4660 }
4661 
4662 //------------------------------make-------------------------------------------
4663 // Create a meta data constant
4664 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4665   assert(m == NULL || !m->is_klass(), "wrong type");
4666   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4667 }
4668 
4669 
4670 //=============================================================================
4671 // Convenience common pre-built types.
4672 
4673 // Not-null object klass or below
4674 const TypeKlassPtr *TypeKlassPtr::OBJECT;
4675 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4676 
4677 //------------------------------TypeKlassPtr-----------------------------------
4678 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4679   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4680 }
4681 
4682 //------------------------------make-------------------------------------------
4683 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4684 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4685   assert( k != NULL, "Expect a non-NULL klass");
4686   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4687   TypeKlassPtr *r =
4688     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4689 
4690   return r;
4691 }
4692 
4693 //------------------------------eq---------------------------------------------
4694 // Structural equality check for Type representations
4695 bool TypeKlassPtr::eq( const Type *t ) const {
4696   const TypeKlassPtr *p = t->is_klassptr();
4697   return
4698     klass()->equals(p->klass()) &&
4699     TypePtr::eq(p);
4700 }
4701 
4702 //------------------------------hash-------------------------------------------
4703 // Type-specific hashing function.
4704 int TypeKlassPtr::hash(void) const {
4705   return klass()->hash() + TypePtr::hash();
4706 }
4707 
4708 //------------------------------singleton--------------------------------------
4709 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4710 // constants
4711 bool TypeKlassPtr::singleton(void) const {
4712   // detune optimizer to not generate constant klass + constant offset as a constant!
4713   // TopPTR, Null, AnyNull, Constant are all singletons
4714   return (_offset == 0) && !below_centerline(_ptr);
4715 }
4716 
4717 // Do not allow interface-vs.-noninterface joins to collapse to top.
4718 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
4719   // logic here mirrors the one from TypeOopPtr::filter. See comments
4720   // there.
4721   const Type* ft = join_helper(kills, include_speculative);
4722   const TypeKlassPtr* ftkp = ft->isa_klassptr();
4723   const TypeKlassPtr* ktkp = kills->isa_klassptr();
4724 
4725   if (ft->empty()) {
4726     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
4727       return kills;             // Uplift to interface
4728 
4729     return Type::TOP;           // Canonical empty value
4730   }
4731 
4732   // Interface klass type could be exact in opposite to interface type,
4733   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
4734   if (ftkp != NULL && ktkp != NULL &&
4735       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
4736       !ftkp->klass_is_exact() && // Keep exact interface klass
4737       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
4738     return ktkp->cast_to_ptr_type(ftkp->ptr());
4739   }
4740 
4741   return ft;
4742 }
4743 
4744 //----------------------compute_klass------------------------------------------
4745 // Compute the defining klass for this class
4746 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4747   // Compute _klass based on element type.
4748   ciKlass* k_ary = NULL;
4749   const TypeInstPtr *tinst;
4750   const TypeAryPtr *tary;
4751   const Type* el = elem();
4752   if (el->isa_narrowoop()) {
4753     el = el->make_ptr();
4754   }
4755 
4756   // Get element klass
4757   if ((tinst = el->isa_instptr()) != NULL) {
4758     // Compute array klass from element klass
4759     k_ary = ciObjArrayKlass::make(tinst->klass());
4760   } else if ((tary = el->isa_aryptr()) != NULL) {
4761     // Compute array klass from element klass
4762     ciKlass* k_elem = tary->klass();
4763     // If element type is something like bottom[], k_elem will be null.
4764     if (k_elem != NULL)
4765       k_ary = ciObjArrayKlass::make(k_elem);
4766   } else if ((el->base() == Type::Top) ||
4767              (el->base() == Type::Bottom)) {
4768     // element type of Bottom occurs from meet of basic type
4769     // and object; Top occurs when doing join on Bottom.
4770     // Leave k_ary at NULL.
4771   } else {
4772     // Cannot compute array klass directly from basic type,
4773     // since subtypes of TypeInt all have basic type T_INT.
4774 #ifdef ASSERT
4775     if (verify && el->isa_int()) {
4776       // Check simple cases when verifying klass.
4777       BasicType bt = T_ILLEGAL;
4778       if (el == TypeInt::BYTE) {
4779         bt = T_BYTE;
4780       } else if (el == TypeInt::SHORT) {
4781         bt = T_SHORT;
4782       } else if (el == TypeInt::CHAR) {
4783         bt = T_CHAR;
4784       } else if (el == TypeInt::INT) {
4785         bt = T_INT;
4786       } else {
4787         return _klass; // just return specified klass
4788       }
4789       return ciTypeArrayKlass::make(bt);
4790     }
4791 #endif
4792     assert(!el->isa_int(),
4793            "integral arrays must be pre-equipped with a class");
4794     // Compute array klass directly from basic type
4795     k_ary = ciTypeArrayKlass::make(el->basic_type());
4796   }
4797   return k_ary;
4798 }
4799 
4800 //------------------------------klass------------------------------------------
4801 // Return the defining klass for this class
4802 ciKlass* TypeAryPtr::klass() const {
4803   if( _klass ) return _klass;   // Return cached value, if possible
4804 
4805   // Oops, need to compute _klass and cache it
4806   ciKlass* k_ary = compute_klass();
4807 
4808   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
4809     // The _klass field acts as a cache of the underlying
4810     // ciKlass for this array type.  In order to set the field,
4811     // we need to cast away const-ness.
4812     //
4813     // IMPORTANT NOTE: we *never* set the _klass field for the
4814     // type TypeAryPtr::OOPS.  This Type is shared between all
4815     // active compilations.  However, the ciKlass which represents
4816     // this Type is *not* shared between compilations, so caching
4817     // this value would result in fetching a dangling pointer.
4818     //
4819     // Recomputing the underlying ciKlass for each request is
4820     // a bit less efficient than caching, but calls to
4821     // TypeAryPtr::OOPS->klass() are not common enough to matter.
4822     ((TypeAryPtr*)this)->_klass = k_ary;
4823     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
4824         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
4825       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
4826     }
4827   }
4828   return k_ary;
4829 }
4830 
4831 
4832 //------------------------------add_offset-------------------------------------
4833 // Access internals of klass object
4834 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
4835   return make( _ptr, klass(), xadd_offset(offset) );
4836 }
4837 
4838 //------------------------------cast_to_ptr_type-------------------------------
4839 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
4840   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
4841   if( ptr == _ptr ) return this;
4842   return make(ptr, _klass, _offset);
4843 }
4844 
4845 
4846 //-----------------------------cast_to_exactness-------------------------------
4847 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
4848   if( klass_is_exact == _klass_is_exact ) return this;
4849   if (!UseExactTypes)  return this;
4850   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
4851 }
4852 
4853 
4854 //-----------------------------as_instance_type--------------------------------
4855 // Corresponding type for an instance of the given class.
4856 // It will be NotNull, and exact if and only if the klass type is exact.
4857 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
4858   ciKlass* k = klass();
4859   bool    xk = klass_is_exact();
4860   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
4861   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
4862   guarantee(toop != NULL, "need type for given klass");
4863   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4864   return toop->cast_to_exactness(xk)->is_oopptr();
4865 }
4866 
4867 
4868 //------------------------------xmeet------------------------------------------
4869 // Compute the MEET of two types, return a new Type object.
4870 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
4871   // Perform a fast test for common case; meeting the same types together.
4872   if( this == t ) return this;  // Meeting same type-rep?
4873 
4874   // Current "this->_base" is Pointer
4875   switch (t->base()) {          // switch on original type
4876 
4877   case Int:                     // Mixing ints & oops happens when javac
4878   case Long:                    // reuses local variables
4879   case FloatTop:
4880   case FloatCon:
4881   case FloatBot:
4882   case DoubleTop:
4883   case DoubleCon:
4884   case DoubleBot:
4885   case NarrowOop:
4886   case NarrowKlass:
4887   case Bottom:                  // Ye Olde Default
4888     return Type::BOTTOM;
4889   case Top:
4890     return this;
4891 
4892   default:                      // All else is a mistake
4893     typerr(t);
4894 
4895   case AnyPtr: {                // Meeting to AnyPtrs
4896     // Found an AnyPtr type vs self-KlassPtr type
4897     const TypePtr *tp = t->is_ptr();
4898     int offset = meet_offset(tp->offset());
4899     PTR ptr = meet_ptr(tp->ptr());
4900     switch (tp->ptr()) {
4901     case TopPTR:
4902       return this;
4903     case Null:
4904       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4905     case AnyNull:
4906       return make( ptr, klass(), offset );
4907     case BotPTR:
4908     case NotNull:
4909       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4910     default: typerr(t);
4911     }
4912   }
4913 
4914   case RawPtr:
4915   case MetadataPtr:
4916   case OopPtr:
4917   case AryPtr:                  // Meet with AryPtr
4918   case InstPtr:                 // Meet with InstPtr
4919     return TypePtr::BOTTOM;
4920 
4921   //
4922   //             A-top         }
4923   //           /   |   \       }  Tops
4924   //       B-top A-any C-top   }
4925   //          | /  |  \ |      }  Any-nulls
4926   //       B-any   |   C-any   }
4927   //          |    |    |
4928   //       B-con A-con C-con   } constants; not comparable across classes
4929   //          |    |    |
4930   //       B-not   |   C-not   }
4931   //          | \  |  / |      }  not-nulls
4932   //       B-bot A-not C-bot   }
4933   //           \   |   /       }  Bottoms
4934   //             A-bot         }
4935   //
4936 
4937   case KlassPtr: {  // Meet two KlassPtr types
4938     const TypeKlassPtr *tkls = t->is_klassptr();
4939     int  off     = meet_offset(tkls->offset());
4940     PTR  ptr     = meet_ptr(tkls->ptr());
4941 
4942     // Check for easy case; klasses are equal (and perhaps not loaded!)
4943     // If we have constants, then we created oops so classes are loaded
4944     // and we can handle the constants further down.  This case handles
4945     // not-loaded classes
4946     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
4947       return make( ptr, klass(), off );
4948     }
4949 
4950     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4951     ciKlass* tkls_klass = tkls->klass();
4952     ciKlass* this_klass = this->klass();
4953     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
4954     assert( this_klass->is_loaded(), "This class should have been loaded.");
4955 
4956     // If 'this' type is above the centerline and is a superclass of the
4957     // other, we can treat 'this' as having the same type as the other.
4958     if ((above_centerline(this->ptr())) &&
4959         tkls_klass->is_subtype_of(this_klass)) {
4960       this_klass = tkls_klass;
4961     }
4962     // If 'tinst' type is above the centerline and is a superclass of the
4963     // other, we can treat 'tinst' as having the same type as the other.
4964     if ((above_centerline(tkls->ptr())) &&
4965         this_klass->is_subtype_of(tkls_klass)) {
4966       tkls_klass = this_klass;
4967     }
4968 
4969     // Check for classes now being equal
4970     if (tkls_klass->equals(this_klass)) {
4971       // If the klasses are equal, the constants may still differ.  Fall to
4972       // NotNull if they do (neither constant is NULL; that is a special case
4973       // handled elsewhere).
4974       if( ptr == Constant ) {
4975         if (this->_ptr == Constant && tkls->_ptr == Constant &&
4976             this->klass()->equals(tkls->klass()));
4977         else if (above_centerline(this->ptr()));
4978         else if (above_centerline(tkls->ptr()));
4979         else
4980           ptr = NotNull;
4981       }
4982       return make( ptr, this_klass, off );
4983     } // Else classes are not equal
4984 
4985     // Since klasses are different, we require the LCA in the Java
4986     // class hierarchy - which means we have to fall to at least NotNull.
4987     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4988       ptr = NotNull;
4989     // Now we find the LCA of Java classes
4990     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
4991     return   make( ptr, k, off );
4992   } // End of case KlassPtr
4993 
4994   } // End of switch
4995   return this;                  // Return the double constant
4996 }
4997 
4998 //------------------------------xdual------------------------------------------
4999 // Dual: compute field-by-field dual
5000 const Type    *TypeKlassPtr::xdual() const {
5001   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5002 }
5003 
5004 //------------------------------get_con----------------------------------------
5005 intptr_t TypeKlassPtr::get_con() const {
5006   assert( _ptr == Null || _ptr == Constant, "" );
5007   assert( _offset >= 0, "" );
5008 
5009   if (_offset != 0) {
5010     // After being ported to the compiler interface, the compiler no longer
5011     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5012     // to a handle at compile time.  This handle is embedded in the generated
5013     // code and dereferenced at the time the nmethod is made.  Until that time,
5014     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5015     // have access to the addresses!).  This does not seem to currently happen,
5016     // but this assertion here is to help prevent its occurence.
5017     tty->print_cr("Found oop constant with non-zero offset");
5018     ShouldNotReachHere();
5019   }
5020 
5021   return (intptr_t)klass()->constant_encoding();
5022 }
5023 //------------------------------dump2------------------------------------------
5024 // Dump Klass Type
5025 #ifndef PRODUCT
5026 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5027   switch( _ptr ) {
5028   case Constant:
5029     st->print("precise ");
5030   case NotNull:
5031     {
5032       const char *name = klass()->name()->as_utf8();
5033       if( name ) {
5034         st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5035       } else {
5036         ShouldNotReachHere();
5037       }
5038     }
5039   case BotPTR:
5040     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5041   case TopPTR:
5042   case AnyNull:
5043     st->print(":%s", ptr_msg[_ptr]);
5044     if( _klass_is_exact ) st->print(":exact");
5045     break;
5046   }
5047 
5048   if( _offset ) {               // Dump offset, if any
5049     if( _offset == OffsetBot )      { st->print("+any"); }
5050     else if( _offset == OffsetTop ) { st->print("+unknown"); }
5051     else                            { st->print("+%d", _offset); }
5052   }
5053 
5054   st->print(" *");
5055 }
5056 #endif
5057 
5058 
5059 
5060 //=============================================================================
5061 // Convenience common pre-built types.
5062 
5063 //------------------------------make-------------------------------------------
5064 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
5065   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
5066 }
5067 
5068 //------------------------------make-------------------------------------------
5069 const TypeFunc *TypeFunc::make(ciMethod* method) {
5070   Compile* C = Compile::current();
5071   const TypeFunc* tf = C->last_tf(method); // check cache
5072   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5073   const TypeTuple *domain;
5074   if (method->is_static()) {
5075     domain = TypeTuple::make_domain(NULL, method->signature());
5076   } else {
5077     domain = TypeTuple::make_domain(method->holder(), method->signature());
5078   }
5079   const TypeTuple *range  = TypeTuple::make_range(method->signature());
5080   tf = TypeFunc::make(domain, range);
5081   C->set_last_tf(method, tf);  // fill cache
5082   return tf;
5083 }
5084 
5085 //------------------------------meet-------------------------------------------
5086 // Compute the MEET of two types.  It returns a new Type object.
5087 const Type *TypeFunc::xmeet( const Type *t ) const {
5088   // Perform a fast test for common case; meeting the same types together.
5089   if( this == t ) return this;  // Meeting same type-rep?
5090 
5091   // Current "this->_base" is Func
5092   switch (t->base()) {          // switch on original type
5093 
5094   case Bottom:                  // Ye Olde Default
5095     return t;
5096 
5097   default:                      // All else is a mistake
5098     typerr(t);
5099 
5100   case Top:
5101     break;
5102   }
5103   return this;                  // Return the double constant
5104 }
5105 
5106 //------------------------------xdual------------------------------------------
5107 // Dual: compute field-by-field dual
5108 const Type *TypeFunc::xdual() const {
5109   return this;
5110 }
5111 
5112 //------------------------------eq---------------------------------------------
5113 // Structural equality check for Type representations
5114 bool TypeFunc::eq( const Type *t ) const {
5115   const TypeFunc *a = (const TypeFunc*)t;
5116   return _domain == a->_domain &&
5117     _range == a->_range;
5118 }
5119 
5120 //------------------------------hash-------------------------------------------
5121 // Type-specific hashing function.
5122 int TypeFunc::hash(void) const {
5123   return (intptr_t)_domain + (intptr_t)_range;
5124 }
5125 
5126 //------------------------------dump2------------------------------------------
5127 // Dump Function Type
5128 #ifndef PRODUCT
5129 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5130   if( _range->cnt() <= Parms )
5131     st->print("void");
5132   else {
5133     uint i;
5134     for (i = Parms; i < _range->cnt()-1; i++) {
5135       _range->field_at(i)->dump2(d,depth,st);
5136       st->print("/");
5137     }
5138     _range->field_at(i)->dump2(d,depth,st);
5139   }
5140   st->print(" ");
5141   st->print("( ");
5142   if( !depth || d[this] ) {     // Check for recursive dump
5143     st->print("...)");
5144     return;
5145   }
5146   d.Insert((void*)this,(void*)this);    // Stop recursion
5147   if (Parms < _domain->cnt())
5148     _domain->field_at(Parms)->dump2(d,depth-1,st);
5149   for (uint i = Parms+1; i < _domain->cnt(); i++) {
5150     st->print(", ");
5151     _domain->field_at(i)->dump2(d,depth-1,st);
5152   }
5153   st->print(" )");
5154 }
5155 #endif
5156 
5157 //------------------------------singleton--------------------------------------
5158 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5159 // constants (Ldi nodes).  Singletons are integer, float or double constants
5160 // or a single symbol.
5161 bool TypeFunc::singleton(void) const {
5162   return false;                 // Never a singleton
5163 }
5164 
5165 bool TypeFunc::empty(void) const {
5166   return false;                 // Never empty
5167 }
5168 
5169 
5170 BasicType TypeFunc::return_type() const{
5171   if (range()->cnt() == TypeFunc::Parms) {
5172     return T_VOID;
5173   }
5174   return range()->field_at(TypeFunc::Parms)->basic_type();
5175 }