1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "gc/shared/gcLocker.hpp"
  32 #include "libadt/dict.hpp"
  33 #include "memory/oopFactory.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/instanceKlass.hpp"
  36 #include "oops/instanceMirrorKlass.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "oops/typeArrayKlass.hpp"
  39 #include "opto/matcher.hpp"
  40 #include "opto/node.hpp"
  41 #include "opto/opcodes.hpp"
  42 #include "opto/type.hpp"
  43 
  44 // Portions of code courtesy of Clifford Click
  45 
  46 // Optimization - Graph Style
  47 
  48 // Dictionary of types shared among compilations.
  49 Dict* Type::_shared_type_dict = NULL;
  50 
  51 // Array which maps compiler types to Basic Types
  52 Type::TypeInfo Type::_type_info[Type::lastype] = {
  53   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  54   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  55   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  56   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  57   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  58   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  59   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  60   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  61   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  62   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  63 
  64 #ifdef SPARC
  65   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  66   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
  67   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  68   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  69   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  70 #elif defined(PPC64)
  71   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  72   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  73   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  74   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  75   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  76 #else // all other
  77   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  78   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  79   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  80   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  81   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
  82 #endif
  83   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  84   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
  85   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  86   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
  87   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
  88   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
  89   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
  90   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
  91   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
  92   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
  93   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
  94   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
  95   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
  96   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
  97   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
  98   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
  99   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 100   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 101 };
 102 
 103 // Map ideal registers (machine types) to ideal types
 104 const Type *Type::mreg2type[_last_machine_leaf];
 105 
 106 // Map basic types to canonical Type* pointers.
 107 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 108 
 109 // Map basic types to constant-zero Types.
 110 const Type* Type::            _zero_type[T_CONFLICT+1];
 111 
 112 // Map basic types to array-body alias types.
 113 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 114 
 115 //=============================================================================
 116 // Convenience common pre-built types.
 117 const Type *Type::ABIO;         // State-of-machine only
 118 const Type *Type::BOTTOM;       // All values
 119 const Type *Type::CONTROL;      // Control only
 120 const Type *Type::DOUBLE;       // All doubles
 121 const Type *Type::FLOAT;        // All floats
 122 const Type *Type::HALF;         // Placeholder half of doublewide type
 123 const Type *Type::MEMORY;       // Abstract store only
 124 const Type *Type::RETURN_ADDRESS;
 125 const Type *Type::TOP;          // No values in set
 126 
 127 //------------------------------get_const_type---------------------------
 128 const Type* Type::get_const_type(ciType* type) {
 129   if (type == NULL) {
 130     return NULL;
 131   } else if (type->is_primitive_type()) {
 132     return get_const_basic_type(type->basic_type());
 133   } else {
 134     return TypeOopPtr::make_from_klass(type->as_klass());
 135   }
 136 }
 137 
 138 //---------------------------array_element_basic_type---------------------------------
 139 // Mapping to the array element's basic type.
 140 BasicType Type::array_element_basic_type() const {
 141   BasicType bt = basic_type();
 142   if (bt == T_INT) {
 143     if (this == TypeInt::INT)   return T_INT;
 144     if (this == TypeInt::CHAR)  return T_CHAR;
 145     if (this == TypeInt::BYTE)  return T_BYTE;
 146     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 147     if (this == TypeInt::SHORT) return T_SHORT;
 148     return T_VOID;
 149   }
 150   return bt;
 151 }
 152 
 153 // For two instance arrays of same dimension, return the base element types.
 154 // Otherwise or if the arrays have different dimensions, return NULL.
 155 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 156                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 157 
 158   if (e1) *e1 = NULL;
 159   if (e2) *e2 = NULL;
 160   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
 161   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
 162 
 163   if (a1tap != NULL && a2tap != NULL) {
 164     // Handle multidimensional arrays
 165     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 166     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 167     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 168       a1tap = a1tp->is_aryptr();
 169       a2tap = a2tp->is_aryptr();
 170       a1tp = a1tap->elem()->make_ptr();
 171       a2tp = a2tap->elem()->make_ptr();
 172     }
 173     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 174       if (e1) *e1 = a1tp->is_instptr();
 175       if (e2) *e2 = a2tp->is_instptr();
 176     }
 177   }
 178 }
 179 
 180 //---------------------------get_typeflow_type---------------------------------
 181 // Import a type produced by ciTypeFlow.
 182 const Type* Type::get_typeflow_type(ciType* type) {
 183   switch (type->basic_type()) {
 184 
 185   case ciTypeFlow::StateVector::T_BOTTOM:
 186     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 187     return Type::BOTTOM;
 188 
 189   case ciTypeFlow::StateVector::T_TOP:
 190     assert(type == ciTypeFlow::StateVector::top_type(), "");
 191     return Type::TOP;
 192 
 193   case ciTypeFlow::StateVector::T_NULL:
 194     assert(type == ciTypeFlow::StateVector::null_type(), "");
 195     return TypePtr::NULL_PTR;
 196 
 197   case ciTypeFlow::StateVector::T_LONG2:
 198     // The ciTypeFlow pass pushes a long, then the half.
 199     // We do the same.
 200     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 201     return TypeInt::TOP;
 202 
 203   case ciTypeFlow::StateVector::T_DOUBLE2:
 204     // The ciTypeFlow pass pushes double, then the half.
 205     // Our convention is the same.
 206     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 207     return Type::TOP;
 208 
 209   case T_ADDRESS:
 210     assert(type->is_return_address(), "");
 211     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 212 
 213   default:
 214     // make sure we did not mix up the cases:
 215     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 216     assert(type != ciTypeFlow::StateVector::top_type(), "");
 217     assert(type != ciTypeFlow::StateVector::null_type(), "");
 218     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 219     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 220     assert(!type->is_return_address(), "");
 221 
 222     return Type::get_const_type(type);
 223   }
 224 }
 225 
 226 
 227 //-----------------------make_from_constant------------------------------------
 228 const Type* Type::make_from_constant(ciConstant constant, bool require_constant) {
 229   switch (constant.basic_type()) {
 230   case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 231   case T_CHAR:     return TypeInt::make(constant.as_char());
 232   case T_BYTE:     return TypeInt::make(constant.as_byte());
 233   case T_SHORT:    return TypeInt::make(constant.as_short());
 234   case T_INT:      return TypeInt::make(constant.as_int());
 235   case T_LONG:     return TypeLong::make(constant.as_long());
 236   case T_FLOAT:    return TypeF::make(constant.as_float());
 237   case T_DOUBLE:   return TypeD::make(constant.as_double());
 238   case T_ARRAY:
 239   case T_OBJECT:
 240     {
 241       // cases:
 242       //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 243       //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 244       // An oop is not scavengable if it is in the perm gen.
 245       ciObject* oop_constant = constant.as_object();
 246       if (oop_constant->is_null_object()) {
 247         return Type::get_zero_type(T_OBJECT);
 248       } else if (require_constant || oop_constant->should_be_constant()) {
 249         return TypeOopPtr::make_from_constant(oop_constant, require_constant);
 250       }
 251     }
 252   case T_ILLEGAL:
 253     // Invalid ciConstant returned due to OutOfMemoryError in the CI
 254     assert(Compile::current()->env()->failing(), "otherwise should not see this");
 255     return NULL;
 256   }
 257   // Fall through to failure
 258   return NULL;
 259 }
 260 
 261 
 262 const Type* Type::make_constant(ciField* field, Node* obj) {
 263   if (!field->is_constant())  return NULL;
 264 
 265   const Type* con_type = NULL;
 266   if (field->is_static()) {
 267     // final static field
 268     con_type = Type::make_from_constant(field->constant_value(), /*require_const=*/true);
 269     if (Compile::current()->eliminate_boxing() && field->is_autobox_cache() && con_type != NULL) {
 270       con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
 271     }
 272   } else {
 273     // final or stable non-static field
 274     // Treat final non-static fields of trusted classes (classes in
 275     // java.lang.invoke and sun.invoke packages and subpackages) as
 276     // compile time constants.
 277     if (obj->is_Con()) {
 278       const TypeOopPtr* oop_ptr = obj->bottom_type()->isa_oopptr();
 279       ciObject* constant_oop = oop_ptr->const_oop();
 280       ciConstant constant = field->constant_value_of(constant_oop);
 281       con_type = Type::make_from_constant(constant, /*require_const=*/true);
 282     }
 283   }
 284   if (FoldStableValues && field->is_stable() && con_type != NULL) {
 285     if (con_type->is_zero_type()) {
 286       return NULL; // the field hasn't been initialized yet
 287     } else if (con_type->isa_oopptr()) {
 288       const Type* stable_type = Type::get_const_type(field->type());
 289       if (field->type()->is_array_klass()) {
 290         int stable_dimension = field->type()->as_array_klass()->dimension();
 291         stable_type = stable_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 292       }
 293       if (stable_type != NULL) {
 294         con_type = con_type->join_speculative(stable_type);
 295       }
 296     }
 297   }
 298   return con_type;
 299 }
 300 
 301 //------------------------------make-------------------------------------------
 302 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 303 // and look for an existing copy in the type dictionary.
 304 const Type *Type::make( enum TYPES t ) {
 305   return (new Type(t))->hashcons();
 306 }
 307 
 308 //------------------------------cmp--------------------------------------------
 309 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 310   if( t1->_base != t2->_base )
 311     return 1;                   // Missed badly
 312   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 313   return !t1->eq(t2);           // Return ZERO if equal
 314 }
 315 
 316 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 317   if (!include_speculative) {
 318     return remove_speculative();
 319   }
 320   return this;
 321 }
 322 
 323 //------------------------------hash-------------------------------------------
 324 int Type::uhash( const Type *const t ) {
 325   return t->hash();
 326 }
 327 
 328 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 329 
 330 //--------------------------Initialize_shared----------------------------------
 331 void Type::Initialize_shared(Compile* current) {
 332   // This method does not need to be locked because the first system
 333   // compilations (stub compilations) occur serially.  If they are
 334   // changed to proceed in parallel, then this section will need
 335   // locking.
 336 
 337   Arena* save = current->type_arena();
 338   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 339 
 340   current->set_type_arena(shared_type_arena);
 341   _shared_type_dict =
 342     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 343                                   shared_type_arena, 128 );
 344   current->set_type_dict(_shared_type_dict);
 345 
 346   // Make shared pre-built types.
 347   CONTROL = make(Control);      // Control only
 348   TOP     = make(Top);          // No values in set
 349   MEMORY  = make(Memory);       // Abstract store only
 350   ABIO    = make(Abio);         // State-of-machine only
 351   RETURN_ADDRESS=make(Return_Address);
 352   FLOAT   = make(FloatBot);     // All floats
 353   DOUBLE  = make(DoubleBot);    // All doubles
 354   BOTTOM  = make(Bottom);       // Everything
 355   HALF    = make(Half);         // Placeholder half of doublewide type
 356 
 357   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 358   TypeF::ONE  = TypeF::make(1.0); // Float 1
 359 
 360   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 361   TypeD::ONE  = TypeD::make(1.0); // Double 1
 362 
 363   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 364   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 365   TypeInt::ONE     = TypeInt::make( 1);  //  1
 366   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 367   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 368   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 369   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 370   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 371   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 372   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 373   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 374   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 375   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 376   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 377   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 378   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 379   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 380   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 381   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 382   // CmpL is overloaded both as the bytecode computation returning
 383   // a trinary (-1,0,+1) integer result AND as an efficient long
 384   // compare returning optimizer ideal-type flags.
 385   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 386   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 387   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 388   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 389   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 390 
 391   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 392   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 393   TypeLong::ONE     = TypeLong::make( 1);        //  1
 394   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 395   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 396   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 397   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 398   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 399 
 400   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 401   fboth[0] = Type::CONTROL;
 402   fboth[1] = Type::CONTROL;
 403   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 404 
 405   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 406   ffalse[0] = Type::CONTROL;
 407   ffalse[1] = Type::TOP;
 408   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 409 
 410   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 411   fneither[0] = Type::TOP;
 412   fneither[1] = Type::TOP;
 413   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 414 
 415   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 416   ftrue[0] = Type::TOP;
 417   ftrue[1] = Type::CONTROL;
 418   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 419 
 420   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 421   floop[0] = Type::CONTROL;
 422   floop[1] = TypeInt::INT;
 423   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 424 
 425   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
 426   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
 427   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
 428 
 429   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 430   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 431 
 432   const Type **fmembar = TypeTuple::fields(0);
 433   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 434 
 435   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 436   fsc[0] = TypeInt::CC;
 437   fsc[1] = Type::MEMORY;
 438   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 439 
 440   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 441   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 442   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 443   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 444                                            false, 0, oopDesc::mark_offset_in_bytes());
 445   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 446                                            false, 0, oopDesc::klass_offset_in_bytes());
 447   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 448 
 449   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
 450 
 451   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 452   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 453 
 454   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 455 
 456   mreg2type[Op_Node] = Type::BOTTOM;
 457   mreg2type[Op_Set ] = 0;
 458   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 459   mreg2type[Op_RegI] = TypeInt::INT;
 460   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 461   mreg2type[Op_RegF] = Type::FLOAT;
 462   mreg2type[Op_RegD] = Type::DOUBLE;
 463   mreg2type[Op_RegL] = TypeLong::LONG;
 464   mreg2type[Op_RegFlags] = TypeInt::CC;
 465 
 466   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 467 
 468   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 469 
 470 #ifdef _LP64
 471   if (UseCompressedOops) {
 472     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 473     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 474   } else
 475 #endif
 476   {
 477     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 478     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 479   }
 480   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 481   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 482   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 483   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 484   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 485   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 486   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 487 
 488   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 489   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 490   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 491   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 492   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 493   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 494   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 495   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 496   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 497   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 498   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 499   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 500 
 501   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 502   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 503 
 504   const Type **fi2c = TypeTuple::fields(2);
 505   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 506   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 507   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 508 
 509   const Type **intpair = TypeTuple::fields(2);
 510   intpair[0] = TypeInt::INT;
 511   intpair[1] = TypeInt::INT;
 512   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 513 
 514   const Type **longpair = TypeTuple::fields(2);
 515   longpair[0] = TypeLong::LONG;
 516   longpair[1] = TypeLong::LONG;
 517   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 518 
 519   const Type **intccpair = TypeTuple::fields(2);
 520   intccpair[0] = TypeInt::INT;
 521   intccpair[1] = TypeInt::CC;
 522   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 523 
 524   const Type **longccpair = TypeTuple::fields(2);
 525   longccpair[0] = TypeLong::LONG;
 526   longccpair[1] = TypeInt::CC;
 527   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 528 
 529   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 530   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 531   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 532   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 533   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 534   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 535   _const_basic_type[T_INT]         = TypeInt::INT;
 536   _const_basic_type[T_LONG]        = TypeLong::LONG;
 537   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 538   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 539   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 540   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 541   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 542   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 543   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 544 
 545   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 546   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 547   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 548   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 549   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 550   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 551   _zero_type[T_INT]         = TypeInt::ZERO;
 552   _zero_type[T_LONG]        = TypeLong::ZERO;
 553   _zero_type[T_FLOAT]       = TypeF::ZERO;
 554   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 555   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 556   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 557   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 558   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 559 
 560   // get_zero_type() should not happen for T_CONFLICT
 561   _zero_type[T_CONFLICT]= NULL;
 562 
 563   // Vector predefined types, it needs initialized _const_basic_type[].
 564   if (Matcher::vector_size_supported(T_BYTE,4)) {
 565     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 566   }
 567   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 568     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 569   }
 570   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 571     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 572   }
 573   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 574     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 575   }
 576   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 577     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 578   }
 579   mreg2type[Op_VecS] = TypeVect::VECTS;
 580   mreg2type[Op_VecD] = TypeVect::VECTD;
 581   mreg2type[Op_VecX] = TypeVect::VECTX;
 582   mreg2type[Op_VecY] = TypeVect::VECTY;
 583   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 584 
 585   // Restore working type arena.
 586   current->set_type_arena(save);
 587   current->set_type_dict(NULL);
 588 }
 589 
 590 //------------------------------Initialize-------------------------------------
 591 void Type::Initialize(Compile* current) {
 592   assert(current->type_arena() != NULL, "must have created type arena");
 593 
 594   if (_shared_type_dict == NULL) {
 595     Initialize_shared(current);
 596   }
 597 
 598   Arena* type_arena = current->type_arena();
 599 
 600   // Create the hash-cons'ing dictionary with top-level storage allocation
 601   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 602   current->set_type_dict(tdic);
 603 
 604   // Transfer the shared types.
 605   DictI i(_shared_type_dict);
 606   for( ; i.test(); ++i ) {
 607     Type* t = (Type*)i._value;
 608     tdic->Insert(t,t);  // New Type, insert into Type table
 609   }
 610 }
 611 
 612 //------------------------------hashcons---------------------------------------
 613 // Do the hash-cons trick.  If the Type already exists in the type table,
 614 // delete the current Type and return the existing Type.  Otherwise stick the
 615 // current Type in the Type table.
 616 const Type *Type::hashcons(void) {
 617   debug_only(base());           // Check the assertion in Type::base().
 618   // Look up the Type in the Type dictionary
 619   Dict *tdic = type_dict();
 620   Type* old = (Type*)(tdic->Insert(this, this, false));
 621   if( old ) {                   // Pre-existing Type?
 622     if( old != this )           // Yes, this guy is not the pre-existing?
 623       delete this;              // Yes, Nuke this guy
 624     assert( old->_dual, "" );
 625     return old;                 // Return pre-existing
 626   }
 627 
 628   // Every type has a dual (to make my lattice symmetric).
 629   // Since we just discovered a new Type, compute its dual right now.
 630   assert( !_dual, "" );         // No dual yet
 631   _dual = xdual();              // Compute the dual
 632   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 633     _dual = this;
 634     return this;
 635   }
 636   assert( !_dual->_dual, "" );  // No reverse dual yet
 637   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 638   // New Type, insert into Type table
 639   tdic->Insert((void*)_dual,(void*)_dual);
 640   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 641 #ifdef ASSERT
 642   Type *dual_dual = (Type*)_dual->xdual();
 643   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 644   delete dual_dual;
 645 #endif
 646   return this;                  // Return new Type
 647 }
 648 
 649 //------------------------------eq---------------------------------------------
 650 // Structural equality check for Type representations
 651 bool Type::eq( const Type * ) const {
 652   return true;                  // Nothing else can go wrong
 653 }
 654 
 655 //------------------------------hash-------------------------------------------
 656 // Type-specific hashing function.
 657 int Type::hash(void) const {
 658   return _base;
 659 }
 660 
 661 //------------------------------is_finite--------------------------------------
 662 // Has a finite value
 663 bool Type::is_finite() const {
 664   return false;
 665 }
 666 
 667 //------------------------------is_nan-----------------------------------------
 668 // Is not a number (NaN)
 669 bool Type::is_nan()    const {
 670   return false;
 671 }
 672 
 673 //----------------------interface_vs_oop---------------------------------------
 674 #ifdef ASSERT
 675 bool Type::interface_vs_oop_helper(const Type *t) const {
 676   bool result = false;
 677 
 678   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 679   const TypePtr*    t_ptr =    t->make_ptr();
 680   if( this_ptr == NULL || t_ptr == NULL )
 681     return result;
 682 
 683   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 684   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 685   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 686     bool this_interface = this_inst->klass()->is_interface();
 687     bool    t_interface =    t_inst->klass()->is_interface();
 688     result = this_interface ^ t_interface;
 689   }
 690 
 691   return result;
 692 }
 693 
 694 bool Type::interface_vs_oop(const Type *t) const {
 695   if (interface_vs_oop_helper(t)) {
 696     return true;
 697   }
 698   // Now check the speculative parts as well
 699   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 700   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 701   if (this_spec != NULL && t_spec != NULL) {
 702     if (this_spec->interface_vs_oop_helper(t_spec)) {
 703       return true;
 704     }
 705     return false;
 706   }
 707   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 708     return true;
 709   }
 710   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 711     return true;
 712   }
 713   return false;
 714 }
 715 
 716 #endif
 717 
 718 //------------------------------meet-------------------------------------------
 719 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 720 // commutative and the lattice is symmetric.
 721 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 722   if (isa_narrowoop() && t->isa_narrowoop()) {
 723     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 724     return result->make_narrowoop();
 725   }
 726   if (isa_narrowklass() && t->isa_narrowklass()) {
 727     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 728     return result->make_narrowklass();
 729   }
 730 
 731   const Type *this_t = maybe_remove_speculative(include_speculative);
 732   t = t->maybe_remove_speculative(include_speculative);
 733 
 734   const Type *mt = this_t->xmeet(t);
 735   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 736   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 737 #ifdef ASSERT
 738   assert(mt == t->xmeet(this_t), "meet not commutative");
 739   const Type* dual_join = mt->_dual;
 740   const Type *t2t    = dual_join->xmeet(t->_dual);
 741   const Type *t2this = dual_join->xmeet(this_t->_dual);
 742 
 743   // Interface meet Oop is Not Symmetric:
 744   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 745   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 746 
 747   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 748     tty->print_cr("=== Meet Not Symmetric ===");
 749     tty->print("t   =                   ");              t->dump(); tty->cr();
 750     tty->print("this=                   ");         this_t->dump(); tty->cr();
 751     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 752 
 753     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 754     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 755     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 756 
 757     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 758     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 759 
 760     fatal("meet not symmetric" );
 761   }
 762 #endif
 763   return mt;
 764 }
 765 
 766 //------------------------------xmeet------------------------------------------
 767 // Compute the MEET of two types.  It returns a new Type object.
 768 const Type *Type::xmeet( const Type *t ) const {
 769   // Perform a fast test for common case; meeting the same types together.
 770   if( this == t ) return this;  // Meeting same type-rep?
 771 
 772   // Meeting TOP with anything?
 773   if( _base == Top ) return t;
 774 
 775   // Meeting BOTTOM with anything?
 776   if( _base == Bottom ) return BOTTOM;
 777 
 778   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 779   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 780   switch (t->base()) {  // Switch on original type
 781 
 782   // Cut in half the number of cases I must handle.  Only need cases for when
 783   // the given enum "t->type" is less than or equal to the local enum "type".
 784   case FloatCon:
 785   case DoubleCon:
 786   case Int:
 787   case Long:
 788     return t->xmeet(this);
 789 
 790   case OopPtr:
 791     return t->xmeet(this);
 792 
 793   case InstPtr:
 794     return t->xmeet(this);
 795 
 796   case MetadataPtr:
 797   case KlassPtr:
 798     return t->xmeet(this);
 799 
 800   case AryPtr:
 801     return t->xmeet(this);
 802 
 803   case NarrowOop:
 804     return t->xmeet(this);
 805 
 806   case NarrowKlass:
 807     return t->xmeet(this);
 808 
 809   case Bad:                     // Type check
 810   default:                      // Bogus type not in lattice
 811     typerr(t);
 812     return Type::BOTTOM;
 813 
 814   case Bottom:                  // Ye Olde Default
 815     return t;
 816 
 817   case FloatTop:
 818     if( _base == FloatTop ) return this;
 819   case FloatBot:                // Float
 820     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 821     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 822     typerr(t);
 823     return Type::BOTTOM;
 824 
 825   case DoubleTop:
 826     if( _base == DoubleTop ) return this;
 827   case DoubleBot:               // Double
 828     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 829     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 830     typerr(t);
 831     return Type::BOTTOM;
 832 
 833   // These next few cases must match exactly or it is a compile-time error.
 834   case Control:                 // Control of code
 835   case Abio:                    // State of world outside of program
 836   case Memory:
 837     if( _base == t->_base )  return this;
 838     typerr(t);
 839     return Type::BOTTOM;
 840 
 841   case Top:                     // Top of the lattice
 842     return this;
 843   }
 844 
 845   // The type is unchanged
 846   return this;
 847 }
 848 
 849 //-----------------------------filter------------------------------------------
 850 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
 851   const Type* ft = join_helper(kills, include_speculative);
 852   if (ft->empty())
 853     return Type::TOP;           // Canonical empty value
 854   return ft;
 855 }
 856 
 857 //------------------------------xdual------------------------------------------
 858 // Compute dual right now.
 859 const Type::TYPES Type::dual_type[Type::lastype] = {
 860   Bad,          // Bad
 861   Control,      // Control
 862   Bottom,       // Top
 863   Bad,          // Int - handled in v-call
 864   Bad,          // Long - handled in v-call
 865   Half,         // Half
 866   Bad,          // NarrowOop - handled in v-call
 867   Bad,          // NarrowKlass - handled in v-call
 868 
 869   Bad,          // Tuple - handled in v-call
 870   Bad,          // Array - handled in v-call
 871   Bad,          // VectorS - handled in v-call
 872   Bad,          // VectorD - handled in v-call
 873   Bad,          // VectorX - handled in v-call
 874   Bad,          // VectorY - handled in v-call
 875   Bad,          // VectorZ - handled in v-call
 876 
 877   Bad,          // AnyPtr - handled in v-call
 878   Bad,          // RawPtr - handled in v-call
 879   Bad,          // OopPtr - handled in v-call
 880   Bad,          // InstPtr - handled in v-call
 881   Bad,          // AryPtr - handled in v-call
 882 
 883   Bad,          //  MetadataPtr - handled in v-call
 884   Bad,          // KlassPtr - handled in v-call
 885 
 886   Bad,          // Function - handled in v-call
 887   Abio,         // Abio
 888   Return_Address,// Return_Address
 889   Memory,       // Memory
 890   FloatBot,     // FloatTop
 891   FloatCon,     // FloatCon
 892   FloatTop,     // FloatBot
 893   DoubleBot,    // DoubleTop
 894   DoubleCon,    // DoubleCon
 895   DoubleTop,    // DoubleBot
 896   Top           // Bottom
 897 };
 898 
 899 const Type *Type::xdual() const {
 900   // Note: the base() accessor asserts the sanity of _base.
 901   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
 902   return new Type(_type_info[_base].dual_type);
 903 }
 904 
 905 //------------------------------has_memory-------------------------------------
 906 bool Type::has_memory() const {
 907   Type::TYPES tx = base();
 908   if (tx == Memory) return true;
 909   if (tx == Tuple) {
 910     const TypeTuple *t = is_tuple();
 911     for (uint i=0; i < t->cnt(); i++) {
 912       tx = t->field_at(i)->base();
 913       if (tx == Memory)  return true;
 914     }
 915   }
 916   return false;
 917 }
 918 
 919 #ifndef PRODUCT
 920 //------------------------------dump2------------------------------------------
 921 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
 922   st->print("%s", _type_info[_base].msg);
 923 }
 924 
 925 //------------------------------dump-------------------------------------------
 926 void Type::dump_on(outputStream *st) const {
 927   ResourceMark rm;
 928   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
 929   dump2(d,1, st);
 930   if (is_ptr_to_narrowoop()) {
 931     st->print(" [narrow]");
 932   } else if (is_ptr_to_narrowklass()) {
 933     st->print(" [narrowklass]");
 934   }
 935 }
 936 #endif
 937 
 938 //------------------------------singleton--------------------------------------
 939 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 940 // constants (Ldi nodes).  Singletons are integer, float or double constants.
 941 bool Type::singleton(void) const {
 942   return _base == Top || _base == Half;
 943 }
 944 
 945 //------------------------------empty------------------------------------------
 946 // TRUE if Type is a type with no values, FALSE otherwise.
 947 bool Type::empty(void) const {
 948   switch (_base) {
 949   case DoubleTop:
 950   case FloatTop:
 951   case Top:
 952     return true;
 953 
 954   case Half:
 955   case Abio:
 956   case Return_Address:
 957   case Memory:
 958   case Bottom:
 959   case FloatBot:
 960   case DoubleBot:
 961     return false;  // never a singleton, therefore never empty
 962   }
 963 
 964   ShouldNotReachHere();
 965   return false;
 966 }
 967 
 968 //------------------------------dump_stats-------------------------------------
 969 // Dump collected statistics to stderr
 970 #ifndef PRODUCT
 971 void Type::dump_stats() {
 972   tty->print("Types made: %d\n", type_dict()->Size());
 973 }
 974 #endif
 975 
 976 //------------------------------typerr-----------------------------------------
 977 void Type::typerr( const Type *t ) const {
 978 #ifndef PRODUCT
 979   tty->print("\nError mixing types: ");
 980   dump();
 981   tty->print(" and ");
 982   t->dump();
 983   tty->print("\n");
 984 #endif
 985   ShouldNotReachHere();
 986 }
 987 
 988 
 989 //=============================================================================
 990 // Convenience common pre-built types.
 991 const TypeF *TypeF::ZERO;       // Floating point zero
 992 const TypeF *TypeF::ONE;        // Floating point one
 993 
 994 //------------------------------make-------------------------------------------
 995 // Create a float constant
 996 const TypeF *TypeF::make(float f) {
 997   return (TypeF*)(new TypeF(f))->hashcons();
 998 }
 999 
1000 //------------------------------meet-------------------------------------------
1001 // Compute the MEET of two types.  It returns a new Type object.
1002 const Type *TypeF::xmeet( const Type *t ) const {
1003   // Perform a fast test for common case; meeting the same types together.
1004   if( this == t ) return this;  // Meeting same type-rep?
1005 
1006   // Current "this->_base" is FloatCon
1007   switch (t->base()) {          // Switch on original type
1008   case AnyPtr:                  // Mixing with oops happens when javac
1009   case RawPtr:                  // reuses local variables
1010   case OopPtr:
1011   case InstPtr:
1012   case AryPtr:
1013   case MetadataPtr:
1014   case KlassPtr:
1015   case NarrowOop:
1016   case NarrowKlass:
1017   case Int:
1018   case Long:
1019   case DoubleTop:
1020   case DoubleCon:
1021   case DoubleBot:
1022   case Bottom:                  // Ye Olde Default
1023     return Type::BOTTOM;
1024 
1025   case FloatBot:
1026     return t;
1027 
1028   default:                      // All else is a mistake
1029     typerr(t);
1030 
1031   case FloatCon:                // Float-constant vs Float-constant?
1032     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1033                                 // must compare bitwise as positive zero, negative zero and NaN have
1034                                 // all the same representation in C++
1035       return FLOAT;             // Return generic float
1036                                 // Equal constants
1037   case Top:
1038   case FloatTop:
1039     break;                      // Return the float constant
1040   }
1041   return this;                  // Return the float constant
1042 }
1043 
1044 //------------------------------xdual------------------------------------------
1045 // Dual: symmetric
1046 const Type *TypeF::xdual() const {
1047   return this;
1048 }
1049 
1050 //------------------------------eq---------------------------------------------
1051 // Structural equality check for Type representations
1052 bool TypeF::eq(const Type *t) const {
1053   // Bitwise comparison to distinguish between +/-0. These values must be treated
1054   // as different to be consistent with C1 and the interpreter.
1055   return (jint_cast(_f) == jint_cast(t->getf()));
1056 }
1057 
1058 //------------------------------hash-------------------------------------------
1059 // Type-specific hashing function.
1060 int TypeF::hash(void) const {
1061   return *(int*)(&_f);
1062 }
1063 
1064 //------------------------------is_finite--------------------------------------
1065 // Has a finite value
1066 bool TypeF::is_finite() const {
1067   return g_isfinite(getf()) != 0;
1068 }
1069 
1070 //------------------------------is_nan-----------------------------------------
1071 // Is not a number (NaN)
1072 bool TypeF::is_nan()    const {
1073   return g_isnan(getf()) != 0;
1074 }
1075 
1076 //------------------------------dump2------------------------------------------
1077 // Dump float constant Type
1078 #ifndef PRODUCT
1079 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1080   Type::dump2(d,depth, st);
1081   st->print("%f", _f);
1082 }
1083 #endif
1084 
1085 //------------------------------singleton--------------------------------------
1086 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1087 // constants (Ldi nodes).  Singletons are integer, float or double constants
1088 // or a single symbol.
1089 bool TypeF::singleton(void) const {
1090   return true;                  // Always a singleton
1091 }
1092 
1093 bool TypeF::empty(void) const {
1094   return false;                 // always exactly a singleton
1095 }
1096 
1097 //=============================================================================
1098 // Convenience common pre-built types.
1099 const TypeD *TypeD::ZERO;       // Floating point zero
1100 const TypeD *TypeD::ONE;        // Floating point one
1101 
1102 //------------------------------make-------------------------------------------
1103 const TypeD *TypeD::make(double d) {
1104   return (TypeD*)(new TypeD(d))->hashcons();
1105 }
1106 
1107 //------------------------------meet-------------------------------------------
1108 // Compute the MEET of two types.  It returns a new Type object.
1109 const Type *TypeD::xmeet( const Type *t ) const {
1110   // Perform a fast test for common case; meeting the same types together.
1111   if( this == t ) return this;  // Meeting same type-rep?
1112 
1113   // Current "this->_base" is DoubleCon
1114   switch (t->base()) {          // Switch on original type
1115   case AnyPtr:                  // Mixing with oops happens when javac
1116   case RawPtr:                  // reuses local variables
1117   case OopPtr:
1118   case InstPtr:
1119   case AryPtr:
1120   case MetadataPtr:
1121   case KlassPtr:
1122   case NarrowOop:
1123   case NarrowKlass:
1124   case Int:
1125   case Long:
1126   case FloatTop:
1127   case FloatCon:
1128   case FloatBot:
1129   case Bottom:                  // Ye Olde Default
1130     return Type::BOTTOM;
1131 
1132   case DoubleBot:
1133     return t;
1134 
1135   default:                      // All else is a mistake
1136     typerr(t);
1137 
1138   case DoubleCon:               // Double-constant vs Double-constant?
1139     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1140       return DOUBLE;            // Return generic double
1141   case Top:
1142   case DoubleTop:
1143     break;
1144   }
1145   return this;                  // Return the double constant
1146 }
1147 
1148 //------------------------------xdual------------------------------------------
1149 // Dual: symmetric
1150 const Type *TypeD::xdual() const {
1151   return this;
1152 }
1153 
1154 //------------------------------eq---------------------------------------------
1155 // Structural equality check for Type representations
1156 bool TypeD::eq(const Type *t) const {
1157   // Bitwise comparison to distinguish between +/-0. These values must be treated
1158   // as different to be consistent with C1 and the interpreter.
1159   return (jlong_cast(_d) == jlong_cast(t->getd()));
1160 }
1161 
1162 //------------------------------hash-------------------------------------------
1163 // Type-specific hashing function.
1164 int TypeD::hash(void) const {
1165   return *(int*)(&_d);
1166 }
1167 
1168 //------------------------------is_finite--------------------------------------
1169 // Has a finite value
1170 bool TypeD::is_finite() const {
1171   return g_isfinite(getd()) != 0;
1172 }
1173 
1174 //------------------------------is_nan-----------------------------------------
1175 // Is not a number (NaN)
1176 bool TypeD::is_nan()    const {
1177   return g_isnan(getd()) != 0;
1178 }
1179 
1180 //------------------------------dump2------------------------------------------
1181 // Dump double constant Type
1182 #ifndef PRODUCT
1183 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1184   Type::dump2(d,depth,st);
1185   st->print("%f", _d);
1186 }
1187 #endif
1188 
1189 //------------------------------singleton--------------------------------------
1190 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1191 // constants (Ldi nodes).  Singletons are integer, float or double constants
1192 // or a single symbol.
1193 bool TypeD::singleton(void) const {
1194   return true;                  // Always a singleton
1195 }
1196 
1197 bool TypeD::empty(void) const {
1198   return false;                 // always exactly a singleton
1199 }
1200 
1201 //=============================================================================
1202 // Convience common pre-built types.
1203 const TypeInt *TypeInt::MINUS_1;// -1
1204 const TypeInt *TypeInt::ZERO;   // 0
1205 const TypeInt *TypeInt::ONE;    // 1
1206 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1207 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1208 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1209 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1210 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1211 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1212 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1213 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1214 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1215 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1216 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1217 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1218 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1219 const TypeInt *TypeInt::INT;    // 32-bit integers
1220 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1221 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1222 
1223 //------------------------------TypeInt----------------------------------------
1224 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1225 }
1226 
1227 //------------------------------make-------------------------------------------
1228 const TypeInt *TypeInt::make( jint lo ) {
1229   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1230 }
1231 
1232 static int normalize_int_widen( jint lo, jint hi, int w ) {
1233   // Certain normalizations keep us sane when comparing types.
1234   // The 'SMALLINT' covers constants and also CC and its relatives.
1235   if (lo <= hi) {
1236     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1237     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1238   } else {
1239     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1240     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1241   }
1242   return w;
1243 }
1244 
1245 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1246   w = normalize_int_widen(lo, hi, w);
1247   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1248 }
1249 
1250 //------------------------------meet-------------------------------------------
1251 // Compute the MEET of two types.  It returns a new Type representation object
1252 // with reference count equal to the number of Types pointing at it.
1253 // Caller should wrap a Types around it.
1254 const Type *TypeInt::xmeet( const Type *t ) const {
1255   // Perform a fast test for common case; meeting the same types together.
1256   if( this == t ) return this;  // Meeting same type?
1257 
1258   // Currently "this->_base" is a TypeInt
1259   switch (t->base()) {          // Switch on original type
1260   case AnyPtr:                  // Mixing with oops happens when javac
1261   case RawPtr:                  // reuses local variables
1262   case OopPtr:
1263   case InstPtr:
1264   case AryPtr:
1265   case MetadataPtr:
1266   case KlassPtr:
1267   case NarrowOop:
1268   case NarrowKlass:
1269   case Long:
1270   case FloatTop:
1271   case FloatCon:
1272   case FloatBot:
1273   case DoubleTop:
1274   case DoubleCon:
1275   case DoubleBot:
1276   case Bottom:                  // Ye Olde Default
1277     return Type::BOTTOM;
1278   default:                      // All else is a mistake
1279     typerr(t);
1280   case Top:                     // No change
1281     return this;
1282   case Int:                     // Int vs Int?
1283     break;
1284   }
1285 
1286   // Expand covered set
1287   const TypeInt *r = t->is_int();
1288   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1289 }
1290 
1291 //------------------------------xdual------------------------------------------
1292 // Dual: reverse hi & lo; flip widen
1293 const Type *TypeInt::xdual() const {
1294   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1295   return new TypeInt(_hi,_lo,w);
1296 }
1297 
1298 //------------------------------widen------------------------------------------
1299 // Only happens for optimistic top-down optimizations.
1300 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1301   // Coming from TOP or such; no widening
1302   if( old->base() != Int ) return this;
1303   const TypeInt *ot = old->is_int();
1304 
1305   // If new guy is equal to old guy, no widening
1306   if( _lo == ot->_lo && _hi == ot->_hi )
1307     return old;
1308 
1309   // If new guy contains old, then we widened
1310   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1311     // New contains old
1312     // If new guy is already wider than old, no widening
1313     if( _widen > ot->_widen ) return this;
1314     // If old guy was a constant, do not bother
1315     if (ot->_lo == ot->_hi)  return this;
1316     // Now widen new guy.
1317     // Check for widening too far
1318     if (_widen == WidenMax) {
1319       int max = max_jint;
1320       int min = min_jint;
1321       if (limit->isa_int()) {
1322         max = limit->is_int()->_hi;
1323         min = limit->is_int()->_lo;
1324       }
1325       if (min < _lo && _hi < max) {
1326         // If neither endpoint is extremal yet, push out the endpoint
1327         // which is closer to its respective limit.
1328         if (_lo >= 0 ||                 // easy common case
1329             (juint)(_lo - min) >= (juint)(max - _hi)) {
1330           // Try to widen to an unsigned range type of 31 bits:
1331           return make(_lo, max, WidenMax);
1332         } else {
1333           return make(min, _hi, WidenMax);
1334         }
1335       }
1336       return TypeInt::INT;
1337     }
1338     // Returned widened new guy
1339     return make(_lo,_hi,_widen+1);
1340   }
1341 
1342   // If old guy contains new, then we probably widened too far & dropped to
1343   // bottom.  Return the wider fellow.
1344   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1345     return old;
1346 
1347   //fatal("Integer value range is not subset");
1348   //return this;
1349   return TypeInt::INT;
1350 }
1351 
1352 //------------------------------narrow---------------------------------------
1353 // Only happens for pessimistic optimizations.
1354 const Type *TypeInt::narrow( const Type *old ) const {
1355   if (_lo >= _hi)  return this;   // already narrow enough
1356   if (old == NULL)  return this;
1357   const TypeInt* ot = old->isa_int();
1358   if (ot == NULL)  return this;
1359   jint olo = ot->_lo;
1360   jint ohi = ot->_hi;
1361 
1362   // If new guy is equal to old guy, no narrowing
1363   if (_lo == olo && _hi == ohi)  return old;
1364 
1365   // If old guy was maximum range, allow the narrowing
1366   if (olo == min_jint && ohi == max_jint)  return this;
1367 
1368   if (_lo < olo || _hi > ohi)
1369     return this;                // doesn't narrow; pretty wierd
1370 
1371   // The new type narrows the old type, so look for a "death march".
1372   // See comments on PhaseTransform::saturate.
1373   juint nrange = _hi - _lo;
1374   juint orange = ohi - olo;
1375   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1376     // Use the new type only if the range shrinks a lot.
1377     // We do not want the optimizer computing 2^31 point by point.
1378     return old;
1379   }
1380 
1381   return this;
1382 }
1383 
1384 //-----------------------------filter------------------------------------------
1385 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1386   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1387   if (ft == NULL || ft->empty())
1388     return Type::TOP;           // Canonical empty value
1389   if (ft->_widen < this->_widen) {
1390     // Do not allow the value of kill->_widen to affect the outcome.
1391     // The widen bits must be allowed to run freely through the graph.
1392     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1393   }
1394   return ft;
1395 }
1396 
1397 //------------------------------eq---------------------------------------------
1398 // Structural equality check for Type representations
1399 bool TypeInt::eq( const Type *t ) const {
1400   const TypeInt *r = t->is_int(); // Handy access
1401   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1402 }
1403 
1404 //------------------------------hash-------------------------------------------
1405 // Type-specific hashing function.
1406 int TypeInt::hash(void) const {
1407   return _lo+_hi+_widen+(int)Type::Int;
1408 }
1409 
1410 //------------------------------is_finite--------------------------------------
1411 // Has a finite value
1412 bool TypeInt::is_finite() const {
1413   return true;
1414 }
1415 
1416 //------------------------------dump2------------------------------------------
1417 // Dump TypeInt
1418 #ifndef PRODUCT
1419 static const char* intname(char* buf, jint n) {
1420   if (n == min_jint)
1421     return "min";
1422   else if (n < min_jint + 10000)
1423     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1424   else if (n == max_jint)
1425     return "max";
1426   else if (n > max_jint - 10000)
1427     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1428   else
1429     sprintf(buf, INT32_FORMAT, n);
1430   return buf;
1431 }
1432 
1433 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1434   char buf[40], buf2[40];
1435   if (_lo == min_jint && _hi == max_jint)
1436     st->print("int");
1437   else if (is_con())
1438     st->print("int:%s", intname(buf, get_con()));
1439   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1440     st->print("bool");
1441   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1442     st->print("byte");
1443   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1444     st->print("char");
1445   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1446     st->print("short");
1447   else if (_hi == max_jint)
1448     st->print("int:>=%s", intname(buf, _lo));
1449   else if (_lo == min_jint)
1450     st->print("int:<=%s", intname(buf, _hi));
1451   else
1452     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1453 
1454   if (_widen != 0 && this != TypeInt::INT)
1455     st->print(":%.*s", _widen, "wwww");
1456 }
1457 #endif
1458 
1459 //------------------------------singleton--------------------------------------
1460 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1461 // constants.
1462 bool TypeInt::singleton(void) const {
1463   return _lo >= _hi;
1464 }
1465 
1466 bool TypeInt::empty(void) const {
1467   return _lo > _hi;
1468 }
1469 
1470 //=============================================================================
1471 // Convenience common pre-built types.
1472 const TypeLong *TypeLong::MINUS_1;// -1
1473 const TypeLong *TypeLong::ZERO; // 0
1474 const TypeLong *TypeLong::ONE;  // 1
1475 const TypeLong *TypeLong::POS;  // >=0
1476 const TypeLong *TypeLong::LONG; // 64-bit integers
1477 const TypeLong *TypeLong::INT;  // 32-bit subrange
1478 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1479 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1480 
1481 //------------------------------TypeLong---------------------------------------
1482 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1483 }
1484 
1485 //------------------------------make-------------------------------------------
1486 const TypeLong *TypeLong::make( jlong lo ) {
1487   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1488 }
1489 
1490 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1491   // Certain normalizations keep us sane when comparing types.
1492   // The 'SMALLINT' covers constants.
1493   if (lo <= hi) {
1494     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1495     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1496   } else {
1497     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1498     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1499   }
1500   return w;
1501 }
1502 
1503 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1504   w = normalize_long_widen(lo, hi, w);
1505   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1506 }
1507 
1508 
1509 //------------------------------meet-------------------------------------------
1510 // Compute the MEET of two types.  It returns a new Type representation object
1511 // with reference count equal to the number of Types pointing at it.
1512 // Caller should wrap a Types around it.
1513 const Type *TypeLong::xmeet( const Type *t ) const {
1514   // Perform a fast test for common case; meeting the same types together.
1515   if( this == t ) return this;  // Meeting same type?
1516 
1517   // Currently "this->_base" is a TypeLong
1518   switch (t->base()) {          // Switch on original type
1519   case AnyPtr:                  // Mixing with oops happens when javac
1520   case RawPtr:                  // reuses local variables
1521   case OopPtr:
1522   case InstPtr:
1523   case AryPtr:
1524   case MetadataPtr:
1525   case KlassPtr:
1526   case NarrowOop:
1527   case NarrowKlass:
1528   case Int:
1529   case FloatTop:
1530   case FloatCon:
1531   case FloatBot:
1532   case DoubleTop:
1533   case DoubleCon:
1534   case DoubleBot:
1535   case Bottom:                  // Ye Olde Default
1536     return Type::BOTTOM;
1537   default:                      // All else is a mistake
1538     typerr(t);
1539   case Top:                     // No change
1540     return this;
1541   case Long:                    // Long vs Long?
1542     break;
1543   }
1544 
1545   // Expand covered set
1546   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1547   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1548 }
1549 
1550 //------------------------------xdual------------------------------------------
1551 // Dual: reverse hi & lo; flip widen
1552 const Type *TypeLong::xdual() const {
1553   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1554   return new TypeLong(_hi,_lo,w);
1555 }
1556 
1557 //------------------------------widen------------------------------------------
1558 // Only happens for optimistic top-down optimizations.
1559 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1560   // Coming from TOP or such; no widening
1561   if( old->base() != Long ) return this;
1562   const TypeLong *ot = old->is_long();
1563 
1564   // If new guy is equal to old guy, no widening
1565   if( _lo == ot->_lo && _hi == ot->_hi )
1566     return old;
1567 
1568   // If new guy contains old, then we widened
1569   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1570     // New contains old
1571     // If new guy is already wider than old, no widening
1572     if( _widen > ot->_widen ) return this;
1573     // If old guy was a constant, do not bother
1574     if (ot->_lo == ot->_hi)  return this;
1575     // Now widen new guy.
1576     // Check for widening too far
1577     if (_widen == WidenMax) {
1578       jlong max = max_jlong;
1579       jlong min = min_jlong;
1580       if (limit->isa_long()) {
1581         max = limit->is_long()->_hi;
1582         min = limit->is_long()->_lo;
1583       }
1584       if (min < _lo && _hi < max) {
1585         // If neither endpoint is extremal yet, push out the endpoint
1586         // which is closer to its respective limit.
1587         if (_lo >= 0 ||                 // easy common case
1588             (julong)(_lo - min) >= (julong)(max - _hi)) {
1589           // Try to widen to an unsigned range type of 32/63 bits:
1590           if (max >= max_juint && _hi < max_juint)
1591             return make(_lo, max_juint, WidenMax);
1592           else
1593             return make(_lo, max, WidenMax);
1594         } else {
1595           return make(min, _hi, WidenMax);
1596         }
1597       }
1598       return TypeLong::LONG;
1599     }
1600     // Returned widened new guy
1601     return make(_lo,_hi,_widen+1);
1602   }
1603 
1604   // If old guy contains new, then we probably widened too far & dropped to
1605   // bottom.  Return the wider fellow.
1606   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1607     return old;
1608 
1609   //  fatal("Long value range is not subset");
1610   // return this;
1611   return TypeLong::LONG;
1612 }
1613 
1614 //------------------------------narrow----------------------------------------
1615 // Only happens for pessimistic optimizations.
1616 const Type *TypeLong::narrow( const Type *old ) const {
1617   if (_lo >= _hi)  return this;   // already narrow enough
1618   if (old == NULL)  return this;
1619   const TypeLong* ot = old->isa_long();
1620   if (ot == NULL)  return this;
1621   jlong olo = ot->_lo;
1622   jlong ohi = ot->_hi;
1623 
1624   // If new guy is equal to old guy, no narrowing
1625   if (_lo == olo && _hi == ohi)  return old;
1626 
1627   // If old guy was maximum range, allow the narrowing
1628   if (olo == min_jlong && ohi == max_jlong)  return this;
1629 
1630   if (_lo < olo || _hi > ohi)
1631     return this;                // doesn't narrow; pretty wierd
1632 
1633   // The new type narrows the old type, so look for a "death march".
1634   // See comments on PhaseTransform::saturate.
1635   julong nrange = _hi - _lo;
1636   julong orange = ohi - olo;
1637   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1638     // Use the new type only if the range shrinks a lot.
1639     // We do not want the optimizer computing 2^31 point by point.
1640     return old;
1641   }
1642 
1643   return this;
1644 }
1645 
1646 //-----------------------------filter------------------------------------------
1647 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1648   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1649   if (ft == NULL || ft->empty())
1650     return Type::TOP;           // Canonical empty value
1651   if (ft->_widen < this->_widen) {
1652     // Do not allow the value of kill->_widen to affect the outcome.
1653     // The widen bits must be allowed to run freely through the graph.
1654     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1655   }
1656   return ft;
1657 }
1658 
1659 //------------------------------eq---------------------------------------------
1660 // Structural equality check for Type representations
1661 bool TypeLong::eq( const Type *t ) const {
1662   const TypeLong *r = t->is_long(); // Handy access
1663   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1664 }
1665 
1666 //------------------------------hash-------------------------------------------
1667 // Type-specific hashing function.
1668 int TypeLong::hash(void) const {
1669   return (int)(_lo+_hi+_widen+(int)Type::Long);
1670 }
1671 
1672 //------------------------------is_finite--------------------------------------
1673 // Has a finite value
1674 bool TypeLong::is_finite() const {
1675   return true;
1676 }
1677 
1678 //------------------------------dump2------------------------------------------
1679 // Dump TypeLong
1680 #ifndef PRODUCT
1681 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1682   if (n > x) {
1683     if (n >= x + 10000)  return NULL;
1684     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1685   } else if (n < x) {
1686     if (n <= x - 10000)  return NULL;
1687     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1688   } else {
1689     return xname;
1690   }
1691   return buf;
1692 }
1693 
1694 static const char* longname(char* buf, jlong n) {
1695   const char* str;
1696   if (n == min_jlong)
1697     return "min";
1698   else if (n < min_jlong + 10000)
1699     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1700   else if (n == max_jlong)
1701     return "max";
1702   else if (n > max_jlong - 10000)
1703     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1704   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1705     return str;
1706   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1707     return str;
1708   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1709     return str;
1710   else
1711     sprintf(buf, JLONG_FORMAT, n);
1712   return buf;
1713 }
1714 
1715 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1716   char buf[80], buf2[80];
1717   if (_lo == min_jlong && _hi == max_jlong)
1718     st->print("long");
1719   else if (is_con())
1720     st->print("long:%s", longname(buf, get_con()));
1721   else if (_hi == max_jlong)
1722     st->print("long:>=%s", longname(buf, _lo));
1723   else if (_lo == min_jlong)
1724     st->print("long:<=%s", longname(buf, _hi));
1725   else
1726     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1727 
1728   if (_widen != 0 && this != TypeLong::LONG)
1729     st->print(":%.*s", _widen, "wwww");
1730 }
1731 #endif
1732 
1733 //------------------------------singleton--------------------------------------
1734 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1735 // constants
1736 bool TypeLong::singleton(void) const {
1737   return _lo >= _hi;
1738 }
1739 
1740 bool TypeLong::empty(void) const {
1741   return _lo > _hi;
1742 }
1743 
1744 //=============================================================================
1745 // Convenience common pre-built types.
1746 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1747 const TypeTuple *TypeTuple::IFFALSE;
1748 const TypeTuple *TypeTuple::IFTRUE;
1749 const TypeTuple *TypeTuple::IFNEITHER;
1750 const TypeTuple *TypeTuple::LOOPBODY;
1751 const TypeTuple *TypeTuple::MEMBAR;
1752 const TypeTuple *TypeTuple::STORECONDITIONAL;
1753 const TypeTuple *TypeTuple::START_I2C;
1754 const TypeTuple *TypeTuple::INT_PAIR;
1755 const TypeTuple *TypeTuple::LONG_PAIR;
1756 const TypeTuple *TypeTuple::INT_CC_PAIR;
1757 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1758 
1759 
1760 //------------------------------make-------------------------------------------
1761 // Make a TypeTuple from the range of a method signature
1762 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1763   ciType* return_type = sig->return_type();
1764   uint arg_cnt = return_type->size();
1765   const Type **field_array = fields(arg_cnt);
1766   switch (return_type->basic_type()) {
1767   case T_LONG:
1768     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1769     field_array[TypeFunc::Parms+1] = Type::HALF;
1770     break;
1771   case T_DOUBLE:
1772     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1773     field_array[TypeFunc::Parms+1] = Type::HALF;
1774     break;
1775   case T_OBJECT:
1776   case T_ARRAY:
1777   case T_BOOLEAN:
1778   case T_CHAR:
1779   case T_FLOAT:
1780   case T_BYTE:
1781   case T_SHORT:
1782   case T_INT:
1783     field_array[TypeFunc::Parms] = get_const_type(return_type);
1784     break;
1785   case T_VOID:
1786     break;
1787   default:
1788     ShouldNotReachHere();
1789   }
1790   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1791 }
1792 
1793 // Make a TypeTuple from the domain of a method signature
1794 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1795   uint arg_cnt = sig->size();
1796 
1797   uint pos = TypeFunc::Parms;
1798   const Type **field_array;
1799   if (recv != NULL) {
1800     arg_cnt++;
1801     field_array = fields(arg_cnt);
1802     // Use get_const_type here because it respects UseUniqueSubclasses:
1803     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
1804   } else {
1805     field_array = fields(arg_cnt);
1806   }
1807 
1808   int i = 0;
1809   while (pos < TypeFunc::Parms + arg_cnt) {
1810     ciType* type = sig->type_at(i);
1811 
1812     switch (type->basic_type()) {
1813     case T_LONG:
1814       field_array[pos++] = TypeLong::LONG;
1815       field_array[pos++] = Type::HALF;
1816       break;
1817     case T_DOUBLE:
1818       field_array[pos++] = Type::DOUBLE;
1819       field_array[pos++] = Type::HALF;
1820       break;
1821     case T_OBJECT:
1822     case T_ARRAY:
1823     case T_BOOLEAN:
1824     case T_CHAR:
1825     case T_FLOAT:
1826     case T_BYTE:
1827     case T_SHORT:
1828     case T_INT:
1829       field_array[pos++] = get_const_type(type);
1830       break;
1831     default:
1832       ShouldNotReachHere();
1833     }
1834     i++;
1835   }
1836 
1837   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1838 }
1839 
1840 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1841   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1842 }
1843 
1844 //------------------------------fields-----------------------------------------
1845 // Subroutine call type with space allocated for argument types
1846 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
1847 const Type **TypeTuple::fields( uint arg_cnt ) {
1848   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1849   flds[TypeFunc::Control  ] = Type::CONTROL;
1850   flds[TypeFunc::I_O      ] = Type::ABIO;
1851   flds[TypeFunc::Memory   ] = Type::MEMORY;
1852   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1853   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1854 
1855   return flds;
1856 }
1857 
1858 //------------------------------meet-------------------------------------------
1859 // Compute the MEET of two types.  It returns a new Type object.
1860 const Type *TypeTuple::xmeet( const Type *t ) const {
1861   // Perform a fast test for common case; meeting the same types together.
1862   if( this == t ) return this;  // Meeting same type-rep?
1863 
1864   // Current "this->_base" is Tuple
1865   switch (t->base()) {          // switch on original type
1866 
1867   case Bottom:                  // Ye Olde Default
1868     return t;
1869 
1870   default:                      // All else is a mistake
1871     typerr(t);
1872 
1873   case Tuple: {                 // Meeting 2 signatures?
1874     const TypeTuple *x = t->is_tuple();
1875     assert( _cnt == x->_cnt, "" );
1876     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1877     for( uint i=0; i<_cnt; i++ )
1878       fields[i] = field_at(i)->xmeet( x->field_at(i) );
1879     return TypeTuple::make(_cnt,fields);
1880   }
1881   case Top:
1882     break;
1883   }
1884   return this;                  // Return the double constant
1885 }
1886 
1887 //------------------------------xdual------------------------------------------
1888 // Dual: compute field-by-field dual
1889 const Type *TypeTuple::xdual() const {
1890   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1891   for( uint i=0; i<_cnt; i++ )
1892     fields[i] = _fields[i]->dual();
1893   return new TypeTuple(_cnt,fields);
1894 }
1895 
1896 //------------------------------eq---------------------------------------------
1897 // Structural equality check for Type representations
1898 bool TypeTuple::eq( const Type *t ) const {
1899   const TypeTuple *s = (const TypeTuple *)t;
1900   if (_cnt != s->_cnt)  return false;  // Unequal field counts
1901   for (uint i = 0; i < _cnt; i++)
1902     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1903       return false;             // Missed
1904   return true;
1905 }
1906 
1907 //------------------------------hash-------------------------------------------
1908 // Type-specific hashing function.
1909 int TypeTuple::hash(void) const {
1910   intptr_t sum = _cnt;
1911   for( uint i=0; i<_cnt; i++ )
1912     sum += (intptr_t)_fields[i];     // Hash on pointers directly
1913   return sum;
1914 }
1915 
1916 //------------------------------dump2------------------------------------------
1917 // Dump signature Type
1918 #ifndef PRODUCT
1919 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1920   st->print("{");
1921   if( !depth || d[this] ) {     // Check for recursive print
1922     st->print("...}");
1923     return;
1924   }
1925   d.Insert((void*)this, (void*)this);   // Stop recursion
1926   if( _cnt ) {
1927     uint i;
1928     for( i=0; i<_cnt-1; i++ ) {
1929       st->print("%d:", i);
1930       _fields[i]->dump2(d, depth-1, st);
1931       st->print(", ");
1932     }
1933     st->print("%d:", i);
1934     _fields[i]->dump2(d, depth-1, st);
1935   }
1936   st->print("}");
1937 }
1938 #endif
1939 
1940 //------------------------------singleton--------------------------------------
1941 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1942 // constants (Ldi nodes).  Singletons are integer, float or double constants
1943 // or a single symbol.
1944 bool TypeTuple::singleton(void) const {
1945   return false;                 // Never a singleton
1946 }
1947 
1948 bool TypeTuple::empty(void) const {
1949   for( uint i=0; i<_cnt; i++ ) {
1950     if (_fields[i]->empty())  return true;
1951   }
1952   return false;
1953 }
1954 
1955 //=============================================================================
1956 // Convenience common pre-built types.
1957 
1958 inline const TypeInt* normalize_array_size(const TypeInt* size) {
1959   // Certain normalizations keep us sane when comparing types.
1960   // We do not want arrayOop variables to differ only by the wideness
1961   // of their index types.  Pick minimum wideness, since that is the
1962   // forced wideness of small ranges anyway.
1963   if (size->_widen != Type::WidenMin)
1964     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
1965   else
1966     return size;
1967 }
1968 
1969 //------------------------------make-------------------------------------------
1970 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
1971   if (UseCompressedOops && elem->isa_oopptr()) {
1972     elem = elem->make_narrowoop();
1973   }
1974   size = normalize_array_size(size);
1975   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
1976 }
1977 
1978 //------------------------------meet-------------------------------------------
1979 // Compute the MEET of two types.  It returns a new Type object.
1980 const Type *TypeAry::xmeet( const Type *t ) const {
1981   // Perform a fast test for common case; meeting the same types together.
1982   if( this == t ) return this;  // Meeting same type-rep?
1983 
1984   // Current "this->_base" is Ary
1985   switch (t->base()) {          // switch on original type
1986 
1987   case Bottom:                  // Ye Olde Default
1988     return t;
1989 
1990   default:                      // All else is a mistake
1991     typerr(t);
1992 
1993   case Array: {                 // Meeting 2 arrays?
1994     const TypeAry *a = t->is_ary();
1995     return TypeAry::make(_elem->meet_speculative(a->_elem),
1996                          _size->xmeet(a->_size)->is_int(),
1997                          _stable & a->_stable);
1998   }
1999   case Top:
2000     break;
2001   }
2002   return this;                  // Return the double constant
2003 }
2004 
2005 //------------------------------xdual------------------------------------------
2006 // Dual: compute field-by-field dual
2007 const Type *TypeAry::xdual() const {
2008   const TypeInt* size_dual = _size->dual()->is_int();
2009   size_dual = normalize_array_size(size_dual);
2010   return new TypeAry(_elem->dual(), size_dual, !_stable);
2011 }
2012 
2013 //------------------------------eq---------------------------------------------
2014 // Structural equality check for Type representations
2015 bool TypeAry::eq( const Type *t ) const {
2016   const TypeAry *a = (const TypeAry*)t;
2017   return _elem == a->_elem &&
2018     _stable == a->_stable &&
2019     _size == a->_size;
2020 }
2021 
2022 //------------------------------hash-------------------------------------------
2023 // Type-specific hashing function.
2024 int TypeAry::hash(void) const {
2025   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2026 }
2027 
2028 /**
2029  * Return same type without a speculative part in the element
2030  */
2031 const Type* TypeAry::remove_speculative() const {
2032   return make(_elem->remove_speculative(), _size, _stable);
2033 }
2034 
2035 /**
2036  * Return same type with cleaned up speculative part of element
2037  */
2038 const Type* TypeAry::cleanup_speculative() const {
2039   return make(_elem->cleanup_speculative(), _size, _stable);
2040 }
2041 
2042 /**
2043  * Return same type but with a different inline depth (used for speculation)
2044  *
2045  * @param depth  depth to meet with
2046  */
2047 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2048   if (!UseInlineDepthForSpeculativeTypes) {
2049     return this;
2050   }
2051   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2052 }
2053 
2054 //----------------------interface_vs_oop---------------------------------------
2055 #ifdef ASSERT
2056 bool TypeAry::interface_vs_oop(const Type *t) const {
2057   const TypeAry* t_ary = t->is_ary();
2058   if (t_ary) {
2059     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2060     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2061     if(this_ptr != NULL && t_ptr != NULL) {
2062       return this_ptr->interface_vs_oop(t_ptr);
2063     }
2064   }
2065   return false;
2066 }
2067 #endif
2068 
2069 //------------------------------dump2------------------------------------------
2070 #ifndef PRODUCT
2071 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2072   if (_stable)  st->print("stable:");
2073   _elem->dump2(d, depth, st);
2074   st->print("[");
2075   _size->dump2(d, depth, st);
2076   st->print("]");
2077 }
2078 #endif
2079 
2080 //------------------------------singleton--------------------------------------
2081 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2082 // constants (Ldi nodes).  Singletons are integer, float or double constants
2083 // or a single symbol.
2084 bool TypeAry::singleton(void) const {
2085   return false;                 // Never a singleton
2086 }
2087 
2088 bool TypeAry::empty(void) const {
2089   return _elem->empty() || _size->empty();
2090 }
2091 
2092 //--------------------------ary_must_be_exact----------------------------------
2093 bool TypeAry::ary_must_be_exact() const {
2094   if (!UseExactTypes)       return false;
2095   // This logic looks at the element type of an array, and returns true
2096   // if the element type is either a primitive or a final instance class.
2097   // In such cases, an array built on this ary must have no subclasses.
2098   if (_elem == BOTTOM)      return false;  // general array not exact
2099   if (_elem == TOP   )      return false;  // inverted general array not exact
2100   const TypeOopPtr*  toop = NULL;
2101   if (UseCompressedOops && _elem->isa_narrowoop()) {
2102     toop = _elem->make_ptr()->isa_oopptr();
2103   } else {
2104     toop = _elem->isa_oopptr();
2105   }
2106   if (!toop)                return true;   // a primitive type, like int
2107   ciKlass* tklass = toop->klass();
2108   if (tklass == NULL)       return false;  // unloaded class
2109   if (!tklass->is_loaded()) return false;  // unloaded class
2110   const TypeInstPtr* tinst;
2111   if (_elem->isa_narrowoop())
2112     tinst = _elem->make_ptr()->isa_instptr();
2113   else
2114     tinst = _elem->isa_instptr();
2115   if (tinst)
2116     return tklass->as_instance_klass()->is_final();
2117   const TypeAryPtr*  tap;
2118   if (_elem->isa_narrowoop())
2119     tap = _elem->make_ptr()->isa_aryptr();
2120   else
2121     tap = _elem->isa_aryptr();
2122   if (tap)
2123     return tap->ary()->ary_must_be_exact();
2124   return false;
2125 }
2126 
2127 //==============================TypeVect=======================================
2128 // Convenience common pre-built types.
2129 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2130 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2131 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2132 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2133 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2134 
2135 //------------------------------make-------------------------------------------
2136 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2137   BasicType elem_bt = elem->array_element_basic_type();
2138   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2139   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2140   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2141   int size = length * type2aelembytes(elem_bt);
2142   switch (Matcher::vector_ideal_reg(size)) {
2143   case Op_VecS:
2144     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2145   case Op_RegL:
2146   case Op_VecD:
2147   case Op_RegD:
2148     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2149   case Op_VecX:
2150     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2151   case Op_VecY:
2152     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2153   case Op_VecZ:
2154     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2155   }
2156  ShouldNotReachHere();
2157   return NULL;
2158 }
2159 
2160 //------------------------------meet-------------------------------------------
2161 // Compute the MEET of two types.  It returns a new Type object.
2162 const Type *TypeVect::xmeet( const Type *t ) const {
2163   // Perform a fast test for common case; meeting the same types together.
2164   if( this == t ) return this;  // Meeting same type-rep?
2165 
2166   // Current "this->_base" is Vector
2167   switch (t->base()) {          // switch on original type
2168 
2169   case Bottom:                  // Ye Olde Default
2170     return t;
2171 
2172   default:                      // All else is a mistake
2173     typerr(t);
2174 
2175   case VectorS:
2176   case VectorD:
2177   case VectorX:
2178   case VectorY:
2179   case VectorZ: {                // Meeting 2 vectors?
2180     const TypeVect* v = t->is_vect();
2181     assert(  base() == v->base(), "");
2182     assert(length() == v->length(), "");
2183     assert(element_basic_type() == v->element_basic_type(), "");
2184     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2185   }
2186   case Top:
2187     break;
2188   }
2189   return this;
2190 }
2191 
2192 //------------------------------xdual------------------------------------------
2193 // Dual: compute field-by-field dual
2194 const Type *TypeVect::xdual() const {
2195   return new TypeVect(base(), _elem->dual(), _length);
2196 }
2197 
2198 //------------------------------eq---------------------------------------------
2199 // Structural equality check for Type representations
2200 bool TypeVect::eq(const Type *t) const {
2201   const TypeVect *v = t->is_vect();
2202   return (_elem == v->_elem) && (_length == v->_length);
2203 }
2204 
2205 //------------------------------hash-------------------------------------------
2206 // Type-specific hashing function.
2207 int TypeVect::hash(void) const {
2208   return (intptr_t)_elem + (intptr_t)_length;
2209 }
2210 
2211 //------------------------------singleton--------------------------------------
2212 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2213 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2214 // constant value (when vector is created with Replicate code).
2215 bool TypeVect::singleton(void) const {
2216 // There is no Con node for vectors yet.
2217 //  return _elem->singleton();
2218   return false;
2219 }
2220 
2221 bool TypeVect::empty(void) const {
2222   return _elem->empty();
2223 }
2224 
2225 //------------------------------dump2------------------------------------------
2226 #ifndef PRODUCT
2227 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2228   switch (base()) {
2229   case VectorS:
2230     st->print("vectors["); break;
2231   case VectorD:
2232     st->print("vectord["); break;
2233   case VectorX:
2234     st->print("vectorx["); break;
2235   case VectorY:
2236     st->print("vectory["); break;
2237   case VectorZ:
2238     st->print("vectorz["); break;
2239   default:
2240     ShouldNotReachHere();
2241   }
2242   st->print("%d]:{", _length);
2243   _elem->dump2(d, depth, st);
2244   st->print("}");
2245 }
2246 #endif
2247 
2248 
2249 //=============================================================================
2250 // Convenience common pre-built types.
2251 const TypePtr *TypePtr::NULL_PTR;
2252 const TypePtr *TypePtr::NOTNULL;
2253 const TypePtr *TypePtr::BOTTOM;
2254 
2255 //------------------------------meet-------------------------------------------
2256 // Meet over the PTR enum
2257 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2258   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2259   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2260   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2261   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2262   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2263   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2264   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2265 };
2266 
2267 //------------------------------make-------------------------------------------
2268 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2269   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2270 }
2271 
2272 //------------------------------cast_to_ptr_type-------------------------------
2273 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2274   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2275   if( ptr == _ptr ) return this;
2276   return make(_base, ptr, _offset, _speculative, _inline_depth);
2277 }
2278 
2279 //------------------------------get_con----------------------------------------
2280 intptr_t TypePtr::get_con() const {
2281   assert( _ptr == Null, "" );
2282   return _offset;
2283 }
2284 
2285 //------------------------------meet-------------------------------------------
2286 // Compute the MEET of two types.  It returns a new Type object.
2287 const Type *TypePtr::xmeet(const Type *t) const {
2288   const Type* res = xmeet_helper(t);
2289   if (res->isa_ptr() == NULL) {
2290     return res;
2291   }
2292 
2293   const TypePtr* res_ptr = res->is_ptr();
2294   if (res_ptr->speculative() != NULL) {
2295     // type->speculative() == NULL means that speculation is no better
2296     // than type, i.e. type->speculative() == type. So there are 2
2297     // ways to represent the fact that we have no useful speculative
2298     // data and we should use a single one to be able to test for
2299     // equality between types. Check whether type->speculative() ==
2300     // type and set speculative to NULL if it is the case.
2301     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2302       return res_ptr->remove_speculative();
2303     }
2304   }
2305 
2306   return res;
2307 }
2308 
2309 const Type *TypePtr::xmeet_helper(const Type *t) const {
2310   // Perform a fast test for common case; meeting the same types together.
2311   if( this == t ) return this;  // Meeting same type-rep?
2312 
2313   // Current "this->_base" is AnyPtr
2314   switch (t->base()) {          // switch on original type
2315   case Int:                     // Mixing ints & oops happens when javac
2316   case Long:                    // reuses local variables
2317   case FloatTop:
2318   case FloatCon:
2319   case FloatBot:
2320   case DoubleTop:
2321   case DoubleCon:
2322   case DoubleBot:
2323   case NarrowOop:
2324   case NarrowKlass:
2325   case Bottom:                  // Ye Olde Default
2326     return Type::BOTTOM;
2327   case Top:
2328     return this;
2329 
2330   case AnyPtr: {                // Meeting to AnyPtrs
2331     const TypePtr *tp = t->is_ptr();
2332     const TypePtr* speculative = xmeet_speculative(tp);
2333     int depth = meet_inline_depth(tp->inline_depth());
2334     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2335   }
2336   case RawPtr:                  // For these, flip the call around to cut down
2337   case OopPtr:
2338   case InstPtr:                 // on the cases I have to handle.
2339   case AryPtr:
2340   case MetadataPtr:
2341   case KlassPtr:
2342     return t->xmeet(this);      // Call in reverse direction
2343   default:                      // All else is a mistake
2344     typerr(t);
2345 
2346   }
2347   return this;
2348 }
2349 
2350 //------------------------------meet_offset------------------------------------
2351 int TypePtr::meet_offset( int offset ) const {
2352   // Either is 'TOP' offset?  Return the other offset!
2353   if( _offset == OffsetTop ) return offset;
2354   if( offset == OffsetTop ) return _offset;
2355   // If either is different, return 'BOTTOM' offset
2356   if( _offset != offset ) return OffsetBot;
2357   return _offset;
2358 }
2359 
2360 //------------------------------dual_offset------------------------------------
2361 int TypePtr::dual_offset( ) const {
2362   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2363   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2364   return _offset;               // Map everything else into self
2365 }
2366 
2367 //------------------------------xdual------------------------------------------
2368 // Dual: compute field-by-field dual
2369 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2370   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2371 };
2372 const Type *TypePtr::xdual() const {
2373   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2374 }
2375 
2376 //------------------------------xadd_offset------------------------------------
2377 int TypePtr::xadd_offset( intptr_t offset ) const {
2378   // Adding to 'TOP' offset?  Return 'TOP'!
2379   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2380   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2381   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2382   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2383   offset += (intptr_t)_offset;
2384   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2385 
2386   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2387   // It is possible to construct a negative offset during PhaseCCP
2388 
2389   return (int)offset;        // Sum valid offsets
2390 }
2391 
2392 //------------------------------add_offset-------------------------------------
2393 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2394   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2395 }
2396 
2397 //------------------------------eq---------------------------------------------
2398 // Structural equality check for Type representations
2399 bool TypePtr::eq( const Type *t ) const {
2400   const TypePtr *a = (const TypePtr*)t;
2401   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2402 }
2403 
2404 //------------------------------hash-------------------------------------------
2405 // Type-specific hashing function.
2406 int TypePtr::hash(void) const {
2407   return _ptr + _offset + hash_speculative() + _inline_depth;
2408 ;
2409 }
2410 
2411 /**
2412  * Return same type without a speculative part
2413  */
2414 const Type* TypePtr::remove_speculative() const {
2415   if (_speculative == NULL) {
2416     return this;
2417   }
2418   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2419   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2420 }
2421 
2422 /**
2423  * Return same type but drop speculative part if we know we won't use
2424  * it
2425  */
2426 const Type* TypePtr::cleanup_speculative() const {
2427   if (speculative() == NULL) {
2428     return this;
2429   }
2430   const Type* no_spec = remove_speculative();
2431   // If this is NULL_PTR then we don't need the speculative type
2432   // (with_inline_depth in case the current type inline depth is
2433   // InlineDepthTop)
2434   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2435     return no_spec;
2436   }
2437   if (above_centerline(speculative()->ptr())) {
2438     return no_spec;
2439   }
2440   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2441   // If the speculative may be null and is an inexact klass then it
2442   // doesn't help
2443   if (speculative()->maybe_null() && (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2444     return no_spec;
2445   }
2446   return this;
2447 }
2448 
2449 /**
2450  * dual of the speculative part of the type
2451  */
2452 const TypePtr* TypePtr::dual_speculative() const {
2453   if (_speculative == NULL) {
2454     return NULL;
2455   }
2456   return _speculative->dual()->is_ptr();
2457 }
2458 
2459 /**
2460  * meet of the speculative parts of 2 types
2461  *
2462  * @param other  type to meet with
2463  */
2464 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2465   bool this_has_spec = (_speculative != NULL);
2466   bool other_has_spec = (other->speculative() != NULL);
2467 
2468   if (!this_has_spec && !other_has_spec) {
2469     return NULL;
2470   }
2471 
2472   // If we are at a point where control flow meets and one branch has
2473   // a speculative type and the other has not, we meet the speculative
2474   // type of one branch with the actual type of the other. If the
2475   // actual type is exact and the speculative is as well, then the
2476   // result is a speculative type which is exact and we can continue
2477   // speculation further.
2478   const TypePtr* this_spec = _speculative;
2479   const TypePtr* other_spec = other->speculative();
2480 
2481   if (!this_has_spec) {
2482     this_spec = this;
2483   }
2484 
2485   if (!other_has_spec) {
2486     other_spec = other;
2487   }
2488 
2489   return this_spec->meet(other_spec)->is_ptr();
2490 }
2491 
2492 /**
2493  * dual of the inline depth for this type (used for speculation)
2494  */
2495 int TypePtr::dual_inline_depth() const {
2496   return -inline_depth();
2497 }
2498 
2499 /**
2500  * meet of 2 inline depths (used for speculation)
2501  *
2502  * @param depth  depth to meet with
2503  */
2504 int TypePtr::meet_inline_depth(int depth) const {
2505   return MAX2(inline_depth(), depth);
2506 }
2507 
2508 /**
2509  * Are the speculative parts of 2 types equal?
2510  *
2511  * @param other  type to compare this one to
2512  */
2513 bool TypePtr::eq_speculative(const TypePtr* other) const {
2514   if (_speculative == NULL || other->speculative() == NULL) {
2515     return _speculative == other->speculative();
2516   }
2517 
2518   if (_speculative->base() != other->speculative()->base()) {
2519     return false;
2520   }
2521 
2522   return _speculative->eq(other->speculative());
2523 }
2524 
2525 /**
2526  * Hash of the speculative part of the type
2527  */
2528 int TypePtr::hash_speculative() const {
2529   if (_speculative == NULL) {
2530     return 0;
2531   }
2532 
2533   return _speculative->hash();
2534 }
2535 
2536 /**
2537  * add offset to the speculative part of the type
2538  *
2539  * @param offset  offset to add
2540  */
2541 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2542   if (_speculative == NULL) {
2543     return NULL;
2544   }
2545   return _speculative->add_offset(offset)->is_ptr();
2546 }
2547 
2548 /**
2549  * return exact klass from the speculative type if there's one
2550  */
2551 ciKlass* TypePtr::speculative_type() const {
2552   if (_speculative != NULL && _speculative->isa_oopptr()) {
2553     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2554     if (speculative->klass_is_exact()) {
2555       return speculative->klass();
2556     }
2557   }
2558   return NULL;
2559 }
2560 
2561 /**
2562  * return true if speculative type may be null
2563  */
2564 bool TypePtr::speculative_maybe_null() const {
2565   if (_speculative != NULL) {
2566     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2567     return speculative->maybe_null();
2568   }
2569   return true;
2570 }
2571 
2572 /**
2573  * Same as TypePtr::speculative_type() but return the klass only if
2574  * the speculative tells us is not null
2575  */
2576 ciKlass* TypePtr::speculative_type_not_null() const {
2577   if (speculative_maybe_null()) {
2578     return NULL;
2579   }
2580   return speculative_type();
2581 }
2582 
2583 /**
2584  * Check whether new profiling would improve speculative type
2585  *
2586  * @param   exact_kls    class from profiling
2587  * @param   inline_depth inlining depth of profile point
2588  *
2589  * @return  true if type profile is valuable
2590  */
2591 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2592   // no profiling?
2593   if (exact_kls == NULL) {
2594     return false;
2595   }
2596   // no speculative type or non exact speculative type?
2597   if (speculative_type() == NULL) {
2598     return true;
2599   }
2600   // If the node already has an exact speculative type keep it,
2601   // unless it was provided by profiling that is at a deeper
2602   // inlining level. Profiling at a higher inlining depth is
2603   // expected to be less accurate.
2604   if (_speculative->inline_depth() == InlineDepthBottom) {
2605     return false;
2606   }
2607   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2608   return inline_depth < _speculative->inline_depth();
2609 }
2610 
2611 /**
2612  * Check whether new profiling would improve ptr (= tells us it is non
2613  * null)
2614  *
2615  * @param   maybe_null true if profiling tells the ptr may be null
2616  *
2617  * @return  true if ptr profile is valuable
2618  */
2619 bool TypePtr::would_improve_ptr(bool maybe_null) const {
2620   // profiling doesn't tell us anything useful
2621   if (maybe_null) {
2622     return false;
2623   }
2624   // We already know this is not be null
2625   if (!this->maybe_null()) {
2626     return false;
2627   }
2628   // We already know the speculative type cannot be null
2629   if (!speculative_maybe_null()) {
2630     return false;
2631   }
2632   return true;
2633 }
2634 
2635 //------------------------------dump2------------------------------------------
2636 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2637   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2638 };
2639 
2640 #ifndef PRODUCT
2641 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2642   if( _ptr == Null ) st->print("NULL");
2643   else st->print("%s *", ptr_msg[_ptr]);
2644   if( _offset == OffsetTop ) st->print("+top");
2645   else if( _offset == OffsetBot ) st->print("+bot");
2646   else if( _offset ) st->print("+%d", _offset);
2647   dump_inline_depth(st);
2648   dump_speculative(st);
2649 }
2650 
2651 /**
2652  *dump the speculative part of the type
2653  */
2654 void TypePtr::dump_speculative(outputStream *st) const {
2655   if (_speculative != NULL) {
2656     st->print(" (speculative=");
2657     _speculative->dump_on(st);
2658     st->print(")");
2659   }
2660 }
2661 
2662 /**
2663  *dump the inline depth of the type
2664  */
2665 void TypePtr::dump_inline_depth(outputStream *st) const {
2666   if (_inline_depth != InlineDepthBottom) {
2667     if (_inline_depth == InlineDepthTop) {
2668       st->print(" (inline_depth=InlineDepthTop)");
2669     } else {
2670       st->print(" (inline_depth=%d)", _inline_depth);
2671     }
2672   }
2673 }
2674 #endif
2675 
2676 //------------------------------singleton--------------------------------------
2677 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2678 // constants
2679 bool TypePtr::singleton(void) const {
2680   // TopPTR, Null, AnyNull, Constant are all singletons
2681   return (_offset != OffsetBot) && !below_centerline(_ptr);
2682 }
2683 
2684 bool TypePtr::empty(void) const {
2685   return (_offset == OffsetTop) || above_centerline(_ptr);
2686 }
2687 
2688 //=============================================================================
2689 // Convenience common pre-built types.
2690 const TypeRawPtr *TypeRawPtr::BOTTOM;
2691 const TypeRawPtr *TypeRawPtr::NOTNULL;
2692 
2693 //------------------------------make-------------------------------------------
2694 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2695   assert( ptr != Constant, "what is the constant?" );
2696   assert( ptr != Null, "Use TypePtr for NULL" );
2697   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2698 }
2699 
2700 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2701   assert( bits, "Use TypePtr for NULL" );
2702   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2703 }
2704 
2705 //------------------------------cast_to_ptr_type-------------------------------
2706 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2707   assert( ptr != Constant, "what is the constant?" );
2708   assert( ptr != Null, "Use TypePtr for NULL" );
2709   assert( _bits==0, "Why cast a constant address?");
2710   if( ptr == _ptr ) return this;
2711   return make(ptr);
2712 }
2713 
2714 //------------------------------get_con----------------------------------------
2715 intptr_t TypeRawPtr::get_con() const {
2716   assert( _ptr == Null || _ptr == Constant, "" );
2717   return (intptr_t)_bits;
2718 }
2719 
2720 //------------------------------meet-------------------------------------------
2721 // Compute the MEET of two types.  It returns a new Type object.
2722 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2723   // Perform a fast test for common case; meeting the same types together.
2724   if( this == t ) return this;  // Meeting same type-rep?
2725 
2726   // Current "this->_base" is RawPtr
2727   switch( t->base() ) {         // switch on original type
2728   case Bottom:                  // Ye Olde Default
2729     return t;
2730   case Top:
2731     return this;
2732   case AnyPtr:                  // Meeting to AnyPtrs
2733     break;
2734   case RawPtr: {                // might be top, bot, any/not or constant
2735     enum PTR tptr = t->is_ptr()->ptr();
2736     enum PTR ptr = meet_ptr( tptr );
2737     if( ptr == Constant ) {     // Cannot be equal constants, so...
2738       if( tptr == Constant && _ptr != Constant)  return t;
2739       if( _ptr == Constant && tptr != Constant)  return this;
2740       ptr = NotNull;            // Fall down in lattice
2741     }
2742     return make( ptr );
2743   }
2744 
2745   case OopPtr:
2746   case InstPtr:
2747   case AryPtr:
2748   case MetadataPtr:
2749   case KlassPtr:
2750     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2751   default:                      // All else is a mistake
2752     typerr(t);
2753   }
2754 
2755   // Found an AnyPtr type vs self-RawPtr type
2756   const TypePtr *tp = t->is_ptr();
2757   switch (tp->ptr()) {
2758   case TypePtr::TopPTR:  return this;
2759   case TypePtr::BotPTR:  return t;
2760   case TypePtr::Null:
2761     if( _ptr == TypePtr::TopPTR ) return t;
2762     return TypeRawPtr::BOTTOM;
2763   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
2764   case TypePtr::AnyNull:
2765     if( _ptr == TypePtr::Constant) return this;
2766     return make( meet_ptr(TypePtr::AnyNull) );
2767   default: ShouldNotReachHere();
2768   }
2769   return this;
2770 }
2771 
2772 //------------------------------xdual------------------------------------------
2773 // Dual: compute field-by-field dual
2774 const Type *TypeRawPtr::xdual() const {
2775   return new TypeRawPtr( dual_ptr(), _bits );
2776 }
2777 
2778 //------------------------------add_offset-------------------------------------
2779 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2780   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2781   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2782   if( offset == 0 ) return this; // No change
2783   switch (_ptr) {
2784   case TypePtr::TopPTR:
2785   case TypePtr::BotPTR:
2786   case TypePtr::NotNull:
2787     return this;
2788   case TypePtr::Null:
2789   case TypePtr::Constant: {
2790     address bits = _bits+offset;
2791     if ( bits == 0 ) return TypePtr::NULL_PTR;
2792     return make( bits );
2793   }
2794   default:  ShouldNotReachHere();
2795   }
2796   return NULL;                  // Lint noise
2797 }
2798 
2799 //------------------------------eq---------------------------------------------
2800 // Structural equality check for Type representations
2801 bool TypeRawPtr::eq( const Type *t ) const {
2802   const TypeRawPtr *a = (const TypeRawPtr*)t;
2803   return _bits == a->_bits && TypePtr::eq(t);
2804 }
2805 
2806 //------------------------------hash-------------------------------------------
2807 // Type-specific hashing function.
2808 int TypeRawPtr::hash(void) const {
2809   return (intptr_t)_bits + TypePtr::hash();
2810 }
2811 
2812 //------------------------------dump2------------------------------------------
2813 #ifndef PRODUCT
2814 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2815   if( _ptr == Constant )
2816     st->print(INTPTR_FORMAT, p2i(_bits));
2817   else
2818     st->print("rawptr:%s", ptr_msg[_ptr]);
2819 }
2820 #endif
2821 
2822 //=============================================================================
2823 // Convenience common pre-built type.
2824 const TypeOopPtr *TypeOopPtr::BOTTOM;
2825 
2826 //------------------------------TypeOopPtr-------------------------------------
2827 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
2828                        int instance_id, const TypePtr* speculative, int inline_depth)
2829   : TypePtr(t, ptr, offset, speculative, inline_depth),
2830     _const_oop(o), _klass(k),
2831     _klass_is_exact(xk),
2832     _is_ptr_to_narrowoop(false),
2833     _is_ptr_to_narrowklass(false),
2834     _is_ptr_to_boxed_value(false),
2835     _instance_id(instance_id) {
2836   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2837       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2838     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2839   }
2840 #ifdef _LP64
2841   if (_offset != 0) {
2842     if (_offset == oopDesc::klass_offset_in_bytes()) {
2843       _is_ptr_to_narrowklass = UseCompressedClassPointers;
2844     } else if (klass() == NULL) {
2845       // Array with unknown body type
2846       assert(this->isa_aryptr(), "only arrays without klass");
2847       _is_ptr_to_narrowoop = UseCompressedOops;
2848     } else if (this->isa_aryptr()) {
2849       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
2850                              _offset != arrayOopDesc::length_offset_in_bytes());
2851     } else if (klass()->is_instance_klass()) {
2852       ciInstanceKlass* ik = klass()->as_instance_klass();
2853       ciField* field = NULL;
2854       if (this->isa_klassptr()) {
2855         // Perm objects don't use compressed references
2856       } else if (_offset == OffsetBot || _offset == OffsetTop) {
2857         // unsafe access
2858         _is_ptr_to_narrowoop = UseCompressedOops;
2859       } else { // exclude unsafe ops
2860         assert(this->isa_instptr(), "must be an instance ptr.");
2861 
2862         if (klass() == ciEnv::current()->Class_klass() &&
2863             (_offset == java_lang_Class::klass_offset_in_bytes() ||
2864              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2865           // Special hidden fields from the Class.
2866           assert(this->isa_instptr(), "must be an instance ptr.");
2867           _is_ptr_to_narrowoop = false;
2868         } else if (klass() == ciEnv::current()->Class_klass() &&
2869                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
2870           // Static fields
2871           assert(o != NULL, "must be constant");
2872           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
2873           ciField* field = k->get_field_by_offset(_offset, true);
2874           assert(field != NULL, "missing field");
2875           BasicType basic_elem_type = field->layout_type();
2876           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2877                                                        basic_elem_type == T_ARRAY);
2878         } else {
2879           // Instance fields which contains a compressed oop references.
2880           field = ik->get_field_by_offset(_offset, false);
2881           if (field != NULL) {
2882             BasicType basic_elem_type = field->layout_type();
2883             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2884                                                          basic_elem_type == T_ARRAY);
2885           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
2886             // Compile::find_alias_type() cast exactness on all types to verify
2887             // that it does not affect alias type.
2888             _is_ptr_to_narrowoop = UseCompressedOops;
2889           } else {
2890             // Type for the copy start in LibraryCallKit::inline_native_clone().
2891             _is_ptr_to_narrowoop = UseCompressedOops;
2892           }
2893         }
2894       }
2895     }
2896   }
2897 #endif
2898 }
2899 
2900 //------------------------------make-------------------------------------------
2901 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
2902                                      const TypePtr* speculative, int inline_depth) {
2903   assert(ptr != Constant, "no constant generic pointers");
2904   ciKlass*  k = Compile::current()->env()->Object_klass();
2905   bool      xk = false;
2906   ciObject* o = NULL;
2907   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
2908 }
2909 
2910 
2911 //------------------------------cast_to_ptr_type-------------------------------
2912 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
2913   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
2914   if( ptr == _ptr ) return this;
2915   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
2916 }
2917 
2918 //-----------------------------cast_to_instance_id----------------------------
2919 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
2920   // There are no instances of a general oop.
2921   // Return self unchanged.
2922   return this;
2923 }
2924 
2925 //-----------------------------cast_to_exactness-------------------------------
2926 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
2927   // There is no such thing as an exact general oop.
2928   // Return self unchanged.
2929   return this;
2930 }
2931 
2932 
2933 //------------------------------as_klass_type----------------------------------
2934 // Return the klass type corresponding to this instance or array type.
2935 // It is the type that is loaded from an object of this type.
2936 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
2937   ciKlass* k = klass();
2938   bool    xk = klass_is_exact();
2939   if (k == NULL)
2940     return TypeKlassPtr::OBJECT;
2941   else
2942     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
2943 }
2944 
2945 //------------------------------meet-------------------------------------------
2946 // Compute the MEET of two types.  It returns a new Type object.
2947 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
2948   // Perform a fast test for common case; meeting the same types together.
2949   if( this == t ) return this;  // Meeting same type-rep?
2950 
2951   // Current "this->_base" is OopPtr
2952   switch (t->base()) {          // switch on original type
2953 
2954   case Int:                     // Mixing ints & oops happens when javac
2955   case Long:                    // reuses local variables
2956   case FloatTop:
2957   case FloatCon:
2958   case FloatBot:
2959   case DoubleTop:
2960   case DoubleCon:
2961   case DoubleBot:
2962   case NarrowOop:
2963   case NarrowKlass:
2964   case Bottom:                  // Ye Olde Default
2965     return Type::BOTTOM;
2966   case Top:
2967     return this;
2968 
2969   default:                      // All else is a mistake
2970     typerr(t);
2971 
2972   case RawPtr:
2973   case MetadataPtr:
2974   case KlassPtr:
2975     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2976 
2977   case AnyPtr: {
2978     // Found an AnyPtr type vs self-OopPtr type
2979     const TypePtr *tp = t->is_ptr();
2980     int offset = meet_offset(tp->offset());
2981     PTR ptr = meet_ptr(tp->ptr());
2982     const TypePtr* speculative = xmeet_speculative(tp);
2983     int depth = meet_inline_depth(tp->inline_depth());
2984     switch (tp->ptr()) {
2985     case Null:
2986       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
2987       // else fall through:
2988     case TopPTR:
2989     case AnyNull: {
2990       int instance_id = meet_instance_id(InstanceTop);
2991       return make(ptr, offset, instance_id, speculative, depth);
2992     }
2993     case BotPTR:
2994     case NotNull:
2995       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
2996     default: typerr(t);
2997     }
2998   }
2999 
3000   case OopPtr: {                 // Meeting to other OopPtrs
3001     const TypeOopPtr *tp = t->is_oopptr();
3002     int instance_id = meet_instance_id(tp->instance_id());
3003     const TypePtr* speculative = xmeet_speculative(tp);
3004     int depth = meet_inline_depth(tp->inline_depth());
3005     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3006   }
3007 
3008   case InstPtr:                  // For these, flip the call around to cut down
3009   case AryPtr:
3010     return t->xmeet(this);      // Call in reverse direction
3011 
3012   } // End of switch
3013   return this;                  // Return the double constant
3014 }
3015 
3016 
3017 //------------------------------xdual------------------------------------------
3018 // Dual of a pure heap pointer.  No relevant klass or oop information.
3019 const Type *TypeOopPtr::xdual() const {
3020   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3021   assert(const_oop() == NULL,             "no constants here");
3022   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3023 }
3024 
3025 //--------------------------make_from_klass_common-----------------------------
3026 // Computes the element-type given a klass.
3027 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3028   if (klass->is_instance_klass()) {
3029     Compile* C = Compile::current();
3030     Dependencies* deps = C->dependencies();
3031     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3032     // Element is an instance
3033     bool klass_is_exact = false;
3034     if (klass->is_loaded()) {
3035       // Try to set klass_is_exact.
3036       ciInstanceKlass* ik = klass->as_instance_klass();
3037       klass_is_exact = ik->is_final();
3038       if (!klass_is_exact && klass_change
3039           && deps != NULL && UseUniqueSubclasses) {
3040         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3041         if (sub != NULL) {
3042           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3043           klass = ik = sub;
3044           klass_is_exact = sub->is_final();
3045         }
3046       }
3047       if (!klass_is_exact && try_for_exact
3048           && deps != NULL && UseExactTypes) {
3049         if (!ik->is_interface() && !ik->has_subklass()) {
3050           // Add a dependence; if concrete subclass added we need to recompile
3051           deps->assert_leaf_type(ik);
3052           klass_is_exact = true;
3053         }
3054       }
3055     }
3056     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
3057   } else if (klass->is_obj_array_klass()) {
3058     // Element is an object array. Recursively call ourself.
3059     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
3060     bool xk = etype->klass_is_exact();
3061     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3062     // We used to pass NotNull in here, asserting that the sub-arrays
3063     // are all not-null.  This is not true in generally, as code can
3064     // slam NULLs down in the subarrays.
3065     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
3066     return arr;
3067   } else if (klass->is_type_array_klass()) {
3068     // Element is an typeArray
3069     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3070     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3071     // We used to pass NotNull in here, asserting that the array pointer
3072     // is not-null. That was not true in general.
3073     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3074     return arr;
3075   } else {
3076     ShouldNotReachHere();
3077     return NULL;
3078   }
3079 }
3080 
3081 //------------------------------make_from_constant-----------------------------
3082 // Make a java pointer from an oop constant
3083 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3084   assert(!o->is_null_object(), "null object not yet handled here.");
3085   ciKlass* klass = o->klass();
3086   if (klass->is_instance_klass()) {
3087     // Element is an instance
3088     if (require_constant) {
3089       if (!o->can_be_constant())  return NULL;
3090     } else if (!o->should_be_constant()) {
3091       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
3092     }
3093     return TypeInstPtr::make(o);
3094   } else if (klass->is_obj_array_klass()) {
3095     // Element is an object array. Recursively call ourself.
3096     const TypeOopPtr *etype =
3097       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
3098     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3099     // We used to pass NotNull in here, asserting that the sub-arrays
3100     // are all not-null.  This is not true in generally, as code can
3101     // slam NULLs down in the subarrays.
3102     if (require_constant) {
3103       if (!o->can_be_constant())  return NULL;
3104     } else if (!o->should_be_constant()) {
3105       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3106     }
3107     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3108     return arr;
3109   } else if (klass->is_type_array_klass()) {
3110     // Element is an typeArray
3111     const Type* etype =
3112       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3113     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3114     // We used to pass NotNull in here, asserting that the array pointer
3115     // is not-null. That was not true in general.
3116     if (require_constant) {
3117       if (!o->can_be_constant())  return NULL;
3118     } else if (!o->should_be_constant()) {
3119       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3120     }
3121     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3122     return arr;
3123   }
3124 
3125   fatal("unhandled object type");
3126   return NULL;
3127 }
3128 
3129 //------------------------------get_con----------------------------------------
3130 intptr_t TypeOopPtr::get_con() const {
3131   assert( _ptr == Null || _ptr == Constant, "" );
3132   assert( _offset >= 0, "" );
3133 
3134   if (_offset != 0) {
3135     // After being ported to the compiler interface, the compiler no longer
3136     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3137     // to a handle at compile time.  This handle is embedded in the generated
3138     // code and dereferenced at the time the nmethod is made.  Until that time,
3139     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3140     // have access to the addresses!).  This does not seem to currently happen,
3141     // but this assertion here is to help prevent its occurence.
3142     tty->print_cr("Found oop constant with non-zero offset");
3143     ShouldNotReachHere();
3144   }
3145 
3146   return (intptr_t)const_oop()->constant_encoding();
3147 }
3148 
3149 
3150 //-----------------------------filter------------------------------------------
3151 // Do not allow interface-vs.-noninterface joins to collapse to top.
3152 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3153 
3154   const Type* ft = join_helper(kills, include_speculative);
3155   const TypeInstPtr* ftip = ft->isa_instptr();
3156   const TypeInstPtr* ktip = kills->isa_instptr();
3157 
3158   if (ft->empty()) {
3159     // Check for evil case of 'this' being a class and 'kills' expecting an
3160     // interface.  This can happen because the bytecodes do not contain
3161     // enough type info to distinguish a Java-level interface variable
3162     // from a Java-level object variable.  If we meet 2 classes which
3163     // both implement interface I, but their meet is at 'j/l/O' which
3164     // doesn't implement I, we have no way to tell if the result should
3165     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3166     // into a Phi which "knows" it's an Interface type we'll have to
3167     // uplift the type.
3168     if (!empty()) {
3169       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3170         return kills;           // Uplift to interface
3171       }
3172       // Also check for evil cases of 'this' being a class array
3173       // and 'kills' expecting an array of interfaces.
3174       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
3175       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3176         return kills;           // Uplift to array of interface
3177       }
3178     }
3179 
3180     return Type::TOP;           // Canonical empty value
3181   }
3182 
3183   // If we have an interface-typed Phi or cast and we narrow to a class type,
3184   // the join should report back the class.  However, if we have a J/L/Object
3185   // class-typed Phi and an interface flows in, it's possible that the meet &
3186   // join report an interface back out.  This isn't possible but happens
3187   // because the type system doesn't interact well with interfaces.
3188   if (ftip != NULL && ktip != NULL &&
3189       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3190       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3191     assert(!ftip->klass_is_exact(), "interface could not be exact");
3192     return ktip->cast_to_ptr_type(ftip->ptr());
3193   }
3194 
3195   return ft;
3196 }
3197 
3198 //------------------------------eq---------------------------------------------
3199 // Structural equality check for Type representations
3200 bool TypeOopPtr::eq( const Type *t ) const {
3201   const TypeOopPtr *a = (const TypeOopPtr*)t;
3202   if (_klass_is_exact != a->_klass_is_exact ||
3203       _instance_id != a->_instance_id)  return false;
3204   ciObject* one = const_oop();
3205   ciObject* two = a->const_oop();
3206   if (one == NULL || two == NULL) {
3207     return (one == two) && TypePtr::eq(t);
3208   } else {
3209     return one->equals(two) && TypePtr::eq(t);
3210   }
3211 }
3212 
3213 //------------------------------hash-------------------------------------------
3214 // Type-specific hashing function.
3215 int TypeOopPtr::hash(void) const {
3216   return
3217     (const_oop() ? const_oop()->hash() : 0) +
3218     _klass_is_exact +
3219     _instance_id +
3220     TypePtr::hash();
3221 }
3222 
3223 //------------------------------dump2------------------------------------------
3224 #ifndef PRODUCT
3225 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3226   st->print("oopptr:%s", ptr_msg[_ptr]);
3227   if( _klass_is_exact ) st->print(":exact");
3228   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3229   switch( _offset ) {
3230   case OffsetTop: st->print("+top"); break;
3231   case OffsetBot: st->print("+any"); break;
3232   case         0: break;
3233   default:        st->print("+%d",_offset); break;
3234   }
3235   if (_instance_id == InstanceTop)
3236     st->print(",iid=top");
3237   else if (_instance_id != InstanceBot)
3238     st->print(",iid=%d",_instance_id);
3239 
3240   dump_inline_depth(st);
3241   dump_speculative(st);
3242 }
3243 #endif
3244 
3245 //------------------------------singleton--------------------------------------
3246 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3247 // constants
3248 bool TypeOopPtr::singleton(void) const {
3249   // detune optimizer to not generate constant oop + constant offset as a constant!
3250   // TopPTR, Null, AnyNull, Constant are all singletons
3251   return (_offset == 0) && !below_centerline(_ptr);
3252 }
3253 
3254 //------------------------------add_offset-------------------------------------
3255 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3256   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3257 }
3258 
3259 /**
3260  * Return same type without a speculative part
3261  */
3262 const Type* TypeOopPtr::remove_speculative() const {
3263   if (_speculative == NULL) {
3264     return this;
3265   }
3266   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3267   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3268 }
3269 
3270 /**
3271  * Return same type but drop speculative part if we know we won't use
3272  * it
3273  */
3274 const Type* TypeOopPtr::cleanup_speculative() const {
3275   // If the klass is exact and the ptr is not null then there's
3276   // nothing that the speculative type can help us with
3277   if (klass_is_exact() && !maybe_null()) {
3278     return remove_speculative();
3279   }
3280   return TypePtr::cleanup_speculative();
3281 }
3282 
3283 /**
3284  * Return same type but with a different inline depth (used for speculation)
3285  *
3286  * @param depth  depth to meet with
3287  */
3288 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3289   if (!UseInlineDepthForSpeculativeTypes) {
3290     return this;
3291   }
3292   return make(_ptr, _offset, _instance_id, _speculative, depth);
3293 }
3294 
3295 //------------------------------meet_instance_id--------------------------------
3296 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3297   // Either is 'TOP' instance?  Return the other instance!
3298   if( _instance_id == InstanceTop ) return  instance_id;
3299   if(  instance_id == InstanceTop ) return _instance_id;
3300   // If either is different, return 'BOTTOM' instance
3301   if( _instance_id != instance_id ) return InstanceBot;
3302   return _instance_id;
3303 }
3304 
3305 //------------------------------dual_instance_id--------------------------------
3306 int TypeOopPtr::dual_instance_id( ) const {
3307   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3308   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3309   return _instance_id;              // Map everything else into self
3310 }
3311 
3312 /**
3313  * Check whether new profiling would improve speculative type
3314  *
3315  * @param   exact_kls    class from profiling
3316  * @param   inline_depth inlining depth of profile point
3317  *
3318  * @return  true if type profile is valuable
3319  */
3320 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3321   // no way to improve an already exact type
3322   if (klass_is_exact()) {
3323     return false;
3324   }
3325   return TypePtr::would_improve_type(exact_kls, inline_depth);
3326 }
3327 
3328 //=============================================================================
3329 // Convenience common pre-built types.
3330 const TypeInstPtr *TypeInstPtr::NOTNULL;
3331 const TypeInstPtr *TypeInstPtr::BOTTOM;
3332 const TypeInstPtr *TypeInstPtr::MIRROR;
3333 const TypeInstPtr *TypeInstPtr::MARK;
3334 const TypeInstPtr *TypeInstPtr::KLASS;
3335 
3336 //------------------------------TypeInstPtr-------------------------------------
3337 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off,
3338                          int instance_id, const TypePtr* speculative, int inline_depth)
3339   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth),
3340     _name(k->name()) {
3341    assert(k != NULL &&
3342           (k->is_loaded() || o == NULL),
3343           "cannot have constants with non-loaded klass");
3344 };
3345 
3346 //------------------------------make-------------------------------------------
3347 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3348                                      ciKlass* k,
3349                                      bool xk,
3350                                      ciObject* o,
3351                                      int offset,
3352                                      int instance_id,
3353                                      const TypePtr* speculative,
3354                                      int inline_depth) {
3355   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3356   // Either const_oop() is NULL or else ptr is Constant
3357   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3358           "constant pointers must have a value supplied" );
3359   // Ptr is never Null
3360   assert( ptr != Null, "NULL pointers are not typed" );
3361 
3362   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3363   if (!UseExactTypes)  xk = false;
3364   if (ptr == Constant) {
3365     // Note:  This case includes meta-object constants, such as methods.
3366     xk = true;
3367   } else if (k->is_loaded()) {
3368     ciInstanceKlass* ik = k->as_instance_klass();
3369     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3370     if (xk && ik->is_interface())  xk = false;  // no exact interface
3371   }
3372 
3373   // Now hash this baby
3374   TypeInstPtr *result =
3375     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3376 
3377   return result;
3378 }
3379 
3380 /**
3381  *  Create constant type for a constant boxed value
3382  */
3383 const Type* TypeInstPtr::get_const_boxed_value() const {
3384   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3385   assert((const_oop() != NULL), "should be called only for constant object");
3386   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3387   BasicType bt = constant.basic_type();
3388   switch (bt) {
3389     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3390     case T_INT:      return TypeInt::make(constant.as_int());
3391     case T_CHAR:     return TypeInt::make(constant.as_char());
3392     case T_BYTE:     return TypeInt::make(constant.as_byte());
3393     case T_SHORT:    return TypeInt::make(constant.as_short());
3394     case T_FLOAT:    return TypeF::make(constant.as_float());
3395     case T_DOUBLE:   return TypeD::make(constant.as_double());
3396     case T_LONG:     return TypeLong::make(constant.as_long());
3397     default:         break;
3398   }
3399   fatal("Invalid boxed value type '%s'", type2name(bt));
3400   return NULL;
3401 }
3402 
3403 //------------------------------cast_to_ptr_type-------------------------------
3404 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3405   if( ptr == _ptr ) return this;
3406   // Reconstruct _sig info here since not a problem with later lazy
3407   // construction, _sig will show up on demand.
3408   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3409 }
3410 
3411 
3412 //-----------------------------cast_to_exactness-------------------------------
3413 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3414   if( klass_is_exact == _klass_is_exact ) return this;
3415   if (!UseExactTypes)  return this;
3416   if (!_klass->is_loaded())  return this;
3417   ciInstanceKlass* ik = _klass->as_instance_klass();
3418   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3419   if( ik->is_interface() )              return this;  // cannot set xk
3420   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3421 }
3422 
3423 //-----------------------------cast_to_instance_id----------------------------
3424 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3425   if( instance_id == _instance_id ) return this;
3426   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3427 }
3428 
3429 //------------------------------xmeet_unloaded---------------------------------
3430 // Compute the MEET of two InstPtrs when at least one is unloaded.
3431 // Assume classes are different since called after check for same name/class-loader
3432 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3433     int off = meet_offset(tinst->offset());
3434     PTR ptr = meet_ptr(tinst->ptr());
3435     int instance_id = meet_instance_id(tinst->instance_id());
3436     const TypePtr* speculative = xmeet_speculative(tinst);
3437     int depth = meet_inline_depth(tinst->inline_depth());
3438 
3439     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3440     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3441     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3442       //
3443       // Meet unloaded class with java/lang/Object
3444       //
3445       // Meet
3446       //          |                     Unloaded Class
3447       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3448       //  ===================================================================
3449       //   TOP    | ..........................Unloaded......................|
3450       //  AnyNull |  U-AN    |................Unloaded......................|
3451       // Constant | ... O-NN .................................. |   O-BOT   |
3452       //  NotNull | ... O-NN .................................. |   O-BOT   |
3453       //  BOTTOM  | ........................Object-BOTTOM ..................|
3454       //
3455       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3456       //
3457       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3458       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3459       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3460       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3461         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3462         else                                      { return TypeInstPtr::NOTNULL; }
3463       }
3464       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3465 
3466       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3467     }
3468 
3469     // Both are unloaded, not the same class, not Object
3470     // Or meet unloaded with a different loaded class, not java/lang/Object
3471     if( ptr != TypePtr::BotPTR ) {
3472       return TypeInstPtr::NOTNULL;
3473     }
3474     return TypeInstPtr::BOTTOM;
3475 }
3476 
3477 
3478 //------------------------------meet-------------------------------------------
3479 // Compute the MEET of two types.  It returns a new Type object.
3480 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3481   // Perform a fast test for common case; meeting the same types together.
3482   if( this == t ) return this;  // Meeting same type-rep?
3483 
3484   // Current "this->_base" is Pointer
3485   switch (t->base()) {          // switch on original type
3486 
3487   case Int:                     // Mixing ints & oops happens when javac
3488   case Long:                    // reuses local variables
3489   case FloatTop:
3490   case FloatCon:
3491   case FloatBot:
3492   case DoubleTop:
3493   case DoubleCon:
3494   case DoubleBot:
3495   case NarrowOop:
3496   case NarrowKlass:
3497   case Bottom:                  // Ye Olde Default
3498     return Type::BOTTOM;
3499   case Top:
3500     return this;
3501 
3502   default:                      // All else is a mistake
3503     typerr(t);
3504 
3505   case MetadataPtr:
3506   case KlassPtr:
3507   case RawPtr: return TypePtr::BOTTOM;
3508 
3509   case AryPtr: {                // All arrays inherit from Object class
3510     const TypeAryPtr *tp = t->is_aryptr();
3511     int offset = meet_offset(tp->offset());
3512     PTR ptr = meet_ptr(tp->ptr());
3513     int instance_id = meet_instance_id(tp->instance_id());
3514     const TypePtr* speculative = xmeet_speculative(tp);
3515     int depth = meet_inline_depth(tp->inline_depth());
3516     switch (ptr) {
3517     case TopPTR:
3518     case AnyNull:                // Fall 'down' to dual of object klass
3519       // For instances when a subclass meets a superclass we fall
3520       // below the centerline when the superclass is exact. We need to
3521       // do the same here.
3522       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3523         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3524       } else {
3525         // cannot subclass, so the meet has to fall badly below the centerline
3526         ptr = NotNull;
3527         instance_id = InstanceBot;
3528         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3529       }
3530     case Constant:
3531     case NotNull:
3532     case BotPTR:                // Fall down to object klass
3533       // LCA is object_klass, but if we subclass from the top we can do better
3534       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3535         // If 'this' (InstPtr) is above the centerline and it is Object class
3536         // then we can subclass in the Java class hierarchy.
3537         // For instances when a subclass meets a superclass we fall
3538         // below the centerline when the superclass is exact. We need
3539         // to do the same here.
3540         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3541           // that is, tp's array type is a subtype of my klass
3542           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3543                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3544         }
3545       }
3546       // The other case cannot happen, since I cannot be a subtype of an array.
3547       // The meet falls down to Object class below centerline.
3548       if( ptr == Constant )
3549          ptr = NotNull;
3550       instance_id = InstanceBot;
3551       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3552     default: typerr(t);
3553     }
3554   }
3555 
3556   case OopPtr: {                // Meeting to OopPtrs
3557     // Found a OopPtr type vs self-InstPtr type
3558     const TypeOopPtr *tp = t->is_oopptr();
3559     int offset = meet_offset(tp->offset());
3560     PTR ptr = meet_ptr(tp->ptr());
3561     switch (tp->ptr()) {
3562     case TopPTR:
3563     case AnyNull: {
3564       int instance_id = meet_instance_id(InstanceTop);
3565       const TypePtr* speculative = xmeet_speculative(tp);
3566       int depth = meet_inline_depth(tp->inline_depth());
3567       return make(ptr, klass(), klass_is_exact(),
3568                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3569     }
3570     case NotNull:
3571     case BotPTR: {
3572       int instance_id = meet_instance_id(tp->instance_id());
3573       const TypePtr* speculative = xmeet_speculative(tp);
3574       int depth = meet_inline_depth(tp->inline_depth());
3575       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3576     }
3577     default: typerr(t);
3578     }
3579   }
3580 
3581   case AnyPtr: {                // Meeting to AnyPtrs
3582     // Found an AnyPtr type vs self-InstPtr type
3583     const TypePtr *tp = t->is_ptr();
3584     int offset = meet_offset(tp->offset());
3585     PTR ptr = meet_ptr(tp->ptr());
3586     int instance_id = meet_instance_id(InstanceTop);
3587     const TypePtr* speculative = xmeet_speculative(tp);
3588     int depth = meet_inline_depth(tp->inline_depth());
3589     switch (tp->ptr()) {
3590     case Null:
3591       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3592       // else fall through to AnyNull
3593     case TopPTR:
3594     case AnyNull: {
3595       return make(ptr, klass(), klass_is_exact(),
3596                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3597     }
3598     case NotNull:
3599     case BotPTR:
3600       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3601     default: typerr(t);
3602     }
3603   }
3604 
3605   /*
3606                  A-top         }
3607                /   |   \       }  Tops
3608            B-top A-any C-top   }
3609               | /  |  \ |      }  Any-nulls
3610            B-any   |   C-any   }
3611               |    |    |
3612            B-con A-con C-con   } constants; not comparable across classes
3613               |    |    |
3614            B-not   |   C-not   }
3615               | \  |  / |      }  not-nulls
3616            B-bot A-not C-bot   }
3617                \   |   /       }  Bottoms
3618                  A-bot         }
3619   */
3620 
3621   case InstPtr: {                // Meeting 2 Oops?
3622     // Found an InstPtr sub-type vs self-InstPtr type
3623     const TypeInstPtr *tinst = t->is_instptr();
3624     int off = meet_offset( tinst->offset() );
3625     PTR ptr = meet_ptr( tinst->ptr() );
3626     int instance_id = meet_instance_id(tinst->instance_id());
3627     const TypePtr* speculative = xmeet_speculative(tinst);
3628     int depth = meet_inline_depth(tinst->inline_depth());
3629 
3630     // Check for easy case; klasses are equal (and perhaps not loaded!)
3631     // If we have constants, then we created oops so classes are loaded
3632     // and we can handle the constants further down.  This case handles
3633     // both-not-loaded or both-loaded classes
3634     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3635       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3636     }
3637 
3638     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3639     ciKlass* tinst_klass = tinst->klass();
3640     ciKlass* this_klass  = this->klass();
3641     bool tinst_xk = tinst->klass_is_exact();
3642     bool this_xk  = this->klass_is_exact();
3643     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3644       // One of these classes has not been loaded
3645       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3646 #ifndef PRODUCT
3647       if( PrintOpto && Verbose ) {
3648         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3649         tty->print("  this == "); this->dump(); tty->cr();
3650         tty->print(" tinst == "); tinst->dump(); tty->cr();
3651       }
3652 #endif
3653       return unloaded_meet;
3654     }
3655 
3656     // Handle mixing oops and interfaces first.
3657     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3658                                         tinst_klass == ciEnv::current()->Object_klass())) {
3659       ciKlass *tmp = tinst_klass; // Swap interface around
3660       tinst_klass = this_klass;
3661       this_klass = tmp;
3662       bool tmp2 = tinst_xk;
3663       tinst_xk = this_xk;
3664       this_xk = tmp2;
3665     }
3666     if (tinst_klass->is_interface() &&
3667         !(this_klass->is_interface() ||
3668           // Treat java/lang/Object as an honorary interface,
3669           // because we need a bottom for the interface hierarchy.
3670           this_klass == ciEnv::current()->Object_klass())) {
3671       // Oop meets interface!
3672 
3673       // See if the oop subtypes (implements) interface.
3674       ciKlass *k;
3675       bool xk;
3676       if( this_klass->is_subtype_of( tinst_klass ) ) {
3677         // Oop indeed subtypes.  Now keep oop or interface depending
3678         // on whether we are both above the centerline or either is
3679         // below the centerline.  If we are on the centerline
3680         // (e.g., Constant vs. AnyNull interface), use the constant.
3681         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3682         // If we are keeping this_klass, keep its exactness too.
3683         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3684       } else {                  // Does not implement, fall to Object
3685         // Oop does not implement interface, so mixing falls to Object
3686         // just like the verifier does (if both are above the
3687         // centerline fall to interface)
3688         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3689         xk = above_centerline(ptr) ? tinst_xk : false;
3690         // Watch out for Constant vs. AnyNull interface.
3691         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3692         instance_id = InstanceBot;
3693       }
3694       ciObject* o = NULL;  // the Constant value, if any
3695       if (ptr == Constant) {
3696         // Find out which constant.
3697         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3698       }
3699       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
3700     }
3701 
3702     // Either oop vs oop or interface vs interface or interface vs Object
3703 
3704     // !!! Here's how the symmetry requirement breaks down into invariants:
3705     // If we split one up & one down AND they subtype, take the down man.
3706     // If we split one up & one down AND they do NOT subtype, "fall hard".
3707     // If both are up and they subtype, take the subtype class.
3708     // If both are up and they do NOT subtype, "fall hard".
3709     // If both are down and they subtype, take the supertype class.
3710     // If both are down and they do NOT subtype, "fall hard".
3711     // Constants treated as down.
3712 
3713     // Now, reorder the above list; observe that both-down+subtype is also
3714     // "fall hard"; "fall hard" becomes the default case:
3715     // If we split one up & one down AND they subtype, take the down man.
3716     // If both are up and they subtype, take the subtype class.
3717 
3718     // If both are down and they subtype, "fall hard".
3719     // If both are down and they do NOT subtype, "fall hard".
3720     // If both are up and they do NOT subtype, "fall hard".
3721     // If we split one up & one down AND they do NOT subtype, "fall hard".
3722 
3723     // If a proper subtype is exact, and we return it, we return it exactly.
3724     // If a proper supertype is exact, there can be no subtyping relationship!
3725     // If both types are equal to the subtype, exactness is and-ed below the
3726     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3727 
3728     // Check for subtyping:
3729     ciKlass *subtype = NULL;
3730     bool subtype_exact = false;
3731     if( tinst_klass->equals(this_klass) ) {
3732       subtype = this_klass;
3733       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3734     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3735       subtype = this_klass;     // Pick subtyping class
3736       subtype_exact = this_xk;
3737     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3738       subtype = tinst_klass;    // Pick subtyping class
3739       subtype_exact = tinst_xk;
3740     }
3741 
3742     if( subtype ) {
3743       if( above_centerline(ptr) ) { // both are up?
3744         this_klass = tinst_klass = subtype;
3745         this_xk = tinst_xk = subtype_exact;
3746       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3747         this_klass = tinst_klass; // tinst is down; keep down man
3748         this_xk = tinst_xk;
3749       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3750         tinst_klass = this_klass; // this is down; keep down man
3751         tinst_xk = this_xk;
3752       } else {
3753         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3754       }
3755     }
3756 
3757     // Check for classes now being equal
3758     if (tinst_klass->equals(this_klass)) {
3759       // If the klasses are equal, the constants may still differ.  Fall to
3760       // NotNull if they do (neither constant is NULL; that is a special case
3761       // handled elsewhere).
3762       ciObject* o = NULL;             // Assume not constant when done
3763       ciObject* this_oop  = const_oop();
3764       ciObject* tinst_oop = tinst->const_oop();
3765       if( ptr == Constant ) {
3766         if (this_oop != NULL && tinst_oop != NULL &&
3767             this_oop->equals(tinst_oop) )
3768           o = this_oop;
3769         else if (above_centerline(this ->_ptr))
3770           o = tinst_oop;
3771         else if (above_centerline(tinst ->_ptr))
3772           o = this_oop;
3773         else
3774           ptr = NotNull;
3775       }
3776       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
3777     } // Else classes are not equal
3778 
3779     // Since klasses are different, we require a LCA in the Java
3780     // class hierarchy - which means we have to fall to at least NotNull.
3781     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3782       ptr = NotNull;
3783 
3784     instance_id = InstanceBot;
3785 
3786     // Now we find the LCA of Java classes
3787     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3788     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
3789   } // End of case InstPtr
3790 
3791   } // End of switch
3792   return this;                  // Return the double constant
3793 }
3794 
3795 
3796 //------------------------java_mirror_type--------------------------------------
3797 ciType* TypeInstPtr::java_mirror_type() const {
3798   // must be a singleton type
3799   if( const_oop() == NULL )  return NULL;
3800 
3801   // must be of type java.lang.Class
3802   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3803 
3804   return const_oop()->as_instance()->java_mirror_type();
3805 }
3806 
3807 
3808 //------------------------------xdual------------------------------------------
3809 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3810 // inheritance mechanism.
3811 const Type *TypeInstPtr::xdual() const {
3812   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3813 }
3814 
3815 //------------------------------eq---------------------------------------------
3816 // Structural equality check for Type representations
3817 bool TypeInstPtr::eq( const Type *t ) const {
3818   const TypeInstPtr *p = t->is_instptr();
3819   return
3820     klass()->equals(p->klass()) &&
3821     TypeOopPtr::eq(p);          // Check sub-type stuff
3822 }
3823 
3824 //------------------------------hash-------------------------------------------
3825 // Type-specific hashing function.
3826 int TypeInstPtr::hash(void) const {
3827   int hash = klass()->hash() + TypeOopPtr::hash();
3828   return hash;
3829 }
3830 
3831 //------------------------------dump2------------------------------------------
3832 // Dump oop Type
3833 #ifndef PRODUCT
3834 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3835   // Print the name of the klass.
3836   klass()->print_name_on(st);
3837 
3838   switch( _ptr ) {
3839   case Constant:
3840     // TO DO: Make CI print the hex address of the underlying oop.
3841     if (WizardMode || Verbose) {
3842       const_oop()->print_oop(st);
3843     }
3844   case BotPTR:
3845     if (!WizardMode && !Verbose) {
3846       if( _klass_is_exact ) st->print(":exact");
3847       break;
3848     }
3849   case TopPTR:
3850   case AnyNull:
3851   case NotNull:
3852     st->print(":%s", ptr_msg[_ptr]);
3853     if( _klass_is_exact ) st->print(":exact");
3854     break;
3855   }
3856 
3857   if( _offset ) {               // Dump offset, if any
3858     if( _offset == OffsetBot )      st->print("+any");
3859     else if( _offset == OffsetTop ) st->print("+unknown");
3860     else st->print("+%d", _offset);
3861   }
3862 
3863   st->print(" *");
3864   if (_instance_id == InstanceTop)
3865     st->print(",iid=top");
3866   else if (_instance_id != InstanceBot)
3867     st->print(",iid=%d",_instance_id);
3868 
3869   dump_inline_depth(st);
3870   dump_speculative(st);
3871 }
3872 #endif
3873 
3874 //------------------------------add_offset-------------------------------------
3875 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
3876   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
3877               _instance_id, add_offset_speculative(offset), _inline_depth);
3878 }
3879 
3880 const Type *TypeInstPtr::remove_speculative() const {
3881   if (_speculative == NULL) {
3882     return this;
3883   }
3884   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3885   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
3886               _instance_id, NULL, _inline_depth);
3887 }
3888 
3889 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
3890   if (!UseInlineDepthForSpeculativeTypes) {
3891     return this;
3892   }
3893   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
3894 }
3895 
3896 //=============================================================================
3897 // Convenience common pre-built types.
3898 const TypeAryPtr *TypeAryPtr::RANGE;
3899 const TypeAryPtr *TypeAryPtr::OOPS;
3900 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
3901 const TypeAryPtr *TypeAryPtr::BYTES;
3902 const TypeAryPtr *TypeAryPtr::SHORTS;
3903 const TypeAryPtr *TypeAryPtr::CHARS;
3904 const TypeAryPtr *TypeAryPtr::INTS;
3905 const TypeAryPtr *TypeAryPtr::LONGS;
3906 const TypeAryPtr *TypeAryPtr::FLOATS;
3907 const TypeAryPtr *TypeAryPtr::DOUBLES;
3908 
3909 //------------------------------make-------------------------------------------
3910 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
3911                                    int instance_id, const TypePtr* speculative, int inline_depth) {
3912   assert(!(k == NULL && ary->_elem->isa_int()),
3913          "integral arrays must be pre-equipped with a class");
3914   if (!xk)  xk = ary->ary_must_be_exact();
3915   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3916   if (!UseExactTypes)  xk = (ptr == Constant);
3917   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
3918 }
3919 
3920 //------------------------------make-------------------------------------------
3921 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
3922                                    int instance_id, const TypePtr* speculative, int inline_depth,
3923                                    bool is_autobox_cache) {
3924   assert(!(k == NULL && ary->_elem->isa_int()),
3925          "integral arrays must be pre-equipped with a class");
3926   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
3927   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
3928   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3929   if (!UseExactTypes)  xk = (ptr == Constant);
3930   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
3931 }
3932 
3933 //------------------------------cast_to_ptr_type-------------------------------
3934 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
3935   if( ptr == _ptr ) return this;
3936   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3937 }
3938 
3939 
3940 //-----------------------------cast_to_exactness-------------------------------
3941 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
3942   if( klass_is_exact == _klass_is_exact ) return this;
3943   if (!UseExactTypes)  return this;
3944   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
3945   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
3946 }
3947 
3948 //-----------------------------cast_to_instance_id----------------------------
3949 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
3950   if( instance_id == _instance_id ) return this;
3951   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
3952 }
3953 
3954 //-----------------------------narrow_size_type-------------------------------
3955 // Local cache for arrayOopDesc::max_array_length(etype),
3956 // which is kind of slow (and cached elsewhere by other users).
3957 static jint max_array_length_cache[T_CONFLICT+1];
3958 static jint max_array_length(BasicType etype) {
3959   jint& cache = max_array_length_cache[etype];
3960   jint res = cache;
3961   if (res == 0) {
3962     switch (etype) {
3963     case T_NARROWOOP:
3964       etype = T_OBJECT;
3965       break;
3966     case T_NARROWKLASS:
3967     case T_CONFLICT:
3968     case T_ILLEGAL:
3969     case T_VOID:
3970       etype = T_BYTE;           // will produce conservatively high value
3971     }
3972     cache = res = arrayOopDesc::max_array_length(etype);
3973   }
3974   return res;
3975 }
3976 
3977 // Narrow the given size type to the index range for the given array base type.
3978 // Return NULL if the resulting int type becomes empty.
3979 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
3980   jint hi = size->_hi;
3981   jint lo = size->_lo;
3982   jint min_lo = 0;
3983   jint max_hi = max_array_length(elem()->basic_type());
3984   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
3985   bool chg = false;
3986   if (lo < min_lo) {
3987     lo = min_lo;
3988     if (size->is_con()) {
3989       hi = lo;
3990     }
3991     chg = true;
3992   }
3993   if (hi > max_hi) {
3994     hi = max_hi;
3995     if (size->is_con()) {
3996       lo = hi;
3997     }
3998     chg = true;
3999   }
4000   // Negative length arrays will produce weird intermediate dead fast-path code
4001   if (lo > hi)
4002     return TypeInt::ZERO;
4003   if (!chg)
4004     return size;
4005   return TypeInt::make(lo, hi, Type::WidenMin);
4006 }
4007 
4008 //-------------------------------cast_to_size----------------------------------
4009 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4010   assert(new_size != NULL, "");
4011   new_size = narrow_size_type(new_size);
4012   if (new_size == size())  return this;
4013   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4014   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4015 }
4016 
4017 //------------------------------cast_to_stable---------------------------------
4018 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4019   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4020     return this;
4021 
4022   const Type* elem = this->elem();
4023   const TypePtr* elem_ptr = elem->make_ptr();
4024 
4025   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
4026     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4027     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4028   }
4029 
4030   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4031 
4032   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4033 }
4034 
4035 //-----------------------------stable_dimension--------------------------------
4036 int TypeAryPtr::stable_dimension() const {
4037   if (!is_stable())  return 0;
4038   int dim = 1;
4039   const TypePtr* elem_ptr = elem()->make_ptr();
4040   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4041     dim += elem_ptr->is_aryptr()->stable_dimension();
4042   return dim;
4043 }
4044 
4045 //----------------------cast_to_autobox_cache-----------------------------------
4046 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
4047   if (is_autobox_cache() == cache)  return this;
4048   const TypeOopPtr* etype = elem()->make_oopptr();
4049   if (etype == NULL)  return this;
4050   // The pointers in the autobox arrays are always non-null.
4051   TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
4052   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4053   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4054   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, cache);
4055 }
4056 
4057 //------------------------------eq---------------------------------------------
4058 // Structural equality check for Type representations
4059 bool TypeAryPtr::eq( const Type *t ) const {
4060   const TypeAryPtr *p = t->is_aryptr();
4061   return
4062     _ary == p->_ary &&  // Check array
4063     TypeOopPtr::eq(p);  // Check sub-parts
4064 }
4065 
4066 //------------------------------hash-------------------------------------------
4067 // Type-specific hashing function.
4068 int TypeAryPtr::hash(void) const {
4069   return (intptr_t)_ary + TypeOopPtr::hash();
4070 }
4071 
4072 //------------------------------meet-------------------------------------------
4073 // Compute the MEET of two types.  It returns a new Type object.
4074 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4075   // Perform a fast test for common case; meeting the same types together.
4076   if( this == t ) return this;  // Meeting same type-rep?
4077   // Current "this->_base" is Pointer
4078   switch (t->base()) {          // switch on original type
4079 
4080   // Mixing ints & oops happens when javac reuses local variables
4081   case Int:
4082   case Long:
4083   case FloatTop:
4084   case FloatCon:
4085   case FloatBot:
4086   case DoubleTop:
4087   case DoubleCon:
4088   case DoubleBot:
4089   case NarrowOop:
4090   case NarrowKlass:
4091   case Bottom:                  // Ye Olde Default
4092     return Type::BOTTOM;
4093   case Top:
4094     return this;
4095 
4096   default:                      // All else is a mistake
4097     typerr(t);
4098 
4099   case OopPtr: {                // Meeting to OopPtrs
4100     // Found a OopPtr type vs self-AryPtr type
4101     const TypeOopPtr *tp = t->is_oopptr();
4102     int offset = meet_offset(tp->offset());
4103     PTR ptr = meet_ptr(tp->ptr());
4104     int depth = meet_inline_depth(tp->inline_depth());
4105     const TypePtr* speculative = xmeet_speculative(tp);
4106     switch (tp->ptr()) {
4107     case TopPTR:
4108     case AnyNull: {
4109       int instance_id = meet_instance_id(InstanceTop);
4110       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4111                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4112     }
4113     case BotPTR:
4114     case NotNull: {
4115       int instance_id = meet_instance_id(tp->instance_id());
4116       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4117     }
4118     default: ShouldNotReachHere();
4119     }
4120   }
4121 
4122   case AnyPtr: {                // Meeting two AnyPtrs
4123     // Found an AnyPtr type vs self-AryPtr type
4124     const TypePtr *tp = t->is_ptr();
4125     int offset = meet_offset(tp->offset());
4126     PTR ptr = meet_ptr(tp->ptr());
4127     const TypePtr* speculative = xmeet_speculative(tp);
4128     int depth = meet_inline_depth(tp->inline_depth());
4129     switch (tp->ptr()) {
4130     case TopPTR:
4131       return this;
4132     case BotPTR:
4133     case NotNull:
4134       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4135     case Null:
4136       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4137       // else fall through to AnyNull
4138     case AnyNull: {
4139       int instance_id = meet_instance_id(InstanceTop);
4140       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4141                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4142     }
4143     default: ShouldNotReachHere();
4144     }
4145   }
4146 
4147   case MetadataPtr:
4148   case KlassPtr:
4149   case RawPtr: return TypePtr::BOTTOM;
4150 
4151   case AryPtr: {                // Meeting 2 references?
4152     const TypeAryPtr *tap = t->is_aryptr();
4153     int off = meet_offset(tap->offset());
4154     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4155     PTR ptr = meet_ptr(tap->ptr());
4156     int instance_id = meet_instance_id(tap->instance_id());
4157     const TypePtr* speculative = xmeet_speculative(tap);
4158     int depth = meet_inline_depth(tap->inline_depth());
4159     ciKlass* lazy_klass = NULL;
4160     if (tary->_elem->isa_int()) {
4161       // Integral array element types have irrelevant lattice relations.
4162       // It is the klass that determines array layout, not the element type.
4163       if (_klass == NULL)
4164         lazy_klass = tap->_klass;
4165       else if (tap->_klass == NULL || tap->_klass == _klass) {
4166         lazy_klass = _klass;
4167       } else {
4168         // Something like byte[int+] meets char[int+].
4169         // This must fall to bottom, not (int[-128..65535])[int+].
4170         instance_id = InstanceBot;
4171         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4172       }
4173     } else // Non integral arrays.
4174       // Must fall to bottom if exact klasses in upper lattice
4175       // are not equal or super klass is exact.
4176       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4177           // meet with top[] and bottom[] are processed further down:
4178           tap->_klass != NULL  && this->_klass != NULL   &&
4179           // both are exact and not equal:
4180           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4181            // 'tap'  is exact and super or unrelated:
4182            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4183            // 'this' is exact and super or unrelated:
4184            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4185       if (above_centerline(ptr)) {
4186         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4187       }
4188       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot, speculative, depth);
4189     }
4190 
4191     bool xk = false;
4192     switch (tap->ptr()) {
4193     case AnyNull:
4194     case TopPTR:
4195       // Compute new klass on demand, do not use tap->_klass
4196       if (below_centerline(this->_ptr)) {
4197         xk = this->_klass_is_exact;
4198       } else {
4199         xk = (tap->_klass_is_exact | this->_klass_is_exact);
4200       }
4201       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
4202     case Constant: {
4203       ciObject* o = const_oop();
4204       if( _ptr == Constant ) {
4205         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4206           xk = (klass() == tap->klass());
4207           ptr = NotNull;
4208           o = NULL;
4209           instance_id = InstanceBot;
4210         } else {
4211           xk = true;
4212         }
4213       } else if(above_centerline(_ptr)) {
4214         o = tap->const_oop();
4215         xk = true;
4216       } else {
4217         // Only precise for identical arrays
4218         xk = this->_klass_is_exact && (klass() == tap->klass());
4219       }
4220       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4221     }
4222     case NotNull:
4223     case BotPTR:
4224       // Compute new klass on demand, do not use tap->_klass
4225       if (above_centerline(this->_ptr))
4226             xk = tap->_klass_is_exact;
4227       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4228               (klass() == tap->klass()); // Only precise for identical arrays
4229       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4230     default: ShouldNotReachHere();
4231     }
4232   }
4233 
4234   // All arrays inherit from Object class
4235   case InstPtr: {
4236     const TypeInstPtr *tp = t->is_instptr();
4237     int offset = meet_offset(tp->offset());
4238     PTR ptr = meet_ptr(tp->ptr());
4239     int instance_id = meet_instance_id(tp->instance_id());
4240     const TypePtr* speculative = xmeet_speculative(tp);
4241     int depth = meet_inline_depth(tp->inline_depth());
4242     switch (ptr) {
4243     case TopPTR:
4244     case AnyNull:                // Fall 'down' to dual of object klass
4245       // For instances when a subclass meets a superclass we fall
4246       // below the centerline when the superclass is exact. We need to
4247       // do the same here.
4248       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4249         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4250       } else {
4251         // cannot subclass, so the meet has to fall badly below the centerline
4252         ptr = NotNull;
4253         instance_id = InstanceBot;
4254         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4255       }
4256     case Constant:
4257     case NotNull:
4258     case BotPTR:                // Fall down to object klass
4259       // LCA is object_klass, but if we subclass from the top we can do better
4260       if (above_centerline(tp->ptr())) {
4261         // If 'tp'  is above the centerline and it is Object class
4262         // then we can subclass in the Java class hierarchy.
4263         // For instances when a subclass meets a superclass we fall
4264         // below the centerline when the superclass is exact. We need
4265         // to do the same here.
4266         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4267           // that is, my array type is a subtype of 'tp' klass
4268           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4269                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4270         }
4271       }
4272       // The other case cannot happen, since t cannot be a subtype of an array.
4273       // The meet falls down to Object class below centerline.
4274       if( ptr == Constant )
4275          ptr = NotNull;
4276       instance_id = InstanceBot;
4277       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4278     default: typerr(t);
4279     }
4280   }
4281   }
4282   return this;                  // Lint noise
4283 }
4284 
4285 //------------------------------xdual------------------------------------------
4286 // Dual: compute field-by-field dual
4287 const Type *TypeAryPtr::xdual() const {
4288   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4289 }
4290 
4291 //----------------------interface_vs_oop---------------------------------------
4292 #ifdef ASSERT
4293 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4294   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4295   if (t_aryptr) {
4296     return _ary->interface_vs_oop(t_aryptr->_ary);
4297   }
4298   return false;
4299 }
4300 #endif
4301 
4302 //------------------------------dump2------------------------------------------
4303 #ifndef PRODUCT
4304 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4305   _ary->dump2(d,depth,st);
4306   switch( _ptr ) {
4307   case Constant:
4308     const_oop()->print(st);
4309     break;
4310   case BotPTR:
4311     if (!WizardMode && !Verbose) {
4312       if( _klass_is_exact ) st->print(":exact");
4313       break;
4314     }
4315   case TopPTR:
4316   case AnyNull:
4317   case NotNull:
4318     st->print(":%s", ptr_msg[_ptr]);
4319     if( _klass_is_exact ) st->print(":exact");
4320     break;
4321   }
4322 
4323   if( _offset != 0 ) {
4324     int header_size = objArrayOopDesc::header_size() * wordSize;
4325     if( _offset == OffsetTop )       st->print("+undefined");
4326     else if( _offset == OffsetBot )  st->print("+any");
4327     else if( _offset < header_size ) st->print("+%d", _offset);
4328     else {
4329       BasicType basic_elem_type = elem()->basic_type();
4330       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4331       int elem_size = type2aelembytes(basic_elem_type);
4332       st->print("[%d]", (_offset - array_base)/elem_size);
4333     }
4334   }
4335   st->print(" *");
4336   if (_instance_id == InstanceTop)
4337     st->print(",iid=top");
4338   else if (_instance_id != InstanceBot)
4339     st->print(",iid=%d",_instance_id);
4340 
4341   dump_inline_depth(st);
4342   dump_speculative(st);
4343 }
4344 #endif
4345 
4346 bool TypeAryPtr::empty(void) const {
4347   if (_ary->empty())       return true;
4348   return TypeOopPtr::empty();
4349 }
4350 
4351 //------------------------------add_offset-------------------------------------
4352 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4353   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4354 }
4355 
4356 const Type *TypeAryPtr::remove_speculative() const {
4357   if (_speculative == NULL) {
4358     return this;
4359   }
4360   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4361   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
4362 }
4363 
4364 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4365   if (!UseInlineDepthForSpeculativeTypes) {
4366     return this;
4367   }
4368   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
4369 }
4370 
4371 //=============================================================================
4372 
4373 //------------------------------hash-------------------------------------------
4374 // Type-specific hashing function.
4375 int TypeNarrowPtr::hash(void) const {
4376   return _ptrtype->hash() + 7;
4377 }
4378 
4379 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4380   return _ptrtype->singleton();
4381 }
4382 
4383 bool TypeNarrowPtr::empty(void) const {
4384   return _ptrtype->empty();
4385 }
4386 
4387 intptr_t TypeNarrowPtr::get_con() const {
4388   return _ptrtype->get_con();
4389 }
4390 
4391 bool TypeNarrowPtr::eq( const Type *t ) const {
4392   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4393   if (tc != NULL) {
4394     if (_ptrtype->base() != tc->_ptrtype->base()) {
4395       return false;
4396     }
4397     return tc->_ptrtype->eq(_ptrtype);
4398   }
4399   return false;
4400 }
4401 
4402 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4403   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4404   return make_same_narrowptr(odual);
4405 }
4406 
4407 
4408 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4409   if (isa_same_narrowptr(kills)) {
4410     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4411     if (ft->empty())
4412       return Type::TOP;           // Canonical empty value
4413     if (ft->isa_ptr()) {
4414       return make_hash_same_narrowptr(ft->isa_ptr());
4415     }
4416     return ft;
4417   } else if (kills->isa_ptr()) {
4418     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4419     if (ft->empty())
4420       return Type::TOP;           // Canonical empty value
4421     return ft;
4422   } else {
4423     return Type::TOP;
4424   }
4425 }
4426 
4427 //------------------------------xmeet------------------------------------------
4428 // Compute the MEET of two types.  It returns a new Type object.
4429 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4430   // Perform a fast test for common case; meeting the same types together.
4431   if( this == t ) return this;  // Meeting same type-rep?
4432 
4433   if (t->base() == base()) {
4434     const Type* result = _ptrtype->xmeet(t->make_ptr());
4435     if (result->isa_ptr()) {
4436       return make_hash_same_narrowptr(result->is_ptr());
4437     }
4438     return result;
4439   }
4440 
4441   // Current "this->_base" is NarrowKlass or NarrowOop
4442   switch (t->base()) {          // switch on original type
4443 
4444   case Int:                     // Mixing ints & oops happens when javac
4445   case Long:                    // reuses local variables
4446   case FloatTop:
4447   case FloatCon:
4448   case FloatBot:
4449   case DoubleTop:
4450   case DoubleCon:
4451   case DoubleBot:
4452   case AnyPtr:
4453   case RawPtr:
4454   case OopPtr:
4455   case InstPtr:
4456   case AryPtr:
4457   case MetadataPtr:
4458   case KlassPtr:
4459   case NarrowOop:
4460   case NarrowKlass:
4461 
4462   case Bottom:                  // Ye Olde Default
4463     return Type::BOTTOM;
4464   case Top:
4465     return this;
4466 
4467   default:                      // All else is a mistake
4468     typerr(t);
4469 
4470   } // End of switch
4471 
4472   return this;
4473 }
4474 
4475 #ifndef PRODUCT
4476 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4477   _ptrtype->dump2(d, depth, st);
4478 }
4479 #endif
4480 
4481 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4482 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4483 
4484 
4485 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4486   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4487 }
4488 
4489 const Type* TypeNarrowOop::remove_speculative() const {
4490   return make(_ptrtype->remove_speculative()->is_ptr());
4491 }
4492 
4493 const Type* TypeNarrowOop::cleanup_speculative() const {
4494   return make(_ptrtype->cleanup_speculative()->is_ptr());
4495 }
4496 
4497 #ifndef PRODUCT
4498 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4499   st->print("narrowoop: ");
4500   TypeNarrowPtr::dump2(d, depth, st);
4501 }
4502 #endif
4503 
4504 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4505 
4506 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4507   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4508 }
4509 
4510 #ifndef PRODUCT
4511 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4512   st->print("narrowklass: ");
4513   TypeNarrowPtr::dump2(d, depth, st);
4514 }
4515 #endif
4516 
4517 
4518 //------------------------------eq---------------------------------------------
4519 // Structural equality check for Type representations
4520 bool TypeMetadataPtr::eq( const Type *t ) const {
4521   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4522   ciMetadata* one = metadata();
4523   ciMetadata* two = a->metadata();
4524   if (one == NULL || two == NULL) {
4525     return (one == two) && TypePtr::eq(t);
4526   } else {
4527     return one->equals(two) && TypePtr::eq(t);
4528   }
4529 }
4530 
4531 //------------------------------hash-------------------------------------------
4532 // Type-specific hashing function.
4533 int TypeMetadataPtr::hash(void) const {
4534   return
4535     (metadata() ? metadata()->hash() : 0) +
4536     TypePtr::hash();
4537 }
4538 
4539 //------------------------------singleton--------------------------------------
4540 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4541 // constants
4542 bool TypeMetadataPtr::singleton(void) const {
4543   // detune optimizer to not generate constant metadata + constant offset as a constant!
4544   // TopPTR, Null, AnyNull, Constant are all singletons
4545   return (_offset == 0) && !below_centerline(_ptr);
4546 }
4547 
4548 //------------------------------add_offset-------------------------------------
4549 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4550   return make( _ptr, _metadata, xadd_offset(offset));
4551 }
4552 
4553 //-----------------------------filter------------------------------------------
4554 // Do not allow interface-vs.-noninterface joins to collapse to top.
4555 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4556   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4557   if (ft == NULL || ft->empty())
4558     return Type::TOP;           // Canonical empty value
4559   return ft;
4560 }
4561 
4562  //------------------------------get_con----------------------------------------
4563 intptr_t TypeMetadataPtr::get_con() const {
4564   assert( _ptr == Null || _ptr == Constant, "" );
4565   assert( _offset >= 0, "" );
4566 
4567   if (_offset != 0) {
4568     // After being ported to the compiler interface, the compiler no longer
4569     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4570     // to a handle at compile time.  This handle is embedded in the generated
4571     // code and dereferenced at the time the nmethod is made.  Until that time,
4572     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4573     // have access to the addresses!).  This does not seem to currently happen,
4574     // but this assertion here is to help prevent its occurence.
4575     tty->print_cr("Found oop constant with non-zero offset");
4576     ShouldNotReachHere();
4577   }
4578 
4579   return (intptr_t)metadata()->constant_encoding();
4580 }
4581 
4582 //------------------------------cast_to_ptr_type-------------------------------
4583 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4584   if( ptr == _ptr ) return this;
4585   return make(ptr, metadata(), _offset);
4586 }
4587 
4588 //------------------------------meet-------------------------------------------
4589 // Compute the MEET of two types.  It returns a new Type object.
4590 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4591   // Perform a fast test for common case; meeting the same types together.
4592   if( this == t ) return this;  // Meeting same type-rep?
4593 
4594   // Current "this->_base" is OopPtr
4595   switch (t->base()) {          // switch on original type
4596 
4597   case Int:                     // Mixing ints & oops happens when javac
4598   case Long:                    // reuses local variables
4599   case FloatTop:
4600   case FloatCon:
4601   case FloatBot:
4602   case DoubleTop:
4603   case DoubleCon:
4604   case DoubleBot:
4605   case NarrowOop:
4606   case NarrowKlass:
4607   case Bottom:                  // Ye Olde Default
4608     return Type::BOTTOM;
4609   case Top:
4610     return this;
4611 
4612   default:                      // All else is a mistake
4613     typerr(t);
4614 
4615   case AnyPtr: {
4616     // Found an AnyPtr type vs self-OopPtr type
4617     const TypePtr *tp = t->is_ptr();
4618     int offset = meet_offset(tp->offset());
4619     PTR ptr = meet_ptr(tp->ptr());
4620     switch (tp->ptr()) {
4621     case Null:
4622       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4623       // else fall through:
4624     case TopPTR:
4625     case AnyNull: {
4626       return make(ptr, _metadata, offset);
4627     }
4628     case BotPTR:
4629     case NotNull:
4630       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4631     default: typerr(t);
4632     }
4633   }
4634 
4635   case RawPtr:
4636   case KlassPtr:
4637   case OopPtr:
4638   case InstPtr:
4639   case AryPtr:
4640     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4641 
4642   case MetadataPtr: {
4643     const TypeMetadataPtr *tp = t->is_metadataptr();
4644     int offset = meet_offset(tp->offset());
4645     PTR tptr = tp->ptr();
4646     PTR ptr = meet_ptr(tptr);
4647     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4648     if (tptr == TopPTR || _ptr == TopPTR ||
4649         metadata()->equals(tp->metadata())) {
4650       return make(ptr, md, offset);
4651     }
4652     // metadata is different
4653     if( ptr == Constant ) {  // Cannot be equal constants, so...
4654       if( tptr == Constant && _ptr != Constant)  return t;
4655       if( _ptr == Constant && tptr != Constant)  return this;
4656       ptr = NotNull;            // Fall down in lattice
4657     }
4658     return make(ptr, NULL, offset);
4659     break;
4660   }
4661   } // End of switch
4662   return this;                  // Return the double constant
4663 }
4664 
4665 
4666 //------------------------------xdual------------------------------------------
4667 // Dual of a pure metadata pointer.
4668 const Type *TypeMetadataPtr::xdual() const {
4669   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4670 }
4671 
4672 //------------------------------dump2------------------------------------------
4673 #ifndef PRODUCT
4674 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4675   st->print("metadataptr:%s", ptr_msg[_ptr]);
4676   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
4677   switch( _offset ) {
4678   case OffsetTop: st->print("+top"); break;
4679   case OffsetBot: st->print("+any"); break;
4680   case         0: break;
4681   default:        st->print("+%d",_offset); break;
4682   }
4683 }
4684 #endif
4685 
4686 
4687 //=============================================================================
4688 // Convenience common pre-built type.
4689 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4690 
4691 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4692   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4693 }
4694 
4695 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4696   return make(Constant, m, 0);
4697 }
4698 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4699   return make(Constant, m, 0);
4700 }
4701 
4702 //------------------------------make-------------------------------------------
4703 // Create a meta data constant
4704 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4705   assert(m == NULL || !m->is_klass(), "wrong type");
4706   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4707 }
4708 
4709 
4710 //=============================================================================
4711 // Convenience common pre-built types.
4712 
4713 // Not-null object klass or below
4714 const TypeKlassPtr *TypeKlassPtr::OBJECT;
4715 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4716 
4717 //------------------------------TypeKlassPtr-----------------------------------
4718 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4719   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4720 }
4721 
4722 //------------------------------make-------------------------------------------
4723 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4724 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4725   assert( k != NULL, "Expect a non-NULL klass");
4726   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4727   TypeKlassPtr *r =
4728     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4729 
4730   return r;
4731 }
4732 
4733 //------------------------------eq---------------------------------------------
4734 // Structural equality check for Type representations
4735 bool TypeKlassPtr::eq( const Type *t ) const {
4736   const TypeKlassPtr *p = t->is_klassptr();
4737   return
4738     klass()->equals(p->klass()) &&
4739     TypePtr::eq(p);
4740 }
4741 
4742 //------------------------------hash-------------------------------------------
4743 // Type-specific hashing function.
4744 int TypeKlassPtr::hash(void) const {
4745   return klass()->hash() + TypePtr::hash();
4746 }
4747 
4748 //------------------------------singleton--------------------------------------
4749 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4750 // constants
4751 bool TypeKlassPtr::singleton(void) const {
4752   // detune optimizer to not generate constant klass + constant offset as a constant!
4753   // TopPTR, Null, AnyNull, Constant are all singletons
4754   return (_offset == 0) && !below_centerline(_ptr);
4755 }
4756 
4757 // Do not allow interface-vs.-noninterface joins to collapse to top.
4758 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
4759   // logic here mirrors the one from TypeOopPtr::filter. See comments
4760   // there.
4761   const Type* ft = join_helper(kills, include_speculative);
4762   const TypeKlassPtr* ftkp = ft->isa_klassptr();
4763   const TypeKlassPtr* ktkp = kills->isa_klassptr();
4764 
4765   if (ft->empty()) {
4766     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
4767       return kills;             // Uplift to interface
4768 
4769     return Type::TOP;           // Canonical empty value
4770   }
4771 
4772   // Interface klass type could be exact in opposite to interface type,
4773   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
4774   if (ftkp != NULL && ktkp != NULL &&
4775       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
4776       !ftkp->klass_is_exact() && // Keep exact interface klass
4777       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
4778     return ktkp->cast_to_ptr_type(ftkp->ptr());
4779   }
4780 
4781   return ft;
4782 }
4783 
4784 //----------------------compute_klass------------------------------------------
4785 // Compute the defining klass for this class
4786 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4787   // Compute _klass based on element type.
4788   ciKlass* k_ary = NULL;
4789   const TypeInstPtr *tinst;
4790   const TypeAryPtr *tary;
4791   const Type* el = elem();
4792   if (el->isa_narrowoop()) {
4793     el = el->make_ptr();
4794   }
4795 
4796   // Get element klass
4797   if ((tinst = el->isa_instptr()) != NULL) {
4798     // Compute array klass from element klass
4799     k_ary = ciObjArrayKlass::make(tinst->klass());
4800   } else if ((tary = el->isa_aryptr()) != NULL) {
4801     // Compute array klass from element klass
4802     ciKlass* k_elem = tary->klass();
4803     // If element type is something like bottom[], k_elem will be null.
4804     if (k_elem != NULL)
4805       k_ary = ciObjArrayKlass::make(k_elem);
4806   } else if ((el->base() == Type::Top) ||
4807              (el->base() == Type::Bottom)) {
4808     // element type of Bottom occurs from meet of basic type
4809     // and object; Top occurs when doing join on Bottom.
4810     // Leave k_ary at NULL.
4811   } else {
4812     // Cannot compute array klass directly from basic type,
4813     // since subtypes of TypeInt all have basic type T_INT.
4814 #ifdef ASSERT
4815     if (verify && el->isa_int()) {
4816       // Check simple cases when verifying klass.
4817       BasicType bt = T_ILLEGAL;
4818       if (el == TypeInt::BYTE) {
4819         bt = T_BYTE;
4820       } else if (el == TypeInt::SHORT) {
4821         bt = T_SHORT;
4822       } else if (el == TypeInt::CHAR) {
4823         bt = T_CHAR;
4824       } else if (el == TypeInt::INT) {
4825         bt = T_INT;
4826       } else {
4827         return _klass; // just return specified klass
4828       }
4829       return ciTypeArrayKlass::make(bt);
4830     }
4831 #endif
4832     assert(!el->isa_int(),
4833            "integral arrays must be pre-equipped with a class");
4834     // Compute array klass directly from basic type
4835     k_ary = ciTypeArrayKlass::make(el->basic_type());
4836   }
4837   return k_ary;
4838 }
4839 
4840 //------------------------------klass------------------------------------------
4841 // Return the defining klass for this class
4842 ciKlass* TypeAryPtr::klass() const {
4843   if( _klass ) return _klass;   // Return cached value, if possible
4844 
4845   // Oops, need to compute _klass and cache it
4846   ciKlass* k_ary = compute_klass();
4847 
4848   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
4849     // The _klass field acts as a cache of the underlying
4850     // ciKlass for this array type.  In order to set the field,
4851     // we need to cast away const-ness.
4852     //
4853     // IMPORTANT NOTE: we *never* set the _klass field for the
4854     // type TypeAryPtr::OOPS.  This Type is shared between all
4855     // active compilations.  However, the ciKlass which represents
4856     // this Type is *not* shared between compilations, so caching
4857     // this value would result in fetching a dangling pointer.
4858     //
4859     // Recomputing the underlying ciKlass for each request is
4860     // a bit less efficient than caching, but calls to
4861     // TypeAryPtr::OOPS->klass() are not common enough to matter.
4862     ((TypeAryPtr*)this)->_klass = k_ary;
4863     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
4864         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
4865       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
4866     }
4867   }
4868   return k_ary;
4869 }
4870 
4871 
4872 //------------------------------add_offset-------------------------------------
4873 // Access internals of klass object
4874 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
4875   return make( _ptr, klass(), xadd_offset(offset) );
4876 }
4877 
4878 //------------------------------cast_to_ptr_type-------------------------------
4879 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
4880   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
4881   if( ptr == _ptr ) return this;
4882   return make(ptr, _klass, _offset);
4883 }
4884 
4885 
4886 //-----------------------------cast_to_exactness-------------------------------
4887 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
4888   if( klass_is_exact == _klass_is_exact ) return this;
4889   if (!UseExactTypes)  return this;
4890   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
4891 }
4892 
4893 
4894 //-----------------------------as_instance_type--------------------------------
4895 // Corresponding type for an instance of the given class.
4896 // It will be NotNull, and exact if and only if the klass type is exact.
4897 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
4898   ciKlass* k = klass();
4899   bool    xk = klass_is_exact();
4900   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
4901   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
4902   guarantee(toop != NULL, "need type for given klass");
4903   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4904   return toop->cast_to_exactness(xk)->is_oopptr();
4905 }
4906 
4907 
4908 //------------------------------xmeet------------------------------------------
4909 // Compute the MEET of two types, return a new Type object.
4910 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
4911   // Perform a fast test for common case; meeting the same types together.
4912   if( this == t ) return this;  // Meeting same type-rep?
4913 
4914   // Current "this->_base" is Pointer
4915   switch (t->base()) {          // switch on original type
4916 
4917   case Int:                     // Mixing ints & oops happens when javac
4918   case Long:                    // reuses local variables
4919   case FloatTop:
4920   case FloatCon:
4921   case FloatBot:
4922   case DoubleTop:
4923   case DoubleCon:
4924   case DoubleBot:
4925   case NarrowOop:
4926   case NarrowKlass:
4927   case Bottom:                  // Ye Olde Default
4928     return Type::BOTTOM;
4929   case Top:
4930     return this;
4931 
4932   default:                      // All else is a mistake
4933     typerr(t);
4934 
4935   case AnyPtr: {                // Meeting to AnyPtrs
4936     // Found an AnyPtr type vs self-KlassPtr type
4937     const TypePtr *tp = t->is_ptr();
4938     int offset = meet_offset(tp->offset());
4939     PTR ptr = meet_ptr(tp->ptr());
4940     switch (tp->ptr()) {
4941     case TopPTR:
4942       return this;
4943     case Null:
4944       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4945     case AnyNull:
4946       return make( ptr, klass(), offset );
4947     case BotPTR:
4948     case NotNull:
4949       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4950     default: typerr(t);
4951     }
4952   }
4953 
4954   case RawPtr:
4955   case MetadataPtr:
4956   case OopPtr:
4957   case AryPtr:                  // Meet with AryPtr
4958   case InstPtr:                 // Meet with InstPtr
4959     return TypePtr::BOTTOM;
4960 
4961   //
4962   //             A-top         }
4963   //           /   |   \       }  Tops
4964   //       B-top A-any C-top   }
4965   //          | /  |  \ |      }  Any-nulls
4966   //       B-any   |   C-any   }
4967   //          |    |    |
4968   //       B-con A-con C-con   } constants; not comparable across classes
4969   //          |    |    |
4970   //       B-not   |   C-not   }
4971   //          | \  |  / |      }  not-nulls
4972   //       B-bot A-not C-bot   }
4973   //           \   |   /       }  Bottoms
4974   //             A-bot         }
4975   //
4976 
4977   case KlassPtr: {  // Meet two KlassPtr types
4978     const TypeKlassPtr *tkls = t->is_klassptr();
4979     int  off     = meet_offset(tkls->offset());
4980     PTR  ptr     = meet_ptr(tkls->ptr());
4981 
4982     // Check for easy case; klasses are equal (and perhaps not loaded!)
4983     // If we have constants, then we created oops so classes are loaded
4984     // and we can handle the constants further down.  This case handles
4985     // not-loaded classes
4986     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
4987       return make( ptr, klass(), off );
4988     }
4989 
4990     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4991     ciKlass* tkls_klass = tkls->klass();
4992     ciKlass* this_klass = this->klass();
4993     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
4994     assert( this_klass->is_loaded(), "This class should have been loaded.");
4995 
4996     // If 'this' type is above the centerline and is a superclass of the
4997     // other, we can treat 'this' as having the same type as the other.
4998     if ((above_centerline(this->ptr())) &&
4999         tkls_klass->is_subtype_of(this_klass)) {
5000       this_klass = tkls_klass;
5001     }
5002     // If 'tinst' type is above the centerline and is a superclass of the
5003     // other, we can treat 'tinst' as having the same type as the other.
5004     if ((above_centerline(tkls->ptr())) &&
5005         this_klass->is_subtype_of(tkls_klass)) {
5006       tkls_klass = this_klass;
5007     }
5008 
5009     // Check for classes now being equal
5010     if (tkls_klass->equals(this_klass)) {
5011       // If the klasses are equal, the constants may still differ.  Fall to
5012       // NotNull if they do (neither constant is NULL; that is a special case
5013       // handled elsewhere).
5014       if( ptr == Constant ) {
5015         if (this->_ptr == Constant && tkls->_ptr == Constant &&
5016             this->klass()->equals(tkls->klass()));
5017         else if (above_centerline(this->ptr()));
5018         else if (above_centerline(tkls->ptr()));
5019         else
5020           ptr = NotNull;
5021       }
5022       return make( ptr, this_klass, off );
5023     } // Else classes are not equal
5024 
5025     // Since klasses are different, we require the LCA in the Java
5026     // class hierarchy - which means we have to fall to at least NotNull.
5027     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
5028       ptr = NotNull;
5029     // Now we find the LCA of Java classes
5030     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
5031     return   make( ptr, k, off );
5032   } // End of case KlassPtr
5033 
5034   } // End of switch
5035   return this;                  // Return the double constant
5036 }
5037 
5038 //------------------------------xdual------------------------------------------
5039 // Dual: compute field-by-field dual
5040 const Type    *TypeKlassPtr::xdual() const {
5041   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5042 }
5043 
5044 //------------------------------get_con----------------------------------------
5045 intptr_t TypeKlassPtr::get_con() const {
5046   assert( _ptr == Null || _ptr == Constant, "" );
5047   assert( _offset >= 0, "" );
5048 
5049   if (_offset != 0) {
5050     // After being ported to the compiler interface, the compiler no longer
5051     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5052     // to a handle at compile time.  This handle is embedded in the generated
5053     // code and dereferenced at the time the nmethod is made.  Until that time,
5054     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5055     // have access to the addresses!).  This does not seem to currently happen,
5056     // but this assertion here is to help prevent its occurence.
5057     tty->print_cr("Found oop constant with non-zero offset");
5058     ShouldNotReachHere();
5059   }
5060 
5061   return (intptr_t)klass()->constant_encoding();
5062 }
5063 //------------------------------dump2------------------------------------------
5064 // Dump Klass Type
5065 #ifndef PRODUCT
5066 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5067   switch( _ptr ) {
5068   case Constant:
5069     st->print("precise ");
5070   case NotNull:
5071     {
5072       const char *name = klass()->name()->as_utf8();
5073       if( name ) {
5074         st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5075       } else {
5076         ShouldNotReachHere();
5077       }
5078     }
5079   case BotPTR:
5080     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5081   case TopPTR:
5082   case AnyNull:
5083     st->print(":%s", ptr_msg[_ptr]);
5084     if( _klass_is_exact ) st->print(":exact");
5085     break;
5086   }
5087 
5088   if( _offset ) {               // Dump offset, if any
5089     if( _offset == OffsetBot )      { st->print("+any"); }
5090     else if( _offset == OffsetTop ) { st->print("+unknown"); }
5091     else                            { st->print("+%d", _offset); }
5092   }
5093 
5094   st->print(" *");
5095 }
5096 #endif
5097 
5098 
5099 
5100 //=============================================================================
5101 // Convenience common pre-built types.
5102 
5103 //------------------------------make-------------------------------------------
5104 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
5105   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
5106 }
5107 
5108 //------------------------------make-------------------------------------------
5109 const TypeFunc *TypeFunc::make(ciMethod* method) {
5110   Compile* C = Compile::current();
5111   const TypeFunc* tf = C->last_tf(method); // check cache
5112   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5113   const TypeTuple *domain;
5114   if (method->is_static()) {
5115     domain = TypeTuple::make_domain(NULL, method->signature());
5116   } else {
5117     domain = TypeTuple::make_domain(method->holder(), method->signature());
5118   }
5119   const TypeTuple *range  = TypeTuple::make_range(method->signature());
5120   tf = TypeFunc::make(domain, range);
5121   C->set_last_tf(method, tf);  // fill cache
5122   return tf;
5123 }
5124 
5125 //------------------------------meet-------------------------------------------
5126 // Compute the MEET of two types.  It returns a new Type object.
5127 const Type *TypeFunc::xmeet( const Type *t ) const {
5128   // Perform a fast test for common case; meeting the same types together.
5129   if( this == t ) return this;  // Meeting same type-rep?
5130 
5131   // Current "this->_base" is Func
5132   switch (t->base()) {          // switch on original type
5133 
5134   case Bottom:                  // Ye Olde Default
5135     return t;
5136 
5137   default:                      // All else is a mistake
5138     typerr(t);
5139 
5140   case Top:
5141     break;
5142   }
5143   return this;                  // Return the double constant
5144 }
5145 
5146 //------------------------------xdual------------------------------------------
5147 // Dual: compute field-by-field dual
5148 const Type *TypeFunc::xdual() const {
5149   return this;
5150 }
5151 
5152 //------------------------------eq---------------------------------------------
5153 // Structural equality check for Type representations
5154 bool TypeFunc::eq( const Type *t ) const {
5155   const TypeFunc *a = (const TypeFunc*)t;
5156   return _domain == a->_domain &&
5157     _range == a->_range;
5158 }
5159 
5160 //------------------------------hash-------------------------------------------
5161 // Type-specific hashing function.
5162 int TypeFunc::hash(void) const {
5163   return (intptr_t)_domain + (intptr_t)_range;
5164 }
5165 
5166 //------------------------------dump2------------------------------------------
5167 // Dump Function Type
5168 #ifndef PRODUCT
5169 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5170   if( _range->cnt() <= Parms )
5171     st->print("void");
5172   else {
5173     uint i;
5174     for (i = Parms; i < _range->cnt()-1; i++) {
5175       _range->field_at(i)->dump2(d,depth,st);
5176       st->print("/");
5177     }
5178     _range->field_at(i)->dump2(d,depth,st);
5179   }
5180   st->print(" ");
5181   st->print("( ");
5182   if( !depth || d[this] ) {     // Check for recursive dump
5183     st->print("...)");
5184     return;
5185   }
5186   d.Insert((void*)this,(void*)this);    // Stop recursion
5187   if (Parms < _domain->cnt())
5188     _domain->field_at(Parms)->dump2(d,depth-1,st);
5189   for (uint i = Parms+1; i < _domain->cnt(); i++) {
5190     st->print(", ");
5191     _domain->field_at(i)->dump2(d,depth-1,st);
5192   }
5193   st->print(" )");
5194 }
5195 #endif
5196 
5197 //------------------------------singleton--------------------------------------
5198 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5199 // constants (Ldi nodes).  Singletons are integer, float or double constants
5200 // or a single symbol.
5201 bool TypeFunc::singleton(void) const {
5202   return false;                 // Never a singleton
5203 }
5204 
5205 bool TypeFunc::empty(void) const {
5206   return false;                 // Never empty
5207 }
5208 
5209 
5210 BasicType TypeFunc::return_type() const{
5211   if (range()->cnt() == TypeFunc::Parms) {
5212     return T_VOID;
5213   }
5214   return range()->field_at(TypeFunc::Parms)->basic_type();
5215 }