/* * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "libadt/dict.hpp" // Dictionaries - An Abstract Data Type // %%%%% includes not needed with AVM framework - Ungar #include //------------------------------data----------------------------------------- // String hash tables #define MAXID 20 static uint8_t initflag = 0; // True after 1st initialization static const char shft[MAXID] = {1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6}; static short xsum[MAXID]; //------------------------------bucket--------------------------------------- class bucket : public ResourceObj { public: uint _cnt, _max; // Size of bucket void **_keyvals; // Array of keys and values }; //------------------------------Dict----------------------------------------- // The dictionary is kept has a hash table. The hash table is a even power // of two, for nice modulo operations. Each bucket in the hash table points // to a linear list of key-value pairs; each key & value is just a (void *). // The list starts with a count. A hash lookup finds the list head, then a // simple linear scan finds the key. If the table gets too full, it's // doubled in size; the total amount of EXTRA times all hash functions are // computed for the doubling is no more than the current size - thus the // doubling in size costs no more than a constant factor in speed. Dict::Dict(CmpKey initcmp, Hash inithash) : _arena(Thread::current()->resource_area()), _hash(inithash), _cmp(initcmp) { int i; // Precompute table of null character hashes if( !initflag ) { // Not initializated yet? xsum[0] = (1<Amalloc_4(sizeof(bucket)*_size); memset((void*)_bin,0,sizeof(bucket)*_size); } Dict::Dict(CmpKey initcmp, Hash inithash, Arena *arena, int size) : _arena(arena), _hash(inithash), _cmp(initcmp) { int i; // Precompute table of null character hashes if( !initflag ) { // Not initializated yet? xsum[0] = (1<Amalloc_4(sizeof(bucket)*_size); memset((void*)_bin,0,sizeof(bucket)*_size); } //------------------------------~Dict------------------------------------------ // Delete an existing dictionary. Dict::~Dict() { /* tty->print("~Dict %d/%d: ",_cnt,_size); for( uint i=0; i < _size; i++) // For complete new table do tty->print("%d ",_bin[i]._cnt); tty->print("\n");*/ /*for( uint i=0; i<_size; i++ ) { FREE_FAST( _bin[i]._keyvals ); } */ } //------------------------------Clear---------------------------------------- // Zap to empty; ready for re-use void Dict::Clear() { _cnt = 0; // Empty contents for( uint i=0; i<_size; i++ ) _bin[i]._cnt = 0; // Empty buckets, but leave allocated // Leave _size & _bin alone, under the assumption that dictionary will // grow to this size again. } //------------------------------doubhash--------------------------------------- // Double hash table size. If can't do so, just suffer. If can, then run // thru old hash table, moving things to new table. Note that since hash // table doubled, exactly 1 new bit is exposed in the mask - so everything // in the old table ends up on 1 of two lists in the new table; a hi and a // lo list depending on the value of the bit. void Dict::doubhash(void) { uint oldsize = _size; _size <<= 1; // Double in size _bin = (bucket*)_arena->Arealloc(_bin, sizeof(bucket) * oldsize, sizeof(bucket) * _size); memset((void*)(&_bin[oldsize]), 0, oldsize * sizeof(bucket)); // Rehash things to spread into new table for (uint i = 0; i < oldsize; i++) { // For complete OLD table do bucket *b = &_bin[i]; // Handy shortcut for _bin[i] if (!b->_keyvals) continue; // Skip empties fast bucket *nb = &_bin[i+oldsize]; // New bucket shortcut uint j = b->_max; // Trim new bucket to nearest power of 2 while (j > b->_cnt) { j >>= 1; } // above old bucket _cnt if (!j) { j = 1; } // Handle zero-sized buckets nb->_max = j << 1; // Allocate worst case space for key-value pairs nb->_keyvals = (void**)_arena->Amalloc_4(sizeof(void *) * nb->_max * 2); uint nbcnt = 0; for (j = 0; j < b->_cnt; ) { // Rehash all keys in this bucket void *key = b->_keyvals[j + j]; if ((_hash(key) & (_size-1)) != i) { // Moving to hi bucket? nb->_keyvals[nbcnt + nbcnt] = key; nb->_keyvals[nbcnt + nbcnt + 1] = b->_keyvals[j + j + 1]; nb->_cnt = nbcnt = nbcnt + 1; b->_cnt--; // Remove key/value from lo bucket b->_keyvals[j + j] = b->_keyvals[b->_cnt + b->_cnt]; b->_keyvals[j + j + 1] = b->_keyvals[b->_cnt + b->_cnt + 1]; // Don't increment j, hash compacted element also. } else { j++; // Iterate. } } // End of for all key-value pairs in bucket } // End of for all buckets } //------------------------------Dict----------------------------------------- // Deep copy a dictionary. Dict::Dict( const Dict &d ) : ResourceObj(d), _arena(d._arena), _size(d._size), _cnt(d._cnt), _hash(d._hash), _cmp(d._cmp) { _bin = (bucket*)_arena->Amalloc_4(sizeof(bucket)*_size); memcpy( (void*)_bin, (void*)d._bin, sizeof(bucket)*_size ); for( uint i=0; i<_size; i++ ) { if( !_bin[i]._keyvals ) continue; _bin[i]._keyvals=(void**)_arena->Amalloc_4( sizeof(void *)*_bin[i]._max*2); memcpy( _bin[i]._keyvals, d._bin[i]._keyvals,_bin[i]._cnt*2*sizeof(void*)); } } //------------------------------Dict----------------------------------------- // Deep copy a dictionary. Dict &Dict::operator =( const Dict &d ) { if( _size < d._size ) { // If must have more buckets _arena = d._arena; _bin = (bucket*)_arena->Arealloc( _bin, sizeof(bucket)*_size, sizeof(bucket)*d._size ); memset( (void*)(&_bin[_size]), 0, (d._size-_size)*sizeof(bucket) ); _size = d._size; } uint i; for( i=0; i<_size; i++ ) // All buckets are empty _bin[i]._cnt = 0; // But leave bucket allocations alone _cnt = d._cnt; *(Hash*)(&_hash) = d._hash; *(CmpKey*)(&_cmp) = d._cmp; for( i=0; i<_size; i++ ) { bucket *b = &d._bin[i]; // Shortcut to source bucket for( uint j=0; j_cnt; j++ ) Insert( b->_keyvals[j+j], b->_keyvals[j+j+1] ); } return *this; } //------------------------------Insert---------------------------------------- // Insert or replace a key/value pair in the given dictionary. If the // dictionary is too full, it's size is doubled. The prior value being // replaced is returned (NULL if this is a 1st insertion of that key). If // an old value is found, it's swapped with the prior key-value pair on the // list. This moves a commonly searched-for value towards the list head. void *Dict::Insert(void *key, void *val, bool replace) { uint hash = _hash( key ); // Get hash key uint i = hash & (_size-1); // Get hash key, corrected for size bucket *b = &_bin[i]; // Handy shortcut for( uint j=0; j_cnt; j++ ) { if( !_cmp(key,b->_keyvals[j+j]) ) { if (!replace) { return b->_keyvals[j+j+1]; } else { void *prior = b->_keyvals[j+j+1]; b->_keyvals[j+j ] = key; // Insert current key-value b->_keyvals[j+j+1] = val; return prior; // Return prior } } } if( ++_cnt > _size ) { // Hash table is full doubhash(); // Grow whole table if too full i = hash & (_size-1); // Rehash b = &_bin[i]; // Handy shortcut } if( b->_cnt == b->_max ) { // Must grow bucket? if( !b->_keyvals ) { b->_max = 2; // Initial bucket size b->_keyvals = (void**)_arena->Amalloc_4(sizeof(void*) * b->_max * 2); } else { b->_keyvals = (void**)_arena->Arealloc(b->_keyvals, sizeof(void*) * b->_max * 2, sizeof(void*) * b->_max * 4); b->_max <<= 1; // Double bucket } } b->_keyvals[b->_cnt+b->_cnt ] = key; b->_keyvals[b->_cnt+b->_cnt+1] = val; b->_cnt++; return NULL; // Nothing found prior } //------------------------------Delete--------------------------------------- // Find & remove a value from dictionary. Return old value. void *Dict::Delete(void *key) { uint i = _hash( key ) & (_size-1); // Get hash key, corrected for size bucket *b = &_bin[i]; // Handy shortcut for( uint j=0; j_cnt; j++ ) if( !_cmp(key,b->_keyvals[j+j]) ) { void *prior = b->_keyvals[j+j+1]; b->_cnt--; // Remove key/value from lo bucket b->_keyvals[j+j ] = b->_keyvals[b->_cnt+b->_cnt ]; b->_keyvals[j+j+1] = b->_keyvals[b->_cnt+b->_cnt+1]; _cnt--; // One less thing in table return prior; } return NULL; } //------------------------------FindDict------------------------------------- // Find a key-value pair in the given dictionary. If not found, return NULL. // If found, move key-value pair towards head of list. void *Dict::operator [](const void *key) const { uint i = _hash( key ) & (_size-1); // Get hash key, corrected for size bucket *b = &_bin[i]; // Handy shortcut for( uint j=0; j_cnt; j++ ) if( !_cmp(key,b->_keyvals[j+j]) ) return b->_keyvals[j+j+1]; return NULL; } //------------------------------CmpDict-------------------------------------- // CmpDict compares two dictionaries; they must have the same keys (their // keys must match using CmpKey) and they must have the same values (pointer // comparison). If so 1 is returned, if not 0 is returned. int32_t Dict::operator ==(const Dict &d2) const { if( _cnt != d2._cnt ) return 0; if( _hash != d2._hash ) return 0; if( _cmp != d2._cmp ) return 0; for( uint i=0; i < _size; i++) { // For complete hash table do bucket *b = &_bin[i]; // Handy shortcut if( b->_cnt != d2._bin[i]._cnt ) return 0; if( memcmp(b->_keyvals, d2._bin[i]._keyvals, b->_cnt*2*sizeof(void*) ) ) return 0; // Key-value pairs must match } return 1; // All match, is OK } //------------------------------print------------------------------------------ // Handier print routine void Dict::print() { DictI i(this); // Moved definition in iterator here because of g++. tty->print("Dict@" INTPTR_FORMAT "[%d] = {", p2i(this), _cnt); for( ; i.test(); ++i ) { tty->print("(" INTPTR_FORMAT "," INTPTR_FORMAT "),", p2i(i._key), p2i(i._value)); } tty->print_cr("}"); } //------------------------------Hashing Functions---------------------------- // Convert string to hash key. This algorithm implements a universal hash // function with the multipliers frozen (ok, so it's not universal). The // multipliers (and allowable characters) are all odd, so the resultant sum // is odd - guaranteed not divisible by any power of two, so the hash tables // can be any power of two with good results. Also, I choose multipliers // that have only 2 bits set (the low is always set to be odd) so // multiplication requires only shifts and adds. Characters are required to // be in the range 0-127 (I double & add 1 to force oddness). Keys are // limited to MAXID characters in length. Experimental evidence on 150K of // C text shows excellent spreading of values for any size hash table. int hashstr(const void *t) { char c, k = 0; int32_t sum = 0; const char *s = (const char *)t; while( ((c = *s++) != '\0') && (k < MAXID-1) ) { // Get characters till null or MAXID-1 c = (c<<1)+1; // Characters are always odd! sum += c + (c<> 1); // Hash key, un-modulo'd table size } //------------------------------hashptr-------------------------------------- // Slimey cheap hash function; no guaranteed performance. Better than the // default for pointers, especially on MS-DOS machines. int hashptr(const void *key) { return ((intptr_t)key >> 2); } // Slimey cheap hash function; no guaranteed performance. int hashkey(const void *key) { return (intptr_t)key; } //------------------------------Key Comparator Functions--------------------- int32_t cmpstr(const void *k1, const void *k2) { return strcmp((const char *)k1,(const char *)k2); } // Cheap key comparator. int32_t cmpkey(const void *key1, const void *key2) { if (key1 == key2) return 0; intptr_t delta = (intptr_t)key1 - (intptr_t)key2; if (delta > 0) return 1; return -1; } //============================================================================= //------------------------------reset------------------------------------------ // Create an iterator and initialize the first variables. void DictI::reset( const Dict *dict ) { _d = dict; // The dictionary _i = (uint)-1; // Before the first bin _j = 0; // Nothing left in the current bin ++(*this); // Step to first real value } //------------------------------next------------------------------------------- // Find the next key-value pair in the dictionary, or return a NULL key and // value. void DictI::operator ++(void) { if( _j-- ) { // Still working in current bin? _key = _d->_bin[_i]._keyvals[_j+_j]; _value = _d->_bin[_i]._keyvals[_j+_j+1]; return; } while( ++_i < _d->_size ) { // Else scan for non-zero bucket _j = _d->_bin[_i]._cnt; if( !_j ) continue; _j--; _key = _d->_bin[_i]._keyvals[_j+_j]; _value = _d->_bin[_i]._keyvals[_j+_j+1]; return; } _key = _value = NULL; }