1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/linkResolver.hpp"
  35 #include "interpreter/oopMapCache.hpp"
  36 #include "jvmtifiles/jvmtiEnv.hpp"
  37 #include "memory/gcLocker.inline.hpp"
  38 #include "memory/metaspaceShared.hpp"
  39 #include "memory/oopFactory.hpp"
  40 #include "memory/universe.inline.hpp"
  41 #include "oops/instanceKlass.hpp"
  42 #include "oops/objArrayOop.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "oops/symbol.hpp"
  45 #include "prims/jvm_misc.hpp"
  46 #include "prims/jvmtiExport.hpp"
  47 #include "prims/jvmtiThreadState.hpp"
  48 #include "prims/privilegedStack.hpp"
  49 #include "runtime/arguments.hpp"
  50 #include "runtime/atomic.inline.hpp"
  51 #include "runtime/biasedLocking.hpp"
  52 #include "runtime/deoptimization.hpp"
  53 #include "runtime/fprofiler.hpp"
  54 #include "runtime/frame.inline.hpp"
  55 #include "runtime/init.hpp"
  56 #include "runtime/interfaceSupport.hpp"
  57 #include "runtime/java.hpp"
  58 #include "runtime/javaCalls.hpp"
  59 #include "runtime/jniPeriodicChecker.hpp"
  60 #include "runtime/memprofiler.hpp"
  61 #include "runtime/mutexLocker.hpp"
  62 #include "runtime/objectMonitor.hpp"
  63 #include "runtime/orderAccess.inline.hpp"
  64 #include "runtime/osThread.hpp"
  65 #include "runtime/safepoint.hpp"
  66 #include "runtime/sharedRuntime.hpp"
  67 #include "runtime/statSampler.hpp"
  68 #include "runtime/stubRoutines.hpp"
  69 #include "runtime/sweeper.hpp"
  70 #include "runtime/task.hpp"
  71 #include "runtime/thread.inline.hpp"
  72 #include "runtime/threadCritical.hpp"
  73 #include "runtime/threadLocalStorage.hpp"
  74 #include "runtime/vframe.hpp"
  75 #include "runtime/vframeArray.hpp"
  76 #include "runtime/vframe_hp.hpp"
  77 #include "runtime/vmThread.hpp"
  78 #include "runtime/vm_operations.hpp"
  79 #include "runtime/vm_version.hpp"
  80 #include "services/attachListener.hpp"
  81 #include "services/management.hpp"
  82 #include "services/memTracker.hpp"
  83 #include "services/threadService.hpp"
  84 #include "trace/tracing.hpp"
  85 #include "trace/traceMacros.hpp"
  86 #include "utilities/defaultStream.hpp"
  87 #include "utilities/dtrace.hpp"
  88 #include "utilities/events.hpp"
  89 #include "utilities/preserveException.hpp"
  90 #include "utilities/macros.hpp"
  91 #if INCLUDE_ALL_GCS
  92 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  93 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  94 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
  95 #endif // INCLUDE_ALL_GCS
  96 #ifdef COMPILER1
  97 #include "c1/c1_Compiler.hpp"
  98 #endif
  99 #ifdef COMPILER2
 100 #include "opto/c2compiler.hpp"
 101 #include "opto/idealGraphPrinter.hpp"
 102 #endif
 103 #if INCLUDE_RTM_OPT
 104 #include "runtime/rtmLocking.hpp"
 105 #endif
 106 
 107 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 108 
 109 #ifdef DTRACE_ENABLED
 110 
 111 // Only bother with this argument setup if dtrace is available
 112 
 113   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 114   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 115 
 116   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 117     {                                                                      \
 118       ResourceMark rm(this);                                               \
 119       int len = 0;                                                         \
 120       const char* name = (javathread)->get_thread_name();                  \
 121       len = strlen(name);                                                  \
 122       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 123         (char *) name, len,                                                \
 124         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 125         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 126         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 127     }
 128 
 129 #else //  ndef DTRACE_ENABLED
 130 
 131   #define DTRACE_THREAD_PROBE(probe, javathread)
 132 
 133 #endif // ndef DTRACE_ENABLED
 134 
 135 
 136 // Class hierarchy
 137 // - Thread
 138 //   - VMThread
 139 //   - WatcherThread
 140 //   - ConcurrentMarkSweepThread
 141 //   - JavaThread
 142 //     - CompilerThread
 143 
 144 // ======= Thread ========
 145 // Support for forcing alignment of thread objects for biased locking
 146 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 147   if (UseBiasedLocking) {
 148     const int alignment = markOopDesc::biased_lock_alignment;
 149     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 150     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 151                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 152                                                          AllocFailStrategy::RETURN_NULL);
 153     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 154     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 155            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 156            "JavaThread alignment code overflowed allocated storage");
 157     if (TraceBiasedLocking) {
 158       if (aligned_addr != real_malloc_addr) {
 159         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 160                       real_malloc_addr, aligned_addr);
 161       }
 162     }
 163     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 164     return aligned_addr;
 165   } else {
 166     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 167                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 168   }
 169 }
 170 
 171 void Thread::operator delete(void* p) {
 172   if (UseBiasedLocking) {
 173     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 174     FreeHeap(real_malloc_addr, mtThread);
 175   } else {
 176     FreeHeap(p, mtThread);
 177   }
 178 }
 179 
 180 
 181 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 182 // JavaThread
 183 
 184 
 185 Thread::Thread() {
 186   // stack and get_thread
 187   set_stack_base(NULL);
 188   set_stack_size(0);
 189   set_self_raw_id(0);
 190   set_lgrp_id(-1);
 191 
 192   // allocated data structures
 193   set_osthread(NULL);
 194   set_resource_area(new (mtThread)ResourceArea());
 195   DEBUG_ONLY(_current_resource_mark = NULL;)
 196   set_handle_area(new (mtThread) HandleArea(NULL));
 197   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 198   set_active_handles(NULL);
 199   set_free_handle_block(NULL);
 200   set_last_handle_mark(NULL);
 201 
 202   // This initial value ==> never claimed.
 203   _oops_do_parity = 0;
 204 
 205   _metadata_on_stack_buffer = NULL;
 206 
 207   // the handle mark links itself to last_handle_mark
 208   new HandleMark(this);
 209 
 210   // plain initialization
 211   debug_only(_owned_locks = NULL;)
 212   debug_only(_allow_allocation_count = 0;)
 213   NOT_PRODUCT(_allow_safepoint_count = 0;)
 214   NOT_PRODUCT(_skip_gcalot = false;)
 215   _jvmti_env_iteration_count = 0;
 216   set_allocated_bytes(0);
 217   _vm_operation_started_count = 0;
 218   _vm_operation_completed_count = 0;
 219   _current_pending_monitor = NULL;
 220   _current_pending_monitor_is_from_java = true;
 221   _current_waiting_monitor = NULL;
 222   _num_nested_signal = 0;
 223   omFreeList = NULL;
 224   omFreeCount = 0;
 225   omFreeProvision = 32;
 226   omInUseList = NULL;
 227   omInUseCount = 0;
 228 
 229 #ifdef ASSERT
 230   _visited_for_critical_count = false;
 231 #endif
 232 
 233   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 234   _suspend_flags = 0;
 235 
 236   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 237   _hashStateX = os::random();
 238   _hashStateY = 842502087;
 239   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 240   _hashStateW = 273326509;
 241 
 242   _OnTrap   = 0;
 243   _schedctl = NULL;
 244   _Stalled  = 0;
 245   _TypeTag  = 0x2BAD;
 246 
 247   // Many of the following fields are effectively final - immutable
 248   // Note that nascent threads can't use the Native Monitor-Mutex
 249   // construct until the _MutexEvent is initialized ...
 250   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 251   // we might instead use a stack of ParkEvents that we could provision on-demand.
 252   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 253   // and ::Release()
 254   _ParkEvent   = ParkEvent::Allocate(this);
 255   _SleepEvent  = ParkEvent::Allocate(this);
 256   _MutexEvent  = ParkEvent::Allocate(this);
 257   _MuxEvent    = ParkEvent::Allocate(this);
 258 
 259 #ifdef CHECK_UNHANDLED_OOPS
 260   if (CheckUnhandledOops) {
 261     _unhandled_oops = new UnhandledOops(this);
 262   }
 263 #endif // CHECK_UNHANDLED_OOPS
 264 #ifdef ASSERT
 265   if (UseBiasedLocking) {
 266     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 267     assert(this == _real_malloc_address ||
 268            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 269            "bug in forced alignment of thread objects");
 270   }
 271 #endif // ASSERT
 272 }
 273 
 274 void Thread::initialize_thread_local_storage() {
 275   // Note: Make sure this method only calls
 276   // non-blocking operations. Otherwise, it might not work
 277   // with the thread-startup/safepoint interaction.
 278 
 279   // During Java thread startup, safepoint code should allow this
 280   // method to complete because it may need to allocate memory to
 281   // store information for the new thread.
 282 
 283   // initialize structure dependent on thread local storage
 284   ThreadLocalStorage::set_thread(this);
 285 }
 286 
 287 void Thread::record_stack_base_and_size() {
 288   set_stack_base(os::current_stack_base());
 289   set_stack_size(os::current_stack_size());
 290   if (is_Java_thread()) {
 291     ((JavaThread*) this)->set_stack_overflow_limit();
 292   }
 293   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 294   // in initialize_thread(). Without the adjustment, stack size is
 295   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 296   // So far, only Solaris has real implementation of initialize_thread().
 297   //
 298   // set up any platform-specific state.
 299   os::initialize_thread(this);
 300 
 301 #if INCLUDE_NMT
 302   // record thread's native stack, stack grows downward
 303   address stack_low_addr = stack_base() - stack_size();
 304   MemTracker::record_thread_stack(stack_low_addr, stack_size());
 305 #endif // INCLUDE_NMT
 306 }
 307 
 308 
 309 Thread::~Thread() {
 310   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 311   ObjectSynchronizer::omFlush(this);
 312 
 313   EVENT_THREAD_DESTRUCT(this);
 314 
 315   // stack_base can be NULL if the thread is never started or exited before
 316   // record_stack_base_and_size called. Although, we would like to ensure
 317   // that all started threads do call record_stack_base_and_size(), there is
 318   // not proper way to enforce that.
 319 #if INCLUDE_NMT
 320   if (_stack_base != NULL) {
 321     address low_stack_addr = stack_base() - stack_size();
 322     MemTracker::release_thread_stack(low_stack_addr, stack_size());
 323 #ifdef ASSERT
 324     set_stack_base(NULL);
 325 #endif
 326   }
 327 #endif // INCLUDE_NMT
 328 
 329   // deallocate data structures
 330   delete resource_area();
 331   // since the handle marks are using the handle area, we have to deallocated the root
 332   // handle mark before deallocating the thread's handle area,
 333   assert(last_handle_mark() != NULL, "check we have an element");
 334   delete last_handle_mark();
 335   assert(last_handle_mark() == NULL, "check we have reached the end");
 336 
 337   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 338   // We NULL out the fields for good hygiene.
 339   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 340   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 341   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 342   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 343 
 344   delete handle_area();
 345   delete metadata_handles();
 346 
 347   // osthread() can be NULL, if creation of thread failed.
 348   if (osthread() != NULL) os::free_thread(osthread());
 349 
 350   delete _SR_lock;
 351 
 352   // clear thread local storage if the Thread is deleting itself
 353   if (this == Thread::current()) {
 354     ThreadLocalStorage::set_thread(NULL);
 355   } else {
 356     // In the case where we're not the current thread, invalidate all the
 357     // caches in case some code tries to get the current thread or the
 358     // thread that was destroyed, and gets stale information.
 359     ThreadLocalStorage::invalidate_all();
 360   }
 361   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 362 }
 363 
 364 // NOTE: dummy function for assertion purpose.
 365 void Thread::run() {
 366   ShouldNotReachHere();
 367 }
 368 
 369 #ifdef ASSERT
 370 // Private method to check for dangling thread pointer
 371 void check_for_dangling_thread_pointer(Thread *thread) {
 372   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 373          "possibility of dangling Thread pointer");
 374 }
 375 #endif
 376 
 377 
 378 #ifndef PRODUCT
 379 // Tracing method for basic thread operations
 380 void Thread::trace(const char* msg, const Thread* const thread) {
 381   if (!TraceThreadEvents) return;
 382   ResourceMark rm;
 383   ThreadCritical tc;
 384   const char *name = "non-Java thread";
 385   int prio = -1;
 386   if (thread->is_Java_thread()
 387       && !thread->is_Compiler_thread()) {
 388     // The Threads_lock must be held to get information about
 389     // this thread but may not be in some situations when
 390     // tracing  thread events.
 391     bool release_Threads_lock = false;
 392     if (!Threads_lock->owned_by_self()) {
 393       Threads_lock->lock();
 394       release_Threads_lock = true;
 395     }
 396     JavaThread* jt = (JavaThread *)thread;
 397     name = (char *)jt->get_thread_name();
 398     oop thread_oop = jt->threadObj();
 399     if (thread_oop != NULL) {
 400       prio = java_lang_Thread::priority(thread_oop);
 401     }
 402     if (release_Threads_lock) {
 403       Threads_lock->unlock();
 404     }
 405   }
 406   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 407 }
 408 #endif
 409 
 410 
 411 ThreadPriority Thread::get_priority(const Thread* const thread) {
 412   trace("get priority", thread);
 413   ThreadPriority priority;
 414   // Can return an error!
 415   (void)os::get_priority(thread, priority);
 416   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 417   return priority;
 418 }
 419 
 420 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 421   trace("set priority", thread);
 422   debug_only(check_for_dangling_thread_pointer(thread);)
 423   // Can return an error!
 424   (void)os::set_priority(thread, priority);
 425 }
 426 
 427 
 428 void Thread::start(Thread* thread) {
 429   trace("start", thread);
 430   // Start is different from resume in that its safety is guaranteed by context or
 431   // being called from a Java method synchronized on the Thread object.
 432   if (!DisableStartThread) {
 433     if (thread->is_Java_thread()) {
 434       // Initialize the thread state to RUNNABLE before starting this thread.
 435       // Can not set it after the thread started because we do not know the
 436       // exact thread state at that time. It could be in MONITOR_WAIT or
 437       // in SLEEPING or some other state.
 438       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 439                                           java_lang_Thread::RUNNABLE);
 440     }
 441     os::start_thread(thread);
 442   }
 443 }
 444 
 445 // Enqueue a VM_Operation to do the job for us - sometime later
 446 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 447   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 448   VMThread::execute(vm_stop);
 449 }
 450 
 451 
 452 // Check if an external suspend request has completed (or has been
 453 // cancelled). Returns true if the thread is externally suspended and
 454 // false otherwise.
 455 //
 456 // The bits parameter returns information about the code path through
 457 // the routine. Useful for debugging:
 458 //
 459 // set in is_ext_suspend_completed():
 460 // 0x00000001 - routine was entered
 461 // 0x00000010 - routine return false at end
 462 // 0x00000100 - thread exited (return false)
 463 // 0x00000200 - suspend request cancelled (return false)
 464 // 0x00000400 - thread suspended (return true)
 465 // 0x00001000 - thread is in a suspend equivalent state (return true)
 466 // 0x00002000 - thread is native and walkable (return true)
 467 // 0x00004000 - thread is native_trans and walkable (needed retry)
 468 //
 469 // set in wait_for_ext_suspend_completion():
 470 // 0x00010000 - routine was entered
 471 // 0x00020000 - suspend request cancelled before loop (return false)
 472 // 0x00040000 - thread suspended before loop (return true)
 473 // 0x00080000 - suspend request cancelled in loop (return false)
 474 // 0x00100000 - thread suspended in loop (return true)
 475 // 0x00200000 - suspend not completed during retry loop (return false)
 476 
 477 // Helper class for tracing suspend wait debug bits.
 478 //
 479 // 0x00000100 indicates that the target thread exited before it could
 480 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 481 // 0x00080000 each indicate a cancelled suspend request so they don't
 482 // count as wait failures either.
 483 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 484 
 485 class TraceSuspendDebugBits : public StackObj {
 486  private:
 487   JavaThread * jt;
 488   bool         is_wait;
 489   bool         called_by_wait;  // meaningful when !is_wait
 490   uint32_t *   bits;
 491 
 492  public:
 493   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 494                         uint32_t *_bits) {
 495     jt             = _jt;
 496     is_wait        = _is_wait;
 497     called_by_wait = _called_by_wait;
 498     bits           = _bits;
 499   }
 500 
 501   ~TraceSuspendDebugBits() {
 502     if (!is_wait) {
 503 #if 1
 504       // By default, don't trace bits for is_ext_suspend_completed() calls.
 505       // That trace is very chatty.
 506       return;
 507 #else
 508       if (!called_by_wait) {
 509         // If tracing for is_ext_suspend_completed() is enabled, then only
 510         // trace calls to it from wait_for_ext_suspend_completion()
 511         return;
 512       }
 513 #endif
 514     }
 515 
 516     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 517       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 518         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 519         ResourceMark rm;
 520 
 521         tty->print_cr(
 522                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 523                       jt->get_thread_name(), *bits);
 524 
 525         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 526       }
 527     }
 528   }
 529 };
 530 #undef DEBUG_FALSE_BITS
 531 
 532 
 533 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 534                                           uint32_t *bits) {
 535   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 536 
 537   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 538   bool do_trans_retry;           // flag to force the retry
 539 
 540   *bits |= 0x00000001;
 541 
 542   do {
 543     do_trans_retry = false;
 544 
 545     if (is_exiting()) {
 546       // Thread is in the process of exiting. This is always checked
 547       // first to reduce the risk of dereferencing a freed JavaThread.
 548       *bits |= 0x00000100;
 549       return false;
 550     }
 551 
 552     if (!is_external_suspend()) {
 553       // Suspend request is cancelled. This is always checked before
 554       // is_ext_suspended() to reduce the risk of a rogue resume
 555       // confusing the thread that made the suspend request.
 556       *bits |= 0x00000200;
 557       return false;
 558     }
 559 
 560     if (is_ext_suspended()) {
 561       // thread is suspended
 562       *bits |= 0x00000400;
 563       return true;
 564     }
 565 
 566     // Now that we no longer do hard suspends of threads running
 567     // native code, the target thread can be changing thread state
 568     // while we are in this routine:
 569     //
 570     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 571     //
 572     // We save a copy of the thread state as observed at this moment
 573     // and make our decision about suspend completeness based on the
 574     // copy. This closes the race where the thread state is seen as
 575     // _thread_in_native_trans in the if-thread_blocked check, but is
 576     // seen as _thread_blocked in if-thread_in_native_trans check.
 577     JavaThreadState save_state = thread_state();
 578 
 579     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 580       // If the thread's state is _thread_blocked and this blocking
 581       // condition is known to be equivalent to a suspend, then we can
 582       // consider the thread to be externally suspended. This means that
 583       // the code that sets _thread_blocked has been modified to do
 584       // self-suspension if the blocking condition releases. We also
 585       // used to check for CONDVAR_WAIT here, but that is now covered by
 586       // the _thread_blocked with self-suspension check.
 587       //
 588       // Return true since we wouldn't be here unless there was still an
 589       // external suspend request.
 590       *bits |= 0x00001000;
 591       return true;
 592     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 593       // Threads running native code will self-suspend on native==>VM/Java
 594       // transitions. If its stack is walkable (should always be the case
 595       // unless this function is called before the actual java_suspend()
 596       // call), then the wait is done.
 597       *bits |= 0x00002000;
 598       return true;
 599     } else if (!called_by_wait && !did_trans_retry &&
 600                save_state == _thread_in_native_trans &&
 601                frame_anchor()->walkable()) {
 602       // The thread is transitioning from thread_in_native to another
 603       // thread state. check_safepoint_and_suspend_for_native_trans()
 604       // will force the thread to self-suspend. If it hasn't gotten
 605       // there yet we may have caught the thread in-between the native
 606       // code check above and the self-suspend. Lucky us. If we were
 607       // called by wait_for_ext_suspend_completion(), then it
 608       // will be doing the retries so we don't have to.
 609       //
 610       // Since we use the saved thread state in the if-statement above,
 611       // there is a chance that the thread has already transitioned to
 612       // _thread_blocked by the time we get here. In that case, we will
 613       // make a single unnecessary pass through the logic below. This
 614       // doesn't hurt anything since we still do the trans retry.
 615 
 616       *bits |= 0x00004000;
 617 
 618       // Once the thread leaves thread_in_native_trans for another
 619       // thread state, we break out of this retry loop. We shouldn't
 620       // need this flag to prevent us from getting back here, but
 621       // sometimes paranoia is good.
 622       did_trans_retry = true;
 623 
 624       // We wait for the thread to transition to a more usable state.
 625       for (int i = 1; i <= SuspendRetryCount; i++) {
 626         // We used to do an "os::yield_all(i)" call here with the intention
 627         // that yielding would increase on each retry. However, the parameter
 628         // is ignored on Linux which means the yield didn't scale up. Waiting
 629         // on the SR_lock below provides a much more predictable scale up for
 630         // the delay. It also provides a simple/direct point to check for any
 631         // safepoint requests from the VMThread
 632 
 633         // temporarily drops SR_lock while doing wait with safepoint check
 634         // (if we're a JavaThread - the WatcherThread can also call this)
 635         // and increase delay with each retry
 636         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 637 
 638         // check the actual thread state instead of what we saved above
 639         if (thread_state() != _thread_in_native_trans) {
 640           // the thread has transitioned to another thread state so
 641           // try all the checks (except this one) one more time.
 642           do_trans_retry = true;
 643           break;
 644         }
 645       } // end retry loop
 646 
 647 
 648     }
 649   } while (do_trans_retry);
 650 
 651   *bits |= 0x00000010;
 652   return false;
 653 }
 654 
 655 // Wait for an external suspend request to complete (or be cancelled).
 656 // Returns true if the thread is externally suspended and false otherwise.
 657 //
 658 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 659                                                  uint32_t *bits) {
 660   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 661                              false /* !called_by_wait */, bits);
 662 
 663   // local flag copies to minimize SR_lock hold time
 664   bool is_suspended;
 665   bool pending;
 666   uint32_t reset_bits;
 667 
 668   // set a marker so is_ext_suspend_completed() knows we are the caller
 669   *bits |= 0x00010000;
 670 
 671   // We use reset_bits to reinitialize the bits value at the top of
 672   // each retry loop. This allows the caller to make use of any
 673   // unused bits for their own marking purposes.
 674   reset_bits = *bits;
 675 
 676   {
 677     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 678     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 679                                             delay, bits);
 680     pending = is_external_suspend();
 681   }
 682   // must release SR_lock to allow suspension to complete
 683 
 684   if (!pending) {
 685     // A cancelled suspend request is the only false return from
 686     // is_ext_suspend_completed() that keeps us from entering the
 687     // retry loop.
 688     *bits |= 0x00020000;
 689     return false;
 690   }
 691 
 692   if (is_suspended) {
 693     *bits |= 0x00040000;
 694     return true;
 695   }
 696 
 697   for (int i = 1; i <= retries; i++) {
 698     *bits = reset_bits;  // reinit to only track last retry
 699 
 700     // We used to do an "os::yield_all(i)" call here with the intention
 701     // that yielding would increase on each retry. However, the parameter
 702     // is ignored on Linux which means the yield didn't scale up. Waiting
 703     // on the SR_lock below provides a much more predictable scale up for
 704     // the delay. It also provides a simple/direct point to check for any
 705     // safepoint requests from the VMThread
 706 
 707     {
 708       MutexLocker ml(SR_lock());
 709       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 710       // can also call this)  and increase delay with each retry
 711       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 712 
 713       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 714                                               delay, bits);
 715 
 716       // It is possible for the external suspend request to be cancelled
 717       // (by a resume) before the actual suspend operation is completed.
 718       // Refresh our local copy to see if we still need to wait.
 719       pending = is_external_suspend();
 720     }
 721 
 722     if (!pending) {
 723       // A cancelled suspend request is the only false return from
 724       // is_ext_suspend_completed() that keeps us from staying in the
 725       // retry loop.
 726       *bits |= 0x00080000;
 727       return false;
 728     }
 729 
 730     if (is_suspended) {
 731       *bits |= 0x00100000;
 732       return true;
 733     }
 734   } // end retry loop
 735 
 736   // thread did not suspend after all our retries
 737   *bits |= 0x00200000;
 738   return false;
 739 }
 740 
 741 #ifndef PRODUCT
 742 void JavaThread::record_jump(address target, address instr, const char* file,
 743                              int line) {
 744 
 745   // This should not need to be atomic as the only way for simultaneous
 746   // updates is via interrupts. Even then this should be rare or non-existent
 747   // and we don't care that much anyway.
 748 
 749   int index = _jmp_ring_index;
 750   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 751   _jmp_ring[index]._target = (intptr_t) target;
 752   _jmp_ring[index]._instruction = (intptr_t) instr;
 753   _jmp_ring[index]._file = file;
 754   _jmp_ring[index]._line = line;
 755 }
 756 #endif // PRODUCT
 757 
 758 // Called by flat profiler
 759 // Callers have already called wait_for_ext_suspend_completion
 760 // The assertion for that is currently too complex to put here:
 761 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 762   bool gotframe = false;
 763   // self suspension saves needed state.
 764   if (has_last_Java_frame() && _anchor.walkable()) {
 765     *_fr = pd_last_frame();
 766     gotframe = true;
 767   }
 768   return gotframe;
 769 }
 770 
 771 void Thread::interrupt(Thread* thread) {
 772   trace("interrupt", thread);
 773   debug_only(check_for_dangling_thread_pointer(thread);)
 774   os::interrupt(thread);
 775 }
 776 
 777 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 778   trace("is_interrupted", thread);
 779   debug_only(check_for_dangling_thread_pointer(thread);)
 780   // Note:  If clear_interrupted==false, this simply fetches and
 781   // returns the value of the field osthread()->interrupted().
 782   return os::is_interrupted(thread, clear_interrupted);
 783 }
 784 
 785 
 786 // GC Support
 787 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 788   jint thread_parity = _oops_do_parity;
 789   if (thread_parity != strong_roots_parity) {
 790     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 791     if (res == thread_parity) {
 792       return true;
 793     } else {
 794       guarantee(res == strong_roots_parity, "Or else what?");
 795       assert(SharedHeap::heap()->workers()->active_workers() > 0,
 796              "Should only fail when parallel.");
 797       return false;
 798     }
 799   }
 800   assert(SharedHeap::heap()->workers()->active_workers() > 0,
 801          "Should only fail when parallel.");
 802   return false;
 803 }
 804 
 805 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
 806   active_handles()->oops_do(f);
 807   // Do oop for ThreadShadow
 808   f->do_oop((oop*)&_pending_exception);
 809   handle_area()->oops_do(f);
 810 }
 811 
 812 void Thread::nmethods_do(CodeBlobClosure* cf) {
 813   // no nmethods in a generic thread...
 814 }
 815 
 816 void Thread::metadata_do(void f(Metadata*)) {
 817   if (metadata_handles() != NULL) {
 818     for (int i = 0; i< metadata_handles()->length(); i++) {
 819       f(metadata_handles()->at(i));
 820     }
 821   }
 822 }
 823 
 824 void Thread::print_on(outputStream* st) const {
 825   // get_priority assumes osthread initialized
 826   if (osthread() != NULL) {
 827     int os_prio;
 828     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 829       st->print("os_prio=%d ", os_prio);
 830     }
 831     st->print("tid=" INTPTR_FORMAT " ", this);
 832     ext().print_on(st);
 833     osthread()->print_on(st);
 834   }
 835   debug_only(if (WizardMode) print_owned_locks_on(st);)
 836 }
 837 
 838 // Thread::print_on_error() is called by fatal error handler. Don't use
 839 // any lock or allocate memory.
 840 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 841   if (is_VM_thread())                 st->print("VMThread");
 842   else if (is_Compiler_thread())      st->print("CompilerThread");
 843   else if (is_Java_thread())          st->print("JavaThread");
 844   else if (is_GC_task_thread())       st->print("GCTaskThread");
 845   else if (is_Watcher_thread())       st->print("WatcherThread");
 846   else if (is_ConcurrentGC_thread())  st->print("ConcurrentGCThread");
 847   else                                st->print("Thread");
 848 
 849   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 850             _stack_base - _stack_size, _stack_base);
 851 
 852   if (osthread()) {
 853     st->print(" [id=%d]", osthread()->thread_id());
 854   }
 855 }
 856 
 857 #ifdef ASSERT
 858 void Thread::print_owned_locks_on(outputStream* st) const {
 859   Monitor *cur = _owned_locks;
 860   if (cur == NULL) {
 861     st->print(" (no locks) ");
 862   } else {
 863     st->print_cr(" Locks owned:");
 864     while (cur) {
 865       cur->print_on(st);
 866       cur = cur->next();
 867     }
 868   }
 869 }
 870 
 871 static int ref_use_count  = 0;
 872 
 873 bool Thread::owns_locks_but_compiled_lock() const {
 874   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 875     if (cur != Compile_lock) return true;
 876   }
 877   return false;
 878 }
 879 
 880 
 881 #endif
 882 
 883 #ifndef PRODUCT
 884 
 885 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 886 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 887 // no threads which allow_vm_block's are held
 888 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 889   // Check if current thread is allowed to block at a safepoint
 890   if (!(_allow_safepoint_count == 0)) {
 891     fatal("Possible safepoint reached by thread that does not allow it");
 892   }
 893   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 894     fatal("LEAF method calling lock?");
 895   }
 896 
 897 #ifdef ASSERT
 898   if (potential_vm_operation && is_Java_thread()
 899       && !Universe::is_bootstrapping()) {
 900     // Make sure we do not hold any locks that the VM thread also uses.
 901     // This could potentially lead to deadlocks
 902     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 903       // Threads_lock is special, since the safepoint synchronization will not start before this is
 904       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 905       // since it is used to transfer control between JavaThreads and the VMThread
 906       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 907       if ((cur->allow_vm_block() &&
 908            cur != Threads_lock &&
 909            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 910            cur != VMOperationRequest_lock &&
 911            cur != VMOperationQueue_lock) ||
 912            cur->rank() == Mutex::special) {
 913         fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
 914       }
 915     }
 916   }
 917 
 918   if (GCALotAtAllSafepoints) {
 919     // We could enter a safepoint here and thus have a gc
 920     InterfaceSupport::check_gc_alot();
 921   }
 922 #endif
 923 }
 924 #endif
 925 
 926 bool Thread::is_in_stack(address adr) const {
 927   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 928   address end = os::current_stack_pointer();
 929   // Allow non Java threads to call this without stack_base
 930   if (_stack_base == NULL) return true;
 931   if (stack_base() >= adr && adr >= end) return true;
 932 
 933   return false;
 934 }
 935 
 936 
 937 bool Thread::is_in_usable_stack(address adr) const {
 938   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
 939   size_t usable_stack_size = _stack_size - stack_guard_size;
 940 
 941   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 942 }
 943 
 944 
 945 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 946 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 947 // used for compilation in the future. If that change is made, the need for these methods
 948 // should be revisited, and they should be removed if possible.
 949 
 950 bool Thread::is_lock_owned(address adr) const {
 951   return on_local_stack(adr);
 952 }
 953 
 954 bool Thread::set_as_starting_thread() {
 955   // NOTE: this must be called inside the main thread.
 956   return os::create_main_thread((JavaThread*)this);
 957 }
 958 
 959 static void initialize_class(Symbol* class_name, TRAPS) {
 960   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 961   InstanceKlass::cast(klass)->initialize(CHECK);
 962 }
 963 
 964 
 965 // Creates the initial ThreadGroup
 966 static Handle create_initial_thread_group(TRAPS) {
 967   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 968   instanceKlassHandle klass (THREAD, k);
 969 
 970   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 971   {
 972     JavaValue result(T_VOID);
 973     JavaCalls::call_special(&result,
 974                             system_instance,
 975                             klass,
 976                             vmSymbols::object_initializer_name(),
 977                             vmSymbols::void_method_signature(),
 978                             CHECK_NH);
 979   }
 980   Universe::set_system_thread_group(system_instance());
 981 
 982   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 983   {
 984     JavaValue result(T_VOID);
 985     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 986     JavaCalls::call_special(&result,
 987                             main_instance,
 988                             klass,
 989                             vmSymbols::object_initializer_name(),
 990                             vmSymbols::threadgroup_string_void_signature(),
 991                             system_instance,
 992                             string,
 993                             CHECK_NH);
 994   }
 995   return main_instance;
 996 }
 997 
 998 // Creates the initial Thread
 999 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1000                                  TRAPS) {
1001   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1002   instanceKlassHandle klass (THREAD, k);
1003   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1004 
1005   java_lang_Thread::set_thread(thread_oop(), thread);
1006   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1007   thread->set_threadObj(thread_oop());
1008 
1009   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1010 
1011   JavaValue result(T_VOID);
1012   JavaCalls::call_special(&result, thread_oop,
1013                           klass,
1014                           vmSymbols::object_initializer_name(),
1015                           vmSymbols::threadgroup_string_void_signature(),
1016                           thread_group,
1017                           string,
1018                           CHECK_NULL);
1019   return thread_oop();
1020 }
1021 
1022 static void call_initializeSystemClass(TRAPS) {
1023   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1024   instanceKlassHandle klass (THREAD, k);
1025 
1026   JavaValue result(T_VOID);
1027   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1028                          vmSymbols::void_method_signature(), CHECK);
1029 }
1030 
1031 char java_runtime_name[128] = "";
1032 char java_runtime_version[128] = "";
1033 
1034 // extract the JRE name from sun.misc.Version.java_runtime_name
1035 static const char* get_java_runtime_name(TRAPS) {
1036   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1037                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1038   fieldDescriptor fd;
1039   bool found = k != NULL &&
1040                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1041                                                         vmSymbols::string_signature(), &fd);
1042   if (found) {
1043     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1044     if (name_oop == NULL) {
1045       return NULL;
1046     }
1047     const char* name = java_lang_String::as_utf8_string(name_oop,
1048                                                         java_runtime_name,
1049                                                         sizeof(java_runtime_name));
1050     return name;
1051   } else {
1052     return NULL;
1053   }
1054 }
1055 
1056 // extract the JRE version from sun.misc.Version.java_runtime_version
1057 static const char* get_java_runtime_version(TRAPS) {
1058   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1059                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1060   fieldDescriptor fd;
1061   bool found = k != NULL &&
1062                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1063                                                         vmSymbols::string_signature(), &fd);
1064   if (found) {
1065     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1066     if (name_oop == NULL) {
1067       return NULL;
1068     }
1069     const char* name = java_lang_String::as_utf8_string(name_oop,
1070                                                         java_runtime_version,
1071                                                         sizeof(java_runtime_version));
1072     return name;
1073   } else {
1074     return NULL;
1075   }
1076 }
1077 
1078 // General purpose hook into Java code, run once when the VM is initialized.
1079 // The Java library method itself may be changed independently from the VM.
1080 static void call_postVMInitHook(TRAPS) {
1081   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1082   instanceKlassHandle klass (THREAD, k);
1083   if (klass.not_null()) {
1084     JavaValue result(T_VOID);
1085     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1086                            vmSymbols::void_method_signature(),
1087                            CHECK);
1088   }
1089 }
1090 
1091 static void reset_vm_info_property(TRAPS) {
1092   // the vm info string
1093   ResourceMark rm(THREAD);
1094   const char *vm_info = VM_Version::vm_info_string();
1095 
1096   // java.lang.System class
1097   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1098   instanceKlassHandle klass (THREAD, k);
1099 
1100   // setProperty arguments
1101   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1102   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1103 
1104   // return value
1105   JavaValue r(T_OBJECT);
1106 
1107   // public static String setProperty(String key, String value);
1108   JavaCalls::call_static(&r,
1109                          klass,
1110                          vmSymbols::setProperty_name(),
1111                          vmSymbols::string_string_string_signature(),
1112                          key_str,
1113                          value_str,
1114                          CHECK);
1115 }
1116 
1117 
1118 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name,
1119                                     bool daemon, TRAPS) {
1120   assert(thread_group.not_null(), "thread group should be specified");
1121   assert(threadObj() == NULL, "should only create Java thread object once");
1122 
1123   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1124   instanceKlassHandle klass (THREAD, k);
1125   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1126 
1127   java_lang_Thread::set_thread(thread_oop(), this);
1128   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1129   set_threadObj(thread_oop());
1130 
1131   JavaValue result(T_VOID);
1132   if (thread_name != NULL) {
1133     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1134     // Thread gets assigned specified name and null target
1135     JavaCalls::call_special(&result,
1136                             thread_oop,
1137                             klass,
1138                             vmSymbols::object_initializer_name(),
1139                             vmSymbols::threadgroup_string_void_signature(),
1140                             thread_group, // Argument 1
1141                             name,         // Argument 2
1142                             THREAD);
1143   } else {
1144     // Thread gets assigned name "Thread-nnn" and null target
1145     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1146     JavaCalls::call_special(&result,
1147                             thread_oop,
1148                             klass,
1149                             vmSymbols::object_initializer_name(),
1150                             vmSymbols::threadgroup_runnable_void_signature(),
1151                             thread_group, // Argument 1
1152                             Handle(),     // Argument 2
1153                             THREAD);
1154   }
1155 
1156 
1157   if (daemon) {
1158     java_lang_Thread::set_daemon(thread_oop());
1159   }
1160 
1161   if (HAS_PENDING_EXCEPTION) {
1162     return;
1163   }
1164 
1165   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1166   Handle threadObj(this, this->threadObj());
1167 
1168   JavaCalls::call_special(&result,
1169                           thread_group,
1170                           group,
1171                           vmSymbols::add_method_name(),
1172                           vmSymbols::thread_void_signature(),
1173                           threadObj,          // Arg 1
1174                           THREAD);
1175 
1176 
1177 }
1178 
1179 // NamedThread --  non-JavaThread subclasses with multiple
1180 // uniquely named instances should derive from this.
1181 NamedThread::NamedThread() : Thread() {
1182   _name = NULL;
1183   _processed_thread = NULL;
1184 }
1185 
1186 NamedThread::~NamedThread() {
1187   if (_name != NULL) {
1188     FREE_C_HEAP_ARRAY(char, _name, mtThread);
1189     _name = NULL;
1190   }
1191 }
1192 
1193 void NamedThread::set_name(const char* format, ...) {
1194   guarantee(_name == NULL, "Only get to set name once.");
1195   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1196   guarantee(_name != NULL, "alloc failure");
1197   va_list ap;
1198   va_start(ap, format);
1199   jio_vsnprintf(_name, max_name_len, format, ap);
1200   va_end(ap);
1201 }
1202 
1203 void NamedThread::print_on(outputStream* st) const {
1204   st->print("\"%s\" ", name());
1205   Thread::print_on(st);
1206   st->cr();
1207 }
1208 
1209 
1210 // ======= WatcherThread ========
1211 
1212 // The watcher thread exists to simulate timer interrupts.  It should
1213 // be replaced by an abstraction over whatever native support for
1214 // timer interrupts exists on the platform.
1215 
1216 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1217 bool WatcherThread::_startable = false;
1218 volatile bool  WatcherThread::_should_terminate = false;
1219 
1220 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1221   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1222   if (os::create_thread(this, os::watcher_thread)) {
1223     _watcher_thread = this;
1224 
1225     // Set the watcher thread to the highest OS priority which should not be
1226     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1227     // is created. The only normal thread using this priority is the reference
1228     // handler thread, which runs for very short intervals only.
1229     // If the VMThread's priority is not lower than the WatcherThread profiling
1230     // will be inaccurate.
1231     os::set_priority(this, MaxPriority);
1232     if (!DisableStartThread) {
1233       os::start_thread(this);
1234     }
1235   }
1236 }
1237 
1238 int WatcherThread::sleep() const {
1239   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1240 
1241   // remaining will be zero if there are no tasks,
1242   // causing the WatcherThread to sleep until a task is
1243   // enrolled
1244   int remaining = PeriodicTask::time_to_wait();
1245   int time_slept = 0;
1246 
1247   // we expect this to timeout - we only ever get unparked when
1248   // we should terminate or when a new task has been enrolled
1249   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1250 
1251   jlong time_before_loop = os::javaTimeNanos();
1252 
1253   for (;;) {
1254     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1255     jlong now = os::javaTimeNanos();
1256 
1257     if (remaining == 0) {
1258       // if we didn't have any tasks we could have waited for a long time
1259       // consider the time_slept zero and reset time_before_loop
1260       time_slept = 0;
1261       time_before_loop = now;
1262     } else {
1263       // need to recalculate since we might have new tasks in _tasks
1264       time_slept = (int) ((now - time_before_loop) / 1000000);
1265     }
1266 
1267     // Change to task list or spurious wakeup of some kind
1268     if (timedout || _should_terminate) {
1269       break;
1270     }
1271 
1272     remaining = PeriodicTask::time_to_wait();
1273     if (remaining == 0) {
1274       // Last task was just disenrolled so loop around and wait until
1275       // another task gets enrolled
1276       continue;
1277     }
1278 
1279     remaining -= time_slept;
1280     if (remaining <= 0) {
1281       break;
1282     }
1283   }
1284 
1285   return time_slept;
1286 }
1287 
1288 void WatcherThread::run() {
1289   assert(this == watcher_thread(), "just checking");
1290 
1291   this->record_stack_base_and_size();
1292   this->initialize_thread_local_storage();
1293   this->set_native_thread_name(this->name());
1294   this->set_active_handles(JNIHandleBlock::allocate_block());
1295   while (!_should_terminate) {
1296     assert(watcher_thread() == Thread::current(), "thread consistency check");
1297     assert(watcher_thread() == this, "thread consistency check");
1298 
1299     // Calculate how long it'll be until the next PeriodicTask work
1300     // should be done, and sleep that amount of time.
1301     int time_waited = sleep();
1302 
1303     if (is_error_reported()) {
1304       // A fatal error has happened, the error handler(VMError::report_and_die)
1305       // should abort JVM after creating an error log file. However in some
1306       // rare cases, the error handler itself might deadlock. Here we try to
1307       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1308       //
1309       // This code is in WatcherThread because WatcherThread wakes up
1310       // periodically so the fatal error handler doesn't need to do anything;
1311       // also because the WatcherThread is less likely to crash than other
1312       // threads.
1313 
1314       for (;;) {
1315         if (!ShowMessageBoxOnError
1316             && (OnError == NULL || OnError[0] == '\0')
1317             && Arguments::abort_hook() == NULL) {
1318           os::sleep(this, 2 * 60 * 1000, false);
1319           fdStream err(defaultStream::output_fd());
1320           err.print_raw_cr("# [ timer expired, abort... ]");
1321           // skip atexit/vm_exit/vm_abort hooks
1322           os::die();
1323         }
1324 
1325         // Wake up 5 seconds later, the fatal handler may reset OnError or
1326         // ShowMessageBoxOnError when it is ready to abort.
1327         os::sleep(this, 5 * 1000, false);
1328       }
1329     }
1330 
1331     PeriodicTask::real_time_tick(time_waited);
1332   }
1333 
1334   // Signal that it is terminated
1335   {
1336     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1337     _watcher_thread = NULL;
1338     Terminator_lock->notify();
1339   }
1340 
1341   // Thread destructor usually does this..
1342   ThreadLocalStorage::set_thread(NULL);
1343 }
1344 
1345 void WatcherThread::start() {
1346   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1347 
1348   if (watcher_thread() == NULL && _startable) {
1349     _should_terminate = false;
1350     // Create the single instance of WatcherThread
1351     new WatcherThread();
1352   }
1353 }
1354 
1355 void WatcherThread::make_startable() {
1356   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1357   _startable = true;
1358 }
1359 
1360 void WatcherThread::stop() {
1361   // Get the PeriodicTask_lock if we can. If we cannot, then the
1362   // WatcherThread is using it and we don't want to block on that lock
1363   // here because that might cause a safepoint deadlock depending on
1364   // what the current WatcherThread tasks are doing.
1365   bool have_lock = PeriodicTask_lock->try_lock();
1366 
1367   _should_terminate = true;
1368   OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1369 
1370   if (have_lock) {
1371     WatcherThread* watcher = watcher_thread();
1372     if (watcher != NULL) {
1373       // If we managed to get the lock, then we should unpark the
1374       // WatcherThread so that it can see we want it to stop.
1375       watcher->unpark();
1376     }
1377 
1378     PeriodicTask_lock->unlock();
1379   }
1380 
1381   // it is ok to take late safepoints here, if needed
1382   MutexLocker mu(Terminator_lock);
1383 
1384   while (watcher_thread() != NULL) {
1385     // This wait should make safepoint checks, wait without a timeout,
1386     // and wait as a suspend-equivalent condition.
1387     //
1388     // Note: If the FlatProfiler is running, then this thread is waiting
1389     // for the WatcherThread to terminate and the WatcherThread, via the
1390     // FlatProfiler task, is waiting for the external suspend request on
1391     // this thread to complete. wait_for_ext_suspend_completion() will
1392     // eventually timeout, but that takes time. Making this wait a
1393     // suspend-equivalent condition solves that timeout problem.
1394     //
1395     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1396                           Mutex::_as_suspend_equivalent_flag);
1397   }
1398 }
1399 
1400 void WatcherThread::unpark() {
1401   MutexLockerEx ml(PeriodicTask_lock->owned_by_self()
1402                    ? NULL
1403                    : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1404   PeriodicTask_lock->notify();
1405 }
1406 
1407 void WatcherThread::print_on(outputStream* st) const {
1408   st->print("\"%s\" ", name());
1409   Thread::print_on(st);
1410   st->cr();
1411 }
1412 
1413 // ======= JavaThread ========
1414 
1415 // A JavaThread is a normal Java thread
1416 
1417 void JavaThread::initialize() {
1418   // Initialize fields
1419 
1420   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1421   set_claimed_par_id(UINT_MAX);
1422 
1423   set_saved_exception_pc(NULL);
1424   set_threadObj(NULL);
1425   _anchor.clear();
1426   set_entry_point(NULL);
1427   set_jni_functions(jni_functions());
1428   set_callee_target(NULL);
1429   set_vm_result(NULL);
1430   set_vm_result_2(NULL);
1431   set_vframe_array_head(NULL);
1432   set_vframe_array_last(NULL);
1433   set_deferred_locals(NULL);
1434   set_deopt_mark(NULL);
1435   set_deopt_nmethod(NULL);
1436   clear_must_deopt_id();
1437   set_monitor_chunks(NULL);
1438   set_next(NULL);
1439   set_thread_state(_thread_new);
1440   _terminated = _not_terminated;
1441   _privileged_stack_top = NULL;
1442   _array_for_gc = NULL;
1443   _suspend_equivalent = false;
1444   _in_deopt_handler = 0;
1445   _doing_unsafe_access = false;
1446   _stack_guard_state = stack_guard_unused;
1447   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1448   _exception_pc  = 0;
1449   _exception_handler_pc = 0;
1450   _is_method_handle_return = 0;
1451   _jvmti_thread_state= NULL;
1452   _should_post_on_exceptions_flag = JNI_FALSE;
1453   _jvmti_get_loaded_classes_closure = NULL;
1454   _interp_only_mode    = 0;
1455   _special_runtime_exit_condition = _no_async_condition;
1456   _pending_async_exception = NULL;
1457   _thread_stat = NULL;
1458   _thread_stat = new ThreadStatistics();
1459   _blocked_on_compilation = false;
1460   _jni_active_critical = 0;
1461   _pending_jni_exception_check_fn = NULL;
1462   _do_not_unlock_if_synchronized = false;
1463   _cached_monitor_info = NULL;
1464   _parker = Parker::Allocate(this);
1465 
1466 #ifndef PRODUCT
1467   _jmp_ring_index = 0;
1468   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1469     record_jump(NULL, NULL, NULL, 0);
1470   }
1471 #endif // PRODUCT
1472 
1473   set_thread_profiler(NULL);
1474   if (FlatProfiler::is_active()) {
1475     // This is where we would decide to either give each thread it's own profiler
1476     // or use one global one from FlatProfiler,
1477     // or up to some count of the number of profiled threads, etc.
1478     ThreadProfiler* pp = new ThreadProfiler();
1479     pp->engage();
1480     set_thread_profiler(pp);
1481   }
1482 
1483   // Setup safepoint state info for this thread
1484   ThreadSafepointState::create(this);
1485 
1486   debug_only(_java_call_counter = 0);
1487 
1488   // JVMTI PopFrame support
1489   _popframe_condition = popframe_inactive;
1490   _popframe_preserved_args = NULL;
1491   _popframe_preserved_args_size = 0;
1492 
1493   pd_initialize();
1494 }
1495 
1496 #if INCLUDE_ALL_GCS
1497 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1498 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1499 #endif // INCLUDE_ALL_GCS
1500 
1501 JavaThread::JavaThread(bool is_attaching_via_jni) :
1502                        Thread()
1503 #if INCLUDE_ALL_GCS
1504                        , _satb_mark_queue(&_satb_mark_queue_set),
1505                        _dirty_card_queue(&_dirty_card_queue_set)
1506 #endif // INCLUDE_ALL_GCS
1507 {
1508   initialize();
1509   if (is_attaching_via_jni) {
1510     _jni_attach_state = _attaching_via_jni;
1511   } else {
1512     _jni_attach_state = _not_attaching_via_jni;
1513   }
1514   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1515 }
1516 
1517 bool JavaThread::reguard_stack(address cur_sp) {
1518   if (_stack_guard_state != stack_guard_yellow_disabled) {
1519     return true; // Stack already guarded or guard pages not needed.
1520   }
1521 
1522   if (register_stack_overflow()) {
1523     // For those architectures which have separate register and
1524     // memory stacks, we must check the register stack to see if
1525     // it has overflowed.
1526     return false;
1527   }
1528 
1529   // Java code never executes within the yellow zone: the latter is only
1530   // there to provoke an exception during stack banging.  If java code
1531   // is executing there, either StackShadowPages should be larger, or
1532   // some exception code in c1, c2 or the interpreter isn't unwinding
1533   // when it should.
1534   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1535 
1536   enable_stack_yellow_zone();
1537   return true;
1538 }
1539 
1540 bool JavaThread::reguard_stack(void) {
1541   return reguard_stack(os::current_stack_pointer());
1542 }
1543 
1544 
1545 void JavaThread::block_if_vm_exited() {
1546   if (_terminated == _vm_exited) {
1547     // _vm_exited is set at safepoint, and Threads_lock is never released
1548     // we will block here forever
1549     Threads_lock->lock_without_safepoint_check();
1550     ShouldNotReachHere();
1551   }
1552 }
1553 
1554 
1555 // Remove this ifdef when C1 is ported to the compiler interface.
1556 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1557 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1558 
1559 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1560                        Thread()
1561 #if INCLUDE_ALL_GCS
1562                        , _satb_mark_queue(&_satb_mark_queue_set),
1563                        _dirty_card_queue(&_dirty_card_queue_set)
1564 #endif // INCLUDE_ALL_GCS
1565 {
1566   if (TraceThreadEvents) {
1567     tty->print_cr("creating thread %p", this);
1568   }
1569   initialize();
1570   _jni_attach_state = _not_attaching_via_jni;
1571   set_entry_point(entry_point);
1572   // Create the native thread itself.
1573   // %note runtime_23
1574   os::ThreadType thr_type = os::java_thread;
1575   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1576                                                      os::java_thread;
1577   os::create_thread(this, thr_type, stack_sz);
1578   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1579   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1580   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1581   // the exception consists of creating the exception object & initializing it, initialization
1582   // will leave the VM via a JavaCall and then all locks must be unlocked).
1583   //
1584   // The thread is still suspended when we reach here. Thread must be explicit started
1585   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1586   // by calling Threads:add. The reason why this is not done here, is because the thread
1587   // object must be fully initialized (take a look at JVM_Start)
1588 }
1589 
1590 JavaThread::~JavaThread() {
1591   if (TraceThreadEvents) {
1592     tty->print_cr("terminate thread %p", this);
1593   }
1594 
1595   // JSR166 -- return the parker to the free list
1596   Parker::Release(_parker);
1597   _parker = NULL;
1598 
1599   // Free any remaining  previous UnrollBlock
1600   vframeArray* old_array = vframe_array_last();
1601 
1602   if (old_array != NULL) {
1603     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1604     old_array->set_unroll_block(NULL);
1605     delete old_info;
1606     delete old_array;
1607   }
1608 
1609   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1610   if (deferred != NULL) {
1611     // This can only happen if thread is destroyed before deoptimization occurs.
1612     assert(deferred->length() != 0, "empty array!");
1613     do {
1614       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1615       deferred->remove_at(0);
1616       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1617       delete dlv;
1618     } while (deferred->length() != 0);
1619     delete deferred;
1620   }
1621 
1622   // All Java related clean up happens in exit
1623   ThreadSafepointState::destroy(this);
1624   if (_thread_profiler != NULL) delete _thread_profiler;
1625   if (_thread_stat != NULL) delete _thread_stat;
1626 }
1627 
1628 
1629 // The first routine called by a new Java thread
1630 void JavaThread::run() {
1631   // initialize thread-local alloc buffer related fields
1632   this->initialize_tlab();
1633 
1634   // used to test validity of stack trace backs
1635   this->record_base_of_stack_pointer();
1636 
1637   // Record real stack base and size.
1638   this->record_stack_base_and_size();
1639 
1640   // Initialize thread local storage; set before calling MutexLocker
1641   this->initialize_thread_local_storage();
1642 
1643   this->create_stack_guard_pages();
1644 
1645   this->cache_global_variables();
1646 
1647   // Thread is now sufficient initialized to be handled by the safepoint code as being
1648   // in the VM. Change thread state from _thread_new to _thread_in_vm
1649   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1650 
1651   assert(JavaThread::current() == this, "sanity check");
1652   assert(!Thread::current()->owns_locks(), "sanity check");
1653 
1654   DTRACE_THREAD_PROBE(start, this);
1655 
1656   // This operation might block. We call that after all safepoint checks for a new thread has
1657   // been completed.
1658   this->set_active_handles(JNIHandleBlock::allocate_block());
1659 
1660   if (JvmtiExport::should_post_thread_life()) {
1661     JvmtiExport::post_thread_start(this);
1662   }
1663 
1664   EventThreadStart event;
1665   if (event.should_commit()) {
1666     event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1667     event.commit();
1668   }
1669 
1670   // We call another function to do the rest so we are sure that the stack addresses used
1671   // from there will be lower than the stack base just computed
1672   thread_main_inner();
1673 
1674   // Note, thread is no longer valid at this point!
1675 }
1676 
1677 
1678 void JavaThread::thread_main_inner() {
1679   assert(JavaThread::current() == this, "sanity check");
1680   assert(this->threadObj() != NULL, "just checking");
1681 
1682   // Execute thread entry point unless this thread has a pending exception
1683   // or has been stopped before starting.
1684   // Note: Due to JVM_StopThread we can have pending exceptions already!
1685   if (!this->has_pending_exception() &&
1686       !java_lang_Thread::is_stillborn(this->threadObj())) {
1687     {
1688       ResourceMark rm(this);
1689       this->set_native_thread_name(this->get_thread_name());
1690     }
1691     HandleMark hm(this);
1692     this->entry_point()(this, this);
1693   }
1694 
1695   DTRACE_THREAD_PROBE(stop, this);
1696 
1697   this->exit(false);
1698   delete this;
1699 }
1700 
1701 
1702 static void ensure_join(JavaThread* thread) {
1703   // We do not need to grap the Threads_lock, since we are operating on ourself.
1704   Handle threadObj(thread, thread->threadObj());
1705   assert(threadObj.not_null(), "java thread object must exist");
1706   ObjectLocker lock(threadObj, thread);
1707   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1708   thread->clear_pending_exception();
1709   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1710   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1711   // Clear the native thread instance - this makes isAlive return false and allows the join()
1712   // to complete once we've done the notify_all below
1713   java_lang_Thread::set_thread(threadObj(), NULL);
1714   lock.notify_all(thread);
1715   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1716   thread->clear_pending_exception();
1717 }
1718 
1719 
1720 // For any new cleanup additions, please check to see if they need to be applied to
1721 // cleanup_failed_attach_current_thread as well.
1722 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1723   assert(this == JavaThread::current(), "thread consistency check");
1724 
1725   HandleMark hm(this);
1726   Handle uncaught_exception(this, this->pending_exception());
1727   this->clear_pending_exception();
1728   Handle threadObj(this, this->threadObj());
1729   assert(threadObj.not_null(), "Java thread object should be created");
1730 
1731   if (get_thread_profiler() != NULL) {
1732     get_thread_profiler()->disengage();
1733     ResourceMark rm;
1734     get_thread_profiler()->print(get_thread_name());
1735   }
1736 
1737 
1738   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1739   {
1740     EXCEPTION_MARK;
1741 
1742     CLEAR_PENDING_EXCEPTION;
1743   }
1744   if (!destroy_vm) {
1745     if (uncaught_exception.not_null()) {
1746       EXCEPTION_MARK;
1747       // Call method Thread.dispatchUncaughtException().
1748       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1749       JavaValue result(T_VOID);
1750       JavaCalls::call_virtual(&result,
1751                               threadObj, thread_klass,
1752                               vmSymbols::dispatchUncaughtException_name(),
1753                               vmSymbols::throwable_void_signature(),
1754                               uncaught_exception,
1755                               THREAD);
1756       if (HAS_PENDING_EXCEPTION) {
1757         ResourceMark rm(this);
1758         jio_fprintf(defaultStream::error_stream(),
1759                     "\nException: %s thrown from the UncaughtExceptionHandler"
1760                     " in thread \"%s\"\n",
1761                     pending_exception()->klass()->external_name(),
1762                     get_thread_name());
1763         CLEAR_PENDING_EXCEPTION;
1764       }
1765     }
1766 
1767     // Called before the java thread exit since we want to read info
1768     // from java_lang_Thread object
1769     EventThreadEnd event;
1770     if (event.should_commit()) {
1771       event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1772       event.commit();
1773     }
1774 
1775     // Call after last event on thread
1776     EVENT_THREAD_EXIT(this);
1777 
1778     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1779     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1780     // is deprecated anyhow.
1781     if (!is_Compiler_thread()) {
1782       int count = 3;
1783       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1784         EXCEPTION_MARK;
1785         JavaValue result(T_VOID);
1786         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1787         JavaCalls::call_virtual(&result,
1788                                 threadObj, thread_klass,
1789                                 vmSymbols::exit_method_name(),
1790                                 vmSymbols::void_method_signature(),
1791                                 THREAD);
1792         CLEAR_PENDING_EXCEPTION;
1793       }
1794     }
1795     // notify JVMTI
1796     if (JvmtiExport::should_post_thread_life()) {
1797       JvmtiExport::post_thread_end(this);
1798     }
1799 
1800     // We have notified the agents that we are exiting, before we go on,
1801     // we must check for a pending external suspend request and honor it
1802     // in order to not surprise the thread that made the suspend request.
1803     while (true) {
1804       {
1805         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1806         if (!is_external_suspend()) {
1807           set_terminated(_thread_exiting);
1808           ThreadService::current_thread_exiting(this);
1809           break;
1810         }
1811         // Implied else:
1812         // Things get a little tricky here. We have a pending external
1813         // suspend request, but we are holding the SR_lock so we
1814         // can't just self-suspend. So we temporarily drop the lock
1815         // and then self-suspend.
1816       }
1817 
1818       ThreadBlockInVM tbivm(this);
1819       java_suspend_self();
1820 
1821       // We're done with this suspend request, but we have to loop around
1822       // and check again. Eventually we will get SR_lock without a pending
1823       // external suspend request and will be able to mark ourselves as
1824       // exiting.
1825     }
1826     // no more external suspends are allowed at this point
1827   } else {
1828     // before_exit() has already posted JVMTI THREAD_END events
1829   }
1830 
1831   // Notify waiters on thread object. This has to be done after exit() is called
1832   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1833   // group should have the destroyed bit set before waiters are notified).
1834   ensure_join(this);
1835   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1836 
1837   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1838   // held by this thread must be released.  A detach operation must only
1839   // get here if there are no Java frames on the stack.  Therefore, any
1840   // owned monitors at this point MUST be JNI-acquired monitors which are
1841   // pre-inflated and in the monitor cache.
1842   //
1843   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1844   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1845     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1846     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1847     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1848   }
1849 
1850   // These things needs to be done while we are still a Java Thread. Make sure that thread
1851   // is in a consistent state, in case GC happens
1852   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1853 
1854   if (active_handles() != NULL) {
1855     JNIHandleBlock* block = active_handles();
1856     set_active_handles(NULL);
1857     JNIHandleBlock::release_block(block);
1858   }
1859 
1860   if (free_handle_block() != NULL) {
1861     JNIHandleBlock* block = free_handle_block();
1862     set_free_handle_block(NULL);
1863     JNIHandleBlock::release_block(block);
1864   }
1865 
1866   // These have to be removed while this is still a valid thread.
1867   remove_stack_guard_pages();
1868 
1869   if (UseTLAB) {
1870     tlab().make_parsable(true);  // retire TLAB
1871   }
1872 
1873   if (JvmtiEnv::environments_might_exist()) {
1874     JvmtiExport::cleanup_thread(this);
1875   }
1876 
1877   // We must flush any deferred card marks before removing a thread from
1878   // the list of active threads.
1879   Universe::heap()->flush_deferred_store_barrier(this);
1880   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1881 
1882 #if INCLUDE_ALL_GCS
1883   // We must flush the G1-related buffers before removing a thread
1884   // from the list of active threads. We must do this after any deferred
1885   // card marks have been flushed (above) so that any entries that are
1886   // added to the thread's dirty card queue as a result are not lost.
1887   if (UseG1GC) {
1888     flush_barrier_queues();
1889   }
1890 #endif // INCLUDE_ALL_GCS
1891 
1892   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1893   Threads::remove(this);
1894 }
1895 
1896 #if INCLUDE_ALL_GCS
1897 // Flush G1-related queues.
1898 void JavaThread::flush_barrier_queues() {
1899   satb_mark_queue().flush();
1900   dirty_card_queue().flush();
1901 }
1902 
1903 void JavaThread::initialize_queues() {
1904   assert(!SafepointSynchronize::is_at_safepoint(),
1905          "we should not be at a safepoint");
1906 
1907   ObjPtrQueue& satb_queue = satb_mark_queue();
1908   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1909   // The SATB queue should have been constructed with its active
1910   // field set to false.
1911   assert(!satb_queue.is_active(), "SATB queue should not be active");
1912   assert(satb_queue.is_empty(), "SATB queue should be empty");
1913   // If we are creating the thread during a marking cycle, we should
1914   // set the active field of the SATB queue to true.
1915   if (satb_queue_set.is_active()) {
1916     satb_queue.set_active(true);
1917   }
1918 
1919   DirtyCardQueue& dirty_queue = dirty_card_queue();
1920   // The dirty card queue should have been constructed with its
1921   // active field set to true.
1922   assert(dirty_queue.is_active(), "dirty card queue should be active");
1923 }
1924 #endif // INCLUDE_ALL_GCS
1925 
1926 void JavaThread::cleanup_failed_attach_current_thread() {
1927   if (get_thread_profiler() != NULL) {
1928     get_thread_profiler()->disengage();
1929     ResourceMark rm;
1930     get_thread_profiler()->print(get_thread_name());
1931   }
1932 
1933   if (active_handles() != NULL) {
1934     JNIHandleBlock* block = active_handles();
1935     set_active_handles(NULL);
1936     JNIHandleBlock::release_block(block);
1937   }
1938 
1939   if (free_handle_block() != NULL) {
1940     JNIHandleBlock* block = free_handle_block();
1941     set_free_handle_block(NULL);
1942     JNIHandleBlock::release_block(block);
1943   }
1944 
1945   // These have to be removed while this is still a valid thread.
1946   remove_stack_guard_pages();
1947 
1948   if (UseTLAB) {
1949     tlab().make_parsable(true);  // retire TLAB, if any
1950   }
1951 
1952 #if INCLUDE_ALL_GCS
1953   if (UseG1GC) {
1954     flush_barrier_queues();
1955   }
1956 #endif // INCLUDE_ALL_GCS
1957 
1958   Threads::remove(this);
1959   delete this;
1960 }
1961 
1962 
1963 
1964 
1965 JavaThread* JavaThread::active() {
1966   Thread* thread = ThreadLocalStorage::thread();
1967   assert(thread != NULL, "just checking");
1968   if (thread->is_Java_thread()) {
1969     return (JavaThread*) thread;
1970   } else {
1971     assert(thread->is_VM_thread(), "this must be a vm thread");
1972     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1973     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1974     assert(ret->is_Java_thread(), "must be a Java thread");
1975     return ret;
1976   }
1977 }
1978 
1979 bool JavaThread::is_lock_owned(address adr) const {
1980   if (Thread::is_lock_owned(adr)) return true;
1981 
1982   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1983     if (chunk->contains(adr)) return true;
1984   }
1985 
1986   return false;
1987 }
1988 
1989 
1990 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1991   chunk->set_next(monitor_chunks());
1992   set_monitor_chunks(chunk);
1993 }
1994 
1995 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1996   guarantee(monitor_chunks() != NULL, "must be non empty");
1997   if (monitor_chunks() == chunk) {
1998     set_monitor_chunks(chunk->next());
1999   } else {
2000     MonitorChunk* prev = monitor_chunks();
2001     while (prev->next() != chunk) prev = prev->next();
2002     prev->set_next(chunk->next());
2003   }
2004 }
2005 
2006 // JVM support.
2007 
2008 // Note: this function shouldn't block if it's called in
2009 // _thread_in_native_trans state (such as from
2010 // check_special_condition_for_native_trans()).
2011 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2012 
2013   if (has_last_Java_frame() && has_async_condition()) {
2014     // If we are at a polling page safepoint (not a poll return)
2015     // then we must defer async exception because live registers
2016     // will be clobbered by the exception path. Poll return is
2017     // ok because the call we a returning from already collides
2018     // with exception handling registers and so there is no issue.
2019     // (The exception handling path kills call result registers but
2020     //  this is ok since the exception kills the result anyway).
2021 
2022     if (is_at_poll_safepoint()) {
2023       // if the code we are returning to has deoptimized we must defer
2024       // the exception otherwise live registers get clobbered on the
2025       // exception path before deoptimization is able to retrieve them.
2026       //
2027       RegisterMap map(this, false);
2028       frame caller_fr = last_frame().sender(&map);
2029       assert(caller_fr.is_compiled_frame(), "what?");
2030       if (caller_fr.is_deoptimized_frame()) {
2031         if (TraceExceptions) {
2032           ResourceMark rm;
2033           tty->print_cr("deferred async exception at compiled safepoint");
2034         }
2035         return;
2036       }
2037     }
2038   }
2039 
2040   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2041   if (condition == _no_async_condition) {
2042     // Conditions have changed since has_special_runtime_exit_condition()
2043     // was called:
2044     // - if we were here only because of an external suspend request,
2045     //   then that was taken care of above (or cancelled) so we are done
2046     // - if we were here because of another async request, then it has
2047     //   been cleared between the has_special_runtime_exit_condition()
2048     //   and now so again we are done
2049     return;
2050   }
2051 
2052   // Check for pending async. exception
2053   if (_pending_async_exception != NULL) {
2054     // Only overwrite an already pending exception, if it is not a threadDeath.
2055     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2056 
2057       // We cannot call Exceptions::_throw(...) here because we cannot block
2058       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2059 
2060       if (TraceExceptions) {
2061         ResourceMark rm;
2062         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2063         if (has_last_Java_frame()) {
2064           frame f = last_frame();
2065           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2066         }
2067         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2068       }
2069       _pending_async_exception = NULL;
2070       clear_has_async_exception();
2071     }
2072   }
2073 
2074   if (check_unsafe_error &&
2075       condition == _async_unsafe_access_error && !has_pending_exception()) {
2076     condition = _no_async_condition;  // done
2077     switch (thread_state()) {
2078     case _thread_in_vm: {
2079       JavaThread* THREAD = this;
2080       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2081     }
2082     case _thread_in_native: {
2083       ThreadInVMfromNative tiv(this);
2084       JavaThread* THREAD = this;
2085       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2086     }
2087     case _thread_in_Java: {
2088       ThreadInVMfromJava tiv(this);
2089       JavaThread* THREAD = this;
2090       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2091     }
2092     default:
2093       ShouldNotReachHere();
2094     }
2095   }
2096 
2097   assert(condition == _no_async_condition || has_pending_exception() ||
2098          (!check_unsafe_error && condition == _async_unsafe_access_error),
2099          "must have handled the async condition, if no exception");
2100 }
2101 
2102 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2103   //
2104   // Check for pending external suspend. Internal suspend requests do
2105   // not use handle_special_runtime_exit_condition().
2106   // If JNIEnv proxies are allowed, don't self-suspend if the target
2107   // thread is not the current thread. In older versions of jdbx, jdbx
2108   // threads could call into the VM with another thread's JNIEnv so we
2109   // can be here operating on behalf of a suspended thread (4432884).
2110   bool do_self_suspend = is_external_suspend_with_lock();
2111   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2112     //
2113     // Because thread is external suspended the safepoint code will count
2114     // thread as at a safepoint. This can be odd because we can be here
2115     // as _thread_in_Java which would normally transition to _thread_blocked
2116     // at a safepoint. We would like to mark the thread as _thread_blocked
2117     // before calling java_suspend_self like all other callers of it but
2118     // we must then observe proper safepoint protocol. (We can't leave
2119     // _thread_blocked with a safepoint in progress). However we can be
2120     // here as _thread_in_native_trans so we can't use a normal transition
2121     // constructor/destructor pair because they assert on that type of
2122     // transition. We could do something like:
2123     //
2124     // JavaThreadState state = thread_state();
2125     // set_thread_state(_thread_in_vm);
2126     // {
2127     //   ThreadBlockInVM tbivm(this);
2128     //   java_suspend_self()
2129     // }
2130     // set_thread_state(_thread_in_vm_trans);
2131     // if (safepoint) block;
2132     // set_thread_state(state);
2133     //
2134     // but that is pretty messy. Instead we just go with the way the
2135     // code has worked before and note that this is the only path to
2136     // java_suspend_self that doesn't put the thread in _thread_blocked
2137     // mode.
2138 
2139     frame_anchor()->make_walkable(this);
2140     java_suspend_self();
2141 
2142     // We might be here for reasons in addition to the self-suspend request
2143     // so check for other async requests.
2144   }
2145 
2146   if (check_asyncs) {
2147     check_and_handle_async_exceptions();
2148   }
2149 }
2150 
2151 void JavaThread::send_thread_stop(oop java_throwable)  {
2152   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2153   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2154   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2155 
2156   // Do not throw asynchronous exceptions against the compiler thread
2157   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2158   if (is_Compiler_thread()) return;
2159 
2160   {
2161     // Actually throw the Throwable against the target Thread - however
2162     // only if there is no thread death exception installed already.
2163     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2164       // If the topmost frame is a runtime stub, then we are calling into
2165       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2166       // must deoptimize the caller before continuing, as the compiled  exception handler table
2167       // may not be valid
2168       if (has_last_Java_frame()) {
2169         frame f = last_frame();
2170         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2171           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2172           RegisterMap reg_map(this, UseBiasedLocking);
2173           frame compiled_frame = f.sender(&reg_map);
2174           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2175             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2176           }
2177         }
2178       }
2179 
2180       // Set async. pending exception in thread.
2181       set_pending_async_exception(java_throwable);
2182 
2183       if (TraceExceptions) {
2184         ResourceMark rm;
2185         tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2186       }
2187       // for AbortVMOnException flag
2188       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2189     }
2190   }
2191 
2192 
2193   // Interrupt thread so it will wake up from a potential wait()
2194   Thread::interrupt(this);
2195 }
2196 
2197 // External suspension mechanism.
2198 //
2199 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2200 // to any VM_locks and it is at a transition
2201 // Self-suspension will happen on the transition out of the vm.
2202 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2203 //
2204 // Guarantees on return:
2205 //   + Target thread will not execute any new bytecode (that's why we need to
2206 //     force a safepoint)
2207 //   + Target thread will not enter any new monitors
2208 //
2209 void JavaThread::java_suspend() {
2210   { MutexLocker mu(Threads_lock);
2211     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2212       return;
2213     }
2214   }
2215 
2216   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2217     if (!is_external_suspend()) {
2218       // a racing resume has cancelled us; bail out now
2219       return;
2220     }
2221 
2222     // suspend is done
2223     uint32_t debug_bits = 0;
2224     // Warning: is_ext_suspend_completed() may temporarily drop the
2225     // SR_lock to allow the thread to reach a stable thread state if
2226     // it is currently in a transient thread state.
2227     if (is_ext_suspend_completed(false /* !called_by_wait */,
2228                                  SuspendRetryDelay, &debug_bits)) {
2229       return;
2230     }
2231   }
2232 
2233   VM_ForceSafepoint vm_suspend;
2234   VMThread::execute(&vm_suspend);
2235 }
2236 
2237 // Part II of external suspension.
2238 // A JavaThread self suspends when it detects a pending external suspend
2239 // request. This is usually on transitions. It is also done in places
2240 // where continuing to the next transition would surprise the caller,
2241 // e.g., monitor entry.
2242 //
2243 // Returns the number of times that the thread self-suspended.
2244 //
2245 // Note: DO NOT call java_suspend_self() when you just want to block current
2246 //       thread. java_suspend_self() is the second stage of cooperative
2247 //       suspension for external suspend requests and should only be used
2248 //       to complete an external suspend request.
2249 //
2250 int JavaThread::java_suspend_self() {
2251   int ret = 0;
2252 
2253   // we are in the process of exiting so don't suspend
2254   if (is_exiting()) {
2255     clear_external_suspend();
2256     return ret;
2257   }
2258 
2259   assert(_anchor.walkable() ||
2260          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2261          "must have walkable stack");
2262 
2263   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2264 
2265   assert(!this->is_ext_suspended(),
2266          "a thread trying to self-suspend should not already be suspended");
2267 
2268   if (this->is_suspend_equivalent()) {
2269     // If we are self-suspending as a result of the lifting of a
2270     // suspend equivalent condition, then the suspend_equivalent
2271     // flag is not cleared until we set the ext_suspended flag so
2272     // that wait_for_ext_suspend_completion() returns consistent
2273     // results.
2274     this->clear_suspend_equivalent();
2275   }
2276 
2277   // A racing resume may have cancelled us before we grabbed SR_lock
2278   // above. Or another external suspend request could be waiting for us
2279   // by the time we return from SR_lock()->wait(). The thread
2280   // that requested the suspension may already be trying to walk our
2281   // stack and if we return now, we can change the stack out from under
2282   // it. This would be a "bad thing (TM)" and cause the stack walker
2283   // to crash. We stay self-suspended until there are no more pending
2284   // external suspend requests.
2285   while (is_external_suspend()) {
2286     ret++;
2287     this->set_ext_suspended();
2288 
2289     // _ext_suspended flag is cleared by java_resume()
2290     while (is_ext_suspended()) {
2291       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2292     }
2293   }
2294 
2295   return ret;
2296 }
2297 
2298 #ifdef ASSERT
2299 // verify the JavaThread has not yet been published in the Threads::list, and
2300 // hence doesn't need protection from concurrent access at this stage
2301 void JavaThread::verify_not_published() {
2302   if (!Threads_lock->owned_by_self()) {
2303     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2304     assert(!Threads::includes(this),
2305            "java thread shouldn't have been published yet!");
2306   } else {
2307     assert(!Threads::includes(this),
2308            "java thread shouldn't have been published yet!");
2309   }
2310 }
2311 #endif
2312 
2313 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2314 // progress or when _suspend_flags is non-zero.
2315 // Current thread needs to self-suspend if there is a suspend request and/or
2316 // block if a safepoint is in progress.
2317 // Async exception ISN'T checked.
2318 // Note only the ThreadInVMfromNative transition can call this function
2319 // directly and when thread state is _thread_in_native_trans
2320 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2321   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2322 
2323   JavaThread *curJT = JavaThread::current();
2324   bool do_self_suspend = thread->is_external_suspend();
2325 
2326   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2327 
2328   // If JNIEnv proxies are allowed, don't self-suspend if the target
2329   // thread is not the current thread. In older versions of jdbx, jdbx
2330   // threads could call into the VM with another thread's JNIEnv so we
2331   // can be here operating on behalf of a suspended thread (4432884).
2332   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2333     JavaThreadState state = thread->thread_state();
2334 
2335     // We mark this thread_blocked state as a suspend-equivalent so
2336     // that a caller to is_ext_suspend_completed() won't be confused.
2337     // The suspend-equivalent state is cleared by java_suspend_self().
2338     thread->set_suspend_equivalent();
2339 
2340     // If the safepoint code sees the _thread_in_native_trans state, it will
2341     // wait until the thread changes to other thread state. There is no
2342     // guarantee on how soon we can obtain the SR_lock and complete the
2343     // self-suspend request. It would be a bad idea to let safepoint wait for
2344     // too long. Temporarily change the state to _thread_blocked to
2345     // let the VM thread know that this thread is ready for GC. The problem
2346     // of changing thread state is that safepoint could happen just after
2347     // java_suspend_self() returns after being resumed, and VM thread will
2348     // see the _thread_blocked state. We must check for safepoint
2349     // after restoring the state and make sure we won't leave while a safepoint
2350     // is in progress.
2351     thread->set_thread_state(_thread_blocked);
2352     thread->java_suspend_self();
2353     thread->set_thread_state(state);
2354     // Make sure new state is seen by VM thread
2355     if (os::is_MP()) {
2356       if (UseMembar) {
2357         // Force a fence between the write above and read below
2358         OrderAccess::fence();
2359       } else {
2360         // Must use this rather than serialization page in particular on Windows
2361         InterfaceSupport::serialize_memory(thread);
2362       }
2363     }
2364   }
2365 
2366   if (SafepointSynchronize::do_call_back()) {
2367     // If we are safepointing, then block the caller which may not be
2368     // the same as the target thread (see above).
2369     SafepointSynchronize::block(curJT);
2370   }
2371 
2372   if (thread->is_deopt_suspend()) {
2373     thread->clear_deopt_suspend();
2374     RegisterMap map(thread, false);
2375     frame f = thread->last_frame();
2376     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2377       f = f.sender(&map);
2378     }
2379     if (f.id() == thread->must_deopt_id()) {
2380       thread->clear_must_deopt_id();
2381       f.deoptimize(thread);
2382     } else {
2383       fatal("missed deoptimization!");
2384     }
2385   }
2386 }
2387 
2388 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2389 // progress or when _suspend_flags is non-zero.
2390 // Current thread needs to self-suspend if there is a suspend request and/or
2391 // block if a safepoint is in progress.
2392 // Also check for pending async exception (not including unsafe access error).
2393 // Note only the native==>VM/Java barriers can call this function and when
2394 // thread state is _thread_in_native_trans.
2395 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2396   check_safepoint_and_suspend_for_native_trans(thread);
2397 
2398   if (thread->has_async_exception()) {
2399     // We are in _thread_in_native_trans state, don't handle unsafe
2400     // access error since that may block.
2401     thread->check_and_handle_async_exceptions(false);
2402   }
2403 }
2404 
2405 // This is a variant of the normal
2406 // check_special_condition_for_native_trans with slightly different
2407 // semantics for use by critical native wrappers.  It does all the
2408 // normal checks but also performs the transition back into
2409 // thread_in_Java state.  This is required so that critical natives
2410 // can potentially block and perform a GC if they are the last thread
2411 // exiting the GC_locker.
2412 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2413   check_special_condition_for_native_trans(thread);
2414 
2415   // Finish the transition
2416   thread->set_thread_state(_thread_in_Java);
2417 
2418   if (thread->do_critical_native_unlock()) {
2419     ThreadInVMfromJavaNoAsyncException tiv(thread);
2420     GC_locker::unlock_critical(thread);
2421     thread->clear_critical_native_unlock();
2422   }
2423 }
2424 
2425 // We need to guarantee the Threads_lock here, since resumes are not
2426 // allowed during safepoint synchronization
2427 // Can only resume from an external suspension
2428 void JavaThread::java_resume() {
2429   assert_locked_or_safepoint(Threads_lock);
2430 
2431   // Sanity check: thread is gone, has started exiting or the thread
2432   // was not externally suspended.
2433   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2434     return;
2435   }
2436 
2437   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2438 
2439   clear_external_suspend();
2440 
2441   if (is_ext_suspended()) {
2442     clear_ext_suspended();
2443     SR_lock()->notify_all();
2444   }
2445 }
2446 
2447 void JavaThread::create_stack_guard_pages() {
2448   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2449   address low_addr = stack_base() - stack_size();
2450   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2451 
2452   int allocate = os::allocate_stack_guard_pages();
2453   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2454 
2455   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2456     warning("Attempt to allocate stack guard pages failed.");
2457     return;
2458   }
2459 
2460   if (os::guard_memory((char *) low_addr, len)) {
2461     _stack_guard_state = stack_guard_enabled;
2462   } else {
2463     warning("Attempt to protect stack guard pages failed.");
2464     if (os::uncommit_memory((char *) low_addr, len)) {
2465       warning("Attempt to deallocate stack guard pages failed.");
2466     }
2467   }
2468 }
2469 
2470 void JavaThread::remove_stack_guard_pages() {
2471   assert(Thread::current() == this, "from different thread");
2472   if (_stack_guard_state == stack_guard_unused) return;
2473   address low_addr = stack_base() - stack_size();
2474   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2475 
2476   if (os::allocate_stack_guard_pages()) {
2477     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2478       _stack_guard_state = stack_guard_unused;
2479     } else {
2480       warning("Attempt to deallocate stack guard pages failed.");
2481     }
2482   } else {
2483     if (_stack_guard_state == stack_guard_unused) return;
2484     if (os::unguard_memory((char *) low_addr, len)) {
2485       _stack_guard_state = stack_guard_unused;
2486     } else {
2487       warning("Attempt to unprotect stack guard pages failed.");
2488     }
2489   }
2490 }
2491 
2492 void JavaThread::enable_stack_yellow_zone() {
2493   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2494   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2495 
2496   // The base notation is from the stacks point of view, growing downward.
2497   // We need to adjust it to work correctly with guard_memory()
2498   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2499 
2500   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2501   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2502 
2503   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2504     _stack_guard_state = stack_guard_enabled;
2505   } else {
2506     warning("Attempt to guard stack yellow zone failed.");
2507   }
2508   enable_register_stack_guard();
2509 }
2510 
2511 void JavaThread::disable_stack_yellow_zone() {
2512   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2513   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2514 
2515   // Simply return if called for a thread that does not use guard pages.
2516   if (_stack_guard_state == stack_guard_unused) return;
2517 
2518   // The base notation is from the stacks point of view, growing downward.
2519   // We need to adjust it to work correctly with guard_memory()
2520   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2521 
2522   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2523     _stack_guard_state = stack_guard_yellow_disabled;
2524   } else {
2525     warning("Attempt to unguard stack yellow zone failed.");
2526   }
2527   disable_register_stack_guard();
2528 }
2529 
2530 void JavaThread::enable_stack_red_zone() {
2531   // The base notation is from the stacks point of view, growing downward.
2532   // We need to adjust it to work correctly with guard_memory()
2533   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2534   address base = stack_red_zone_base() - stack_red_zone_size();
2535 
2536   guarantee(base < stack_base(), "Error calculating stack red zone");
2537   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2538 
2539   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2540     warning("Attempt to guard stack red zone failed.");
2541   }
2542 }
2543 
2544 void JavaThread::disable_stack_red_zone() {
2545   // The base notation is from the stacks point of view, growing downward.
2546   // We need to adjust it to work correctly with guard_memory()
2547   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2548   address base = stack_red_zone_base() - stack_red_zone_size();
2549   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2550     warning("Attempt to unguard stack red zone failed.");
2551   }
2552 }
2553 
2554 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2555   // ignore is there is no stack
2556   if (!has_last_Java_frame()) return;
2557   // traverse the stack frames. Starts from top frame.
2558   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2559     frame* fr = fst.current();
2560     f(fr, fst.register_map());
2561   }
2562 }
2563 
2564 
2565 #ifndef PRODUCT
2566 // Deoptimization
2567 // Function for testing deoptimization
2568 void JavaThread::deoptimize() {
2569   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2570   StackFrameStream fst(this, UseBiasedLocking);
2571   bool deopt = false;           // Dump stack only if a deopt actually happens.
2572   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2573   // Iterate over all frames in the thread and deoptimize
2574   for (; !fst.is_done(); fst.next()) {
2575     if (fst.current()->can_be_deoptimized()) {
2576 
2577       if (only_at) {
2578         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2579         // consists of comma or carriage return separated numbers so
2580         // search for the current bci in that string.
2581         address pc = fst.current()->pc();
2582         nmethod* nm =  (nmethod*) fst.current()->cb();
2583         ScopeDesc* sd = nm->scope_desc_at(pc);
2584         char buffer[8];
2585         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2586         size_t len = strlen(buffer);
2587         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2588         while (found != NULL) {
2589           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2590               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2591             // Check that the bci found is bracketed by terminators.
2592             break;
2593           }
2594           found = strstr(found + 1, buffer);
2595         }
2596         if (!found) {
2597           continue;
2598         }
2599       }
2600 
2601       if (DebugDeoptimization && !deopt) {
2602         deopt = true; // One-time only print before deopt
2603         tty->print_cr("[BEFORE Deoptimization]");
2604         trace_frames();
2605         trace_stack();
2606       }
2607       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2608     }
2609   }
2610 
2611   if (DebugDeoptimization && deopt) {
2612     tty->print_cr("[AFTER Deoptimization]");
2613     trace_frames();
2614   }
2615 }
2616 
2617 
2618 // Make zombies
2619 void JavaThread::make_zombies() {
2620   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2621     if (fst.current()->can_be_deoptimized()) {
2622       // it is a Java nmethod
2623       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2624       nm->make_not_entrant();
2625     }
2626   }
2627 }
2628 #endif // PRODUCT
2629 
2630 
2631 void JavaThread::deoptimized_wrt_marked_nmethods() {
2632   if (!has_last_Java_frame()) return;
2633   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2634   StackFrameStream fst(this, UseBiasedLocking);
2635   for (; !fst.is_done(); fst.next()) {
2636     if (fst.current()->should_be_deoptimized()) {
2637       if (LogCompilation && xtty != NULL) {
2638         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2639         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2640                    this->name(), nm != NULL ? nm->compile_id() : -1);
2641       }
2642 
2643       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2644     }
2645   }
2646 }
2647 
2648 
2649 // If the caller is a NamedThread, then remember, in the current scope,
2650 // the given JavaThread in its _processed_thread field.
2651 class RememberProcessedThread: public StackObj {
2652   NamedThread* _cur_thr;
2653  public:
2654   RememberProcessedThread(JavaThread* jthr) {
2655     Thread* thread = Thread::current();
2656     if (thread->is_Named_thread()) {
2657       _cur_thr = (NamedThread *)thread;
2658       _cur_thr->set_processed_thread(jthr);
2659     } else {
2660       _cur_thr = NULL;
2661     }
2662   }
2663 
2664   ~RememberProcessedThread() {
2665     if (_cur_thr) {
2666       _cur_thr->set_processed_thread(NULL);
2667     }
2668   }
2669 };
2670 
2671 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2672   // Verify that the deferred card marks have been flushed.
2673   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2674 
2675   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2676   // since there may be more than one thread using each ThreadProfiler.
2677 
2678   // Traverse the GCHandles
2679   Thread::oops_do(f, cld_f, cf);
2680 
2681   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2682          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2683 
2684   if (has_last_Java_frame()) {
2685     // Record JavaThread to GC thread
2686     RememberProcessedThread rpt(this);
2687 
2688     // Traverse the privileged stack
2689     if (_privileged_stack_top != NULL) {
2690       _privileged_stack_top->oops_do(f);
2691     }
2692 
2693     // traverse the registered growable array
2694     if (_array_for_gc != NULL) {
2695       for (int index = 0; index < _array_for_gc->length(); index++) {
2696         f->do_oop(_array_for_gc->adr_at(index));
2697       }
2698     }
2699 
2700     // Traverse the monitor chunks
2701     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2702       chunk->oops_do(f);
2703     }
2704 
2705     // Traverse the execution stack
2706     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2707       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2708     }
2709   }
2710 
2711   // callee_target is never live across a gc point so NULL it here should
2712   // it still contain a methdOop.
2713 
2714   set_callee_target(NULL);
2715 
2716   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2717   // If we have deferred set_locals there might be oops waiting to be
2718   // written
2719   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2720   if (list != NULL) {
2721     for (int i = 0; i < list->length(); i++) {
2722       list->at(i)->oops_do(f);
2723     }
2724   }
2725 
2726   // Traverse instance variables at the end since the GC may be moving things
2727   // around using this function
2728   f->do_oop((oop*) &_threadObj);
2729   f->do_oop((oop*) &_vm_result);
2730   f->do_oop((oop*) &_exception_oop);
2731   f->do_oop((oop*) &_pending_async_exception);
2732 
2733   if (jvmti_thread_state() != NULL) {
2734     jvmti_thread_state()->oops_do(f);
2735   }
2736 }
2737 
2738 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2739   Thread::nmethods_do(cf);  // (super method is a no-op)
2740 
2741   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2742          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2743 
2744   if (has_last_Java_frame()) {
2745     // Traverse the execution stack
2746     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2747       fst.current()->nmethods_do(cf);
2748     }
2749   }
2750 }
2751 
2752 void JavaThread::metadata_do(void f(Metadata*)) {
2753   Thread::metadata_do(f);
2754   if (has_last_Java_frame()) {
2755     // Traverse the execution stack to call f() on the methods in the stack
2756     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2757       fst.current()->metadata_do(f);
2758     }
2759   } else if (is_Compiler_thread()) {
2760     // need to walk ciMetadata in current compile tasks to keep alive.
2761     CompilerThread* ct = (CompilerThread*)this;
2762     if (ct->env() != NULL) {
2763       ct->env()->metadata_do(f);
2764     }
2765   }
2766 }
2767 
2768 // Printing
2769 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2770   switch (_thread_state) {
2771   case _thread_uninitialized:     return "_thread_uninitialized";
2772   case _thread_new:               return "_thread_new";
2773   case _thread_new_trans:         return "_thread_new_trans";
2774   case _thread_in_native:         return "_thread_in_native";
2775   case _thread_in_native_trans:   return "_thread_in_native_trans";
2776   case _thread_in_vm:             return "_thread_in_vm";
2777   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2778   case _thread_in_Java:           return "_thread_in_Java";
2779   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2780   case _thread_blocked:           return "_thread_blocked";
2781   case _thread_blocked_trans:     return "_thread_blocked_trans";
2782   default:                        return "unknown thread state";
2783   }
2784 }
2785 
2786 #ifndef PRODUCT
2787 void JavaThread::print_thread_state_on(outputStream *st) const {
2788   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2789 };
2790 void JavaThread::print_thread_state() const {
2791   print_thread_state_on(tty);
2792 }
2793 #endif // PRODUCT
2794 
2795 // Called by Threads::print() for VM_PrintThreads operation
2796 void JavaThread::print_on(outputStream *st) const {
2797   st->print("\"%s\" ", get_thread_name());
2798   oop thread_oop = threadObj();
2799   if (thread_oop != NULL) {
2800     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2801     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2802     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2803   }
2804   Thread::print_on(st);
2805   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2806   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2807   if (thread_oop != NULL) {
2808     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2809   }
2810 #ifndef PRODUCT
2811   print_thread_state_on(st);
2812   _safepoint_state->print_on(st);
2813 #endif // PRODUCT
2814 }
2815 
2816 // Called by fatal error handler. The difference between this and
2817 // JavaThread::print() is that we can't grab lock or allocate memory.
2818 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2819   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2820   oop thread_obj = threadObj();
2821   if (thread_obj != NULL) {
2822     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2823   }
2824   st->print(" [");
2825   st->print("%s", _get_thread_state_name(_thread_state));
2826   if (osthread()) {
2827     st->print(", id=%d", osthread()->thread_id());
2828   }
2829   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2830             _stack_base - _stack_size, _stack_base);
2831   st->print("]");
2832   return;
2833 }
2834 
2835 // Verification
2836 
2837 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2838 
2839 void JavaThread::verify() {
2840   // Verify oops in the thread.
2841   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2842 
2843   // Verify the stack frames.
2844   frames_do(frame_verify);
2845 }
2846 
2847 // CR 6300358 (sub-CR 2137150)
2848 // Most callers of this method assume that it can't return NULL but a
2849 // thread may not have a name whilst it is in the process of attaching to
2850 // the VM - see CR 6412693, and there are places where a JavaThread can be
2851 // seen prior to having it's threadObj set (eg JNI attaching threads and
2852 // if vm exit occurs during initialization). These cases can all be accounted
2853 // for such that this method never returns NULL.
2854 const char* JavaThread::get_thread_name() const {
2855 #ifdef ASSERT
2856   // early safepoints can hit while current thread does not yet have TLS
2857   if (!SafepointSynchronize::is_at_safepoint()) {
2858     Thread *cur = Thread::current();
2859     if (!(cur->is_Java_thread() && cur == this)) {
2860       // Current JavaThreads are allowed to get their own name without
2861       // the Threads_lock.
2862       assert_locked_or_safepoint(Threads_lock);
2863     }
2864   }
2865 #endif // ASSERT
2866   return get_thread_name_string();
2867 }
2868 
2869 // Returns a non-NULL representation of this thread's name, or a suitable
2870 // descriptive string if there is no set name
2871 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2872   const char* name_str;
2873   oop thread_obj = threadObj();
2874   if (thread_obj != NULL) {
2875     typeArrayOop name = java_lang_Thread::name(thread_obj);
2876     if (name != NULL) {
2877       if (buf == NULL) {
2878         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR),
2879                                     name->length());
2880       } else {
2881         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR),
2882                                     name->length(), buf, buflen);
2883       }
2884     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2885       name_str = "<no-name - thread is attaching>";
2886     } else {
2887       name_str = Thread::name();
2888     }
2889   } else {
2890     name_str = Thread::name();
2891   }
2892   assert(name_str != NULL, "unexpected NULL thread name");
2893   return name_str;
2894 }
2895 
2896 
2897 const char* JavaThread::get_threadgroup_name() const {
2898   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2899   oop thread_obj = threadObj();
2900   if (thread_obj != NULL) {
2901     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2902     if (thread_group != NULL) {
2903       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2904       // ThreadGroup.name can be null
2905       if (name != NULL) {
2906         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2907         return str;
2908       }
2909     }
2910   }
2911   return NULL;
2912 }
2913 
2914 const char* JavaThread::get_parent_name() const {
2915   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2916   oop thread_obj = threadObj();
2917   if (thread_obj != NULL) {
2918     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2919     if (thread_group != NULL) {
2920       oop parent = java_lang_ThreadGroup::parent(thread_group);
2921       if (parent != NULL) {
2922         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2923         // ThreadGroup.name can be null
2924         if (name != NULL) {
2925           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2926           return str;
2927         }
2928       }
2929     }
2930   }
2931   return NULL;
2932 }
2933 
2934 ThreadPriority JavaThread::java_priority() const {
2935   oop thr_oop = threadObj();
2936   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2937   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2938   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2939   return priority;
2940 }
2941 
2942 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2943 
2944   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2945   // Link Java Thread object <-> C++ Thread
2946 
2947   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2948   // and put it into a new Handle.  The Handle "thread_oop" can then
2949   // be used to pass the C++ thread object to other methods.
2950 
2951   // Set the Java level thread object (jthread) field of the
2952   // new thread (a JavaThread *) to C++ thread object using the
2953   // "thread_oop" handle.
2954 
2955   // Set the thread field (a JavaThread *) of the
2956   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2957 
2958   Handle thread_oop(Thread::current(),
2959                     JNIHandles::resolve_non_null(jni_thread));
2960   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2961          "must be initialized");
2962   set_threadObj(thread_oop());
2963   java_lang_Thread::set_thread(thread_oop(), this);
2964 
2965   if (prio == NoPriority) {
2966     prio = java_lang_Thread::priority(thread_oop());
2967     assert(prio != NoPriority, "A valid priority should be present");
2968   }
2969 
2970   // Push the Java priority down to the native thread; needs Threads_lock
2971   Thread::set_priority(this, prio);
2972 
2973   prepare_ext();
2974 
2975   // Add the new thread to the Threads list and set it in motion.
2976   // We must have threads lock in order to call Threads::add.
2977   // It is crucial that we do not block before the thread is
2978   // added to the Threads list for if a GC happens, then the java_thread oop
2979   // will not be visited by GC.
2980   Threads::add(this);
2981 }
2982 
2983 oop JavaThread::current_park_blocker() {
2984   // Support for JSR-166 locks
2985   oop thread_oop = threadObj();
2986   if (thread_oop != NULL &&
2987       JDK_Version::current().supports_thread_park_blocker()) {
2988     return java_lang_Thread::park_blocker(thread_oop);
2989   }
2990   return NULL;
2991 }
2992 
2993 
2994 void JavaThread::print_stack_on(outputStream* st) {
2995   if (!has_last_Java_frame()) return;
2996   ResourceMark rm;
2997   HandleMark   hm;
2998 
2999   RegisterMap reg_map(this);
3000   vframe* start_vf = last_java_vframe(&reg_map);
3001   int count = 0;
3002   for (vframe* f = start_vf; f; f = f->sender()) {
3003     if (f->is_java_frame()) {
3004       javaVFrame* jvf = javaVFrame::cast(f);
3005       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3006 
3007       // Print out lock information
3008       if (JavaMonitorsInStackTrace) {
3009         jvf->print_lock_info_on(st, count);
3010       }
3011     } else {
3012       // Ignore non-Java frames
3013     }
3014 
3015     // Bail-out case for too deep stacks
3016     count++;
3017     if (MaxJavaStackTraceDepth == count) return;
3018   }
3019 }
3020 
3021 
3022 // JVMTI PopFrame support
3023 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3024   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3025   if (in_bytes(size_in_bytes) != 0) {
3026     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3027     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3028     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3029   }
3030 }
3031 
3032 void* JavaThread::popframe_preserved_args() {
3033   return _popframe_preserved_args;
3034 }
3035 
3036 ByteSize JavaThread::popframe_preserved_args_size() {
3037   return in_ByteSize(_popframe_preserved_args_size);
3038 }
3039 
3040 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3041   int sz = in_bytes(popframe_preserved_args_size());
3042   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3043   return in_WordSize(sz / wordSize);
3044 }
3045 
3046 void JavaThread::popframe_free_preserved_args() {
3047   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3048   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3049   _popframe_preserved_args = NULL;
3050   _popframe_preserved_args_size = 0;
3051 }
3052 
3053 #ifndef PRODUCT
3054 
3055 void JavaThread::trace_frames() {
3056   tty->print_cr("[Describe stack]");
3057   int frame_no = 1;
3058   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3059     tty->print("  %d. ", frame_no++);
3060     fst.current()->print_value_on(tty, this);
3061     tty->cr();
3062   }
3063 }
3064 
3065 class PrintAndVerifyOopClosure: public OopClosure {
3066  protected:
3067   template <class T> inline void do_oop_work(T* p) {
3068     oop obj = oopDesc::load_decode_heap_oop(p);
3069     if (obj == NULL) return;
3070     tty->print(INTPTR_FORMAT ": ", p);
3071     if (obj->is_oop_or_null()) {
3072       if (obj->is_objArray()) {
3073         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3074       } else {
3075         obj->print();
3076       }
3077     } else {
3078       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3079     }
3080     tty->cr();
3081   }
3082  public:
3083   virtual void do_oop(oop* p) { do_oop_work(p); }
3084   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3085 };
3086 
3087 
3088 static void oops_print(frame* f, const RegisterMap *map) {
3089   PrintAndVerifyOopClosure print;
3090   f->print_value();
3091   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3092 }
3093 
3094 // Print our all the locations that contain oops and whether they are
3095 // valid or not.  This useful when trying to find the oldest frame
3096 // where an oop has gone bad since the frame walk is from youngest to
3097 // oldest.
3098 void JavaThread::trace_oops() {
3099   tty->print_cr("[Trace oops]");
3100   frames_do(oops_print);
3101 }
3102 
3103 
3104 #ifdef ASSERT
3105 // Print or validate the layout of stack frames
3106 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3107   ResourceMark rm;
3108   PRESERVE_EXCEPTION_MARK;
3109   FrameValues values;
3110   int frame_no = 0;
3111   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3112     fst.current()->describe(values, ++frame_no);
3113     if (depth == frame_no) break;
3114   }
3115   if (validate_only) {
3116     values.validate();
3117   } else {
3118     tty->print_cr("[Describe stack layout]");
3119     values.print(this);
3120   }
3121 }
3122 #endif
3123 
3124 void JavaThread::trace_stack_from(vframe* start_vf) {
3125   ResourceMark rm;
3126   int vframe_no = 1;
3127   for (vframe* f = start_vf; f; f = f->sender()) {
3128     if (f->is_java_frame()) {
3129       javaVFrame::cast(f)->print_activation(vframe_no++);
3130     } else {
3131       f->print();
3132     }
3133     if (vframe_no > StackPrintLimit) {
3134       tty->print_cr("...<more frames>...");
3135       return;
3136     }
3137   }
3138 }
3139 
3140 
3141 void JavaThread::trace_stack() {
3142   if (!has_last_Java_frame()) return;
3143   ResourceMark rm;
3144   HandleMark   hm;
3145   RegisterMap reg_map(this);
3146   trace_stack_from(last_java_vframe(&reg_map));
3147 }
3148 
3149 
3150 #endif // PRODUCT
3151 
3152 
3153 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3154   assert(reg_map != NULL, "a map must be given");
3155   frame f = last_frame();
3156   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3157     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3158   }
3159   return NULL;
3160 }
3161 
3162 
3163 Klass* JavaThread::security_get_caller_class(int depth) {
3164   vframeStream vfst(this);
3165   vfst.security_get_caller_frame(depth);
3166   if (!vfst.at_end()) {
3167     return vfst.method()->method_holder();
3168   }
3169   return NULL;
3170 }
3171 
3172 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3173   assert(thread->is_Compiler_thread(), "must be compiler thread");
3174   CompileBroker::compiler_thread_loop();
3175 }
3176 
3177 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3178   NMethodSweeper::sweeper_loop();
3179 }
3180 
3181 // Create a CompilerThread
3182 CompilerThread::CompilerThread(CompileQueue* queue,
3183                                CompilerCounters* counters)
3184                                : JavaThread(&compiler_thread_entry) {
3185   _env   = NULL;
3186   _log   = NULL;
3187   _task  = NULL;
3188   _queue = queue;
3189   _counters = counters;
3190   _buffer_blob = NULL;
3191   _compiler = NULL;
3192 
3193 #ifndef PRODUCT
3194   _ideal_graph_printer = NULL;
3195 #endif
3196 }
3197 
3198 // Create sweeper thread
3199 CodeCacheSweeperThread::CodeCacheSweeperThread()
3200 : JavaThread(&sweeper_thread_entry) {
3201   _scanned_nmethod = NULL;
3202 }
3203 void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3204   JavaThread::oops_do(f, cld_f, cf);
3205   if (_scanned_nmethod != NULL && cf != NULL) {
3206     // Safepoints can occur when the sweeper is scanning an nmethod so
3207     // process it here to make sure it isn't unloaded in the middle of
3208     // a scan.
3209     cf->do_code_blob(_scanned_nmethod);
3210   }
3211 }
3212 
3213 
3214 // ======= Threads ========
3215 
3216 // The Threads class links together all active threads, and provides
3217 // operations over all threads.  It is protected by its own Mutex
3218 // lock, which is also used in other contexts to protect thread
3219 // operations from having the thread being operated on from exiting
3220 // and going away unexpectedly (e.g., safepoint synchronization)
3221 
3222 JavaThread* Threads::_thread_list = NULL;
3223 int         Threads::_number_of_threads = 0;
3224 int         Threads::_number_of_non_daemon_threads = 0;
3225 int         Threads::_return_code = 0;
3226 size_t      JavaThread::_stack_size_at_create = 0;
3227 #ifdef ASSERT
3228 bool        Threads::_vm_complete = false;
3229 #endif
3230 
3231 // All JavaThreads
3232 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3233 
3234 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3235 void Threads::threads_do(ThreadClosure* tc) {
3236   assert_locked_or_safepoint(Threads_lock);
3237   // ALL_JAVA_THREADS iterates through all JavaThreads
3238   ALL_JAVA_THREADS(p) {
3239     tc->do_thread(p);
3240   }
3241   // Someday we could have a table or list of all non-JavaThreads.
3242   // For now, just manually iterate through them.
3243   tc->do_thread(VMThread::vm_thread());
3244   Universe::heap()->gc_threads_do(tc);
3245   WatcherThread *wt = WatcherThread::watcher_thread();
3246   // Strictly speaking, the following NULL check isn't sufficient to make sure
3247   // the data for WatcherThread is still valid upon being examined. However,
3248   // considering that WatchThread terminates when the VM is on the way to
3249   // exit at safepoint, the chance of the above is extremely small. The right
3250   // way to prevent termination of WatcherThread would be to acquire
3251   // Terminator_lock, but we can't do that without violating the lock rank
3252   // checking in some cases.
3253   if (wt != NULL) {
3254     tc->do_thread(wt);
3255   }
3256 
3257   // If CompilerThreads ever become non-JavaThreads, add them here
3258 }
3259 
3260 
3261 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3262   TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3263 
3264   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3265     create_vm_init_libraries();
3266   }
3267 
3268   initialize_class(vmSymbols::java_lang_String(), CHECK);
3269 
3270   // Initialize java_lang.System (needed before creating the thread)
3271   initialize_class(vmSymbols::java_lang_System(), CHECK);
3272   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3273   Handle thread_group = create_initial_thread_group(CHECK);
3274   Universe::set_main_thread_group(thread_group());
3275   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3276   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3277   main_thread->set_threadObj(thread_object);
3278   // Set thread status to running since main thread has
3279   // been started and running.
3280   java_lang_Thread::set_thread_status(thread_object,
3281                                       java_lang_Thread::RUNNABLE);
3282 
3283   // The VM creates & returns objects of this class. Make sure it's initialized.
3284   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3285 
3286   // The VM preresolves methods to these classes. Make sure that they get initialized
3287   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3288   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3289   call_initializeSystemClass(CHECK);
3290 
3291   // get the Java runtime name after java.lang.System is initialized
3292   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3293   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3294 
3295   // an instance of OutOfMemory exception has been allocated earlier
3296   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3297   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3298   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3299   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3300   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3301   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3302   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3303   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3304 }
3305 
3306 void Threads::initialize_jsr292_core_classes(TRAPS) {
3307   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3308   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3309   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3310 }
3311 
3312 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3313   extern void JDK_Version_init();
3314 
3315   // Check version
3316   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3317 
3318   // Initialize the output stream module
3319   ostream_init();
3320 
3321   // Process java launcher properties.
3322   Arguments::process_sun_java_launcher_properties(args);
3323 
3324   // Initialize the os module before using TLS
3325   os::init();
3326 
3327   // Initialize system properties.
3328   Arguments::init_system_properties();
3329 
3330   // So that JDK version can be used as a discriminator when parsing arguments
3331   JDK_Version_init();
3332 
3333   // Update/Initialize System properties after JDK version number is known
3334   Arguments::init_version_specific_system_properties();
3335 
3336   // Parse arguments
3337   jint parse_result = Arguments::parse(args);
3338   if (parse_result != JNI_OK) return parse_result;
3339 
3340   os::init_before_ergo();
3341 
3342   jint ergo_result = Arguments::apply_ergo();
3343   if (ergo_result != JNI_OK) return ergo_result;
3344 
3345   if (PauseAtStartup) {
3346     os::pause();
3347   }
3348 
3349   HOTSPOT_VM_INIT_BEGIN();
3350 
3351   // Record VM creation timing statistics
3352   TraceVmCreationTime create_vm_timer;
3353   create_vm_timer.start();
3354 
3355   // Timing (must come after argument parsing)
3356   TraceTime timer("Create VM", TraceStartupTime);
3357 
3358   // Initialize the os module after parsing the args
3359   jint os_init_2_result = os::init_2();
3360   if (os_init_2_result != JNI_OK) return os_init_2_result;
3361 
3362   jint adjust_after_os_result = Arguments::adjust_after_os();
3363   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3364 
3365   // initialize TLS
3366   ThreadLocalStorage::init();
3367 
3368   // Initialize output stream logging
3369   ostream_init_log();
3370 
3371   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3372   // Must be before create_vm_init_agents()
3373   if (Arguments::init_libraries_at_startup()) {
3374     convert_vm_init_libraries_to_agents();
3375   }
3376 
3377   // Launch -agentlib/-agentpath and converted -Xrun agents
3378   if (Arguments::init_agents_at_startup()) {
3379     create_vm_init_agents();
3380   }
3381 
3382   // Initialize Threads state
3383   _thread_list = NULL;
3384   _number_of_threads = 0;
3385   _number_of_non_daemon_threads = 0;
3386 
3387   // Initialize global data structures and create system classes in heap
3388   vm_init_globals();
3389 
3390   // Attach the main thread to this os thread
3391   JavaThread* main_thread = new JavaThread();
3392   main_thread->set_thread_state(_thread_in_vm);
3393   // must do this before set_active_handles and initialize_thread_local_storage
3394   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3395   // change the stack size recorded here to one based on the java thread
3396   // stacksize. This adjusted size is what is used to figure the placement
3397   // of the guard pages.
3398   main_thread->record_stack_base_and_size();
3399   main_thread->initialize_thread_local_storage();
3400 
3401   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3402 
3403   if (!main_thread->set_as_starting_thread()) {
3404     vm_shutdown_during_initialization(
3405                                       "Failed necessary internal allocation. Out of swap space");
3406     delete main_thread;
3407     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3408     return JNI_ENOMEM;
3409   }
3410 
3411   // Enable guard page *after* os::create_main_thread(), otherwise it would
3412   // crash Linux VM, see notes in os_linux.cpp.
3413   main_thread->create_stack_guard_pages();
3414 
3415   // Initialize Java-Level synchronization subsystem
3416   ObjectMonitor::Initialize();
3417 
3418   // Initialize global modules
3419   jint status = init_globals();
3420   if (status != JNI_OK) {
3421     delete main_thread;
3422     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3423     return status;
3424   }
3425 
3426   // Should be done after the heap is fully created
3427   main_thread->cache_global_variables();
3428 
3429   HandleMark hm;
3430 
3431   { MutexLocker mu(Threads_lock);
3432     Threads::add(main_thread);
3433   }
3434 
3435   // Any JVMTI raw monitors entered in onload will transition into
3436   // real raw monitor. VM is setup enough here for raw monitor enter.
3437   JvmtiExport::transition_pending_onload_raw_monitors();
3438 
3439   // Create the VMThread
3440   { TraceTime timer("Start VMThread", TraceStartupTime);
3441     VMThread::create();
3442     Thread* vmthread = VMThread::vm_thread();
3443 
3444     if (!os::create_thread(vmthread, os::vm_thread)) {
3445       vm_exit_during_initialization("Cannot create VM thread. "
3446                                     "Out of system resources.");
3447     }
3448 
3449     // Wait for the VM thread to become ready, and VMThread::run to initialize
3450     // Monitors can have spurious returns, must always check another state flag
3451     {
3452       MutexLocker ml(Notify_lock);
3453       os::start_thread(vmthread);
3454       while (vmthread->active_handles() == NULL) {
3455         Notify_lock->wait();
3456       }
3457     }
3458   }
3459 
3460   assert(Universe::is_fully_initialized(), "not initialized");
3461   if (VerifyDuringStartup) {
3462     // Make sure we're starting with a clean slate.
3463     VM_Verify verify_op;
3464     VMThread::execute(&verify_op);
3465   }
3466 
3467   Thread* THREAD = Thread::current();
3468 
3469   // At this point, the Universe is initialized, but we have not executed
3470   // any byte code.  Now is a good time (the only time) to dump out the
3471   // internal state of the JVM for sharing.
3472   if (DumpSharedSpaces) {
3473     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3474     ShouldNotReachHere();
3475   }
3476 
3477   // Always call even when there are not JVMTI environments yet, since environments
3478   // may be attached late and JVMTI must track phases of VM execution
3479   JvmtiExport::enter_start_phase();
3480 
3481   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3482   JvmtiExport::post_vm_start();
3483 
3484   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3485 
3486   // We need this for ClassDataSharing - the initial vm.info property is set
3487   // with the default value of CDS "sharing" which may be reset through
3488   // command line options.
3489   reset_vm_info_property(CHECK_JNI_ERR);
3490 
3491   quicken_jni_functions();
3492 
3493   // Must be run after init_ft which initializes ft_enabled
3494   if (TRACE_INITIALIZE() != JNI_OK) {
3495     vm_exit_during_initialization("Failed to initialize tracing backend");
3496   }
3497 
3498   // Set flag that basic initialization has completed. Used by exceptions and various
3499   // debug stuff, that does not work until all basic classes have been initialized.
3500   set_init_completed();
3501 
3502   Metaspace::post_initialize();
3503 
3504   HOTSPOT_VM_INIT_END();
3505 
3506   // record VM initialization completion time
3507 #if INCLUDE_MANAGEMENT
3508   Management::record_vm_init_completed();
3509 #endif // INCLUDE_MANAGEMENT
3510 
3511   // Compute system loader. Note that this has to occur after set_init_completed, since
3512   // valid exceptions may be thrown in the process.
3513   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3514   // set_init_completed has just been called, causing exceptions not to be shortcut
3515   // anymore. We call vm_exit_during_initialization directly instead.
3516   SystemDictionary::compute_java_system_loader(CHECK_JNI_ERR);
3517 
3518 #if INCLUDE_ALL_GCS
3519   // Support for ConcurrentMarkSweep. This should be cleaned up
3520   // and better encapsulated. The ugly nested if test would go away
3521   // once things are properly refactored. XXX YSR
3522   if (UseConcMarkSweepGC || UseG1GC) {
3523     if (UseConcMarkSweepGC) {
3524       ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3525     } else {
3526       ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3527     }
3528   }
3529 #endif // INCLUDE_ALL_GCS
3530 
3531   // Always call even when there are not JVMTI environments yet, since environments
3532   // may be attached late and JVMTI must track phases of VM execution
3533   JvmtiExport::enter_live_phase();
3534 
3535   // Signal Dispatcher needs to be started before VMInit event is posted
3536   os::signal_init();
3537 
3538   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3539   if (!DisableAttachMechanism) {
3540     AttachListener::vm_start();
3541     if (StartAttachListener || AttachListener::init_at_startup()) {
3542       AttachListener::init();
3543     }
3544   }
3545 
3546   // Launch -Xrun agents
3547   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3548   // back-end can launch with -Xdebug -Xrunjdwp.
3549   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3550     create_vm_init_libraries();
3551   }
3552 
3553   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3554   JvmtiExport::post_vm_initialized();
3555 
3556   if (TRACE_START() != JNI_OK) {
3557     vm_exit_during_initialization("Failed to start tracing backend.");
3558   }
3559 
3560   if (CleanChunkPoolAsync) {
3561     Chunk::start_chunk_pool_cleaner_task();
3562   }
3563 
3564   // initialize compiler(s)
3565 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3566   CompileBroker::compilation_init();
3567 #endif
3568 
3569   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3570   // It is done after compilers are initialized, because otherwise compilations of
3571   // signature polymorphic MH intrinsics can be missed
3572   // (see SystemDictionary::find_method_handle_intrinsic).
3573   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3574 
3575 #if INCLUDE_MANAGEMENT
3576   Management::initialize(THREAD);
3577 
3578   if (HAS_PENDING_EXCEPTION) {
3579     // management agent fails to start possibly due to
3580     // configuration problem and is responsible for printing
3581     // stack trace if appropriate. Simply exit VM.
3582     vm_exit(1);
3583   }
3584 #endif // INCLUDE_MANAGEMENT
3585 
3586   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3587   if (MemProfiling)                   MemProfiler::engage();
3588   StatSampler::engage();
3589   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3590 
3591   BiasedLocking::init();
3592 
3593 #if INCLUDE_RTM_OPT
3594   RTMLockingCounters::init();
3595 #endif
3596 
3597   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3598     call_postVMInitHook(THREAD);
3599     // The Java side of PostVMInitHook.run must deal with all
3600     // exceptions and provide means of diagnosis.
3601     if (HAS_PENDING_EXCEPTION) {
3602       CLEAR_PENDING_EXCEPTION;
3603     }
3604   }
3605 
3606   {
3607     MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3608     // Make sure the watcher thread can be started by WatcherThread::start()
3609     // or by dynamic enrollment.
3610     WatcherThread::make_startable();
3611     // Start up the WatcherThread if there are any periodic tasks
3612     // NOTE:  All PeriodicTasks should be registered by now. If they
3613     //   aren't, late joiners might appear to start slowly (we might
3614     //   take a while to process their first tick).
3615     if (PeriodicTask::num_tasks() > 0) {
3616       WatcherThread::start();
3617     }
3618   }
3619 
3620   create_vm_timer.end();
3621 #ifdef ASSERT
3622   _vm_complete = true;
3623 #endif
3624   return JNI_OK;
3625 }
3626 
3627 // type for the Agent_OnLoad and JVM_OnLoad entry points
3628 extern "C" {
3629   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3630 }
3631 // Find a command line agent library and return its entry point for
3632 //         -agentlib:  -agentpath:   -Xrun
3633 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3634 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3635                                     const char *on_load_symbols[],
3636                                     size_t num_symbol_entries) {
3637   OnLoadEntry_t on_load_entry = NULL;
3638   void *library = NULL;
3639 
3640   if (!agent->valid()) {
3641     char buffer[JVM_MAXPATHLEN];
3642     char ebuf[1024] = "";
3643     const char *name = agent->name();
3644     const char *msg = "Could not find agent library ";
3645 
3646     // First check to see if agent is statically linked into executable
3647     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3648       library = agent->os_lib();
3649     } else if (agent->is_absolute_path()) {
3650       library = os::dll_load(name, ebuf, sizeof ebuf);
3651       if (library == NULL) {
3652         const char *sub_msg = " in absolute path, with error: ";
3653         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3654         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3655         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3656         // If we can't find the agent, exit.
3657         vm_exit_during_initialization(buf, NULL);
3658         FREE_C_HEAP_ARRAY(char, buf, mtThread);
3659       }
3660     } else {
3661       // Try to load the agent from the standard dll directory
3662       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3663                              name)) {
3664         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3665       }
3666       if (library == NULL) { // Try the local directory
3667         char ns[1] = {0};
3668         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3669           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3670         }
3671         if (library == NULL) {
3672           const char *sub_msg = " on the library path, with error: ";
3673           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3674           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3675           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3676           // If we can't find the agent, exit.
3677           vm_exit_during_initialization(buf, NULL);
3678           FREE_C_HEAP_ARRAY(char, buf, mtThread);
3679         }
3680       }
3681     }
3682     agent->set_os_lib(library);
3683     agent->set_valid();
3684   }
3685 
3686   // Find the OnLoad function.
3687   on_load_entry =
3688     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3689                                                           false,
3690                                                           on_load_symbols,
3691                                                           num_symbol_entries));
3692   return on_load_entry;
3693 }
3694 
3695 // Find the JVM_OnLoad entry point
3696 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3697   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3698   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3699 }
3700 
3701 // Find the Agent_OnLoad entry point
3702 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3703   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3704   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3705 }
3706 
3707 // For backwards compatibility with -Xrun
3708 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3709 // treated like -agentpath:
3710 // Must be called before agent libraries are created
3711 void Threads::convert_vm_init_libraries_to_agents() {
3712   AgentLibrary* agent;
3713   AgentLibrary* next;
3714 
3715   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3716     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3717     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3718 
3719     // If there is an JVM_OnLoad function it will get called later,
3720     // otherwise see if there is an Agent_OnLoad
3721     if (on_load_entry == NULL) {
3722       on_load_entry = lookup_agent_on_load(agent);
3723       if (on_load_entry != NULL) {
3724         // switch it to the agent list -- so that Agent_OnLoad will be called,
3725         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3726         Arguments::convert_library_to_agent(agent);
3727       } else {
3728         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3729       }
3730     }
3731   }
3732 }
3733 
3734 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3735 // Invokes Agent_OnLoad
3736 // Called very early -- before JavaThreads exist
3737 void Threads::create_vm_init_agents() {
3738   extern struct JavaVM_ main_vm;
3739   AgentLibrary* agent;
3740 
3741   JvmtiExport::enter_onload_phase();
3742 
3743   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3744     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3745 
3746     if (on_load_entry != NULL) {
3747       // Invoke the Agent_OnLoad function
3748       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3749       if (err != JNI_OK) {
3750         vm_exit_during_initialization("agent library failed to init", agent->name());
3751       }
3752     } else {
3753       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3754     }
3755   }
3756   JvmtiExport::enter_primordial_phase();
3757 }
3758 
3759 extern "C" {
3760   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3761 }
3762 
3763 void Threads::shutdown_vm_agents() {
3764   // Send any Agent_OnUnload notifications
3765   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3766   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3767   extern struct JavaVM_ main_vm;
3768   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3769 
3770     // Find the Agent_OnUnload function.
3771     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3772                                                    os::find_agent_function(agent,
3773                                                    false,
3774                                                    on_unload_symbols,
3775                                                    num_symbol_entries));
3776 
3777     // Invoke the Agent_OnUnload function
3778     if (unload_entry != NULL) {
3779       JavaThread* thread = JavaThread::current();
3780       ThreadToNativeFromVM ttn(thread);
3781       HandleMark hm(thread);
3782       (*unload_entry)(&main_vm);
3783     }
3784   }
3785 }
3786 
3787 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3788 // Invokes JVM_OnLoad
3789 void Threads::create_vm_init_libraries() {
3790   extern struct JavaVM_ main_vm;
3791   AgentLibrary* agent;
3792 
3793   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3794     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3795 
3796     if (on_load_entry != NULL) {
3797       // Invoke the JVM_OnLoad function
3798       JavaThread* thread = JavaThread::current();
3799       ThreadToNativeFromVM ttn(thread);
3800       HandleMark hm(thread);
3801       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3802       if (err != JNI_OK) {
3803         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3804       }
3805     } else {
3806       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3807     }
3808   }
3809 }
3810 
3811 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3812   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3813 
3814   JavaThread* java_thread = NULL;
3815   // Sequential search for now.  Need to do better optimization later.
3816   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3817     oop tobj = thread->threadObj();
3818     if (!thread->is_exiting() &&
3819         tobj != NULL &&
3820         java_tid == java_lang_Thread::thread_id(tobj)) {
3821       java_thread = thread;
3822       break;
3823     }
3824   }
3825   return java_thread;
3826 }
3827 
3828 
3829 // Last thread running calls java.lang.Shutdown.shutdown()
3830 void JavaThread::invoke_shutdown_hooks() {
3831   HandleMark hm(this);
3832 
3833   // We could get here with a pending exception, if so clear it now.
3834   if (this->has_pending_exception()) {
3835     this->clear_pending_exception();
3836   }
3837 
3838   EXCEPTION_MARK;
3839   Klass* k =
3840     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3841                                       THREAD);
3842   if (k != NULL) {
3843     // SystemDictionary::resolve_or_null will return null if there was
3844     // an exception.  If we cannot load the Shutdown class, just don't
3845     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3846     // and finalizers (if runFinalizersOnExit is set) won't be run.
3847     // Note that if a shutdown hook was registered or runFinalizersOnExit
3848     // was called, the Shutdown class would have already been loaded
3849     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3850     instanceKlassHandle shutdown_klass (THREAD, k);
3851     JavaValue result(T_VOID);
3852     JavaCalls::call_static(&result,
3853                            shutdown_klass,
3854                            vmSymbols::shutdown_method_name(),
3855                            vmSymbols::void_method_signature(),
3856                            THREAD);
3857   }
3858   CLEAR_PENDING_EXCEPTION;
3859 }
3860 
3861 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3862 // the program falls off the end of main(). Another VM exit path is through
3863 // vm_exit() when the program calls System.exit() to return a value or when
3864 // there is a serious error in VM. The two shutdown paths are not exactly
3865 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3866 // and VM_Exit op at VM level.
3867 //
3868 // Shutdown sequence:
3869 //   + Shutdown native memory tracking if it is on
3870 //   + Wait until we are the last non-daemon thread to execute
3871 //     <-- every thing is still working at this moment -->
3872 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3873 //        shutdown hooks, run finalizers if finalization-on-exit
3874 //   + Call before_exit(), prepare for VM exit
3875 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3876 //        currently the only user of this mechanism is File.deleteOnExit())
3877 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3878 //        post thread end and vm death events to JVMTI,
3879 //        stop signal thread
3880 //   + Call JavaThread::exit(), it will:
3881 //      > release JNI handle blocks, remove stack guard pages
3882 //      > remove this thread from Threads list
3883 //     <-- no more Java code from this thread after this point -->
3884 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3885 //     the compiler threads at safepoint
3886 //     <-- do not use anything that could get blocked by Safepoint -->
3887 //   + Disable tracing at JNI/JVM barriers
3888 //   + Set _vm_exited flag for threads that are still running native code
3889 //   + Delete this thread
3890 //   + Call exit_globals()
3891 //      > deletes tty
3892 //      > deletes PerfMemory resources
3893 //   + Return to caller
3894 
3895 bool Threads::destroy_vm() {
3896   JavaThread* thread = JavaThread::current();
3897 
3898 #ifdef ASSERT
3899   _vm_complete = false;
3900 #endif
3901   // Wait until we are the last non-daemon thread to execute
3902   { MutexLocker nu(Threads_lock);
3903     while (Threads::number_of_non_daemon_threads() > 1)
3904       // This wait should make safepoint checks, wait without a timeout,
3905       // and wait as a suspend-equivalent condition.
3906       //
3907       // Note: If the FlatProfiler is running and this thread is waiting
3908       // for another non-daemon thread to finish, then the FlatProfiler
3909       // is waiting for the external suspend request on this thread to
3910       // complete. wait_for_ext_suspend_completion() will eventually
3911       // timeout, but that takes time. Making this wait a suspend-
3912       // equivalent condition solves that timeout problem.
3913       //
3914       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3915                          Mutex::_as_suspend_equivalent_flag);
3916   }
3917 
3918   // Hang forever on exit if we are reporting an error.
3919   if (ShowMessageBoxOnError && is_error_reported()) {
3920     os::infinite_sleep();
3921   }
3922   os::wait_for_keypress_at_exit();
3923 
3924   // run Java level shutdown hooks
3925   thread->invoke_shutdown_hooks();
3926 
3927   before_exit(thread);
3928 
3929   thread->exit(true);
3930 
3931   // Stop VM thread.
3932   {
3933     // 4945125 The vm thread comes to a safepoint during exit.
3934     // GC vm_operations can get caught at the safepoint, and the
3935     // heap is unparseable if they are caught. Grab the Heap_lock
3936     // to prevent this. The GC vm_operations will not be able to
3937     // queue until after the vm thread is dead. After this point,
3938     // we'll never emerge out of the safepoint before the VM exits.
3939 
3940     MutexLocker ml(Heap_lock);
3941 
3942     VMThread::wait_for_vm_thread_exit();
3943     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3944     VMThread::destroy();
3945   }
3946 
3947   // clean up ideal graph printers
3948 #if defined(COMPILER2) && !defined(PRODUCT)
3949   IdealGraphPrinter::clean_up();
3950 #endif
3951 
3952   // Now, all Java threads are gone except daemon threads. Daemon threads
3953   // running Java code or in VM are stopped by the Safepoint. However,
3954   // daemon threads executing native code are still running.  But they
3955   // will be stopped at native=>Java/VM barriers. Note that we can't
3956   // simply kill or suspend them, as it is inherently deadlock-prone.
3957 
3958 #ifndef PRODUCT
3959   // disable function tracing at JNI/JVM barriers
3960   TraceJNICalls = false;
3961   TraceJVMCalls = false;
3962   TraceRuntimeCalls = false;
3963 #endif
3964 
3965   VM_Exit::set_vm_exited();
3966 
3967   notify_vm_shutdown();
3968 
3969   delete thread;
3970 
3971   // exit_globals() will delete tty
3972   exit_globals();
3973 
3974   return true;
3975 }
3976 
3977 
3978 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3979   if (version == JNI_VERSION_1_1) return JNI_TRUE;
3980   return is_supported_jni_version(version);
3981 }
3982 
3983 
3984 jboolean Threads::is_supported_jni_version(jint version) {
3985   if (version == JNI_VERSION_1_2) return JNI_TRUE;
3986   if (version == JNI_VERSION_1_4) return JNI_TRUE;
3987   if (version == JNI_VERSION_1_6) return JNI_TRUE;
3988   if (version == JNI_VERSION_1_8) return JNI_TRUE;
3989   return JNI_FALSE;
3990 }
3991 
3992 
3993 void Threads::add(JavaThread* p, bool force_daemon) {
3994   // The threads lock must be owned at this point
3995   assert_locked_or_safepoint(Threads_lock);
3996 
3997   // See the comment for this method in thread.hpp for its purpose and
3998   // why it is called here.
3999   p->initialize_queues();
4000   p->set_next(_thread_list);
4001   _thread_list = p;
4002   _number_of_threads++;
4003   oop threadObj = p->threadObj();
4004   bool daemon = true;
4005   // Bootstrapping problem: threadObj can be null for initial
4006   // JavaThread (or for threads attached via JNI)
4007   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4008     _number_of_non_daemon_threads++;
4009     daemon = false;
4010   }
4011 
4012   ThreadService::add_thread(p, daemon);
4013 
4014   // Possible GC point.
4015   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4016 }
4017 
4018 void Threads::remove(JavaThread* p) {
4019   // Extra scope needed for Thread_lock, so we can check
4020   // that we do not remove thread without safepoint code notice
4021   { MutexLocker ml(Threads_lock);
4022 
4023     assert(includes(p), "p must be present");
4024 
4025     JavaThread* current = _thread_list;
4026     JavaThread* prev    = NULL;
4027 
4028     while (current != p) {
4029       prev    = current;
4030       current = current->next();
4031     }
4032 
4033     if (prev) {
4034       prev->set_next(current->next());
4035     } else {
4036       _thread_list = p->next();
4037     }
4038     _number_of_threads--;
4039     oop threadObj = p->threadObj();
4040     bool daemon = true;
4041     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4042       _number_of_non_daemon_threads--;
4043       daemon = false;
4044 
4045       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4046       // on destroy_vm will wake up.
4047       if (number_of_non_daemon_threads() == 1) {
4048         Threads_lock->notify_all();
4049       }
4050     }
4051     ThreadService::remove_thread(p, daemon);
4052 
4053     // Make sure that safepoint code disregard this thread. This is needed since
4054     // the thread might mess around with locks after this point. This can cause it
4055     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4056     // of this thread since it is removed from the queue.
4057     p->set_terminated_value();
4058   } // unlock Threads_lock
4059 
4060   // Since Events::log uses a lock, we grab it outside the Threads_lock
4061   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4062 }
4063 
4064 // Threads_lock must be held when this is called (or must be called during a safepoint)
4065 bool Threads::includes(JavaThread* p) {
4066   assert(Threads_lock->is_locked(), "sanity check");
4067   ALL_JAVA_THREADS(q) {
4068     if (q == p) {
4069       return true;
4070     }
4071   }
4072   return false;
4073 }
4074 
4075 // Operations on the Threads list for GC.  These are not explicitly locked,
4076 // but the garbage collector must provide a safe context for them to run.
4077 // In particular, these things should never be called when the Threads_lock
4078 // is held by some other thread. (Note: the Safepoint abstraction also
4079 // uses the Threads_lock to guarantee this property. It also makes sure that
4080 // all threads gets blocked when exiting or starting).
4081 
4082 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4083   ALL_JAVA_THREADS(p) {
4084     p->oops_do(f, cld_f, cf);
4085   }
4086   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4087 }
4088 
4089 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4090   // Introduce a mechanism allowing parallel threads to claim threads as
4091   // root groups.  Overhead should be small enough to use all the time,
4092   // even in sequential code.
4093   SharedHeap* sh = SharedHeap::heap();
4094   // Cannot yet substitute active_workers for n_par_threads
4095   // because of G1CollectedHeap::verify() use of
4096   // SharedHeap::process_roots().  n_par_threads == 0 will
4097   // turn off parallelism in process_roots while active_workers
4098   // is being used for parallelism elsewhere.
4099   bool is_par = sh->n_par_threads() > 0;
4100   assert(!is_par ||
4101          (SharedHeap::heap()->n_par_threads() ==
4102          SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4103   int cp = SharedHeap::heap()->strong_roots_parity();
4104   ALL_JAVA_THREADS(p) {
4105     if (p->claim_oops_do(is_par, cp)) {
4106       p->oops_do(f, cld_f, cf);
4107     }
4108   }
4109   VMThread* vmt = VMThread::vm_thread();
4110   if (vmt->claim_oops_do(is_par, cp)) {
4111     vmt->oops_do(f, cld_f, cf);
4112   }
4113 }
4114 
4115 #if INCLUDE_ALL_GCS
4116 // Used by ParallelScavenge
4117 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4118   ALL_JAVA_THREADS(p) {
4119     q->enqueue(new ThreadRootsTask(p));
4120   }
4121   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4122 }
4123 
4124 // Used by Parallel Old
4125 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4126   ALL_JAVA_THREADS(p) {
4127     q->enqueue(new ThreadRootsMarkingTask(p));
4128   }
4129   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4130 }
4131 #endif // INCLUDE_ALL_GCS
4132 
4133 void Threads::nmethods_do(CodeBlobClosure* cf) {
4134   ALL_JAVA_THREADS(p) {
4135     p->nmethods_do(cf);
4136   }
4137   VMThread::vm_thread()->nmethods_do(cf);
4138 }
4139 
4140 void Threads::metadata_do(void f(Metadata*)) {
4141   ALL_JAVA_THREADS(p) {
4142     p->metadata_do(f);
4143   }
4144 }
4145 
4146 void Threads::deoptimized_wrt_marked_nmethods() {
4147   ALL_JAVA_THREADS(p) {
4148     p->deoptimized_wrt_marked_nmethods();
4149   }
4150 }
4151 
4152 
4153 // Get count Java threads that are waiting to enter the specified monitor.
4154 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4155                                                          address monitor,
4156                                                          bool doLock) {
4157   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4158          "must grab Threads_lock or be at safepoint");
4159   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4160 
4161   int i = 0;
4162   {
4163     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4164     ALL_JAVA_THREADS(p) {
4165       if (p->is_Compiler_thread()) continue;
4166 
4167       address pending = (address)p->current_pending_monitor();
4168       if (pending == monitor) {             // found a match
4169         if (i < count) result->append(p);   // save the first count matches
4170         i++;
4171       }
4172     }
4173   }
4174   return result;
4175 }
4176 
4177 
4178 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4179                                                       bool doLock) {
4180   assert(doLock ||
4181          Threads_lock->owned_by_self() ||
4182          SafepointSynchronize::is_at_safepoint(),
4183          "must grab Threads_lock or be at safepoint");
4184 
4185   // NULL owner means not locked so we can skip the search
4186   if (owner == NULL) return NULL;
4187 
4188   {
4189     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4190     ALL_JAVA_THREADS(p) {
4191       // first, see if owner is the address of a Java thread
4192       if (owner == (address)p) return p;
4193     }
4194   }
4195   // Cannot assert on lack of success here since this function may be
4196   // used by code that is trying to report useful problem information
4197   // like deadlock detection.
4198   if (UseHeavyMonitors) return NULL;
4199 
4200   // If we didn't find a matching Java thread and we didn't force use of
4201   // heavyweight monitors, then the owner is the stack address of the
4202   // Lock Word in the owning Java thread's stack.
4203   //
4204   JavaThread* the_owner = NULL;
4205   {
4206     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4207     ALL_JAVA_THREADS(q) {
4208       if (q->is_lock_owned(owner)) {
4209         the_owner = q;
4210         break;
4211       }
4212     }
4213   }
4214   // cannot assert on lack of success here; see above comment
4215   return the_owner;
4216 }
4217 
4218 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4219 void Threads::print_on(outputStream* st, bool print_stacks,
4220                        bool internal_format, bool print_concurrent_locks) {
4221   char buf[32];
4222   st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
4223 
4224   st->print_cr("Full thread dump %s (%s %s):",
4225                Abstract_VM_Version::vm_name(),
4226                Abstract_VM_Version::vm_release(),
4227                Abstract_VM_Version::vm_info_string());
4228   st->cr();
4229 
4230 #if INCLUDE_ALL_GCS
4231   // Dump concurrent locks
4232   ConcurrentLocksDump concurrent_locks;
4233   if (print_concurrent_locks) {
4234     concurrent_locks.dump_at_safepoint();
4235   }
4236 #endif // INCLUDE_ALL_GCS
4237 
4238   ALL_JAVA_THREADS(p) {
4239     ResourceMark rm;
4240     p->print_on(st);
4241     if (print_stacks) {
4242       if (internal_format) {
4243         p->trace_stack();
4244       } else {
4245         p->print_stack_on(st);
4246       }
4247     }
4248     st->cr();
4249 #if INCLUDE_ALL_GCS
4250     if (print_concurrent_locks) {
4251       concurrent_locks.print_locks_on(p, st);
4252     }
4253 #endif // INCLUDE_ALL_GCS
4254   }
4255 
4256   VMThread::vm_thread()->print_on(st);
4257   st->cr();
4258   Universe::heap()->print_gc_threads_on(st);
4259   WatcherThread* wt = WatcherThread::watcher_thread();
4260   if (wt != NULL) {
4261     wt->print_on(st);
4262     st->cr();
4263   }
4264   CompileBroker::print_compiler_threads_on(st);
4265   st->flush();
4266 }
4267 
4268 // Threads::print_on_error() is called by fatal error handler. It's possible
4269 // that VM is not at safepoint and/or current thread is inside signal handler.
4270 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4271 // memory (even in resource area), it might deadlock the error handler.
4272 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4273                              int buflen) {
4274   bool found_current = false;
4275   st->print_cr("Java Threads: ( => current thread )");
4276   ALL_JAVA_THREADS(thread) {
4277     bool is_current = (current == thread);
4278     found_current = found_current || is_current;
4279 
4280     st->print("%s", is_current ? "=>" : "  ");
4281 
4282     st->print(PTR_FORMAT, thread);
4283     st->print(" ");
4284     thread->print_on_error(st, buf, buflen);
4285     st->cr();
4286   }
4287   st->cr();
4288 
4289   st->print_cr("Other Threads:");
4290   if (VMThread::vm_thread()) {
4291     bool is_current = (current == VMThread::vm_thread());
4292     found_current = found_current || is_current;
4293     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4294 
4295     st->print(PTR_FORMAT, VMThread::vm_thread());
4296     st->print(" ");
4297     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4298     st->cr();
4299   }
4300   WatcherThread* wt = WatcherThread::watcher_thread();
4301   if (wt != NULL) {
4302     bool is_current = (current == wt);
4303     found_current = found_current || is_current;
4304     st->print("%s", is_current ? "=>" : "  ");
4305 
4306     st->print(PTR_FORMAT, wt);
4307     st->print(" ");
4308     wt->print_on_error(st, buf, buflen);
4309     st->cr();
4310   }
4311   if (!found_current) {
4312     st->cr();
4313     st->print("=>" PTR_FORMAT " (exited) ", current);
4314     current->print_on_error(st, buf, buflen);
4315     st->cr();
4316   }
4317 }
4318 
4319 // Internal SpinLock and Mutex
4320 // Based on ParkEvent
4321 
4322 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4323 //
4324 // We employ SpinLocks _only for low-contention, fixed-length
4325 // short-duration critical sections where we're concerned
4326 // about native mutex_t or HotSpot Mutex:: latency.
4327 // The mux construct provides a spin-then-block mutual exclusion
4328 // mechanism.
4329 //
4330 // Testing has shown that contention on the ListLock guarding gFreeList
4331 // is common.  If we implement ListLock as a simple SpinLock it's common
4332 // for the JVM to devolve to yielding with little progress.  This is true
4333 // despite the fact that the critical sections protected by ListLock are
4334 // extremely short.
4335 //
4336 // TODO-FIXME: ListLock should be of type SpinLock.
4337 // We should make this a 1st-class type, integrated into the lock
4338 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4339 // should have sufficient padding to avoid false-sharing and excessive
4340 // cache-coherency traffic.
4341 
4342 
4343 typedef volatile int SpinLockT;
4344 
4345 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4346   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4347     return;   // normal fast-path return
4348   }
4349 
4350   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4351   TEVENT(SpinAcquire - ctx);
4352   int ctr = 0;
4353   int Yields = 0;
4354   for (;;) {
4355     while (*adr != 0) {
4356       ++ctr;
4357       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4358         if (Yields > 5) {
4359           os::naked_short_sleep(1);
4360         } else {
4361           os::naked_yield();
4362           ++Yields;
4363         }
4364       } else {
4365         SpinPause();
4366       }
4367     }
4368     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4369   }
4370 }
4371 
4372 void Thread::SpinRelease(volatile int * adr) {
4373   assert(*adr != 0, "invariant");
4374   OrderAccess::fence();      // guarantee at least release consistency.
4375   // Roach-motel semantics.
4376   // It's safe if subsequent LDs and STs float "up" into the critical section,
4377   // but prior LDs and STs within the critical section can't be allowed
4378   // to reorder or float past the ST that releases the lock.
4379   // Loads and stores in the critical section - which appear in program
4380   // order before the store that releases the lock - must also appear
4381   // before the store that releases the lock in memory visibility order.
4382   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4383   // the ST of 0 into the lock-word which releases the lock, so fence
4384   // more than covers this on all platforms.
4385   *adr = 0;
4386 }
4387 
4388 // muxAcquire and muxRelease:
4389 //
4390 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4391 //    The LSB of the word is set IFF the lock is held.
4392 //    The remainder of the word points to the head of a singly-linked list
4393 //    of threads blocked on the lock.
4394 //
4395 // *  The current implementation of muxAcquire-muxRelease uses its own
4396 //    dedicated Thread._MuxEvent instance.  If we're interested in
4397 //    minimizing the peak number of extant ParkEvent instances then
4398 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4399 //    as certain invariants were satisfied.  Specifically, care would need
4400 //    to be taken with regards to consuming unpark() "permits".
4401 //    A safe rule of thumb is that a thread would never call muxAcquire()
4402 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4403 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4404 //    consume an unpark() permit intended for monitorenter, for instance.
4405 //    One way around this would be to widen the restricted-range semaphore
4406 //    implemented in park().  Another alternative would be to provide
4407 //    multiple instances of the PlatformEvent() for each thread.  One
4408 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4409 //
4410 // *  Usage:
4411 //    -- Only as leaf locks
4412 //    -- for short-term locking only as muxAcquire does not perform
4413 //       thread state transitions.
4414 //
4415 // Alternatives:
4416 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4417 //    but with parking or spin-then-park instead of pure spinning.
4418 // *  Use Taura-Oyama-Yonenzawa locks.
4419 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4420 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4421 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4422 //    acquiring threads use timers (ParkTimed) to detect and recover from
4423 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4424 //    boundaries by using placement-new.
4425 // *  Augment MCS with advisory back-link fields maintained with CAS().
4426 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4427 //    The validity of the backlinks must be ratified before we trust the value.
4428 //    If the backlinks are invalid the exiting thread must back-track through the
4429 //    the forward links, which are always trustworthy.
4430 // *  Add a successor indication.  The LockWord is currently encoded as
4431 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4432 //    to provide the usual futile-wakeup optimization.
4433 //    See RTStt for details.
4434 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4435 //
4436 
4437 
4438 typedef volatile intptr_t MutexT;      // Mux Lock-word
4439 enum MuxBits { LOCKBIT = 1 };
4440 
4441 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4442   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4443   if (w == 0) return;
4444   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4445     return;
4446   }
4447 
4448   TEVENT(muxAcquire - Contention);
4449   ParkEvent * const Self = Thread::current()->_MuxEvent;
4450   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4451   for (;;) {
4452     int its = (os::is_MP() ? 100 : 0) + 1;
4453 
4454     // Optional spin phase: spin-then-park strategy
4455     while (--its >= 0) {
4456       w = *Lock;
4457       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4458         return;
4459       }
4460     }
4461 
4462     Self->reset();
4463     Self->OnList = intptr_t(Lock);
4464     // The following fence() isn't _strictly necessary as the subsequent
4465     // CAS() both serializes execution and ratifies the fetched *Lock value.
4466     OrderAccess::fence();
4467     for (;;) {
4468       w = *Lock;
4469       if ((w & LOCKBIT) == 0) {
4470         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4471           Self->OnList = 0;   // hygiene - allows stronger asserts
4472           return;
4473         }
4474         continue;      // Interference -- *Lock changed -- Just retry
4475       }
4476       assert(w & LOCKBIT, "invariant");
4477       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4478       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4479     }
4480 
4481     while (Self->OnList != 0) {
4482       Self->park();
4483     }
4484   }
4485 }
4486 
4487 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4488   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4489   if (w == 0) return;
4490   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4491     return;
4492   }
4493 
4494   TEVENT(muxAcquire - Contention);
4495   ParkEvent * ReleaseAfter = NULL;
4496   if (ev == NULL) {
4497     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4498   }
4499   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4500   for (;;) {
4501     guarantee(ev->OnList == 0, "invariant");
4502     int its = (os::is_MP() ? 100 : 0) + 1;
4503 
4504     // Optional spin phase: spin-then-park strategy
4505     while (--its >= 0) {
4506       w = *Lock;
4507       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4508         if (ReleaseAfter != NULL) {
4509           ParkEvent::Release(ReleaseAfter);
4510         }
4511         return;
4512       }
4513     }
4514 
4515     ev->reset();
4516     ev->OnList = intptr_t(Lock);
4517     // The following fence() isn't _strictly necessary as the subsequent
4518     // CAS() both serializes execution and ratifies the fetched *Lock value.
4519     OrderAccess::fence();
4520     for (;;) {
4521       w = *Lock;
4522       if ((w & LOCKBIT) == 0) {
4523         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4524           ev->OnList = 0;
4525           // We call ::Release while holding the outer lock, thus
4526           // artificially lengthening the critical section.
4527           // Consider deferring the ::Release() until the subsequent unlock(),
4528           // after we've dropped the outer lock.
4529           if (ReleaseAfter != NULL) {
4530             ParkEvent::Release(ReleaseAfter);
4531           }
4532           return;
4533         }
4534         continue;      // Interference -- *Lock changed -- Just retry
4535       }
4536       assert(w & LOCKBIT, "invariant");
4537       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4538       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4539     }
4540 
4541     while (ev->OnList != 0) {
4542       ev->park();
4543     }
4544   }
4545 }
4546 
4547 // Release() must extract a successor from the list and then wake that thread.
4548 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4549 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4550 // Release() would :
4551 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4552 // (B) Extract a successor from the private list "in-hand"
4553 // (C) attempt to CAS() the residual back into *Lock over null.
4554 //     If there were any newly arrived threads and the CAS() would fail.
4555 //     In that case Release() would detach the RATs, re-merge the list in-hand
4556 //     with the RATs and repeat as needed.  Alternately, Release() might
4557 //     detach and extract a successor, but then pass the residual list to the wakee.
4558 //     The wakee would be responsible for reattaching and remerging before it
4559 //     competed for the lock.
4560 //
4561 // Both "pop" and DMR are immune from ABA corruption -- there can be
4562 // multiple concurrent pushers, but only one popper or detacher.
4563 // This implementation pops from the head of the list.  This is unfair,
4564 // but tends to provide excellent throughput as hot threads remain hot.
4565 // (We wake recently run threads first).
4566 //
4567 // All paths through muxRelease() will execute a CAS.
4568 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4569 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4570 // executed within the critical section are complete and globally visible before the
4571 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4572 void Thread::muxRelease(volatile intptr_t * Lock)  {
4573   for (;;) {
4574     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4575     assert(w & LOCKBIT, "invariant");
4576     if (w == LOCKBIT) return;
4577     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4578     assert(List != NULL, "invariant");
4579     assert(List->OnList == intptr_t(Lock), "invariant");
4580     ParkEvent * const nxt = List->ListNext;
4581     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4582 
4583     // The following CAS() releases the lock and pops the head element.
4584     // The CAS() also ratifies the previously fetched lock-word value.
4585     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4586       continue;
4587     }
4588     List->OnList = 0;
4589     OrderAccess::fence();
4590     List->unpark();
4591     return;
4592   }
4593 }
4594 
4595 
4596 void Threads::verify() {
4597   ALL_JAVA_THREADS(p) {
4598     p->verify();
4599   }
4600   VMThread* thread = VMThread::vm_thread();
4601   if (thread != NULL) thread->verify();
4602 }