1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/linkResolver.hpp"
  35 #include "interpreter/oopMapCache.hpp"
  36 #include "jvmtifiles/jvmtiEnv.hpp"
  37 #include "memory/gcLocker.inline.hpp"
  38 #include "memory/metaspaceShared.hpp"
  39 #include "memory/oopFactory.hpp"
  40 #include "memory/universe.inline.hpp"
  41 #include "oops/instanceKlass.hpp"
  42 #include "oops/objArrayOop.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "oops/symbol.hpp"
  45 #include "prims/jvm_misc.hpp"
  46 #include "prims/jvmtiExport.hpp"
  47 #include "prims/jvmtiThreadState.hpp"
  48 #include "prims/privilegedStack.hpp"
  49 #include "runtime/arguments.hpp"
  50 #include "runtime/atomic.inline.hpp"
  51 #include "runtime/biasedLocking.hpp"
  52 #include "runtime/deoptimization.hpp"
  53 #include "runtime/fprofiler.hpp"
  54 #include "runtime/frame.inline.hpp"
  55 #include "runtime/init.hpp"
  56 #include "runtime/interfaceSupport.hpp"
  57 #include "runtime/java.hpp"
  58 #include "runtime/javaCalls.hpp"
  59 #include "runtime/jniPeriodicChecker.hpp"
  60 #include "runtime/memprofiler.hpp"
  61 #include "runtime/mutexLocker.hpp"
  62 #include "runtime/objectMonitor.hpp"
  63 #include "runtime/orderAccess.inline.hpp"
  64 #include "runtime/osThread.hpp"
  65 #include "runtime/safepoint.hpp"
  66 #include "runtime/sharedRuntime.hpp"
  67 #include "runtime/statSampler.hpp"
  68 #include "runtime/stubRoutines.hpp"
  69 #include "runtime/sweeper.hpp"
  70 #include "runtime/task.hpp"
  71 #include "runtime/thread.inline.hpp"
  72 #include "runtime/threadCritical.hpp"
  73 #include "runtime/threadLocalStorage.hpp"
  74 #include "runtime/vframe.hpp"
  75 #include "runtime/vframeArray.hpp"
  76 #include "runtime/vframe_hp.hpp"
  77 #include "runtime/vmThread.hpp"
  78 #include "runtime/vm_operations.hpp"
  79 #include "runtime/vm_version.hpp"
  80 #include "services/attachListener.hpp"
  81 #include "services/management.hpp"
  82 #include "services/memTracker.hpp"
  83 #include "services/threadService.hpp"
  84 #include "trace/tracing.hpp"
  85 #include "trace/traceMacros.hpp"
  86 #include "utilities/defaultStream.hpp"
  87 #include "utilities/dtrace.hpp"
  88 #include "utilities/events.hpp"
  89 #include "utilities/preserveException.hpp"
  90 #include "utilities/macros.hpp"
  91 #if INCLUDE_ALL_GCS
  92 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  93 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  94 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
  95 #endif // INCLUDE_ALL_GCS
  96 #ifdef COMPILER1
  97 #include "c1/c1_Compiler.hpp"
  98 #endif
  99 #ifdef COMPILER2
 100 #include "opto/c2compiler.hpp"
 101 #include "opto/idealGraphPrinter.hpp"
 102 #endif
 103 #if INCLUDE_RTM_OPT
 104 #include "runtime/rtmLocking.hpp"
 105 #endif
 106 
 107 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 108 
 109 #ifdef DTRACE_ENABLED
 110 
 111 // Only bother with this argument setup if dtrace is available
 112 
 113   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 114   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 115 
 116   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 117     {                                                                      \
 118       ResourceMark rm(this);                                               \
 119       int len = 0;                                                         \
 120       const char* name = (javathread)->get_thread_name();                  \
 121       len = strlen(name);                                                  \
 122       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 123         (char *) name, len,                                                \
 124         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 125         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 126         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 127     }
 128 
 129 #else //  ndef DTRACE_ENABLED
 130 
 131   #define DTRACE_THREAD_PROBE(probe, javathread)
 132 
 133 #endif // ndef DTRACE_ENABLED
 134 
 135 
 136 // Class hierarchy
 137 // - Thread
 138 //   - VMThread
 139 //   - WatcherThread
 140 //   - ConcurrentMarkSweepThread
 141 //   - JavaThread
 142 //     - CompilerThread
 143 
 144 // ======= Thread ========
 145 // Support for forcing alignment of thread objects for biased locking
 146 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 147   if (UseBiasedLocking) {
 148     const int alignment = markOopDesc::biased_lock_alignment;
 149     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 150     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 151                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 152                                                          AllocFailStrategy::RETURN_NULL);
 153     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 154     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 155            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 156            "JavaThread alignment code overflowed allocated storage");
 157     if (TraceBiasedLocking) {
 158       if (aligned_addr != real_malloc_addr) {
 159         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 160                       real_malloc_addr, aligned_addr);
 161       }
 162     }
 163     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 164     return aligned_addr;
 165   } else {
 166     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 167                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 168   }
 169 }
 170 
 171 void Thread::operator delete(void* p) {
 172   if (UseBiasedLocking) {
 173     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 174     FreeHeap(real_malloc_addr, mtThread);
 175   } else {
 176     FreeHeap(p, mtThread);
 177   }
 178 }
 179 
 180 
 181 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 182 // JavaThread
 183 
 184 
 185 Thread::Thread() {
 186   // stack and get_thread
 187   set_stack_base(NULL);
 188   set_stack_size(0);
 189   set_self_raw_id(0);
 190   set_lgrp_id(-1);
 191 
 192   // allocated data structures
 193   set_osthread(NULL);
 194   set_resource_area(new (mtThread)ResourceArea());
 195   DEBUG_ONLY(_current_resource_mark = NULL;)
 196   set_handle_area(new (mtThread) HandleArea(NULL));
 197   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 198   set_active_handles(NULL);
 199   set_free_handle_block(NULL);
 200   set_last_handle_mark(NULL);
 201 
 202   // This initial value ==> never claimed.
 203   _oops_do_parity = 0;
 204 
 205   _metadata_on_stack_buffer = NULL;
 206 
 207   // the handle mark links itself to last_handle_mark
 208   new HandleMark(this);
 209 
 210   // plain initialization
 211   debug_only(_owned_locks = NULL;)
 212   debug_only(_allow_allocation_count = 0;)
 213   NOT_PRODUCT(_allow_safepoint_count = 0;)
 214   NOT_PRODUCT(_skip_gcalot = false;)
 215   _jvmti_env_iteration_count = 0;
 216   set_allocated_bytes(0);
 217   _vm_operation_started_count = 0;
 218   _vm_operation_completed_count = 0;
 219   _current_pending_monitor = NULL;
 220   _current_pending_monitor_is_from_java = true;
 221   _current_waiting_monitor = NULL;
 222   _num_nested_signal = 0;
 223   omFreeList = NULL;
 224   omFreeCount = 0;
 225   omFreeProvision = 32;
 226   omInUseList = NULL;
 227   omInUseCount = 0;
 228 
 229 #ifdef ASSERT
 230   _visited_for_critical_count = false;
 231 #endif
 232 
 233   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 234   _suspend_flags = 0;
 235 
 236   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 237   _hashStateX = os::random();
 238   _hashStateY = 842502087;
 239   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 240   _hashStateW = 273326509;
 241 
 242   _OnTrap   = 0;
 243   _schedctl = NULL;
 244   _Stalled  = 0;
 245   _TypeTag  = 0x2BAD;
 246 
 247   // Many of the following fields are effectively final - immutable
 248   // Note that nascent threads can't use the Native Monitor-Mutex
 249   // construct until the _MutexEvent is initialized ...
 250   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 251   // we might instead use a stack of ParkEvents that we could provision on-demand.
 252   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 253   // and ::Release()
 254   _ParkEvent   = ParkEvent::Allocate(this);
 255   _SleepEvent  = ParkEvent::Allocate(this);
 256   _MutexEvent  = ParkEvent::Allocate(this);
 257   _MuxEvent    = ParkEvent::Allocate(this);
 258 
 259 #ifdef CHECK_UNHANDLED_OOPS
 260   if (CheckUnhandledOops) {
 261     _unhandled_oops = new UnhandledOops(this);
 262   }
 263 #endif // CHECK_UNHANDLED_OOPS
 264 #ifdef ASSERT
 265   if (UseBiasedLocking) {
 266     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 267     assert(this == _real_malloc_address ||
 268            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 269            "bug in forced alignment of thread objects");
 270   }
 271 #endif // ASSERT
 272 }
 273 
 274 void Thread::initialize_thread_local_storage() {
 275   // Note: Make sure this method only calls
 276   // non-blocking operations. Otherwise, it might not work
 277   // with the thread-startup/safepoint interaction.
 278 
 279   // During Java thread startup, safepoint code should allow this
 280   // method to complete because it may need to allocate memory to
 281   // store information for the new thread.
 282 
 283   // initialize structure dependent on thread local storage
 284   ThreadLocalStorage::set_thread(this);
 285 }
 286 
 287 void Thread::record_stack_base_and_size() {
 288   set_stack_base(os::current_stack_base());
 289   set_stack_size(os::current_stack_size());
 290   if (is_Java_thread()) {
 291     ((JavaThread*) this)->set_stack_overflow_limit();
 292   }
 293   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 294   // in initialize_thread(). Without the adjustment, stack size is
 295   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 296   // So far, only Solaris has real implementation of initialize_thread().
 297   //
 298   // set up any platform-specific state.
 299   os::initialize_thread(this);
 300 
 301 #if INCLUDE_NMT
 302   // record thread's native stack, stack grows downward
 303   address stack_low_addr = stack_base() - stack_size();
 304   MemTracker::record_thread_stack(stack_low_addr, stack_size());
 305 #endif // INCLUDE_NMT
 306 }
 307 
 308 
 309 Thread::~Thread() {
 310   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 311   ObjectSynchronizer::omFlush(this);
 312 
 313   EVENT_THREAD_DESTRUCT(this);
 314 
 315   // stack_base can be NULL if the thread is never started or exited before
 316   // record_stack_base_and_size called. Although, we would like to ensure
 317   // that all started threads do call record_stack_base_and_size(), there is
 318   // not proper way to enforce that.
 319 #if INCLUDE_NMT
 320   if (_stack_base != NULL) {
 321     address low_stack_addr = stack_base() - stack_size();
 322     MemTracker::release_thread_stack(low_stack_addr, stack_size());
 323 #ifdef ASSERT
 324     set_stack_base(NULL);
 325 #endif
 326   }
 327 #endif // INCLUDE_NMT
 328 
 329   // deallocate data structures
 330   delete resource_area();
 331   // since the handle marks are using the handle area, we have to deallocated the root
 332   // handle mark before deallocating the thread's handle area,
 333   assert(last_handle_mark() != NULL, "check we have an element");
 334   delete last_handle_mark();
 335   assert(last_handle_mark() == NULL, "check we have reached the end");
 336 
 337   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 338   // We NULL out the fields for good hygiene.
 339   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 340   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 341   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 342   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 343 
 344   delete handle_area();
 345   delete metadata_handles();
 346 
 347   // osthread() can be NULL, if creation of thread failed.
 348   if (osthread() != NULL) os::free_thread(osthread());
 349 
 350   delete _SR_lock;
 351 
 352   // clear thread local storage if the Thread is deleting itself
 353   if (this == Thread::current()) {
 354     ThreadLocalStorage::set_thread(NULL);
 355   } else {
 356     // In the case where we're not the current thread, invalidate all the
 357     // caches in case some code tries to get the current thread or the
 358     // thread that was destroyed, and gets stale information.
 359     ThreadLocalStorage::invalidate_all();
 360   }
 361   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 362 }
 363 
 364 // NOTE: dummy function for assertion purpose.
 365 void Thread::run() {
 366   ShouldNotReachHere();
 367 }
 368 
 369 #ifdef ASSERT
 370 // Private method to check for dangling thread pointer
 371 void check_for_dangling_thread_pointer(Thread *thread) {
 372   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 373          "possibility of dangling Thread pointer");
 374 }
 375 #endif
 376 
 377 
 378 #ifndef PRODUCT
 379 // Tracing method for basic thread operations
 380 void Thread::trace(const char* msg, const Thread* const thread) {
 381   if (!TraceThreadEvents) return;
 382   ResourceMark rm;
 383   ThreadCritical tc;
 384   const char *name = "non-Java thread";
 385   int prio = -1;
 386   if (thread->is_Java_thread()
 387       && !thread->is_Compiler_thread()) {
 388     // The Threads_lock must be held to get information about
 389     // this thread but may not be in some situations when
 390     // tracing  thread events.
 391     bool release_Threads_lock = false;
 392     if (!Threads_lock->owned_by_self()) {
 393       Threads_lock->lock();
 394       release_Threads_lock = true;
 395     }
 396     JavaThread* jt = (JavaThread *)thread;
 397     name = (char *)jt->get_thread_name();
 398     oop thread_oop = jt->threadObj();
 399     if (thread_oop != NULL) {
 400       prio = java_lang_Thread::priority(thread_oop);
 401     }
 402     if (release_Threads_lock) {
 403       Threads_lock->unlock();
 404     }
 405   }
 406   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 407 }
 408 #endif
 409 
 410 
 411 ThreadPriority Thread::get_priority(const Thread* const thread) {
 412   trace("get priority", thread);
 413   ThreadPriority priority;
 414   // Can return an error!
 415   (void)os::get_priority(thread, priority);
 416   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 417   return priority;
 418 }
 419 
 420 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 421   trace("set priority", thread);
 422   debug_only(check_for_dangling_thread_pointer(thread);)
 423   // Can return an error!
 424   (void)os::set_priority(thread, priority);
 425 }
 426 
 427 
 428 void Thread::start(Thread* thread) {
 429   trace("start", thread);
 430   // Start is different from resume in that its safety is guaranteed by context or
 431   // being called from a Java method synchronized on the Thread object.
 432   if (!DisableStartThread) {
 433     if (thread->is_Java_thread()) {
 434       // Initialize the thread state to RUNNABLE before starting this thread.
 435       // Can not set it after the thread started because we do not know the
 436       // exact thread state at that time. It could be in MONITOR_WAIT or
 437       // in SLEEPING or some other state.
 438       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 439                                           java_lang_Thread::RUNNABLE);
 440     }
 441     os::start_thread(thread);
 442   }
 443 }
 444 
 445 // Enqueue a VM_Operation to do the job for us - sometime later
 446 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 447   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 448   VMThread::execute(vm_stop);
 449 }
 450 
 451 
 452 // Check if an external suspend request has completed (or has been
 453 // cancelled). Returns true if the thread is externally suspended and
 454 // false otherwise.
 455 //
 456 // The bits parameter returns information about the code path through
 457 // the routine. Useful for debugging:
 458 //
 459 // set in is_ext_suspend_completed():
 460 // 0x00000001 - routine was entered
 461 // 0x00000010 - routine return false at end
 462 // 0x00000100 - thread exited (return false)
 463 // 0x00000200 - suspend request cancelled (return false)
 464 // 0x00000400 - thread suspended (return true)
 465 // 0x00001000 - thread is in a suspend equivalent state (return true)
 466 // 0x00002000 - thread is native and walkable (return true)
 467 // 0x00004000 - thread is native_trans and walkable (needed retry)
 468 //
 469 // set in wait_for_ext_suspend_completion():
 470 // 0x00010000 - routine was entered
 471 // 0x00020000 - suspend request cancelled before loop (return false)
 472 // 0x00040000 - thread suspended before loop (return true)
 473 // 0x00080000 - suspend request cancelled in loop (return false)
 474 // 0x00100000 - thread suspended in loop (return true)
 475 // 0x00200000 - suspend not completed during retry loop (return false)
 476 
 477 // Helper class for tracing suspend wait debug bits.
 478 //
 479 // 0x00000100 indicates that the target thread exited before it could
 480 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 481 // 0x00080000 each indicate a cancelled suspend request so they don't
 482 // count as wait failures either.
 483 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 484 
 485 class TraceSuspendDebugBits : public StackObj {
 486  private:
 487   JavaThread * jt;
 488   bool         is_wait;
 489   bool         called_by_wait;  // meaningful when !is_wait
 490   uint32_t *   bits;
 491 
 492  public:
 493   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 494                         uint32_t *_bits) {
 495     jt             = _jt;
 496     is_wait        = _is_wait;
 497     called_by_wait = _called_by_wait;
 498     bits           = _bits;
 499   }
 500 
 501   ~TraceSuspendDebugBits() {
 502     if (!is_wait) {
 503 #if 1
 504       // By default, don't trace bits for is_ext_suspend_completed() calls.
 505       // That trace is very chatty.
 506       return;
 507 #else
 508       if (!called_by_wait) {
 509         // If tracing for is_ext_suspend_completed() is enabled, then only
 510         // trace calls to it from wait_for_ext_suspend_completion()
 511         return;
 512       }
 513 #endif
 514     }
 515 
 516     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 517       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 518         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 519         ResourceMark rm;
 520 
 521         tty->print_cr(
 522                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 523                       jt->get_thread_name(), *bits);
 524 
 525         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 526       }
 527     }
 528   }
 529 };
 530 #undef DEBUG_FALSE_BITS
 531 
 532 
 533 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 534                                           uint32_t *bits) {
 535   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 536 
 537   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 538   bool do_trans_retry;           // flag to force the retry
 539 
 540   *bits |= 0x00000001;
 541 
 542   do {
 543     do_trans_retry = false;
 544 
 545     if (is_exiting()) {
 546       // Thread is in the process of exiting. This is always checked
 547       // first to reduce the risk of dereferencing a freed JavaThread.
 548       *bits |= 0x00000100;
 549       return false;
 550     }
 551 
 552     if (!is_external_suspend()) {
 553       // Suspend request is cancelled. This is always checked before
 554       // is_ext_suspended() to reduce the risk of a rogue resume
 555       // confusing the thread that made the suspend request.
 556       *bits |= 0x00000200;
 557       return false;
 558     }
 559 
 560     if (is_ext_suspended()) {
 561       // thread is suspended
 562       *bits |= 0x00000400;
 563       return true;
 564     }
 565 
 566     // Now that we no longer do hard suspends of threads running
 567     // native code, the target thread can be changing thread state
 568     // while we are in this routine:
 569     //
 570     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 571     //
 572     // We save a copy of the thread state as observed at this moment
 573     // and make our decision about suspend completeness based on the
 574     // copy. This closes the race where the thread state is seen as
 575     // _thread_in_native_trans in the if-thread_blocked check, but is
 576     // seen as _thread_blocked in if-thread_in_native_trans check.
 577     JavaThreadState save_state = thread_state();
 578 
 579     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 580       // If the thread's state is _thread_blocked and this blocking
 581       // condition is known to be equivalent to a suspend, then we can
 582       // consider the thread to be externally suspended. This means that
 583       // the code that sets _thread_blocked has been modified to do
 584       // self-suspension if the blocking condition releases. We also
 585       // used to check for CONDVAR_WAIT here, but that is now covered by
 586       // the _thread_blocked with self-suspension check.
 587       //
 588       // Return true since we wouldn't be here unless there was still an
 589       // external suspend request.
 590       *bits |= 0x00001000;
 591       return true;
 592     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 593       // Threads running native code will self-suspend on native==>VM/Java
 594       // transitions. If its stack is walkable (should always be the case
 595       // unless this function is called before the actual java_suspend()
 596       // call), then the wait is done.
 597       *bits |= 0x00002000;
 598       return true;
 599     } else if (!called_by_wait && !did_trans_retry &&
 600                save_state == _thread_in_native_trans &&
 601                frame_anchor()->walkable()) {
 602       // The thread is transitioning from thread_in_native to another
 603       // thread state. check_safepoint_and_suspend_for_native_trans()
 604       // will force the thread to self-suspend. If it hasn't gotten
 605       // there yet we may have caught the thread in-between the native
 606       // code check above and the self-suspend. Lucky us. If we were
 607       // called by wait_for_ext_suspend_completion(), then it
 608       // will be doing the retries so we don't have to.
 609       //
 610       // Since we use the saved thread state in the if-statement above,
 611       // there is a chance that the thread has already transitioned to
 612       // _thread_blocked by the time we get here. In that case, we will
 613       // make a single unnecessary pass through the logic below. This
 614       // doesn't hurt anything since we still do the trans retry.
 615 
 616       *bits |= 0x00004000;
 617 
 618       // Once the thread leaves thread_in_native_trans for another
 619       // thread state, we break out of this retry loop. We shouldn't
 620       // need this flag to prevent us from getting back here, but
 621       // sometimes paranoia is good.
 622       did_trans_retry = true;
 623 
 624       // We wait for the thread to transition to a more usable state.
 625       for (int i = 1; i <= SuspendRetryCount; i++) {
 626         // We used to do an "os::yield_all(i)" call here with the intention
 627         // that yielding would increase on each retry. However, the parameter
 628         // is ignored on Linux which means the yield didn't scale up. Waiting
 629         // on the SR_lock below provides a much more predictable scale up for
 630         // the delay. It also provides a simple/direct point to check for any
 631         // safepoint requests from the VMThread
 632 
 633         // temporarily drops SR_lock while doing wait with safepoint check
 634         // (if we're a JavaThread - the WatcherThread can also call this)
 635         // and increase delay with each retry
 636         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 637 
 638         // check the actual thread state instead of what we saved above
 639         if (thread_state() != _thread_in_native_trans) {
 640           // the thread has transitioned to another thread state so
 641           // try all the checks (except this one) one more time.
 642           do_trans_retry = true;
 643           break;
 644         }
 645       } // end retry loop
 646 
 647 
 648     }
 649   } while (do_trans_retry);
 650 
 651   *bits |= 0x00000010;
 652   return false;
 653 }
 654 
 655 // Wait for an external suspend request to complete (or be cancelled).
 656 // Returns true if the thread is externally suspended and false otherwise.
 657 //
 658 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 659                                                  uint32_t *bits) {
 660   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 661                              false /* !called_by_wait */, bits);
 662 
 663   // local flag copies to minimize SR_lock hold time
 664   bool is_suspended;
 665   bool pending;
 666   uint32_t reset_bits;
 667 
 668   // set a marker so is_ext_suspend_completed() knows we are the caller
 669   *bits |= 0x00010000;
 670 
 671   // We use reset_bits to reinitialize the bits value at the top of
 672   // each retry loop. This allows the caller to make use of any
 673   // unused bits for their own marking purposes.
 674   reset_bits = *bits;
 675 
 676   {
 677     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 678     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 679                                             delay, bits);
 680     pending = is_external_suspend();
 681   }
 682   // must release SR_lock to allow suspension to complete
 683 
 684   if (!pending) {
 685     // A cancelled suspend request is the only false return from
 686     // is_ext_suspend_completed() that keeps us from entering the
 687     // retry loop.
 688     *bits |= 0x00020000;
 689     return false;
 690   }
 691 
 692   if (is_suspended) {
 693     *bits |= 0x00040000;
 694     return true;
 695   }
 696 
 697   for (int i = 1; i <= retries; i++) {
 698     *bits = reset_bits;  // reinit to only track last retry
 699 
 700     // We used to do an "os::yield_all(i)" call here with the intention
 701     // that yielding would increase on each retry. However, the parameter
 702     // is ignored on Linux which means the yield didn't scale up. Waiting
 703     // on the SR_lock below provides a much more predictable scale up for
 704     // the delay. It also provides a simple/direct point to check for any
 705     // safepoint requests from the VMThread
 706 
 707     {
 708       MutexLocker ml(SR_lock());
 709       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 710       // can also call this)  and increase delay with each retry
 711       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 712 
 713       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 714                                               delay, bits);
 715 
 716       // It is possible for the external suspend request to be cancelled
 717       // (by a resume) before the actual suspend operation is completed.
 718       // Refresh our local copy to see if we still need to wait.
 719       pending = is_external_suspend();
 720     }
 721 
 722     if (!pending) {
 723       // A cancelled suspend request is the only false return from
 724       // is_ext_suspend_completed() that keeps us from staying in the
 725       // retry loop.
 726       *bits |= 0x00080000;
 727       return false;
 728     }
 729 
 730     if (is_suspended) {
 731       *bits |= 0x00100000;
 732       return true;
 733     }
 734   } // end retry loop
 735 
 736   // thread did not suspend after all our retries
 737   *bits |= 0x00200000;
 738   return false;
 739 }
 740 
 741 #ifndef PRODUCT
 742 void JavaThread::record_jump(address target, address instr, const char* file,
 743                              int line) {
 744 
 745   // This should not need to be atomic as the only way for simultaneous
 746   // updates is via interrupts. Even then this should be rare or non-existent
 747   // and we don't care that much anyway.
 748 
 749   int index = _jmp_ring_index;
 750   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 751   _jmp_ring[index]._target = (intptr_t) target;
 752   _jmp_ring[index]._instruction = (intptr_t) instr;
 753   _jmp_ring[index]._file = file;
 754   _jmp_ring[index]._line = line;
 755 }
 756 #endif // PRODUCT
 757 
 758 // Called by flat profiler
 759 // Callers have already called wait_for_ext_suspend_completion
 760 // The assertion for that is currently too complex to put here:
 761 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 762   bool gotframe = false;
 763   // self suspension saves needed state.
 764   if (has_last_Java_frame() && _anchor.walkable()) {
 765     *_fr = pd_last_frame();
 766     gotframe = true;
 767   }
 768   return gotframe;
 769 }
 770 
 771 void Thread::interrupt(Thread* thread) {
 772   trace("interrupt", thread);
 773   debug_only(check_for_dangling_thread_pointer(thread);)
 774   os::interrupt(thread);
 775 }
 776 
 777 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 778   trace("is_interrupted", thread);
 779   debug_only(check_for_dangling_thread_pointer(thread);)
 780   // Note:  If clear_interrupted==false, this simply fetches and
 781   // returns the value of the field osthread()->interrupted().
 782   return os::is_interrupted(thread, clear_interrupted);
 783 }
 784 
 785 
 786 // GC Support
 787 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 788   jint thread_parity = _oops_do_parity;
 789   if (thread_parity != strong_roots_parity) {
 790     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 791     if (res == thread_parity) {
 792       return true;
 793     } else {
 794       guarantee(res == strong_roots_parity, "Or else what?");
 795       assert(SharedHeap::heap()->workers()->active_workers() > 0,
 796              "Should only fail when parallel.");
 797       return false;
 798     }
 799   }
 800   assert(SharedHeap::heap()->workers()->active_workers() > 0,
 801          "Should only fail when parallel.");
 802   return false;
 803 }
 804 
 805 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
 806   active_handles()->oops_do(f);
 807   // Do oop for ThreadShadow
 808   f->do_oop((oop*)&_pending_exception);
 809   handle_area()->oops_do(f);
 810 }
 811 
 812 void Thread::nmethods_do(CodeBlobClosure* cf) {
 813   // no nmethods in a generic thread...
 814 }
 815 
 816 void Thread::metadata_do(void f(Metadata*)) {
 817   if (metadata_handles() != NULL) {
 818     for (int i = 0; i< metadata_handles()->length(); i++) {
 819       f(metadata_handles()->at(i));
 820     }
 821   }
 822 }
 823 
 824 void Thread::print_on(outputStream* st) const {
 825   // get_priority assumes osthread initialized
 826   if (osthread() != NULL) {
 827     int os_prio;
 828     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 829       st->print("os_prio=%d ", os_prio);
 830     }
 831     st->print("tid=" INTPTR_FORMAT " ", this);
 832     ext().print_on(st);
 833     osthread()->print_on(st);
 834   }
 835   debug_only(if (WizardMode) print_owned_locks_on(st);)
 836 }
 837 
 838 // Thread::print_on_error() is called by fatal error handler. Don't use
 839 // any lock or allocate memory.
 840 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 841   if (is_VM_thread())                 st->print("VMThread");
 842   else if (is_Compiler_thread())      st->print("CompilerThread");
 843   else if (is_Java_thread())          st->print("JavaThread");
 844   else if (is_GC_task_thread())       st->print("GCTaskThread");
 845   else if (is_Watcher_thread())       st->print("WatcherThread");
 846   else if (is_ConcurrentGC_thread())  st->print("ConcurrentGCThread");
 847   else                                st->print("Thread");
 848 
 849   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 850             _stack_base - _stack_size, _stack_base);
 851 
 852   if (osthread()) {
 853     st->print(" [id=%d]", osthread()->thread_id());
 854   }
 855 }
 856 
 857 #ifdef ASSERT
 858 void Thread::print_owned_locks_on(outputStream* st) const {
 859   Monitor *cur = _owned_locks;
 860   if (cur == NULL) {
 861     st->print(" (no locks) ");
 862   } else {
 863     st->print_cr(" Locks owned:");
 864     while (cur) {
 865       cur->print_on(st);
 866       cur = cur->next();
 867     }
 868   }
 869 }
 870 
 871 static int ref_use_count  = 0;
 872 
 873 bool Thread::owns_locks_but_compiled_lock() const {
 874   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 875     if (cur != Compile_lock) return true;
 876   }
 877   return false;
 878 }
 879 
 880 
 881 #endif
 882 
 883 #ifndef PRODUCT
 884 
 885 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 886 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 887 // no threads which allow_vm_block's are held
 888 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 889   // Check if current thread is allowed to block at a safepoint
 890   if (!(_allow_safepoint_count == 0)) {
 891     fatal("Possible safepoint reached by thread that does not allow it");
 892   }
 893   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 894     fatal("LEAF method calling lock?");
 895   }
 896 
 897 #ifdef ASSERT
 898   if (potential_vm_operation && is_Java_thread()
 899       && !Universe::is_bootstrapping()) {
 900     // Make sure we do not hold any locks that the VM thread also uses.
 901     // This could potentially lead to deadlocks
 902     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 903       // Threads_lock is special, since the safepoint synchronization will not start before this is
 904       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 905       // since it is used to transfer control between JavaThreads and the VMThread
 906       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 907       if ((cur->allow_vm_block() &&
 908            cur != Threads_lock &&
 909            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 910            cur != VMOperationRequest_lock &&
 911            cur != VMOperationQueue_lock) ||
 912            cur->rank() == Mutex::special) {
 913         fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
 914       }
 915     }
 916   }
 917 
 918   if (GCALotAtAllSafepoints) {
 919     // We could enter a safepoint here and thus have a gc
 920     InterfaceSupport::check_gc_alot();
 921   }
 922 #endif
 923 }
 924 #endif
 925 
 926 bool Thread::is_in_stack(address adr) const {
 927   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 928   address end = os::current_stack_pointer();
 929   // Allow non Java threads to call this without stack_base
 930   if (_stack_base == NULL) return true;
 931   if (stack_base() >= adr && adr >= end) return true;
 932 
 933   return false;
 934 }
 935 
 936 
 937 bool Thread::is_in_usable_stack(address adr) const {
 938   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
 939   size_t usable_stack_size = _stack_size - stack_guard_size;
 940 
 941   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 942 }
 943 
 944 
 945 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 946 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 947 // used for compilation in the future. If that change is made, the need for these methods
 948 // should be revisited, and they should be removed if possible.
 949 
 950 bool Thread::is_lock_owned(address adr) const {
 951   return on_local_stack(adr);
 952 }
 953 
 954 bool Thread::set_as_starting_thread() {
 955   // NOTE: this must be called inside the main thread.
 956   return os::create_main_thread((JavaThread*)this);
 957 }
 958 
 959 static void initialize_class(Symbol* class_name, TRAPS) {
 960   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 961   InstanceKlass::cast(klass)->initialize(CHECK);
 962 }
 963 
 964 
 965 // Creates the initial ThreadGroup
 966 static Handle create_initial_thread_group(TRAPS) {
 967   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 968   instanceKlassHandle klass (THREAD, k);
 969 
 970   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 971   {
 972     JavaValue result(T_VOID);
 973     JavaCalls::call_special(&result,
 974                             system_instance,
 975                             klass,
 976                             vmSymbols::object_initializer_name(),
 977                             vmSymbols::void_method_signature(),
 978                             CHECK_NH);
 979   }
 980   Universe::set_system_thread_group(system_instance());
 981 
 982   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 983   {
 984     JavaValue result(T_VOID);
 985     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 986     JavaCalls::call_special(&result,
 987                             main_instance,
 988                             klass,
 989                             vmSymbols::object_initializer_name(),
 990                             vmSymbols::threadgroup_string_void_signature(),
 991                             system_instance,
 992                             string,
 993                             CHECK_NH);
 994   }
 995   return main_instance;
 996 }
 997 
 998 // Creates the initial Thread
 999 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1000                                  TRAPS) {
1001   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1002   instanceKlassHandle klass (THREAD, k);
1003   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1004 
1005   java_lang_Thread::set_thread(thread_oop(), thread);
1006   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1007   thread->set_threadObj(thread_oop());
1008 
1009   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1010 
1011   JavaValue result(T_VOID);
1012   JavaCalls::call_special(&result, thread_oop,
1013                           klass,
1014                           vmSymbols::object_initializer_name(),
1015                           vmSymbols::threadgroup_string_void_signature(),
1016                           thread_group,
1017                           string,
1018                           CHECK_NULL);
1019   return thread_oop();
1020 }
1021 
1022 static void call_initializeSystemClass(TRAPS) {
1023   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1024   instanceKlassHandle klass (THREAD, k);
1025 
1026   JavaValue result(T_VOID);
1027   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1028                          vmSymbols::void_method_signature(), CHECK);
1029 }
1030 
1031 char java_runtime_name[128] = "";
1032 char java_runtime_version[128] = "";
1033 
1034 // extract the JRE name from sun.misc.Version.java_runtime_name
1035 static const char* get_java_runtime_name(TRAPS) {
1036   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1037                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1038   fieldDescriptor fd;
1039   bool found = k != NULL &&
1040                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1041                                                         vmSymbols::string_signature(), &fd);
1042   if (found) {
1043     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1044     if (name_oop == NULL) {
1045       return NULL;
1046     }
1047     const char* name = java_lang_String::as_utf8_string(name_oop,
1048                                                         java_runtime_name,
1049                                                         sizeof(java_runtime_name));
1050     return name;
1051   } else {
1052     return NULL;
1053   }
1054 }
1055 
1056 // extract the JRE version from sun.misc.Version.java_runtime_version
1057 static const char* get_java_runtime_version(TRAPS) {
1058   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1059                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1060   fieldDescriptor fd;
1061   bool found = k != NULL &&
1062                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1063                                                         vmSymbols::string_signature(), &fd);
1064   if (found) {
1065     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1066     if (name_oop == NULL) {
1067       return NULL;
1068     }
1069     const char* name = java_lang_String::as_utf8_string(name_oop,
1070                                                         java_runtime_version,
1071                                                         sizeof(java_runtime_version));
1072     return name;
1073   } else {
1074     return NULL;
1075   }
1076 }
1077 
1078 // General purpose hook into Java code, run once when the VM is initialized.
1079 // The Java library method itself may be changed independently from the VM.
1080 static void call_postVMInitHook(TRAPS) {
1081   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1082   instanceKlassHandle klass (THREAD, k);
1083   if (klass.not_null()) {
1084     JavaValue result(T_VOID);
1085     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1086                            vmSymbols::void_method_signature(),
1087                            CHECK);
1088   }
1089 }
1090 
1091 static void reset_vm_info_property(TRAPS) {
1092   // the vm info string
1093   ResourceMark rm(THREAD);
1094   const char *vm_info = VM_Version::vm_info_string();
1095 
1096   // java.lang.System class
1097   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1098   instanceKlassHandle klass (THREAD, k);
1099 
1100   // setProperty arguments
1101   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1102   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1103 
1104   // return value
1105   JavaValue r(T_OBJECT);
1106 
1107   // public static String setProperty(String key, String value);
1108   JavaCalls::call_static(&r,
1109                          klass,
1110                          vmSymbols::setProperty_name(),
1111                          vmSymbols::string_string_string_signature(),
1112                          key_str,
1113                          value_str,
1114                          CHECK);
1115 }
1116 
1117 
1118 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1119                                     bool daemon, TRAPS) {
1120   assert(thread_group.not_null(), "thread group should be specified");
1121   assert(threadObj() == NULL, "should only create Java thread object once");
1122 
1123   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1124   instanceKlassHandle klass (THREAD, k);
1125   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1126 
1127   java_lang_Thread::set_thread(thread_oop(), this);
1128   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1129   set_threadObj(thread_oop());
1130 
1131   JavaValue result(T_VOID);
1132   if (thread_name != NULL) {
1133     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1134     // Thread gets assigned specified name and null target
1135     JavaCalls::call_special(&result,
1136                             thread_oop,
1137                             klass,
1138                             vmSymbols::object_initializer_name(),
1139                             vmSymbols::threadgroup_string_void_signature(),
1140                             thread_group, // Argument 1
1141                             name,         // Argument 2
1142                             THREAD);
1143   } else {
1144     // Thread gets assigned name "Thread-nnn" and null target
1145     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1146     JavaCalls::call_special(&result,
1147                             thread_oop,
1148                             klass,
1149                             vmSymbols::object_initializer_name(),
1150                             vmSymbols::threadgroup_runnable_void_signature(),
1151                             thread_group, // Argument 1
1152                             Handle(),     // Argument 2
1153                             THREAD);
1154   }
1155 
1156 
1157   if (daemon) {
1158     java_lang_Thread::set_daemon(thread_oop());
1159   }
1160 
1161   if (HAS_PENDING_EXCEPTION) {
1162     return;
1163   }
1164 
1165   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1166   Handle threadObj(THREAD, this->threadObj());
1167 
1168   JavaCalls::call_special(&result,
1169                           thread_group,
1170                           group,
1171                           vmSymbols::add_method_name(),
1172                           vmSymbols::thread_void_signature(),
1173                           threadObj,          // Arg 1
1174                           THREAD);
1175 }
1176 
1177 // NamedThread --  non-JavaThread subclasses with multiple
1178 // uniquely named instances should derive from this.
1179 NamedThread::NamedThread() : Thread() {
1180   _name = NULL;
1181   _processed_thread = NULL;
1182 }
1183 
1184 NamedThread::~NamedThread() {
1185   if (_name != NULL) {
1186     FREE_C_HEAP_ARRAY(char, _name, mtThread);
1187     _name = NULL;
1188   }
1189 }
1190 
1191 void NamedThread::set_name(const char* format, ...) {
1192   guarantee(_name == NULL, "Only get to set name once.");
1193   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1194   guarantee(_name != NULL, "alloc failure");
1195   va_list ap;
1196   va_start(ap, format);
1197   jio_vsnprintf(_name, max_name_len, format, ap);
1198   va_end(ap);
1199 }
1200 
1201 void NamedThread::print_on(outputStream* st) const {
1202   st->print("\"%s\" ", name());
1203   Thread::print_on(st);
1204   st->cr();
1205 }
1206 
1207 
1208 // ======= WatcherThread ========
1209 
1210 // The watcher thread exists to simulate timer interrupts.  It should
1211 // be replaced by an abstraction over whatever native support for
1212 // timer interrupts exists on the platform.
1213 
1214 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1215 bool WatcherThread::_startable = false;
1216 volatile bool  WatcherThread::_should_terminate = false;
1217 
1218 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1219   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1220   if (os::create_thread(this, os::watcher_thread)) {
1221     _watcher_thread = this;
1222 
1223     // Set the watcher thread to the highest OS priority which should not be
1224     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1225     // is created. The only normal thread using this priority is the reference
1226     // handler thread, which runs for very short intervals only.
1227     // If the VMThread's priority is not lower than the WatcherThread profiling
1228     // will be inaccurate.
1229     os::set_priority(this, MaxPriority);
1230     if (!DisableStartThread) {
1231       os::start_thread(this);
1232     }
1233   }
1234 }
1235 
1236 int WatcherThread::sleep() const {
1237   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1238 
1239   // remaining will be zero if there are no tasks,
1240   // causing the WatcherThread to sleep until a task is
1241   // enrolled
1242   int remaining = PeriodicTask::time_to_wait();
1243   int time_slept = 0;
1244 
1245   // we expect this to timeout - we only ever get unparked when
1246   // we should terminate or when a new task has been enrolled
1247   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1248 
1249   jlong time_before_loop = os::javaTimeNanos();
1250 
1251   for (;;) {
1252     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1253     jlong now = os::javaTimeNanos();
1254 
1255     if (remaining == 0) {
1256       // if we didn't have any tasks we could have waited for a long time
1257       // consider the time_slept zero and reset time_before_loop
1258       time_slept = 0;
1259       time_before_loop = now;
1260     } else {
1261       // need to recalculate since we might have new tasks in _tasks
1262       time_slept = (int) ((now - time_before_loop) / 1000000);
1263     }
1264 
1265     // Change to task list or spurious wakeup of some kind
1266     if (timedout || _should_terminate) {
1267       break;
1268     }
1269 
1270     remaining = PeriodicTask::time_to_wait();
1271     if (remaining == 0) {
1272       // Last task was just disenrolled so loop around and wait until
1273       // another task gets enrolled
1274       continue;
1275     }
1276 
1277     remaining -= time_slept;
1278     if (remaining <= 0) {
1279       break;
1280     }
1281   }
1282 
1283   return time_slept;
1284 }
1285 
1286 void WatcherThread::run() {
1287   assert(this == watcher_thread(), "just checking");
1288 
1289   this->record_stack_base_and_size();
1290   this->initialize_thread_local_storage();
1291   this->set_native_thread_name(this->name());
1292   this->set_active_handles(JNIHandleBlock::allocate_block());
1293   while (!_should_terminate) {
1294     assert(watcher_thread() == Thread::current(), "thread consistency check");
1295     assert(watcher_thread() == this, "thread consistency check");
1296 
1297     // Calculate how long it'll be until the next PeriodicTask work
1298     // should be done, and sleep that amount of time.
1299     int time_waited = sleep();
1300 
1301     if (is_error_reported()) {
1302       // A fatal error has happened, the error handler(VMError::report_and_die)
1303       // should abort JVM after creating an error log file. However in some
1304       // rare cases, the error handler itself might deadlock. Here we try to
1305       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1306       //
1307       // This code is in WatcherThread because WatcherThread wakes up
1308       // periodically so the fatal error handler doesn't need to do anything;
1309       // also because the WatcherThread is less likely to crash than other
1310       // threads.
1311 
1312       for (;;) {
1313         if (!ShowMessageBoxOnError
1314             && (OnError == NULL || OnError[0] == '\0')
1315             && Arguments::abort_hook() == NULL) {
1316           os::sleep(this, 2 * 60 * 1000, false);
1317           fdStream err(defaultStream::output_fd());
1318           err.print_raw_cr("# [ timer expired, abort... ]");
1319           // skip atexit/vm_exit/vm_abort hooks
1320           os::die();
1321         }
1322 
1323         // Wake up 5 seconds later, the fatal handler may reset OnError or
1324         // ShowMessageBoxOnError when it is ready to abort.
1325         os::sleep(this, 5 * 1000, false);
1326       }
1327     }
1328 
1329     PeriodicTask::real_time_tick(time_waited);
1330   }
1331 
1332   // Signal that it is terminated
1333   {
1334     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1335     _watcher_thread = NULL;
1336     Terminator_lock->notify();
1337   }
1338 
1339   // Thread destructor usually does this..
1340   ThreadLocalStorage::set_thread(NULL);
1341 }
1342 
1343 void WatcherThread::start() {
1344   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1345 
1346   if (watcher_thread() == NULL && _startable) {
1347     _should_terminate = false;
1348     // Create the single instance of WatcherThread
1349     new WatcherThread();
1350   }
1351 }
1352 
1353 void WatcherThread::make_startable() {
1354   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1355   _startable = true;
1356 }
1357 
1358 void WatcherThread::stop() {
1359   // Get the PeriodicTask_lock if we can. If we cannot, then the
1360   // WatcherThread is using it and we don't want to block on that lock
1361   // here because that might cause a safepoint deadlock depending on
1362   // what the current WatcherThread tasks are doing.
1363   bool have_lock = PeriodicTask_lock->try_lock();
1364 
1365   _should_terminate = true;
1366   OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1367 
1368   if (have_lock) {
1369     WatcherThread* watcher = watcher_thread();
1370     if (watcher != NULL) {
1371       // If we managed to get the lock, then we should unpark the
1372       // WatcherThread so that it can see we want it to stop.
1373       watcher->unpark();
1374     }
1375 
1376     PeriodicTask_lock->unlock();
1377   }
1378 
1379   // it is ok to take late safepoints here, if needed
1380   MutexLocker mu(Terminator_lock);
1381 
1382   while (watcher_thread() != NULL) {
1383     // This wait should make safepoint checks, wait without a timeout,
1384     // and wait as a suspend-equivalent condition.
1385     //
1386     // Note: If the FlatProfiler is running, then this thread is waiting
1387     // for the WatcherThread to terminate and the WatcherThread, via the
1388     // FlatProfiler task, is waiting for the external suspend request on
1389     // this thread to complete. wait_for_ext_suspend_completion() will
1390     // eventually timeout, but that takes time. Making this wait a
1391     // suspend-equivalent condition solves that timeout problem.
1392     //
1393     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1394                           Mutex::_as_suspend_equivalent_flag);
1395   }
1396 }
1397 
1398 void WatcherThread::unpark() {
1399   MutexLockerEx ml(PeriodicTask_lock->owned_by_self()
1400                    ? NULL
1401                    : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1402   PeriodicTask_lock->notify();
1403 }
1404 
1405 void WatcherThread::print_on(outputStream* st) const {
1406   st->print("\"%s\" ", name());
1407   Thread::print_on(st);
1408   st->cr();
1409 }
1410 
1411 // ======= JavaThread ========
1412 
1413 // A JavaThread is a normal Java thread
1414 
1415 void JavaThread::initialize() {
1416   // Initialize fields
1417 
1418   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1419   set_claimed_par_id(UINT_MAX);
1420 
1421   set_saved_exception_pc(NULL);
1422   set_threadObj(NULL);
1423   _anchor.clear();
1424   set_entry_point(NULL);
1425   set_jni_functions(jni_functions());
1426   set_callee_target(NULL);
1427   set_vm_result(NULL);
1428   set_vm_result_2(NULL);
1429   set_vframe_array_head(NULL);
1430   set_vframe_array_last(NULL);
1431   set_deferred_locals(NULL);
1432   set_deopt_mark(NULL);
1433   set_deopt_nmethod(NULL);
1434   clear_must_deopt_id();
1435   set_monitor_chunks(NULL);
1436   set_next(NULL);
1437   set_thread_state(_thread_new);
1438   _terminated = _not_terminated;
1439   _privileged_stack_top = NULL;
1440   _array_for_gc = NULL;
1441   _suspend_equivalent = false;
1442   _in_deopt_handler = 0;
1443   _doing_unsafe_access = false;
1444   _stack_guard_state = stack_guard_unused;
1445   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1446   _exception_pc  = 0;
1447   _exception_handler_pc = 0;
1448   _is_method_handle_return = 0;
1449   _jvmti_thread_state= NULL;
1450   _should_post_on_exceptions_flag = JNI_FALSE;
1451   _jvmti_get_loaded_classes_closure = NULL;
1452   _interp_only_mode    = 0;
1453   _special_runtime_exit_condition = _no_async_condition;
1454   _pending_async_exception = NULL;
1455   _thread_stat = NULL;
1456   _thread_stat = new ThreadStatistics();
1457   _blocked_on_compilation = false;
1458   _jni_active_critical = 0;
1459   _pending_jni_exception_check_fn = NULL;
1460   _do_not_unlock_if_synchronized = false;
1461   _cached_monitor_info = NULL;
1462   _parker = Parker::Allocate(this);
1463 
1464 #ifndef PRODUCT
1465   _jmp_ring_index = 0;
1466   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1467     record_jump(NULL, NULL, NULL, 0);
1468   }
1469 #endif // PRODUCT
1470 
1471   set_thread_profiler(NULL);
1472   if (FlatProfiler::is_active()) {
1473     // This is where we would decide to either give each thread it's own profiler
1474     // or use one global one from FlatProfiler,
1475     // or up to some count of the number of profiled threads, etc.
1476     ThreadProfiler* pp = new ThreadProfiler();
1477     pp->engage();
1478     set_thread_profiler(pp);
1479   }
1480 
1481   // Setup safepoint state info for this thread
1482   ThreadSafepointState::create(this);
1483 
1484   debug_only(_java_call_counter = 0);
1485 
1486   // JVMTI PopFrame support
1487   _popframe_condition = popframe_inactive;
1488   _popframe_preserved_args = NULL;
1489   _popframe_preserved_args_size = 0;
1490 
1491   pd_initialize();
1492 }
1493 
1494 #if INCLUDE_ALL_GCS
1495 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1496 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1497 #endif // INCLUDE_ALL_GCS
1498 
1499 JavaThread::JavaThread(bool is_attaching_via_jni) :
1500                        Thread()
1501 #if INCLUDE_ALL_GCS
1502                        , _satb_mark_queue(&_satb_mark_queue_set),
1503                        _dirty_card_queue(&_dirty_card_queue_set)
1504 #endif // INCLUDE_ALL_GCS
1505 {
1506   initialize();
1507   if (is_attaching_via_jni) {
1508     _jni_attach_state = _attaching_via_jni;
1509   } else {
1510     _jni_attach_state = _not_attaching_via_jni;
1511   }
1512   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1513 }
1514 
1515 bool JavaThread::reguard_stack(address cur_sp) {
1516   if (_stack_guard_state != stack_guard_yellow_disabled) {
1517     return true; // Stack already guarded or guard pages not needed.
1518   }
1519 
1520   if (register_stack_overflow()) {
1521     // For those architectures which have separate register and
1522     // memory stacks, we must check the register stack to see if
1523     // it has overflowed.
1524     return false;
1525   }
1526 
1527   // Java code never executes within the yellow zone: the latter is only
1528   // there to provoke an exception during stack banging.  If java code
1529   // is executing there, either StackShadowPages should be larger, or
1530   // some exception code in c1, c2 or the interpreter isn't unwinding
1531   // when it should.
1532   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1533 
1534   enable_stack_yellow_zone();
1535   return true;
1536 }
1537 
1538 bool JavaThread::reguard_stack(void) {
1539   return reguard_stack(os::current_stack_pointer());
1540 }
1541 
1542 
1543 void JavaThread::block_if_vm_exited() {
1544   if (_terminated == _vm_exited) {
1545     // _vm_exited is set at safepoint, and Threads_lock is never released
1546     // we will block here forever
1547     Threads_lock->lock_without_safepoint_check();
1548     ShouldNotReachHere();
1549   }
1550 }
1551 
1552 
1553 // Remove this ifdef when C1 is ported to the compiler interface.
1554 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1555 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1556 
1557 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1558                        Thread()
1559 #if INCLUDE_ALL_GCS
1560                        , _satb_mark_queue(&_satb_mark_queue_set),
1561                        _dirty_card_queue(&_dirty_card_queue_set)
1562 #endif // INCLUDE_ALL_GCS
1563 {
1564   if (TraceThreadEvents) {
1565     tty->print_cr("creating thread %p", this);
1566   }
1567   initialize();
1568   _jni_attach_state = _not_attaching_via_jni;
1569   set_entry_point(entry_point);
1570   // Create the native thread itself.
1571   // %note runtime_23
1572   os::ThreadType thr_type = os::java_thread;
1573   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1574                                                      os::java_thread;
1575   os::create_thread(this, thr_type, stack_sz);
1576   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1577   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1578   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1579   // the exception consists of creating the exception object & initializing it, initialization
1580   // will leave the VM via a JavaCall and then all locks must be unlocked).
1581   //
1582   // The thread is still suspended when we reach here. Thread must be explicit started
1583   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1584   // by calling Threads:add. The reason why this is not done here, is because the thread
1585   // object must be fully initialized (take a look at JVM_Start)
1586 }
1587 
1588 JavaThread::~JavaThread() {
1589   if (TraceThreadEvents) {
1590     tty->print_cr("terminate thread %p", this);
1591   }
1592 
1593   // JSR166 -- return the parker to the free list
1594   Parker::Release(_parker);
1595   _parker = NULL;
1596 
1597   // Free any remaining  previous UnrollBlock
1598   vframeArray* old_array = vframe_array_last();
1599 
1600   if (old_array != NULL) {
1601     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1602     old_array->set_unroll_block(NULL);
1603     delete old_info;
1604     delete old_array;
1605   }
1606 
1607   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1608   if (deferred != NULL) {
1609     // This can only happen if thread is destroyed before deoptimization occurs.
1610     assert(deferred->length() != 0, "empty array!");
1611     do {
1612       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1613       deferred->remove_at(0);
1614       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1615       delete dlv;
1616     } while (deferred->length() != 0);
1617     delete deferred;
1618   }
1619 
1620   // All Java related clean up happens in exit
1621   ThreadSafepointState::destroy(this);
1622   if (_thread_profiler != NULL) delete _thread_profiler;
1623   if (_thread_stat != NULL) delete _thread_stat;
1624 }
1625 
1626 
1627 // The first routine called by a new Java thread
1628 void JavaThread::run() {
1629   // initialize thread-local alloc buffer related fields
1630   this->initialize_tlab();
1631 
1632   // used to test validity of stack trace backs
1633   this->record_base_of_stack_pointer();
1634 
1635   // Record real stack base and size.
1636   this->record_stack_base_and_size();
1637 
1638   // Initialize thread local storage; set before calling MutexLocker
1639   this->initialize_thread_local_storage();
1640 
1641   this->create_stack_guard_pages();
1642 
1643   this->cache_global_variables();
1644 
1645   // Thread is now sufficient initialized to be handled by the safepoint code as being
1646   // in the VM. Change thread state from _thread_new to _thread_in_vm
1647   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1648 
1649   assert(JavaThread::current() == this, "sanity check");
1650   assert(!Thread::current()->owns_locks(), "sanity check");
1651 
1652   DTRACE_THREAD_PROBE(start, this);
1653 
1654   // This operation might block. We call that after all safepoint checks for a new thread has
1655   // been completed.
1656   this->set_active_handles(JNIHandleBlock::allocate_block());
1657 
1658   if (JvmtiExport::should_post_thread_life()) {
1659     JvmtiExport::post_thread_start(this);
1660   }
1661 
1662   EventThreadStart event;
1663   if (event.should_commit()) {
1664     event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1665     event.commit();
1666   }
1667 
1668   // We call another function to do the rest so we are sure that the stack addresses used
1669   // from there will be lower than the stack base just computed
1670   thread_main_inner();
1671 
1672   // Note, thread is no longer valid at this point!
1673 }
1674 
1675 
1676 void JavaThread::thread_main_inner() {
1677   assert(JavaThread::current() == this, "sanity check");
1678   assert(this->threadObj() != NULL, "just checking");
1679 
1680   // Execute thread entry point unless this thread has a pending exception
1681   // or has been stopped before starting.
1682   // Note: Due to JVM_StopThread we can have pending exceptions already!
1683   if (!this->has_pending_exception() &&
1684       !java_lang_Thread::is_stillborn(this->threadObj())) {
1685     {
1686       ResourceMark rm(this);
1687       this->set_native_thread_name(this->get_thread_name());
1688     }
1689     HandleMark hm(this);
1690     this->entry_point()(this, this);
1691   }
1692 
1693   DTRACE_THREAD_PROBE(stop, this);
1694 
1695   this->exit(false);
1696   delete this;
1697 }
1698 
1699 
1700 static void ensure_join(JavaThread* thread) {
1701   // We do not need to grap the Threads_lock, since we are operating on ourself.
1702   Handle threadObj(thread, thread->threadObj());
1703   assert(threadObj.not_null(), "java thread object must exist");
1704   ObjectLocker lock(threadObj, thread);
1705   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1706   thread->clear_pending_exception();
1707   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1708   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1709   // Clear the native thread instance - this makes isAlive return false and allows the join()
1710   // to complete once we've done the notify_all below
1711   java_lang_Thread::set_thread(threadObj(), NULL);
1712   lock.notify_all(thread);
1713   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1714   thread->clear_pending_exception();
1715 }
1716 
1717 
1718 // For any new cleanup additions, please check to see if they need to be applied to
1719 // cleanup_failed_attach_current_thread as well.
1720 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1721   assert(this == JavaThread::current(), "thread consistency check");
1722 
1723   HandleMark hm(this);
1724   Handle uncaught_exception(this, this->pending_exception());
1725   this->clear_pending_exception();
1726   Handle threadObj(this, this->threadObj());
1727   assert(threadObj.not_null(), "Java thread object should be created");
1728 
1729   if (get_thread_profiler() != NULL) {
1730     get_thread_profiler()->disengage();
1731     ResourceMark rm;
1732     get_thread_profiler()->print(get_thread_name());
1733   }
1734 
1735 
1736   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1737   {
1738     EXCEPTION_MARK;
1739 
1740     CLEAR_PENDING_EXCEPTION;
1741   }
1742   if (!destroy_vm) {
1743     if (uncaught_exception.not_null()) {
1744       EXCEPTION_MARK;
1745       // Call method Thread.dispatchUncaughtException().
1746       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1747       JavaValue result(T_VOID);
1748       JavaCalls::call_virtual(&result,
1749                               threadObj, thread_klass,
1750                               vmSymbols::dispatchUncaughtException_name(),
1751                               vmSymbols::throwable_void_signature(),
1752                               uncaught_exception,
1753                               THREAD);
1754       if (HAS_PENDING_EXCEPTION) {
1755         ResourceMark rm(this);
1756         jio_fprintf(defaultStream::error_stream(),
1757                     "\nException: %s thrown from the UncaughtExceptionHandler"
1758                     " in thread \"%s\"\n",
1759                     pending_exception()->klass()->external_name(),
1760                     get_thread_name());
1761         CLEAR_PENDING_EXCEPTION;
1762       }
1763     }
1764 
1765     // Called before the java thread exit since we want to read info
1766     // from java_lang_Thread object
1767     EventThreadEnd event;
1768     if (event.should_commit()) {
1769       event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1770       event.commit();
1771     }
1772 
1773     // Call after last event on thread
1774     EVENT_THREAD_EXIT(this);
1775 
1776     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1777     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1778     // is deprecated anyhow.
1779     if (!is_Compiler_thread()) {
1780       int count = 3;
1781       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1782         EXCEPTION_MARK;
1783         JavaValue result(T_VOID);
1784         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1785         JavaCalls::call_virtual(&result,
1786                                 threadObj, thread_klass,
1787                                 vmSymbols::exit_method_name(),
1788                                 vmSymbols::void_method_signature(),
1789                                 THREAD);
1790         CLEAR_PENDING_EXCEPTION;
1791       }
1792     }
1793     // notify JVMTI
1794     if (JvmtiExport::should_post_thread_life()) {
1795       JvmtiExport::post_thread_end(this);
1796     }
1797 
1798     // We have notified the agents that we are exiting, before we go on,
1799     // we must check for a pending external suspend request and honor it
1800     // in order to not surprise the thread that made the suspend request.
1801     while (true) {
1802       {
1803         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1804         if (!is_external_suspend()) {
1805           set_terminated(_thread_exiting);
1806           ThreadService::current_thread_exiting(this);
1807           break;
1808         }
1809         // Implied else:
1810         // Things get a little tricky here. We have a pending external
1811         // suspend request, but we are holding the SR_lock so we
1812         // can't just self-suspend. So we temporarily drop the lock
1813         // and then self-suspend.
1814       }
1815 
1816       ThreadBlockInVM tbivm(this);
1817       java_suspend_self();
1818 
1819       // We're done with this suspend request, but we have to loop around
1820       // and check again. Eventually we will get SR_lock without a pending
1821       // external suspend request and will be able to mark ourselves as
1822       // exiting.
1823     }
1824     // no more external suspends are allowed at this point
1825   } else {
1826     // before_exit() has already posted JVMTI THREAD_END events
1827   }
1828 
1829   // Notify waiters on thread object. This has to be done after exit() is called
1830   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1831   // group should have the destroyed bit set before waiters are notified).
1832   ensure_join(this);
1833   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1834 
1835   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1836   // held by this thread must be released.  A detach operation must only
1837   // get here if there are no Java frames on the stack.  Therefore, any
1838   // owned monitors at this point MUST be JNI-acquired monitors which are
1839   // pre-inflated and in the monitor cache.
1840   //
1841   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1842   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1843     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1844     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1845     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1846   }
1847 
1848   // These things needs to be done while we are still a Java Thread. Make sure that thread
1849   // is in a consistent state, in case GC happens
1850   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1851 
1852   if (active_handles() != NULL) {
1853     JNIHandleBlock* block = active_handles();
1854     set_active_handles(NULL);
1855     JNIHandleBlock::release_block(block);
1856   }
1857 
1858   if (free_handle_block() != NULL) {
1859     JNIHandleBlock* block = free_handle_block();
1860     set_free_handle_block(NULL);
1861     JNIHandleBlock::release_block(block);
1862   }
1863 
1864   // These have to be removed while this is still a valid thread.
1865   remove_stack_guard_pages();
1866 
1867   if (UseTLAB) {
1868     tlab().make_parsable(true);  // retire TLAB
1869   }
1870 
1871   if (JvmtiEnv::environments_might_exist()) {
1872     JvmtiExport::cleanup_thread(this);
1873   }
1874 
1875   // We must flush any deferred card marks before removing a thread from
1876   // the list of active threads.
1877   Universe::heap()->flush_deferred_store_barrier(this);
1878   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1879 
1880 #if INCLUDE_ALL_GCS
1881   // We must flush the G1-related buffers before removing a thread
1882   // from the list of active threads. We must do this after any deferred
1883   // card marks have been flushed (above) so that any entries that are
1884   // added to the thread's dirty card queue as a result are not lost.
1885   if (UseG1GC) {
1886     flush_barrier_queues();
1887   }
1888 #endif // INCLUDE_ALL_GCS
1889 
1890   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1891   Threads::remove(this);
1892 }
1893 
1894 #if INCLUDE_ALL_GCS
1895 // Flush G1-related queues.
1896 void JavaThread::flush_barrier_queues() {
1897   satb_mark_queue().flush();
1898   dirty_card_queue().flush();
1899 }
1900 
1901 void JavaThread::initialize_queues() {
1902   assert(!SafepointSynchronize::is_at_safepoint(),
1903          "we should not be at a safepoint");
1904 
1905   ObjPtrQueue& satb_queue = satb_mark_queue();
1906   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1907   // The SATB queue should have been constructed with its active
1908   // field set to false.
1909   assert(!satb_queue.is_active(), "SATB queue should not be active");
1910   assert(satb_queue.is_empty(), "SATB queue should be empty");
1911   // If we are creating the thread during a marking cycle, we should
1912   // set the active field of the SATB queue to true.
1913   if (satb_queue_set.is_active()) {
1914     satb_queue.set_active(true);
1915   }
1916 
1917   DirtyCardQueue& dirty_queue = dirty_card_queue();
1918   // The dirty card queue should have been constructed with its
1919   // active field set to true.
1920   assert(dirty_queue.is_active(), "dirty card queue should be active");
1921 }
1922 #endif // INCLUDE_ALL_GCS
1923 
1924 void JavaThread::cleanup_failed_attach_current_thread() {
1925   if (get_thread_profiler() != NULL) {
1926     get_thread_profiler()->disengage();
1927     ResourceMark rm;
1928     get_thread_profiler()->print(get_thread_name());
1929   }
1930 
1931   if (active_handles() != NULL) {
1932     JNIHandleBlock* block = active_handles();
1933     set_active_handles(NULL);
1934     JNIHandleBlock::release_block(block);
1935   }
1936 
1937   if (free_handle_block() != NULL) {
1938     JNIHandleBlock* block = free_handle_block();
1939     set_free_handle_block(NULL);
1940     JNIHandleBlock::release_block(block);
1941   }
1942 
1943   // These have to be removed while this is still a valid thread.
1944   remove_stack_guard_pages();
1945 
1946   if (UseTLAB) {
1947     tlab().make_parsable(true);  // retire TLAB, if any
1948   }
1949 
1950 #if INCLUDE_ALL_GCS
1951   if (UseG1GC) {
1952     flush_barrier_queues();
1953   }
1954 #endif // INCLUDE_ALL_GCS
1955 
1956   Threads::remove(this);
1957   delete this;
1958 }
1959 
1960 
1961 
1962 
1963 JavaThread* JavaThread::active() {
1964   Thread* thread = ThreadLocalStorage::thread();
1965   assert(thread != NULL, "just checking");
1966   if (thread->is_Java_thread()) {
1967     return (JavaThread*) thread;
1968   } else {
1969     assert(thread->is_VM_thread(), "this must be a vm thread");
1970     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1971     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1972     assert(ret->is_Java_thread(), "must be a Java thread");
1973     return ret;
1974   }
1975 }
1976 
1977 bool JavaThread::is_lock_owned(address adr) const {
1978   if (Thread::is_lock_owned(adr)) return true;
1979 
1980   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1981     if (chunk->contains(adr)) return true;
1982   }
1983 
1984   return false;
1985 }
1986 
1987 
1988 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1989   chunk->set_next(monitor_chunks());
1990   set_monitor_chunks(chunk);
1991 }
1992 
1993 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1994   guarantee(monitor_chunks() != NULL, "must be non empty");
1995   if (monitor_chunks() == chunk) {
1996     set_monitor_chunks(chunk->next());
1997   } else {
1998     MonitorChunk* prev = monitor_chunks();
1999     while (prev->next() != chunk) prev = prev->next();
2000     prev->set_next(chunk->next());
2001   }
2002 }
2003 
2004 // JVM support.
2005 
2006 // Note: this function shouldn't block if it's called in
2007 // _thread_in_native_trans state (such as from
2008 // check_special_condition_for_native_trans()).
2009 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2010 
2011   if (has_last_Java_frame() && has_async_condition()) {
2012     // If we are at a polling page safepoint (not a poll return)
2013     // then we must defer async exception because live registers
2014     // will be clobbered by the exception path. Poll return is
2015     // ok because the call we a returning from already collides
2016     // with exception handling registers and so there is no issue.
2017     // (The exception handling path kills call result registers but
2018     //  this is ok since the exception kills the result anyway).
2019 
2020     if (is_at_poll_safepoint()) {
2021       // if the code we are returning to has deoptimized we must defer
2022       // the exception otherwise live registers get clobbered on the
2023       // exception path before deoptimization is able to retrieve them.
2024       //
2025       RegisterMap map(this, false);
2026       frame caller_fr = last_frame().sender(&map);
2027       assert(caller_fr.is_compiled_frame(), "what?");
2028       if (caller_fr.is_deoptimized_frame()) {
2029         if (TraceExceptions) {
2030           ResourceMark rm;
2031           tty->print_cr("deferred async exception at compiled safepoint");
2032         }
2033         return;
2034       }
2035     }
2036   }
2037 
2038   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2039   if (condition == _no_async_condition) {
2040     // Conditions have changed since has_special_runtime_exit_condition()
2041     // was called:
2042     // - if we were here only because of an external suspend request,
2043     //   then that was taken care of above (or cancelled) so we are done
2044     // - if we were here because of another async request, then it has
2045     //   been cleared between the has_special_runtime_exit_condition()
2046     //   and now so again we are done
2047     return;
2048   }
2049 
2050   // Check for pending async. exception
2051   if (_pending_async_exception != NULL) {
2052     // Only overwrite an already pending exception, if it is not a threadDeath.
2053     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2054 
2055       // We cannot call Exceptions::_throw(...) here because we cannot block
2056       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2057 
2058       if (TraceExceptions) {
2059         ResourceMark rm;
2060         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2061         if (has_last_Java_frame()) {
2062           frame f = last_frame();
2063           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2064         }
2065         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2066       }
2067       _pending_async_exception = NULL;
2068       clear_has_async_exception();
2069     }
2070   }
2071 
2072   if (check_unsafe_error &&
2073       condition == _async_unsafe_access_error && !has_pending_exception()) {
2074     condition = _no_async_condition;  // done
2075     switch (thread_state()) {
2076     case _thread_in_vm: {
2077       JavaThread* THREAD = this;
2078       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2079     }
2080     case _thread_in_native: {
2081       ThreadInVMfromNative tiv(this);
2082       JavaThread* THREAD = this;
2083       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2084     }
2085     case _thread_in_Java: {
2086       ThreadInVMfromJava tiv(this);
2087       JavaThread* THREAD = this;
2088       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2089     }
2090     default:
2091       ShouldNotReachHere();
2092     }
2093   }
2094 
2095   assert(condition == _no_async_condition || has_pending_exception() ||
2096          (!check_unsafe_error && condition == _async_unsafe_access_error),
2097          "must have handled the async condition, if no exception");
2098 }
2099 
2100 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2101   //
2102   // Check for pending external suspend. Internal suspend requests do
2103   // not use handle_special_runtime_exit_condition().
2104   // If JNIEnv proxies are allowed, don't self-suspend if the target
2105   // thread is not the current thread. In older versions of jdbx, jdbx
2106   // threads could call into the VM with another thread's JNIEnv so we
2107   // can be here operating on behalf of a suspended thread (4432884).
2108   bool do_self_suspend = is_external_suspend_with_lock();
2109   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2110     //
2111     // Because thread is external suspended the safepoint code will count
2112     // thread as at a safepoint. This can be odd because we can be here
2113     // as _thread_in_Java which would normally transition to _thread_blocked
2114     // at a safepoint. We would like to mark the thread as _thread_blocked
2115     // before calling java_suspend_self like all other callers of it but
2116     // we must then observe proper safepoint protocol. (We can't leave
2117     // _thread_blocked with a safepoint in progress). However we can be
2118     // here as _thread_in_native_trans so we can't use a normal transition
2119     // constructor/destructor pair because they assert on that type of
2120     // transition. We could do something like:
2121     //
2122     // JavaThreadState state = thread_state();
2123     // set_thread_state(_thread_in_vm);
2124     // {
2125     //   ThreadBlockInVM tbivm(this);
2126     //   java_suspend_self()
2127     // }
2128     // set_thread_state(_thread_in_vm_trans);
2129     // if (safepoint) block;
2130     // set_thread_state(state);
2131     //
2132     // but that is pretty messy. Instead we just go with the way the
2133     // code has worked before and note that this is the only path to
2134     // java_suspend_self that doesn't put the thread in _thread_blocked
2135     // mode.
2136 
2137     frame_anchor()->make_walkable(this);
2138     java_suspend_self();
2139 
2140     // We might be here for reasons in addition to the self-suspend request
2141     // so check for other async requests.
2142   }
2143 
2144   if (check_asyncs) {
2145     check_and_handle_async_exceptions();
2146   }
2147 }
2148 
2149 void JavaThread::send_thread_stop(oop java_throwable)  {
2150   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2151   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2152   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2153 
2154   // Do not throw asynchronous exceptions against the compiler thread
2155   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2156   if (is_Compiler_thread()) return;
2157 
2158   {
2159     // Actually throw the Throwable against the target Thread - however
2160     // only if there is no thread death exception installed already.
2161     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2162       // If the topmost frame is a runtime stub, then we are calling into
2163       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2164       // must deoptimize the caller before continuing, as the compiled  exception handler table
2165       // may not be valid
2166       if (has_last_Java_frame()) {
2167         frame f = last_frame();
2168         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2169           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2170           RegisterMap reg_map(this, UseBiasedLocking);
2171           frame compiled_frame = f.sender(&reg_map);
2172           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2173             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2174           }
2175         }
2176       }
2177 
2178       // Set async. pending exception in thread.
2179       set_pending_async_exception(java_throwable);
2180 
2181       if (TraceExceptions) {
2182         ResourceMark rm;
2183         tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2184       }
2185       // for AbortVMOnException flag
2186       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2187     }
2188   }
2189 
2190 
2191   // Interrupt thread so it will wake up from a potential wait()
2192   Thread::interrupt(this);
2193 }
2194 
2195 // External suspension mechanism.
2196 //
2197 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2198 // to any VM_locks and it is at a transition
2199 // Self-suspension will happen on the transition out of the vm.
2200 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2201 //
2202 // Guarantees on return:
2203 //   + Target thread will not execute any new bytecode (that's why we need to
2204 //     force a safepoint)
2205 //   + Target thread will not enter any new monitors
2206 //
2207 void JavaThread::java_suspend() {
2208   { MutexLocker mu(Threads_lock);
2209     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2210       return;
2211     }
2212   }
2213 
2214   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2215     if (!is_external_suspend()) {
2216       // a racing resume has cancelled us; bail out now
2217       return;
2218     }
2219 
2220     // suspend is done
2221     uint32_t debug_bits = 0;
2222     // Warning: is_ext_suspend_completed() may temporarily drop the
2223     // SR_lock to allow the thread to reach a stable thread state if
2224     // it is currently in a transient thread state.
2225     if (is_ext_suspend_completed(false /* !called_by_wait */,
2226                                  SuspendRetryDelay, &debug_bits)) {
2227       return;
2228     }
2229   }
2230 
2231   VM_ForceSafepoint vm_suspend;
2232   VMThread::execute(&vm_suspend);
2233 }
2234 
2235 // Part II of external suspension.
2236 // A JavaThread self suspends when it detects a pending external suspend
2237 // request. This is usually on transitions. It is also done in places
2238 // where continuing to the next transition would surprise the caller,
2239 // e.g., monitor entry.
2240 //
2241 // Returns the number of times that the thread self-suspended.
2242 //
2243 // Note: DO NOT call java_suspend_self() when you just want to block current
2244 //       thread. java_suspend_self() is the second stage of cooperative
2245 //       suspension for external suspend requests and should only be used
2246 //       to complete an external suspend request.
2247 //
2248 int JavaThread::java_suspend_self() {
2249   int ret = 0;
2250 
2251   // we are in the process of exiting so don't suspend
2252   if (is_exiting()) {
2253     clear_external_suspend();
2254     return ret;
2255   }
2256 
2257   assert(_anchor.walkable() ||
2258          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2259          "must have walkable stack");
2260 
2261   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2262 
2263   assert(!this->is_ext_suspended(),
2264          "a thread trying to self-suspend should not already be suspended");
2265 
2266   if (this->is_suspend_equivalent()) {
2267     // If we are self-suspending as a result of the lifting of a
2268     // suspend equivalent condition, then the suspend_equivalent
2269     // flag is not cleared until we set the ext_suspended flag so
2270     // that wait_for_ext_suspend_completion() returns consistent
2271     // results.
2272     this->clear_suspend_equivalent();
2273   }
2274 
2275   // A racing resume may have cancelled us before we grabbed SR_lock
2276   // above. Or another external suspend request could be waiting for us
2277   // by the time we return from SR_lock()->wait(). The thread
2278   // that requested the suspension may already be trying to walk our
2279   // stack and if we return now, we can change the stack out from under
2280   // it. This would be a "bad thing (TM)" and cause the stack walker
2281   // to crash. We stay self-suspended until there are no more pending
2282   // external suspend requests.
2283   while (is_external_suspend()) {
2284     ret++;
2285     this->set_ext_suspended();
2286 
2287     // _ext_suspended flag is cleared by java_resume()
2288     while (is_ext_suspended()) {
2289       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2290     }
2291   }
2292 
2293   return ret;
2294 }
2295 
2296 #ifdef ASSERT
2297 // verify the JavaThread has not yet been published in the Threads::list, and
2298 // hence doesn't need protection from concurrent access at this stage
2299 void JavaThread::verify_not_published() {
2300   if (!Threads_lock->owned_by_self()) {
2301     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2302     assert(!Threads::includes(this),
2303            "java thread shouldn't have been published yet!");
2304   } else {
2305     assert(!Threads::includes(this),
2306            "java thread shouldn't have been published yet!");
2307   }
2308 }
2309 #endif
2310 
2311 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2312 // progress or when _suspend_flags is non-zero.
2313 // Current thread needs to self-suspend if there is a suspend request and/or
2314 // block if a safepoint is in progress.
2315 // Async exception ISN'T checked.
2316 // Note only the ThreadInVMfromNative transition can call this function
2317 // directly and when thread state is _thread_in_native_trans
2318 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2319   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2320 
2321   JavaThread *curJT = JavaThread::current();
2322   bool do_self_suspend = thread->is_external_suspend();
2323 
2324   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2325 
2326   // If JNIEnv proxies are allowed, don't self-suspend if the target
2327   // thread is not the current thread. In older versions of jdbx, jdbx
2328   // threads could call into the VM with another thread's JNIEnv so we
2329   // can be here operating on behalf of a suspended thread (4432884).
2330   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2331     JavaThreadState state = thread->thread_state();
2332 
2333     // We mark this thread_blocked state as a suspend-equivalent so
2334     // that a caller to is_ext_suspend_completed() won't be confused.
2335     // The suspend-equivalent state is cleared by java_suspend_self().
2336     thread->set_suspend_equivalent();
2337 
2338     // If the safepoint code sees the _thread_in_native_trans state, it will
2339     // wait until the thread changes to other thread state. There is no
2340     // guarantee on how soon we can obtain the SR_lock and complete the
2341     // self-suspend request. It would be a bad idea to let safepoint wait for
2342     // too long. Temporarily change the state to _thread_blocked to
2343     // let the VM thread know that this thread is ready for GC. The problem
2344     // of changing thread state is that safepoint could happen just after
2345     // java_suspend_self() returns after being resumed, and VM thread will
2346     // see the _thread_blocked state. We must check for safepoint
2347     // after restoring the state and make sure we won't leave while a safepoint
2348     // is in progress.
2349     thread->set_thread_state(_thread_blocked);
2350     thread->java_suspend_self();
2351     thread->set_thread_state(state);
2352     // Make sure new state is seen by VM thread
2353     if (os::is_MP()) {
2354       if (UseMembar) {
2355         // Force a fence between the write above and read below
2356         OrderAccess::fence();
2357       } else {
2358         // Must use this rather than serialization page in particular on Windows
2359         InterfaceSupport::serialize_memory(thread);
2360       }
2361     }
2362   }
2363 
2364   if (SafepointSynchronize::do_call_back()) {
2365     // If we are safepointing, then block the caller which may not be
2366     // the same as the target thread (see above).
2367     SafepointSynchronize::block(curJT);
2368   }
2369 
2370   if (thread->is_deopt_suspend()) {
2371     thread->clear_deopt_suspend();
2372     RegisterMap map(thread, false);
2373     frame f = thread->last_frame();
2374     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2375       f = f.sender(&map);
2376     }
2377     if (f.id() == thread->must_deopt_id()) {
2378       thread->clear_must_deopt_id();
2379       f.deoptimize(thread);
2380     } else {
2381       fatal("missed deoptimization!");
2382     }
2383   }
2384 }
2385 
2386 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2387 // progress or when _suspend_flags is non-zero.
2388 // Current thread needs to self-suspend if there is a suspend request and/or
2389 // block if a safepoint is in progress.
2390 // Also check for pending async exception (not including unsafe access error).
2391 // Note only the native==>VM/Java barriers can call this function and when
2392 // thread state is _thread_in_native_trans.
2393 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2394   check_safepoint_and_suspend_for_native_trans(thread);
2395 
2396   if (thread->has_async_exception()) {
2397     // We are in _thread_in_native_trans state, don't handle unsafe
2398     // access error since that may block.
2399     thread->check_and_handle_async_exceptions(false);
2400   }
2401 }
2402 
2403 // This is a variant of the normal
2404 // check_special_condition_for_native_trans with slightly different
2405 // semantics for use by critical native wrappers.  It does all the
2406 // normal checks but also performs the transition back into
2407 // thread_in_Java state.  This is required so that critical natives
2408 // can potentially block and perform a GC if they are the last thread
2409 // exiting the GC_locker.
2410 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2411   check_special_condition_for_native_trans(thread);
2412 
2413   // Finish the transition
2414   thread->set_thread_state(_thread_in_Java);
2415 
2416   if (thread->do_critical_native_unlock()) {
2417     ThreadInVMfromJavaNoAsyncException tiv(thread);
2418     GC_locker::unlock_critical(thread);
2419     thread->clear_critical_native_unlock();
2420   }
2421 }
2422 
2423 // We need to guarantee the Threads_lock here, since resumes are not
2424 // allowed during safepoint synchronization
2425 // Can only resume from an external suspension
2426 void JavaThread::java_resume() {
2427   assert_locked_or_safepoint(Threads_lock);
2428 
2429   // Sanity check: thread is gone, has started exiting or the thread
2430   // was not externally suspended.
2431   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2432     return;
2433   }
2434 
2435   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2436 
2437   clear_external_suspend();
2438 
2439   if (is_ext_suspended()) {
2440     clear_ext_suspended();
2441     SR_lock()->notify_all();
2442   }
2443 }
2444 
2445 void JavaThread::create_stack_guard_pages() {
2446   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2447   address low_addr = stack_base() - stack_size();
2448   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2449 
2450   int allocate = os::allocate_stack_guard_pages();
2451   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2452 
2453   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2454     warning("Attempt to allocate stack guard pages failed.");
2455     return;
2456   }
2457 
2458   if (os::guard_memory((char *) low_addr, len)) {
2459     _stack_guard_state = stack_guard_enabled;
2460   } else {
2461     warning("Attempt to protect stack guard pages failed.");
2462     if (os::uncommit_memory((char *) low_addr, len)) {
2463       warning("Attempt to deallocate stack guard pages failed.");
2464     }
2465   }
2466 }
2467 
2468 void JavaThread::remove_stack_guard_pages() {
2469   assert(Thread::current() == this, "from different thread");
2470   if (_stack_guard_state == stack_guard_unused) return;
2471   address low_addr = stack_base() - stack_size();
2472   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2473 
2474   if (os::allocate_stack_guard_pages()) {
2475     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2476       _stack_guard_state = stack_guard_unused;
2477     } else {
2478       warning("Attempt to deallocate stack guard pages failed.");
2479     }
2480   } else {
2481     if (_stack_guard_state == stack_guard_unused) return;
2482     if (os::unguard_memory((char *) low_addr, len)) {
2483       _stack_guard_state = stack_guard_unused;
2484     } else {
2485       warning("Attempt to unprotect stack guard pages failed.");
2486     }
2487   }
2488 }
2489 
2490 void JavaThread::enable_stack_yellow_zone() {
2491   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2492   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2493 
2494   // The base notation is from the stacks point of view, growing downward.
2495   // We need to adjust it to work correctly with guard_memory()
2496   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2497 
2498   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2499   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2500 
2501   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2502     _stack_guard_state = stack_guard_enabled;
2503   } else {
2504     warning("Attempt to guard stack yellow zone failed.");
2505   }
2506   enable_register_stack_guard();
2507 }
2508 
2509 void JavaThread::disable_stack_yellow_zone() {
2510   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2511   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2512 
2513   // Simply return if called for a thread that does not use guard pages.
2514   if (_stack_guard_state == stack_guard_unused) return;
2515 
2516   // The base notation is from the stacks point of view, growing downward.
2517   // We need to adjust it to work correctly with guard_memory()
2518   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2519 
2520   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2521     _stack_guard_state = stack_guard_yellow_disabled;
2522   } else {
2523     warning("Attempt to unguard stack yellow zone failed.");
2524   }
2525   disable_register_stack_guard();
2526 }
2527 
2528 void JavaThread::enable_stack_red_zone() {
2529   // The base notation is from the stacks point of view, growing downward.
2530   // We need to adjust it to work correctly with guard_memory()
2531   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2532   address base = stack_red_zone_base() - stack_red_zone_size();
2533 
2534   guarantee(base < stack_base(), "Error calculating stack red zone");
2535   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2536 
2537   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2538     warning("Attempt to guard stack red zone failed.");
2539   }
2540 }
2541 
2542 void JavaThread::disable_stack_red_zone() {
2543   // The base notation is from the stacks point of view, growing downward.
2544   // We need to adjust it to work correctly with guard_memory()
2545   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2546   address base = stack_red_zone_base() - stack_red_zone_size();
2547   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2548     warning("Attempt to unguard stack red zone failed.");
2549   }
2550 }
2551 
2552 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2553   // ignore is there is no stack
2554   if (!has_last_Java_frame()) return;
2555   // traverse the stack frames. Starts from top frame.
2556   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2557     frame* fr = fst.current();
2558     f(fr, fst.register_map());
2559   }
2560 }
2561 
2562 
2563 #ifndef PRODUCT
2564 // Deoptimization
2565 // Function for testing deoptimization
2566 void JavaThread::deoptimize() {
2567   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2568   StackFrameStream fst(this, UseBiasedLocking);
2569   bool deopt = false;           // Dump stack only if a deopt actually happens.
2570   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2571   // Iterate over all frames in the thread and deoptimize
2572   for (; !fst.is_done(); fst.next()) {
2573     if (fst.current()->can_be_deoptimized()) {
2574 
2575       if (only_at) {
2576         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2577         // consists of comma or carriage return separated numbers so
2578         // search for the current bci in that string.
2579         address pc = fst.current()->pc();
2580         nmethod* nm =  (nmethod*) fst.current()->cb();
2581         ScopeDesc* sd = nm->scope_desc_at(pc);
2582         char buffer[8];
2583         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2584         size_t len = strlen(buffer);
2585         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2586         while (found != NULL) {
2587           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2588               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2589             // Check that the bci found is bracketed by terminators.
2590             break;
2591           }
2592           found = strstr(found + 1, buffer);
2593         }
2594         if (!found) {
2595           continue;
2596         }
2597       }
2598 
2599       if (DebugDeoptimization && !deopt) {
2600         deopt = true; // One-time only print before deopt
2601         tty->print_cr("[BEFORE Deoptimization]");
2602         trace_frames();
2603         trace_stack();
2604       }
2605       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2606     }
2607   }
2608 
2609   if (DebugDeoptimization && deopt) {
2610     tty->print_cr("[AFTER Deoptimization]");
2611     trace_frames();
2612   }
2613 }
2614 
2615 
2616 // Make zombies
2617 void JavaThread::make_zombies() {
2618   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2619     if (fst.current()->can_be_deoptimized()) {
2620       // it is a Java nmethod
2621       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2622       nm->make_not_entrant();
2623     }
2624   }
2625 }
2626 #endif // PRODUCT
2627 
2628 
2629 void JavaThread::deoptimized_wrt_marked_nmethods() {
2630   if (!has_last_Java_frame()) return;
2631   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2632   StackFrameStream fst(this, UseBiasedLocking);
2633   for (; !fst.is_done(); fst.next()) {
2634     if (fst.current()->should_be_deoptimized()) {
2635       if (LogCompilation && xtty != NULL) {
2636         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2637         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2638                    this->name(), nm != NULL ? nm->compile_id() : -1);
2639       }
2640 
2641       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2642     }
2643   }
2644 }
2645 
2646 
2647 // If the caller is a NamedThread, then remember, in the current scope,
2648 // the given JavaThread in its _processed_thread field.
2649 class RememberProcessedThread: public StackObj {
2650   NamedThread* _cur_thr;
2651  public:
2652   RememberProcessedThread(JavaThread* jthr) {
2653     Thread* thread = Thread::current();
2654     if (thread->is_Named_thread()) {
2655       _cur_thr = (NamedThread *)thread;
2656       _cur_thr->set_processed_thread(jthr);
2657     } else {
2658       _cur_thr = NULL;
2659     }
2660   }
2661 
2662   ~RememberProcessedThread() {
2663     if (_cur_thr) {
2664       _cur_thr->set_processed_thread(NULL);
2665     }
2666   }
2667 };
2668 
2669 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2670   // Verify that the deferred card marks have been flushed.
2671   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2672 
2673   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2674   // since there may be more than one thread using each ThreadProfiler.
2675 
2676   // Traverse the GCHandles
2677   Thread::oops_do(f, cld_f, cf);
2678 
2679   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2680          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2681 
2682   if (has_last_Java_frame()) {
2683     // Record JavaThread to GC thread
2684     RememberProcessedThread rpt(this);
2685 
2686     // Traverse the privileged stack
2687     if (_privileged_stack_top != NULL) {
2688       _privileged_stack_top->oops_do(f);
2689     }
2690 
2691     // traverse the registered growable array
2692     if (_array_for_gc != NULL) {
2693       for (int index = 0; index < _array_for_gc->length(); index++) {
2694         f->do_oop(_array_for_gc->adr_at(index));
2695       }
2696     }
2697 
2698     // Traverse the monitor chunks
2699     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2700       chunk->oops_do(f);
2701     }
2702 
2703     // Traverse the execution stack
2704     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2705       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2706     }
2707   }
2708 
2709   // callee_target is never live across a gc point so NULL it here should
2710   // it still contain a methdOop.
2711 
2712   set_callee_target(NULL);
2713 
2714   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2715   // If we have deferred set_locals there might be oops waiting to be
2716   // written
2717   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2718   if (list != NULL) {
2719     for (int i = 0; i < list->length(); i++) {
2720       list->at(i)->oops_do(f);
2721     }
2722   }
2723 
2724   // Traverse instance variables at the end since the GC may be moving things
2725   // around using this function
2726   f->do_oop((oop*) &_threadObj);
2727   f->do_oop((oop*) &_vm_result);
2728   f->do_oop((oop*) &_exception_oop);
2729   f->do_oop((oop*) &_pending_async_exception);
2730 
2731   if (jvmti_thread_state() != NULL) {
2732     jvmti_thread_state()->oops_do(f);
2733   }
2734 }
2735 
2736 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2737   Thread::nmethods_do(cf);  // (super method is a no-op)
2738 
2739   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2740          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2741 
2742   if (has_last_Java_frame()) {
2743     // Traverse the execution stack
2744     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2745       fst.current()->nmethods_do(cf);
2746     }
2747   }
2748 }
2749 
2750 void JavaThread::metadata_do(void f(Metadata*)) {
2751   Thread::metadata_do(f);
2752   if (has_last_Java_frame()) {
2753     // Traverse the execution stack to call f() on the methods in the stack
2754     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2755       fst.current()->metadata_do(f);
2756     }
2757   } else if (is_Compiler_thread()) {
2758     // need to walk ciMetadata in current compile tasks to keep alive.
2759     CompilerThread* ct = (CompilerThread*)this;
2760     if (ct->env() != NULL) {
2761       ct->env()->metadata_do(f);
2762     }
2763   }
2764 }
2765 
2766 // Printing
2767 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2768   switch (_thread_state) {
2769   case _thread_uninitialized:     return "_thread_uninitialized";
2770   case _thread_new:               return "_thread_new";
2771   case _thread_new_trans:         return "_thread_new_trans";
2772   case _thread_in_native:         return "_thread_in_native";
2773   case _thread_in_native_trans:   return "_thread_in_native_trans";
2774   case _thread_in_vm:             return "_thread_in_vm";
2775   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2776   case _thread_in_Java:           return "_thread_in_Java";
2777   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2778   case _thread_blocked:           return "_thread_blocked";
2779   case _thread_blocked_trans:     return "_thread_blocked_trans";
2780   default:                        return "unknown thread state";
2781   }
2782 }
2783 
2784 #ifndef PRODUCT
2785 void JavaThread::print_thread_state_on(outputStream *st) const {
2786   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2787 };
2788 void JavaThread::print_thread_state() const {
2789   print_thread_state_on(tty);
2790 }
2791 #endif // PRODUCT
2792 
2793 // Called by Threads::print() for VM_PrintThreads operation
2794 void JavaThread::print_on(outputStream *st) const {
2795   st->print("\"%s\" ", get_thread_name());
2796   oop thread_oop = threadObj();
2797   if (thread_oop != NULL) {
2798     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2799     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2800     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2801   }
2802   Thread::print_on(st);
2803   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2804   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2805   if (thread_oop != NULL) {
2806     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2807   }
2808 #ifndef PRODUCT
2809   print_thread_state_on(st);
2810   _safepoint_state->print_on(st);
2811 #endif // PRODUCT
2812 }
2813 
2814 // Called by fatal error handler. The difference between this and
2815 // JavaThread::print() is that we can't grab lock or allocate memory.
2816 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2817   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2818   oop thread_obj = threadObj();
2819   if (thread_obj != NULL) {
2820     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2821   }
2822   st->print(" [");
2823   st->print("%s", _get_thread_state_name(_thread_state));
2824   if (osthread()) {
2825     st->print(", id=%d", osthread()->thread_id());
2826   }
2827   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2828             _stack_base - _stack_size, _stack_base);
2829   st->print("]");
2830   return;
2831 }
2832 
2833 // Verification
2834 
2835 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2836 
2837 void JavaThread::verify() {
2838   // Verify oops in the thread.
2839   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2840 
2841   // Verify the stack frames.
2842   frames_do(frame_verify);
2843 }
2844 
2845 // CR 6300358 (sub-CR 2137150)
2846 // Most callers of this method assume that it can't return NULL but a
2847 // thread may not have a name whilst it is in the process of attaching to
2848 // the VM - see CR 6412693, and there are places where a JavaThread can be
2849 // seen prior to having it's threadObj set (eg JNI attaching threads and
2850 // if vm exit occurs during initialization). These cases can all be accounted
2851 // for such that this method never returns NULL.
2852 const char* JavaThread::get_thread_name() const {
2853 #ifdef ASSERT
2854   // early safepoints can hit while current thread does not yet have TLS
2855   if (!SafepointSynchronize::is_at_safepoint()) {
2856     Thread *cur = Thread::current();
2857     if (!(cur->is_Java_thread() && cur == this)) {
2858       // Current JavaThreads are allowed to get their own name without
2859       // the Threads_lock.
2860       assert_locked_or_safepoint(Threads_lock);
2861     }
2862   }
2863 #endif // ASSERT
2864   return get_thread_name_string();
2865 }
2866 
2867 // Returns a non-NULL representation of this thread's name, or a suitable
2868 // descriptive string if there is no set name
2869 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2870   const char* name_str;
2871   oop thread_obj = threadObj();
2872   if (thread_obj != NULL) {
2873     typeArrayOop name = java_lang_Thread::name(thread_obj);
2874     if (name != NULL) {
2875       if (buf == NULL) {
2876         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR),
2877                                     name->length());
2878       } else {
2879         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR),
2880                                     name->length(), buf, buflen);
2881       }
2882     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2883       name_str = "<no-name - thread is attaching>";
2884     } else {
2885       name_str = Thread::name();
2886     }
2887   } else {
2888     name_str = Thread::name();
2889   }
2890   assert(name_str != NULL, "unexpected NULL thread name");
2891   return name_str;
2892 }
2893 
2894 
2895 const char* JavaThread::get_threadgroup_name() const {
2896   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2897   oop thread_obj = threadObj();
2898   if (thread_obj != NULL) {
2899     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2900     if (thread_group != NULL) {
2901       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2902       // ThreadGroup.name can be null
2903       if (name != NULL) {
2904         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2905         return str;
2906       }
2907     }
2908   }
2909   return NULL;
2910 }
2911 
2912 const char* JavaThread::get_parent_name() const {
2913   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2914   oop thread_obj = threadObj();
2915   if (thread_obj != NULL) {
2916     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2917     if (thread_group != NULL) {
2918       oop parent = java_lang_ThreadGroup::parent(thread_group);
2919       if (parent != NULL) {
2920         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2921         // ThreadGroup.name can be null
2922         if (name != NULL) {
2923           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2924           return str;
2925         }
2926       }
2927     }
2928   }
2929   return NULL;
2930 }
2931 
2932 ThreadPriority JavaThread::java_priority() const {
2933   oop thr_oop = threadObj();
2934   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2935   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2936   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2937   return priority;
2938 }
2939 
2940 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2941 
2942   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2943   // Link Java Thread object <-> C++ Thread
2944 
2945   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2946   // and put it into a new Handle.  The Handle "thread_oop" can then
2947   // be used to pass the C++ thread object to other methods.
2948 
2949   // Set the Java level thread object (jthread) field of the
2950   // new thread (a JavaThread *) to C++ thread object using the
2951   // "thread_oop" handle.
2952 
2953   // Set the thread field (a JavaThread *) of the
2954   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2955 
2956   Handle thread_oop(Thread::current(),
2957                     JNIHandles::resolve_non_null(jni_thread));
2958   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2959          "must be initialized");
2960   set_threadObj(thread_oop());
2961   java_lang_Thread::set_thread(thread_oop(), this);
2962 
2963   if (prio == NoPriority) {
2964     prio = java_lang_Thread::priority(thread_oop());
2965     assert(prio != NoPriority, "A valid priority should be present");
2966   }
2967 
2968   // Push the Java priority down to the native thread; needs Threads_lock
2969   Thread::set_priority(this, prio);
2970 
2971   prepare_ext();
2972 
2973   // Add the new thread to the Threads list and set it in motion.
2974   // We must have threads lock in order to call Threads::add.
2975   // It is crucial that we do not block before the thread is
2976   // added to the Threads list for if a GC happens, then the java_thread oop
2977   // will not be visited by GC.
2978   Threads::add(this);
2979 }
2980 
2981 oop JavaThread::current_park_blocker() {
2982   // Support for JSR-166 locks
2983   oop thread_oop = threadObj();
2984   if (thread_oop != NULL &&
2985       JDK_Version::current().supports_thread_park_blocker()) {
2986     return java_lang_Thread::park_blocker(thread_oop);
2987   }
2988   return NULL;
2989 }
2990 
2991 
2992 void JavaThread::print_stack_on(outputStream* st) {
2993   if (!has_last_Java_frame()) return;
2994   ResourceMark rm;
2995   HandleMark   hm;
2996 
2997   RegisterMap reg_map(this);
2998   vframe* start_vf = last_java_vframe(&reg_map);
2999   int count = 0;
3000   for (vframe* f = start_vf; f; f = f->sender()) {
3001     if (f->is_java_frame()) {
3002       javaVFrame* jvf = javaVFrame::cast(f);
3003       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3004 
3005       // Print out lock information
3006       if (JavaMonitorsInStackTrace) {
3007         jvf->print_lock_info_on(st, count);
3008       }
3009     } else {
3010       // Ignore non-Java frames
3011     }
3012 
3013     // Bail-out case for too deep stacks
3014     count++;
3015     if (MaxJavaStackTraceDepth == count) return;
3016   }
3017 }
3018 
3019 
3020 // JVMTI PopFrame support
3021 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3022   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3023   if (in_bytes(size_in_bytes) != 0) {
3024     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3025     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3026     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3027   }
3028 }
3029 
3030 void* JavaThread::popframe_preserved_args() {
3031   return _popframe_preserved_args;
3032 }
3033 
3034 ByteSize JavaThread::popframe_preserved_args_size() {
3035   return in_ByteSize(_popframe_preserved_args_size);
3036 }
3037 
3038 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3039   int sz = in_bytes(popframe_preserved_args_size());
3040   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3041   return in_WordSize(sz / wordSize);
3042 }
3043 
3044 void JavaThread::popframe_free_preserved_args() {
3045   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3046   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3047   _popframe_preserved_args = NULL;
3048   _popframe_preserved_args_size = 0;
3049 }
3050 
3051 #ifndef PRODUCT
3052 
3053 void JavaThread::trace_frames() {
3054   tty->print_cr("[Describe stack]");
3055   int frame_no = 1;
3056   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3057     tty->print("  %d. ", frame_no++);
3058     fst.current()->print_value_on(tty, this);
3059     tty->cr();
3060   }
3061 }
3062 
3063 class PrintAndVerifyOopClosure: public OopClosure {
3064  protected:
3065   template <class T> inline void do_oop_work(T* p) {
3066     oop obj = oopDesc::load_decode_heap_oop(p);
3067     if (obj == NULL) return;
3068     tty->print(INTPTR_FORMAT ": ", p);
3069     if (obj->is_oop_or_null()) {
3070       if (obj->is_objArray()) {
3071         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3072       } else {
3073         obj->print();
3074       }
3075     } else {
3076       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3077     }
3078     tty->cr();
3079   }
3080  public:
3081   virtual void do_oop(oop* p) { do_oop_work(p); }
3082   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3083 };
3084 
3085 
3086 static void oops_print(frame* f, const RegisterMap *map) {
3087   PrintAndVerifyOopClosure print;
3088   f->print_value();
3089   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3090 }
3091 
3092 // Print our all the locations that contain oops and whether they are
3093 // valid or not.  This useful when trying to find the oldest frame
3094 // where an oop has gone bad since the frame walk is from youngest to
3095 // oldest.
3096 void JavaThread::trace_oops() {
3097   tty->print_cr("[Trace oops]");
3098   frames_do(oops_print);
3099 }
3100 
3101 
3102 #ifdef ASSERT
3103 // Print or validate the layout of stack frames
3104 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3105   ResourceMark rm;
3106   PRESERVE_EXCEPTION_MARK;
3107   FrameValues values;
3108   int frame_no = 0;
3109   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3110     fst.current()->describe(values, ++frame_no);
3111     if (depth == frame_no) break;
3112   }
3113   if (validate_only) {
3114     values.validate();
3115   } else {
3116     tty->print_cr("[Describe stack layout]");
3117     values.print(this);
3118   }
3119 }
3120 #endif
3121 
3122 void JavaThread::trace_stack_from(vframe* start_vf) {
3123   ResourceMark rm;
3124   int vframe_no = 1;
3125   for (vframe* f = start_vf; f; f = f->sender()) {
3126     if (f->is_java_frame()) {
3127       javaVFrame::cast(f)->print_activation(vframe_no++);
3128     } else {
3129       f->print();
3130     }
3131     if (vframe_no > StackPrintLimit) {
3132       tty->print_cr("...<more frames>...");
3133       return;
3134     }
3135   }
3136 }
3137 
3138 
3139 void JavaThread::trace_stack() {
3140   if (!has_last_Java_frame()) return;
3141   ResourceMark rm;
3142   HandleMark   hm;
3143   RegisterMap reg_map(this);
3144   trace_stack_from(last_java_vframe(&reg_map));
3145 }
3146 
3147 
3148 #endif // PRODUCT
3149 
3150 
3151 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3152   assert(reg_map != NULL, "a map must be given");
3153   frame f = last_frame();
3154   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3155     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3156   }
3157   return NULL;
3158 }
3159 
3160 
3161 Klass* JavaThread::security_get_caller_class(int depth) {
3162   vframeStream vfst(this);
3163   vfst.security_get_caller_frame(depth);
3164   if (!vfst.at_end()) {
3165     return vfst.method()->method_holder();
3166   }
3167   return NULL;
3168 }
3169 
3170 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3171   assert(thread->is_Compiler_thread(), "must be compiler thread");
3172   CompileBroker::compiler_thread_loop();
3173 }
3174 
3175 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3176   NMethodSweeper::sweeper_loop();
3177 }
3178 
3179 // Create a CompilerThread
3180 CompilerThread::CompilerThread(CompileQueue* queue,
3181                                CompilerCounters* counters)
3182                                : JavaThread(&compiler_thread_entry) {
3183   _env   = NULL;
3184   _log   = NULL;
3185   _task  = NULL;
3186   _queue = queue;
3187   _counters = counters;
3188   _buffer_blob = NULL;
3189   _compiler = NULL;
3190 
3191 #ifndef PRODUCT
3192   _ideal_graph_printer = NULL;
3193 #endif
3194 }
3195 
3196 // Create sweeper thread
3197 CodeCacheSweeperThread::CodeCacheSweeperThread()
3198 : JavaThread(&sweeper_thread_entry) {
3199   _scanned_nmethod = NULL;
3200 }
3201 void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3202   JavaThread::oops_do(f, cld_f, cf);
3203   if (_scanned_nmethod != NULL && cf != NULL) {
3204     // Safepoints can occur when the sweeper is scanning an nmethod so
3205     // process it here to make sure it isn't unloaded in the middle of
3206     // a scan.
3207     cf->do_code_blob(_scanned_nmethod);
3208   }
3209 }
3210 
3211 
3212 // ======= Threads ========
3213 
3214 // The Threads class links together all active threads, and provides
3215 // operations over all threads.  It is protected by its own Mutex
3216 // lock, which is also used in other contexts to protect thread
3217 // operations from having the thread being operated on from exiting
3218 // and going away unexpectedly (e.g., safepoint synchronization)
3219 
3220 JavaThread* Threads::_thread_list = NULL;
3221 int         Threads::_number_of_threads = 0;
3222 int         Threads::_number_of_non_daemon_threads = 0;
3223 int         Threads::_return_code = 0;
3224 size_t      JavaThread::_stack_size_at_create = 0;
3225 #ifdef ASSERT
3226 bool        Threads::_vm_complete = false;
3227 #endif
3228 
3229 // All JavaThreads
3230 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3231 
3232 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3233 void Threads::threads_do(ThreadClosure* tc) {
3234   assert_locked_or_safepoint(Threads_lock);
3235   // ALL_JAVA_THREADS iterates through all JavaThreads
3236   ALL_JAVA_THREADS(p) {
3237     tc->do_thread(p);
3238   }
3239   // Someday we could have a table or list of all non-JavaThreads.
3240   // For now, just manually iterate through them.
3241   tc->do_thread(VMThread::vm_thread());
3242   Universe::heap()->gc_threads_do(tc);
3243   WatcherThread *wt = WatcherThread::watcher_thread();
3244   // Strictly speaking, the following NULL check isn't sufficient to make sure
3245   // the data for WatcherThread is still valid upon being examined. However,
3246   // considering that WatchThread terminates when the VM is on the way to
3247   // exit at safepoint, the chance of the above is extremely small. The right
3248   // way to prevent termination of WatcherThread would be to acquire
3249   // Terminator_lock, but we can't do that without violating the lock rank
3250   // checking in some cases.
3251   if (wt != NULL) {
3252     tc->do_thread(wt);
3253   }
3254 
3255   // If CompilerThreads ever become non-JavaThreads, add them here
3256 }
3257 
3258 
3259 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3260   TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3261 
3262   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3263     create_vm_init_libraries();
3264   }
3265 
3266   initialize_class(vmSymbols::java_lang_String(), CHECK);
3267 
3268   // Initialize java_lang.System (needed before creating the thread)
3269   initialize_class(vmSymbols::java_lang_System(), CHECK);
3270   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3271   Handle thread_group = create_initial_thread_group(CHECK);
3272   Universe::set_main_thread_group(thread_group());
3273   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3274   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3275   main_thread->set_threadObj(thread_object);
3276   // Set thread status to running since main thread has
3277   // been started and running.
3278   java_lang_Thread::set_thread_status(thread_object,
3279                                       java_lang_Thread::RUNNABLE);
3280 
3281   // The VM creates & returns objects of this class. Make sure it's initialized.
3282   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3283 
3284   // The VM preresolves methods to these classes. Make sure that they get initialized
3285   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3286   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3287   call_initializeSystemClass(CHECK);
3288 
3289   // get the Java runtime name after java.lang.System is initialized
3290   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3291   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3292 
3293   // an instance of OutOfMemory exception has been allocated earlier
3294   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3295   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3296   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3297   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3298   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3299   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3300   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3301   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3302 }
3303 
3304 void Threads::initialize_jsr292_core_classes(TRAPS) {
3305   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3306   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3307   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3308 }
3309 
3310 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3311   extern void JDK_Version_init();
3312 
3313   // Check version
3314   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3315 
3316   // Initialize the output stream module
3317   ostream_init();
3318 
3319   // Process java launcher properties.
3320   Arguments::process_sun_java_launcher_properties(args);
3321 
3322   // Initialize the os module before using TLS
3323   os::init();
3324 
3325   // Initialize system properties.
3326   Arguments::init_system_properties();
3327 
3328   // So that JDK version can be used as a discriminator when parsing arguments
3329   JDK_Version_init();
3330 
3331   // Update/Initialize System properties after JDK version number is known
3332   Arguments::init_version_specific_system_properties();
3333 
3334   // Parse arguments
3335   jint parse_result = Arguments::parse(args);
3336   if (parse_result != JNI_OK) return parse_result;
3337 
3338   os::init_before_ergo();
3339 
3340   jint ergo_result = Arguments::apply_ergo();
3341   if (ergo_result != JNI_OK) return ergo_result;
3342 
3343   if (PauseAtStartup) {
3344     os::pause();
3345   }
3346 
3347   HOTSPOT_VM_INIT_BEGIN();
3348 
3349   // Record VM creation timing statistics
3350   TraceVmCreationTime create_vm_timer;
3351   create_vm_timer.start();
3352 
3353   // Timing (must come after argument parsing)
3354   TraceTime timer("Create VM", TraceStartupTime);
3355 
3356   // Initialize the os module after parsing the args
3357   jint os_init_2_result = os::init_2();
3358   if (os_init_2_result != JNI_OK) return os_init_2_result;
3359 
3360   jint adjust_after_os_result = Arguments::adjust_after_os();
3361   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3362 
3363   // initialize TLS
3364   ThreadLocalStorage::init();
3365 
3366   // Initialize output stream logging
3367   ostream_init_log();
3368 
3369   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3370   // Must be before create_vm_init_agents()
3371   if (Arguments::init_libraries_at_startup()) {
3372     convert_vm_init_libraries_to_agents();
3373   }
3374 
3375   // Launch -agentlib/-agentpath and converted -Xrun agents
3376   if (Arguments::init_agents_at_startup()) {
3377     create_vm_init_agents();
3378   }
3379 
3380   // Initialize Threads state
3381   _thread_list = NULL;
3382   _number_of_threads = 0;
3383   _number_of_non_daemon_threads = 0;
3384 
3385   // Initialize global data structures and create system classes in heap
3386   vm_init_globals();
3387 
3388   // Attach the main thread to this os thread
3389   JavaThread* main_thread = new JavaThread();
3390   main_thread->set_thread_state(_thread_in_vm);
3391   // must do this before set_active_handles and initialize_thread_local_storage
3392   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3393   // change the stack size recorded here to one based on the java thread
3394   // stacksize. This adjusted size is what is used to figure the placement
3395   // of the guard pages.
3396   main_thread->record_stack_base_and_size();
3397   main_thread->initialize_thread_local_storage();
3398 
3399   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3400 
3401   if (!main_thread->set_as_starting_thread()) {
3402     vm_shutdown_during_initialization(
3403                                       "Failed necessary internal allocation. Out of swap space");
3404     delete main_thread;
3405     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3406     return JNI_ENOMEM;
3407   }
3408 
3409   // Enable guard page *after* os::create_main_thread(), otherwise it would
3410   // crash Linux VM, see notes in os_linux.cpp.
3411   main_thread->create_stack_guard_pages();
3412 
3413   // Initialize Java-Level synchronization subsystem
3414   ObjectMonitor::Initialize();
3415 
3416   // Initialize global modules
3417   jint status = init_globals();
3418   if (status != JNI_OK) {
3419     delete main_thread;
3420     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3421     return status;
3422   }
3423 
3424   // Should be done after the heap is fully created
3425   main_thread->cache_global_variables();
3426 
3427   HandleMark hm;
3428 
3429   { MutexLocker mu(Threads_lock);
3430     Threads::add(main_thread);
3431   }
3432 
3433   // Any JVMTI raw monitors entered in onload will transition into
3434   // real raw monitor. VM is setup enough here for raw monitor enter.
3435   JvmtiExport::transition_pending_onload_raw_monitors();
3436 
3437   // Create the VMThread
3438   { TraceTime timer("Start VMThread", TraceStartupTime);
3439     VMThread::create();
3440     Thread* vmthread = VMThread::vm_thread();
3441 
3442     if (!os::create_thread(vmthread, os::vm_thread)) {
3443       vm_exit_during_initialization("Cannot create VM thread. "
3444                                     "Out of system resources.");
3445     }
3446 
3447     // Wait for the VM thread to become ready, and VMThread::run to initialize
3448     // Monitors can have spurious returns, must always check another state flag
3449     {
3450       MutexLocker ml(Notify_lock);
3451       os::start_thread(vmthread);
3452       while (vmthread->active_handles() == NULL) {
3453         Notify_lock->wait();
3454       }
3455     }
3456   }
3457 
3458   assert(Universe::is_fully_initialized(), "not initialized");
3459   if (VerifyDuringStartup) {
3460     // Make sure we're starting with a clean slate.
3461     VM_Verify verify_op;
3462     VMThread::execute(&verify_op);
3463   }
3464 
3465   Thread* THREAD = Thread::current();
3466 
3467   // At this point, the Universe is initialized, but we have not executed
3468   // any byte code.  Now is a good time (the only time) to dump out the
3469   // internal state of the JVM for sharing.
3470   if (DumpSharedSpaces) {
3471     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3472     ShouldNotReachHere();
3473   }
3474 
3475   // Always call even when there are not JVMTI environments yet, since environments
3476   // may be attached late and JVMTI must track phases of VM execution
3477   JvmtiExport::enter_start_phase();
3478 
3479   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3480   JvmtiExport::post_vm_start();
3481 
3482   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3483 
3484   // We need this for ClassDataSharing - the initial vm.info property is set
3485   // with the default value of CDS "sharing" which may be reset through
3486   // command line options.
3487   reset_vm_info_property(CHECK_JNI_ERR);
3488 
3489   quicken_jni_functions();
3490 
3491   // Must be run after init_ft which initializes ft_enabled
3492   if (TRACE_INITIALIZE() != JNI_OK) {
3493     vm_exit_during_initialization("Failed to initialize tracing backend");
3494   }
3495 
3496   // Set flag that basic initialization has completed. Used by exceptions and various
3497   // debug stuff, that does not work until all basic classes have been initialized.
3498   set_init_completed();
3499 
3500   Metaspace::post_initialize();
3501 
3502   HOTSPOT_VM_INIT_END();
3503 
3504   // record VM initialization completion time
3505 #if INCLUDE_MANAGEMENT
3506   Management::record_vm_init_completed();
3507 #endif // INCLUDE_MANAGEMENT
3508 
3509   // Compute system loader. Note that this has to occur after set_init_completed, since
3510   // valid exceptions may be thrown in the process.
3511   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3512   // set_init_completed has just been called, causing exceptions not to be shortcut
3513   // anymore. We call vm_exit_during_initialization directly instead.
3514   SystemDictionary::compute_java_system_loader(CHECK_JNI_ERR);
3515 
3516 #if INCLUDE_ALL_GCS
3517   // Support for ConcurrentMarkSweep. This should be cleaned up
3518   // and better encapsulated. The ugly nested if test would go away
3519   // once things are properly refactored. XXX YSR
3520   if (UseConcMarkSweepGC || UseG1GC) {
3521     if (UseConcMarkSweepGC) {
3522       ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3523     } else {
3524       ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3525     }
3526   }
3527 #endif // INCLUDE_ALL_GCS
3528 
3529   // Always call even when there are not JVMTI environments yet, since environments
3530   // may be attached late and JVMTI must track phases of VM execution
3531   JvmtiExport::enter_live_phase();
3532 
3533   // Signal Dispatcher needs to be started before VMInit event is posted
3534   os::signal_init();
3535 
3536   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3537   if (!DisableAttachMechanism) {
3538     AttachListener::vm_start();
3539     if (StartAttachListener || AttachListener::init_at_startup()) {
3540       AttachListener::init();
3541     }
3542   }
3543 
3544   // Launch -Xrun agents
3545   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3546   // back-end can launch with -Xdebug -Xrunjdwp.
3547   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3548     create_vm_init_libraries();
3549   }
3550 
3551   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3552   JvmtiExport::post_vm_initialized();
3553 
3554   if (TRACE_START() != JNI_OK) {
3555     vm_exit_during_initialization("Failed to start tracing backend.");
3556   }
3557 
3558   if (CleanChunkPoolAsync) {
3559     Chunk::start_chunk_pool_cleaner_task();
3560   }
3561 
3562   // initialize compiler(s)
3563 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3564   CompileBroker::compilation_init();
3565 #endif
3566 
3567   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3568   // It is done after compilers are initialized, because otherwise compilations of
3569   // signature polymorphic MH intrinsics can be missed
3570   // (see SystemDictionary::find_method_handle_intrinsic).
3571   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3572 
3573 #if INCLUDE_MANAGEMENT
3574   Management::initialize(THREAD);
3575 
3576   if (HAS_PENDING_EXCEPTION) {
3577     // management agent fails to start possibly due to
3578     // configuration problem and is responsible for printing
3579     // stack trace if appropriate. Simply exit VM.
3580     vm_exit(1);
3581   }
3582 #endif // INCLUDE_MANAGEMENT
3583 
3584   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3585   if (MemProfiling)                   MemProfiler::engage();
3586   StatSampler::engage();
3587   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3588 
3589   BiasedLocking::init();
3590 
3591 #if INCLUDE_RTM_OPT
3592   RTMLockingCounters::init();
3593 #endif
3594 
3595   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3596     call_postVMInitHook(THREAD);
3597     // The Java side of PostVMInitHook.run must deal with all
3598     // exceptions and provide means of diagnosis.
3599     if (HAS_PENDING_EXCEPTION) {
3600       CLEAR_PENDING_EXCEPTION;
3601     }
3602   }
3603 
3604   {
3605     MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3606     // Make sure the watcher thread can be started by WatcherThread::start()
3607     // or by dynamic enrollment.
3608     WatcherThread::make_startable();
3609     // Start up the WatcherThread if there are any periodic tasks
3610     // NOTE:  All PeriodicTasks should be registered by now. If they
3611     //   aren't, late joiners might appear to start slowly (we might
3612     //   take a while to process their first tick).
3613     if (PeriodicTask::num_tasks() > 0) {
3614       WatcherThread::start();
3615     }
3616   }
3617 
3618   create_vm_timer.end();
3619 #ifdef ASSERT
3620   _vm_complete = true;
3621 #endif
3622   return JNI_OK;
3623 }
3624 
3625 // type for the Agent_OnLoad and JVM_OnLoad entry points
3626 extern "C" {
3627   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3628 }
3629 // Find a command line agent library and return its entry point for
3630 //         -agentlib:  -agentpath:   -Xrun
3631 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3632 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3633                                     const char *on_load_symbols[],
3634                                     size_t num_symbol_entries) {
3635   OnLoadEntry_t on_load_entry = NULL;
3636   void *library = NULL;
3637 
3638   if (!agent->valid()) {
3639     char buffer[JVM_MAXPATHLEN];
3640     char ebuf[1024] = "";
3641     const char *name = agent->name();
3642     const char *msg = "Could not find agent library ";
3643 
3644     // First check to see if agent is statically linked into executable
3645     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3646       library = agent->os_lib();
3647     } else if (agent->is_absolute_path()) {
3648       library = os::dll_load(name, ebuf, sizeof ebuf);
3649       if (library == NULL) {
3650         const char *sub_msg = " in absolute path, with error: ";
3651         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3652         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3653         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3654         // If we can't find the agent, exit.
3655         vm_exit_during_initialization(buf, NULL);
3656         FREE_C_HEAP_ARRAY(char, buf, mtThread);
3657       }
3658     } else {
3659       // Try to load the agent from the standard dll directory
3660       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3661                              name)) {
3662         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3663       }
3664       if (library == NULL) { // Try the local directory
3665         char ns[1] = {0};
3666         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3667           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3668         }
3669         if (library == NULL) {
3670           const char *sub_msg = " on the library path, with error: ";
3671           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3672           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3673           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3674           // If we can't find the agent, exit.
3675           vm_exit_during_initialization(buf, NULL);
3676           FREE_C_HEAP_ARRAY(char, buf, mtThread);
3677         }
3678       }
3679     }
3680     agent->set_os_lib(library);
3681     agent->set_valid();
3682   }
3683 
3684   // Find the OnLoad function.
3685   on_load_entry =
3686     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3687                                                           false,
3688                                                           on_load_symbols,
3689                                                           num_symbol_entries));
3690   return on_load_entry;
3691 }
3692 
3693 // Find the JVM_OnLoad entry point
3694 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3695   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3696   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3697 }
3698 
3699 // Find the Agent_OnLoad entry point
3700 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3701   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3702   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3703 }
3704 
3705 // For backwards compatibility with -Xrun
3706 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3707 // treated like -agentpath:
3708 // Must be called before agent libraries are created
3709 void Threads::convert_vm_init_libraries_to_agents() {
3710   AgentLibrary* agent;
3711   AgentLibrary* next;
3712 
3713   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3714     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3715     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3716 
3717     // If there is an JVM_OnLoad function it will get called later,
3718     // otherwise see if there is an Agent_OnLoad
3719     if (on_load_entry == NULL) {
3720       on_load_entry = lookup_agent_on_load(agent);
3721       if (on_load_entry != NULL) {
3722         // switch it to the agent list -- so that Agent_OnLoad will be called,
3723         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3724         Arguments::convert_library_to_agent(agent);
3725       } else {
3726         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3727       }
3728     }
3729   }
3730 }
3731 
3732 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3733 // Invokes Agent_OnLoad
3734 // Called very early -- before JavaThreads exist
3735 void Threads::create_vm_init_agents() {
3736   extern struct JavaVM_ main_vm;
3737   AgentLibrary* agent;
3738 
3739   JvmtiExport::enter_onload_phase();
3740 
3741   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3742     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3743 
3744     if (on_load_entry != NULL) {
3745       // Invoke the Agent_OnLoad function
3746       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3747       if (err != JNI_OK) {
3748         vm_exit_during_initialization("agent library failed to init", agent->name());
3749       }
3750     } else {
3751       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3752     }
3753   }
3754   JvmtiExport::enter_primordial_phase();
3755 }
3756 
3757 extern "C" {
3758   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3759 }
3760 
3761 void Threads::shutdown_vm_agents() {
3762   // Send any Agent_OnUnload notifications
3763   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3764   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3765   extern struct JavaVM_ main_vm;
3766   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3767 
3768     // Find the Agent_OnUnload function.
3769     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3770                                                    os::find_agent_function(agent,
3771                                                    false,
3772                                                    on_unload_symbols,
3773                                                    num_symbol_entries));
3774 
3775     // Invoke the Agent_OnUnload function
3776     if (unload_entry != NULL) {
3777       JavaThread* thread = JavaThread::current();
3778       ThreadToNativeFromVM ttn(thread);
3779       HandleMark hm(thread);
3780       (*unload_entry)(&main_vm);
3781     }
3782   }
3783 }
3784 
3785 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3786 // Invokes JVM_OnLoad
3787 void Threads::create_vm_init_libraries() {
3788   extern struct JavaVM_ main_vm;
3789   AgentLibrary* agent;
3790 
3791   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3792     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3793 
3794     if (on_load_entry != NULL) {
3795       // Invoke the JVM_OnLoad function
3796       JavaThread* thread = JavaThread::current();
3797       ThreadToNativeFromVM ttn(thread);
3798       HandleMark hm(thread);
3799       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3800       if (err != JNI_OK) {
3801         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3802       }
3803     } else {
3804       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3805     }
3806   }
3807 }
3808 
3809 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3810   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3811 
3812   JavaThread* java_thread = NULL;
3813   // Sequential search for now.  Need to do better optimization later.
3814   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3815     oop tobj = thread->threadObj();
3816     if (!thread->is_exiting() &&
3817         tobj != NULL &&
3818         java_tid == java_lang_Thread::thread_id(tobj)) {
3819       java_thread = thread;
3820       break;
3821     }
3822   }
3823   return java_thread;
3824 }
3825 
3826 
3827 // Last thread running calls java.lang.Shutdown.shutdown()
3828 void JavaThread::invoke_shutdown_hooks() {
3829   HandleMark hm(this);
3830 
3831   // We could get here with a pending exception, if so clear it now.
3832   if (this->has_pending_exception()) {
3833     this->clear_pending_exception();
3834   }
3835 
3836   EXCEPTION_MARK;
3837   Klass* k =
3838     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3839                                       THREAD);
3840   if (k != NULL) {
3841     // SystemDictionary::resolve_or_null will return null if there was
3842     // an exception.  If we cannot load the Shutdown class, just don't
3843     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3844     // and finalizers (if runFinalizersOnExit is set) won't be run.
3845     // Note that if a shutdown hook was registered or runFinalizersOnExit
3846     // was called, the Shutdown class would have already been loaded
3847     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3848     instanceKlassHandle shutdown_klass (THREAD, k);
3849     JavaValue result(T_VOID);
3850     JavaCalls::call_static(&result,
3851                            shutdown_klass,
3852                            vmSymbols::shutdown_method_name(),
3853                            vmSymbols::void_method_signature(),
3854                            THREAD);
3855   }
3856   CLEAR_PENDING_EXCEPTION;
3857 }
3858 
3859 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3860 // the program falls off the end of main(). Another VM exit path is through
3861 // vm_exit() when the program calls System.exit() to return a value or when
3862 // there is a serious error in VM. The two shutdown paths are not exactly
3863 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3864 // and VM_Exit op at VM level.
3865 //
3866 // Shutdown sequence:
3867 //   + Shutdown native memory tracking if it is on
3868 //   + Wait until we are the last non-daemon thread to execute
3869 //     <-- every thing is still working at this moment -->
3870 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3871 //        shutdown hooks, run finalizers if finalization-on-exit
3872 //   + Call before_exit(), prepare for VM exit
3873 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3874 //        currently the only user of this mechanism is File.deleteOnExit())
3875 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3876 //        post thread end and vm death events to JVMTI,
3877 //        stop signal thread
3878 //   + Call JavaThread::exit(), it will:
3879 //      > release JNI handle blocks, remove stack guard pages
3880 //      > remove this thread from Threads list
3881 //     <-- no more Java code from this thread after this point -->
3882 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3883 //     the compiler threads at safepoint
3884 //     <-- do not use anything that could get blocked by Safepoint -->
3885 //   + Disable tracing at JNI/JVM barriers
3886 //   + Set _vm_exited flag for threads that are still running native code
3887 //   + Delete this thread
3888 //   + Call exit_globals()
3889 //      > deletes tty
3890 //      > deletes PerfMemory resources
3891 //   + Return to caller
3892 
3893 bool Threads::destroy_vm() {
3894   JavaThread* thread = JavaThread::current();
3895 
3896 #ifdef ASSERT
3897   _vm_complete = false;
3898 #endif
3899   // Wait until we are the last non-daemon thread to execute
3900   { MutexLocker nu(Threads_lock);
3901     while (Threads::number_of_non_daemon_threads() > 1)
3902       // This wait should make safepoint checks, wait without a timeout,
3903       // and wait as a suspend-equivalent condition.
3904       //
3905       // Note: If the FlatProfiler is running and this thread is waiting
3906       // for another non-daemon thread to finish, then the FlatProfiler
3907       // is waiting for the external suspend request on this thread to
3908       // complete. wait_for_ext_suspend_completion() will eventually
3909       // timeout, but that takes time. Making this wait a suspend-
3910       // equivalent condition solves that timeout problem.
3911       //
3912       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3913                          Mutex::_as_suspend_equivalent_flag);
3914   }
3915 
3916   // Hang forever on exit if we are reporting an error.
3917   if (ShowMessageBoxOnError && is_error_reported()) {
3918     os::infinite_sleep();
3919   }
3920   os::wait_for_keypress_at_exit();
3921 
3922   // run Java level shutdown hooks
3923   thread->invoke_shutdown_hooks();
3924 
3925   before_exit(thread);
3926 
3927   thread->exit(true);
3928 
3929   // Stop VM thread.
3930   {
3931     // 4945125 The vm thread comes to a safepoint during exit.
3932     // GC vm_operations can get caught at the safepoint, and the
3933     // heap is unparseable if they are caught. Grab the Heap_lock
3934     // to prevent this. The GC vm_operations will not be able to
3935     // queue until after the vm thread is dead. After this point,
3936     // we'll never emerge out of the safepoint before the VM exits.
3937 
3938     MutexLocker ml(Heap_lock);
3939 
3940     VMThread::wait_for_vm_thread_exit();
3941     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3942     VMThread::destroy();
3943   }
3944 
3945   // clean up ideal graph printers
3946 #if defined(COMPILER2) && !defined(PRODUCT)
3947   IdealGraphPrinter::clean_up();
3948 #endif
3949 
3950   // Now, all Java threads are gone except daemon threads. Daemon threads
3951   // running Java code or in VM are stopped by the Safepoint. However,
3952   // daemon threads executing native code are still running.  But they
3953   // will be stopped at native=>Java/VM barriers. Note that we can't
3954   // simply kill or suspend them, as it is inherently deadlock-prone.
3955 
3956 #ifndef PRODUCT
3957   // disable function tracing at JNI/JVM barriers
3958   TraceJNICalls = false;
3959   TraceJVMCalls = false;
3960   TraceRuntimeCalls = false;
3961 #endif
3962 
3963   VM_Exit::set_vm_exited();
3964 
3965   notify_vm_shutdown();
3966 
3967   delete thread;
3968 
3969   // exit_globals() will delete tty
3970   exit_globals();
3971 
3972   return true;
3973 }
3974 
3975 
3976 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3977   if (version == JNI_VERSION_1_1) return JNI_TRUE;
3978   return is_supported_jni_version(version);
3979 }
3980 
3981 
3982 jboolean Threads::is_supported_jni_version(jint version) {
3983   if (version == JNI_VERSION_1_2) return JNI_TRUE;
3984   if (version == JNI_VERSION_1_4) return JNI_TRUE;
3985   if (version == JNI_VERSION_1_6) return JNI_TRUE;
3986   if (version == JNI_VERSION_1_8) return JNI_TRUE;
3987   return JNI_FALSE;
3988 }
3989 
3990 
3991 void Threads::add(JavaThread* p, bool force_daemon) {
3992   // The threads lock must be owned at this point
3993   assert_locked_or_safepoint(Threads_lock);
3994 
3995   // See the comment for this method in thread.hpp for its purpose and
3996   // why it is called here.
3997   p->initialize_queues();
3998   p->set_next(_thread_list);
3999   _thread_list = p;
4000   _number_of_threads++;
4001   oop threadObj = p->threadObj();
4002   bool daemon = true;
4003   // Bootstrapping problem: threadObj can be null for initial
4004   // JavaThread (or for threads attached via JNI)
4005   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4006     _number_of_non_daemon_threads++;
4007     daemon = false;
4008   }
4009 
4010   ThreadService::add_thread(p, daemon);
4011 
4012   // Possible GC point.
4013   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4014 }
4015 
4016 void Threads::remove(JavaThread* p) {
4017   // Extra scope needed for Thread_lock, so we can check
4018   // that we do not remove thread without safepoint code notice
4019   { MutexLocker ml(Threads_lock);
4020 
4021     assert(includes(p), "p must be present");
4022 
4023     JavaThread* current = _thread_list;
4024     JavaThread* prev    = NULL;
4025 
4026     while (current != p) {
4027       prev    = current;
4028       current = current->next();
4029     }
4030 
4031     if (prev) {
4032       prev->set_next(current->next());
4033     } else {
4034       _thread_list = p->next();
4035     }
4036     _number_of_threads--;
4037     oop threadObj = p->threadObj();
4038     bool daemon = true;
4039     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4040       _number_of_non_daemon_threads--;
4041       daemon = false;
4042 
4043       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4044       // on destroy_vm will wake up.
4045       if (number_of_non_daemon_threads() == 1) {
4046         Threads_lock->notify_all();
4047       }
4048     }
4049     ThreadService::remove_thread(p, daemon);
4050 
4051     // Make sure that safepoint code disregard this thread. This is needed since
4052     // the thread might mess around with locks after this point. This can cause it
4053     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4054     // of this thread since it is removed from the queue.
4055     p->set_terminated_value();
4056   } // unlock Threads_lock
4057 
4058   // Since Events::log uses a lock, we grab it outside the Threads_lock
4059   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4060 }
4061 
4062 // Threads_lock must be held when this is called (or must be called during a safepoint)
4063 bool Threads::includes(JavaThread* p) {
4064   assert(Threads_lock->is_locked(), "sanity check");
4065   ALL_JAVA_THREADS(q) {
4066     if (q == p) {
4067       return true;
4068     }
4069   }
4070   return false;
4071 }
4072 
4073 // Operations on the Threads list for GC.  These are not explicitly locked,
4074 // but the garbage collector must provide a safe context for them to run.
4075 // In particular, these things should never be called when the Threads_lock
4076 // is held by some other thread. (Note: the Safepoint abstraction also
4077 // uses the Threads_lock to guarantee this property. It also makes sure that
4078 // all threads gets blocked when exiting or starting).
4079 
4080 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4081   ALL_JAVA_THREADS(p) {
4082     p->oops_do(f, cld_f, cf);
4083   }
4084   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4085 }
4086 
4087 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4088   // Introduce a mechanism allowing parallel threads to claim threads as
4089   // root groups.  Overhead should be small enough to use all the time,
4090   // even in sequential code.
4091   SharedHeap* sh = SharedHeap::heap();
4092   // Cannot yet substitute active_workers for n_par_threads
4093   // because of G1CollectedHeap::verify() use of
4094   // SharedHeap::process_roots().  n_par_threads == 0 will
4095   // turn off parallelism in process_roots while active_workers
4096   // is being used for parallelism elsewhere.
4097   bool is_par = sh->n_par_threads() > 0;
4098   assert(!is_par ||
4099          (SharedHeap::heap()->n_par_threads() ==
4100          SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4101   int cp = SharedHeap::heap()->strong_roots_parity();
4102   ALL_JAVA_THREADS(p) {
4103     if (p->claim_oops_do(is_par, cp)) {
4104       p->oops_do(f, cld_f, cf);
4105     }
4106   }
4107   VMThread* vmt = VMThread::vm_thread();
4108   if (vmt->claim_oops_do(is_par, cp)) {
4109     vmt->oops_do(f, cld_f, cf);
4110   }
4111 }
4112 
4113 #if INCLUDE_ALL_GCS
4114 // Used by ParallelScavenge
4115 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4116   ALL_JAVA_THREADS(p) {
4117     q->enqueue(new ThreadRootsTask(p));
4118   }
4119   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4120 }
4121 
4122 // Used by Parallel Old
4123 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4124   ALL_JAVA_THREADS(p) {
4125     q->enqueue(new ThreadRootsMarkingTask(p));
4126   }
4127   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4128 }
4129 #endif // INCLUDE_ALL_GCS
4130 
4131 void Threads::nmethods_do(CodeBlobClosure* cf) {
4132   ALL_JAVA_THREADS(p) {
4133     p->nmethods_do(cf);
4134   }
4135   VMThread::vm_thread()->nmethods_do(cf);
4136 }
4137 
4138 void Threads::metadata_do(void f(Metadata*)) {
4139   ALL_JAVA_THREADS(p) {
4140     p->metadata_do(f);
4141   }
4142 }
4143 
4144 void Threads::deoptimized_wrt_marked_nmethods() {
4145   ALL_JAVA_THREADS(p) {
4146     p->deoptimized_wrt_marked_nmethods();
4147   }
4148 }
4149 
4150 
4151 // Get count Java threads that are waiting to enter the specified monitor.
4152 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4153                                                          address monitor,
4154                                                          bool doLock) {
4155   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4156          "must grab Threads_lock or be at safepoint");
4157   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4158 
4159   int i = 0;
4160   {
4161     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4162     ALL_JAVA_THREADS(p) {
4163       if (p->is_Compiler_thread()) continue;
4164 
4165       address pending = (address)p->current_pending_monitor();
4166       if (pending == monitor) {             // found a match
4167         if (i < count) result->append(p);   // save the first count matches
4168         i++;
4169       }
4170     }
4171   }
4172   return result;
4173 }
4174 
4175 
4176 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4177                                                       bool doLock) {
4178   assert(doLock ||
4179          Threads_lock->owned_by_self() ||
4180          SafepointSynchronize::is_at_safepoint(),
4181          "must grab Threads_lock or be at safepoint");
4182 
4183   // NULL owner means not locked so we can skip the search
4184   if (owner == NULL) return NULL;
4185 
4186   {
4187     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4188     ALL_JAVA_THREADS(p) {
4189       // first, see if owner is the address of a Java thread
4190       if (owner == (address)p) return p;
4191     }
4192   }
4193   // Cannot assert on lack of success here since this function may be
4194   // used by code that is trying to report useful problem information
4195   // like deadlock detection.
4196   if (UseHeavyMonitors) return NULL;
4197 
4198   // If we didn't find a matching Java thread and we didn't force use of
4199   // heavyweight monitors, then the owner is the stack address of the
4200   // Lock Word in the owning Java thread's stack.
4201   //
4202   JavaThread* the_owner = NULL;
4203   {
4204     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4205     ALL_JAVA_THREADS(q) {
4206       if (q->is_lock_owned(owner)) {
4207         the_owner = q;
4208         break;
4209       }
4210     }
4211   }
4212   // cannot assert on lack of success here; see above comment
4213   return the_owner;
4214 }
4215 
4216 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4217 void Threads::print_on(outputStream* st, bool print_stacks,
4218                        bool internal_format, bool print_concurrent_locks) {
4219   char buf[32];
4220   st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
4221 
4222   st->print_cr("Full thread dump %s (%s %s):",
4223                Abstract_VM_Version::vm_name(),
4224                Abstract_VM_Version::vm_release(),
4225                Abstract_VM_Version::vm_info_string());
4226   st->cr();
4227 
4228 #if INCLUDE_ALL_GCS
4229   // Dump concurrent locks
4230   ConcurrentLocksDump concurrent_locks;
4231   if (print_concurrent_locks) {
4232     concurrent_locks.dump_at_safepoint();
4233   }
4234 #endif // INCLUDE_ALL_GCS
4235 
4236   ALL_JAVA_THREADS(p) {
4237     ResourceMark rm;
4238     p->print_on(st);
4239     if (print_stacks) {
4240       if (internal_format) {
4241         p->trace_stack();
4242       } else {
4243         p->print_stack_on(st);
4244       }
4245     }
4246     st->cr();
4247 #if INCLUDE_ALL_GCS
4248     if (print_concurrent_locks) {
4249       concurrent_locks.print_locks_on(p, st);
4250     }
4251 #endif // INCLUDE_ALL_GCS
4252   }
4253 
4254   VMThread::vm_thread()->print_on(st);
4255   st->cr();
4256   Universe::heap()->print_gc_threads_on(st);
4257   WatcherThread* wt = WatcherThread::watcher_thread();
4258   if (wt != NULL) {
4259     wt->print_on(st);
4260     st->cr();
4261   }
4262   CompileBroker::print_compiler_threads_on(st);
4263   st->flush();
4264 }
4265 
4266 // Threads::print_on_error() is called by fatal error handler. It's possible
4267 // that VM is not at safepoint and/or current thread is inside signal handler.
4268 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4269 // memory (even in resource area), it might deadlock the error handler.
4270 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4271                              int buflen) {
4272   bool found_current = false;
4273   st->print_cr("Java Threads: ( => current thread )");
4274   ALL_JAVA_THREADS(thread) {
4275     bool is_current = (current == thread);
4276     found_current = found_current || is_current;
4277 
4278     st->print("%s", is_current ? "=>" : "  ");
4279 
4280     st->print(PTR_FORMAT, thread);
4281     st->print(" ");
4282     thread->print_on_error(st, buf, buflen);
4283     st->cr();
4284   }
4285   st->cr();
4286 
4287   st->print_cr("Other Threads:");
4288   if (VMThread::vm_thread()) {
4289     bool is_current = (current == VMThread::vm_thread());
4290     found_current = found_current || is_current;
4291     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4292 
4293     st->print(PTR_FORMAT, VMThread::vm_thread());
4294     st->print(" ");
4295     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4296     st->cr();
4297   }
4298   WatcherThread* wt = WatcherThread::watcher_thread();
4299   if (wt != NULL) {
4300     bool is_current = (current == wt);
4301     found_current = found_current || is_current;
4302     st->print("%s", is_current ? "=>" : "  ");
4303 
4304     st->print(PTR_FORMAT, wt);
4305     st->print(" ");
4306     wt->print_on_error(st, buf, buflen);
4307     st->cr();
4308   }
4309   if (!found_current) {
4310     st->cr();
4311     st->print("=>" PTR_FORMAT " (exited) ", current);
4312     current->print_on_error(st, buf, buflen);
4313     st->cr();
4314   }
4315 }
4316 
4317 // Internal SpinLock and Mutex
4318 // Based on ParkEvent
4319 
4320 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4321 //
4322 // We employ SpinLocks _only for low-contention, fixed-length
4323 // short-duration critical sections where we're concerned
4324 // about native mutex_t or HotSpot Mutex:: latency.
4325 // The mux construct provides a spin-then-block mutual exclusion
4326 // mechanism.
4327 //
4328 // Testing has shown that contention on the ListLock guarding gFreeList
4329 // is common.  If we implement ListLock as a simple SpinLock it's common
4330 // for the JVM to devolve to yielding with little progress.  This is true
4331 // despite the fact that the critical sections protected by ListLock are
4332 // extremely short.
4333 //
4334 // TODO-FIXME: ListLock should be of type SpinLock.
4335 // We should make this a 1st-class type, integrated into the lock
4336 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4337 // should have sufficient padding to avoid false-sharing and excessive
4338 // cache-coherency traffic.
4339 
4340 
4341 typedef volatile int SpinLockT;
4342 
4343 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4344   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4345     return;   // normal fast-path return
4346   }
4347 
4348   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4349   TEVENT(SpinAcquire - ctx);
4350   int ctr = 0;
4351   int Yields = 0;
4352   for (;;) {
4353     while (*adr != 0) {
4354       ++ctr;
4355       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4356         if (Yields > 5) {
4357           os::naked_short_sleep(1);
4358         } else {
4359           os::naked_yield();
4360           ++Yields;
4361         }
4362       } else {
4363         SpinPause();
4364       }
4365     }
4366     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4367   }
4368 }
4369 
4370 void Thread::SpinRelease(volatile int * adr) {
4371   assert(*adr != 0, "invariant");
4372   OrderAccess::fence();      // guarantee at least release consistency.
4373   // Roach-motel semantics.
4374   // It's safe if subsequent LDs and STs float "up" into the critical section,
4375   // but prior LDs and STs within the critical section can't be allowed
4376   // to reorder or float past the ST that releases the lock.
4377   // Loads and stores in the critical section - which appear in program
4378   // order before the store that releases the lock - must also appear
4379   // before the store that releases the lock in memory visibility order.
4380   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4381   // the ST of 0 into the lock-word which releases the lock, so fence
4382   // more than covers this on all platforms.
4383   *adr = 0;
4384 }
4385 
4386 // muxAcquire and muxRelease:
4387 //
4388 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4389 //    The LSB of the word is set IFF the lock is held.
4390 //    The remainder of the word points to the head of a singly-linked list
4391 //    of threads blocked on the lock.
4392 //
4393 // *  The current implementation of muxAcquire-muxRelease uses its own
4394 //    dedicated Thread._MuxEvent instance.  If we're interested in
4395 //    minimizing the peak number of extant ParkEvent instances then
4396 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4397 //    as certain invariants were satisfied.  Specifically, care would need
4398 //    to be taken with regards to consuming unpark() "permits".
4399 //    A safe rule of thumb is that a thread would never call muxAcquire()
4400 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4401 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4402 //    consume an unpark() permit intended for monitorenter, for instance.
4403 //    One way around this would be to widen the restricted-range semaphore
4404 //    implemented in park().  Another alternative would be to provide
4405 //    multiple instances of the PlatformEvent() for each thread.  One
4406 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4407 //
4408 // *  Usage:
4409 //    -- Only as leaf locks
4410 //    -- for short-term locking only as muxAcquire does not perform
4411 //       thread state transitions.
4412 //
4413 // Alternatives:
4414 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4415 //    but with parking or spin-then-park instead of pure spinning.
4416 // *  Use Taura-Oyama-Yonenzawa locks.
4417 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4418 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4419 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4420 //    acquiring threads use timers (ParkTimed) to detect and recover from
4421 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4422 //    boundaries by using placement-new.
4423 // *  Augment MCS with advisory back-link fields maintained with CAS().
4424 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4425 //    The validity of the backlinks must be ratified before we trust the value.
4426 //    If the backlinks are invalid the exiting thread must back-track through the
4427 //    the forward links, which are always trustworthy.
4428 // *  Add a successor indication.  The LockWord is currently encoded as
4429 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4430 //    to provide the usual futile-wakeup optimization.
4431 //    See RTStt for details.
4432 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4433 //
4434 
4435 
4436 typedef volatile intptr_t MutexT;      // Mux Lock-word
4437 enum MuxBits { LOCKBIT = 1 };
4438 
4439 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4440   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4441   if (w == 0) return;
4442   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4443     return;
4444   }
4445 
4446   TEVENT(muxAcquire - Contention);
4447   ParkEvent * const Self = Thread::current()->_MuxEvent;
4448   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4449   for (;;) {
4450     int its = (os::is_MP() ? 100 : 0) + 1;
4451 
4452     // Optional spin phase: spin-then-park strategy
4453     while (--its >= 0) {
4454       w = *Lock;
4455       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4456         return;
4457       }
4458     }
4459 
4460     Self->reset();
4461     Self->OnList = intptr_t(Lock);
4462     // The following fence() isn't _strictly necessary as the subsequent
4463     // CAS() both serializes execution and ratifies the fetched *Lock value.
4464     OrderAccess::fence();
4465     for (;;) {
4466       w = *Lock;
4467       if ((w & LOCKBIT) == 0) {
4468         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4469           Self->OnList = 0;   // hygiene - allows stronger asserts
4470           return;
4471         }
4472         continue;      // Interference -- *Lock changed -- Just retry
4473       }
4474       assert(w & LOCKBIT, "invariant");
4475       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4476       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4477     }
4478 
4479     while (Self->OnList != 0) {
4480       Self->park();
4481     }
4482   }
4483 }
4484 
4485 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4486   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4487   if (w == 0) return;
4488   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4489     return;
4490   }
4491 
4492   TEVENT(muxAcquire - Contention);
4493   ParkEvent * ReleaseAfter = NULL;
4494   if (ev == NULL) {
4495     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4496   }
4497   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4498   for (;;) {
4499     guarantee(ev->OnList == 0, "invariant");
4500     int its = (os::is_MP() ? 100 : 0) + 1;
4501 
4502     // Optional spin phase: spin-then-park strategy
4503     while (--its >= 0) {
4504       w = *Lock;
4505       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4506         if (ReleaseAfter != NULL) {
4507           ParkEvent::Release(ReleaseAfter);
4508         }
4509         return;
4510       }
4511     }
4512 
4513     ev->reset();
4514     ev->OnList = intptr_t(Lock);
4515     // The following fence() isn't _strictly necessary as the subsequent
4516     // CAS() both serializes execution and ratifies the fetched *Lock value.
4517     OrderAccess::fence();
4518     for (;;) {
4519       w = *Lock;
4520       if ((w & LOCKBIT) == 0) {
4521         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4522           ev->OnList = 0;
4523           // We call ::Release while holding the outer lock, thus
4524           // artificially lengthening the critical section.
4525           // Consider deferring the ::Release() until the subsequent unlock(),
4526           // after we've dropped the outer lock.
4527           if (ReleaseAfter != NULL) {
4528             ParkEvent::Release(ReleaseAfter);
4529           }
4530           return;
4531         }
4532         continue;      // Interference -- *Lock changed -- Just retry
4533       }
4534       assert(w & LOCKBIT, "invariant");
4535       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4536       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4537     }
4538 
4539     while (ev->OnList != 0) {
4540       ev->park();
4541     }
4542   }
4543 }
4544 
4545 // Release() must extract a successor from the list and then wake that thread.
4546 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4547 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4548 // Release() would :
4549 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4550 // (B) Extract a successor from the private list "in-hand"
4551 // (C) attempt to CAS() the residual back into *Lock over null.
4552 //     If there were any newly arrived threads and the CAS() would fail.
4553 //     In that case Release() would detach the RATs, re-merge the list in-hand
4554 //     with the RATs and repeat as needed.  Alternately, Release() might
4555 //     detach and extract a successor, but then pass the residual list to the wakee.
4556 //     The wakee would be responsible for reattaching and remerging before it
4557 //     competed for the lock.
4558 //
4559 // Both "pop" and DMR are immune from ABA corruption -- there can be
4560 // multiple concurrent pushers, but only one popper or detacher.
4561 // This implementation pops from the head of the list.  This is unfair,
4562 // but tends to provide excellent throughput as hot threads remain hot.
4563 // (We wake recently run threads first).
4564 //
4565 // All paths through muxRelease() will execute a CAS.
4566 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4567 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4568 // executed within the critical section are complete and globally visible before the
4569 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4570 void Thread::muxRelease(volatile intptr_t * Lock)  {
4571   for (;;) {
4572     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4573     assert(w & LOCKBIT, "invariant");
4574     if (w == LOCKBIT) return;
4575     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4576     assert(List != NULL, "invariant");
4577     assert(List->OnList == intptr_t(Lock), "invariant");
4578     ParkEvent * const nxt = List->ListNext;
4579     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4580 
4581     // The following CAS() releases the lock and pops the head element.
4582     // The CAS() also ratifies the previously fetched lock-word value.
4583     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4584       continue;
4585     }
4586     List->OnList = 0;
4587     OrderAccess::fence();
4588     List->unpark();
4589     return;
4590   }
4591 }
4592 
4593 
4594 void Threads::verify() {
4595   ALL_JAVA_THREADS(p) {
4596     p->verify();
4597   }
4598   VMThread* thread = VMThread::vm_thread();
4599   if (thread != NULL) thread->verify();
4600 }