1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "utilities/globalDefinitions.hpp"
  26 #include "prims/jvm.h"
  27 #include "semaphore_posix.hpp"
  28 #include "runtime/frame.inline.hpp"
  29 #include "runtime/interfaceSupport.hpp"
  30 #include "runtime/os.hpp"
  31 #include "utilities/vmError.hpp"
  32 
  33 #include <signal.h>
  34 #include <unistd.h>
  35 #include <sys/resource.h>
  36 #include <sys/utsname.h>
  37 #include <pthread.h>
  38 #include <semaphore.h>
  39 #include <signal.h>
  40 
  41 // Todo: provide a os::get_max_process_id() or similar. Number of processes
  42 // may have been configured, can be read more accurately from proc fs etc.
  43 #ifndef MAX_PID
  44 #define MAX_PID INT_MAX
  45 #endif
  46 #define IS_VALID_PID(p) (p > 0 && p < MAX_PID)
  47 
  48 // Check core dump limit and report possible place where core can be found
  49 void os::check_dump_limit(char* buffer, size_t bufferSize) {
  50   int n;
  51   struct rlimit rlim;
  52   bool success;
  53 
  54   char core_path[PATH_MAX];
  55   n = get_core_path(core_path, PATH_MAX);
  56 
  57   if (n <= 0) {
  58     jio_snprintf(buffer, bufferSize, "core.%d (may not exist)", current_process_id());
  59     success = true;
  60 #ifdef LINUX
  61   } else if (core_path[0] == '"') { // redirect to user process
  62     jio_snprintf(buffer, bufferSize, "Core dumps may be processed with %s", core_path);
  63     success = true;
  64 #endif
  65   } else if (getrlimit(RLIMIT_CORE, &rlim) != 0) {
  66     jio_snprintf(buffer, bufferSize, "%s (may not exist)", core_path);
  67     success = true;
  68   } else {
  69     switch(rlim.rlim_cur) {
  70       case RLIM_INFINITY:
  71         jio_snprintf(buffer, bufferSize, "%s", core_path);
  72         success = true;
  73         break;
  74       case 0:
  75         jio_snprintf(buffer, bufferSize, "Core dumps have been disabled. To enable core dumping, try \"ulimit -c unlimited\" before starting Java again");
  76         success = false;
  77         break;
  78       default:
  79         jio_snprintf(buffer, bufferSize, "%s (max size %lu kB). To ensure a full core dump, try \"ulimit -c unlimited\" before starting Java again", core_path, (unsigned long)(rlim.rlim_cur >> 10));
  80         success = true;
  81         break;
  82     }
  83   }
  84 
  85   VMError::record_coredump_status(buffer, success);
  86 }
  87 
  88 int os::get_native_stack(address* stack, int frames, int toSkip) {
  89 #ifdef _NMT_NOINLINE_
  90   toSkip++;
  91 #endif
  92 
  93   int frame_idx = 0;
  94   int num_of_frames;  // number of frames captured
  95   frame fr = os::current_frame();
  96   while (fr.pc() && frame_idx < frames) {
  97     if (toSkip > 0) {
  98       toSkip --;
  99     } else {
 100       stack[frame_idx ++] = fr.pc();
 101     }
 102     if (fr.fp() == NULL || fr.cb() != NULL ||
 103         fr.sender_pc() == NULL || os::is_first_C_frame(&fr)) break;
 104 
 105     if (fr.sender_pc() && !os::is_first_C_frame(&fr)) {
 106       fr = os::get_sender_for_C_frame(&fr);
 107     } else {
 108       break;
 109     }
 110   }
 111   num_of_frames = frame_idx;
 112   for (; frame_idx < frames; frame_idx ++) {
 113     stack[frame_idx] = NULL;
 114   }
 115 
 116   return num_of_frames;
 117 }
 118 
 119 
 120 bool os::unsetenv(const char* name) {
 121   assert(name != NULL, "Null pointer");
 122   return (::unsetenv(name) == 0);
 123 }
 124 
 125 int os::get_last_error() {
 126   return errno;
 127 }
 128 
 129 bool os::is_debugger_attached() {
 130   // not implemented
 131   return false;
 132 }
 133 
 134 void os::wait_for_keypress_at_exit(void) {
 135   // don't do anything on posix platforms
 136   return;
 137 }
 138 
 139 // Multiple threads can race in this code, and can remap over each other with MAP_FIXED,
 140 // so on posix, unmap the section at the start and at the end of the chunk that we mapped
 141 // rather than unmapping and remapping the whole chunk to get requested alignment.
 142 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
 143   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
 144       "Alignment must be a multiple of allocation granularity (page size)");
 145   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
 146 
 147   size_t extra_size = size + alignment;
 148   assert(extra_size >= size, "overflow, size is too large to allow alignment");
 149 
 150   char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
 151 
 152   if (extra_base == NULL) {
 153     return NULL;
 154   }
 155 
 156   // Do manual alignment
 157   char* aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
 158 
 159   // [  |                                       |  ]
 160   // ^ extra_base
 161   //    ^ extra_base + begin_offset == aligned_base
 162   //     extra_base + begin_offset + size       ^
 163   //                       extra_base + extra_size ^
 164   // |<>| == begin_offset
 165   //                              end_offset == |<>|
 166   size_t begin_offset = aligned_base - extra_base;
 167   size_t end_offset = (extra_base + extra_size) - (aligned_base + size);
 168 
 169   if (begin_offset > 0) {
 170       os::release_memory(extra_base, begin_offset);
 171   }
 172 
 173   if (end_offset > 0) {
 174       os::release_memory(extra_base + begin_offset + size, end_offset);
 175   }
 176 
 177   return aligned_base;
 178 }
 179 
 180 int os::log_vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
 181     return vsnprintf(buf, len, fmt, args);
 182 }
 183 
 184 int os::fileno(FILE* fp) {
 185   return ::fileno(fp);
 186 }
 187 
 188 void os::Posix::print_load_average(outputStream* st) {
 189   st->print("load average:");
 190   double loadavg[3];
 191   os::loadavg(loadavg, 3);
 192   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
 193   st->cr();
 194 }
 195 
 196 void os::Posix::print_rlimit_info(outputStream* st) {
 197   st->print("rlimit:");
 198   struct rlimit rlim;
 199 
 200   st->print(" STACK ");
 201   getrlimit(RLIMIT_STACK, &rlim);
 202   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 203   else st->print("%luk", rlim.rlim_cur >> 10);
 204 
 205   st->print(", CORE ");
 206   getrlimit(RLIMIT_CORE, &rlim);
 207   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 208   else st->print("%luk", rlim.rlim_cur >> 10);
 209 
 210   // Isn't there on solaris
 211 #if !defined(TARGET_OS_FAMILY_solaris) && !defined(TARGET_OS_FAMILY_aix)
 212   st->print(", NPROC ");
 213   getrlimit(RLIMIT_NPROC, &rlim);
 214   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 215   else st->print("%lu", rlim.rlim_cur);
 216 #endif
 217 
 218   st->print(", NOFILE ");
 219   getrlimit(RLIMIT_NOFILE, &rlim);
 220   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 221   else st->print("%lu", rlim.rlim_cur);
 222 
 223   st->print(", AS ");
 224   getrlimit(RLIMIT_AS, &rlim);
 225   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
 226   else st->print("%luk", rlim.rlim_cur >> 10);
 227   st->cr();
 228 }
 229 
 230 void os::Posix::print_uname_info(outputStream* st) {
 231   // kernel
 232   st->print("uname:");
 233   struct utsname name;
 234   uname(&name);
 235   st->print("%s ", name.sysname);
 236 #ifdef ASSERT
 237   st->print("%s ", name.nodename);
 238 #endif
 239   st->print("%s ", name.release);
 240   st->print("%s ", name.version);
 241   st->print("%s", name.machine);
 242   st->cr();
 243 }
 244 
 245 bool os::get_host_name(char* buf, size_t buflen) {
 246   struct utsname name;
 247   uname(&name);
 248   jio_snprintf(buf, buflen, "%s", name.nodename);
 249   return true;
 250 }
 251 
 252 bool os::has_allocatable_memory_limit(julong* limit) {
 253   struct rlimit rlim;
 254   int getrlimit_res = getrlimit(RLIMIT_AS, &rlim);
 255   // if there was an error when calling getrlimit, assume that there is no limitation
 256   // on virtual memory.
 257   bool result;
 258   if ((getrlimit_res != 0) || (rlim.rlim_cur == RLIM_INFINITY)) {
 259     result = false;
 260   } else {
 261     *limit = (julong)rlim.rlim_cur;
 262     result = true;
 263   }
 264 #ifdef _LP64
 265   return result;
 266 #else
 267   // arbitrary virtual space limit for 32 bit Unices found by testing. If
 268   // getrlimit above returned a limit, bound it with this limit. Otherwise
 269   // directly use it.
 270   const julong max_virtual_limit = (julong)3800*M;
 271   if (result) {
 272     *limit = MIN2(*limit, max_virtual_limit);
 273   } else {
 274     *limit = max_virtual_limit;
 275   }
 276 
 277   // bound by actually allocatable memory. The algorithm uses two bounds, an
 278   // upper and a lower limit. The upper limit is the current highest amount of
 279   // memory that could not be allocated, the lower limit is the current highest
 280   // amount of memory that could be allocated.
 281   // The algorithm iteratively refines the result by halving the difference
 282   // between these limits, updating either the upper limit (if that value could
 283   // not be allocated) or the lower limit (if the that value could be allocated)
 284   // until the difference between these limits is "small".
 285 
 286   // the minimum amount of memory we care about allocating.
 287   const julong min_allocation_size = M;
 288 
 289   julong upper_limit = *limit;
 290 
 291   // first check a few trivial cases
 292   if (is_allocatable(upper_limit) || (upper_limit <= min_allocation_size)) {
 293     *limit = upper_limit;
 294   } else if (!is_allocatable(min_allocation_size)) {
 295     // we found that not even min_allocation_size is allocatable. Return it
 296     // anyway. There is no point to search for a better value any more.
 297     *limit = min_allocation_size;
 298   } else {
 299     // perform the binary search.
 300     julong lower_limit = min_allocation_size;
 301     while ((upper_limit - lower_limit) > min_allocation_size) {
 302       julong temp_limit = ((upper_limit - lower_limit) / 2) + lower_limit;
 303       temp_limit = align_size_down_(temp_limit, min_allocation_size);
 304       if (is_allocatable(temp_limit)) {
 305         lower_limit = temp_limit;
 306       } else {
 307         upper_limit = temp_limit;
 308       }
 309     }
 310     *limit = lower_limit;
 311   }
 312   return true;
 313 #endif
 314 }
 315 
 316 const char* os::get_current_directory(char *buf, size_t buflen) {
 317   return getcwd(buf, buflen);
 318 }
 319 
 320 FILE* os::open(int fd, const char* mode) {
 321   return ::fdopen(fd, mode);
 322 }
 323 
 324 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
 325 // which is used to find statically linked in agents.
 326 // Parameters:
 327 //            sym_name: Symbol in library we are looking for
 328 //            lib_name: Name of library to look in, NULL for shared libs.
 329 //            is_absolute_path == true if lib_name is absolute path to agent
 330 //                                     such as "/a/b/libL.so"
 331 //            == false if only the base name of the library is passed in
 332 //               such as "L"
 333 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
 334                                     bool is_absolute_path) {
 335   char *agent_entry_name;
 336   size_t len;
 337   size_t name_len;
 338   size_t prefix_len = strlen(JNI_LIB_PREFIX);
 339   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
 340   const char *start;
 341 
 342   if (lib_name != NULL) {
 343     name_len = strlen(lib_name);
 344     if (is_absolute_path) {
 345       // Need to strip path, prefix and suffix
 346       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
 347         lib_name = ++start;
 348       }
 349       if (strlen(lib_name) <= (prefix_len + suffix_len)) {
 350         return NULL;
 351       }
 352       lib_name += prefix_len;
 353       name_len = strlen(lib_name) - suffix_len;
 354     }
 355   }
 356   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
 357   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
 358   if (agent_entry_name == NULL) {
 359     return NULL;
 360   }
 361   strcpy(agent_entry_name, sym_name);
 362   if (lib_name != NULL) {
 363     strcat(agent_entry_name, "_");
 364     strncat(agent_entry_name, lib_name, name_len);
 365   }
 366   return agent_entry_name;
 367 }
 368 
 369 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
 370   assert(thread == Thread::current(),  "thread consistency check");
 371 
 372   ParkEvent * const slp = thread->_SleepEvent ;
 373   slp->reset() ;
 374   OrderAccess::fence() ;
 375 
 376   if (interruptible) {
 377     jlong prevtime = javaTimeNanos();
 378 
 379     for (;;) {
 380       if (os::is_interrupted(thread, true)) {
 381         return OS_INTRPT;
 382       }
 383 
 384       jlong newtime = javaTimeNanos();
 385 
 386       if (newtime - prevtime < 0) {
 387         // time moving backwards, should only happen if no monotonic clock
 388         // not a guarantee() because JVM should not abort on kernel/glibc bugs
 389         assert(!os::supports_monotonic_clock(), "unexpected time moving backwards detected in os::sleep(interruptible)");
 390       } else {
 391         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
 392       }
 393 
 394       if (millis <= 0) {
 395         return OS_OK;
 396       }
 397 
 398       prevtime = newtime;
 399 
 400       {
 401         assert(thread->is_Java_thread(), "sanity check");
 402         JavaThread *jt = (JavaThread *) thread;
 403         ThreadBlockInVM tbivm(jt);
 404         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
 405 
 406         jt->set_suspend_equivalent();
 407         // cleared by handle_special_suspend_equivalent_condition() or
 408         // java_suspend_self() via check_and_wait_while_suspended()
 409 
 410         slp->park(millis);
 411 
 412         // were we externally suspended while we were waiting?
 413         jt->check_and_wait_while_suspended();
 414       }
 415     }
 416   } else {
 417     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
 418     jlong prevtime = javaTimeNanos();
 419 
 420     for (;;) {
 421       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
 422       // the 1st iteration ...
 423       jlong newtime = javaTimeNanos();
 424 
 425       if (newtime - prevtime < 0) {
 426         // time moving backwards, should only happen if no monotonic clock
 427         // not a guarantee() because JVM should not abort on kernel/glibc bugs
 428         assert(!os::supports_monotonic_clock(), "unexpected time moving backwards detected on os::sleep(!interruptible)");
 429       } else {
 430         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
 431       }
 432 
 433       if (millis <= 0) break ;
 434 
 435       prevtime = newtime;
 436       slp->park(millis);
 437     }
 438     return OS_OK ;
 439   }
 440 }
 441 
 442 ////////////////////////////////////////////////////////////////////////////////
 443 // interrupt support
 444 
 445 void os::interrupt(Thread* thread) {
 446   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
 447     "possibility of dangling Thread pointer");
 448 
 449   OSThread* osthread = thread->osthread();
 450 
 451   if (!osthread->interrupted()) {
 452     osthread->set_interrupted(true);
 453     // More than one thread can get here with the same value of osthread,
 454     // resulting in multiple notifications.  We do, however, want the store
 455     // to interrupted() to be visible to other threads before we execute unpark().
 456     OrderAccess::fence();
 457     ParkEvent * const slp = thread->_SleepEvent ;
 458     if (slp != NULL) slp->unpark() ;
 459   }
 460 
 461   // For JSR166. Unpark even if interrupt status already was set
 462   if (thread->is_Java_thread())
 463     ((JavaThread*)thread)->parker()->unpark();
 464 
 465   ParkEvent * ev = thread->_ParkEvent ;
 466   if (ev != NULL) ev->unpark() ;
 467 
 468 }
 469 
 470 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
 471   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
 472     "possibility of dangling Thread pointer");
 473 
 474   OSThread* osthread = thread->osthread();
 475 
 476   bool interrupted = osthread->interrupted();
 477 
 478   // NOTE that since there is no "lock" around the interrupt and
 479   // is_interrupted operations, there is the possibility that the
 480   // interrupted flag (in osThread) will be "false" but that the
 481   // low-level events will be in the signaled state. This is
 482   // intentional. The effect of this is that Object.wait() and
 483   // LockSupport.park() will appear to have a spurious wakeup, which
 484   // is allowed and not harmful, and the possibility is so rare that
 485   // it is not worth the added complexity to add yet another lock.
 486   // For the sleep event an explicit reset is performed on entry
 487   // to os::sleep, so there is no early return. It has also been
 488   // recommended not to put the interrupted flag into the "event"
 489   // structure because it hides the issue.
 490   if (interrupted && clear_interrupted) {
 491     osthread->set_interrupted(false);
 492     // consider thread->_SleepEvent->reset() ... optional optimization
 493   }
 494 
 495   return interrupted;
 496 }
 497 
 498 
 499 
 500 static const struct {
 501   int sig; const char* name;
 502 }
 503  g_signal_info[] =
 504   {
 505   {  SIGABRT,     "SIGABRT" },
 506 #ifdef SIGAIO
 507   {  SIGAIO,      "SIGAIO" },
 508 #endif
 509   {  SIGALRM,     "SIGALRM" },
 510 #ifdef SIGALRM1
 511   {  SIGALRM1,    "SIGALRM1" },
 512 #endif
 513   {  SIGBUS,      "SIGBUS" },
 514 #ifdef SIGCANCEL
 515   {  SIGCANCEL,   "SIGCANCEL" },
 516 #endif
 517   {  SIGCHLD,     "SIGCHLD" },
 518 #ifdef SIGCLD
 519   {  SIGCLD,      "SIGCLD" },
 520 #endif
 521   {  SIGCONT,     "SIGCONT" },
 522 #ifdef SIGCPUFAIL
 523   {  SIGCPUFAIL,  "SIGCPUFAIL" },
 524 #endif
 525 #ifdef SIGDANGER
 526   {  SIGDANGER,   "SIGDANGER" },
 527 #endif
 528 #ifdef SIGDIL
 529   {  SIGDIL,      "SIGDIL" },
 530 #endif
 531 #ifdef SIGEMT
 532   {  SIGEMT,      "SIGEMT" },
 533 #endif
 534   {  SIGFPE,      "SIGFPE" },
 535 #ifdef SIGFREEZE
 536   {  SIGFREEZE,   "SIGFREEZE" },
 537 #endif
 538 #ifdef SIGGFAULT
 539   {  SIGGFAULT,   "SIGGFAULT" },
 540 #endif
 541 #ifdef SIGGRANT
 542   {  SIGGRANT,    "SIGGRANT" },
 543 #endif
 544   {  SIGHUP,      "SIGHUP" },
 545   {  SIGILL,      "SIGILL" },
 546   {  SIGINT,      "SIGINT" },
 547 #ifdef SIGIO
 548   {  SIGIO,       "SIGIO" },
 549 #endif
 550 #ifdef SIGIOINT
 551   {  SIGIOINT,    "SIGIOINT" },
 552 #endif
 553 #ifdef SIGIOT
 554 // SIGIOT is there for BSD compatibility, but on most Unices just a
 555 // synonym for SIGABRT. The result should be "SIGABRT", not
 556 // "SIGIOT".
 557 #if (SIGIOT != SIGABRT )
 558   {  SIGIOT,      "SIGIOT" },
 559 #endif
 560 #endif
 561 #ifdef SIGKAP
 562   {  SIGKAP,      "SIGKAP" },
 563 #endif
 564   {  SIGKILL,     "SIGKILL" },
 565 #ifdef SIGLOST
 566   {  SIGLOST,     "SIGLOST" },
 567 #endif
 568 #ifdef SIGLWP
 569   {  SIGLWP,      "SIGLWP" },
 570 #endif
 571 #ifdef SIGLWPTIMER
 572   {  SIGLWPTIMER, "SIGLWPTIMER" },
 573 #endif
 574 #ifdef SIGMIGRATE
 575   {  SIGMIGRATE,  "SIGMIGRATE" },
 576 #endif
 577 #ifdef SIGMSG
 578   {  SIGMSG,      "SIGMSG" },
 579 #endif
 580   {  SIGPIPE,     "SIGPIPE" },
 581 #ifdef SIGPOLL
 582   {  SIGPOLL,     "SIGPOLL" },
 583 #endif
 584 #ifdef SIGPRE
 585   {  SIGPRE,      "SIGPRE" },
 586 #endif
 587   {  SIGPROF,     "SIGPROF" },
 588 #ifdef SIGPTY
 589   {  SIGPTY,      "SIGPTY" },
 590 #endif
 591 #ifdef SIGPWR
 592   {  SIGPWR,      "SIGPWR" },
 593 #endif
 594   {  SIGQUIT,     "SIGQUIT" },
 595 #ifdef SIGRECONFIG
 596   {  SIGRECONFIG, "SIGRECONFIG" },
 597 #endif
 598 #ifdef SIGRECOVERY
 599   {  SIGRECOVERY, "SIGRECOVERY" },
 600 #endif
 601 #ifdef SIGRESERVE
 602   {  SIGRESERVE,  "SIGRESERVE" },
 603 #endif
 604 #ifdef SIGRETRACT
 605   {  SIGRETRACT,  "SIGRETRACT" },
 606 #endif
 607 #ifdef SIGSAK
 608   {  SIGSAK,      "SIGSAK" },
 609 #endif
 610   {  SIGSEGV,     "SIGSEGV" },
 611 #ifdef SIGSOUND
 612   {  SIGSOUND,    "SIGSOUND" },
 613 #endif
 614 #ifdef SIGSTKFLT
 615   {  SIGSTKFLT,    "SIGSTKFLT" },
 616 #endif
 617   {  SIGSTOP,     "SIGSTOP" },
 618   {  SIGSYS,      "SIGSYS" },
 619 #ifdef SIGSYSERROR
 620   {  SIGSYSERROR, "SIGSYSERROR" },
 621 #endif
 622 #ifdef SIGTALRM
 623   {  SIGTALRM,    "SIGTALRM" },
 624 #endif
 625   {  SIGTERM,     "SIGTERM" },
 626 #ifdef SIGTHAW
 627   {  SIGTHAW,     "SIGTHAW" },
 628 #endif
 629   {  SIGTRAP,     "SIGTRAP" },
 630 #ifdef SIGTSTP
 631   {  SIGTSTP,     "SIGTSTP" },
 632 #endif
 633   {  SIGTTIN,     "SIGTTIN" },
 634   {  SIGTTOU,     "SIGTTOU" },
 635 #ifdef SIGURG
 636   {  SIGURG,      "SIGURG" },
 637 #endif
 638   {  SIGUSR1,     "SIGUSR1" },
 639   {  SIGUSR2,     "SIGUSR2" },
 640 #ifdef SIGVIRT
 641   {  SIGVIRT,     "SIGVIRT" },
 642 #endif
 643   {  SIGVTALRM,   "SIGVTALRM" },
 644 #ifdef SIGWAITING
 645   {  SIGWAITING,  "SIGWAITING" },
 646 #endif
 647 #ifdef SIGWINCH
 648   {  SIGWINCH,    "SIGWINCH" },
 649 #endif
 650 #ifdef SIGWINDOW
 651   {  SIGWINDOW,   "SIGWINDOW" },
 652 #endif
 653   {  SIGXCPU,     "SIGXCPU" },
 654   {  SIGXFSZ,     "SIGXFSZ" },
 655 #ifdef SIGXRES
 656   {  SIGXRES,     "SIGXRES" },
 657 #endif
 658   { -1, NULL }
 659 };
 660 
 661 // Returned string is a constant. For unknown signals "UNKNOWN" is returned.
 662 const char* os::Posix::get_signal_name(int sig, char* out, size_t outlen) {
 663 
 664   const char* ret = NULL;
 665 
 666 #ifdef SIGRTMIN
 667   if (sig >= SIGRTMIN && sig <= SIGRTMAX) {
 668     if (sig == SIGRTMIN) {
 669       ret = "SIGRTMIN";
 670     } else if (sig == SIGRTMAX) {
 671       ret = "SIGRTMAX";
 672     } else {
 673       jio_snprintf(out, outlen, "SIGRTMIN+%d", sig - SIGRTMIN);
 674       return out;
 675     }
 676   }
 677 #endif
 678 
 679   if (sig > 0) {
 680     for (int idx = 0; g_signal_info[idx].sig != -1; idx ++) {
 681       if (g_signal_info[idx].sig == sig) {
 682         ret = g_signal_info[idx].name;
 683         break;
 684       }
 685     }
 686   }
 687 
 688   if (!ret) {
 689     if (!is_valid_signal(sig)) {
 690       ret = "INVALID";
 691     } else {
 692       ret = "UNKNOWN";
 693     }
 694   }
 695 
 696   if (out && outlen > 0) {
 697     strncpy(out, ret, outlen);
 698     out[outlen - 1] = '\0';
 699   }
 700   return out;
 701 }
 702 
 703 int os::Posix::get_signal_number(const char* signal_name) {
 704   char tmp[30];
 705   const char* s = signal_name;
 706   if (s[0] != 'S' || s[1] != 'I' || s[2] != 'G') {
 707     jio_snprintf(tmp, sizeof(tmp), "SIG%s", signal_name);
 708     s = tmp;
 709   }
 710   for (int idx = 0; g_signal_info[idx].sig != -1; idx ++) {
 711     if (strcmp(g_signal_info[idx].name, s) == 0) {
 712       return g_signal_info[idx].sig;
 713     }
 714   }
 715   return -1;
 716 }
 717 
 718 int os::get_signal_number(const char* signal_name) {
 719   return os::Posix::get_signal_number(signal_name);
 720 }
 721 
 722 // Returns true if signal number is valid.
 723 bool os::Posix::is_valid_signal(int sig) {
 724   // MacOS not really POSIX compliant: sigaddset does not return
 725   // an error for invalid signal numbers. However, MacOS does not
 726   // support real time signals and simply seems to have just 33
 727   // signals with no holes in the signal range.
 728 #ifdef __APPLE__
 729   return sig >= 1 && sig < NSIG;
 730 #else
 731   // Use sigaddset to check for signal validity.
 732   sigset_t set;
 733   if (sigaddset(&set, sig) == -1 && errno == EINVAL) {
 734     return false;
 735   }
 736   return true;
 737 #endif
 738 }
 739 
 740 // Returns:
 741 // NULL for an invalid signal number
 742 // "SIG<num>" for a valid but unknown signal number
 743 // signal name otherwise.
 744 const char* os::exception_name(int sig, char* buf, size_t size) {
 745   if (!os::Posix::is_valid_signal(sig)) {
 746     return NULL;
 747   }
 748   const char* const name = os::Posix::get_signal_name(sig, buf, size);
 749   if (strcmp(name, "UNKNOWN") == 0) {
 750     jio_snprintf(buf, size, "SIG%d", sig);
 751   }
 752   return buf;
 753 }
 754 
 755 #define NUM_IMPORTANT_SIGS 32
 756 // Returns one-line short description of a signal set in a user provided buffer.
 757 const char* os::Posix::describe_signal_set_short(const sigset_t* set, char* buffer, size_t buf_size) {
 758   assert(buf_size == (NUM_IMPORTANT_SIGS + 1), "wrong buffer size");
 759   // Note: for shortness, just print out the first 32. That should
 760   // cover most of the useful ones, apart from realtime signals.
 761   for (int sig = 1; sig <= NUM_IMPORTANT_SIGS; sig++) {
 762     const int rc = sigismember(set, sig);
 763     if (rc == -1 && errno == EINVAL) {
 764       buffer[sig-1] = '?';
 765     } else {
 766       buffer[sig-1] = rc == 0 ? '0' : '1';
 767     }
 768   }
 769   buffer[NUM_IMPORTANT_SIGS] = 0;
 770   return buffer;
 771 }
 772 
 773 // Prints one-line description of a signal set.
 774 void os::Posix::print_signal_set_short(outputStream* st, const sigset_t* set) {
 775   char buf[NUM_IMPORTANT_SIGS + 1];
 776   os::Posix::describe_signal_set_short(set, buf, sizeof(buf));
 777   st->print("%s", buf);
 778 }
 779 
 780 // Writes one-line description of a combination of sigaction.sa_flags into a user
 781 // provided buffer. Returns that buffer.
 782 const char* os::Posix::describe_sa_flags(int flags, char* buffer, size_t size) {
 783   char* p = buffer;
 784   size_t remaining = size;
 785   bool first = true;
 786   int idx = 0;
 787 
 788   assert(buffer, "invalid argument");
 789 
 790   if (size == 0) {
 791     return buffer;
 792   }
 793 
 794   strncpy(buffer, "none", size);
 795 
 796   const struct {
 797     // NB: i is an unsigned int here because SA_RESETHAND is on some
 798     // systems 0x80000000, which is implicitly unsigned.  Assignining
 799     // it to an int field would be an overflow in unsigned-to-signed
 800     // conversion.
 801     unsigned int i;
 802     const char* s;
 803   } flaginfo [] = {
 804     { SA_NOCLDSTOP, "SA_NOCLDSTOP" },
 805     { SA_ONSTACK,   "SA_ONSTACK"   },
 806     { SA_RESETHAND, "SA_RESETHAND" },
 807     { SA_RESTART,   "SA_RESTART"   },
 808     { SA_SIGINFO,   "SA_SIGINFO"   },
 809     { SA_NOCLDWAIT, "SA_NOCLDWAIT" },
 810     { SA_NODEFER,   "SA_NODEFER"   },
 811 #ifdef AIX
 812     { SA_ONSTACK,   "SA_ONSTACK"   },
 813     { SA_OLDSTYLE,  "SA_OLDSTYLE"  },
 814 #endif
 815     { 0, NULL }
 816   };
 817 
 818   for (idx = 0; flaginfo[idx].s && remaining > 1; idx++) {
 819     if (flags & flaginfo[idx].i) {
 820       if (first) {
 821         jio_snprintf(p, remaining, "%s", flaginfo[idx].s);
 822         first = false;
 823       } else {
 824         jio_snprintf(p, remaining, "|%s", flaginfo[idx].s);
 825       }
 826       const size_t len = strlen(p);
 827       p += len;
 828       remaining -= len;
 829     }
 830   }
 831 
 832   buffer[size - 1] = '\0';
 833 
 834   return buffer;
 835 }
 836 
 837 // Prints one-line description of a combination of sigaction.sa_flags.
 838 void os::Posix::print_sa_flags(outputStream* st, int flags) {
 839   char buffer[0x100];
 840   os::Posix::describe_sa_flags(flags, buffer, sizeof(buffer));
 841   st->print("%s", buffer);
 842 }
 843 
 844 // Helper function for os::Posix::print_siginfo_...():
 845 // return a textual description for signal code.
 846 struct enum_sigcode_desc_t {
 847   const char* s_name;
 848   const char* s_desc;
 849 };
 850 
 851 static bool get_signal_code_description(const siginfo_t* si, enum_sigcode_desc_t* out) {
 852 
 853   const struct {
 854     int sig; int code; const char* s_code; const char* s_desc;
 855   } t1 [] = {
 856     { SIGILL,  ILL_ILLOPC,   "ILL_ILLOPC",   "Illegal opcode." },
 857     { SIGILL,  ILL_ILLOPN,   "ILL_ILLOPN",   "Illegal operand." },
 858     { SIGILL,  ILL_ILLADR,   "ILL_ILLADR",   "Illegal addressing mode." },
 859     { SIGILL,  ILL_ILLTRP,   "ILL_ILLTRP",   "Illegal trap." },
 860     { SIGILL,  ILL_PRVOPC,   "ILL_PRVOPC",   "Privileged opcode." },
 861     { SIGILL,  ILL_PRVREG,   "ILL_PRVREG",   "Privileged register." },
 862     { SIGILL,  ILL_COPROC,   "ILL_COPROC",   "Coprocessor error." },
 863     { SIGILL,  ILL_BADSTK,   "ILL_BADSTK",   "Internal stack error." },
 864 #if defined(IA64) && defined(LINUX)
 865     { SIGILL,  ILL_BADIADDR, "ILL_BADIADDR", "Unimplemented instruction address" },
 866     { SIGILL,  ILL_BREAK,    "ILL_BREAK",    "Application Break instruction" },
 867 #endif
 868     { SIGFPE,  FPE_INTDIV,   "FPE_INTDIV",   "Integer divide by zero." },
 869     { SIGFPE,  FPE_INTOVF,   "FPE_INTOVF",   "Integer overflow." },
 870     { SIGFPE,  FPE_FLTDIV,   "FPE_FLTDIV",   "Floating-point divide by zero." },
 871     { SIGFPE,  FPE_FLTOVF,   "FPE_FLTOVF",   "Floating-point overflow." },
 872     { SIGFPE,  FPE_FLTUND,   "FPE_FLTUND",   "Floating-point underflow." },
 873     { SIGFPE,  FPE_FLTRES,   "FPE_FLTRES",   "Floating-point inexact result." },
 874     { SIGFPE,  FPE_FLTINV,   "FPE_FLTINV",   "Invalid floating-point operation." },
 875     { SIGFPE,  FPE_FLTSUB,   "FPE_FLTSUB",   "Subscript out of range." },
 876     { SIGSEGV, SEGV_MAPERR,  "SEGV_MAPERR",  "Address not mapped to object." },
 877     { SIGSEGV, SEGV_ACCERR,  "SEGV_ACCERR",  "Invalid permissions for mapped object." },
 878 #ifdef AIX
 879     // no explanation found what keyerr would be
 880     { SIGSEGV, SEGV_KEYERR,  "SEGV_KEYERR",  "key error" },
 881 #endif
 882 #if defined(IA64) && !defined(AIX)
 883     { SIGSEGV, SEGV_PSTKOVF, "SEGV_PSTKOVF", "Paragraph stack overflow" },
 884 #endif
 885 #if defined(__sparc) && defined(SOLARIS)
 886 // define Solaris Sparc M7 ADI SEGV signals
 887 #if !defined(SEGV_ACCADI)
 888 #define SEGV_ACCADI 3
 889 #endif
 890     { SIGSEGV, SEGV_ACCADI,  "SEGV_ACCADI",  "ADI not enabled for mapped object." },
 891 #if !defined(SEGV_ACCDERR)
 892 #define SEGV_ACCDERR 4
 893 #endif
 894     { SIGSEGV, SEGV_ACCDERR, "SEGV_ACCDERR", "ADI disrupting exception." },
 895 #if !defined(SEGV_ACCPERR)
 896 #define SEGV_ACCPERR 5
 897 #endif
 898     { SIGSEGV, SEGV_ACCPERR, "SEGV_ACCPERR", "ADI precise exception." },
 899 #endif // defined(__sparc) && defined(SOLARIS)
 900     { SIGBUS,  BUS_ADRALN,   "BUS_ADRALN",   "Invalid address alignment." },
 901     { SIGBUS,  BUS_ADRERR,   "BUS_ADRERR",   "Nonexistent physical address." },
 902     { SIGBUS,  BUS_OBJERR,   "BUS_OBJERR",   "Object-specific hardware error." },
 903     { SIGTRAP, TRAP_BRKPT,   "TRAP_BRKPT",   "Process breakpoint." },
 904     { SIGTRAP, TRAP_TRACE,   "TRAP_TRACE",   "Process trace trap." },
 905     { SIGCHLD, CLD_EXITED,   "CLD_EXITED",   "Child has exited." },
 906     { SIGCHLD, CLD_KILLED,   "CLD_KILLED",   "Child has terminated abnormally and did not create a core file." },
 907     { SIGCHLD, CLD_DUMPED,   "CLD_DUMPED",   "Child has terminated abnormally and created a core file." },
 908     { SIGCHLD, CLD_TRAPPED,  "CLD_TRAPPED",  "Traced child has trapped." },
 909     { SIGCHLD, CLD_STOPPED,  "CLD_STOPPED",  "Child has stopped." },
 910     { SIGCHLD, CLD_CONTINUED,"CLD_CONTINUED","Stopped child has continued." },
 911 #ifdef SIGPOLL
 912     { SIGPOLL, POLL_OUT,     "POLL_OUT",     "Output buffers available." },
 913     { SIGPOLL, POLL_MSG,     "POLL_MSG",     "Input message available." },
 914     { SIGPOLL, POLL_ERR,     "POLL_ERR",     "I/O error." },
 915     { SIGPOLL, POLL_PRI,     "POLL_PRI",     "High priority input available." },
 916     { SIGPOLL, POLL_HUP,     "POLL_HUP",     "Device disconnected. [Option End]" },
 917 #endif
 918     { -1, -1, NULL, NULL }
 919   };
 920 
 921   // Codes valid in any signal context.
 922   const struct {
 923     int code; const char* s_code; const char* s_desc;
 924   } t2 [] = {
 925     { SI_USER,      "SI_USER",     "Signal sent by kill()." },
 926     { SI_QUEUE,     "SI_QUEUE",    "Signal sent by the sigqueue()." },
 927     { SI_TIMER,     "SI_TIMER",    "Signal generated by expiration of a timer set by timer_settime()." },
 928     { SI_ASYNCIO,   "SI_ASYNCIO",  "Signal generated by completion of an asynchronous I/O request." },
 929     { SI_MESGQ,     "SI_MESGQ",    "Signal generated by arrival of a message on an empty message queue." },
 930     // Linux specific
 931 #ifdef SI_TKILL
 932     { SI_TKILL,     "SI_TKILL",    "Signal sent by tkill (pthread_kill)" },
 933 #endif
 934 #ifdef SI_DETHREAD
 935     { SI_DETHREAD,  "SI_DETHREAD", "Signal sent by execve() killing subsidiary threads" },
 936 #endif
 937 #ifdef SI_KERNEL
 938     { SI_KERNEL,    "SI_KERNEL",   "Signal sent by kernel." },
 939 #endif
 940 #ifdef SI_SIGIO
 941     { SI_SIGIO,     "SI_SIGIO",    "Signal sent by queued SIGIO" },
 942 #endif
 943 
 944 #ifdef AIX
 945     { SI_UNDEFINED, "SI_UNDEFINED","siginfo contains partial information" },
 946     { SI_EMPTY,     "SI_EMPTY",    "siginfo contains no useful information" },
 947 #endif
 948 
 949 #ifdef __sun
 950     { SI_NOINFO,    "SI_NOINFO",   "No signal information" },
 951     { SI_RCTL,      "SI_RCTL",     "kernel generated signal via rctl action" },
 952     { SI_LWP,       "SI_LWP",      "Signal sent via lwp_kill" },
 953 #endif
 954 
 955     { -1, NULL, NULL }
 956   };
 957 
 958   const char* s_code = NULL;
 959   const char* s_desc = NULL;
 960 
 961   for (int i = 0; t1[i].sig != -1; i ++) {
 962     if (t1[i].sig == si->si_signo && t1[i].code == si->si_code) {
 963       s_code = t1[i].s_code;
 964       s_desc = t1[i].s_desc;
 965       break;
 966     }
 967   }
 968 
 969   if (s_code == NULL) {
 970     for (int i = 0; t2[i].s_code != NULL; i ++) {
 971       if (t2[i].code == si->si_code) {
 972         s_code = t2[i].s_code;
 973         s_desc = t2[i].s_desc;
 974       }
 975     }
 976   }
 977 
 978   if (s_code == NULL) {
 979     out->s_name = "unknown";
 980     out->s_desc = "unknown";
 981     return false;
 982   }
 983 
 984   out->s_name = s_code;
 985   out->s_desc = s_desc;
 986 
 987   return true;
 988 }
 989 
 990 void os::print_siginfo(outputStream* os, const void* si0) {
 991 
 992   const siginfo_t* const si = (const siginfo_t*) si0;
 993 
 994   char buf[20];
 995   os->print("siginfo:");
 996 
 997   if (!si) {
 998     os->print(" <null>");
 999     return;
1000   }
1001 
1002   const int sig = si->si_signo;
1003 
1004   os->print(" si_signo: %d (%s)", sig, os::Posix::get_signal_name(sig, buf, sizeof(buf)));
1005 
1006   enum_sigcode_desc_t ed;
1007   get_signal_code_description(si, &ed);
1008   os->print(", si_code: %d (%s)", si->si_code, ed.s_name);
1009 
1010   if (si->si_errno) {
1011     os->print(", si_errno: %d", si->si_errno);
1012   }
1013 
1014   // Output additional information depending on the signal code.
1015 
1016   // Note: Many implementations lump si_addr, si_pid, si_uid etc. together as unions,
1017   // so it depends on the context which member to use. For synchronous error signals,
1018   // we print si_addr, unless the signal was sent by another process or thread, in
1019   // which case we print out pid or tid of the sender.
1020   if (si->si_code == SI_USER || si->si_code == SI_QUEUE) {
1021     const pid_t pid = si->si_pid;
1022     os->print(", si_pid: %ld", (long) pid);
1023     if (IS_VALID_PID(pid)) {
1024       const pid_t me = getpid();
1025       if (me == pid) {
1026         os->print(" (current process)");
1027       }
1028     } else {
1029       os->print(" (invalid)");
1030     }
1031     os->print(", si_uid: %ld", (long) si->si_uid);
1032     if (sig == SIGCHLD) {
1033       os->print(", si_status: %d", si->si_status);
1034     }
1035   } else if (sig == SIGSEGV || sig == SIGBUS || sig == SIGILL ||
1036              sig == SIGTRAP || sig == SIGFPE) {
1037     os->print(", si_addr: " PTR_FORMAT, p2i(si->si_addr));
1038 #ifdef SIGPOLL
1039   } else if (sig == SIGPOLL) {
1040     os->print(", si_band: %ld", si->si_band);
1041 #endif
1042   }
1043 
1044 }
1045 
1046 int os::Posix::unblock_thread_signal_mask(const sigset_t *set) {
1047   return pthread_sigmask(SIG_UNBLOCK, set, NULL);
1048 }
1049 
1050 address os::Posix::ucontext_get_pc(const ucontext_t* ctx) {
1051 #ifdef TARGET_OS_FAMILY_linux
1052    return Linux::ucontext_get_pc(ctx);
1053 #elif defined(TARGET_OS_FAMILY_solaris)
1054    return Solaris::ucontext_get_pc(ctx);
1055 #elif defined(TARGET_OS_FAMILY_aix)
1056    return Aix::ucontext_get_pc(ctx);
1057 #elif defined(TARGET_OS_FAMILY_bsd)
1058    return Bsd::ucontext_get_pc(ctx);
1059 #else
1060    VMError::report_and_die("unimplemented ucontext_get_pc");
1061 #endif
1062 }
1063 
1064 void os::Posix::ucontext_set_pc(ucontext_t* ctx, address pc) {
1065 #ifdef TARGET_OS_FAMILY_linux
1066    Linux::ucontext_set_pc(ctx, pc);
1067 #elif defined(TARGET_OS_FAMILY_solaris)
1068    Solaris::ucontext_set_pc(ctx, pc);
1069 #elif defined(TARGET_OS_FAMILY_aix)
1070    Aix::ucontext_set_pc(ctx, pc);
1071 #elif defined(TARGET_OS_FAMILY_bsd)
1072    Bsd::ucontext_set_pc(ctx, pc);
1073 #else
1074    VMError::report_and_die("unimplemented ucontext_get_pc");
1075 #endif
1076 }
1077 
1078 char* os::Posix::describe_pthread_attr(char* buf, size_t buflen, const pthread_attr_t* attr) {
1079   size_t stack_size = 0;
1080   size_t guard_size = 0;
1081   int detachstate = 0;
1082   pthread_attr_getstacksize(attr, &stack_size);
1083   pthread_attr_getguardsize(attr, &guard_size);
1084   pthread_attr_getdetachstate(attr, &detachstate);
1085   jio_snprintf(buf, buflen, "stacksize: " SIZE_FORMAT "k, guardsize: " SIZE_FORMAT "k, %s",
1086     stack_size / 1024, guard_size / 1024,
1087     (detachstate == PTHREAD_CREATE_DETACHED ? "detached" : "joinable"));
1088   return buf;
1089 }
1090 
1091 
1092 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
1093   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
1094 }
1095 
1096 /*
1097  * See the caveats for this class in os_posix.hpp
1098  * Protects the callback call so that SIGSEGV / SIGBUS jumps back into this
1099  * method and returns false. If none of the signals are raised, returns true.
1100  * The callback is supposed to provide the method that should be protected.
1101  */
1102 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
1103   sigset_t saved_sig_mask;
1104 
1105   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
1106   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
1107       "crash_protection already set?");
1108 
1109   // we cannot rely on sigsetjmp/siglongjmp to save/restore the signal mask
1110   // since on at least some systems (OS X) siglongjmp will restore the mask
1111   // for the process, not the thread
1112   pthread_sigmask(0, NULL, &saved_sig_mask);
1113   if (sigsetjmp(_jmpbuf, 0) == 0) {
1114     // make sure we can see in the signal handler that we have crash protection
1115     // installed
1116     WatcherThread::watcher_thread()->set_crash_protection(this);
1117     cb.call();
1118     // and clear the crash protection
1119     WatcherThread::watcher_thread()->set_crash_protection(NULL);
1120     return true;
1121   }
1122   // this happens when we siglongjmp() back
1123   pthread_sigmask(SIG_SETMASK, &saved_sig_mask, NULL);
1124   WatcherThread::watcher_thread()->set_crash_protection(NULL);
1125   return false;
1126 }
1127 
1128 void os::WatcherThreadCrashProtection::restore() {
1129   assert(WatcherThread::watcher_thread()->has_crash_protection(),
1130       "must have crash protection");
1131 
1132   siglongjmp(_jmpbuf, 1);
1133 }
1134 
1135 void os::WatcherThreadCrashProtection::check_crash_protection(int sig,
1136     Thread* thread) {
1137 
1138   if (thread != NULL &&
1139       thread->is_Watcher_thread() &&
1140       WatcherThread::watcher_thread()->has_crash_protection()) {
1141 
1142     if (sig == SIGSEGV || sig == SIGBUS) {
1143       WatcherThread::watcher_thread()->crash_protection()->restore();
1144     }
1145   }
1146 }
1147 
1148 #define check_with_errno(check_type, cond, msg)                             \
1149   do {                                                                      \
1150     int err = errno;                                                        \
1151     check_type(cond, "%s; error='%s' (errno=%s)", msg, os::strerror(err),   \
1152                os::errno_name(err));                                        \
1153 } while (false)
1154 
1155 #define assert_with_errno(cond, msg)    check_with_errno(assert, cond, msg)
1156 #define guarantee_with_errno(cond, msg) check_with_errno(guarantee, cond, msg)
1157 
1158 // POSIX unamed semaphores are not supported on OS X.
1159 #ifndef __APPLE__
1160 
1161 PosixSemaphore::PosixSemaphore(uint value) {
1162   int ret = sem_init(&_semaphore, 0, value);
1163 
1164   guarantee_with_errno(ret == 0, "Failed to initialize semaphore");
1165 }
1166 
1167 PosixSemaphore::~PosixSemaphore() {
1168   sem_destroy(&_semaphore);
1169 }
1170 
1171 void PosixSemaphore::signal(uint count) {
1172   for (uint i = 0; i < count; i++) {
1173     int ret = sem_post(&_semaphore);
1174 
1175     assert_with_errno(ret == 0, "sem_post failed");
1176   }
1177 }
1178 
1179 void PosixSemaphore::wait() {
1180   int ret;
1181 
1182   do {
1183     ret = sem_wait(&_semaphore);
1184   } while (ret != 0 && errno == EINTR);
1185 
1186   assert_with_errno(ret == 0, "sem_wait failed");
1187 }
1188 
1189 bool PosixSemaphore::trywait() {
1190   int ret;
1191 
1192   do {
1193     ret = sem_trywait(&_semaphore);
1194   } while (ret != 0 && errno == EINTR);
1195 
1196   assert_with_errno(ret == 0 || errno == EAGAIN, "trywait failed");
1197 
1198   return ret == 0;
1199 }
1200 
1201 bool PosixSemaphore::timedwait(struct timespec ts) {
1202   while (true) {
1203     int result = sem_timedwait(&_semaphore, &ts);
1204     if (result == 0) {
1205       return true;
1206     } else if (errno == EINTR) {
1207       continue;
1208     } else if (errno == ETIMEDOUT) {
1209       return false;
1210     } else {
1211       assert_with_errno(false, "timedwait failed");
1212       return false;
1213     }
1214   }
1215 }
1216 
1217 #endif // __APPLE__