1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "osContainer_linux.hpp"
  42 #include "prims/jniFastGetField.hpp"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.inline.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/threadSMR.hpp"
  63 #include "runtime/timer.hpp"
  64 #include "semaphore_posix.hpp"
  65 #include "services/attachListener.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/align.hpp"
  69 #include "utilities/decoder.hpp"
  70 #include "utilities/defaultStream.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/elfFile.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/vmError.hpp"
  76 
  77 // put OS-includes here
  78 # include <sys/types.h>
  79 # include <sys/mman.h>
  80 # include <sys/stat.h>
  81 # include <sys/select.h>
  82 # include <pthread.h>
  83 # include <signal.h>
  84 # include <errno.h>
  85 # include <dlfcn.h>
  86 # include <stdio.h>
  87 # include <unistd.h>
  88 # include <sys/resource.h>
  89 # include <pthread.h>
  90 # include <sys/stat.h>
  91 # include <sys/time.h>
  92 # include <sys/times.h>
  93 # include <sys/utsname.h>
  94 # include <sys/socket.h>
  95 # include <sys/wait.h>
  96 # include <pwd.h>
  97 # include <poll.h>
  98 # include <fcntl.h>
  99 # include <string.h>
 100 # include <syscall.h>
 101 # include <sys/sysinfo.h>
 102 # include <gnu/libc-version.h>
 103 # include <sys/ipc.h>
 104 # include <sys/shm.h>
 105 # include <link.h>
 106 # include <stdint.h>
 107 # include <inttypes.h>
 108 # include <sys/ioctl.h>
 109 
 110 #ifndef _GNU_SOURCE
 111   #define _GNU_SOURCE
 112   #include <sched.h>
 113   #undef _GNU_SOURCE
 114 #else
 115   #include <sched.h>
 116 #endif
 117 
 118 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 119 // getrusage() is prepared to handle the associated failure.
 120 #ifndef RUSAGE_THREAD
 121   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 122 #endif
 123 
 124 #define MAX_PATH    (2 * K)
 125 
 126 #define MAX_SECS 100000000
 127 
 128 // for timer info max values which include all bits
 129 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 130 
 131 #define LARGEPAGES_BIT (1 << 6)
 132 #define DAX_SHARED_BIT (1 << 8)
 133 ////////////////////////////////////////////////////////////////////////////////
 134 // global variables
 135 julong os::Linux::_physical_memory = 0;
 136 
 137 address   os::Linux::_initial_thread_stack_bottom = NULL;
 138 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 139 
 140 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 141 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 142 Mutex* os::Linux::_createThread_lock = NULL;
 143 pthread_t os::Linux::_main_thread;
 144 int os::Linux::_page_size = -1;
 145 bool os::Linux::_supports_fast_thread_cpu_time = false;
 146 uint32_t os::Linux::_os_version = 0;
 147 const char * os::Linux::_glibc_version = NULL;
 148 const char * os::Linux::_libpthread_version = NULL;
 149 
 150 static jlong initial_time_count=0;
 151 
 152 static int clock_tics_per_sec = 100;
 153 
 154 // If the VM might have been created on the primordial thread, we need to resolve the
 155 // primordial thread stack bounds and check if the current thread might be the
 156 // primordial thread in places. If we know that the primordial thread is never used,
 157 // such as when the VM was created by one of the standard java launchers, we can
 158 // avoid this
 159 static bool suppress_primordial_thread_resolution = false;
 160 
 161 // For diagnostics to print a message once. see run_periodic_checks
 162 static sigset_t check_signal_done;
 163 static bool check_signals = true;
 164 
 165 // Signal number used to suspend/resume a thread
 166 
 167 // do not use any signal number less than SIGSEGV, see 4355769
 168 static int SR_signum = SIGUSR2;
 169 sigset_t SR_sigset;
 170 
 171 // utility functions
 172 
 173 static int SR_initialize();
 174 
 175 julong os::available_memory() {
 176   return Linux::available_memory();
 177 }
 178 
 179 julong os::Linux::available_memory() {
 180   // values in struct sysinfo are "unsigned long"
 181   struct sysinfo si;
 182   julong avail_mem;
 183 
 184   if (OSContainer::is_containerized()) {
 185     jlong mem_limit, mem_usage;
 186     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 187       log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 188                              mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 189     }
 190     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 191       log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 192     }
 193     if (mem_limit > 0 && mem_usage > 0 ) {
 194       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 195       log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
 196       return avail_mem;
 197     }
 198   }
 199 
 200   sysinfo(&si);
 201   avail_mem = (julong)si.freeram * si.mem_unit;
 202   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
 203   return avail_mem;
 204 }
 205 
 206 julong os::physical_memory() {
 207   jlong phys_mem = 0;
 208   if (OSContainer::is_containerized()) {
 209     jlong mem_limit;
 210     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 211       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
 212       return mem_limit;
 213     }
 214     log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 215                             mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 216   }
 217 
 218   phys_mem = Linux::physical_memory();
 219   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
 220   return phys_mem;
 221 }
 222 
 223 // Return true if user is running as root.
 224 
 225 bool os::have_special_privileges() {
 226   static bool init = false;
 227   static bool privileges = false;
 228   if (!init) {
 229     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 230     init = true;
 231   }
 232   return privileges;
 233 }
 234 
 235 
 236 #ifndef SYS_gettid
 237 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 238   #ifdef __ia64__
 239     #define SYS_gettid 1105
 240   #else
 241     #ifdef __i386__
 242       #define SYS_gettid 224
 243     #else
 244       #ifdef __amd64__
 245         #define SYS_gettid 186
 246       #else
 247         #ifdef __sparc__
 248           #define SYS_gettid 143
 249         #else
 250           #error define gettid for the arch
 251         #endif
 252       #endif
 253     #endif
 254   #endif
 255 #endif
 256 
 257 
 258 // pid_t gettid()
 259 //
 260 // Returns the kernel thread id of the currently running thread. Kernel
 261 // thread id is used to access /proc.
 262 pid_t os::Linux::gettid() {
 263   int rslt = syscall(SYS_gettid);
 264   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 265   return (pid_t)rslt;
 266 }
 267 
 268 // Most versions of linux have a bug where the number of processors are
 269 // determined by looking at the /proc file system.  In a chroot environment,
 270 // the system call returns 1.
 271 static bool unsafe_chroot_detected = false;
 272 static const char *unstable_chroot_error = "/proc file system not found.\n"
 273                      "Java may be unstable running multithreaded in a chroot "
 274                      "environment on Linux when /proc filesystem is not mounted.";
 275 
 276 void os::Linux::initialize_system_info() {
 277   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 278   if (processor_count() == 1) {
 279     pid_t pid = os::Linux::gettid();
 280     char fname[32];
 281     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 282     FILE *fp = fopen(fname, "r");
 283     if (fp == NULL) {
 284       unsafe_chroot_detected = true;
 285     } else {
 286       fclose(fp);
 287     }
 288   }
 289   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 290   assert(processor_count() > 0, "linux error");
 291 }
 292 
 293 void os::init_system_properties_values() {
 294   // The next steps are taken in the product version:
 295   //
 296   // Obtain the JAVA_HOME value from the location of libjvm.so.
 297   // This library should be located at:
 298   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 299   //
 300   // If "/jre/lib/" appears at the right place in the path, then we
 301   // assume libjvm.so is installed in a JDK and we use this path.
 302   //
 303   // Otherwise exit with message: "Could not create the Java virtual machine."
 304   //
 305   // The following extra steps are taken in the debugging version:
 306   //
 307   // If "/jre/lib/" does NOT appear at the right place in the path
 308   // instead of exit check for $JAVA_HOME environment variable.
 309   //
 310   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 311   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 312   // it looks like libjvm.so is installed there
 313   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 314   //
 315   // Otherwise exit.
 316   //
 317   // Important note: if the location of libjvm.so changes this
 318   // code needs to be changed accordingly.
 319 
 320   // See ld(1):
 321   //      The linker uses the following search paths to locate required
 322   //      shared libraries:
 323   //        1: ...
 324   //        ...
 325   //        7: The default directories, normally /lib and /usr/lib.
 326 #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 327   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 328 #else
 329   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 330 #endif
 331 
 332 // Base path of extensions installed on the system.
 333 #define SYS_EXT_DIR     "/usr/java/packages"
 334 #define EXTENSIONS_DIR  "/lib/ext"
 335 
 336   // Buffer that fits several sprintfs.
 337   // Note that the space for the colon and the trailing null are provided
 338   // by the nulls included by the sizeof operator.
 339   const size_t bufsize =
 340     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 341          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 342   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 343 
 344   // sysclasspath, java_home, dll_dir
 345   {
 346     char *pslash;
 347     os::jvm_path(buf, bufsize);
 348 
 349     // Found the full path to libjvm.so.
 350     // Now cut the path to <java_home>/jre if we can.
 351     pslash = strrchr(buf, '/');
 352     if (pslash != NULL) {
 353       *pslash = '\0';            // Get rid of /libjvm.so.
 354     }
 355     pslash = strrchr(buf, '/');
 356     if (pslash != NULL) {
 357       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 358     }
 359     Arguments::set_dll_dir(buf);
 360 
 361     if (pslash != NULL) {
 362       pslash = strrchr(buf, '/');
 363       if (pslash != NULL) {
 364         *pslash = '\0';        // Get rid of /lib.
 365       }
 366     }
 367     Arguments::set_java_home(buf);
 368     if (!set_boot_path('/', ':')) {
 369       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 370     }
 371   }
 372 
 373   // Where to look for native libraries.
 374   //
 375   // Note: Due to a legacy implementation, most of the library path
 376   // is set in the launcher. This was to accomodate linking restrictions
 377   // on legacy Linux implementations (which are no longer supported).
 378   // Eventually, all the library path setting will be done here.
 379   //
 380   // However, to prevent the proliferation of improperly built native
 381   // libraries, the new path component /usr/java/packages is added here.
 382   // Eventually, all the library path setting will be done here.
 383   {
 384     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 385     // should always exist (until the legacy problem cited above is
 386     // addressed).
 387     const char *v = ::getenv("LD_LIBRARY_PATH");
 388     const char *v_colon = ":";
 389     if (v == NULL) { v = ""; v_colon = ""; }
 390     // That's +1 for the colon and +1 for the trailing '\0'.
 391     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 392                                                      strlen(v) + 1 +
 393                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 394                                                      mtInternal);
 395     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 396     Arguments::set_library_path(ld_library_path);
 397     FREE_C_HEAP_ARRAY(char, ld_library_path);
 398   }
 399 
 400   // Extensions directories.
 401   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 402   Arguments::set_ext_dirs(buf);
 403 
 404   FREE_C_HEAP_ARRAY(char, buf);
 405 
 406 #undef DEFAULT_LIBPATH
 407 #undef SYS_EXT_DIR
 408 #undef EXTENSIONS_DIR
 409 }
 410 
 411 ////////////////////////////////////////////////////////////////////////////////
 412 // breakpoint support
 413 
 414 void os::breakpoint() {
 415   BREAKPOINT;
 416 }
 417 
 418 extern "C" void breakpoint() {
 419   // use debugger to set breakpoint here
 420 }
 421 
 422 ////////////////////////////////////////////////////////////////////////////////
 423 // signal support
 424 
 425 debug_only(static bool signal_sets_initialized = false);
 426 static sigset_t unblocked_sigs, vm_sigs;
 427 
 428 void os::Linux::signal_sets_init() {
 429   // Should also have an assertion stating we are still single-threaded.
 430   assert(!signal_sets_initialized, "Already initialized");
 431   // Fill in signals that are necessarily unblocked for all threads in
 432   // the VM. Currently, we unblock the following signals:
 433   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 434   //                         by -Xrs (=ReduceSignalUsage));
 435   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 436   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 437   // the dispositions or masks wrt these signals.
 438   // Programs embedding the VM that want to use the above signals for their
 439   // own purposes must, at this time, use the "-Xrs" option to prevent
 440   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 441   // (See bug 4345157, and other related bugs).
 442   // In reality, though, unblocking these signals is really a nop, since
 443   // these signals are not blocked by default.
 444   sigemptyset(&unblocked_sigs);
 445   sigaddset(&unblocked_sigs, SIGILL);
 446   sigaddset(&unblocked_sigs, SIGSEGV);
 447   sigaddset(&unblocked_sigs, SIGBUS);
 448   sigaddset(&unblocked_sigs, SIGFPE);
 449 #if defined(PPC64)
 450   sigaddset(&unblocked_sigs, SIGTRAP);
 451 #endif
 452   sigaddset(&unblocked_sigs, SR_signum);
 453 
 454   if (!ReduceSignalUsage) {
 455     if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 456       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 457     }
 458     if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 459       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 460     }
 461     if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 462       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 463     }
 464   }
 465   // Fill in signals that are blocked by all but the VM thread.
 466   sigemptyset(&vm_sigs);
 467   if (!ReduceSignalUsage) {
 468     sigaddset(&vm_sigs, BREAK_SIGNAL);
 469   }
 470   debug_only(signal_sets_initialized = true);
 471 
 472 }
 473 
 474 // These are signals that are unblocked while a thread is running Java.
 475 // (For some reason, they get blocked by default.)
 476 sigset_t* os::Linux::unblocked_signals() {
 477   assert(signal_sets_initialized, "Not initialized");
 478   return &unblocked_sigs;
 479 }
 480 
 481 // These are the signals that are blocked while a (non-VM) thread is
 482 // running Java. Only the VM thread handles these signals.
 483 sigset_t* os::Linux::vm_signals() {
 484   assert(signal_sets_initialized, "Not initialized");
 485   return &vm_sigs;
 486 }
 487 
 488 void os::Linux::hotspot_sigmask(Thread* thread) {
 489 
 490   //Save caller's signal mask before setting VM signal mask
 491   sigset_t caller_sigmask;
 492   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 493 
 494   OSThread* osthread = thread->osthread();
 495   osthread->set_caller_sigmask(caller_sigmask);
 496 
 497   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 498 
 499   if (!ReduceSignalUsage) {
 500     if (thread->is_VM_thread()) {
 501       // Only the VM thread handles BREAK_SIGNAL ...
 502       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 503     } else {
 504       // ... all other threads block BREAK_SIGNAL
 505       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 506     }
 507   }
 508 }
 509 
 510 //////////////////////////////////////////////////////////////////////////////
 511 // detecting pthread library
 512 
 513 void os::Linux::libpthread_init() {
 514   // Save glibc and pthread version strings.
 515 #if !defined(_CS_GNU_LIBC_VERSION) || \
 516     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 517   #error "glibc too old (< 2.3.2)"
 518 #endif
 519 
 520   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 521   assert(n > 0, "cannot retrieve glibc version");
 522   char *str = (char *)malloc(n, mtInternal);
 523   confstr(_CS_GNU_LIBC_VERSION, str, n);
 524   os::Linux::set_glibc_version(str);
 525 
 526   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 527   assert(n > 0, "cannot retrieve pthread version");
 528   str = (char *)malloc(n, mtInternal);
 529   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 530   os::Linux::set_libpthread_version(str);
 531 }
 532 
 533 /////////////////////////////////////////////////////////////////////////////
 534 // thread stack expansion
 535 
 536 // os::Linux::manually_expand_stack() takes care of expanding the thread
 537 // stack. Note that this is normally not needed: pthread stacks allocate
 538 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 539 // committed. Therefore it is not necessary to expand the stack manually.
 540 //
 541 // Manually expanding the stack was historically needed on LinuxThreads
 542 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 543 // it is kept to deal with very rare corner cases:
 544 //
 545 // For one, user may run the VM on an own implementation of threads
 546 // whose stacks are - like the old LinuxThreads - implemented using
 547 // mmap(MAP_GROWSDOWN).
 548 //
 549 // Also, this coding may be needed if the VM is running on the primordial
 550 // thread. Normally we avoid running on the primordial thread; however,
 551 // user may still invoke the VM on the primordial thread.
 552 //
 553 // The following historical comment describes the details about running
 554 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 555 
 556 
 557 // Force Linux kernel to expand current thread stack. If "bottom" is close
 558 // to the stack guard, caller should block all signals.
 559 //
 560 // MAP_GROWSDOWN:
 561 //   A special mmap() flag that is used to implement thread stacks. It tells
 562 //   kernel that the memory region should extend downwards when needed. This
 563 //   allows early versions of LinuxThreads to only mmap the first few pages
 564 //   when creating a new thread. Linux kernel will automatically expand thread
 565 //   stack as needed (on page faults).
 566 //
 567 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 568 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 569 //   region, it's hard to tell if the fault is due to a legitimate stack
 570 //   access or because of reading/writing non-exist memory (e.g. buffer
 571 //   overrun). As a rule, if the fault happens below current stack pointer,
 572 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 573 //   application (see Linux kernel fault.c).
 574 //
 575 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 576 //   stack overflow detection.
 577 //
 578 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 579 //   not use MAP_GROWSDOWN.
 580 //
 581 // To get around the problem and allow stack banging on Linux, we need to
 582 // manually expand thread stack after receiving the SIGSEGV.
 583 //
 584 // There are two ways to expand thread stack to address "bottom", we used
 585 // both of them in JVM before 1.5:
 586 //   1. adjust stack pointer first so that it is below "bottom", and then
 587 //      touch "bottom"
 588 //   2. mmap() the page in question
 589 //
 590 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 591 // if current sp is already near the lower end of page 101, and we need to
 592 // call mmap() to map page 100, it is possible that part of the mmap() frame
 593 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 594 // That will destroy the mmap() frame and cause VM to crash.
 595 //
 596 // The following code works by adjusting sp first, then accessing the "bottom"
 597 // page to force a page fault. Linux kernel will then automatically expand the
 598 // stack mapping.
 599 //
 600 // _expand_stack_to() assumes its frame size is less than page size, which
 601 // should always be true if the function is not inlined.
 602 
 603 static void NOINLINE _expand_stack_to(address bottom) {
 604   address sp;
 605   size_t size;
 606   volatile char *p;
 607 
 608   // Adjust bottom to point to the largest address within the same page, it
 609   // gives us a one-page buffer if alloca() allocates slightly more memory.
 610   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 611   bottom += os::Linux::page_size() - 1;
 612 
 613   // sp might be slightly above current stack pointer; if that's the case, we
 614   // will alloca() a little more space than necessary, which is OK. Don't use
 615   // os::current_stack_pointer(), as its result can be slightly below current
 616   // stack pointer, causing us to not alloca enough to reach "bottom".
 617   sp = (address)&sp;
 618 
 619   if (sp > bottom) {
 620     size = sp - bottom;
 621     p = (volatile char *)alloca(size);
 622     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 623     p[0] = '\0';
 624   }
 625 }
 626 
 627 void os::Linux::expand_stack_to(address bottom) {
 628   _expand_stack_to(bottom);
 629 }
 630 
 631 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 632   assert(t!=NULL, "just checking");
 633   assert(t->osthread()->expanding_stack(), "expand should be set");
 634   assert(t->stack_base() != NULL, "stack_base was not initialized");
 635 
 636   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 637     sigset_t mask_all, old_sigset;
 638     sigfillset(&mask_all);
 639     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 640     _expand_stack_to(addr);
 641     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 642     return true;
 643   }
 644   return false;
 645 }
 646 
 647 //////////////////////////////////////////////////////////////////////////////
 648 // create new thread
 649 
 650 // Thread start routine for all newly created threads
 651 static void *thread_native_entry(Thread *thread) {
 652 
 653   thread->record_stack_base_and_size();
 654 
 655   // Try to randomize the cache line index of hot stack frames.
 656   // This helps when threads of the same stack traces evict each other's
 657   // cache lines. The threads can be either from the same JVM instance, or
 658   // from different JVM instances. The benefit is especially true for
 659   // processors with hyperthreading technology.
 660   static int counter = 0;
 661   int pid = os::current_process_id();
 662   alloca(((pid ^ counter++) & 7) * 128);
 663 
 664   thread->initialize_thread_current();
 665 
 666   OSThread* osthread = thread->osthread();
 667   Monitor* sync = osthread->startThread_lock();
 668 
 669   osthread->set_thread_id(os::current_thread_id());
 670 
 671   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 672     os::current_thread_id(), (uintx) pthread_self());
 673 
 674   if (UseNUMA) {
 675     int lgrp_id = os::numa_get_group_id();
 676     if (lgrp_id != -1) {
 677       thread->set_lgrp_id(lgrp_id);
 678     }
 679   }
 680   // initialize signal mask for this thread
 681   os::Linux::hotspot_sigmask(thread);
 682 
 683   // initialize floating point control register
 684   os::Linux::init_thread_fpu_state();
 685 
 686   // handshaking with parent thread
 687   {
 688     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 689 
 690     // notify parent thread
 691     osthread->set_state(INITIALIZED);
 692     sync->notify_all();
 693 
 694     // wait until os::start_thread()
 695     while (osthread->get_state() == INITIALIZED) {
 696       sync->wait(Mutex::_no_safepoint_check_flag);
 697     }
 698   }
 699 
 700   // call one more level start routine
 701   thread->call_run();
 702 
 703   // Note: at this point the thread object may already have deleted itself.
 704   // Prevent dereferencing it from here on out.
 705   thread = NULL;
 706 
 707   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 708     os::current_thread_id(), (uintx) pthread_self());
 709 
 710   return 0;
 711 }
 712 
 713 bool os::create_thread(Thread* thread, ThreadType thr_type,
 714                        size_t req_stack_size) {
 715   assert(thread->osthread() == NULL, "caller responsible");
 716 
 717   // Allocate the OSThread object
 718   OSThread* osthread = new OSThread(NULL, NULL);
 719   if (osthread == NULL) {
 720     return false;
 721   }
 722 
 723   // set the correct thread state
 724   osthread->set_thread_type(thr_type);
 725 
 726   // Initial state is ALLOCATED but not INITIALIZED
 727   osthread->set_state(ALLOCATED);
 728 
 729   thread->set_osthread(osthread);
 730 
 731   // init thread attributes
 732   pthread_attr_t attr;
 733   pthread_attr_init(&attr);
 734   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 735 
 736   // Calculate stack size if it's not specified by caller.
 737   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 738   // In the Linux NPTL pthread implementation the guard size mechanism
 739   // is not implemented properly. The posix standard requires adding
 740   // the size of the guard pages to the stack size, instead Linux
 741   // takes the space out of 'stacksize'. Thus we adapt the requested
 742   // stack_size by the size of the guard pages to mimick proper
 743   // behaviour. However, be careful not to end up with a size
 744   // of zero due to overflow. Don't add the guard page in that case.
 745   size_t guard_size = os::Linux::default_guard_size(thr_type);
 746   if (stack_size <= SIZE_MAX - guard_size) {
 747     stack_size += guard_size;
 748   }
 749   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 750 
 751   int status = pthread_attr_setstacksize(&attr, stack_size);
 752   assert_status(status == 0, status, "pthread_attr_setstacksize");
 753 
 754   // Configure glibc guard page.
 755   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 756 
 757   ThreadState state;
 758 
 759   {
 760     pthread_t tid;
 761     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 762 
 763     char buf[64];
 764     if (ret == 0) {
 765       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 766         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 767     } else {
 768       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 769         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 770     }
 771 
 772     pthread_attr_destroy(&attr);
 773 
 774     if (ret != 0) {
 775       // Need to clean up stuff we've allocated so far
 776       thread->set_osthread(NULL);
 777       delete osthread;
 778       return false;
 779     }
 780 
 781     // Store pthread info into the OSThread
 782     osthread->set_pthread_id(tid);
 783 
 784     // Wait until child thread is either initialized or aborted
 785     {
 786       Monitor* sync_with_child = osthread->startThread_lock();
 787       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 788       while ((state = osthread->get_state()) == ALLOCATED) {
 789         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 790       }
 791     }
 792   }
 793 
 794   // Aborted due to thread limit being reached
 795   if (state == ZOMBIE) {
 796     thread->set_osthread(NULL);
 797     delete osthread;
 798     return false;
 799   }
 800 
 801   // The thread is returned suspended (in state INITIALIZED),
 802   // and is started higher up in the call chain
 803   assert(state == INITIALIZED, "race condition");
 804   return true;
 805 }
 806 
 807 /////////////////////////////////////////////////////////////////////////////
 808 // attach existing thread
 809 
 810 // bootstrap the main thread
 811 bool os::create_main_thread(JavaThread* thread) {
 812   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 813   return create_attached_thread(thread);
 814 }
 815 
 816 bool os::create_attached_thread(JavaThread* thread) {
 817 #ifdef ASSERT
 818   thread->verify_not_published();
 819 #endif
 820 
 821   // Allocate the OSThread object
 822   OSThread* osthread = new OSThread(NULL, NULL);
 823 
 824   if (osthread == NULL) {
 825     return false;
 826   }
 827 
 828   // Store pthread info into the OSThread
 829   osthread->set_thread_id(os::Linux::gettid());
 830   osthread->set_pthread_id(::pthread_self());
 831 
 832   // initialize floating point control register
 833   os::Linux::init_thread_fpu_state();
 834 
 835   // Initial thread state is RUNNABLE
 836   osthread->set_state(RUNNABLE);
 837 
 838   thread->set_osthread(osthread);
 839 
 840   if (UseNUMA) {
 841     int lgrp_id = os::numa_get_group_id();
 842     if (lgrp_id != -1) {
 843       thread->set_lgrp_id(lgrp_id);
 844     }
 845   }
 846 
 847   if (os::is_primordial_thread()) {
 848     // If current thread is primordial thread, its stack is mapped on demand,
 849     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 850     // the entire stack region to avoid SEGV in stack banging.
 851     // It is also useful to get around the heap-stack-gap problem on SuSE
 852     // kernel (see 4821821 for details). We first expand stack to the top
 853     // of yellow zone, then enable stack yellow zone (order is significant,
 854     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 855     // is no gap between the last two virtual memory regions.
 856 
 857     JavaThread *jt = (JavaThread *)thread;
 858     address addr = jt->stack_reserved_zone_base();
 859     assert(addr != NULL, "initialization problem?");
 860     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 861 
 862     osthread->set_expanding_stack();
 863     os::Linux::manually_expand_stack(jt, addr);
 864     osthread->clear_expanding_stack();
 865   }
 866 
 867   // initialize signal mask for this thread
 868   // and save the caller's signal mask
 869   os::Linux::hotspot_sigmask(thread);
 870 
 871   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 872     os::current_thread_id(), (uintx) pthread_self());
 873 
 874   return true;
 875 }
 876 
 877 void os::pd_start_thread(Thread* thread) {
 878   OSThread * osthread = thread->osthread();
 879   assert(osthread->get_state() != INITIALIZED, "just checking");
 880   Monitor* sync_with_child = osthread->startThread_lock();
 881   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 882   sync_with_child->notify();
 883 }
 884 
 885 // Free Linux resources related to the OSThread
 886 void os::free_thread(OSThread* osthread) {
 887   assert(osthread != NULL, "osthread not set");
 888 
 889   // We are told to free resources of the argument thread,
 890   // but we can only really operate on the current thread.
 891   assert(Thread::current()->osthread() == osthread,
 892          "os::free_thread but not current thread");
 893 
 894 #ifdef ASSERT
 895   sigset_t current;
 896   sigemptyset(&current);
 897   pthread_sigmask(SIG_SETMASK, NULL, &current);
 898   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 899 #endif
 900 
 901   // Restore caller's signal mask
 902   sigset_t sigmask = osthread->caller_sigmask();
 903   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 904 
 905   delete osthread;
 906 }
 907 
 908 //////////////////////////////////////////////////////////////////////////////
 909 // primordial thread
 910 
 911 // Check if current thread is the primordial thread, similar to Solaris thr_main.
 912 bool os::is_primordial_thread(void) {
 913   if (suppress_primordial_thread_resolution) {
 914     return false;
 915   }
 916   char dummy;
 917   // If called before init complete, thread stack bottom will be null.
 918   // Can be called if fatal error occurs before initialization.
 919   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
 920   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
 921          os::Linux::initial_thread_stack_size()   != 0,
 922          "os::init did not locate primordial thread's stack region");
 923   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
 924       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
 925                         os::Linux::initial_thread_stack_size()) {
 926     return true;
 927   } else {
 928     return false;
 929   }
 930 }
 931 
 932 // Find the virtual memory area that contains addr
 933 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 934   FILE *fp = fopen("/proc/self/maps", "r");
 935   if (fp) {
 936     address low, high;
 937     while (!feof(fp)) {
 938       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 939         if (low <= addr && addr < high) {
 940           if (vma_low)  *vma_low  = low;
 941           if (vma_high) *vma_high = high;
 942           fclose(fp);
 943           return true;
 944         }
 945       }
 946       for (;;) {
 947         int ch = fgetc(fp);
 948         if (ch == EOF || ch == (int)'\n') break;
 949       }
 950     }
 951     fclose(fp);
 952   }
 953   return false;
 954 }
 955 
 956 // Locate primordial thread stack. This special handling of primordial thread stack
 957 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 958 // bogus value for the primordial process thread. While the launcher has created
 959 // the VM in a new thread since JDK 6, we still have to allow for the use of the
 960 // JNI invocation API from a primordial thread.
 961 void os::Linux::capture_initial_stack(size_t max_size) {
 962 
 963   // max_size is either 0 (which means accept OS default for thread stacks) or
 964   // a user-specified value known to be at least the minimum needed. If we
 965   // are actually on the primordial thread we can make it appear that we have a
 966   // smaller max_size stack by inserting the guard pages at that location. But we
 967   // cannot do anything to emulate a larger stack than what has been provided by
 968   // the OS or threading library. In fact if we try to use a stack greater than
 969   // what is set by rlimit then we will crash the hosting process.
 970 
 971   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
 972   // If this is "unlimited" then it will be a huge value.
 973   struct rlimit rlim;
 974   getrlimit(RLIMIT_STACK, &rlim);
 975   size_t stack_size = rlim.rlim_cur;
 976 
 977   // 6308388: a bug in ld.so will relocate its own .data section to the
 978   //   lower end of primordial stack; reduce ulimit -s value a little bit
 979   //   so we won't install guard page on ld.so's data section.
 980   //   But ensure we don't underflow the stack size - allow 1 page spare
 981   if (stack_size >= (size_t)(3 * page_size())) {
 982     stack_size -= 2 * page_size();
 983   }
 984 
 985   // Try to figure out where the stack base (top) is. This is harder.
 986   //
 987   // When an application is started, glibc saves the initial stack pointer in
 988   // a global variable "__libc_stack_end", which is then used by system
 989   // libraries. __libc_stack_end should be pretty close to stack top. The
 990   // variable is available since the very early days. However, because it is
 991   // a private interface, it could disappear in the future.
 992   //
 993   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 994   // to __libc_stack_end, it is very close to stack top, but isn't the real
 995   // stack top. Note that /proc may not exist if VM is running as a chroot
 996   // program, so reading /proc/<pid>/stat could fail. Also the contents of
 997   // /proc/<pid>/stat could change in the future (though unlikely).
 998   //
 999   // We try __libc_stack_end first. If that doesn't work, look for
1000   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1001   // as a hint, which should work well in most cases.
1002 
1003   uintptr_t stack_start;
1004 
1005   // try __libc_stack_end first
1006   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1007   if (p && *p) {
1008     stack_start = *p;
1009   } else {
1010     // see if we can get the start_stack field from /proc/self/stat
1011     FILE *fp;
1012     int pid;
1013     char state;
1014     int ppid;
1015     int pgrp;
1016     int session;
1017     int nr;
1018     int tpgrp;
1019     unsigned long flags;
1020     unsigned long minflt;
1021     unsigned long cminflt;
1022     unsigned long majflt;
1023     unsigned long cmajflt;
1024     unsigned long utime;
1025     unsigned long stime;
1026     long cutime;
1027     long cstime;
1028     long prio;
1029     long nice;
1030     long junk;
1031     long it_real;
1032     uintptr_t start;
1033     uintptr_t vsize;
1034     intptr_t rss;
1035     uintptr_t rsslim;
1036     uintptr_t scodes;
1037     uintptr_t ecode;
1038     int i;
1039 
1040     // Figure what the primordial thread stack base is. Code is inspired
1041     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1042     // followed by command name surrounded by parentheses, state, etc.
1043     char stat[2048];
1044     int statlen;
1045 
1046     fp = fopen("/proc/self/stat", "r");
1047     if (fp) {
1048       statlen = fread(stat, 1, 2047, fp);
1049       stat[statlen] = '\0';
1050       fclose(fp);
1051 
1052       // Skip pid and the command string. Note that we could be dealing with
1053       // weird command names, e.g. user could decide to rename java launcher
1054       // to "java 1.4.2 :)", then the stat file would look like
1055       //                1234 (java 1.4.2 :)) R ... ...
1056       // We don't really need to know the command string, just find the last
1057       // occurrence of ")" and then start parsing from there. See bug 4726580.
1058       char * s = strrchr(stat, ')');
1059 
1060       i = 0;
1061       if (s) {
1062         // Skip blank chars
1063         do { s++; } while (s && isspace(*s));
1064 
1065 #define _UFM UINTX_FORMAT
1066 #define _DFM INTX_FORMAT
1067 
1068         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1069         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1070         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1071                    &state,          // 3  %c
1072                    &ppid,           // 4  %d
1073                    &pgrp,           // 5  %d
1074                    &session,        // 6  %d
1075                    &nr,             // 7  %d
1076                    &tpgrp,          // 8  %d
1077                    &flags,          // 9  %lu
1078                    &minflt,         // 10 %lu
1079                    &cminflt,        // 11 %lu
1080                    &majflt,         // 12 %lu
1081                    &cmajflt,        // 13 %lu
1082                    &utime,          // 14 %lu
1083                    &stime,          // 15 %lu
1084                    &cutime,         // 16 %ld
1085                    &cstime,         // 17 %ld
1086                    &prio,           // 18 %ld
1087                    &nice,           // 19 %ld
1088                    &junk,           // 20 %ld
1089                    &it_real,        // 21 %ld
1090                    &start,          // 22 UINTX_FORMAT
1091                    &vsize,          // 23 UINTX_FORMAT
1092                    &rss,            // 24 INTX_FORMAT
1093                    &rsslim,         // 25 UINTX_FORMAT
1094                    &scodes,         // 26 UINTX_FORMAT
1095                    &ecode,          // 27 UINTX_FORMAT
1096                    &stack_start);   // 28 UINTX_FORMAT
1097       }
1098 
1099 #undef _UFM
1100 #undef _DFM
1101 
1102       if (i != 28 - 2) {
1103         assert(false, "Bad conversion from /proc/self/stat");
1104         // product mode - assume we are the primordial thread, good luck in the
1105         // embedded case.
1106         warning("Can't detect primordial thread stack location - bad conversion");
1107         stack_start = (uintptr_t) &rlim;
1108       }
1109     } else {
1110       // For some reason we can't open /proc/self/stat (for example, running on
1111       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1112       // most cases, so don't abort:
1113       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1114       stack_start = (uintptr_t) &rlim;
1115     }
1116   }
1117 
1118   // Now we have a pointer (stack_start) very close to the stack top, the
1119   // next thing to do is to figure out the exact location of stack top. We
1120   // can find out the virtual memory area that contains stack_start by
1121   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1122   // and its upper limit is the real stack top. (again, this would fail if
1123   // running inside chroot, because /proc may not exist.)
1124 
1125   uintptr_t stack_top;
1126   address low, high;
1127   if (find_vma((address)stack_start, &low, &high)) {
1128     // success, "high" is the true stack top. (ignore "low", because initial
1129     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1130     stack_top = (uintptr_t)high;
1131   } else {
1132     // failed, likely because /proc/self/maps does not exist
1133     warning("Can't detect primordial thread stack location - find_vma failed");
1134     // best effort: stack_start is normally within a few pages below the real
1135     // stack top, use it as stack top, and reduce stack size so we won't put
1136     // guard page outside stack.
1137     stack_top = stack_start;
1138     stack_size -= 16 * page_size();
1139   }
1140 
1141   // stack_top could be partially down the page so align it
1142   stack_top = align_up(stack_top, page_size());
1143 
1144   // Allowed stack value is minimum of max_size and what we derived from rlimit
1145   if (max_size > 0) {
1146     _initial_thread_stack_size = MIN2(max_size, stack_size);
1147   } else {
1148     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1149     // clamp it at 8MB as we do on Solaris
1150     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1151   }
1152   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1153   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1154 
1155   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1156 
1157   if (log_is_enabled(Info, os, thread)) {
1158     // See if we seem to be on primordial process thread
1159     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1160                       uintptr_t(&rlim) < stack_top;
1161 
1162     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1163                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1164                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1165                          stack_top, intptr_t(_initial_thread_stack_bottom));
1166   }
1167 }
1168 
1169 ////////////////////////////////////////////////////////////////////////////////
1170 // time support
1171 
1172 #ifndef SUPPORTS_CLOCK_MONOTONIC
1173 #error "Build platform doesn't support clock_gettime and related functionality"
1174 #endif
1175 
1176 // Time since start-up in seconds to a fine granularity.
1177 // Used by VMSelfDestructTimer and the MemProfiler.
1178 double os::elapsedTime() {
1179 
1180   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1181 }
1182 
1183 jlong os::elapsed_counter() {
1184   return javaTimeNanos() - initial_time_count;
1185 }
1186 
1187 jlong os::elapsed_frequency() {
1188   return NANOSECS_PER_SEC; // nanosecond resolution
1189 }
1190 
1191 bool os::supports_vtime() { return true; }
1192 bool os::enable_vtime()   { return false; }
1193 bool os::vtime_enabled()  { return false; }
1194 
1195 double os::elapsedVTime() {
1196   struct rusage usage;
1197   int retval = getrusage(RUSAGE_THREAD, &usage);
1198   if (retval == 0) {
1199     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1200   } else {
1201     // better than nothing, but not much
1202     return elapsedTime();
1203   }
1204 }
1205 
1206 jlong os::javaTimeMillis() {
1207   timeval time;
1208   int status = gettimeofday(&time, NULL);
1209   assert(status != -1, "linux error");
1210   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1211 }
1212 
1213 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1214   timeval time;
1215   int status = gettimeofday(&time, NULL);
1216   assert(status != -1, "linux error");
1217   seconds = jlong(time.tv_sec);
1218   nanos = jlong(time.tv_usec) * 1000;
1219 }
1220 
1221 void os::Linux::fast_thread_clock_init() {
1222   if (!UseLinuxPosixThreadCPUClocks) {
1223     return;
1224   }
1225   clockid_t clockid;
1226   struct timespec tp;
1227   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1228       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1229 
1230   // Switch to using fast clocks for thread cpu time if
1231   // the clock_getres() returns 0 error code.
1232   // Note, that some kernels may support the current thread
1233   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1234   // returned by the pthread_getcpuclockid().
1235   // If the fast Posix clocks are supported then the clock_getres()
1236   // must return at least tp.tv_sec == 0 which means a resolution
1237   // better than 1 sec. This is extra check for reliability.
1238 
1239   if (pthread_getcpuclockid_func &&
1240       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1241       os::Posix::clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1242     _supports_fast_thread_cpu_time = true;
1243     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1244   }
1245 }
1246 
1247 jlong os::javaTimeNanos() {
1248   if (os::supports_monotonic_clock()) {
1249     struct timespec tp;
1250     int status = os::Posix::clock_gettime(CLOCK_MONOTONIC, &tp);
1251     assert(status == 0, "gettime error");
1252     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1253     return result;
1254   } else {
1255     timeval time;
1256     int status = gettimeofday(&time, NULL);
1257     assert(status != -1, "linux error");
1258     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1259     return 1000 * usecs;
1260   }
1261 }
1262 
1263 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1264   if (os::supports_monotonic_clock()) {
1265     info_ptr->max_value = ALL_64_BITS;
1266 
1267     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1268     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1269     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1270   } else {
1271     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1272     info_ptr->max_value = ALL_64_BITS;
1273 
1274     // gettimeofday is a real time clock so it skips
1275     info_ptr->may_skip_backward = true;
1276     info_ptr->may_skip_forward = true;
1277   }
1278 
1279   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1280 }
1281 
1282 // Return the real, user, and system times in seconds from an
1283 // arbitrary fixed point in the past.
1284 bool os::getTimesSecs(double* process_real_time,
1285                       double* process_user_time,
1286                       double* process_system_time) {
1287   struct tms ticks;
1288   clock_t real_ticks = times(&ticks);
1289 
1290   if (real_ticks == (clock_t) (-1)) {
1291     return false;
1292   } else {
1293     double ticks_per_second = (double) clock_tics_per_sec;
1294     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1295     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1296     *process_real_time = ((double) real_ticks) / ticks_per_second;
1297 
1298     return true;
1299   }
1300 }
1301 
1302 
1303 char * os::local_time_string(char *buf, size_t buflen) {
1304   struct tm t;
1305   time_t long_time;
1306   time(&long_time);
1307   localtime_r(&long_time, &t);
1308   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1309                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1310                t.tm_hour, t.tm_min, t.tm_sec);
1311   return buf;
1312 }
1313 
1314 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1315   return localtime_r(clock, res);
1316 }
1317 
1318 ////////////////////////////////////////////////////////////////////////////////
1319 // runtime exit support
1320 
1321 // Note: os::shutdown() might be called very early during initialization, or
1322 // called from signal handler. Before adding something to os::shutdown(), make
1323 // sure it is async-safe and can handle partially initialized VM.
1324 void os::shutdown() {
1325 
1326   // allow PerfMemory to attempt cleanup of any persistent resources
1327   perfMemory_exit();
1328 
1329   // needs to remove object in file system
1330   AttachListener::abort();
1331 
1332   // flush buffered output, finish log files
1333   ostream_abort();
1334 
1335   // Check for abort hook
1336   abort_hook_t abort_hook = Arguments::abort_hook();
1337   if (abort_hook != NULL) {
1338     abort_hook();
1339   }
1340 
1341 }
1342 
1343 // Note: os::abort() might be called very early during initialization, or
1344 // called from signal handler. Before adding something to os::abort(), make
1345 // sure it is async-safe and can handle partially initialized VM.
1346 void os::abort(bool dump_core, void* siginfo, const void* context) {
1347   os::shutdown();
1348   if (dump_core) {
1349 #ifndef PRODUCT
1350     fdStream out(defaultStream::output_fd());
1351     out.print_raw("Current thread is ");
1352     char buf[16];
1353     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1354     out.print_raw_cr(buf);
1355     out.print_raw_cr("Dumping core ...");
1356 #endif
1357     ::abort(); // dump core
1358   }
1359 
1360   ::exit(1);
1361 }
1362 
1363 // Die immediately, no exit hook, no abort hook, no cleanup.
1364 void os::die() {
1365   ::abort();
1366 }
1367 
1368 // thread_id is kernel thread id (similar to Solaris LWP id)
1369 intx os::current_thread_id() { return os::Linux::gettid(); }
1370 int os::current_process_id() {
1371   return ::getpid();
1372 }
1373 
1374 // DLL functions
1375 
1376 const char* os::dll_file_extension() { return ".so"; }
1377 
1378 // This must be hard coded because it's the system's temporary
1379 // directory not the java application's temp directory, ala java.io.tmpdir.
1380 const char* os::get_temp_directory() { return "/tmp"; }
1381 
1382 static bool file_exists(const char* filename) {
1383   struct stat statbuf;
1384   if (filename == NULL || strlen(filename) == 0) {
1385     return false;
1386   }
1387   return os::stat(filename, &statbuf) == 0;
1388 }
1389 
1390 // check if addr is inside libjvm.so
1391 bool os::address_is_in_vm(address addr) {
1392   static address libjvm_base_addr;
1393   Dl_info dlinfo;
1394 
1395   if (libjvm_base_addr == NULL) {
1396     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1397       libjvm_base_addr = (address)dlinfo.dli_fbase;
1398     }
1399     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1400   }
1401 
1402   if (dladdr((void *)addr, &dlinfo) != 0) {
1403     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1404   }
1405 
1406   return false;
1407 }
1408 
1409 bool os::dll_address_to_function_name(address addr, char *buf,
1410                                       int buflen, int *offset,
1411                                       bool demangle) {
1412   // buf is not optional, but offset is optional
1413   assert(buf != NULL, "sanity check");
1414 
1415   Dl_info dlinfo;
1416 
1417   if (dladdr((void*)addr, &dlinfo) != 0) {
1418     // see if we have a matching symbol
1419     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1420       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1421         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1422       }
1423       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1424       return true;
1425     }
1426     // no matching symbol so try for just file info
1427     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1428       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1429                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1430         return true;
1431       }
1432     }
1433   }
1434 
1435   buf[0] = '\0';
1436   if (offset != NULL) *offset = -1;
1437   return false;
1438 }
1439 
1440 struct _address_to_library_name {
1441   address addr;          // input : memory address
1442   size_t  buflen;        //         size of fname
1443   char*   fname;         // output: library name
1444   address base;          //         library base addr
1445 };
1446 
1447 static int address_to_library_name_callback(struct dl_phdr_info *info,
1448                                             size_t size, void *data) {
1449   int i;
1450   bool found = false;
1451   address libbase = NULL;
1452   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1453 
1454   // iterate through all loadable segments
1455   for (i = 0; i < info->dlpi_phnum; i++) {
1456     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1457     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1458       // base address of a library is the lowest address of its loaded
1459       // segments.
1460       if (libbase == NULL || libbase > segbase) {
1461         libbase = segbase;
1462       }
1463       // see if 'addr' is within current segment
1464       if (segbase <= d->addr &&
1465           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1466         found = true;
1467       }
1468     }
1469   }
1470 
1471   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1472   // so dll_address_to_library_name() can fall through to use dladdr() which
1473   // can figure out executable name from argv[0].
1474   if (found && info->dlpi_name && info->dlpi_name[0]) {
1475     d->base = libbase;
1476     if (d->fname) {
1477       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1478     }
1479     return 1;
1480   }
1481   return 0;
1482 }
1483 
1484 bool os::dll_address_to_library_name(address addr, char* buf,
1485                                      int buflen, int* offset) {
1486   // buf is not optional, but offset is optional
1487   assert(buf != NULL, "sanity check");
1488 
1489   Dl_info dlinfo;
1490   struct _address_to_library_name data;
1491 
1492   // There is a bug in old glibc dladdr() implementation that it could resolve
1493   // to wrong library name if the .so file has a base address != NULL. Here
1494   // we iterate through the program headers of all loaded libraries to find
1495   // out which library 'addr' really belongs to. This workaround can be
1496   // removed once the minimum requirement for glibc is moved to 2.3.x.
1497   data.addr = addr;
1498   data.fname = buf;
1499   data.buflen = buflen;
1500   data.base = NULL;
1501   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1502 
1503   if (rslt) {
1504     // buf already contains library name
1505     if (offset) *offset = addr - data.base;
1506     return true;
1507   }
1508   if (dladdr((void*)addr, &dlinfo) != 0) {
1509     if (dlinfo.dli_fname != NULL) {
1510       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1511     }
1512     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1513       *offset = addr - (address)dlinfo.dli_fbase;
1514     }
1515     return true;
1516   }
1517 
1518   buf[0] = '\0';
1519   if (offset) *offset = -1;
1520   return false;
1521 }
1522 
1523 // Loads .dll/.so and
1524 // in case of error it checks if .dll/.so was built for the
1525 // same architecture as Hotspot is running on
1526 
1527 
1528 // Remember the stack's state. The Linux dynamic linker will change
1529 // the stack to 'executable' at most once, so we must safepoint only once.
1530 bool os::Linux::_stack_is_executable = false;
1531 
1532 // VM operation that loads a library.  This is necessary if stack protection
1533 // of the Java stacks can be lost during loading the library.  If we
1534 // do not stop the Java threads, they can stack overflow before the stacks
1535 // are protected again.
1536 class VM_LinuxDllLoad: public VM_Operation {
1537  private:
1538   const char *_filename;
1539   char *_ebuf;
1540   int _ebuflen;
1541   void *_lib;
1542  public:
1543   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1544     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1545   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1546   void doit() {
1547     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1548     os::Linux::_stack_is_executable = true;
1549   }
1550   void* loaded_library() { return _lib; }
1551 };
1552 
1553 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1554   void * result = NULL;
1555   bool load_attempted = false;
1556 
1557   // Check whether the library to load might change execution rights
1558   // of the stack. If they are changed, the protection of the stack
1559   // guard pages will be lost. We need a safepoint to fix this.
1560   //
1561   // See Linux man page execstack(8) for more info.
1562   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1563     if (!ElfFile::specifies_noexecstack(filename)) {
1564       if (!is_init_completed()) {
1565         os::Linux::_stack_is_executable = true;
1566         // This is OK - No Java threads have been created yet, and hence no
1567         // stack guard pages to fix.
1568         //
1569         // Dynamic loader will make all stacks executable after
1570         // this function returns, and will not do that again.
1571         assert(Threads::number_of_threads() == 0, "no Java threads should exist yet.");
1572       } else {
1573         warning("You have loaded library %s which might have disabled stack guard. "
1574                 "The VM will try to fix the stack guard now.\n"
1575                 "It's highly recommended that you fix the library with "
1576                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1577                 filename);
1578 
1579         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1580         JavaThread *jt = JavaThread::current();
1581         if (jt->thread_state() != _thread_in_native) {
1582           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1583           // that requires ExecStack. Cannot enter safe point. Let's give up.
1584           warning("Unable to fix stack guard. Giving up.");
1585         } else {
1586           if (!LoadExecStackDllInVMThread) {
1587             // This is for the case where the DLL has an static
1588             // constructor function that executes JNI code. We cannot
1589             // load such DLLs in the VMThread.
1590             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1591           }
1592 
1593           ThreadInVMfromNative tiv(jt);
1594           debug_only(VMNativeEntryWrapper vew;)
1595 
1596           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1597           VMThread::execute(&op);
1598           if (LoadExecStackDllInVMThread) {
1599             result = op.loaded_library();
1600           }
1601           load_attempted = true;
1602         }
1603       }
1604     }
1605   }
1606 
1607   if (!load_attempted) {
1608     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1609   }
1610 
1611   if (result != NULL) {
1612     // Successful loading
1613     return result;
1614   }
1615 
1616   Elf32_Ehdr elf_head;
1617   int diag_msg_max_length=ebuflen-strlen(ebuf);
1618   char* diag_msg_buf=ebuf+strlen(ebuf);
1619 
1620   if (diag_msg_max_length==0) {
1621     // No more space in ebuf for additional diagnostics message
1622     return NULL;
1623   }
1624 
1625 
1626   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1627 
1628   if (file_descriptor < 0) {
1629     // Can't open library, report dlerror() message
1630     return NULL;
1631   }
1632 
1633   bool failed_to_read_elf_head=
1634     (sizeof(elf_head)!=
1635      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1636 
1637   ::close(file_descriptor);
1638   if (failed_to_read_elf_head) {
1639     // file i/o error - report dlerror() msg
1640     return NULL;
1641   }
1642 
1643   typedef struct {
1644     Elf32_Half    code;         // Actual value as defined in elf.h
1645     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1646     unsigned char elf_class;    // 32 or 64 bit
1647     unsigned char endianess;    // MSB or LSB
1648     char*         name;         // String representation
1649   } arch_t;
1650 
1651 #ifndef EM_486
1652   #define EM_486          6               /* Intel 80486 */
1653 #endif
1654 #ifndef EM_AARCH64
1655   #define EM_AARCH64    183               /* ARM AARCH64 */
1656 #endif
1657 
1658   static const arch_t arch_array[]={
1659     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1660     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1661     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1662     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1663     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1664     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1665     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1666     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1667 #if defined(VM_LITTLE_ENDIAN)
1668     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1669     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1670 #else
1671     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1672     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1673 #endif
1674     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1675     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1676     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1677     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1678     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1679     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1680     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1681     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1682   };
1683 
1684 #if  (defined IA32)
1685   static  Elf32_Half running_arch_code=EM_386;
1686 #elif   (defined AMD64) || (defined X32)
1687   static  Elf32_Half running_arch_code=EM_X86_64;
1688 #elif  (defined IA64)
1689   static  Elf32_Half running_arch_code=EM_IA_64;
1690 #elif  (defined __sparc) && (defined _LP64)
1691   static  Elf32_Half running_arch_code=EM_SPARCV9;
1692 #elif  (defined __sparc) && (!defined _LP64)
1693   static  Elf32_Half running_arch_code=EM_SPARC;
1694 #elif  (defined __powerpc64__)
1695   static  Elf32_Half running_arch_code=EM_PPC64;
1696 #elif  (defined __powerpc__)
1697   static  Elf32_Half running_arch_code=EM_PPC;
1698 #elif  (defined AARCH64)
1699   static  Elf32_Half running_arch_code=EM_AARCH64;
1700 #elif  (defined ARM)
1701   static  Elf32_Half running_arch_code=EM_ARM;
1702 #elif  (defined S390)
1703   static  Elf32_Half running_arch_code=EM_S390;
1704 #elif  (defined ALPHA)
1705   static  Elf32_Half running_arch_code=EM_ALPHA;
1706 #elif  (defined MIPSEL)
1707   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1708 #elif  (defined PARISC)
1709   static  Elf32_Half running_arch_code=EM_PARISC;
1710 #elif  (defined MIPS)
1711   static  Elf32_Half running_arch_code=EM_MIPS;
1712 #elif  (defined M68K)
1713   static  Elf32_Half running_arch_code=EM_68K;
1714 #elif  (defined SH)
1715   static  Elf32_Half running_arch_code=EM_SH;
1716 #else
1717     #error Method os::dll_load requires that one of following is defined:\
1718         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
1719 #endif
1720 
1721   // Identify compatability class for VM's architecture and library's architecture
1722   // Obtain string descriptions for architectures
1723 
1724   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1725   int running_arch_index=-1;
1726 
1727   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1728     if (running_arch_code == arch_array[i].code) {
1729       running_arch_index    = i;
1730     }
1731     if (lib_arch.code == arch_array[i].code) {
1732       lib_arch.compat_class = arch_array[i].compat_class;
1733       lib_arch.name         = arch_array[i].name;
1734     }
1735   }
1736 
1737   assert(running_arch_index != -1,
1738          "Didn't find running architecture code (running_arch_code) in arch_array");
1739   if (running_arch_index == -1) {
1740     // Even though running architecture detection failed
1741     // we may still continue with reporting dlerror() message
1742     return NULL;
1743   }
1744 
1745   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1746     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1747     return NULL;
1748   }
1749 
1750 #ifndef S390
1751   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1752     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1753     return NULL;
1754   }
1755 #endif // !S390
1756 
1757   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1758     if (lib_arch.name!=NULL) {
1759       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1760                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1761                  lib_arch.name, arch_array[running_arch_index].name);
1762     } else {
1763       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1764                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1765                  lib_arch.code,
1766                  arch_array[running_arch_index].name);
1767     }
1768   }
1769 
1770   return NULL;
1771 }
1772 
1773 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1774                                 int ebuflen) {
1775   void * result = ::dlopen(filename, RTLD_LAZY);
1776   if (result == NULL) {
1777     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1778     ebuf[ebuflen-1] = '\0';
1779   }
1780   return result;
1781 }
1782 
1783 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1784                                        int ebuflen) {
1785   void * result = NULL;
1786   if (LoadExecStackDllInVMThread) {
1787     result = dlopen_helper(filename, ebuf, ebuflen);
1788   }
1789 
1790   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1791   // library that requires an executable stack, or which does not have this
1792   // stack attribute set, dlopen changes the stack attribute to executable. The
1793   // read protection of the guard pages gets lost.
1794   //
1795   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1796   // may have been queued at the same time.
1797 
1798   if (!_stack_is_executable) {
1799     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
1800       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1801           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1802         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1803           warning("Attempt to reguard stack yellow zone failed.");
1804         }
1805       }
1806     }
1807   }
1808 
1809   return result;
1810 }
1811 
1812 void* os::dll_lookup(void* handle, const char* name) {
1813   void* res = dlsym(handle, name);
1814   return res;
1815 }
1816 
1817 void* os::get_default_process_handle() {
1818   return (void*)::dlopen(NULL, RTLD_LAZY);
1819 }
1820 
1821 static bool _print_ascii_file(const char* filename, outputStream* st, const char* hdr = NULL) {
1822   int fd = ::open(filename, O_RDONLY);
1823   if (fd == -1) {
1824     return false;
1825   }
1826 
1827   if (hdr != NULL) {
1828     st->print_cr("%s", hdr);
1829   }
1830 
1831   char buf[33];
1832   int bytes;
1833   buf[32] = '\0';
1834   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1835     st->print_raw(buf, bytes);
1836   }
1837 
1838   ::close(fd);
1839 
1840   return true;
1841 }
1842 
1843 void os::print_dll_info(outputStream *st) {
1844   st->print_cr("Dynamic libraries:");
1845 
1846   char fname[32];
1847   pid_t pid = os::Linux::gettid();
1848 
1849   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1850 
1851   if (!_print_ascii_file(fname, st)) {
1852     st->print("Can not get library information for pid = %d\n", pid);
1853   }
1854 }
1855 
1856 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1857   FILE *procmapsFile = NULL;
1858 
1859   // Open the procfs maps file for the current process
1860   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1861     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1862     char line[PATH_MAX + 100];
1863 
1864     // Read line by line from 'file'
1865     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1866       u8 base, top, offset, inode;
1867       char permissions[5];
1868       char device[6];
1869       char name[PATH_MAX + 1];
1870 
1871       // Parse fields from line
1872       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1873              &base, &top, permissions, &offset, device, &inode, name);
1874 
1875       // Filter by device id '00:00' so that we only get file system mapped files.
1876       if (strcmp(device, "00:00") != 0) {
1877 
1878         // Call callback with the fields of interest
1879         if(callback(name, (address)base, (address)top, param)) {
1880           // Oops abort, callback aborted
1881           fclose(procmapsFile);
1882           return 1;
1883         }
1884       }
1885     }
1886     fclose(procmapsFile);
1887   }
1888   return 0;
1889 }
1890 
1891 void os::print_os_info_brief(outputStream* st) {
1892   os::Linux::print_distro_info(st);
1893 
1894   os::Posix::print_uname_info(st);
1895 
1896   os::Linux::print_libversion_info(st);
1897 
1898 }
1899 
1900 void os::print_os_info(outputStream* st) {
1901   st->print("OS:");
1902 
1903   os::Linux::print_distro_info(st);
1904 
1905   os::Posix::print_uname_info(st);
1906 
1907   // Print warning if unsafe chroot environment detected
1908   if (unsafe_chroot_detected) {
1909     st->print("WARNING!! ");
1910     st->print_cr("%s", unstable_chroot_error);
1911   }
1912 
1913   os::Linux::print_libversion_info(st);
1914 
1915   os::Posix::print_rlimit_info(st);
1916 
1917   os::Posix::print_load_average(st);
1918 
1919   os::Linux::print_full_memory_info(st);
1920 
1921   os::Linux::print_proc_sys_info(st);
1922 
1923   os::Linux::print_ld_preload_file(st);
1924 
1925   os::Linux::print_container_info(st);
1926 }
1927 
1928 // Try to identify popular distros.
1929 // Most Linux distributions have a /etc/XXX-release file, which contains
1930 // the OS version string. Newer Linux distributions have a /etc/lsb-release
1931 // file that also contains the OS version string. Some have more than one
1932 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
1933 // /etc/redhat-release.), so the order is important.
1934 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
1935 // their own specific XXX-release file as well as a redhat-release file.
1936 // Because of this the XXX-release file needs to be searched for before the
1937 // redhat-release file.
1938 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
1939 // search for redhat-release / SuSE-release needs to be before lsb-release.
1940 // Since the lsb-release file is the new standard it needs to be searched
1941 // before the older style release files.
1942 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
1943 // next to last resort.  The os-release file is a new standard that contains
1944 // distribution information and the system-release file seems to be an old
1945 // standard that has been replaced by the lsb-release and os-release files.
1946 // Searching for the debian_version file is the last resort.  It contains
1947 // an informative string like "6.0.6" or "wheezy/sid". Because of this
1948 // "Debian " is printed before the contents of the debian_version file.
1949 
1950 const char* distro_files[] = {
1951   "/etc/oracle-release",
1952   "/etc/mandriva-release",
1953   "/etc/mandrake-release",
1954   "/etc/sun-release",
1955   "/etc/redhat-release",
1956   "/etc/SuSE-release",
1957   "/etc/lsb-release",
1958   "/etc/turbolinux-release",
1959   "/etc/gentoo-release",
1960   "/etc/ltib-release",
1961   "/etc/angstrom-version",
1962   "/etc/system-release",
1963   "/etc/os-release",
1964   NULL };
1965 
1966 void os::Linux::print_distro_info(outputStream* st) {
1967   for (int i = 0;; i++) {
1968     const char* file = distro_files[i];
1969     if (file == NULL) {
1970       break;  // done
1971     }
1972     // If file prints, we found it.
1973     if (_print_ascii_file(file, st)) {
1974       return;
1975     }
1976   }
1977 
1978   if (file_exists("/etc/debian_version")) {
1979     st->print("Debian ");
1980     _print_ascii_file("/etc/debian_version", st);
1981   } else {
1982     st->print("Linux");
1983   }
1984   st->cr();
1985 }
1986 
1987 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
1988   char buf[256];
1989   while (fgets(buf, sizeof(buf), fp)) {
1990     // Edit out extra stuff in expected format
1991     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
1992       char* ptr = strstr(buf, "\"");  // the name is in quotes
1993       if (ptr != NULL) {
1994         ptr++; // go beyond first quote
1995         char* nl = strchr(ptr, '\"');
1996         if (nl != NULL) *nl = '\0';
1997         strncpy(distro, ptr, length);
1998       } else {
1999         ptr = strstr(buf, "=");
2000         ptr++; // go beyond equals then
2001         char* nl = strchr(ptr, '\n');
2002         if (nl != NULL) *nl = '\0';
2003         strncpy(distro, ptr, length);
2004       }
2005       return;
2006     } else if (get_first_line) {
2007       char* nl = strchr(buf, '\n');
2008       if (nl != NULL) *nl = '\0';
2009       strncpy(distro, buf, length);
2010       return;
2011     }
2012   }
2013   // print last line and close
2014   char* nl = strchr(buf, '\n');
2015   if (nl != NULL) *nl = '\0';
2016   strncpy(distro, buf, length);
2017 }
2018 
2019 static void parse_os_info(char* distro, size_t length, const char* file) {
2020   FILE* fp = fopen(file, "r");
2021   if (fp != NULL) {
2022     // if suse format, print out first line
2023     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2024     parse_os_info_helper(fp, distro, length, get_first_line);
2025     fclose(fp);
2026   }
2027 }
2028 
2029 void os::get_summary_os_info(char* buf, size_t buflen) {
2030   for (int i = 0;; i++) {
2031     const char* file = distro_files[i];
2032     if (file == NULL) {
2033       break; // ran out of distro_files
2034     }
2035     if (file_exists(file)) {
2036       parse_os_info(buf, buflen, file);
2037       return;
2038     }
2039   }
2040   // special case for debian
2041   if (file_exists("/etc/debian_version")) {
2042     strncpy(buf, "Debian ", buflen);
2043     if (buflen > 7) {
2044       parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2045     }
2046   } else {
2047     strncpy(buf, "Linux", buflen);
2048   }
2049 }
2050 
2051 void os::Linux::print_libversion_info(outputStream* st) {
2052   // libc, pthread
2053   st->print("libc:");
2054   st->print("%s ", os::Linux::glibc_version());
2055   st->print("%s ", os::Linux::libpthread_version());
2056   st->cr();
2057 }
2058 
2059 void os::Linux::print_proc_sys_info(outputStream* st) {
2060   st->cr();
2061   st->print_cr("/proc/sys/kernel/threads-max (system-wide limit on the number of threads):");
2062   _print_ascii_file("/proc/sys/kernel/threads-max", st);
2063   st->cr();
2064   st->cr();
2065 
2066   st->print_cr("/proc/sys/vm/max_map_count (maximum number of memory map areas a process may have):");
2067   _print_ascii_file("/proc/sys/vm/max_map_count", st);
2068   st->cr();
2069   st->cr();
2070 
2071   st->print_cr("/proc/sys/kernel/pid_max (system-wide limit on number of process identifiers):");
2072   _print_ascii_file("/proc/sys/kernel/pid_max", st);
2073   st->cr();
2074   st->cr();
2075 }
2076 
2077 void os::Linux::print_full_memory_info(outputStream* st) {
2078   st->print("\n/proc/meminfo:\n");
2079   _print_ascii_file("/proc/meminfo", st);
2080   st->cr();
2081 }
2082 
2083 void os::Linux::print_ld_preload_file(outputStream* st) {
2084   _print_ascii_file("/etc/ld.so.preload", st, "\n/etc/ld.so.preload:");
2085   st->cr();
2086 }
2087 
2088 void os::Linux::print_container_info(outputStream* st) {
2089   if (!OSContainer::is_containerized()) {
2090     return;
2091   }
2092 
2093   st->print("container (cgroup) information:\n");
2094 
2095   const char *p_ct = OSContainer::container_type();
2096   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "failed");
2097 
2098   char *p = OSContainer::cpu_cpuset_cpus();
2099   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "failed");
2100   free(p);
2101 
2102   p = OSContainer::cpu_cpuset_memory_nodes();
2103   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "failed");
2104   free(p);
2105 
2106   int i = OSContainer::active_processor_count();
2107   if (i > 0) {
2108     st->print("active_processor_count: %d\n", i);
2109   } else {
2110     st->print("active_processor_count: failed\n");
2111   }
2112 
2113   i = OSContainer::cpu_quota();
2114   st->print("cpu_quota: %d\n", i);
2115 
2116   i = OSContainer::cpu_period();
2117   st->print("cpu_period: %d\n", i);
2118 
2119   i = OSContainer::cpu_shares();
2120   st->print("cpu_shares: %d\n", i);
2121 
2122   jlong j = OSContainer::memory_limit_in_bytes();
2123   st->print("memory_limit_in_bytes: " JLONG_FORMAT "\n", j);
2124 
2125   j = OSContainer::memory_and_swap_limit_in_bytes();
2126   st->print("memory_and_swap_limit_in_bytes: " JLONG_FORMAT "\n", j);
2127 
2128   j = OSContainer::memory_soft_limit_in_bytes();
2129   st->print("memory_soft_limit_in_bytes: " JLONG_FORMAT "\n", j);
2130 
2131   j = OSContainer::OSContainer::memory_usage_in_bytes();
2132   st->print("memory_usage_in_bytes: " JLONG_FORMAT "\n", j);
2133 
2134   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2135   st->print("memory_max_usage_in_bytes: " JLONG_FORMAT "\n", j);
2136   st->cr();
2137 }
2138 
2139 void os::print_memory_info(outputStream* st) {
2140 
2141   st->print("Memory:");
2142   st->print(" %dk page", os::vm_page_size()>>10);
2143 
2144   // values in struct sysinfo are "unsigned long"
2145   struct sysinfo si;
2146   sysinfo(&si);
2147 
2148   st->print(", physical " UINT64_FORMAT "k",
2149             os::physical_memory() >> 10);
2150   st->print("(" UINT64_FORMAT "k free)",
2151             os::available_memory() >> 10);
2152   st->print(", swap " UINT64_FORMAT "k",
2153             ((jlong)si.totalswap * si.mem_unit) >> 10);
2154   st->print("(" UINT64_FORMAT "k free)",
2155             ((jlong)si.freeswap * si.mem_unit) >> 10);
2156   st->cr();
2157 }
2158 
2159 // Print the first "model name" line and the first "flags" line
2160 // that we find and nothing more. We assume "model name" comes
2161 // before "flags" so if we find a second "model name", then the
2162 // "flags" field is considered missing.
2163 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2164 #if defined(IA32) || defined(AMD64)
2165   // Other platforms have less repetitive cpuinfo files
2166   FILE *fp = fopen("/proc/cpuinfo", "r");
2167   if (fp) {
2168     while (!feof(fp)) {
2169       if (fgets(buf, buflen, fp)) {
2170         // Assume model name comes before flags
2171         bool model_name_printed = false;
2172         if (strstr(buf, "model name") != NULL) {
2173           if (!model_name_printed) {
2174             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2175             st->print_raw(buf);
2176             model_name_printed = true;
2177           } else {
2178             // model name printed but not flags?  Odd, just return
2179             fclose(fp);
2180             return true;
2181           }
2182         }
2183         // print the flags line too
2184         if (strstr(buf, "flags") != NULL) {
2185           st->print_raw(buf);
2186           fclose(fp);
2187           return true;
2188         }
2189       }
2190     }
2191     fclose(fp);
2192   }
2193 #endif // x86 platforms
2194   return false;
2195 }
2196 
2197 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2198   // Only print the model name if the platform provides this as a summary
2199   if (!print_model_name_and_flags(st, buf, buflen)) {
2200     st->print("\n/proc/cpuinfo:\n");
2201     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2202       st->print_cr("  <Not Available>");
2203     }
2204   }
2205 }
2206 
2207 #if defined(AMD64) || defined(IA32) || defined(X32)
2208 const char* search_string = "model name";
2209 #elif defined(M68K)
2210 const char* search_string = "CPU";
2211 #elif defined(PPC64)
2212 const char* search_string = "cpu";
2213 #elif defined(S390)
2214 const char* search_string = "processor";
2215 #elif defined(SPARC)
2216 const char* search_string = "cpu";
2217 #else
2218 const char* search_string = "Processor";
2219 #endif
2220 
2221 // Parses the cpuinfo file for string representing the model name.
2222 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2223   FILE* fp = fopen("/proc/cpuinfo", "r");
2224   if (fp != NULL) {
2225     while (!feof(fp)) {
2226       char buf[256];
2227       if (fgets(buf, sizeof(buf), fp)) {
2228         char* start = strstr(buf, search_string);
2229         if (start != NULL) {
2230           char *ptr = start + strlen(search_string);
2231           char *end = buf + strlen(buf);
2232           while (ptr != end) {
2233              // skip whitespace and colon for the rest of the name.
2234              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2235                break;
2236              }
2237              ptr++;
2238           }
2239           if (ptr != end) {
2240             // reasonable string, get rid of newline and keep the rest
2241             char* nl = strchr(buf, '\n');
2242             if (nl != NULL) *nl = '\0';
2243             strncpy(cpuinfo, ptr, length);
2244             fclose(fp);
2245             return;
2246           }
2247         }
2248       }
2249     }
2250     fclose(fp);
2251   }
2252   // cpuinfo not found or parsing failed, just print generic string.  The entire
2253   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2254 #if   defined(AARCH64)
2255   strncpy(cpuinfo, "AArch64", length);
2256 #elif defined(AMD64)
2257   strncpy(cpuinfo, "x86_64", length);
2258 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2259   strncpy(cpuinfo, "ARM", length);
2260 #elif defined(IA32)
2261   strncpy(cpuinfo, "x86_32", length);
2262 #elif defined(IA64)
2263   strncpy(cpuinfo, "IA64", length);
2264 #elif defined(PPC)
2265   strncpy(cpuinfo, "PPC64", length);
2266 #elif defined(S390)
2267   strncpy(cpuinfo, "S390", length);
2268 #elif defined(SPARC)
2269   strncpy(cpuinfo, "sparcv9", length);
2270 #elif defined(ZERO_LIBARCH)
2271   strncpy(cpuinfo, ZERO_LIBARCH, length);
2272 #else
2273   strncpy(cpuinfo, "unknown", length);
2274 #endif
2275 }
2276 
2277 static void print_signal_handler(outputStream* st, int sig,
2278                                  char* buf, size_t buflen);
2279 
2280 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2281   st->print_cr("Signal Handlers:");
2282   print_signal_handler(st, SIGSEGV, buf, buflen);
2283   print_signal_handler(st, SIGBUS , buf, buflen);
2284   print_signal_handler(st, SIGFPE , buf, buflen);
2285   print_signal_handler(st, SIGPIPE, buf, buflen);
2286   print_signal_handler(st, SIGXFSZ, buf, buflen);
2287   print_signal_handler(st, SIGILL , buf, buflen);
2288   print_signal_handler(st, SR_signum, buf, buflen);
2289   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2290   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2291   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2292   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2293 #if defined(PPC64)
2294   print_signal_handler(st, SIGTRAP, buf, buflen);
2295 #endif
2296 }
2297 
2298 static char saved_jvm_path[MAXPATHLEN] = {0};
2299 
2300 // Find the full path to the current module, libjvm.so
2301 void os::jvm_path(char *buf, jint buflen) {
2302   // Error checking.
2303   if (buflen < MAXPATHLEN) {
2304     assert(false, "must use a large-enough buffer");
2305     buf[0] = '\0';
2306     return;
2307   }
2308   // Lazy resolve the path to current module.
2309   if (saved_jvm_path[0] != 0) {
2310     strcpy(buf, saved_jvm_path);
2311     return;
2312   }
2313 
2314   char dli_fname[MAXPATHLEN];
2315   bool ret = dll_address_to_library_name(
2316                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2317                                          dli_fname, sizeof(dli_fname), NULL);
2318   assert(ret, "cannot locate libjvm");
2319   char *rp = NULL;
2320   if (ret && dli_fname[0] != '\0') {
2321     rp = os::Posix::realpath(dli_fname, buf, buflen);
2322   }
2323   if (rp == NULL) {
2324     return;
2325   }
2326 
2327   if (Arguments::sun_java_launcher_is_altjvm()) {
2328     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2329     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2330     // If "/jre/lib/" appears at the right place in the string, then
2331     // assume we are installed in a JDK and we're done. Otherwise, check
2332     // for a JAVA_HOME environment variable and fix up the path so it
2333     // looks like libjvm.so is installed there (append a fake suffix
2334     // hotspot/libjvm.so).
2335     const char *p = buf + strlen(buf) - 1;
2336     for (int count = 0; p > buf && count < 5; ++count) {
2337       for (--p; p > buf && *p != '/'; --p)
2338         /* empty */ ;
2339     }
2340 
2341     if (strncmp(p, "/jre/lib/", 9) != 0) {
2342       // Look for JAVA_HOME in the environment.
2343       char* java_home_var = ::getenv("JAVA_HOME");
2344       if (java_home_var != NULL && java_home_var[0] != 0) {
2345         char* jrelib_p;
2346         int len;
2347 
2348         // Check the current module name "libjvm.so".
2349         p = strrchr(buf, '/');
2350         if (p == NULL) {
2351           return;
2352         }
2353         assert(strstr(p, "/libjvm") == p, "invalid library name");
2354 
2355         rp = os::Posix::realpath(java_home_var, buf, buflen);
2356         if (rp == NULL) {
2357           return;
2358         }
2359 
2360         // determine if this is a legacy image or modules image
2361         // modules image doesn't have "jre" subdirectory
2362         len = strlen(buf);
2363         assert(len < buflen, "Ran out of buffer room");
2364         jrelib_p = buf + len;
2365         snprintf(jrelib_p, buflen-len, "/jre/lib");
2366         if (0 != access(buf, F_OK)) {
2367           snprintf(jrelib_p, buflen-len, "/lib");
2368         }
2369 
2370         if (0 == access(buf, F_OK)) {
2371           // Use current module name "libjvm.so"
2372           len = strlen(buf);
2373           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2374         } else {
2375           // Go back to path of .so
2376           rp = os::Posix::realpath(dli_fname, buf, buflen);
2377           if (rp == NULL) {
2378             return;
2379           }
2380         }
2381       }
2382     }
2383   }
2384 
2385   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2386   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2387 }
2388 
2389 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2390   // no prefix required, not even "_"
2391 }
2392 
2393 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2394   // no suffix required
2395 }
2396 
2397 ////////////////////////////////////////////////////////////////////////////////
2398 // sun.misc.Signal support
2399 
2400 static volatile jint sigint_count = 0;
2401 
2402 static void UserHandler(int sig, void *siginfo, void *context) {
2403   // 4511530 - sem_post is serialized and handled by the manager thread. When
2404   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2405   // don't want to flood the manager thread with sem_post requests.
2406   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2407     return;
2408   }
2409 
2410   // Ctrl-C is pressed during error reporting, likely because the error
2411   // handler fails to abort. Let VM die immediately.
2412   if (sig == SIGINT && VMError::is_error_reported()) {
2413     os::die();
2414   }
2415 
2416   os::signal_notify(sig);
2417 }
2418 
2419 void* os::user_handler() {
2420   return CAST_FROM_FN_PTR(void*, UserHandler);
2421 }
2422 
2423 static struct timespec create_semaphore_timespec(unsigned int sec, int nsec) {
2424   struct timespec ts;
2425   // Semaphore's are always associated with CLOCK_REALTIME
2426   os::Posix::clock_gettime(CLOCK_REALTIME, &ts);
2427   // see os_posix.cpp for discussion on overflow checking
2428   if (sec >= MAX_SECS) {
2429     ts.tv_sec += MAX_SECS;
2430     ts.tv_nsec = 0;
2431   } else {
2432     ts.tv_sec += sec;
2433     ts.tv_nsec += nsec;
2434     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2435       ts.tv_nsec -= NANOSECS_PER_SEC;
2436       ++ts.tv_sec; // note: this must be <= max_secs
2437     }
2438   }
2439 
2440   return ts;
2441 }
2442 
2443 extern "C" {
2444   typedef void (*sa_handler_t)(int);
2445   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2446 }
2447 
2448 void* os::signal(int signal_number, void* handler) {
2449   struct sigaction sigAct, oldSigAct;
2450 
2451   sigfillset(&(sigAct.sa_mask));
2452   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2453   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2454 
2455   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2456     // -1 means registration failed
2457     return (void *)-1;
2458   }
2459 
2460   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2461 }
2462 
2463 void os::signal_raise(int signal_number) {
2464   ::raise(signal_number);
2465 }
2466 
2467 // The following code is moved from os.cpp for making this
2468 // code platform specific, which it is by its very nature.
2469 
2470 // Will be modified when max signal is changed to be dynamic
2471 int os::sigexitnum_pd() {
2472   return NSIG;
2473 }
2474 
2475 // a counter for each possible signal value
2476 static volatile jint pending_signals[NSIG+1] = { 0 };
2477 
2478 // Linux(POSIX) specific hand shaking semaphore.
2479 static Semaphore* sig_sem = NULL;
2480 static PosixSemaphore sr_semaphore;
2481 
2482 static void jdk_misc_signal_init() {
2483   // Initialize signal structures
2484   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2485 
2486   // Initialize signal semaphore
2487   sig_sem = new Semaphore();
2488 }
2489 
2490 void os::signal_notify(int sig) {
2491   if (sig_sem != NULL) {
2492     Atomic::inc(&pending_signals[sig]);
2493     sig_sem->signal();
2494   } else {
2495     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2496     // initialization isn't called.
2497     assert(ReduceSignalUsage, "signal semaphore should be created");
2498   }
2499 }
2500 
2501 static int check_pending_signals() {
2502   Atomic::store(0, &sigint_count);
2503   for (;;) {
2504     for (int i = 0; i < NSIG + 1; i++) {
2505       jint n = pending_signals[i];
2506       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2507         return i;
2508       }
2509     }
2510     JavaThread *thread = JavaThread::current();
2511     ThreadBlockInVM tbivm(thread);
2512 
2513     bool threadIsSuspended;
2514     do {
2515       thread->set_suspend_equivalent();
2516       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2517       sig_sem->wait();
2518 
2519       // were we externally suspended while we were waiting?
2520       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2521       if (threadIsSuspended) {
2522         // The semaphore has been incremented, but while we were waiting
2523         // another thread suspended us. We don't want to continue running
2524         // while suspended because that would surprise the thread that
2525         // suspended us.
2526         sig_sem->signal();
2527 
2528         thread->java_suspend_self();
2529       }
2530     } while (threadIsSuspended);
2531   }
2532 }
2533 
2534 int os::signal_wait() {
2535   return check_pending_signals();
2536 }
2537 
2538 ////////////////////////////////////////////////////////////////////////////////
2539 // Virtual Memory
2540 
2541 int os::vm_page_size() {
2542   // Seems redundant as all get out
2543   assert(os::Linux::page_size() != -1, "must call os::init");
2544   return os::Linux::page_size();
2545 }
2546 
2547 // Solaris allocates memory by pages.
2548 int os::vm_allocation_granularity() {
2549   assert(os::Linux::page_size() != -1, "must call os::init");
2550   return os::Linux::page_size();
2551 }
2552 
2553 // Rationale behind this function:
2554 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2555 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2556 //  samples for JITted code. Here we create private executable mapping over the code cache
2557 //  and then we can use standard (well, almost, as mapping can change) way to provide
2558 //  info for the reporting script by storing timestamp and location of symbol
2559 void linux_wrap_code(char* base, size_t size) {
2560   static volatile jint cnt = 0;
2561 
2562   if (!UseOprofile) {
2563     return;
2564   }
2565 
2566   char buf[PATH_MAX+1];
2567   int num = Atomic::add(1, &cnt);
2568 
2569   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2570            os::get_temp_directory(), os::current_process_id(), num);
2571   unlink(buf);
2572 
2573   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2574 
2575   if (fd != -1) {
2576     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2577     if (rv != (off_t)-1) {
2578       if (::write(fd, "", 1) == 1) {
2579         mmap(base, size,
2580              PROT_READ|PROT_WRITE|PROT_EXEC,
2581              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2582       }
2583     }
2584     ::close(fd);
2585     unlink(buf);
2586   }
2587 }
2588 
2589 static bool recoverable_mmap_error(int err) {
2590   // See if the error is one we can let the caller handle. This
2591   // list of errno values comes from JBS-6843484. I can't find a
2592   // Linux man page that documents this specific set of errno
2593   // values so while this list currently matches Solaris, it may
2594   // change as we gain experience with this failure mode.
2595   switch (err) {
2596   case EBADF:
2597   case EINVAL:
2598   case ENOTSUP:
2599     // let the caller deal with these errors
2600     return true;
2601 
2602   default:
2603     // Any remaining errors on this OS can cause our reserved mapping
2604     // to be lost. That can cause confusion where different data
2605     // structures think they have the same memory mapped. The worst
2606     // scenario is if both the VM and a library think they have the
2607     // same memory mapped.
2608     return false;
2609   }
2610 }
2611 
2612 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2613                                     int err) {
2614   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2615           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2616           os::strerror(err), err);
2617 }
2618 
2619 static void warn_fail_commit_memory(char* addr, size_t size,
2620                                     size_t alignment_hint, bool exec,
2621                                     int err) {
2622   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2623           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2624           alignment_hint, exec, os::strerror(err), err);
2625 }
2626 
2627 // NOTE: Linux kernel does not really reserve the pages for us.
2628 //       All it does is to check if there are enough free pages
2629 //       left at the time of mmap(). This could be a potential
2630 //       problem.
2631 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2632   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2633   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2634                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2635   if (res != (uintptr_t) MAP_FAILED) {
2636     if (UseNUMAInterleaving) {
2637       numa_make_global(addr, size);
2638     }
2639     return 0;
2640   }
2641 
2642   int err = errno;  // save errno from mmap() call above
2643 
2644   if (!recoverable_mmap_error(err)) {
2645     warn_fail_commit_memory(addr, size, exec, err);
2646     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2647   }
2648 
2649   return err;
2650 }
2651 
2652 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2653   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2654 }
2655 
2656 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2657                                   const char* mesg) {
2658   assert(mesg != NULL, "mesg must be specified");
2659   int err = os::Linux::commit_memory_impl(addr, size, exec);
2660   if (err != 0) {
2661     // the caller wants all commit errors to exit with the specified mesg:
2662     warn_fail_commit_memory(addr, size, exec, err);
2663     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2664   }
2665 }
2666 
2667 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2668 #ifndef MAP_HUGETLB
2669   #define MAP_HUGETLB 0x40000
2670 #endif
2671 
2672 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2673 #ifndef MADV_HUGEPAGE
2674   #define MADV_HUGEPAGE 14
2675 #endif
2676 
2677 int os::Linux::commit_memory_impl(char* addr, size_t size,
2678                                   size_t alignment_hint, bool exec) {
2679   int err = os::Linux::commit_memory_impl(addr, size, exec);
2680   if (err == 0) {
2681     realign_memory(addr, size, alignment_hint);
2682   }
2683   return err;
2684 }
2685 
2686 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2687                           bool exec) {
2688   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2689 }
2690 
2691 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2692                                   size_t alignment_hint, bool exec,
2693                                   const char* mesg) {
2694   assert(mesg != NULL, "mesg must be specified");
2695   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2696   if (err != 0) {
2697     // the caller wants all commit errors to exit with the specified mesg:
2698     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2699     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2700   }
2701 }
2702 
2703 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2704   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2705     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2706     // be supported or the memory may already be backed by huge pages.
2707     ::madvise(addr, bytes, MADV_HUGEPAGE);
2708   }
2709 }
2710 
2711 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2712   // This method works by doing an mmap over an existing mmaping and effectively discarding
2713   // the existing pages. However it won't work for SHM-based large pages that cannot be
2714   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2715   // small pages on top of the SHM segment. This method always works for small pages, so we
2716   // allow that in any case.
2717   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2718     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2719   }
2720 }
2721 
2722 void os::numa_make_global(char *addr, size_t bytes) {
2723   Linux::numa_interleave_memory(addr, bytes);
2724 }
2725 
2726 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2727 // bind policy to MPOL_PREFERRED for the current thread.
2728 #define USE_MPOL_PREFERRED 0
2729 
2730 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2731   // To make NUMA and large pages more robust when both enabled, we need to ease
2732   // the requirements on where the memory should be allocated. MPOL_BIND is the
2733   // default policy and it will force memory to be allocated on the specified
2734   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2735   // the specified node, but will not force it. Using this policy will prevent
2736   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2737   // free large pages.
2738   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2739   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2740 }
2741 
2742 bool os::numa_topology_changed() { return false; }
2743 
2744 size_t os::numa_get_groups_num() {
2745   // Return just the number of nodes in which it's possible to allocate memory
2746   // (in numa terminology, configured nodes).
2747   return Linux::numa_num_configured_nodes();
2748 }
2749 
2750 int os::numa_get_group_id() {
2751   int cpu_id = Linux::sched_getcpu();
2752   if (cpu_id != -1) {
2753     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2754     if (lgrp_id != -1) {
2755       return lgrp_id;
2756     }
2757   }
2758   return 0;
2759 }
2760 
2761 int os::Linux::get_existing_num_nodes() {
2762   int node;
2763   int highest_node_number = Linux::numa_max_node();
2764   int num_nodes = 0;
2765 
2766   // Get the total number of nodes in the system including nodes without memory.
2767   for (node = 0; node <= highest_node_number; node++) {
2768     if (isnode_in_existing_nodes(node)) {
2769       num_nodes++;
2770     }
2771   }
2772   return num_nodes;
2773 }
2774 
2775 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2776   int highest_node_number = Linux::numa_max_node();
2777   size_t i = 0;
2778 
2779   // Map all node ids in which it is possible to allocate memory. Also nodes are
2780   // not always consecutively available, i.e. available from 0 to the highest
2781   // node number. If the nodes have been bound explicitly using numactl membind,
2782   // then allocate memory from those nodes only.
2783   for (int node = 0; node <= highest_node_number; node++) {
2784     if (Linux::isnode_in_bound_nodes((unsigned int)node)) {
2785       ids[i++] = node;
2786     }
2787   }
2788   return i;
2789 }
2790 
2791 bool os::get_page_info(char *start, page_info* info) {
2792   return false;
2793 }
2794 
2795 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2796                      page_info* page_found) {
2797   return end;
2798 }
2799 
2800 
2801 int os::Linux::sched_getcpu_syscall(void) {
2802   unsigned int cpu = 0;
2803   int retval = -1;
2804 
2805 #if defined(IA32)
2806   #ifndef SYS_getcpu
2807     #define SYS_getcpu 318
2808   #endif
2809   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2810 #elif defined(AMD64)
2811 // Unfortunately we have to bring all these macros here from vsyscall.h
2812 // to be able to compile on old linuxes.
2813   #define __NR_vgetcpu 2
2814   #define VSYSCALL_START (-10UL << 20)
2815   #define VSYSCALL_SIZE 1024
2816   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2817   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2818   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2819   retval = vgetcpu(&cpu, NULL, NULL);
2820 #endif
2821 
2822   return (retval == -1) ? retval : cpu;
2823 }
2824 
2825 void os::Linux::sched_getcpu_init() {
2826   // sched_getcpu() should be in libc.
2827   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2828                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2829 
2830   // If it's not, try a direct syscall.
2831   if (sched_getcpu() == -1) {
2832     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2833                                     (void*)&sched_getcpu_syscall));
2834   }
2835 
2836   if (sched_getcpu() == -1) {
2837     vm_exit_during_initialization("getcpu(2) system call not supported by kernel");
2838   }
2839 }
2840 
2841 // Something to do with the numa-aware allocator needs these symbols
2842 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2843 extern "C" JNIEXPORT void numa_error(char *where) { }
2844 
2845 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2846 // load symbol from base version instead.
2847 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2848   void *f = dlvsym(handle, name, "libnuma_1.1");
2849   if (f == NULL) {
2850     f = dlsym(handle, name);
2851   }
2852   return f;
2853 }
2854 
2855 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2856 // Return NULL if the symbol is not defined in this particular version.
2857 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2858   return dlvsym(handle, name, "libnuma_1.2");
2859 }
2860 
2861 bool os::Linux::libnuma_init() {
2862   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
2863     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2864     if (handle != NULL) {
2865       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2866                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2867       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2868                                        libnuma_dlsym(handle, "numa_max_node")));
2869       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2870                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2871       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2872                                         libnuma_dlsym(handle, "numa_available")));
2873       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2874                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2875       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2876                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2877       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2878                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2879       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2880                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2881       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2882                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2883       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2884                                        libnuma_dlsym(handle, "numa_distance")));
2885       set_numa_get_membind(CAST_TO_FN_PTR(numa_get_membind_func_t,
2886                                           libnuma_v2_dlsym(handle, "numa_get_membind")));
2887 
2888       if (numa_available() != -1) {
2889         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2890         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2891         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2892         // Create an index -> node mapping, since nodes are not always consecutive
2893         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2894         rebuild_nindex_to_node_map();
2895         // Create a cpu -> node mapping
2896         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2897         rebuild_cpu_to_node_map();
2898         return true;
2899       }
2900     }
2901   }
2902   return false;
2903 }
2904 
2905 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2906   // Creating guard page is very expensive. Java thread has HotSpot
2907   // guard pages, only enable glibc guard page for non-Java threads.
2908   // (Remember: compiler thread is a Java thread, too!)
2909   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2910 }
2911 
2912 void os::Linux::rebuild_nindex_to_node_map() {
2913   int highest_node_number = Linux::numa_max_node();
2914 
2915   nindex_to_node()->clear();
2916   for (int node = 0; node <= highest_node_number; node++) {
2917     if (Linux::isnode_in_existing_nodes(node)) {
2918       nindex_to_node()->append(node);
2919     }
2920   }
2921 }
2922 
2923 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2924 // The table is later used in get_node_by_cpu().
2925 void os::Linux::rebuild_cpu_to_node_map() {
2926   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2927                               // in libnuma (possible values are starting from 16,
2928                               // and continuing up with every other power of 2, but less
2929                               // than the maximum number of CPUs supported by kernel), and
2930                               // is a subject to change (in libnuma version 2 the requirements
2931                               // are more reasonable) we'll just hardcode the number they use
2932                               // in the library.
2933   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2934 
2935   size_t cpu_num = processor_count();
2936   size_t cpu_map_size = NCPUS / BitsPerCLong;
2937   size_t cpu_map_valid_size =
2938     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2939 
2940   cpu_to_node()->clear();
2941   cpu_to_node()->at_grow(cpu_num - 1);
2942 
2943   size_t node_num = get_existing_num_nodes();
2944 
2945   int distance = 0;
2946   int closest_distance = INT_MAX;
2947   int closest_node = 0;
2948   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2949   for (size_t i = 0; i < node_num; i++) {
2950     // Check if node is configured (not a memory-less node). If it is not, find
2951     // the closest configured node. Check also if node is bound, i.e. it's allowed
2952     // to allocate memory from the node. If it's not allowed, map cpus in that node
2953     // to the closest node from which memory allocation is allowed.
2954     if (!isnode_in_configured_nodes(nindex_to_node()->at(i)) ||
2955         !isnode_in_bound_nodes(nindex_to_node()->at(i))) {
2956       closest_distance = INT_MAX;
2957       // Check distance from all remaining nodes in the system. Ignore distance
2958       // from itself, from another non-configured node, and from another non-bound
2959       // node.
2960       for (size_t m = 0; m < node_num; m++) {
2961         if (m != i &&
2962             isnode_in_configured_nodes(nindex_to_node()->at(m)) &&
2963             isnode_in_bound_nodes(nindex_to_node()->at(m))) {
2964           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
2965           // If a closest node is found, update. There is always at least one
2966           // configured and bound node in the system so there is always at least
2967           // one node close.
2968           if (distance != 0 && distance < closest_distance) {
2969             closest_distance = distance;
2970             closest_node = nindex_to_node()->at(m);
2971           }
2972         }
2973       }
2974      } else {
2975        // Current node is already a configured node.
2976        closest_node = nindex_to_node()->at(i);
2977      }
2978 
2979     // Get cpus from the original node and map them to the closest node. If node
2980     // is a configured node (not a memory-less node), then original node and
2981     // closest node are the same.
2982     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2983       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2984         if (cpu_map[j] != 0) {
2985           for (size_t k = 0; k < BitsPerCLong; k++) {
2986             if (cpu_map[j] & (1UL << k)) {
2987               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
2988             }
2989           }
2990         }
2991       }
2992     }
2993   }
2994   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2995 }
2996 
2997 int os::Linux::get_node_by_cpu(int cpu_id) {
2998   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2999     return cpu_to_node()->at(cpu_id);
3000   }
3001   return -1;
3002 }
3003 
3004 GrowableArray<int>* os::Linux::_cpu_to_node;
3005 GrowableArray<int>* os::Linux::_nindex_to_node;
3006 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3007 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3008 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3009 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3010 os::Linux::numa_available_func_t os::Linux::_numa_available;
3011 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3012 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3013 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3014 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3015 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3016 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3017 os::Linux::numa_get_membind_func_t os::Linux::_numa_get_membind;
3018 unsigned long* os::Linux::_numa_all_nodes;
3019 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3020 struct bitmask* os::Linux::_numa_nodes_ptr;
3021 
3022 bool os::pd_uncommit_memory(char* addr, size_t size) {
3023   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3024                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3025   return res  != (uintptr_t) MAP_FAILED;
3026 }
3027 
3028 static address get_stack_commited_bottom(address bottom, size_t size) {
3029   address nbot = bottom;
3030   address ntop = bottom + size;
3031 
3032   size_t page_sz = os::vm_page_size();
3033   unsigned pages = size / page_sz;
3034 
3035   unsigned char vec[1];
3036   unsigned imin = 1, imax = pages + 1, imid;
3037   int mincore_return_value = 0;
3038 
3039   assert(imin <= imax, "Unexpected page size");
3040 
3041   while (imin < imax) {
3042     imid = (imax + imin) / 2;
3043     nbot = ntop - (imid * page_sz);
3044 
3045     // Use a trick with mincore to check whether the page is mapped or not.
3046     // mincore sets vec to 1 if page resides in memory and to 0 if page
3047     // is swapped output but if page we are asking for is unmapped
3048     // it returns -1,ENOMEM
3049     mincore_return_value = mincore(nbot, page_sz, vec);
3050 
3051     if (mincore_return_value == -1) {
3052       // Page is not mapped go up
3053       // to find first mapped page
3054       if (errno != EAGAIN) {
3055         assert(errno == ENOMEM, "Unexpected mincore errno");
3056         imax = imid;
3057       }
3058     } else {
3059       // Page is mapped go down
3060       // to find first not mapped page
3061       imin = imid + 1;
3062     }
3063   }
3064 
3065   nbot = nbot + page_sz;
3066 
3067   // Adjust stack bottom one page up if last checked page is not mapped
3068   if (mincore_return_value == -1) {
3069     nbot = nbot + page_sz;
3070   }
3071 
3072   return nbot;
3073 }
3074 
3075 bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
3076   int mincore_return_value;
3077   const size_t stripe = 1024;  // query this many pages each time
3078   unsigned char vec[stripe + 1];
3079   // set a guard
3080   vec[stripe] = 'X';
3081 
3082   const size_t page_sz = os::vm_page_size();
3083   size_t pages = size / page_sz;
3084 
3085   assert(is_aligned(start, page_sz), "Start address must be page aligned");
3086   assert(is_aligned(size, page_sz), "Size must be page aligned");
3087 
3088   committed_start = NULL;
3089 
3090   int loops = (pages + stripe - 1) / stripe;
3091   int committed_pages = 0;
3092   address loop_base = start;
3093   bool found_range = false;
3094 
3095   for (int index = 0; index < loops && !found_range; index ++) {
3096     assert(pages > 0, "Nothing to do");
3097     int pages_to_query = (pages >= stripe) ? stripe : pages;
3098     pages -= pages_to_query;
3099 
3100     // Get stable read
3101     while ((mincore_return_value = mincore(loop_base, pages_to_query * page_sz, vec)) == -1 && errno == EAGAIN);
3102 
3103     // During shutdown, some memory goes away without properly notifying NMT,
3104     // E.g. ConcurrentGCThread/WatcherThread can exit without deleting thread object.
3105     // Bailout and return as not committed for now.
3106     if (mincore_return_value == -1 && errno == ENOMEM) {
3107       return false;
3108     }
3109 
3110     assert(vec[stripe] == 'X', "overflow guard");
3111     assert(mincore_return_value == 0, "Range must be valid");
3112     // Process this stripe
3113     for (int vecIdx = 0; vecIdx < pages_to_query; vecIdx ++) {
3114       if ((vec[vecIdx] & 0x01) == 0) { // not committed
3115         // End of current contiguous region
3116         if (committed_start != NULL) {
3117           found_range = true;
3118           break;
3119         }
3120       } else { // committed
3121         // Start of region
3122         if (committed_start == NULL) {
3123           committed_start = loop_base + page_sz * vecIdx;
3124         }
3125         committed_pages ++;
3126       }
3127     }
3128 
3129     loop_base += pages_to_query * page_sz;
3130   }
3131 
3132   if (committed_start != NULL) {
3133     assert(committed_pages > 0, "Must have committed region");
3134     assert(committed_pages <= int(size / page_sz), "Can not commit more than it has");
3135     assert(committed_start >= start && committed_start < start + size, "Out of range");
3136     committed_size = page_sz * committed_pages;
3137     return true;
3138   } else {
3139     assert(committed_pages == 0, "Should not have committed region");
3140     return false;
3141   }
3142 }
3143 
3144 
3145 // Linux uses a growable mapping for the stack, and if the mapping for
3146 // the stack guard pages is not removed when we detach a thread the
3147 // stack cannot grow beyond the pages where the stack guard was
3148 // mapped.  If at some point later in the process the stack expands to
3149 // that point, the Linux kernel cannot expand the stack any further
3150 // because the guard pages are in the way, and a segfault occurs.
3151 //
3152 // However, it's essential not to split the stack region by unmapping
3153 // a region (leaving a hole) that's already part of the stack mapping,
3154 // so if the stack mapping has already grown beyond the guard pages at
3155 // the time we create them, we have to truncate the stack mapping.
3156 // So, we need to know the extent of the stack mapping when
3157 // create_stack_guard_pages() is called.
3158 
3159 // We only need this for stacks that are growable: at the time of
3160 // writing thread stacks don't use growable mappings (i.e. those
3161 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3162 // only applies to the main thread.
3163 
3164 // If the (growable) stack mapping already extends beyond the point
3165 // where we're going to put our guard pages, truncate the mapping at
3166 // that point by munmap()ping it.  This ensures that when we later
3167 // munmap() the guard pages we don't leave a hole in the stack
3168 // mapping. This only affects the main/primordial thread
3169 
3170 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3171   if (os::is_primordial_thread()) {
3172     // As we manually grow stack up to bottom inside create_attached_thread(),
3173     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3174     // we don't need to do anything special.
3175     // Check it first, before calling heavy function.
3176     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3177     unsigned char vec[1];
3178 
3179     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3180       // Fallback to slow path on all errors, including EAGAIN
3181       stack_extent = (uintptr_t) get_stack_commited_bottom(
3182                                                            os::Linux::initial_thread_stack_bottom(),
3183                                                            (size_t)addr - stack_extent);
3184     }
3185 
3186     if (stack_extent < (uintptr_t)addr) {
3187       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3188     }
3189   }
3190 
3191   return os::commit_memory(addr, size, !ExecMem);
3192 }
3193 
3194 // If this is a growable mapping, remove the guard pages entirely by
3195 // munmap()ping them.  If not, just call uncommit_memory(). This only
3196 // affects the main/primordial thread, but guard against future OS changes.
3197 // It's safe to always unmap guard pages for primordial thread because we
3198 // always place it right after end of the mapped region.
3199 
3200 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3201   uintptr_t stack_extent, stack_base;
3202 
3203   if (os::is_primordial_thread()) {
3204     return ::munmap(addr, size) == 0;
3205   }
3206 
3207   return os::uncommit_memory(addr, size);
3208 }
3209 
3210 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3211 // at 'requested_addr'. If there are existing memory mappings at the same
3212 // location, however, they will be overwritten. If 'fixed' is false,
3213 // 'requested_addr' is only treated as a hint, the return value may or
3214 // may not start from the requested address. Unlike Linux mmap(), this
3215 // function returns NULL to indicate failure.
3216 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3217   char * addr;
3218   int flags;
3219 
3220   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3221   if (fixed) {
3222     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3223     flags |= MAP_FIXED;
3224   }
3225 
3226   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3227   // touch an uncommitted page. Otherwise, the read/write might
3228   // succeed if we have enough swap space to back the physical page.
3229   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3230                        flags, -1, 0);
3231 
3232   return addr == MAP_FAILED ? NULL : addr;
3233 }
3234 
3235 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3236 //   (req_addr != NULL) or with a given alignment.
3237 //  - bytes shall be a multiple of alignment.
3238 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3239 //  - alignment sets the alignment at which memory shall be allocated.
3240 //     It must be a multiple of allocation granularity.
3241 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3242 //  req_addr or NULL.
3243 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3244 
3245   size_t extra_size = bytes;
3246   if (req_addr == NULL && alignment > 0) {
3247     extra_size += alignment;
3248   }
3249 
3250   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3251     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3252     -1, 0);
3253   if (start == MAP_FAILED) {
3254     start = NULL;
3255   } else {
3256     if (req_addr != NULL) {
3257       if (start != req_addr) {
3258         ::munmap(start, extra_size);
3259         start = NULL;
3260       }
3261     } else {
3262       char* const start_aligned = align_up(start, alignment);
3263       char* const end_aligned = start_aligned + bytes;
3264       char* const end = start + extra_size;
3265       if (start_aligned > start) {
3266         ::munmap(start, start_aligned - start);
3267       }
3268       if (end_aligned < end) {
3269         ::munmap(end_aligned, end - end_aligned);
3270       }
3271       start = start_aligned;
3272     }
3273   }
3274   return start;
3275 }
3276 
3277 static int anon_munmap(char * addr, size_t size) {
3278   return ::munmap(addr, size) == 0;
3279 }
3280 
3281 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3282                             size_t alignment_hint) {
3283   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3284 }
3285 
3286 bool os::pd_release_memory(char* addr, size_t size) {
3287   return anon_munmap(addr, size);
3288 }
3289 
3290 static bool linux_mprotect(char* addr, size_t size, int prot) {
3291   // Linux wants the mprotect address argument to be page aligned.
3292   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3293 
3294   // According to SUSv3, mprotect() should only be used with mappings
3295   // established by mmap(), and mmap() always maps whole pages. Unaligned
3296   // 'addr' likely indicates problem in the VM (e.g. trying to change
3297   // protection of malloc'ed or statically allocated memory). Check the
3298   // caller if you hit this assert.
3299   assert(addr == bottom, "sanity check");
3300 
3301   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3302   return ::mprotect(bottom, size, prot) == 0;
3303 }
3304 
3305 // Set protections specified
3306 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3307                         bool is_committed) {
3308   unsigned int p = 0;
3309   switch (prot) {
3310   case MEM_PROT_NONE: p = PROT_NONE; break;
3311   case MEM_PROT_READ: p = PROT_READ; break;
3312   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3313   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3314   default:
3315     ShouldNotReachHere();
3316   }
3317   // is_committed is unused.
3318   return linux_mprotect(addr, bytes, p);
3319 }
3320 
3321 bool os::guard_memory(char* addr, size_t size) {
3322   return linux_mprotect(addr, size, PROT_NONE);
3323 }
3324 
3325 bool os::unguard_memory(char* addr, size_t size) {
3326   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3327 }
3328 
3329 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3330                                                     size_t page_size) {
3331   bool result = false;
3332   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3333                  MAP_ANONYMOUS|MAP_PRIVATE,
3334                  -1, 0);
3335   if (p != MAP_FAILED) {
3336     void *aligned_p = align_up(p, page_size);
3337 
3338     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3339 
3340     munmap(p, page_size * 2);
3341   }
3342 
3343   if (warn && !result) {
3344     warning("TransparentHugePages is not supported by the operating system.");
3345   }
3346 
3347   return result;
3348 }
3349 
3350 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3351   bool result = false;
3352   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3353                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3354                  -1, 0);
3355 
3356   if (p != MAP_FAILED) {
3357     // We don't know if this really is a huge page or not.
3358     FILE *fp = fopen("/proc/self/maps", "r");
3359     if (fp) {
3360       while (!feof(fp)) {
3361         char chars[257];
3362         long x = 0;
3363         if (fgets(chars, sizeof(chars), fp)) {
3364           if (sscanf(chars, "%lx-%*x", &x) == 1
3365               && x == (long)p) {
3366             if (strstr (chars, "hugepage")) {
3367               result = true;
3368               break;
3369             }
3370           }
3371         }
3372       }
3373       fclose(fp);
3374     }
3375     munmap(p, page_size);
3376   }
3377 
3378   if (warn && !result) {
3379     warning("HugeTLBFS is not supported by the operating system.");
3380   }
3381 
3382   return result;
3383 }
3384 
3385 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3386 //
3387 // From the coredump_filter documentation:
3388 //
3389 // - (bit 0) anonymous private memory
3390 // - (bit 1) anonymous shared memory
3391 // - (bit 2) file-backed private memory
3392 // - (bit 3) file-backed shared memory
3393 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3394 //           effective only if the bit 2 is cleared)
3395 // - (bit 5) hugetlb private memory
3396 // - (bit 6) hugetlb shared memory
3397 // - (bit 7) dax private memory
3398 // - (bit 8) dax shared memory
3399 //
3400 static void set_coredump_filter(bool largepages, bool dax_shared) {
3401   FILE *f;
3402   long cdm;
3403   bool filter_changed = false;
3404 
3405   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3406     return;
3407   }
3408 
3409   if (fscanf(f, "%lx", &cdm) != 1) {
3410     fclose(f);
3411     return;
3412   }
3413 
3414   rewind(f);
3415 
3416   if (largepages && (cdm & LARGEPAGES_BIT) == 0) {
3417     cdm |= LARGEPAGES_BIT;
3418     filter_changed = true;
3419   }
3420   if (dax_shared && (cdm & DAX_SHARED_BIT) == 0) {
3421     cdm |= DAX_SHARED_BIT;
3422     filter_changed = true;
3423   }
3424   if (filter_changed) {
3425     fprintf(f, "%#lx", cdm);
3426   }
3427 
3428   fclose(f);
3429 }
3430 
3431 // Large page support
3432 
3433 static size_t _large_page_size = 0;
3434 
3435 size_t os::Linux::find_large_page_size() {
3436   size_t large_page_size = 0;
3437 
3438   // large_page_size on Linux is used to round up heap size. x86 uses either
3439   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3440   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3441   // page as large as 256M.
3442   //
3443   // Here we try to figure out page size by parsing /proc/meminfo and looking
3444   // for a line with the following format:
3445   //    Hugepagesize:     2048 kB
3446   //
3447   // If we can't determine the value (e.g. /proc is not mounted, or the text
3448   // format has been changed), we'll use the largest page size supported by
3449   // the processor.
3450 
3451 #ifndef ZERO
3452   large_page_size =
3453     AARCH64_ONLY(2 * M)
3454     AMD64_ONLY(2 * M)
3455     ARM32_ONLY(2 * M)
3456     IA32_ONLY(4 * M)
3457     IA64_ONLY(256 * M)
3458     PPC_ONLY(4 * M)
3459     S390_ONLY(1 * M)
3460     SPARC_ONLY(4 * M);
3461 #endif // ZERO
3462 
3463   FILE *fp = fopen("/proc/meminfo", "r");
3464   if (fp) {
3465     while (!feof(fp)) {
3466       int x = 0;
3467       char buf[16];
3468       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3469         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3470           large_page_size = x * K;
3471           break;
3472         }
3473       } else {
3474         // skip to next line
3475         for (;;) {
3476           int ch = fgetc(fp);
3477           if (ch == EOF || ch == (int)'\n') break;
3478         }
3479       }
3480     }
3481     fclose(fp);
3482   }
3483 
3484   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3485     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3486             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3487             proper_unit_for_byte_size(large_page_size));
3488   }
3489 
3490   return large_page_size;
3491 }
3492 
3493 size_t os::Linux::setup_large_page_size() {
3494   _large_page_size = Linux::find_large_page_size();
3495   const size_t default_page_size = (size_t)Linux::page_size();
3496   if (_large_page_size > default_page_size) {
3497     _page_sizes[0] = _large_page_size;
3498     _page_sizes[1] = default_page_size;
3499     _page_sizes[2] = 0;
3500   }
3501 
3502   return _large_page_size;
3503 }
3504 
3505 bool os::Linux::setup_large_page_type(size_t page_size) {
3506   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3507       FLAG_IS_DEFAULT(UseSHM) &&
3508       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3509 
3510     // The type of large pages has not been specified by the user.
3511 
3512     // Try UseHugeTLBFS and then UseSHM.
3513     UseHugeTLBFS = UseSHM = true;
3514 
3515     // Don't try UseTransparentHugePages since there are known
3516     // performance issues with it turned on. This might change in the future.
3517     UseTransparentHugePages = false;
3518   }
3519 
3520   if (UseTransparentHugePages) {
3521     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3522     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3523       UseHugeTLBFS = false;
3524       UseSHM = false;
3525       return true;
3526     }
3527     UseTransparentHugePages = false;
3528   }
3529 
3530   if (UseHugeTLBFS) {
3531     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3532     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3533       UseSHM = false;
3534       return true;
3535     }
3536     UseHugeTLBFS = false;
3537   }
3538 
3539   return UseSHM;
3540 }
3541 
3542 void os::large_page_init() {
3543   if (!UseLargePages &&
3544       !UseTransparentHugePages &&
3545       !UseHugeTLBFS &&
3546       !UseSHM) {
3547     // Not using large pages.
3548     return;
3549   }
3550 
3551   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3552     // The user explicitly turned off large pages.
3553     // Ignore the rest of the large pages flags.
3554     UseTransparentHugePages = false;
3555     UseHugeTLBFS = false;
3556     UseSHM = false;
3557     return;
3558   }
3559 
3560   size_t large_page_size = Linux::setup_large_page_size();
3561   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3562 
3563   set_coredump_filter(true /*largepages*/, false /*dax_shared*/);
3564 }
3565 
3566 #ifndef SHM_HUGETLB
3567   #define SHM_HUGETLB 04000
3568 #endif
3569 
3570 #define shm_warning_format(format, ...)              \
3571   do {                                               \
3572     if (UseLargePages &&                             \
3573         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3574          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3575          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3576       warning(format, __VA_ARGS__);                  \
3577     }                                                \
3578   } while (0)
3579 
3580 #define shm_warning(str) shm_warning_format("%s", str)
3581 
3582 #define shm_warning_with_errno(str)                \
3583   do {                                             \
3584     int err = errno;                               \
3585     shm_warning_format(str " (error = %d)", err);  \
3586   } while (0)
3587 
3588 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3589   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3590 
3591   if (!is_aligned(alignment, SHMLBA)) {
3592     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3593     return NULL;
3594   }
3595 
3596   // To ensure that we get 'alignment' aligned memory from shmat,
3597   // we pre-reserve aligned virtual memory and then attach to that.
3598 
3599   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3600   if (pre_reserved_addr == NULL) {
3601     // Couldn't pre-reserve aligned memory.
3602     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3603     return NULL;
3604   }
3605 
3606   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3607   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3608 
3609   if ((intptr_t)addr == -1) {
3610     int err = errno;
3611     shm_warning_with_errno("Failed to attach shared memory.");
3612 
3613     assert(err != EACCES, "Unexpected error");
3614     assert(err != EIDRM,  "Unexpected error");
3615     assert(err != EINVAL, "Unexpected error");
3616 
3617     // Since we don't know if the kernel unmapped the pre-reserved memory area
3618     // we can't unmap it, since that would potentially unmap memory that was
3619     // mapped from other threads.
3620     return NULL;
3621   }
3622 
3623   return addr;
3624 }
3625 
3626 static char* shmat_at_address(int shmid, char* req_addr) {
3627   if (!is_aligned(req_addr, SHMLBA)) {
3628     assert(false, "Requested address needs to be SHMLBA aligned");
3629     return NULL;
3630   }
3631 
3632   char* addr = (char*)shmat(shmid, req_addr, 0);
3633 
3634   if ((intptr_t)addr == -1) {
3635     shm_warning_with_errno("Failed to attach shared memory.");
3636     return NULL;
3637   }
3638 
3639   return addr;
3640 }
3641 
3642 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3643   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3644   if (req_addr != NULL) {
3645     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3646     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3647     return shmat_at_address(shmid, req_addr);
3648   }
3649 
3650   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3651   // return large page size aligned memory addresses when req_addr == NULL.
3652   // However, if the alignment is larger than the large page size, we have
3653   // to manually ensure that the memory returned is 'alignment' aligned.
3654   if (alignment > os::large_page_size()) {
3655     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3656     return shmat_with_alignment(shmid, bytes, alignment);
3657   } else {
3658     return shmat_at_address(shmid, NULL);
3659   }
3660 }
3661 
3662 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3663                                             char* req_addr, bool exec) {
3664   // "exec" is passed in but not used.  Creating the shared image for
3665   // the code cache doesn't have an SHM_X executable permission to check.
3666   assert(UseLargePages && UseSHM, "only for SHM large pages");
3667   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3668   assert(is_aligned(req_addr, alignment), "Unaligned address");
3669 
3670   if (!is_aligned(bytes, os::large_page_size())) {
3671     return NULL; // Fallback to small pages.
3672   }
3673 
3674   // Create a large shared memory region to attach to based on size.
3675   // Currently, size is the total size of the heap.
3676   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3677   if (shmid == -1) {
3678     // Possible reasons for shmget failure:
3679     // 1. shmmax is too small for Java heap.
3680     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3681     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3682     // 2. not enough large page memory.
3683     //    > check available large pages: cat /proc/meminfo
3684     //    > increase amount of large pages:
3685     //          echo new_value > /proc/sys/vm/nr_hugepages
3686     //      Note 1: different Linux may use different name for this property,
3687     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3688     //      Note 2: it's possible there's enough physical memory available but
3689     //            they are so fragmented after a long run that they can't
3690     //            coalesce into large pages. Try to reserve large pages when
3691     //            the system is still "fresh".
3692     shm_warning_with_errno("Failed to reserve shared memory.");
3693     return NULL;
3694   }
3695 
3696   // Attach to the region.
3697   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3698 
3699   // Remove shmid. If shmat() is successful, the actual shared memory segment
3700   // will be deleted when it's detached by shmdt() or when the process
3701   // terminates. If shmat() is not successful this will remove the shared
3702   // segment immediately.
3703   shmctl(shmid, IPC_RMID, NULL);
3704 
3705   return addr;
3706 }
3707 
3708 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3709                                         int error) {
3710   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3711 
3712   bool warn_on_failure = UseLargePages &&
3713       (!FLAG_IS_DEFAULT(UseLargePages) ||
3714        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3715        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3716 
3717   if (warn_on_failure) {
3718     char msg[128];
3719     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3720                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3721     warning("%s", msg);
3722   }
3723 }
3724 
3725 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3726                                                         char* req_addr,
3727                                                         bool exec) {
3728   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3729   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
3730   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3731 
3732   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3733   char* addr = (char*)::mmap(req_addr, bytes, prot,
3734                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3735                              -1, 0);
3736 
3737   if (addr == MAP_FAILED) {
3738     warn_on_large_pages_failure(req_addr, bytes, errno);
3739     return NULL;
3740   }
3741 
3742   assert(is_aligned(addr, os::large_page_size()), "Must be");
3743 
3744   return addr;
3745 }
3746 
3747 // Reserve memory using mmap(MAP_HUGETLB).
3748 //  - bytes shall be a multiple of alignment.
3749 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3750 //  - alignment sets the alignment at which memory shall be allocated.
3751 //     It must be a multiple of allocation granularity.
3752 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3753 //  req_addr or NULL.
3754 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3755                                                          size_t alignment,
3756                                                          char* req_addr,
3757                                                          bool exec) {
3758   size_t large_page_size = os::large_page_size();
3759   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3760 
3761   assert(is_aligned(req_addr, alignment), "Must be");
3762   assert(is_aligned(bytes, alignment), "Must be");
3763 
3764   // First reserve - but not commit - the address range in small pages.
3765   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3766 
3767   if (start == NULL) {
3768     return NULL;
3769   }
3770 
3771   assert(is_aligned(start, alignment), "Must be");
3772 
3773   char* end = start + bytes;
3774 
3775   // Find the regions of the allocated chunk that can be promoted to large pages.
3776   char* lp_start = align_up(start, large_page_size);
3777   char* lp_end   = align_down(end, large_page_size);
3778 
3779   size_t lp_bytes = lp_end - lp_start;
3780 
3781   assert(is_aligned(lp_bytes, large_page_size), "Must be");
3782 
3783   if (lp_bytes == 0) {
3784     // The mapped region doesn't even span the start and the end of a large page.
3785     // Fall back to allocate a non-special area.
3786     ::munmap(start, end - start);
3787     return NULL;
3788   }
3789 
3790   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3791 
3792   void* result;
3793 
3794   // Commit small-paged leading area.
3795   if (start != lp_start) {
3796     result = ::mmap(start, lp_start - start, prot,
3797                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3798                     -1, 0);
3799     if (result == MAP_FAILED) {
3800       ::munmap(lp_start, end - lp_start);
3801       return NULL;
3802     }
3803   }
3804 
3805   // Commit large-paged area.
3806   result = ::mmap(lp_start, lp_bytes, prot,
3807                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3808                   -1, 0);
3809   if (result == MAP_FAILED) {
3810     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3811     // If the mmap above fails, the large pages region will be unmapped and we
3812     // have regions before and after with small pages. Release these regions.
3813     //
3814     // |  mapped  |  unmapped  |  mapped  |
3815     // ^          ^            ^          ^
3816     // start      lp_start     lp_end     end
3817     //
3818     ::munmap(start, lp_start - start);
3819     ::munmap(lp_end, end - lp_end);
3820     return NULL;
3821   }
3822 
3823   // Commit small-paged trailing area.
3824   if (lp_end != end) {
3825     result = ::mmap(lp_end, end - lp_end, prot,
3826                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3827                     -1, 0);
3828     if (result == MAP_FAILED) {
3829       ::munmap(start, lp_end - start);
3830       return NULL;
3831     }
3832   }
3833 
3834   return start;
3835 }
3836 
3837 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3838                                                    size_t alignment,
3839                                                    char* req_addr,
3840                                                    bool exec) {
3841   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3842   assert(is_aligned(req_addr, alignment), "Must be");
3843   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3844   assert(is_power_of_2(os::large_page_size()), "Must be");
3845   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3846 
3847   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3848     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3849   } else {
3850     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3851   }
3852 }
3853 
3854 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3855                                  char* req_addr, bool exec) {
3856   assert(UseLargePages, "only for large pages");
3857 
3858   char* addr;
3859   if (UseSHM) {
3860     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3861   } else {
3862     assert(UseHugeTLBFS, "must be");
3863     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3864   }
3865 
3866   if (addr != NULL) {
3867     if (UseNUMAInterleaving) {
3868       numa_make_global(addr, bytes);
3869     }
3870 
3871     // The memory is committed
3872     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3873   }
3874 
3875   return addr;
3876 }
3877 
3878 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3879   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3880   return shmdt(base) == 0;
3881 }
3882 
3883 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3884   return pd_release_memory(base, bytes);
3885 }
3886 
3887 bool os::release_memory_special(char* base, size_t bytes) {
3888   bool res;
3889   if (MemTracker::tracking_level() > NMT_minimal) {
3890     Tracker tkr(Tracker::release);
3891     res = os::Linux::release_memory_special_impl(base, bytes);
3892     if (res) {
3893       tkr.record((address)base, bytes);
3894     }
3895 
3896   } else {
3897     res = os::Linux::release_memory_special_impl(base, bytes);
3898   }
3899   return res;
3900 }
3901 
3902 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3903   assert(UseLargePages, "only for large pages");
3904   bool res;
3905 
3906   if (UseSHM) {
3907     res = os::Linux::release_memory_special_shm(base, bytes);
3908   } else {
3909     assert(UseHugeTLBFS, "must be");
3910     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3911   }
3912   return res;
3913 }
3914 
3915 size_t os::large_page_size() {
3916   return _large_page_size;
3917 }
3918 
3919 // With SysV SHM the entire memory region must be allocated as shared
3920 // memory.
3921 // HugeTLBFS allows application to commit large page memory on demand.
3922 // However, when committing memory with HugeTLBFS fails, the region
3923 // that was supposed to be committed will lose the old reservation
3924 // and allow other threads to steal that memory region. Because of this
3925 // behavior we can't commit HugeTLBFS memory.
3926 bool os::can_commit_large_page_memory() {
3927   return UseTransparentHugePages;
3928 }
3929 
3930 bool os::can_execute_large_page_memory() {
3931   return UseTransparentHugePages || UseHugeTLBFS;
3932 }
3933 
3934 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
3935   assert(file_desc >= 0, "file_desc is not valid");
3936   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
3937   if (result != NULL) {
3938     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
3939       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
3940     }
3941   }
3942   return result;
3943 }
3944 
3945 // Reserve memory at an arbitrary address, only if that area is
3946 // available (and not reserved for something else).
3947 
3948 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3949   const int max_tries = 10;
3950   char* base[max_tries];
3951   size_t size[max_tries];
3952   const size_t gap = 0x000000;
3953 
3954   // Assert only that the size is a multiple of the page size, since
3955   // that's all that mmap requires, and since that's all we really know
3956   // about at this low abstraction level.  If we need higher alignment,
3957   // we can either pass an alignment to this method or verify alignment
3958   // in one of the methods further up the call chain.  See bug 5044738.
3959   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3960 
3961   // Repeatedly allocate blocks until the block is allocated at the
3962   // right spot.
3963 
3964   // Linux mmap allows caller to pass an address as hint; give it a try first,
3965   // if kernel honors the hint then we can return immediately.
3966   char * addr = anon_mmap(requested_addr, bytes, false);
3967   if (addr == requested_addr) {
3968     return requested_addr;
3969   }
3970 
3971   if (addr != NULL) {
3972     // mmap() is successful but it fails to reserve at the requested address
3973     anon_munmap(addr, bytes);
3974   }
3975 
3976   int i;
3977   for (i = 0; i < max_tries; ++i) {
3978     base[i] = reserve_memory(bytes);
3979 
3980     if (base[i] != NULL) {
3981       // Is this the block we wanted?
3982       if (base[i] == requested_addr) {
3983         size[i] = bytes;
3984         break;
3985       }
3986 
3987       // Does this overlap the block we wanted? Give back the overlapped
3988       // parts and try again.
3989 
3990       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3991       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3992         unmap_memory(base[i], top_overlap);
3993         base[i] += top_overlap;
3994         size[i] = bytes - top_overlap;
3995       } else {
3996         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3997         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3998           unmap_memory(requested_addr, bottom_overlap);
3999           size[i] = bytes - bottom_overlap;
4000         } else {
4001           size[i] = bytes;
4002         }
4003       }
4004     }
4005   }
4006 
4007   // Give back the unused reserved pieces.
4008 
4009   for (int j = 0; j < i; ++j) {
4010     if (base[j] != NULL) {
4011       unmap_memory(base[j], size[j]);
4012     }
4013   }
4014 
4015   if (i < max_tries) {
4016     return requested_addr;
4017   } else {
4018     return NULL;
4019   }
4020 }
4021 
4022 size_t os::read(int fd, void *buf, unsigned int nBytes) {
4023   return ::read(fd, buf, nBytes);
4024 }
4025 
4026 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4027   return ::pread(fd, buf, nBytes, offset);
4028 }
4029 
4030 // Short sleep, direct OS call.
4031 //
4032 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
4033 // sched_yield(2) will actually give up the CPU:
4034 //
4035 //   * Alone on this pariticular CPU, keeps running.
4036 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
4037 //     (pre 2.6.39).
4038 //
4039 // So calling this with 0 is an alternative.
4040 //
4041 void os::naked_short_sleep(jlong ms) {
4042   struct timespec req;
4043 
4044   assert(ms < 1000, "Un-interruptable sleep, short time use only");
4045   req.tv_sec = 0;
4046   if (ms > 0) {
4047     req.tv_nsec = (ms % 1000) * 1000000;
4048   } else {
4049     req.tv_nsec = 1;
4050   }
4051 
4052   nanosleep(&req, NULL);
4053 
4054   return;
4055 }
4056 
4057 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4058 void os::infinite_sleep() {
4059   while (true) {    // sleep forever ...
4060     ::sleep(100);   // ... 100 seconds at a time
4061   }
4062 }
4063 
4064 // Used to convert frequent JVM_Yield() to nops
4065 bool os::dont_yield() {
4066   return DontYieldALot;
4067 }
4068 
4069 void os::naked_yield() {
4070   sched_yield();
4071 }
4072 
4073 ////////////////////////////////////////////////////////////////////////////////
4074 // thread priority support
4075 
4076 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4077 // only supports dynamic priority, static priority must be zero. For real-time
4078 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4079 // However, for large multi-threaded applications, SCHED_RR is not only slower
4080 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4081 // of 5 runs - Sep 2005).
4082 //
4083 // The following code actually changes the niceness of kernel-thread/LWP. It
4084 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4085 // not the entire user process, and user level threads are 1:1 mapped to kernel
4086 // threads. It has always been the case, but could change in the future. For
4087 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4088 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
4089 
4090 int os::java_to_os_priority[CriticalPriority + 1] = {
4091   19,              // 0 Entry should never be used
4092 
4093    4,              // 1 MinPriority
4094    3,              // 2
4095    2,              // 3
4096 
4097    1,              // 4
4098    0,              // 5 NormPriority
4099   -1,              // 6
4100 
4101   -2,              // 7
4102   -3,              // 8
4103   -4,              // 9 NearMaxPriority
4104 
4105   -5,              // 10 MaxPriority
4106 
4107   -5               // 11 CriticalPriority
4108 };
4109 
4110 static int prio_init() {
4111   if (ThreadPriorityPolicy == 1) {
4112     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
4113     // if effective uid is not root. Perhaps, a more elegant way of doing
4114     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
4115     if (geteuid() != 0) {
4116       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4117         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
4118       }
4119       ThreadPriorityPolicy = 0;
4120     }
4121   }
4122   if (UseCriticalJavaThreadPriority) {
4123     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4124   }
4125   return 0;
4126 }
4127 
4128 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4129   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4130 
4131   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4132   return (ret == 0) ? OS_OK : OS_ERR;
4133 }
4134 
4135 OSReturn os::get_native_priority(const Thread* const thread,
4136                                  int *priority_ptr) {
4137   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4138     *priority_ptr = java_to_os_priority[NormPriority];
4139     return OS_OK;
4140   }
4141 
4142   errno = 0;
4143   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4144   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4145 }
4146 
4147 ////////////////////////////////////////////////////////////////////////////////
4148 // suspend/resume support
4149 
4150 //  The low-level signal-based suspend/resume support is a remnant from the
4151 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4152 //  within hotspot. Currently used by JFR's OSThreadSampler
4153 //
4154 //  The remaining code is greatly simplified from the more general suspension
4155 //  code that used to be used.
4156 //
4157 //  The protocol is quite simple:
4158 //  - suspend:
4159 //      - sends a signal to the target thread
4160 //      - polls the suspend state of the osthread using a yield loop
4161 //      - target thread signal handler (SR_handler) sets suspend state
4162 //        and blocks in sigsuspend until continued
4163 //  - resume:
4164 //      - sets target osthread state to continue
4165 //      - sends signal to end the sigsuspend loop in the SR_handler
4166 //
4167 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4168 //  but is checked for NULL in SR_handler as a thread termination indicator.
4169 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4170 //
4171 //  Note that resume_clear_context() and suspend_save_context() are needed
4172 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4173 //  which in part is used by:
4174 //    - Forte Analyzer: AsyncGetCallTrace()
4175 //    - StackBanging: get_frame_at_stack_banging_point()
4176 
4177 static void resume_clear_context(OSThread *osthread) {
4178   osthread->set_ucontext(NULL);
4179   osthread->set_siginfo(NULL);
4180 }
4181 
4182 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4183                                  ucontext_t* context) {
4184   osthread->set_ucontext(context);
4185   osthread->set_siginfo(siginfo);
4186 }
4187 
4188 // Handler function invoked when a thread's execution is suspended or
4189 // resumed. We have to be careful that only async-safe functions are
4190 // called here (Note: most pthread functions are not async safe and
4191 // should be avoided.)
4192 //
4193 // Note: sigwait() is a more natural fit than sigsuspend() from an
4194 // interface point of view, but sigwait() prevents the signal hander
4195 // from being run. libpthread would get very confused by not having
4196 // its signal handlers run and prevents sigwait()'s use with the
4197 // mutex granting granting signal.
4198 //
4199 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4200 //
4201 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4202   // Save and restore errno to avoid confusing native code with EINTR
4203   // after sigsuspend.
4204   int old_errno = errno;
4205 
4206   Thread* thread = Thread::current_or_null_safe();
4207   assert(thread != NULL, "Missing current thread in SR_handler");
4208 
4209   // On some systems we have seen signal delivery get "stuck" until the signal
4210   // mask is changed as part of thread termination. Check that the current thread
4211   // has not already terminated (via SR_lock()) - else the following assertion
4212   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4213   // destructor has completed.
4214 
4215   if (thread->SR_lock() == NULL) {
4216     return;
4217   }
4218 
4219   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4220 
4221   OSThread* osthread = thread->osthread();
4222 
4223   os::SuspendResume::State current = osthread->sr.state();
4224   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4225     suspend_save_context(osthread, siginfo, context);
4226 
4227     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4228     os::SuspendResume::State state = osthread->sr.suspended();
4229     if (state == os::SuspendResume::SR_SUSPENDED) {
4230       sigset_t suspend_set;  // signals for sigsuspend()
4231       sigemptyset(&suspend_set);
4232       // get current set of blocked signals and unblock resume signal
4233       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4234       sigdelset(&suspend_set, SR_signum);
4235 
4236       sr_semaphore.signal();
4237       // wait here until we are resumed
4238       while (1) {
4239         sigsuspend(&suspend_set);
4240 
4241         os::SuspendResume::State result = osthread->sr.running();
4242         if (result == os::SuspendResume::SR_RUNNING) {
4243           sr_semaphore.signal();
4244           break;
4245         }
4246       }
4247 
4248     } else if (state == os::SuspendResume::SR_RUNNING) {
4249       // request was cancelled, continue
4250     } else {
4251       ShouldNotReachHere();
4252     }
4253 
4254     resume_clear_context(osthread);
4255   } else if (current == os::SuspendResume::SR_RUNNING) {
4256     // request was cancelled, continue
4257   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4258     // ignore
4259   } else {
4260     // ignore
4261   }
4262 
4263   errno = old_errno;
4264 }
4265 
4266 static int SR_initialize() {
4267   struct sigaction act;
4268   char *s;
4269 
4270   // Get signal number to use for suspend/resume
4271   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4272     int sig = ::strtol(s, 0, 10);
4273     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4274         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4275       SR_signum = sig;
4276     } else {
4277       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4278               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4279     }
4280   }
4281 
4282   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4283          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4284 
4285   sigemptyset(&SR_sigset);
4286   sigaddset(&SR_sigset, SR_signum);
4287 
4288   // Set up signal handler for suspend/resume
4289   act.sa_flags = SA_RESTART|SA_SIGINFO;
4290   act.sa_handler = (void (*)(int)) SR_handler;
4291 
4292   // SR_signum is blocked by default.
4293   // 4528190 - We also need to block pthread restart signal (32 on all
4294   // supported Linux platforms). Note that LinuxThreads need to block
4295   // this signal for all threads to work properly. So we don't have
4296   // to use hard-coded signal number when setting up the mask.
4297   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4298 
4299   if (sigaction(SR_signum, &act, 0) == -1) {
4300     return -1;
4301   }
4302 
4303   // Save signal flag
4304   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4305   return 0;
4306 }
4307 
4308 static int sr_notify(OSThread* osthread) {
4309   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4310   assert_status(status == 0, status, "pthread_kill");
4311   return status;
4312 }
4313 
4314 // "Randomly" selected value for how long we want to spin
4315 // before bailing out on suspending a thread, also how often
4316 // we send a signal to a thread we want to resume
4317 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4318 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4319 
4320 // returns true on success and false on error - really an error is fatal
4321 // but this seems the normal response to library errors
4322 static bool do_suspend(OSThread* osthread) {
4323   assert(osthread->sr.is_running(), "thread should be running");
4324   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4325 
4326   // mark as suspended and send signal
4327   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4328     // failed to switch, state wasn't running?
4329     ShouldNotReachHere();
4330     return false;
4331   }
4332 
4333   if (sr_notify(osthread) != 0) {
4334     ShouldNotReachHere();
4335   }
4336 
4337   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4338   while (true) {
4339     if (sr_semaphore.timedwait(create_semaphore_timespec(0, 2 * NANOSECS_PER_MILLISEC))) {
4340       break;
4341     } else {
4342       // timeout
4343       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4344       if (cancelled == os::SuspendResume::SR_RUNNING) {
4345         return false;
4346       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4347         // make sure that we consume the signal on the semaphore as well
4348         sr_semaphore.wait();
4349         break;
4350       } else {
4351         ShouldNotReachHere();
4352         return false;
4353       }
4354     }
4355   }
4356 
4357   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4358   return true;
4359 }
4360 
4361 static void do_resume(OSThread* osthread) {
4362   assert(osthread->sr.is_suspended(), "thread should be suspended");
4363   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4364 
4365   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4366     // failed to switch to WAKEUP_REQUEST
4367     ShouldNotReachHere();
4368     return;
4369   }
4370 
4371   while (true) {
4372     if (sr_notify(osthread) == 0) {
4373       if (sr_semaphore.timedwait(create_semaphore_timespec(0, 2 * NANOSECS_PER_MILLISEC))) {
4374         if (osthread->sr.is_running()) {
4375           return;
4376         }
4377       }
4378     } else {
4379       ShouldNotReachHere();
4380     }
4381   }
4382 
4383   guarantee(osthread->sr.is_running(), "Must be running!");
4384 }
4385 
4386 ///////////////////////////////////////////////////////////////////////////////////
4387 // signal handling (except suspend/resume)
4388 
4389 // This routine may be used by user applications as a "hook" to catch signals.
4390 // The user-defined signal handler must pass unrecognized signals to this
4391 // routine, and if it returns true (non-zero), then the signal handler must
4392 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4393 // routine will never retun false (zero), but instead will execute a VM panic
4394 // routine kill the process.
4395 //
4396 // If this routine returns false, it is OK to call it again.  This allows
4397 // the user-defined signal handler to perform checks either before or after
4398 // the VM performs its own checks.  Naturally, the user code would be making
4399 // a serious error if it tried to handle an exception (such as a null check
4400 // or breakpoint) that the VM was generating for its own correct operation.
4401 //
4402 // This routine may recognize any of the following kinds of signals:
4403 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4404 // It should be consulted by handlers for any of those signals.
4405 //
4406 // The caller of this routine must pass in the three arguments supplied
4407 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4408 // field of the structure passed to sigaction().  This routine assumes that
4409 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4410 //
4411 // Note that the VM will print warnings if it detects conflicting signal
4412 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4413 //
4414 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4415                                                  siginfo_t* siginfo,
4416                                                  void* ucontext,
4417                                                  int abort_if_unrecognized);
4418 
4419 static void signalHandler(int sig, siginfo_t* info, void* uc) {
4420   assert(info != NULL && uc != NULL, "it must be old kernel");
4421   int orig_errno = errno;  // Preserve errno value over signal handler.
4422   JVM_handle_linux_signal(sig, info, uc, true);
4423   errno = orig_errno;
4424 }
4425 
4426 
4427 // This boolean allows users to forward their own non-matching signals
4428 // to JVM_handle_linux_signal, harmlessly.
4429 bool os::Linux::signal_handlers_are_installed = false;
4430 
4431 // For signal-chaining
4432 struct sigaction sigact[NSIG];
4433 uint64_t sigs = 0;
4434 #if (64 < NSIG-1)
4435 #error "Not all signals can be encoded in sigs. Adapt its type!"
4436 #endif
4437 bool os::Linux::libjsig_is_loaded = false;
4438 typedef struct sigaction *(*get_signal_t)(int);
4439 get_signal_t os::Linux::get_signal_action = NULL;
4440 
4441 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4442   struct sigaction *actp = NULL;
4443 
4444   if (libjsig_is_loaded) {
4445     // Retrieve the old signal handler from libjsig
4446     actp = (*get_signal_action)(sig);
4447   }
4448   if (actp == NULL) {
4449     // Retrieve the preinstalled signal handler from jvm
4450     actp = get_preinstalled_handler(sig);
4451   }
4452 
4453   return actp;
4454 }
4455 
4456 static bool call_chained_handler(struct sigaction *actp, int sig,
4457                                  siginfo_t *siginfo, void *context) {
4458   // Call the old signal handler
4459   if (actp->sa_handler == SIG_DFL) {
4460     // It's more reasonable to let jvm treat it as an unexpected exception
4461     // instead of taking the default action.
4462     return false;
4463   } else if (actp->sa_handler != SIG_IGN) {
4464     if ((actp->sa_flags & SA_NODEFER) == 0) {
4465       // automaticlly block the signal
4466       sigaddset(&(actp->sa_mask), sig);
4467     }
4468 
4469     sa_handler_t hand = NULL;
4470     sa_sigaction_t sa = NULL;
4471     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4472     // retrieve the chained handler
4473     if (siginfo_flag_set) {
4474       sa = actp->sa_sigaction;
4475     } else {
4476       hand = actp->sa_handler;
4477     }
4478 
4479     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4480       actp->sa_handler = SIG_DFL;
4481     }
4482 
4483     // try to honor the signal mask
4484     sigset_t oset;
4485     sigemptyset(&oset);
4486     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4487 
4488     // call into the chained handler
4489     if (siginfo_flag_set) {
4490       (*sa)(sig, siginfo, context);
4491     } else {
4492       (*hand)(sig);
4493     }
4494 
4495     // restore the signal mask
4496     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4497   }
4498   // Tell jvm's signal handler the signal is taken care of.
4499   return true;
4500 }
4501 
4502 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4503   bool chained = false;
4504   // signal-chaining
4505   if (UseSignalChaining) {
4506     struct sigaction *actp = get_chained_signal_action(sig);
4507     if (actp != NULL) {
4508       chained = call_chained_handler(actp, sig, siginfo, context);
4509     }
4510   }
4511   return chained;
4512 }
4513 
4514 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4515   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4516     return &sigact[sig];
4517   }
4518   return NULL;
4519 }
4520 
4521 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4522   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4523   sigact[sig] = oldAct;
4524   sigs |= (uint64_t)1 << (sig-1);
4525 }
4526 
4527 // for diagnostic
4528 int sigflags[NSIG];
4529 
4530 int os::Linux::get_our_sigflags(int sig) {
4531   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4532   return sigflags[sig];
4533 }
4534 
4535 void os::Linux::set_our_sigflags(int sig, int flags) {
4536   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4537   if (sig > 0 && sig < NSIG) {
4538     sigflags[sig] = flags;
4539   }
4540 }
4541 
4542 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4543   // Check for overwrite.
4544   struct sigaction oldAct;
4545   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4546 
4547   void* oldhand = oldAct.sa_sigaction
4548                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4549                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4550   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4551       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4552       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4553     if (AllowUserSignalHandlers || !set_installed) {
4554       // Do not overwrite; user takes responsibility to forward to us.
4555       return;
4556     } else if (UseSignalChaining) {
4557       // save the old handler in jvm
4558       save_preinstalled_handler(sig, oldAct);
4559       // libjsig also interposes the sigaction() call below and saves the
4560       // old sigaction on it own.
4561     } else {
4562       fatal("Encountered unexpected pre-existing sigaction handler "
4563             "%#lx for signal %d.", (long)oldhand, sig);
4564     }
4565   }
4566 
4567   struct sigaction sigAct;
4568   sigfillset(&(sigAct.sa_mask));
4569   sigAct.sa_handler = SIG_DFL;
4570   if (!set_installed) {
4571     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4572   } else {
4573     sigAct.sa_sigaction = signalHandler;
4574     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4575   }
4576   // Save flags, which are set by ours
4577   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4578   sigflags[sig] = sigAct.sa_flags;
4579 
4580   int ret = sigaction(sig, &sigAct, &oldAct);
4581   assert(ret == 0, "check");
4582 
4583   void* oldhand2  = oldAct.sa_sigaction
4584                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4585                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4586   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4587 }
4588 
4589 // install signal handlers for signals that HotSpot needs to
4590 // handle in order to support Java-level exception handling.
4591 
4592 void os::Linux::install_signal_handlers() {
4593   if (!signal_handlers_are_installed) {
4594     signal_handlers_are_installed = true;
4595 
4596     // signal-chaining
4597     typedef void (*signal_setting_t)();
4598     signal_setting_t begin_signal_setting = NULL;
4599     signal_setting_t end_signal_setting = NULL;
4600     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4601                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4602     if (begin_signal_setting != NULL) {
4603       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4604                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4605       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4606                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4607       libjsig_is_loaded = true;
4608       assert(UseSignalChaining, "should enable signal-chaining");
4609     }
4610     if (libjsig_is_loaded) {
4611       // Tell libjsig jvm is setting signal handlers
4612       (*begin_signal_setting)();
4613     }
4614 
4615     set_signal_handler(SIGSEGV, true);
4616     set_signal_handler(SIGPIPE, true);
4617     set_signal_handler(SIGBUS, true);
4618     set_signal_handler(SIGILL, true);
4619     set_signal_handler(SIGFPE, true);
4620 #if defined(PPC64)
4621     set_signal_handler(SIGTRAP, true);
4622 #endif
4623     set_signal_handler(SIGXFSZ, true);
4624 
4625     if (libjsig_is_loaded) {
4626       // Tell libjsig jvm finishes setting signal handlers
4627       (*end_signal_setting)();
4628     }
4629 
4630     // We don't activate signal checker if libjsig is in place, we trust ourselves
4631     // and if UserSignalHandler is installed all bets are off.
4632     // Log that signal checking is off only if -verbose:jni is specified.
4633     if (CheckJNICalls) {
4634       if (libjsig_is_loaded) {
4635         if (PrintJNIResolving) {
4636           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4637         }
4638         check_signals = false;
4639       }
4640       if (AllowUserSignalHandlers) {
4641         if (PrintJNIResolving) {
4642           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4643         }
4644         check_signals = false;
4645       }
4646     }
4647   }
4648 }
4649 
4650 // This is the fastest way to get thread cpu time on Linux.
4651 // Returns cpu time (user+sys) for any thread, not only for current.
4652 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4653 // It might work on 2.6.10+ with a special kernel/glibc patch.
4654 // For reference, please, see IEEE Std 1003.1-2004:
4655 //   http://www.unix.org/single_unix_specification
4656 
4657 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4658   struct timespec tp;
4659   int rc = os::Posix::clock_gettime(clockid, &tp);
4660   assert(rc == 0, "clock_gettime is expected to return 0 code");
4661 
4662   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4663 }
4664 
4665 void os::Linux::initialize_os_info() {
4666   assert(_os_version == 0, "OS info already initialized");
4667 
4668   struct utsname _uname;
4669 
4670   uint32_t major;
4671   uint32_t minor;
4672   uint32_t fix;
4673 
4674   int rc;
4675 
4676   // Kernel version is unknown if
4677   // verification below fails.
4678   _os_version = 0x01000000;
4679 
4680   rc = uname(&_uname);
4681   if (rc != -1) {
4682 
4683     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4684     if (rc == 3) {
4685 
4686       if (major < 256 && minor < 256 && fix < 256) {
4687         // Kernel version format is as expected,
4688         // set it overriding unknown state.
4689         _os_version = (major << 16) |
4690                       (minor << 8 ) |
4691                       (fix   << 0 ) ;
4692       }
4693     }
4694   }
4695 }
4696 
4697 uint32_t os::Linux::os_version() {
4698   assert(_os_version != 0, "not initialized");
4699   return _os_version & 0x00FFFFFF;
4700 }
4701 
4702 bool os::Linux::os_version_is_known() {
4703   assert(_os_version != 0, "not initialized");
4704   return _os_version & 0x01000000 ? false : true;
4705 }
4706 
4707 /////
4708 // glibc on Linux platform uses non-documented flag
4709 // to indicate, that some special sort of signal
4710 // trampoline is used.
4711 // We will never set this flag, and we should
4712 // ignore this flag in our diagnostic
4713 #ifdef SIGNIFICANT_SIGNAL_MASK
4714   #undef SIGNIFICANT_SIGNAL_MASK
4715 #endif
4716 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4717 
4718 static const char* get_signal_handler_name(address handler,
4719                                            char* buf, int buflen) {
4720   int offset = 0;
4721   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4722   if (found) {
4723     // skip directory names
4724     const char *p1, *p2;
4725     p1 = buf;
4726     size_t len = strlen(os::file_separator());
4727     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4728     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4729   } else {
4730     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4731   }
4732   return buf;
4733 }
4734 
4735 static void print_signal_handler(outputStream* st, int sig,
4736                                  char* buf, size_t buflen) {
4737   struct sigaction sa;
4738 
4739   sigaction(sig, NULL, &sa);
4740 
4741   // See comment for SIGNIFICANT_SIGNAL_MASK define
4742   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4743 
4744   st->print("%s: ", os::exception_name(sig, buf, buflen));
4745 
4746   address handler = (sa.sa_flags & SA_SIGINFO)
4747     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4748     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4749 
4750   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4751     st->print("SIG_DFL");
4752   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4753     st->print("SIG_IGN");
4754   } else {
4755     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4756   }
4757 
4758   st->print(", sa_mask[0]=");
4759   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4760 
4761   address rh = VMError::get_resetted_sighandler(sig);
4762   // May be, handler was resetted by VMError?
4763   if (rh != NULL) {
4764     handler = rh;
4765     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4766   }
4767 
4768   st->print(", sa_flags=");
4769   os::Posix::print_sa_flags(st, sa.sa_flags);
4770 
4771   // Check: is it our handler?
4772   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4773       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4774     // It is our signal handler
4775     // check for flags, reset system-used one!
4776     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4777       st->print(
4778                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4779                 os::Linux::get_our_sigflags(sig));
4780     }
4781   }
4782   st->cr();
4783 }
4784 
4785 
4786 #define DO_SIGNAL_CHECK(sig)                      \
4787   do {                                            \
4788     if (!sigismember(&check_signal_done, sig)) {  \
4789       os::Linux::check_signal_handler(sig);       \
4790     }                                             \
4791   } while (0)
4792 
4793 // This method is a periodic task to check for misbehaving JNI applications
4794 // under CheckJNI, we can add any periodic checks here
4795 
4796 void os::run_periodic_checks() {
4797   if (check_signals == false) return;
4798 
4799   // SEGV and BUS if overridden could potentially prevent
4800   // generation of hs*.log in the event of a crash, debugging
4801   // such a case can be very challenging, so we absolutely
4802   // check the following for a good measure:
4803   DO_SIGNAL_CHECK(SIGSEGV);
4804   DO_SIGNAL_CHECK(SIGILL);
4805   DO_SIGNAL_CHECK(SIGFPE);
4806   DO_SIGNAL_CHECK(SIGBUS);
4807   DO_SIGNAL_CHECK(SIGPIPE);
4808   DO_SIGNAL_CHECK(SIGXFSZ);
4809 #if defined(PPC64)
4810   DO_SIGNAL_CHECK(SIGTRAP);
4811 #endif
4812 
4813   // ReduceSignalUsage allows the user to override these handlers
4814   // see comments at the very top and jvm_md.h
4815   if (!ReduceSignalUsage) {
4816     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4817     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4818     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4819     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4820   }
4821 
4822   DO_SIGNAL_CHECK(SR_signum);
4823 }
4824 
4825 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4826 
4827 static os_sigaction_t os_sigaction = NULL;
4828 
4829 void os::Linux::check_signal_handler(int sig) {
4830   char buf[O_BUFLEN];
4831   address jvmHandler = NULL;
4832 
4833 
4834   struct sigaction act;
4835   if (os_sigaction == NULL) {
4836     // only trust the default sigaction, in case it has been interposed
4837     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4838     if (os_sigaction == NULL) return;
4839   }
4840 
4841   os_sigaction(sig, (struct sigaction*)NULL, &act);
4842 
4843 
4844   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4845 
4846   address thisHandler = (act.sa_flags & SA_SIGINFO)
4847     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4848     : CAST_FROM_FN_PTR(address, act.sa_handler);
4849 
4850 
4851   switch (sig) {
4852   case SIGSEGV:
4853   case SIGBUS:
4854   case SIGFPE:
4855   case SIGPIPE:
4856   case SIGILL:
4857   case SIGXFSZ:
4858     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4859     break;
4860 
4861   case SHUTDOWN1_SIGNAL:
4862   case SHUTDOWN2_SIGNAL:
4863   case SHUTDOWN3_SIGNAL:
4864   case BREAK_SIGNAL:
4865     jvmHandler = (address)user_handler();
4866     break;
4867 
4868   default:
4869     if (sig == SR_signum) {
4870       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4871     } else {
4872       return;
4873     }
4874     break;
4875   }
4876 
4877   if (thisHandler != jvmHandler) {
4878     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4879     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4880     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4881     // No need to check this sig any longer
4882     sigaddset(&check_signal_done, sig);
4883     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4884     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4885       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4886                     exception_name(sig, buf, O_BUFLEN));
4887     }
4888   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4889     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4890     tty->print("expected:");
4891     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4892     tty->cr();
4893     tty->print("  found:");
4894     os::Posix::print_sa_flags(tty, act.sa_flags);
4895     tty->cr();
4896     // No need to check this sig any longer
4897     sigaddset(&check_signal_done, sig);
4898   }
4899 
4900   // Dump all the signal
4901   if (sigismember(&check_signal_done, sig)) {
4902     print_signal_handlers(tty, buf, O_BUFLEN);
4903   }
4904 }
4905 
4906 extern void report_error(char* file_name, int line_no, char* title,
4907                          char* format, ...);
4908 
4909 // this is called _before_ most of the global arguments have been parsed
4910 void os::init(void) {
4911   char dummy;   // used to get a guess on initial stack address
4912 
4913   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4914 
4915   init_random(1234567);
4916 
4917   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4918   if (Linux::page_size() == -1) {
4919     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4920           os::strerror(errno));
4921   }
4922   init_page_sizes((size_t) Linux::page_size());
4923 
4924   Linux::initialize_system_info();
4925 
4926   Linux::initialize_os_info();
4927 
4928   // _main_thread points to the thread that created/loaded the JVM.
4929   Linux::_main_thread = pthread_self();
4930 
4931   // retrieve entry point for pthread_setname_np
4932   Linux::_pthread_setname_np =
4933     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4934 
4935   os::Posix::init();
4936 
4937   initial_time_count = javaTimeNanos();
4938 
4939   // Always warn if no monotonic clock available
4940   if (!os::Posix::supports_monotonic_clock()) {
4941     warning("No monotonic clock was available - timed services may "    \
4942             "be adversely affected if the time-of-day clock changes");
4943   }
4944 }
4945 
4946 // To install functions for atexit system call
4947 extern "C" {
4948   static void perfMemory_exit_helper() {
4949     perfMemory_exit();
4950   }
4951 }
4952 
4953 void os::pd_init_container_support() {
4954   OSContainer::init();
4955 }
4956 
4957 // this is called _after_ the global arguments have been parsed
4958 jint os::init_2(void) {
4959 
4960   os::Posix::init_2();
4961 
4962   Linux::fast_thread_clock_init();
4963 
4964   // initialize suspend/resume support - must do this before signal_sets_init()
4965   if (SR_initialize() != 0) {
4966     perror("SR_initialize failed");
4967     return JNI_ERR;
4968   }
4969 
4970   Linux::signal_sets_init();
4971   Linux::install_signal_handlers();
4972   // Initialize data for jdk.internal.misc.Signal
4973   if (!ReduceSignalUsage) {
4974     jdk_misc_signal_init();
4975   }
4976 
4977   // Check and sets minimum stack sizes against command line options
4978   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4979     return JNI_ERR;
4980   }
4981 
4982   suppress_primordial_thread_resolution = Arguments::created_by_java_launcher();
4983   if (!suppress_primordial_thread_resolution) {
4984     Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4985   }
4986 
4987 #if defined(IA32)
4988   workaround_expand_exec_shield_cs_limit();
4989 #endif
4990 
4991   Linux::libpthread_init();
4992   Linux::sched_getcpu_init();
4993   log_info(os)("HotSpot is running with %s, %s",
4994                Linux::glibc_version(), Linux::libpthread_version());
4995 
4996   if (UseNUMA) {
4997     if (!Linux::libnuma_init()) {
4998       UseNUMA = false;
4999     } else {
5000       if ((Linux::numa_max_node() < 1) || Linux::isbound_to_single_node()) {
5001         // If there's only one node (they start from 0) or if the process
5002         // is bound explicitly to a single node using membind, disable NUMA.
5003         UseNUMA = false;
5004       }
5005     }
5006 
5007     if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5008       // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5009       // we can make the adaptive lgrp chunk resizing work. If the user specified both
5010       // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
5011       // and disable adaptive resizing.
5012       if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
5013         warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
5014                 "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
5015         UseAdaptiveSizePolicy = false;
5016         UseAdaptiveNUMAChunkSizing = false;
5017       }
5018     }
5019 
5020     if (!UseNUMA && ForceNUMA) {
5021       UseNUMA = true;
5022     }
5023   }
5024 
5025   if (MaxFDLimit) {
5026     // set the number of file descriptors to max. print out error
5027     // if getrlimit/setrlimit fails but continue regardless.
5028     struct rlimit nbr_files;
5029     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5030     if (status != 0) {
5031       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
5032     } else {
5033       nbr_files.rlim_cur = nbr_files.rlim_max;
5034       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5035       if (status != 0) {
5036         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
5037       }
5038     }
5039   }
5040 
5041   // Initialize lock used to serialize thread creation (see os::create_thread)
5042   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
5043 
5044   // at-exit methods are called in the reverse order of their registration.
5045   // atexit functions are called on return from main or as a result of a
5046   // call to exit(3C). There can be only 32 of these functions registered
5047   // and atexit() does not set errno.
5048 
5049   if (PerfAllowAtExitRegistration) {
5050     // only register atexit functions if PerfAllowAtExitRegistration is set.
5051     // atexit functions can be delayed until process exit time, which
5052     // can be problematic for embedded VM situations. Embedded VMs should
5053     // call DestroyJavaVM() to assure that VM resources are released.
5054 
5055     // note: perfMemory_exit_helper atexit function may be removed in
5056     // the future if the appropriate cleanup code can be added to the
5057     // VM_Exit VMOperation's doit method.
5058     if (atexit(perfMemory_exit_helper) != 0) {
5059       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5060     }
5061   }
5062 
5063   // initialize thread priority policy
5064   prio_init();
5065 
5066   if (!FLAG_IS_DEFAULT(AllocateHeapAt)) {
5067     set_coredump_filter(false /*largepages*/, true /*dax_shared*/);
5068   }
5069   return JNI_OK;
5070 }
5071 
5072 // Mark the polling page as unreadable
5073 void os::make_polling_page_unreadable(void) {
5074   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
5075     fatal("Could not disable polling page");
5076   }
5077 }
5078 
5079 // Mark the polling page as readable
5080 void os::make_polling_page_readable(void) {
5081   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5082     fatal("Could not enable polling page");
5083   }
5084 }
5085 
5086 // older glibc versions don't have this macro (which expands to
5087 // an optimized bit-counting function) so we have to roll our own
5088 #ifndef CPU_COUNT
5089 
5090 static int _cpu_count(const cpu_set_t* cpus) {
5091   int count = 0;
5092   // only look up to the number of configured processors
5093   for (int i = 0; i < os::processor_count(); i++) {
5094     if (CPU_ISSET(i, cpus)) {
5095       count++;
5096     }
5097   }
5098   return count;
5099 }
5100 
5101 #define CPU_COUNT(cpus) _cpu_count(cpus)
5102 
5103 #endif // CPU_COUNT
5104 
5105 // Get the current number of available processors for this process.
5106 // This value can change at any time during a process's lifetime.
5107 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5108 // If it appears there may be more than 1024 processors then we do a
5109 // dynamic check - see 6515172 for details.
5110 // If anything goes wrong we fallback to returning the number of online
5111 // processors - which can be greater than the number available to the process.
5112 int os::Linux::active_processor_count() {
5113   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5114   cpu_set_t* cpus_p = &cpus;
5115   int cpus_size = sizeof(cpu_set_t);
5116 
5117   int configured_cpus = os::processor_count();  // upper bound on available cpus
5118   int cpu_count = 0;
5119 
5120 // old build platforms may not support dynamic cpu sets
5121 #ifdef CPU_ALLOC
5122 
5123   // To enable easy testing of the dynamic path on different platforms we
5124   // introduce a diagnostic flag: UseCpuAllocPath
5125   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5126     // kernel may use a mask bigger than cpu_set_t
5127     log_trace(os)("active_processor_count: using dynamic path %s"
5128                   "- configured processors: %d",
5129                   UseCpuAllocPath ? "(forced) " : "",
5130                   configured_cpus);
5131     cpus_p = CPU_ALLOC(configured_cpus);
5132     if (cpus_p != NULL) {
5133       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5134       // zero it just to be safe
5135       CPU_ZERO_S(cpus_size, cpus_p);
5136     }
5137     else {
5138        // failed to allocate so fallback to online cpus
5139        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5140        log_trace(os)("active_processor_count: "
5141                      "CPU_ALLOC failed (%s) - using "
5142                      "online processor count: %d",
5143                      os::strerror(errno), online_cpus);
5144        return online_cpus;
5145     }
5146   }
5147   else {
5148     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5149                   configured_cpus);
5150   }
5151 #else // CPU_ALLOC
5152 // these stubs won't be executed
5153 #define CPU_COUNT_S(size, cpus) -1
5154 #define CPU_FREE(cpus)
5155 
5156   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5157                 configured_cpus);
5158 #endif // CPU_ALLOC
5159 
5160   // pid 0 means the current thread - which we have to assume represents the process
5161   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5162     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5163       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5164     }
5165     else {
5166       cpu_count = CPU_COUNT(cpus_p);
5167     }
5168     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5169   }
5170   else {
5171     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5172     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5173             "which may exceed available processors", os::strerror(errno), cpu_count);
5174   }
5175 
5176   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5177     CPU_FREE(cpus_p);
5178   }
5179 
5180   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5181   return cpu_count;
5182 }
5183 
5184 // Determine the active processor count from one of
5185 // three different sources:
5186 //
5187 // 1. User option -XX:ActiveProcessorCount
5188 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5189 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5190 //
5191 // Option 1, if specified, will always override.
5192 // If the cgroup subsystem is active and configured, we
5193 // will return the min of the cgroup and option 2 results.
5194 // This is required since tools, such as numactl, that
5195 // alter cpu affinity do not update cgroup subsystem
5196 // cpuset configuration files.
5197 int os::active_processor_count() {
5198   // User has overridden the number of active processors
5199   if (ActiveProcessorCount > 0) {
5200     log_trace(os)("active_processor_count: "
5201                   "active processor count set by user : %d",
5202                   ActiveProcessorCount);
5203     return ActiveProcessorCount;
5204   }
5205 
5206   int active_cpus;
5207   if (OSContainer::is_containerized()) {
5208     active_cpus = OSContainer::active_processor_count();
5209     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5210                    active_cpus);
5211   } else {
5212     active_cpus = os::Linux::active_processor_count();
5213   }
5214 
5215   return active_cpus;
5216 }
5217 
5218 uint os::processor_id() {
5219   const int id = Linux::sched_getcpu();
5220   assert(id >= 0 && id < _processor_count, "Invalid processor id");
5221   return (uint)id;
5222 }
5223 
5224 void os::set_native_thread_name(const char *name) {
5225   if (Linux::_pthread_setname_np) {
5226     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5227     snprintf(buf, sizeof(buf), "%s", name);
5228     buf[sizeof(buf) - 1] = '\0';
5229     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5230     // ERANGE should not happen; all other errors should just be ignored.
5231     assert(rc != ERANGE, "pthread_setname_np failed");
5232   }
5233 }
5234 
5235 bool os::distribute_processes(uint length, uint* distribution) {
5236   // Not yet implemented.
5237   return false;
5238 }
5239 
5240 bool os::bind_to_processor(uint processor_id) {
5241   // Not yet implemented.
5242   return false;
5243 }
5244 
5245 ///
5246 
5247 void os::SuspendedThreadTask::internal_do_task() {
5248   if (do_suspend(_thread->osthread())) {
5249     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5250     do_task(context);
5251     do_resume(_thread->osthread());
5252   }
5253 }
5254 
5255 ////////////////////////////////////////////////////////////////////////////////
5256 // debug support
5257 
5258 bool os::find(address addr, outputStream* st) {
5259   Dl_info dlinfo;
5260   memset(&dlinfo, 0, sizeof(dlinfo));
5261   if (dladdr(addr, &dlinfo) != 0) {
5262     st->print(PTR_FORMAT ": ", p2i(addr));
5263     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5264       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5265                 p2i(addr) - p2i(dlinfo.dli_saddr));
5266     } else if (dlinfo.dli_fbase != NULL) {
5267       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5268     } else {
5269       st->print("<absolute address>");
5270     }
5271     if (dlinfo.dli_fname != NULL) {
5272       st->print(" in %s", dlinfo.dli_fname);
5273     }
5274     if (dlinfo.dli_fbase != NULL) {
5275       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5276     }
5277     st->cr();
5278 
5279     if (Verbose) {
5280       // decode some bytes around the PC
5281       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5282       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5283       address       lowest = (address) dlinfo.dli_sname;
5284       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5285       if (begin < lowest)  begin = lowest;
5286       Dl_info dlinfo2;
5287       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5288           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5289         end = (address) dlinfo2.dli_saddr;
5290       }
5291       Disassembler::decode(begin, end, st);
5292     }
5293     return true;
5294   }
5295   return false;
5296 }
5297 
5298 ////////////////////////////////////////////////////////////////////////////////
5299 // misc
5300 
5301 // This does not do anything on Linux. This is basically a hook for being
5302 // able to use structured exception handling (thread-local exception filters)
5303 // on, e.g., Win32.
5304 void
5305 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5306                          JavaCallArguments* args, Thread* thread) {
5307   f(value, method, args, thread);
5308 }
5309 
5310 void os::print_statistics() {
5311 }
5312 
5313 bool os::message_box(const char* title, const char* message) {
5314   int i;
5315   fdStream err(defaultStream::error_fd());
5316   for (i = 0; i < 78; i++) err.print_raw("=");
5317   err.cr();
5318   err.print_raw_cr(title);
5319   for (i = 0; i < 78; i++) err.print_raw("-");
5320   err.cr();
5321   err.print_raw_cr(message);
5322   for (i = 0; i < 78; i++) err.print_raw("=");
5323   err.cr();
5324 
5325   char buf[16];
5326   // Prevent process from exiting upon "read error" without consuming all CPU
5327   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5328 
5329   return buf[0] == 'y' || buf[0] == 'Y';
5330 }
5331 
5332 // Is a (classpath) directory empty?
5333 bool os::dir_is_empty(const char* path) {
5334   DIR *dir = NULL;
5335   struct dirent *ptr;
5336 
5337   dir = opendir(path);
5338   if (dir == NULL) return true;
5339 
5340   // Scan the directory
5341   bool result = true;
5342   while (result && (ptr = readdir(dir)) != NULL) {
5343     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5344       result = false;
5345     }
5346   }
5347   closedir(dir);
5348   return result;
5349 }
5350 
5351 // This code originates from JDK's sysOpen and open64_w
5352 // from src/solaris/hpi/src/system_md.c
5353 
5354 int os::open(const char *path, int oflag, int mode) {
5355   if (strlen(path) > MAX_PATH - 1) {
5356     errno = ENAMETOOLONG;
5357     return -1;
5358   }
5359 
5360   // All file descriptors that are opened in the Java process and not
5361   // specifically destined for a subprocess should have the close-on-exec
5362   // flag set.  If we don't set it, then careless 3rd party native code
5363   // might fork and exec without closing all appropriate file descriptors
5364   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5365   // turn might:
5366   //
5367   // - cause end-of-file to fail to be detected on some file
5368   //   descriptors, resulting in mysterious hangs, or
5369   //
5370   // - might cause an fopen in the subprocess to fail on a system
5371   //   suffering from bug 1085341.
5372   //
5373   // (Yes, the default setting of the close-on-exec flag is a Unix
5374   // design flaw)
5375   //
5376   // See:
5377   // 1085341: 32-bit stdio routines should support file descriptors >255
5378   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5379   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5380   //
5381   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5382   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5383   // because it saves a system call and removes a small window where the flag
5384   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5385   // and we fall back to using FD_CLOEXEC (see below).
5386 #ifdef O_CLOEXEC
5387   oflag |= O_CLOEXEC;
5388 #endif
5389 
5390   int fd = ::open64(path, oflag, mode);
5391   if (fd == -1) return -1;
5392 
5393   //If the open succeeded, the file might still be a directory
5394   {
5395     struct stat64 buf64;
5396     int ret = ::fstat64(fd, &buf64);
5397     int st_mode = buf64.st_mode;
5398 
5399     if (ret != -1) {
5400       if ((st_mode & S_IFMT) == S_IFDIR) {
5401         errno = EISDIR;
5402         ::close(fd);
5403         return -1;
5404       }
5405     } else {
5406       ::close(fd);
5407       return -1;
5408     }
5409   }
5410 
5411 #ifdef FD_CLOEXEC
5412   // Validate that the use of the O_CLOEXEC flag on open above worked.
5413   // With recent kernels, we will perform this check exactly once.
5414   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5415   if (!O_CLOEXEC_is_known_to_work) {
5416     int flags = ::fcntl(fd, F_GETFD);
5417     if (flags != -1) {
5418       if ((flags & FD_CLOEXEC) != 0)
5419         O_CLOEXEC_is_known_to_work = 1;
5420       else
5421         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5422     }
5423   }
5424 #endif
5425 
5426   return fd;
5427 }
5428 
5429 
5430 // create binary file, rewriting existing file if required
5431 int os::create_binary_file(const char* path, bool rewrite_existing) {
5432   int oflags = O_WRONLY | O_CREAT;
5433   if (!rewrite_existing) {
5434     oflags |= O_EXCL;
5435   }
5436   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5437 }
5438 
5439 // return current position of file pointer
5440 jlong os::current_file_offset(int fd) {
5441   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5442 }
5443 
5444 // move file pointer to the specified offset
5445 jlong os::seek_to_file_offset(int fd, jlong offset) {
5446   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5447 }
5448 
5449 // This code originates from JDK's sysAvailable
5450 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5451 
5452 int os::available(int fd, jlong *bytes) {
5453   jlong cur, end;
5454   int mode;
5455   struct stat64 buf64;
5456 
5457   if (::fstat64(fd, &buf64) >= 0) {
5458     mode = buf64.st_mode;
5459     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5460       int n;
5461       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5462         *bytes = n;
5463         return 1;
5464       }
5465     }
5466   }
5467   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5468     return 0;
5469   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5470     return 0;
5471   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5472     return 0;
5473   }
5474   *bytes = end - cur;
5475   return 1;
5476 }
5477 
5478 // Map a block of memory.
5479 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5480                         char *addr, size_t bytes, bool read_only,
5481                         bool allow_exec) {
5482   int prot;
5483   int flags = MAP_PRIVATE;
5484 
5485   if (read_only) {
5486     prot = PROT_READ;
5487   } else {
5488     prot = PROT_READ | PROT_WRITE;
5489   }
5490 
5491   if (allow_exec) {
5492     prot |= PROT_EXEC;
5493   }
5494 
5495   if (addr != NULL) {
5496     flags |= MAP_FIXED;
5497   }
5498 
5499   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5500                                      fd, file_offset);
5501   if (mapped_address == MAP_FAILED) {
5502     return NULL;
5503   }
5504   return mapped_address;
5505 }
5506 
5507 
5508 // Remap a block of memory.
5509 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5510                           char *addr, size_t bytes, bool read_only,
5511                           bool allow_exec) {
5512   // same as map_memory() on this OS
5513   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5514                         allow_exec);
5515 }
5516 
5517 
5518 // Unmap a block of memory.
5519 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5520   return munmap(addr, bytes) == 0;
5521 }
5522 
5523 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5524 
5525 static jlong fast_cpu_time(Thread *thread) {
5526     clockid_t clockid;
5527     int rc = os::Linux::pthread_getcpuclockid(thread->osthread()->pthread_id(),
5528                                               &clockid);
5529     if (rc == 0) {
5530       return os::Linux::fast_thread_cpu_time(clockid);
5531     } else {
5532       // It's possible to encounter a terminated native thread that failed
5533       // to detach itself from the VM - which should result in ESRCH.
5534       assert_status(rc == ESRCH, rc, "pthread_getcpuclockid failed");
5535       return -1;
5536     }
5537 }
5538 
5539 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5540 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5541 // of a thread.
5542 //
5543 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5544 // the fast estimate available on the platform.
5545 
5546 jlong os::current_thread_cpu_time() {
5547   if (os::Linux::supports_fast_thread_cpu_time()) {
5548     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5549   } else {
5550     // return user + sys since the cost is the same
5551     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5552   }
5553 }
5554 
5555 jlong os::thread_cpu_time(Thread* thread) {
5556   // consistent with what current_thread_cpu_time() returns
5557   if (os::Linux::supports_fast_thread_cpu_time()) {
5558     return fast_cpu_time(thread);
5559   } else {
5560     return slow_thread_cpu_time(thread, true /* user + sys */);
5561   }
5562 }
5563 
5564 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5565   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5566     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5567   } else {
5568     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5569   }
5570 }
5571 
5572 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5573   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5574     return fast_cpu_time(thread);
5575   } else {
5576     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5577   }
5578 }
5579 
5580 //  -1 on error.
5581 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5582   pid_t  tid = thread->osthread()->thread_id();
5583   char *s;
5584   char stat[2048];
5585   int statlen;
5586   char proc_name[64];
5587   int count;
5588   long sys_time, user_time;
5589   char cdummy;
5590   int idummy;
5591   long ldummy;
5592   FILE *fp;
5593 
5594   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5595   fp = fopen(proc_name, "r");
5596   if (fp == NULL) return -1;
5597   statlen = fread(stat, 1, 2047, fp);
5598   stat[statlen] = '\0';
5599   fclose(fp);
5600 
5601   // Skip pid and the command string. Note that we could be dealing with
5602   // weird command names, e.g. user could decide to rename java launcher
5603   // to "java 1.4.2 :)", then the stat file would look like
5604   //                1234 (java 1.4.2 :)) R ... ...
5605   // We don't really need to know the command string, just find the last
5606   // occurrence of ")" and then start parsing from there. See bug 4726580.
5607   s = strrchr(stat, ')');
5608   if (s == NULL) return -1;
5609 
5610   // Skip blank chars
5611   do { s++; } while (s && isspace(*s));
5612 
5613   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5614                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5615                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5616                  &user_time, &sys_time);
5617   if (count != 13) return -1;
5618   if (user_sys_cpu_time) {
5619     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5620   } else {
5621     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5622   }
5623 }
5624 
5625 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5626   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5627   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5628   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5629   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5630 }
5631 
5632 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5633   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5634   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5635   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5636   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5637 }
5638 
5639 bool os::is_thread_cpu_time_supported() {
5640   return true;
5641 }
5642 
5643 // System loadavg support.  Returns -1 if load average cannot be obtained.
5644 // Linux doesn't yet have a (official) notion of processor sets,
5645 // so just return the system wide load average.
5646 int os::loadavg(double loadavg[], int nelem) {
5647   return ::getloadavg(loadavg, nelem);
5648 }
5649 
5650 void os::pause() {
5651   char filename[MAX_PATH];
5652   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5653     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5654   } else {
5655     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5656   }
5657 
5658   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5659   if (fd != -1) {
5660     struct stat buf;
5661     ::close(fd);
5662     while (::stat(filename, &buf) == 0) {
5663       (void)::poll(NULL, 0, 100);
5664     }
5665   } else {
5666     jio_fprintf(stderr,
5667                 "Could not open pause file '%s', continuing immediately.\n", filename);
5668   }
5669 }
5670 
5671 extern char** environ;
5672 
5673 // Run the specified command in a separate process. Return its exit value,
5674 // or -1 on failure (e.g. can't fork a new process).
5675 // Unlike system(), this function can be called from signal handler. It
5676 // doesn't block SIGINT et al.
5677 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5678   const char * argv[4] = {"sh", "-c", cmd, NULL};
5679 
5680   pid_t pid ;
5681 
5682   if (use_vfork_if_available) {
5683     pid = vfork();
5684   } else {
5685     pid = fork();
5686   }
5687 
5688   if (pid < 0) {
5689     // fork failed
5690     return -1;
5691 
5692   } else if (pid == 0) {
5693     // child process
5694 
5695     execve("/bin/sh", (char* const*)argv, environ);
5696 
5697     // execve failed
5698     _exit(-1);
5699 
5700   } else  {
5701     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5702     // care about the actual exit code, for now.
5703 
5704     int status;
5705 
5706     // Wait for the child process to exit.  This returns immediately if
5707     // the child has already exited. */
5708     while (waitpid(pid, &status, 0) < 0) {
5709       switch (errno) {
5710       case ECHILD: return 0;
5711       case EINTR: break;
5712       default: return -1;
5713       }
5714     }
5715 
5716     if (WIFEXITED(status)) {
5717       // The child exited normally; get its exit code.
5718       return WEXITSTATUS(status);
5719     } else if (WIFSIGNALED(status)) {
5720       // The child exited because of a signal
5721       // The best value to return is 0x80 + signal number,
5722       // because that is what all Unix shells do, and because
5723       // it allows callers to distinguish between process exit and
5724       // process death by signal.
5725       return 0x80 + WTERMSIG(status);
5726     } else {
5727       // Unknown exit code; pass it through
5728       return status;
5729     }
5730   }
5731 }
5732 
5733 // Get the default path to the core file
5734 // Returns the length of the string
5735 int os::get_core_path(char* buffer, size_t bufferSize) {
5736   /*
5737    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5738    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5739    */
5740   const int core_pattern_len = 129;
5741   char core_pattern[core_pattern_len] = {0};
5742 
5743   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5744   if (core_pattern_file == -1) {
5745     return -1;
5746   }
5747 
5748   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5749   ::close(core_pattern_file);
5750   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5751     return -1;
5752   }
5753   if (core_pattern[ret-1] == '\n') {
5754     core_pattern[ret-1] = '\0';
5755   } else {
5756     core_pattern[ret] = '\0';
5757   }
5758 
5759   // Replace the %p in the core pattern with the process id. NOTE: we do this
5760   // only if the pattern doesn't start with "|", and we support only one %p in
5761   // the pattern.
5762   char *pid_pos = strstr(core_pattern, "%p");
5763   const char* tail = (pid_pos != NULL) ? (pid_pos + 2) : "";  // skip over the "%p"
5764   int written;
5765 
5766   if (core_pattern[0] == '/') {
5767     if (pid_pos != NULL) {
5768       *pid_pos = '\0';
5769       written = jio_snprintf(buffer, bufferSize, "%s%d%s", core_pattern,
5770                              current_process_id(), tail);
5771     } else {
5772       written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5773     }
5774   } else {
5775     char cwd[PATH_MAX];
5776 
5777     const char* p = get_current_directory(cwd, PATH_MAX);
5778     if (p == NULL) {
5779       return -1;
5780     }
5781 
5782     if (core_pattern[0] == '|') {
5783       written = jio_snprintf(buffer, bufferSize,
5784                              "\"%s\" (or dumping to %s/core.%d)",
5785                              &core_pattern[1], p, current_process_id());
5786     } else if (pid_pos != NULL) {
5787       *pid_pos = '\0';
5788       written = jio_snprintf(buffer, bufferSize, "%s/%s%d%s", p, core_pattern,
5789                              current_process_id(), tail);
5790     } else {
5791       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5792     }
5793   }
5794 
5795   if (written < 0) {
5796     return -1;
5797   }
5798 
5799   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5800     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5801 
5802     if (core_uses_pid_file != -1) {
5803       char core_uses_pid = 0;
5804       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5805       ::close(core_uses_pid_file);
5806 
5807       if (core_uses_pid == '1') {
5808         jio_snprintf(buffer + written, bufferSize - written,
5809                                           ".%d", current_process_id());
5810       }
5811     }
5812   }
5813 
5814   return strlen(buffer);
5815 }
5816 
5817 bool os::start_debugging(char *buf, int buflen) {
5818   int len = (int)strlen(buf);
5819   char *p = &buf[len];
5820 
5821   jio_snprintf(p, buflen-len,
5822                "\n\n"
5823                "Do you want to debug the problem?\n\n"
5824                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5825                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5826                "Otherwise, press RETURN to abort...",
5827                os::current_process_id(), os::current_process_id(),
5828                os::current_thread_id(), os::current_thread_id());
5829 
5830   bool yes = os::message_box("Unexpected Error", buf);
5831 
5832   if (yes) {
5833     // yes, user asked VM to launch debugger
5834     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
5835                  os::current_process_id(), os::current_process_id());
5836 
5837     os::fork_and_exec(buf);
5838     yes = false;
5839   }
5840   return yes;
5841 }
5842 
5843 
5844 // Java/Compiler thread:
5845 //
5846 //   Low memory addresses
5847 // P0 +------------------------+
5848 //    |                        |\  Java thread created by VM does not have glibc
5849 //    |    glibc guard page    | - guard page, attached Java thread usually has
5850 //    |                        |/  1 glibc guard page.
5851 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5852 //    |                        |\
5853 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
5854 //    |                        |/
5855 //    +------------------------+ JavaThread::stack_reserved_zone_base()
5856 //    |                        |\
5857 //    |      Normal Stack      | -
5858 //    |                        |/
5859 // P2 +------------------------+ Thread::stack_base()
5860 //
5861 // Non-Java thread:
5862 //
5863 //   Low memory addresses
5864 // P0 +------------------------+
5865 //    |                        |\
5866 //    |  glibc guard page      | - usually 1 page
5867 //    |                        |/
5868 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5869 //    |                        |\
5870 //    |      Normal Stack      | -
5871 //    |                        |/
5872 // P2 +------------------------+ Thread::stack_base()
5873 //
5874 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
5875 //    returned from pthread_attr_getstack().
5876 // ** Due to NPTL implementation error, linux takes the glibc guard page out
5877 //    of the stack size given in pthread_attr. We work around this for
5878 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
5879 //
5880 #ifndef ZERO
5881 static void current_stack_region(address * bottom, size_t * size) {
5882   if (os::is_primordial_thread()) {
5883     // primordial thread needs special handling because pthread_getattr_np()
5884     // may return bogus value.
5885     *bottom = os::Linux::initial_thread_stack_bottom();
5886     *size   = os::Linux::initial_thread_stack_size();
5887   } else {
5888     pthread_attr_t attr;
5889 
5890     int rslt = pthread_getattr_np(pthread_self(), &attr);
5891 
5892     // JVM needs to know exact stack location, abort if it fails
5893     if (rslt != 0) {
5894       if (rslt == ENOMEM) {
5895         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
5896       } else {
5897         fatal("pthread_getattr_np failed with error = %d", rslt);
5898       }
5899     }
5900 
5901     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
5902       fatal("Cannot locate current stack attributes!");
5903     }
5904 
5905     // Work around NPTL stack guard error.
5906     size_t guard_size = 0;
5907     rslt = pthread_attr_getguardsize(&attr, &guard_size);
5908     if (rslt != 0) {
5909       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
5910     }
5911     *bottom += guard_size;
5912     *size   -= guard_size;
5913 
5914     pthread_attr_destroy(&attr);
5915 
5916   }
5917   assert(os::current_stack_pointer() >= *bottom &&
5918          os::current_stack_pointer() < *bottom + *size, "just checking");
5919 }
5920 
5921 address os::current_stack_base() {
5922   address bottom;
5923   size_t size;
5924   current_stack_region(&bottom, &size);
5925   return (bottom + size);
5926 }
5927 
5928 size_t os::current_stack_size() {
5929   // This stack size includes the usable stack and HotSpot guard pages
5930   // (for the threads that have Hotspot guard pages).
5931   address bottom;
5932   size_t size;
5933   current_stack_region(&bottom, &size);
5934   return size;
5935 }
5936 #endif
5937 
5938 static inline struct timespec get_mtime(const char* filename) {
5939   struct stat st;
5940   int ret = os::stat(filename, &st);
5941   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
5942   return st.st_mtim;
5943 }
5944 
5945 int os::compare_file_modified_times(const char* file1, const char* file2) {
5946   struct timespec filetime1 = get_mtime(file1);
5947   struct timespec filetime2 = get_mtime(file2);
5948   int diff = filetime1.tv_sec - filetime2.tv_sec;
5949   if (diff == 0) {
5950     return filetime1.tv_nsec - filetime2.tv_nsec;
5951   }
5952   return diff;
5953 }
5954 
5955 /////////////// Unit tests ///////////////
5956 
5957 #ifndef PRODUCT
5958 
5959 #define test_log(...)              \
5960   do {                             \
5961   } while (false)
5962 
5963 class TestReserveMemorySpecial : AllStatic {
5964  public:
5965   static void small_page_write(void* addr, size_t size) {
5966     size_t page_size = os::vm_page_size();
5967 
5968     char* end = (char*)addr + size;
5969     for (char* p = (char*)addr; p < end; p += page_size) {
5970       *p = 1;
5971     }
5972   }
5973 
5974   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5975     if (!UseHugeTLBFS) {
5976       return;
5977     }
5978 
5979     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
5980 
5981     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
5982 
5983     if (addr != NULL) {
5984       small_page_write(addr, size);
5985 
5986       os::Linux::release_memory_special_huge_tlbfs(addr, size);
5987     }
5988   }
5989 
5990   static void test_reserve_memory_special_huge_tlbfs_only() {
5991     if (!UseHugeTLBFS) {
5992       return;
5993     }
5994 
5995     size_t lp = os::large_page_size();
5996 
5997     for (size_t size = lp; size <= lp * 10; size += lp) {
5998       test_reserve_memory_special_huge_tlbfs_only(size);
5999     }
6000   }
6001 
6002   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6003     size_t lp = os::large_page_size();
6004     size_t ag = os::vm_allocation_granularity();
6005 
6006     // sizes to test
6007     const size_t sizes[] = {
6008       lp, lp + ag, lp + lp / 2, lp * 2,
6009       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6010       lp * 10, lp * 10 + lp / 2
6011     };
6012     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6013 
6014     // For each size/alignment combination, we test three scenarios:
6015     // 1) with req_addr == NULL
6016     // 2) with a non-null req_addr at which we expect to successfully allocate
6017     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6018     //    expect the allocation to either fail or to ignore req_addr
6019 
6020     // Pre-allocate two areas; they shall be as large as the largest allocation
6021     //  and aligned to the largest alignment we will be testing.
6022     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6023     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6024       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6025       -1, 0);
6026     assert(mapping1 != MAP_FAILED, "should work");
6027 
6028     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6029       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6030       -1, 0);
6031     assert(mapping2 != MAP_FAILED, "should work");
6032 
6033     // Unmap the first mapping, but leave the second mapping intact: the first
6034     // mapping will serve as a value for a "good" req_addr (case 2). The second
6035     // mapping, still intact, as "bad" req_addr (case 3).
6036     ::munmap(mapping1, mapping_size);
6037 
6038     // Case 1
6039     test_log("%s, req_addr NULL:", __FUNCTION__);
6040     test_log("size            align           result");
6041 
6042     for (int i = 0; i < num_sizes; i++) {
6043       const size_t size = sizes[i];
6044       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6045         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6046         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6047                  size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
6048         if (p != NULL) {
6049           assert(is_aligned(p, alignment), "must be");
6050           small_page_write(p, size);
6051           os::Linux::release_memory_special_huge_tlbfs(p, size);
6052         }
6053       }
6054     }
6055 
6056     // Case 2
6057     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6058     test_log("size            align           req_addr         result");
6059 
6060     for (int i = 0; i < num_sizes; i++) {
6061       const size_t size = sizes[i];
6062       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6063         char* const req_addr = align_up(mapping1, alignment);
6064         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6065         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6066                  size, alignment, p2i(req_addr), p2i(p),
6067                  ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6068         if (p != NULL) {
6069           assert(p == req_addr, "must be");
6070           small_page_write(p, size);
6071           os::Linux::release_memory_special_huge_tlbfs(p, size);
6072         }
6073       }
6074     }
6075 
6076     // Case 3
6077     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6078     test_log("size            align           req_addr         result");
6079 
6080     for (int i = 0; i < num_sizes; i++) {
6081       const size_t size = sizes[i];
6082       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6083         char* const req_addr = align_up(mapping2, alignment);
6084         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6085         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6086                  size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6087         // as the area around req_addr contains already existing mappings, the API should always
6088         // return NULL (as per contract, it cannot return another address)
6089         assert(p == NULL, "must be");
6090       }
6091     }
6092 
6093     ::munmap(mapping2, mapping_size);
6094 
6095   }
6096 
6097   static void test_reserve_memory_special_huge_tlbfs() {
6098     if (!UseHugeTLBFS) {
6099       return;
6100     }
6101 
6102     test_reserve_memory_special_huge_tlbfs_only();
6103     test_reserve_memory_special_huge_tlbfs_mixed();
6104   }
6105 
6106   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6107     if (!UseSHM) {
6108       return;
6109     }
6110 
6111     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6112 
6113     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6114 
6115     if (addr != NULL) {
6116       assert(is_aligned(addr, alignment), "Check");
6117       assert(is_aligned(addr, os::large_page_size()), "Check");
6118 
6119       small_page_write(addr, size);
6120 
6121       os::Linux::release_memory_special_shm(addr, size);
6122     }
6123   }
6124 
6125   static void test_reserve_memory_special_shm() {
6126     size_t lp = os::large_page_size();
6127     size_t ag = os::vm_allocation_granularity();
6128 
6129     for (size_t size = ag; size < lp * 3; size += ag) {
6130       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6131         test_reserve_memory_special_shm(size, alignment);
6132       }
6133     }
6134   }
6135 
6136   static void test() {
6137     test_reserve_memory_special_huge_tlbfs();
6138     test_reserve_memory_special_shm();
6139   }
6140 };
6141 
6142 void TestReserveMemorySpecial_test() {
6143   TestReserveMemorySpecial::test();
6144 }
6145 
6146 #endif