1 // Copyright 2007, Google Inc.
   2 // All rights reserved.
   3 //
   4 // Redistribution and use in source and binary forms, with or without
   5 // modification, are permitted provided that the following conditions are
   6 // met:
   7 //
   8 //     * Redistributions of source code must retain the above copyright
   9 // notice, this list of conditions and the following disclaimer.
  10 //     * Redistributions in binary form must reproduce the above
  11 // copyright notice, this list of conditions and the following disclaimer
  12 // in the documentation and/or other materials provided with the
  13 // distribution.
  14 //     * Neither the name of Google Inc. nor the names of its
  15 // contributors may be used to endorse or promote products derived from
  16 // this software without specific prior written permission.
  17 //
  18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  29 
  30 
  31 // Google Mock - a framework for writing C++ mock classes.
  32 //
  33 // This file implements Matcher<const string&>, Matcher<string>, and
  34 // utilities for defining matchers.
  35 
  36 #include "gmock/gmock-matchers.h"
  37 #include "gmock/gmock-generated-matchers.h"
  38 
  39 #include <string.h>
  40 #include <iostream>
  41 #include <sstream>
  42 #include <string>
  43 
  44 namespace testing {
  45 
  46 // Constructs a matcher that matches a const std::string& whose value is
  47 // equal to s.
  48 Matcher<const std::string&>::Matcher(const std::string& s) { *this = Eq(s); }
  49 
  50 #if GTEST_HAS_GLOBAL_STRING
  51 // Constructs a matcher that matches a const std::string& whose value is
  52 // equal to s.
  53 Matcher<const std::string&>::Matcher(const ::string& s) {
  54   *this = Eq(static_cast<std::string>(s));
  55 }
  56 #endif  // GTEST_HAS_GLOBAL_STRING
  57 
  58 // Constructs a matcher that matches a const std::string& whose value is
  59 // equal to s.
  60 Matcher<const std::string&>::Matcher(const char* s) {
  61   *this = Eq(std::string(s));
  62 }
  63 
  64 // Constructs a matcher that matches a std::string whose value is equal to
  65 // s.
  66 Matcher<std::string>::Matcher(const std::string& s) { *this = Eq(s); }
  67 
  68 #if GTEST_HAS_GLOBAL_STRING
  69 // Constructs a matcher that matches a std::string whose value is equal to
  70 // s.
  71 Matcher<std::string>::Matcher(const ::string& s) {
  72   *this = Eq(static_cast<std::string>(s));
  73 }
  74 #endif  // GTEST_HAS_GLOBAL_STRING
  75 
  76 // Constructs a matcher that matches a std::string whose value is equal to
  77 // s.
  78 Matcher<std::string>::Matcher(const char* s) { *this = Eq(std::string(s)); }
  79 
  80 #if GTEST_HAS_GLOBAL_STRING
  81 // Constructs a matcher that matches a const ::string& whose value is
  82 // equal to s.
  83 Matcher<const ::string&>::Matcher(const std::string& s) {
  84   *this = Eq(static_cast<::string>(s));
  85 }
  86 
  87 // Constructs a matcher that matches a const ::string& whose value is
  88 // equal to s.
  89 Matcher<const ::string&>::Matcher(const ::string& s) { *this = Eq(s); }
  90 
  91 // Constructs a matcher that matches a const ::string& whose value is
  92 // equal to s.
  93 Matcher<const ::string&>::Matcher(const char* s) { *this = Eq(::string(s)); }
  94 
  95 // Constructs a matcher that matches a ::string whose value is equal to s.
  96 Matcher<::string>::Matcher(const std::string& s) {
  97   *this = Eq(static_cast<::string>(s));
  98 }
  99 
 100 // Constructs a matcher that matches a ::string whose value is equal to s.
 101 Matcher<::string>::Matcher(const ::string& s) { *this = Eq(s); }
 102 
 103 // Constructs a matcher that matches a string whose value is equal to s.
 104 Matcher<::string>::Matcher(const char* s) { *this = Eq(::string(s)); }
 105 #endif  // GTEST_HAS_GLOBAL_STRING
 106 
 107 #if GTEST_HAS_ABSL
 108 // Constructs a matcher that matches a const absl::string_view& whose value is
 109 // equal to s.
 110 Matcher<const absl::string_view&>::Matcher(const std::string& s) {
 111   *this = Eq(s);
 112 }
 113 
 114 #if GTEST_HAS_GLOBAL_STRING
 115 // Constructs a matcher that matches a const absl::string_view& whose value is
 116 // equal to s.
 117 Matcher<const absl::string_view&>::Matcher(const ::string& s) { *this = Eq(s); }
 118 #endif  // GTEST_HAS_GLOBAL_STRING
 119 
 120 // Constructs a matcher that matches a const absl::string_view& whose value is
 121 // equal to s.
 122 Matcher<const absl::string_view&>::Matcher(const char* s) {
 123   *this = Eq(std::string(s));
 124 }
 125 
 126 // Constructs a matcher that matches a const absl::string_view& whose value is
 127 // equal to s.
 128 Matcher<const absl::string_view&>::Matcher(absl::string_view s) {
 129   *this = Eq(std::string(s));
 130 }
 131 
 132 // Constructs a matcher that matches a absl::string_view whose value is equal to
 133 // s.
 134 Matcher<absl::string_view>::Matcher(const std::string& s) { *this = Eq(s); }
 135 
 136 #if GTEST_HAS_GLOBAL_STRING
 137 // Constructs a matcher that matches a absl::string_view whose value is equal to
 138 // s.
 139 Matcher<absl::string_view>::Matcher(const ::string& s) { *this = Eq(s); }
 140 #endif  // GTEST_HAS_GLOBAL_STRING
 141 
 142 // Constructs a matcher that matches a absl::string_view whose value is equal to
 143 // s.
 144 Matcher<absl::string_view>::Matcher(const char* s) {
 145   *this = Eq(std::string(s));
 146 }
 147 
 148 // Constructs a matcher that matches a absl::string_view whose value is equal to
 149 // s.
 150 Matcher<absl::string_view>::Matcher(absl::string_view s) {
 151   *this = Eq(std::string(s));
 152 }
 153 #endif  // GTEST_HAS_ABSL
 154 
 155 namespace internal {
 156 
 157 // Returns the description for a matcher defined using the MATCHER*()
 158 // macro where the user-supplied description string is "", if
 159 // 'negation' is false; otherwise returns the description of the
 160 // negation of the matcher.  'param_values' contains a list of strings
 161 // that are the print-out of the matcher's parameters.
 162 GTEST_API_ std::string FormatMatcherDescription(bool negation,
 163                                                 const char* matcher_name,
 164                                                 const Strings& param_values) {
 165   std::string result = ConvertIdentifierNameToWords(matcher_name);
 166   if (param_values.size() >= 1) result += " " + JoinAsTuple(param_values);
 167   return negation ? "not (" + result + ")" : result;
 168 }
 169 
 170 // FindMaxBipartiteMatching and its helper class.
 171 //
 172 // Uses the well-known Ford-Fulkerson max flow method to find a maximum
 173 // bipartite matching. Flow is considered to be from left to right.
 174 // There is an implicit source node that is connected to all of the left
 175 // nodes, and an implicit sink node that is connected to all of the
 176 // right nodes. All edges have unit capacity.
 177 //
 178 // Neither the flow graph nor the residual flow graph are represented
 179 // explicitly. Instead, they are implied by the information in 'graph' and
 180 // a vector<int> called 'left_' whose elements are initialized to the
 181 // value kUnused. This represents the initial state of the algorithm,
 182 // where the flow graph is empty, and the residual flow graph has the
 183 // following edges:
 184 //   - An edge from source to each left_ node
 185 //   - An edge from each right_ node to sink
 186 //   - An edge from each left_ node to each right_ node, if the
 187 //     corresponding edge exists in 'graph'.
 188 //
 189 // When the TryAugment() method adds a flow, it sets left_[l] = r for some
 190 // nodes l and r. This induces the following changes:
 191 //   - The edges (source, l), (l, r), and (r, sink) are added to the
 192 //     flow graph.
 193 //   - The same three edges are removed from the residual flow graph.
 194 //   - The reverse edges (l, source), (r, l), and (sink, r) are added
 195 //     to the residual flow graph, which is a directional graph
 196 //     representing unused flow capacity.
 197 //
 198 // When the method augments a flow (moving left_[l] from some r1 to some
 199 // other r2), this can be thought of as "undoing" the above steps with
 200 // respect to r1 and "redoing" them with respect to r2.
 201 //
 202 // It bears repeating that the flow graph and residual flow graph are
 203 // never represented explicitly, but can be derived by looking at the
 204 // information in 'graph' and in left_.
 205 //
 206 // As an optimization, there is a second vector<int> called right_ which
 207 // does not provide any new information. Instead, it enables more
 208 // efficient queries about edges entering or leaving the right-side nodes
 209 // of the flow or residual flow graphs. The following invariants are
 210 // maintained:
 211 //
 212 // left[l] == kUnused or right[left[l]] == l
 213 // right[r] == kUnused or left[right[r]] == r
 214 //
 215 // . [ source ]                                        .
 216 // .   |||                                             .
 217 // .   |||                                             .
 218 // .   ||\--> left[0]=1  ---\    right[0]=-1 ----\     .
 219 // .   ||                   |                    |     .
 220 // .   |\---> left[1]=-1    \--> right[1]=0  ---\|     .
 221 // .   |                                        ||     .
 222 // .   \----> left[2]=2  ------> right[2]=2  --\||     .
 223 // .                                           |||     .
 224 // .         elements           matchers       vvv     .
 225 // .                                         [ sink ]  .
 226 //
 227 // See Also:
 228 //   [1] Cormen, et al (2001). "Section 26.2: The Ford-Fulkerson method".
 229 //       "Introduction to Algorithms (Second ed.)", pp. 651-664.
 230 //   [2] "Ford-Fulkerson algorithm", Wikipedia,
 231 //       'http://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm'
 232 class MaxBipartiteMatchState {
 233  public:
 234   explicit MaxBipartiteMatchState(const MatchMatrix& graph)
 235       : graph_(&graph),
 236         left_(graph_->LhsSize(), kUnused),
 237         right_(graph_->RhsSize(), kUnused) {}
 238 
 239   // Returns the edges of a maximal match, each in the form {left, right}.
 240   ElementMatcherPairs Compute() {
 241     // 'seen' is used for path finding { 0: unseen, 1: seen }.
 242     ::std::vector<char> seen;
 243     // Searches the residual flow graph for a path from each left node to
 244     // the sink in the residual flow graph, and if one is found, add flow
 245     // to the graph. It's okay to search through the left nodes once. The
 246     // edge from the implicit source node to each previously-visited left
 247     // node will have flow if that left node has any path to the sink
 248     // whatsoever. Subsequent augmentations can only add flow to the
 249     // network, and cannot take away that previous flow unit from the source.
 250     // Since the source-to-left edge can only carry one flow unit (or,
 251     // each element can be matched to only one matcher), there is no need
 252     // to visit the left nodes more than once looking for augmented paths.
 253     // The flow is known to be possible or impossible by looking at the
 254     // node once.
 255     for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) {
 256       // Reset the path-marking vector and try to find a path from
 257       // source to sink starting at the left_[ilhs] node.
 258       GTEST_CHECK_(left_[ilhs] == kUnused)
 259           << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs];
 260       // 'seen' initialized to 'graph_->RhsSize()' copies of 0.
 261       seen.assign(graph_->RhsSize(), 0);
 262       TryAugment(ilhs, &seen);
 263     }
 264     ElementMatcherPairs result;
 265     for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) {
 266       size_t irhs = left_[ilhs];
 267       if (irhs == kUnused) continue;
 268       result.push_back(ElementMatcherPair(ilhs, irhs));
 269     }
 270     return result;
 271   }
 272 
 273  private:
 274   static const size_t kUnused = static_cast<size_t>(-1);
 275 
 276   // Perform a depth-first search from left node ilhs to the sink.  If a
 277   // path is found, flow is added to the network by linking the left and
 278   // right vector elements corresponding each segment of the path.
 279   // Returns true if a path to sink was found, which means that a unit of
 280   // flow was added to the network. The 'seen' vector elements correspond
 281   // to right nodes and are marked to eliminate cycles from the search.
 282   //
 283   // Left nodes will only be explored at most once because they
 284   // are accessible from at most one right node in the residual flow
 285   // graph.
 286   //
 287   // Note that left_[ilhs] is the only element of left_ that TryAugment will
 288   // potentially transition from kUnused to another value. Any other
 289   // left_ element holding kUnused before TryAugment will be holding it
 290   // when TryAugment returns.
 291   //
 292   bool TryAugment(size_t ilhs, ::std::vector<char>* seen) {
 293     for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) {
 294       if ((*seen)[irhs]) continue;
 295       if (!graph_->HasEdge(ilhs, irhs)) continue;
 296       // There's an available edge from ilhs to irhs.
 297       (*seen)[irhs] = 1;
 298       // Next a search is performed to determine whether
 299       // this edge is a dead end or leads to the sink.
 300       //
 301       // right_[irhs] == kUnused means that there is residual flow from
 302       // right node irhs to the sink, so we can use that to finish this
 303       // flow path and return success.
 304       //
 305       // Otherwise there is residual flow to some ilhs. We push flow
 306       // along that path and call ourselves recursively to see if this
 307       // ultimately leads to sink.
 308       if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) {
 309         // Add flow from left_[ilhs] to right_[irhs].
 310         left_[ilhs] = irhs;
 311         right_[irhs] = ilhs;
 312         return true;
 313       }
 314     }
 315     return false;
 316   }
 317 
 318   const MatchMatrix* graph_;  // not owned
 319   // Each element of the left_ vector represents a left hand side node
 320   // (i.e. an element) and each element of right_ is a right hand side
 321   // node (i.e. a matcher). The values in the left_ vector indicate
 322   // outflow from that node to a node on the right_ side. The values
 323   // in the right_ indicate inflow, and specify which left_ node is
 324   // feeding that right_ node, if any. For example, left_[3] == 1 means
 325   // there's a flow from element #3 to matcher #1. Such a flow would also
 326   // be redundantly represented in the right_ vector as right_[1] == 3.
 327   // Elements of left_ and right_ are either kUnused or mutually
 328   // referent. Mutually referent means that left_[right_[i]] = i and
 329   // right_[left_[i]] = i.
 330   ::std::vector<size_t> left_;
 331   ::std::vector<size_t> right_;
 332 
 333   GTEST_DISALLOW_ASSIGN_(MaxBipartiteMatchState);
 334 };
 335 
 336 const size_t MaxBipartiteMatchState::kUnused;
 337 
 338 GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g) {
 339   return MaxBipartiteMatchState(g).Compute();
 340 }
 341 
 342 static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs,
 343                                      ::std::ostream* stream) {
 344   typedef ElementMatcherPairs::const_iterator Iter;
 345   ::std::ostream& os = *stream;
 346   os << "{";
 347   const char* sep = "";
 348   for (Iter it = pairs.begin(); it != pairs.end(); ++it) {
 349     os << sep << "\n  ("
 350        << "element #" << it->first << ", "
 351        << "matcher #" << it->second << ")";
 352     sep = ",";
 353   }
 354   os << "\n}";
 355 }
 356 
 357 bool MatchMatrix::NextGraph() {
 358   for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
 359     for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
 360       char& b = matched_[SpaceIndex(ilhs, irhs)];
 361       if (!b) {
 362         b = 1;
 363         return true;
 364       }
 365       b = 0;
 366     }
 367   }
 368   return false;
 369 }
 370 
 371 void MatchMatrix::Randomize() {
 372   for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
 373     for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
 374       char& b = matched_[SpaceIndex(ilhs, irhs)];
 375       b = static_cast<char>(rand() & 1);  // NOLINT
 376     }
 377   }
 378 }
 379 
 380 std::string MatchMatrix::DebugString() const {
 381   ::std::stringstream ss;
 382   const char* sep = "";
 383   for (size_t i = 0; i < LhsSize(); ++i) {
 384     ss << sep;
 385     for (size_t j = 0; j < RhsSize(); ++j) {
 386       ss << HasEdge(i, j);
 387     }
 388     sep = ";";
 389   }
 390   return ss.str();
 391 }
 392 
 393 void UnorderedElementsAreMatcherImplBase::DescribeToImpl(
 394     ::std::ostream* os) const {
 395   switch (match_flags()) {
 396     case UnorderedMatcherRequire::ExactMatch:
 397       if (matcher_describers_.empty()) {
 398         *os << "is empty";
 399         return;
 400       }
 401       if (matcher_describers_.size() == 1) {
 402         *os << "has " << Elements(1) << " and that element ";
 403         matcher_describers_[0]->DescribeTo(os);
 404         return;
 405       }
 406       *os << "has " << Elements(matcher_describers_.size())
 407           << " and there exists some permutation of elements such that:\n";
 408       break;
 409     case UnorderedMatcherRequire::Superset:
 410       *os << "a surjection from elements to requirements exists such that:\n";
 411       break;
 412     case UnorderedMatcherRequire::Subset:
 413       *os << "an injection from elements to requirements exists such that:\n";
 414       break;
 415   }
 416 
 417   const char* sep = "";
 418   for (size_t i = 0; i != matcher_describers_.size(); ++i) {
 419     *os << sep;
 420     if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
 421       *os << " - element #" << i << " ";
 422     } else {
 423       *os << " - an element ";
 424     }
 425     matcher_describers_[i]->DescribeTo(os);
 426     if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
 427       sep = ", and\n";
 428     } else {
 429       sep = "\n";
 430     }
 431   }
 432 }
 433 
 434 void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(
 435     ::std::ostream* os) const {
 436   switch (match_flags()) {
 437     case UnorderedMatcherRequire::ExactMatch:
 438       if (matcher_describers_.empty()) {
 439         *os << "isn't empty";
 440         return;
 441       }
 442       if (matcher_describers_.size() == 1) {
 443         *os << "doesn't have " << Elements(1) << ", or has " << Elements(1)
 444             << " that ";
 445         matcher_describers_[0]->DescribeNegationTo(os);
 446         return;
 447       }
 448       *os << "doesn't have " << Elements(matcher_describers_.size())
 449           << ", or there exists no permutation of elements such that:\n";
 450       break;
 451     case UnorderedMatcherRequire::Superset:
 452       *os << "no surjection from elements to requirements exists such that:\n";
 453       break;
 454     case UnorderedMatcherRequire::Subset:
 455       *os << "no injection from elements to requirements exists such that:\n";
 456       break;
 457   }
 458   const char* sep = "";
 459   for (size_t i = 0; i != matcher_describers_.size(); ++i) {
 460     *os << sep;
 461     if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
 462       *os << " - element #" << i << " ";
 463     } else {
 464       *os << " - an element ";
 465     }
 466     matcher_describers_[i]->DescribeTo(os);
 467     if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
 468       sep = ", and\n";
 469     } else {
 470       sep = "\n";
 471     }
 472   }
 473 }
 474 
 475 // Checks that all matchers match at least one element, and that all
 476 // elements match at least one matcher. This enables faster matching
 477 // and better error reporting.
 478 // Returns false, writing an explanation to 'listener', if and only
 479 // if the success criteria are not met.
 480 bool UnorderedElementsAreMatcherImplBase::VerifyMatchMatrix(
 481     const ::std::vector<std::string>& element_printouts,
 482     const MatchMatrix& matrix, MatchResultListener* listener) const {
 483   bool result = true;
 484   ::std::vector<char> element_matched(matrix.LhsSize(), 0);
 485   ::std::vector<char> matcher_matched(matrix.RhsSize(), 0);
 486 
 487   for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) {
 488     for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) {
 489       char matched = matrix.HasEdge(ilhs, irhs);
 490       element_matched[ilhs] |= matched;
 491       matcher_matched[irhs] |= matched;
 492     }
 493   }
 494 
 495   if (match_flags() & UnorderedMatcherRequire::Superset) {
 496     const char* sep =
 497         "where the following matchers don't match any elements:\n";
 498     for (size_t mi = 0; mi < matcher_matched.size(); ++mi) {
 499       if (matcher_matched[mi]) continue;
 500       result = false;
 501       if (listener->IsInterested()) {
 502         *listener << sep << "matcher #" << mi << ": ";
 503         matcher_describers_[mi]->DescribeTo(listener->stream());
 504         sep = ",\n";
 505       }
 506     }
 507   }
 508 
 509   if (match_flags() & UnorderedMatcherRequire::Subset) {
 510     const char* sep =
 511         "where the following elements don't match any matchers:\n";
 512     const char* outer_sep = "";
 513     if (!result) {
 514       outer_sep = "\nand ";
 515     }
 516     for (size_t ei = 0; ei < element_matched.size(); ++ei) {
 517       if (element_matched[ei]) continue;
 518       result = false;
 519       if (listener->IsInterested()) {
 520         *listener << outer_sep << sep << "element #" << ei << ": "
 521                   << element_printouts[ei];
 522         sep = ",\n";
 523         outer_sep = "";
 524       }
 525     }
 526   }
 527   return result;
 528 }
 529 
 530 bool UnorderedElementsAreMatcherImplBase::FindPairing(
 531     const MatchMatrix& matrix, MatchResultListener* listener) const {
 532   ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix);
 533 
 534   size_t max_flow = matches.size();
 535   if ((match_flags() & UnorderedMatcherRequire::Superset) &&
 536       max_flow < matrix.RhsSize()) {
 537     if (listener->IsInterested()) {
 538       *listener << "where no permutation of the elements can satisfy all "
 539                    "matchers, and the closest match is "
 540                 << max_flow << " of " << matrix.RhsSize()
 541                 << " matchers with the pairings:\n";
 542       LogElementMatcherPairVec(matches, listener->stream());
 543     }
 544     return false;
 545   }
 546   if ((match_flags() & UnorderedMatcherRequire::Subset) &&
 547       max_flow < matrix.LhsSize()) {
 548     if (listener->IsInterested()) {
 549       *listener
 550           << "where not all elements can be matched, and the closest match is "
 551           << max_flow << " of " << matrix.RhsSize()
 552           << " matchers with the pairings:\n";
 553       LogElementMatcherPairVec(matches, listener->stream());
 554     }
 555     return false;
 556   }
 557 
 558   if (matches.size() > 1) {
 559     if (listener->IsInterested()) {
 560       const char* sep = "where:\n";
 561       for (size_t mi = 0; mi < matches.size(); ++mi) {
 562         *listener << sep << " - element #" << matches[mi].first
 563                   << " is matched by matcher #" << matches[mi].second;
 564         sep = ",\n";
 565       }
 566     }
 567   }
 568   return true;
 569 }
 570 
 571 }  // namespace internal
 572 }  // namespace testing