1 //package com.polytechnik.utils;
   2 /*
   3  * (C) Vladislav Malyshkin 2010
   4  * This file is under GPL version 3.
   5  *
   6  */
   7 
   8 /** Polynomial root.
   9  *  @version $Id: PolynomialRoot.java,v 1.105 2012/08/18 00:00:05 mal Exp $
  10  *  @author Vladislav Malyshkin mal@gromco.com
  11  */
  12 
  13 /**
  14 * @test
  15 * @bug 8005956
  16 * @summary C2: assert(!def_outside->member(r)) failed: Use of external LRG overlaps the same LRG defined in this block
  17 *
  18 * @run main/timeout=300 PolynomialRoot
  19 */
  20 
  21 public class PolynomialRoot  {
  22 
  23 
  24 public static int findPolynomialRoots(final int n,
  25               final double [] p,
  26               final double [] re_root,
  27               final double [] im_root)
  28 {
  29     if(n==4)
  30     {
  31   return root4(p,re_root,im_root);
  32     }
  33     else if(n==3)
  34     {
  35   return root3(p,re_root,im_root);
  36     }
  37     else if(n==2)
  38     {
  39   return root2(p,re_root,im_root);
  40     }
  41     else if(n==1)
  42     {
  43   return root1(p,re_root,im_root);
  44     }
  45     else
  46     {
  47   throw new RuntimeException("n="+n+" is not supported yet");
  48     }
  49 }
  50 
  51 
  52 
  53 static final double SQRT3=Math.sqrt(3.0),SQRT2=Math.sqrt(2.0);
  54 
  55 
  56 private static final boolean PRINT_DEBUG=false;
  57 
  58 public static int root4(final double [] p,final double [] re_root,final double [] im_root)
  59 {
  60   if(PRINT_DEBUG) System.err.println("=====================root4:p="+java.util.Arrays.toString(p));
  61   final double vs=p[4];
  62   if(PRINT_DEBUG) System.err.println("p[4]="+p[4]);
  63   if(!(Math.abs(vs)>EPS))
  64   {
  65       re_root[0]=re_root[1]=re_root[2]=re_root[3]=
  66     im_root[0]=im_root[1]=im_root[2]=im_root[3]=Double.NaN;
  67       return -1;
  68   }
  69 
  70 /* zsolve_quartic.c - finds the complex roots of
  71  *  x^4 + a x^3 + b x^2 + c x + d = 0
  72  */
  73   final double a=p[3]/vs,b=p[2]/vs,c=p[1]/vs,d=p[0]/vs;
  74   if(PRINT_DEBUG) System.err.println("input a="+a+" b="+b+" c="+c+" d="+d);
  75 
  76 
  77   final double r4 = 1.0 / 4.0;
  78   final double q2 = 1.0 / 2.0, q4 = 1.0 / 4.0, q8 = 1.0 / 8.0;
  79   final double q1 = 3.0 / 8.0, q3 = 3.0 / 16.0;
  80   final int mt;
  81 
  82   /* Deal easily with the cases where the quartic is degenerate. The
  83    * ordering of solutions is done explicitly. */
  84   if (0 == b && 0 == c)
  85   {
  86       if (0 == d)
  87       {
  88     re_root[0]=-a;
  89     im_root[0]=im_root[1]=im_root[2]=im_root[3]=0;
  90     re_root[1]=re_root[2]=re_root[3]=0;
  91     return 4;
  92       }
  93       else if (0 == a)
  94       {
  95     if (d > 0)
  96     {
  97         final double sq4 = Math.sqrt(Math.sqrt(d));
  98         re_root[0]=sq4*SQRT2/2;
  99         im_root[0]=re_root[0];
 100         re_root[1]=-re_root[0];
 101         im_root[1]=re_root[0];
 102         re_root[2]=-re_root[0];
 103         im_root[2]=-re_root[0];
 104         re_root[3]=re_root[0];
 105         im_root[3]=-re_root[0];
 106         if(PRINT_DEBUG) System.err.println("Path a=0 d>0");
 107     }
 108     else
 109     {
 110         final double sq4 = Math.sqrt(Math.sqrt(-d));
 111         re_root[0]=sq4;
 112         im_root[0]=0;
 113         re_root[1]=0;
 114         im_root[1]=sq4;
 115         re_root[2]=0;
 116         im_root[2]=-sq4;
 117         re_root[3]=-sq4;
 118         im_root[3]=0;
 119         if(PRINT_DEBUG) System.err.println("Path a=0 d<0");
 120     }
 121     return 4;
 122       }
 123   }
 124 
 125   if (0.0 == c && 0.0 == d)
 126   {
 127       root2(new double []{p[2],p[3],p[4]},re_root,im_root);
 128       re_root[2]=im_root[2]=re_root[3]=im_root[3]=0;
 129       return 4;
 130   }
 131 
 132   if(PRINT_DEBUG) System.err.println("G Path c="+c+" d="+d);
 133   final double [] u=new double[3];
 134 
 135   if(PRINT_DEBUG) System.err.println("Generic Path");
 136   /* For non-degenerate solutions, proceed by constructing and
 137    * solving the resolvent cubic */
 138   final double aa = a * a;
 139   final double pp = b - q1 * aa;
 140   final double qq = c - q2 * a * (b - q4 * aa);
 141   final double rr = d - q4 * a * (c - q4 * a * (b - q3 * aa));
 142   final double rc = q2 * pp , rc3 = rc / 3;
 143   final double sc = q4 * (q4 * pp * pp - rr);
 144   final double tc = -(q8 * qq * q8 * qq);
 145   if(PRINT_DEBUG) System.err.println("aa="+aa+" pp="+pp+" qq="+qq+" rr="+rr+" rc="+rc+" sc="+sc+" tc="+tc);
 146   final boolean flag_realroots;
 147 
 148   /* This code solves the resolvent cubic in a convenient fashion
 149    * for this implementation of the quartic. If there are three real
 150    * roots, then they are placed directly into u[].  If two are
 151    * complex, then the real root is put into u[0] and the real
 152    * and imaginary part of the complex roots are placed into
 153    * u[1] and u[2], respectively. */
 154   {
 155       final double qcub = (rc * rc - 3 * sc);
 156       final double rcub = (rc*(2 * rc * rc - 9 * sc) + 27 * tc);
 157 
 158       final double Q = qcub / 9;
 159       final double R = rcub / 54;
 160 
 161       final double Q3 = Q * Q * Q;
 162       final double R2 = R * R;
 163 
 164       final double CR2 = 729 * rcub * rcub;
 165       final double CQ3 = 2916 * qcub * qcub * qcub;
 166 
 167       if(PRINT_DEBUG) System.err.println("CR2="+CR2+" CQ3="+CQ3+" R="+R+" Q="+Q);
 168 
 169       if (0 == R && 0 == Q)
 170       {
 171     flag_realroots=true;
 172     u[0] = -rc3;
 173     u[1] = -rc3;
 174     u[2] = -rc3;
 175       }
 176       else if (CR2 == CQ3)
 177       {
 178     flag_realroots=true;
 179     final double sqrtQ = Math.sqrt (Q);
 180     if (R > 0)
 181     {
 182         u[0] = -2 * sqrtQ - rc3;
 183         u[1] = sqrtQ - rc3;
 184         u[2] = sqrtQ - rc3;
 185     }
 186     else
 187     {
 188         u[0] = -sqrtQ - rc3;
 189         u[1] = -sqrtQ - rc3;
 190         u[2] = 2 * sqrtQ - rc3;
 191     }
 192       }
 193       else if (R2 < Q3)
 194       {
 195     flag_realroots=true;
 196     final double ratio = (R >= 0?1:-1) * Math.sqrt (R2 / Q3);
 197     final double theta = Math.acos (ratio);
 198     final double norm = -2 * Math.sqrt (Q);
 199 
 200     u[0] = norm * Math.cos (theta / 3) - rc3;
 201     u[1] = norm * Math.cos ((theta + 2.0 * Math.PI) / 3) - rc3;
 202     u[2] = norm * Math.cos ((theta - 2.0 * Math.PI) / 3) - rc3;
 203       }
 204       else
 205       {
 206     flag_realroots=false;
 207     final double A = -(R >= 0?1:-1)*Math.pow(Math.abs(R)+Math.sqrt(R2-Q3),1.0/3.0);
 208     final double B = Q / A;
 209 
 210     u[0] = A + B - rc3;
 211     u[1] = -0.5 * (A + B) - rc3;
 212     u[2] = -(SQRT3*0.5) * Math.abs (A - B);
 213       }
 214       if(PRINT_DEBUG) System.err.println("u[0]="+u[0]+" u[1]="+u[1]+" u[2]="+u[2]+" qq="+qq+" disc="+((CR2 - CQ3) / 2125764.0));
 215   }
 216   /* End of solution to resolvent cubic */
 217 
 218   /* Combine the square roots of the roots of the cubic
 219    * resolvent appropriately. Also, calculate 'mt' which
 220    * designates the nature of the roots:
 221    * mt=1 : 4 real roots
 222    * mt=2 : 0 real roots
 223    * mt=3 : 2 real roots
 224    */
 225 
 226 
 227   final double w1_re,w1_im,w2_re,w2_im,w3_re,w3_im,mod_w1w2,mod_w1w2_squared;
 228   if (flag_realroots)
 229   {
 230       mod_w1w2=-1;
 231       mt = 2;
 232       int jmin=0;
 233       double vmin=Math.abs(u[jmin]);
 234       for(int j=1;j<3;j++)
 235       {
 236     final double vx=Math.abs(u[j]);
 237     if(vx<vmin)
 238     {
 239         vmin=vx;
 240         jmin=j;
 241     }
 242       }
 243       final double u1=u[(jmin+1)%3],u2=u[(jmin+2)%3];
 244       mod_w1w2_squared=Math.abs(u1*u2);
 245       if(u1>=0)
 246       {
 247     w1_re=Math.sqrt(u1);
 248     w1_im=0;
 249       }
 250       else
 251       {
 252     w1_re=0;
 253     w1_im=Math.sqrt(-u1);
 254       }
 255       if(u2>=0)
 256       {
 257     w2_re=Math.sqrt(u2);
 258     w2_im=0;
 259       }
 260       else
 261       {
 262     w2_re=0;
 263     w2_im=Math.sqrt(-u2);
 264       }
 265       if(PRINT_DEBUG) System.err.println("u1="+u1+" u2="+u2+" jmin="+jmin);
 266   }
 267   else
 268   {
 269       mt = 3;
 270       final double w_mod2_sq=u[1]*u[1]+u[2]*u[2],w_mod2=Math.sqrt(w_mod2_sq),w_mod=Math.sqrt(w_mod2);
 271       if(w_mod2_sq<=0)
 272       {
 273     w1_re=w1_im=0;
 274       }
 275       else
 276       {
 277     // calculate square root of a complex number (u[1],u[2])
 278     // the result is in the (w1_re,w1_im)
 279     final double absu1=Math.abs(u[1]),absu2=Math.abs(u[2]),w;
 280     if(absu1>=absu2)
 281     {
 282         final double t=absu2/absu1;
 283         w=Math.sqrt(absu1*0.5 * (1.0 + Math.sqrt(1.0 + t * t)));
 284         if(PRINT_DEBUG) System.err.println(" Path1 ");
 285     }
 286     else
 287     {
 288         final double t=absu1/absu2;
 289         w=Math.sqrt(absu2*0.5 * (t + Math.sqrt(1.0 + t * t)));
 290         if(PRINT_DEBUG) System.err.println(" Path1a ");
 291     }
 292     if(u[1]>=0)
 293     {
 294         w1_re=w;
 295         w1_im=u[2]/(2*w);
 296         if(PRINT_DEBUG) System.err.println(" Path2 ");
 297     }
 298     else
 299     {
 300         final double vi = (u[2] >= 0) ? w : -w;
 301         w1_re=u[2]/(2*vi);
 302         w1_im=vi;
 303         if(PRINT_DEBUG) System.err.println(" Path2a ");
 304     }
 305       }
 306       final double absu0=Math.abs(u[0]);
 307       if(w_mod2>=absu0)
 308       {
 309     mod_w1w2=w_mod2;
 310     mod_w1w2_squared=w_mod2_sq;
 311     w2_re=w1_re;
 312     w2_im=-w1_im;
 313       }
 314       else
 315       {
 316     mod_w1w2=-1;
 317     mod_w1w2_squared=w_mod2*absu0;
 318     if(u[0]>=0)
 319     {
 320         w2_re=Math.sqrt(absu0);
 321         w2_im=0;
 322     }
 323     else
 324     {
 325         w2_re=0;
 326         w2_im=Math.sqrt(absu0);
 327     }
 328       }
 329       if(PRINT_DEBUG) System.err.println("u[0]="+u[0]+"u[1]="+u[1]+" u[2]="+u[2]+" absu0="+absu0+" w_mod="+w_mod+" w_mod2="+w_mod2);
 330   }
 331 
 332   /* Solve the quadratic in order to obtain the roots
 333    * to the quartic */
 334   if(mod_w1w2>0)
 335   {
 336       // a shorcut to reduce rounding error
 337       w3_re=qq/(-8)/mod_w1w2;
 338       w3_im=0;
 339   }
 340   else if(mod_w1w2_squared>0)
 341   {
 342       // regular path
 343       final double mqq8n=qq/(-8)/mod_w1w2_squared;
 344       w3_re=mqq8n*(w1_re*w2_re-w1_im*w2_im);
 345       w3_im=-mqq8n*(w1_re*w2_im+w2_re*w1_im);
 346   }
 347   else
 348   {
 349       // typically occur when qq==0
 350       w3_re=w3_im=0;
 351   }
 352 
 353   final double h = r4 * a;
 354   if(PRINT_DEBUG) System.err.println("w1_re="+w1_re+" w1_im="+w1_im+" w2_re="+w2_re+" w2_im="+w2_im+" w3_re="+w3_re+" w3_im="+w3_im+" h="+h);
 355 
 356   re_root[0]=w1_re+w2_re+w3_re-h;
 357   im_root[0]=w1_im+w2_im+w3_im;
 358   re_root[1]=-(w1_re+w2_re)+w3_re-h;
 359   im_root[1]=-(w1_im+w2_im)+w3_im;
 360   re_root[2]=w2_re-w1_re-w3_re-h;
 361   im_root[2]=w2_im-w1_im-w3_im;
 362   re_root[3]=w1_re-w2_re-w3_re-h;
 363   im_root[3]=w1_im-w2_im-w3_im;
 364 
 365   return 4;
 366 }
 367 
 368 
 369 
 370     static void setRandomP(final double [] p,final int n,java.util.Random r)
 371     {
 372   if(r.nextDouble()<0.1)
 373   {
 374       // integer coefficiens
 375       for(int j=0;j<p.length;j++)
 376       {
 377     if(j<=n)
 378     {
 379         p[j]=(r.nextInt(2)<=0?-1:1)*r.nextInt(10);
 380     }
 381     else
 382     {
 383         p[j]=0;
 384     }
 385       }
 386   }
 387   else
 388   {
 389       // real coefficiens
 390       for(int j=0;j<p.length;j++)
 391       {
 392     if(j<=n)
 393     {
 394         p[j]=-1+2*r.nextDouble();
 395     }
 396     else
 397     {
 398         p[j]=0;
 399     }
 400       }
 401   }
 402   if(Math.abs(p[n])<1e-2)
 403   {
 404       p[n]=(r.nextInt(2)<=0?-1:1)*(0.1+r.nextDouble());
 405   }
 406     }
 407 
 408 
 409     static void checkValues(final double [] p,
 410           final int n,
 411           final double rex,
 412           final double imx,
 413           final double eps,
 414           final String txt)
 415     {
 416   double res=0,ims=0,sabs=0;
 417   final double xabs=Math.abs(rex)+Math.abs(imx);
 418   for(int k=n;k>=0;k--)
 419   {
 420       final double res1=(res*rex-ims*imx)+p[k];
 421       final double ims1=(ims*rex+res*imx);
 422       res=res1;
 423       ims=ims1;
 424       sabs+=xabs*sabs+p[k];
 425   }
 426   sabs=Math.abs(sabs);
 427   if(false && sabs>1/eps?
 428      (!(Math.abs(res/sabs)<=eps)||!(Math.abs(ims/sabs)<=eps))
 429      :
 430      (!(Math.abs(res)<=eps)||!(Math.abs(ims)<=eps)))
 431   {
 432       throw new RuntimeException(
 433     getPolinomTXT(p)+"\n"+
 434     "\t x.r="+rex+" x.i="+imx+"\n"+
 435     "res/sabs="+(res/sabs)+" ims/sabs="+(ims/sabs)+
 436     " sabs="+sabs+
 437     "\nres="+res+" ims="+ims+" n="+n+" eps="+eps+" "+
 438     " sabs>1/eps="+(sabs>1/eps)+
 439     " f1="+(!(Math.abs(res/sabs)<=eps)||!(Math.abs(ims/sabs)<=eps))+
 440     " f2="+(!(Math.abs(res)<=eps)||!(Math.abs(ims)<=eps))+
 441     " "+txt);
 442   }
 443     }
 444 
 445     static String getPolinomTXT(final double [] p)
 446     {
 447   final StringBuilder buf=new StringBuilder();
 448   buf.append("order="+(p.length-1)+"\t");
 449   for(int k=0;k<p.length;k++)
 450   {
 451       buf.append("p["+k+"]="+p[k]+";");
 452   }
 453   return buf.toString();
 454     }
 455 
 456     static String getRootsTXT(int nr,final double [] re,final double [] im)
 457     {
 458   final StringBuilder buf=new StringBuilder();
 459   for(int k=0;k<nr;k++)
 460   {
 461       buf.append("x."+k+"("+re[k]+","+im[k]+")\n");
 462   }
 463   return buf.toString();
 464     }
 465 
 466     static void testRoots(final int n,
 467         final int n_tests,
 468         final java.util.Random rn,
 469         final double eps)
 470     {
 471   final double [] p=new double [n+1];
 472   final double [] rex=new double [n],imx=new double [n];
 473   for(int i=0;i<n_tests;i++)
 474   {
 475     for(int dg=n;dg-->-1;)
 476     {
 477       for(int dr=3;dr-->0;)
 478       {
 479         setRandomP(p,n,rn);
 480         for(int j=0;j<=dg;j++)
 481         {
 482       p[j]=0;
 483         }
 484         if(dr==0)
 485         {
 486       p[0]=-1+2.0*rn.nextDouble();
 487         }
 488         else if(dr==1)
 489         {
 490       p[0]=p[1]=0;
 491         }
 492 
 493         findPolynomialRoots(n,p,rex,imx);
 494 
 495         for(int j=0;j<n;j++)
 496         {
 497       //System.err.println("j="+j);
 498       checkValues(p,n,rex[j],imx[j],eps," t="+i);
 499         }
 500       }
 501     }
 502   }
 503   System.err.println("testRoots(): n_tests="+n_tests+" OK, dim="+n);
 504     }
 505 
 506 
 507 
 508 
 509     static final double EPS=0;
 510 
 511     public static int root1(final double [] p,final double [] re_root,final double [] im_root)
 512     {
 513   if(!(Math.abs(p[1])>EPS))
 514   {
 515       re_root[0]=im_root[0]=Double.NaN;
 516       return -1;
 517   }
 518   re_root[0]=-p[0]/p[1];
 519   im_root[0]=0;
 520   return 1;
 521     }
 522 
 523     public static int root2(final double [] p,final double [] re_root,final double [] im_root)
 524     {
 525   if(!(Math.abs(p[2])>EPS))
 526   {
 527       re_root[0]=re_root[1]=im_root[0]=im_root[1]=Double.NaN;
 528       return -1;
 529   }
 530   final double b2=0.5*(p[1]/p[2]),c=p[0]/p[2],d=b2*b2-c;
 531   if(d>=0)
 532   {
 533       final double sq=Math.sqrt(d);
 534       if(b2<0)
 535       {
 536     re_root[1]=-b2+sq;
 537     re_root[0]=c/re_root[1];
 538       }
 539       else if(b2>0)
 540       {
 541     re_root[0]=-b2-sq;
 542     re_root[1]=c/re_root[0];
 543       }
 544       else
 545       {
 546     re_root[0]=-b2-sq;
 547     re_root[1]=-b2+sq;
 548       }
 549       im_root[0]=im_root[1]=0;
 550   }
 551   else
 552   {
 553       final double sq=Math.sqrt(-d);
 554       re_root[0]=re_root[1]=-b2;
 555       im_root[0]=sq;
 556       im_root[1]=-sq;
 557   }
 558   return 2;
 559     }
 560 
 561     public static int root3(final double [] p,final double [] re_root,final double [] im_root)
 562     {
 563   final double vs=p[3];
 564   if(!(Math.abs(vs)>EPS))
 565   {
 566       re_root[0]=re_root[1]=re_root[2]=
 567     im_root[0]=im_root[1]=im_root[2]=Double.NaN;
 568       return -1;
 569   }
 570   final double a=p[2]/vs,b=p[1]/vs,c=p[0]/vs;
 571   /* zsolve_cubic.c - finds the complex roots of x^3 + a x^2 + b x + c = 0
 572    */
 573   final double q = (a * a - 3 * b);
 574   final double r = (a*(2 * a * a - 9 * b) + 27 * c);
 575 
 576   final double Q = q / 9;
 577   final double R = r / 54;
 578 
 579   final double Q3 = Q * Q * Q;
 580   final double R2 = R * R;
 581 
 582   final double CR2 = 729 * r * r;
 583   final double CQ3 = 2916 * q * q * q;
 584   final double a3=a/3;
 585 
 586   if (R == 0 && Q == 0)
 587   {
 588       re_root[0]=re_root[1]=re_root[2]=-a3;
 589       im_root[0]=im_root[1]=im_root[2]=0;
 590       return 3;
 591   }
 592   else if (CR2 == CQ3)
 593   {
 594       /* this test is actually R2 == Q3, written in a form suitable
 595          for exact computation with integers */
 596 
 597       /* Due to finite precision some double roots may be missed, and
 598          will be considered to be a pair of complex roots z = x +/-
 599          epsilon i close to the real axis. */
 600 
 601       final double sqrtQ = Math.sqrt (Q);
 602 
 603       if (R > 0)
 604       {
 605     re_root[0] = -2 * sqrtQ - a3;
 606     re_root[1]=re_root[2]=sqrtQ - a3;
 607     im_root[0]=im_root[1]=im_root[2]=0;
 608       }
 609       else
 610       {
 611     re_root[0]=re_root[1] = -sqrtQ - a3;
 612     re_root[2]=2 * sqrtQ - a3;
 613     im_root[0]=im_root[1]=im_root[2]=0;
 614       }
 615       return 3;
 616   }
 617   else if (R2 < Q3)
 618   {
 619       final double sgnR = (R >= 0 ? 1 : -1);
 620       final double ratio = sgnR * Math.sqrt (R2 / Q3);
 621       final double theta = Math.acos (ratio);
 622       final double norm = -2 * Math.sqrt (Q);
 623       final double r0 = norm * Math.cos (theta/3) - a3;
 624       final double r1 = norm * Math.cos ((theta + 2.0 * Math.PI) / 3) - a3;
 625       final double r2 = norm * Math.cos ((theta - 2.0 * Math.PI) / 3) - a3;
 626 
 627       re_root[0]=r0;
 628       re_root[1]=r1;
 629       re_root[2]=r2;
 630       im_root[0]=im_root[1]=im_root[2]=0;
 631       return 3;
 632   }
 633   else
 634   {
 635       final double sgnR = (R >= 0 ? 1 : -1);
 636       final double A = -sgnR * Math.pow (Math.abs (R) + Math.sqrt (R2 - Q3), 1.0 / 3.0);
 637       final double B = Q / A;
 638 
 639       re_root[0]=A + B - a3;
 640       im_root[0]=0;
 641       re_root[1]=-0.5 * (A + B) - a3;
 642       im_root[1]=-(SQRT3*0.5) * Math.abs(A - B);
 643       re_root[2]=re_root[1];
 644       im_root[2]=-im_root[1];
 645       return 3;
 646   }
 647 
 648     }
 649 
 650 
 651     static void root3a(final double [] p,final double [] re_root,final double [] im_root)
 652     {
 653   if(Math.abs(p[3])>EPS)
 654   {
 655       final double v=p[3],
 656     a=p[2]/v,b=p[1]/v,c=p[0]/v,
 657     a3=a/3,a3a=a3*a,
 658     pd3=(b-a3a)/3,
 659     qd2=a3*(a3a/3-0.5*b)+0.5*c,
 660     Q=pd3*pd3*pd3+qd2*qd2;
 661       if(Q<0)
 662       {
 663     // three real roots
 664     final double SQ=Math.sqrt(-Q);
 665     final double th=Math.atan2(SQ,-qd2);
 666     im_root[0]=im_root[1]=im_root[2]=0;
 667     final double f=2*Math.sqrt(-pd3);
 668     re_root[0]=f*Math.cos(th/3)-a3;
 669     re_root[1]=f*Math.cos((th+2*Math.PI)/3)-a3;
 670     re_root[2]=f*Math.cos((th+4*Math.PI)/3)-a3;
 671     //System.err.println("3r");
 672       }
 673       else
 674       {
 675     // one real & two complex roots
 676     final double SQ=Math.sqrt(Q);
 677     final double r1=-qd2+SQ,r2=-qd2-SQ;
 678     final double v1=Math.signum(r1)*Math.pow(Math.abs(r1),1.0/3),
 679         v2=Math.signum(r2)*Math.pow(Math.abs(r2),1.0/3),
 680         sv=v1+v2;
 681     // real root
 682     re_root[0]=sv-a3;
 683     im_root[0]=0;
 684     // complex roots
 685     re_root[1]=re_root[2]=-0.5*sv-a3;
 686     im_root[1]=(v1-v2)*(SQRT3*0.5);
 687     im_root[2]=-im_root[1];
 688     //System.err.println("1r2c");
 689       }
 690   }
 691   else
 692   {
 693       re_root[0]=re_root[1]=re_root[2]=im_root[0]=im_root[1]=im_root[2]=Double.NaN;
 694   }
 695     }
 696 
 697 
 698     static void printSpecialValues()
 699     {
 700   for(int st=0;st<6;st++)
 701   {
 702       //final double [] p=new double []{8,1,3,3.6,1};
 703       final double [] re_root=new double [4],im_root=new double [4];
 704       final double [] p;
 705       final int n;
 706       if(st<=3)
 707       {
 708     if(st<=0)
 709     {
 710         p=new double []{2,-4,6,-4,1};
 711         //p=new double []{-6,6,-6,8,-2};
 712     }
 713     else if(st==1)
 714     {
 715         p=new double []{0,-4,8,3,-9};
 716     }
 717     else if(st==2)
 718     {
 719         p=new double []{-1,0,2,0,-1};
 720     }
 721     else
 722     {
 723         p=new double []{-5,2,8,-2,-3};
 724     }
 725     root4(p,re_root,im_root);
 726     n=4;
 727       }
 728       else
 729       {
 730     p=new double []{0,2,0,1};
 731     if(st==4)
 732     {
 733         p[1]=-p[1];
 734     }
 735     root3(p,re_root,im_root);
 736     n=3;
 737       }
 738       System.err.println("======== n="+n);
 739       for(int i=0;i<=n;i++)
 740       {
 741     if(i<n)
 742     {
 743         System.err.println(String.valueOf(i)+"\t"+
 744                p[i]+"\t"+
 745                re_root[i]+"\t"+
 746                im_root[i]);
 747     }
 748     else
 749     {
 750         System.err.println(String.valueOf(i)+"\t"+p[i]+"\t");
 751     }
 752       }
 753   }
 754     }
 755 
 756 
 757 
 758     public static void main(final String [] args)
 759     {
 760       if (System.getProperty("os.arch").equals("x86") ||
 761          System.getProperty("os.arch").equals("amd64") ||
 762          System.getProperty("os.arch").equals("x86_64")){
 763         final long t0=System.currentTimeMillis();
 764         final double eps=1e-6;
 765         //checkRoots();
 766         final java.util.Random r=new java.util.Random(-1381923);
 767         printSpecialValues();
 768 
 769         final int n_tests=100000;
 770         //testRoots(2,n_tests,r,eps);
 771         //testRoots(3,n_tests,r,eps);
 772         testRoots(4,n_tests,r,eps);
 773         final long t1=System.currentTimeMillis();
 774         System.err.println("PolynomialRoot.main: "+n_tests+" tests OK done in "+(t1-t0)+" milliseconds. ver=$Id: PolynomialRoot.java,v 1.105 2012/08/18 00:00:05 mal Exp $");
 775         System.out.println("PASSED");
 776      } else {
 777        System.out.println("PASS test for non-x86");
 778      }
 779    }
 780 
 781 
 782 
 783 }