/* * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2014, Red Hat Inc. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "interp_masm_aarch64.hpp" #include "interpreter/interpreter.hpp" #include "interpreter/interpreterRuntime.hpp" #include "logging/log.hpp" #include "oops/arrayOop.hpp" #include "oops/markOop.hpp" #include "oops/methodData.hpp" #include "oops/method.hpp" #include "prims/jvmtiExport.hpp" #include "prims/jvmtiThreadState.hpp" #include "runtime/basicLock.hpp" #include "runtime/biasedLocking.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/thread.inline.hpp" void InterpreterMacroAssembler::narrow(Register result) { // Get method->_constMethod->_result_type ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); ldr(rscratch1, Address(rscratch1, Method::const_offset())); ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset())); Label done, notBool, notByte, notChar; // common case first cmpw(rscratch1, T_INT); br(Assembler::EQ, done); // mask integer result to narrower return type. cmpw(rscratch1, T_BOOLEAN); br(Assembler::NE, notBool); andw(result, result, 0x1); b(done); bind(notBool); cmpw(rscratch1, T_BYTE); br(Assembler::NE, notByte); sbfx(result, result, 0, 8); b(done); bind(notByte); cmpw(rscratch1, T_CHAR); br(Assembler::NE, notChar); ubfx(result, result, 0, 16); // truncate upper 16 bits b(done); bind(notChar); sbfx(result, result, 0, 16); // sign-extend short // Nothing to do for T_INT bind(done); } void InterpreterMacroAssembler::jump_to_entry(address entry) { assert(entry, "Entry must have been generated by now"); b(entry); } void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { if (JvmtiExport::can_pop_frame()) { Label L; // Initiate popframe handling only if it is not already being // processed. If the flag has the popframe_processing bit set, it // means that this code is called *during* popframe handling - we // don't want to reenter. // This method is only called just after the call into the vm in // call_VM_base, so the arg registers are available. ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset())); tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L); tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L); // Call Interpreter::remove_activation_preserving_args_entry() to get the // address of the same-named entrypoint in the generated interpreter code. call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); br(r0); bind(L); } } void InterpreterMacroAssembler::load_earlyret_value(TosState state) { ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset())); const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset()); const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset()); const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset()); switch (state) { case atos: ldr(r0, oop_addr); str(zr, oop_addr); verify_oop(r0, state); break; case ltos: ldr(r0, val_addr); break; case btos: // fall through case ztos: // fall through case ctos: // fall through case stos: // fall through case itos: ldrw(r0, val_addr); break; case ftos: ldrs(v0, val_addr); break; case dtos: ldrd(v0, val_addr); break; case vtos: /* nothing to do */ break; default : ShouldNotReachHere(); } // Clean up tos value in the thread object movw(rscratch1, (int) ilgl); strw(rscratch1, tos_addr); strw(zr, val_addr); } void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { if (JvmtiExport::can_force_early_return()) { Label L; ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); cbz(rscratch1, L); // if (thread->jvmti_thread_state() == NULL) exit; // Initiate earlyret handling only if it is not already being processed. // If the flag has the earlyret_processing bit set, it means that this code // is called *during* earlyret handling - we don't want to reenter. ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset())); cmpw(rscratch1, JvmtiThreadState::earlyret_pending); br(Assembler::NE, L); // Call Interpreter::remove_activation_early_entry() to get the address of the // same-named entrypoint in the generated interpreter code. ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset())); call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1); br(r0); bind(L); } } void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp( Register reg, int bcp_offset) { assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); ldrh(reg, Address(rbcp, bcp_offset)); rev16(reg, reg); } void InterpreterMacroAssembler::get_dispatch() { unsigned long offset; adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset); lea(rdispatch, Address(rdispatch, offset)); } void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, int bcp_offset, size_t index_size) { assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); if (index_size == sizeof(u2)) { load_unsigned_short(index, Address(rbcp, bcp_offset)); } else if (index_size == sizeof(u4)) { // assert(EnableInvokeDynamic, "giant index used only for JSR 292"); ldrw(index, Address(rbcp, bcp_offset)); // Check if the secondary index definition is still ~x, otherwise // we have to change the following assembler code to calculate the // plain index. assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); eonw(index, index, zr); // convert to plain index } else if (index_size == sizeof(u1)) { load_unsigned_byte(index, Address(rbcp, bcp_offset)); } else { ShouldNotReachHere(); } } // Return // Rindex: index into constant pool // Rcache: address of cache entry - ConstantPoolCache::base_offset() // // A caller must add ConstantPoolCache::base_offset() to Rcache to get // the true address of the cache entry. // void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register index, int bcp_offset, size_t index_size) { assert_different_registers(cache, index); assert_different_registers(cache, rcpool); get_cache_index_at_bcp(index, bcp_offset, index_size); assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); // convert from field index to ConstantPoolCacheEntry // aarch64 already has the cache in rcpool so there is no need to // install it in cache. instead we pre-add the indexed offset to // rcpool and return it in cache. All clients of this method need to // be modified accordingly. add(cache, rcpool, index, Assembler::LSL, 5); } void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, Register index, Register bytecode, int byte_no, int bcp_offset, size_t index_size) { get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size); // We use a 32-bit load here since the layout of 64-bit words on // little-endian machines allow us that. // n.b. unlike x86 cache already includes the index offset lea(bytecode, Address(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset())); ldarw(bytecode, bytecode); const int shift_count = (1 + byte_no) * BitsPerByte; ubfx(bytecode, bytecode, shift_count, BitsPerByte); } void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp, int bcp_offset, size_t index_size) { assert(cache != tmp, "must use different register"); get_cache_index_at_bcp(tmp, bcp_offset, index_size); assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); // convert from field index to ConstantPoolCacheEntry index // and from word offset to byte offset assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line"); ldr(cache, Address(rfp, frame::interpreter_frame_cache_offset * wordSize)); // skip past the header add(cache, cache, in_bytes(ConstantPoolCache::base_offset())); add(cache, cache, tmp, Assembler::LSL, 2 + LogBytesPerWord); // construct pointer to cache entry } void InterpreterMacroAssembler::get_method_counters(Register method, Register mcs, Label& skip) { Label has_counters; ldr(mcs, Address(method, Method::method_counters_offset())); cbnz(mcs, has_counters); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), method); ldr(mcs, Address(method, Method::method_counters_offset())); cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory bind(has_counters); } // Load object from cpool->resolved_references(index) void InterpreterMacroAssembler::load_resolved_reference_at_index( Register result, Register index) { assert_different_registers(result, index); // convert from field index to resolved_references() index and from // word index to byte offset. Since this is a java object, it can be compressed Register tmp = index; // reuse lslw(tmp, tmp, LogBytesPerHeapOop); get_constant_pool(result); // load pointer for resolved_references[] objArray ldr(result, Address(result, ConstantPool::cache_offset_in_bytes())); ldr(result, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes())); // JNIHandles::resolve(obj); ldr(result, Address(result, 0)); // Add in the index add(result, result, tmp); load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT))); } // Generate a subtype check: branch to ok_is_subtype if sub_klass is a // subtype of super_klass. // // Args: // r0: superklass // Rsub_klass: subklass // // Kills: // r2, r5 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, Label& ok_is_subtype) { assert(Rsub_klass != r0, "r0 holds superklass"); assert(Rsub_klass != r2, "r2 holds 2ndary super array length"); assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr"); // Profile the not-null value's klass. profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5 // Do the check. check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2 // Profile the failure of the check. profile_typecheck_failed(r2); // blows r2 } // Java Expression Stack void InterpreterMacroAssembler::pop_ptr(Register r) { ldr(r, post(esp, wordSize)); } void InterpreterMacroAssembler::pop_i(Register r) { ldrw(r, post(esp, wordSize)); } void InterpreterMacroAssembler::pop_l(Register r) { ldr(r, post(esp, 2 * Interpreter::stackElementSize)); } void InterpreterMacroAssembler::push_ptr(Register r) { str(r, pre(esp, -wordSize)); } void InterpreterMacroAssembler::push_i(Register r) { str(r, pre(esp, -wordSize)); } void InterpreterMacroAssembler::push_l(Register r) { str(zr, pre(esp, -wordSize)); str(r, pre(esp, - wordSize)); } void InterpreterMacroAssembler::pop_f(FloatRegister r) { ldrs(r, post(esp, wordSize)); } void InterpreterMacroAssembler::pop_d(FloatRegister r) { ldrd(r, post(esp, 2 * Interpreter::stackElementSize)); } void InterpreterMacroAssembler::push_f(FloatRegister r) { strs(r, pre(esp, -wordSize)); } void InterpreterMacroAssembler::push_d(FloatRegister r) { strd(r, pre(esp, 2* -wordSize)); } void InterpreterMacroAssembler::pop(TosState state) { switch (state) { case atos: pop_ptr(); break; case btos: case ztos: case ctos: case stos: case itos: pop_i(); break; case ltos: pop_l(); break; case ftos: pop_f(); break; case dtos: pop_d(); break; case vtos: /* nothing to do */ break; default: ShouldNotReachHere(); } verify_oop(r0, state); } void InterpreterMacroAssembler::push(TosState state) { verify_oop(r0, state); switch (state) { case atos: push_ptr(); break; case btos: case ztos: case ctos: case stos: case itos: push_i(); break; case ltos: push_l(); break; case ftos: push_f(); break; case dtos: push_d(); break; case vtos: /* nothing to do */ break; default : ShouldNotReachHere(); } } // Helpers for swap and dup void InterpreterMacroAssembler::load_ptr(int n, Register val) { ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); } void InterpreterMacroAssembler::store_ptr(int n, Register val) { str(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); } void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { // set sender sp mov(r13, sp); // record last_sp str(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); } // Jump to from_interpreted entry of a call unless single stepping is possible // in this thread in which case we must call the i2i entry void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { prepare_to_jump_from_interpreted(); if (JvmtiExport::can_post_interpreter_events()) { Label run_compiled_code; // JVMTI events, such as single-stepping, are implemented partly by avoiding running // compiled code in threads for which the event is enabled. Check here for // interp_only_mode if these events CAN be enabled. ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); cbzw(rscratch1, run_compiled_code); ldr(rscratch1, Address(method, Method::interpreter_entry_offset())); br(rscratch1); bind(run_compiled_code); } ldr(rscratch1, Address(method, Method::from_interpreted_offset())); br(rscratch1); } // The following two routines provide a hook so that an implementation // can schedule the dispatch in two parts. amd64 does not do this. void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { } void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { dispatch_next(state, step); } void InterpreterMacroAssembler::dispatch_base(TosState state, address* table, bool verifyoop) { if (VerifyActivationFrameSize) { Unimplemented(); } if (verifyoop) { verify_oop(r0, state); } if (table == Interpreter::dispatch_table(state)) { addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state)); ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3))); } else { mov(rscratch2, (address)table); ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); } br(rscratch2); } void InterpreterMacroAssembler::dispatch_only(TosState state) { dispatch_base(state, Interpreter::dispatch_table(state)); } void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { dispatch_base(state, Interpreter::normal_table(state)); } void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { dispatch_base(state, Interpreter::normal_table(state), false); } void InterpreterMacroAssembler::dispatch_next(TosState state, int step) { // load next bytecode ldrb(rscratch1, Address(pre(rbcp, step))); dispatch_base(state, Interpreter::dispatch_table(state)); } void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { // load current bytecode ldrb(rscratch1, Address(rbcp, 0)); dispatch_base(state, table); } // remove activation // // Unlock the receiver if this is a synchronized method. // Unlock any Java monitors from syncronized blocks. // Remove the activation from the stack. // // If there are locked Java monitors // If throw_monitor_exception // throws IllegalMonitorStateException // Else if install_monitor_exception // installs IllegalMonitorStateException // Else // no error processing void InterpreterMacroAssembler::remove_activation( TosState state, bool throw_monitor_exception, bool install_monitor_exception, bool notify_jvmdi) { // Note: Registers r3 xmm0 may be in use for the // result check if synchronized method Label unlocked, unlock, no_unlock; // get the value of _do_not_unlock_if_synchronized into r3 const Address do_not_unlock_if_synchronized(rthread, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); ldrb(r3, do_not_unlock_if_synchronized); strb(zr, do_not_unlock_if_synchronized); // reset the flag // get method access flags ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); ldr(r2, Address(r1, Method::access_flags_offset())); tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked); // Don't unlock anything if the _do_not_unlock_if_synchronized flag // is set. cbnz(r3, no_unlock); // unlock monitor push(state); // save result // BasicObjectLock will be first in list, since this is a // synchronized method. However, need to check that the object has // not been unlocked by an explicit monitorexit bytecode. const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset * wordSize - (int) sizeof(BasicObjectLock)); // We use c_rarg1 so that if we go slow path it will be the correct // register for unlock_object to pass to VM directly lea(c_rarg1, monitor); // address of first monitor ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); cbnz(r0, unlock); pop(state); if (throw_monitor_exception) { // Entry already unlocked, need to throw exception call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); should_not_reach_here(); } else { // Monitor already unlocked during a stack unroll. If requested, // install an illegal_monitor_state_exception. Continue with // stack unrolling. if (install_monitor_exception) { call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception)); } b(unlocked); } bind(unlock); unlock_object(c_rarg1); pop(state); // Check that for block-structured locking (i.e., that all locked // objects has been unlocked) bind(unlocked); // r0: Might contain return value // Check that all monitors are unlocked { Label loop, exception, entry, restart; const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; const Address monitor_block_top( rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); const Address monitor_block_bot( rfp, frame::interpreter_frame_initial_sp_offset * wordSize); bind(restart); // We use c_rarg1 so that if we go slow path it will be the correct // register for unlock_object to pass to VM directly ldr(c_rarg1, monitor_block_top); // points to current entry, starting // with top-most entry lea(r19, monitor_block_bot); // points to word before bottom of // monitor block b(entry); // Entry already locked, need to throw exception bind(exception); if (throw_monitor_exception) { // Throw exception MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime:: throw_illegal_monitor_state_exception)); should_not_reach_here(); } else { // Stack unrolling. Unlock object and install illegal_monitor_exception. // Unlock does not block, so don't have to worry about the frame. // We don't have to preserve c_rarg1 since we are going to throw an exception. push(state); unlock_object(c_rarg1); pop(state); if (install_monitor_exception) { call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime:: new_illegal_monitor_state_exception)); } b(restart); } bind(loop); // check if current entry is used ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); cbnz(rscratch1, exception); add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry bind(entry); cmp(c_rarg1, r19); // check if bottom reached br(Assembler::NE, loop); // if not at bottom then check this entry } bind(no_unlock); // jvmti support if (notify_jvmdi) { notify_method_exit(state, NotifyJVMTI); // preserve TOSCA } else { notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA } // remove activation // get sender esp ldr(esp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); if (StackReservedPages > 0) { // testing if reserved zone needs to be re-enabled Label no_reserved_zone_enabling; ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); cmp(esp, rscratch1); br(Assembler::LS, no_reserved_zone_enabling); call_VM_leaf( CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError)); should_not_reach_here(); bind(no_reserved_zone_enabling); } // remove frame anchor leave(); // If we're returning to interpreted code we will shortly be // adjusting SP to allow some space for ESP. If we're returning to // compiled code the saved sender SP was saved in sender_sp, so this // restores it. andr(sp, esp, -16); } // Lock object // // Args: // c_rarg1: BasicObjectLock to be used for locking // // Kills: // r0 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs) // rscratch1, rscratch2 (scratch regs) void InterpreterMacroAssembler::lock_object(Register lock_reg) { assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); if (UseHeavyMonitors) { call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg); } else { Label done; const Register swap_reg = r0; const Register tmp = c_rarg2; const Register obj_reg = c_rarg3; // Will contain the oop const int obj_offset = BasicObjectLock::obj_offset_in_bytes(); const int lock_offset = BasicObjectLock::lock_offset_in_bytes (); const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes(); Label slow_case; // Load object pointer into obj_reg %c_rarg3 ldr(obj_reg, Address(lock_reg, obj_offset)); if (UseBiasedLocking) { biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp, false, done, &slow_case); } // Load (object->mark() | 1) into swap_reg ldr(rscratch1, Address(obj_reg, 0)); orr(swap_reg, rscratch1, 1); // Save (object->mark() | 1) into BasicLock's displaced header str(swap_reg, Address(lock_reg, mark_offset)); assert(lock_offset == 0, "displached header must be first word in BasicObjectLock"); Label fail; if (PrintBiasedLockingStatistics) { Label fast; cmpxchgptr(swap_reg, lock_reg, obj_reg, rscratch1, fast, &fail); bind(fast); atomic_incw(Address((address)BiasedLocking::fast_path_entry_count_addr()), rscratch2, rscratch1, tmp); b(done); bind(fail); } else { cmpxchgptr(swap_reg, lock_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL); } // Test if the oopMark is an obvious stack pointer, i.e., // 1) (mark & 7) == 0, and // 2) rsp <= mark < mark + os::pagesize() // // These 3 tests can be done by evaluating the following // expression: ((mark - rsp) & (7 - os::vm_page_size())), // assuming both stack pointer and pagesize have their // least significant 3 bits clear. // NOTE: the oopMark is in swap_reg %r0 as the result of cmpxchg // NOTE2: aarch64 does not like to subtract sp from rn so take a // copy mov(rscratch1, sp); sub(swap_reg, swap_reg, rscratch1); ands(swap_reg, swap_reg, (unsigned long)(7 - os::vm_page_size())); // Save the test result, for recursive case, the result is zero str(swap_reg, Address(lock_reg, mark_offset)); if (PrintBiasedLockingStatistics) { br(Assembler::NE, slow_case); atomic_incw(Address((address)BiasedLocking::fast_path_entry_count_addr()), rscratch2, rscratch1, tmp); } br(Assembler::EQ, done); bind(slow_case); // Call the runtime routine for slow case call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg); bind(done); } } // Unlocks an object. Used in monitorexit bytecode and // remove_activation. Throws an IllegalMonitorException if object is // not locked by current thread. // // Args: // c_rarg1: BasicObjectLock for lock // // Kills: // r0 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) // rscratch1, rscratch2 (scratch regs) void InterpreterMacroAssembler::unlock_object(Register lock_reg) { assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1"); if (UseHeavyMonitors) { call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); } else { Label done; const Register swap_reg = r0; const Register header_reg = c_rarg2; // Will contain the old oopMark const Register obj_reg = c_rarg3; // Will contain the oop save_bcp(); // Save in case of exception // Convert from BasicObjectLock structure to object and BasicLock // structure Store the BasicLock address into %r0 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes())); // Load oop into obj_reg(%c_rarg3) ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); // Free entry str(zr, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); if (UseBiasedLocking) { biased_locking_exit(obj_reg, header_reg, done); } // Load the old header from BasicLock structure ldr(header_reg, Address(swap_reg, BasicLock::displaced_header_offset_in_bytes())); // Test for recursion cbz(header_reg, done); // Atomic swap back the old header cmpxchgptr(swap_reg, header_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL); // Call the runtime routine for slow case. str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); // restore obj call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); bind(done); restore_bcp(); } } void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) { assert(ProfileInterpreter, "must be profiling interpreter"); ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); cbz(mdp, zero_continue); } // Set the method data pointer for the current bcp. void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { assert(ProfileInterpreter, "must be profiling interpreter"); Label set_mdp; stp(r0, r1, Address(pre(sp, -2 * wordSize))); // Test MDO to avoid the call if it is NULL. ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset()))); cbz(r0, set_mdp); call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp); // r0: mdi // mdo is guaranteed to be non-zero here, we checked for it before the call. ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); lea(r1, Address(r1, in_bytes(MethodData::data_offset()))); add(r0, r1, r0); str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); bind(set_mdp); ldp(r0, r1, Address(post(sp, 2 * wordSize))); } void InterpreterMacroAssembler::verify_method_data_pointer() { assert(ProfileInterpreter, "must be profiling interpreter"); #ifdef ASSERT Label verify_continue; stp(r0, r1, Address(pre(sp, -2 * wordSize))); stp(r2, r3, Address(pre(sp, -2 * wordSize))); test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue get_method(r1); // If the mdp is valid, it will point to a DataLayout header which is // consistent with the bcp. The converse is highly probable also. ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset()))); ldr(rscratch1, Address(r1, Method::const_offset())); add(r2, r2, rscratch1, Assembler::LSL); lea(r2, Address(r2, ConstMethod::codes_offset())); cmp(r2, rbcp); br(Assembler::EQ, verify_continue); // r1: method // rbcp: bcp // rbcp == 22 // r3: mdp call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), r1, rbcp, r3); bind(verify_continue); ldp(r2, r3, Address(post(sp, 2 * wordSize))); ldp(r0, r1, Address(post(sp, 2 * wordSize))); #endif // ASSERT } void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) { assert(ProfileInterpreter, "must be profiling interpreter"); Address data(mdp_in, constant); str(value, data); } void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, int constant, bool decrement) { increment_mdp_data_at(mdp_in, noreg, constant, decrement); } void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, Register reg, int constant, bool decrement) { assert(ProfileInterpreter, "must be profiling interpreter"); // %%% this does 64bit counters at best it is wasting space // at worst it is a rare bug when counters overflow assert_different_registers(rscratch2, rscratch1, mdp_in, reg); Address addr1(mdp_in, constant); Address addr2(rscratch2, reg, Address::lsl(0)); Address &addr = addr1; if (reg != noreg) { lea(rscratch2, addr1); addr = addr2; } if (decrement) { // Decrement the register. Set condition codes. // Intel does this // addptr(data, (int32_t) -DataLayout::counter_increment); // If the decrement causes the counter to overflow, stay negative // Label L; // jcc(Assembler::negative, L); // addptr(data, (int32_t) DataLayout::counter_increment); // so we do this ldr(rscratch1, addr); subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment); Label L; br(Assembler::LO, L); // skip store if counter underflow str(rscratch1, addr); bind(L); } else { assert(DataLayout::counter_increment == 1, "flow-free idiom only works with 1"); // Intel does this // Increment the register. Set carry flag. // addptr(data, DataLayout::counter_increment); // If the increment causes the counter to overflow, pull back by 1. // sbbptr(data, (int32_t)0); // so we do this ldr(rscratch1, addr); adds(rscratch1, rscratch1, DataLayout::counter_increment); Label L; br(Assembler::CS, L); // skip store if counter overflow str(rscratch1, addr); bind(L); } } void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, int flag_byte_constant) { assert(ProfileInterpreter, "must be profiling interpreter"); int header_offset = in_bytes(DataLayout::header_offset()); int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant); // Set the flag ldr(rscratch1, Address(mdp_in, header_offset)); orr(rscratch1, rscratch1, header_bits); str(rscratch1, Address(mdp_in, header_offset)); } void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, int offset, Register value, Register test_value_out, Label& not_equal_continue) { assert(ProfileInterpreter, "must be profiling interpreter"); if (test_value_out == noreg) { ldr(rscratch1, Address(mdp_in, offset)); cmp(value, rscratch1); } else { // Put the test value into a register, so caller can use it: ldr(test_value_out, Address(mdp_in, offset)); cmp(value, test_value_out); } br(Assembler::NE, not_equal_continue); } void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) { assert(ProfileInterpreter, "must be profiling interpreter"); ldr(rscratch1, Address(mdp_in, offset_of_disp)); add(mdp_in, mdp_in, rscratch1, LSL); str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); } void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, Register reg, int offset_of_disp) { assert(ProfileInterpreter, "must be profiling interpreter"); lea(rscratch1, Address(mdp_in, offset_of_disp)); ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0))); add(mdp_in, mdp_in, rscratch1, LSL); str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); } void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) { assert(ProfileInterpreter, "must be profiling interpreter"); add(mdp_in, mdp_in, (unsigned)constant); str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); } void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { assert(ProfileInterpreter, "must be profiling interpreter"); // save/restore across call_VM stp(zr, return_bci, Address(pre(sp, -2 * wordSize))); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci); ldp(zr, return_bci, Address(post(sp, 2 * wordSize))); } void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. // Otherwise, assign to mdp test_method_data_pointer(mdp, profile_continue); // We are taking a branch. Increment the taken count. // We inline increment_mdp_data_at to return bumped_count in a register //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); Address data(mdp, in_bytes(JumpData::taken_offset())); ldr(bumped_count, data); assert(DataLayout::counter_increment == 1, "flow-free idiom only works with 1"); // Intel does this to catch overflow // addptr(bumped_count, DataLayout::counter_increment); // sbbptr(bumped_count, 0); // so we do this adds(bumped_count, bumped_count, DataLayout::counter_increment); Label L; br(Assembler::CS, L); // skip store if counter overflow str(bumped_count, data); bind(L); // The method data pointer needs to be updated to reflect the new target. update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); bind(profile_continue); } } void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // We are taking a branch. Increment the not taken count. increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); // The method data pointer needs to be updated to correspond to // the next bytecode update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); bind(profile_continue); } } void InterpreterMacroAssembler::profile_call(Register mdp) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // We are making a call. Increment the count. increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); // The method data pointer needs to be updated to reflect the new target. update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); bind(profile_continue); } } void InterpreterMacroAssembler::profile_final_call(Register mdp) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // We are making a call. Increment the count. increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); // The method data pointer needs to be updated to reflect the new target. update_mdp_by_constant(mdp, in_bytes(VirtualCallData:: virtual_call_data_size())); bind(profile_continue); } } void InterpreterMacroAssembler::profile_virtual_call(Register receiver, Register mdp, Register reg2, bool receiver_can_be_null) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); Label skip_receiver_profile; if (receiver_can_be_null) { Label not_null; // We are making a call. Increment the count for null receiver. increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); b(skip_receiver_profile); bind(not_null); } // Record the receiver type. record_klass_in_profile(receiver, mdp, reg2, true); bind(skip_receiver_profile); // The method data pointer needs to be updated to reflect the new target. #if INCLUDE_JVMCI if (MethodProfileWidth == 0) { update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); } #else // INCLUDE_JVMCI update_mdp_by_constant(mdp, in_bytes(VirtualCallData:: virtual_call_data_size())); #endif // INCLUDE_JVMCI bind(profile_continue); } } #if INCLUDE_JVMCI void InterpreterMacroAssembler::profile_called_method(Register method, Register mdp, Register reg2) { assert_different_registers(method, mdp, reg2); if (ProfileInterpreter && MethodProfileWidth > 0) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); Label done; record_item_in_profile_helper(method, mdp, reg2, 0, done, MethodProfileWidth, &VirtualCallData::method_offset, &VirtualCallData::method_count_offset, in_bytes(VirtualCallData::nonprofiled_receiver_count_offset())); bind(done); update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); bind(profile_continue); } } #endif // INCLUDE_JVMCI // This routine creates a state machine for updating the multi-row // type profile at a virtual call site (or other type-sensitive bytecode). // The machine visits each row (of receiver/count) until the receiver type // is found, or until it runs out of rows. At the same time, it remembers // the location of the first empty row. (An empty row records null for its // receiver, and can be allocated for a newly-observed receiver type.) // Because there are two degrees of freedom in the state, a simple linear // search will not work; it must be a decision tree. Hence this helper // function is recursive, to generate the required tree structured code. // It's the interpreter, so we are trading off code space for speed. // See below for example code. void InterpreterMacroAssembler::record_klass_in_profile_helper( Register receiver, Register mdp, Register reg2, int start_row, Label& done, bool is_virtual_call) { if (TypeProfileWidth == 0) { if (is_virtual_call) { increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); } #if INCLUDE_JVMCI else if (EnableJVMCI) { increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset())); } #endif // INCLUDE_JVMCI } else { int non_profiled_offset = -1; if (is_virtual_call) { non_profiled_offset = in_bytes(CounterData::count_offset()); } #if INCLUDE_JVMCI else if (EnableJVMCI) { non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()); } #endif // INCLUDE_JVMCI record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset); } } void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, Register reg2, int start_row, Label& done, int total_rows, OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn, int non_profiled_offset) { int last_row = total_rows - 1; assert(start_row <= last_row, "must be work left to do"); // Test this row for both the item and for null. // Take any of three different outcomes: // 1. found item => increment count and goto done // 2. found null => keep looking for case 1, maybe allocate this cell // 3. found something else => keep looking for cases 1 and 2 // Case 3 is handled by a recursive call. for (int row = start_row; row <= last_row; row++) { Label next_test; bool test_for_null_also = (row == start_row); // See if the item is item[n]. int item_offset = in_bytes(item_offset_fn(row)); test_mdp_data_at(mdp, item_offset, item, (test_for_null_also ? reg2 : noreg), next_test); // (Reg2 now contains the item from the CallData.) // The item is item[n]. Increment count[n]. int count_offset = in_bytes(item_count_offset_fn(row)); increment_mdp_data_at(mdp, count_offset); b(done); bind(next_test); if (test_for_null_also) { Label found_null; // Failed the equality check on item[n]... Test for null. if (start_row == last_row) { // The only thing left to do is handle the null case. if (non_profiled_offset >= 0) { cbz(reg2, found_null); // Item did not match any saved item and there is no empty row for it. // Increment total counter to indicate polymorphic case. increment_mdp_data_at(mdp, non_profiled_offset); b(done); bind(found_null); } else { cbnz(reg2, done); } break; } // Since null is rare, make it be the branch-taken case. cbz(reg2, found_null); // Put all the "Case 3" tests here. record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, item_offset_fn, item_count_offset_fn, non_profiled_offset); // Found a null. Keep searching for a matching item, // but remember that this is an empty (unused) slot. bind(found_null); } } // In the fall-through case, we found no matching item, but we // observed the item[start_row] is NULL. // Fill in the item field and increment the count. int item_offset = in_bytes(item_offset_fn(start_row)); set_mdp_data_at(mdp, item_offset, item); int count_offset = in_bytes(item_count_offset_fn(start_row)); mov(reg2, DataLayout::counter_increment); set_mdp_data_at(mdp, count_offset, reg2); if (start_row > 0) { b(done); } } // Example state machine code for three profile rows: // // main copy of decision tree, rooted at row[1] // if (row[0].rec == rec) { row[0].incr(); goto done; } // if (row[0].rec != NULL) { // // inner copy of decision tree, rooted at row[1] // if (row[1].rec == rec) { row[1].incr(); goto done; } // if (row[1].rec != NULL) { // // degenerate decision tree, rooted at row[2] // if (row[2].rec == rec) { row[2].incr(); goto done; } // if (row[2].rec != NULL) { count.incr(); goto done; } // overflow // row[2].init(rec); goto done; // } else { // // remember row[1] is empty // if (row[2].rec == rec) { row[2].incr(); goto done; } // row[1].init(rec); goto done; // } // } else { // // remember row[0] is empty // if (row[1].rec == rec) { row[1].incr(); goto done; } // if (row[2].rec == rec) { row[2].incr(); goto done; } // row[0].init(rec); goto done; // } // done: void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, Register mdp, Register reg2, bool is_virtual_call) { assert(ProfileInterpreter, "must be profiling"); Label done; record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call); bind (done); } void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) { if (ProfileInterpreter) { Label profile_continue; uint row; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // Update the total ret count. increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); for (row = 0; row < RetData::row_limit(); row++) { Label next_test; // See if return_bci is equal to bci[n]: test_mdp_data_at(mdp, in_bytes(RetData::bci_offset(row)), return_bci, noreg, next_test); // return_bci is equal to bci[n]. Increment the count. increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); // The method data pointer needs to be updated to reflect the new target. update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row))); b(profile_continue); bind(next_test); } update_mdp_for_ret(return_bci); bind(profile_continue); } } void InterpreterMacroAssembler::profile_null_seen(Register mdp) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); // The method data pointer needs to be updated. int mdp_delta = in_bytes(BitData::bit_data_size()); if (TypeProfileCasts) { mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); } update_mdp_by_constant(mdp, mdp_delta); bind(profile_continue); } } void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) { if (ProfileInterpreter && TypeProfileCasts) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); int count_offset = in_bytes(CounterData::count_offset()); // Back up the address, since we have already bumped the mdp. count_offset -= in_bytes(VirtualCallData::virtual_call_data_size()); // *Decrement* the counter. We expect to see zero or small negatives. increment_mdp_data_at(mdp, count_offset, true); bind (profile_continue); } } void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // The method data pointer needs to be updated. int mdp_delta = in_bytes(BitData::bit_data_size()); if (TypeProfileCasts) { mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); // Record the object type. record_klass_in_profile(klass, mdp, reg2, false); } update_mdp_by_constant(mdp, mdp_delta); bind(profile_continue); } } void InterpreterMacroAssembler::profile_switch_default(Register mdp) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // Update the default case count increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset())); // The method data pointer needs to be updated. update_mdp_by_offset(mdp, in_bytes(MultiBranchData:: default_displacement_offset())); bind(profile_continue); } } void InterpreterMacroAssembler::profile_switch_case(Register index, Register mdp, Register reg2) { if (ProfileInterpreter) { Label profile_continue; // If no method data exists, go to profile_continue. test_method_data_pointer(mdp, profile_continue); // Build the base (index * per_case_size_in_bytes()) + // case_array_offset_in_bytes() movw(reg2, in_bytes(MultiBranchData::per_case_size())); movw(rscratch1, in_bytes(MultiBranchData::case_array_offset())); Assembler::maddw(index, index, reg2, rscratch1); // Update the case count increment_mdp_data_at(mdp, index, in_bytes(MultiBranchData::relative_count_offset())); // The method data pointer needs to be updated. update_mdp_by_offset(mdp, index, in_bytes(MultiBranchData:: relative_displacement_offset())); bind(profile_continue); } } void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) { if (state == atos) { MacroAssembler::verify_oop(reg); } } void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; } void InterpreterMacroAssembler::notify_method_entry() { // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to // track stack depth. If it is possible to enter interp_only_mode we add // the code to check if the event should be sent. if (JvmtiExport::can_post_interpreter_events()) { Label L; ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); cbzw(r3, L); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry)); bind(L); } { SkipIfEqual skip(this, &DTraceMethodProbes, false); get_method(c_rarg1); call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), rthread, c_rarg1); } // RedefineClasses() tracing support for obsolete method entry if (log_is_enabled(Trace, redefine, class, obsolete)) { get_method(c_rarg1); call_VM_leaf( CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), rthread, c_rarg1); } } void InterpreterMacroAssembler::notify_method_exit( TosState state, NotifyMethodExitMode mode) { // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to // track stack depth. If it is possible to enter interp_only_mode we add // the code to check if the event should be sent. if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { Label L; // Note: frame::interpreter_frame_result has a dependency on how the // method result is saved across the call to post_method_exit. If this // is changed then the interpreter_frame_result implementation will // need to be updated too. // template interpreter will leave the result on the top of the stack. push(state); ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); cbz(r3, L); call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); bind(L); pop(state); } { SkipIfEqual skip(this, &DTraceMethodProbes, false); push(state); get_method(c_rarg1); call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), rthread, c_rarg1); pop(state); } } // Jump if ((*counter_addr += increment) & mask) satisfies the condition. void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, int increment, Address mask, Register scratch, Register scratch2, bool preloaded, Condition cond, Label* where) { if (!preloaded) { ldrw(scratch, counter_addr); } add(scratch, scratch, increment); strw(scratch, counter_addr); ldrw(scratch2, mask); ands(scratch, scratch, scratch2); br(cond, *where); } void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, int number_of_arguments) { // interpreter specific // // Note: No need to save/restore rbcp & rlocals pointer since these // are callee saved registers and no blocking/ GC can happen // in leaf calls. #ifdef ASSERT { Label L; ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); cbz(rscratch1, L); stop("InterpreterMacroAssembler::call_VM_leaf_base:" " last_sp != NULL"); bind(L); } #endif /* ASSERT */ // super call MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); } void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register java_thread, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) { // interpreter specific // // Note: Could avoid restoring locals ptr (callee saved) - however doesn't // really make a difference for these runtime calls, since they are // slow anyway. Btw., bcp must be saved/restored since it may change // due to GC. // assert(java_thread == noreg , "not expecting a precomputed java thread"); save_bcp(); #ifdef ASSERT { Label L; ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); cbz(rscratch1, L); stop("InterpreterMacroAssembler::call_VM_leaf_base:" " last_sp != NULL"); bind(L); } #endif /* ASSERT */ // super call MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions); // interpreter specific restore_bcp(); restore_locals(); } void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { Label update, next, none; verify_oop(obj); cbnz(obj, update); orptr(mdo_addr, TypeEntries::null_seen); b(next); bind(update); load_klass(obj, obj); ldr(rscratch1, mdo_addr); eor(obj, obj, rscratch1); tst(obj, TypeEntries::type_klass_mask); br(Assembler::EQ, next); // klass seen before, nothing to // do. The unknown bit may have been // set already but no need to check. tbnz(obj, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore. ldr(rscratch1, mdo_addr); cbz(rscratch1, none); cmp(rscratch1, TypeEntries::null_seen); br(Assembler::EQ, none); // There is a chance that the checks above (re-reading profiling // data from memory) fail if another thread has just set the // profiling to this obj's klass ldr(rscratch1, mdo_addr); eor(obj, obj, rscratch1); tst(obj, TypeEntries::type_klass_mask); br(Assembler::EQ, next); // different than before. Cannot keep accurate profile. orptr(mdo_addr, TypeEntries::type_unknown); b(next); bind(none); // first time here. Set profile type. str(obj, mdo_addr); bind(next); } void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { if (!ProfileInterpreter) { return; } if (MethodData::profile_arguments() || MethodData::profile_return()) { Label profile_continue; test_method_data_pointer(mdp, profile_continue); int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start)); cmp(rscratch1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); br(Assembler::NE, profile_continue); if (MethodData::profile_arguments()) { Label done; int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); for (int i = 0; i < TypeProfileArgsLimit; i++) { if (i > 0 || MethodData::profile_return()) { // If return value type is profiled we may have no argument to profile ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count()); cmp(tmp, TypeStackSlotEntries::per_arg_count()); add(rscratch1, mdp, off_to_args); br(Assembler::LT, done); } ldr(tmp, Address(callee, Method::const_offset())); load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); // stack offset o (zero based) from the start of the argument // list, for n arguments translates into offset n - o - 1 from // the end of the argument list ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i)))); sub(tmp, tmp, rscratch1); sub(tmp, tmp, 1); Address arg_addr = argument_address(tmp); ldr(tmp, arg_addr); Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))); profile_obj_type(tmp, mdo_arg_addr); int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); off_to_args += to_add; } if (MethodData::profile_return()) { ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); } add(rscratch1, mdp, off_to_args); bind(done); mov(mdp, rscratch1); if (MethodData::profile_return()) { // We're right after the type profile for the last // argument. tmp is the number of cells left in the // CallTypeData/VirtualCallTypeData to reach its end. Non null // if there's a return to profile. assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size)); } str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); } else { assert(MethodData::profile_return(), "either profile call args or call ret"); update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); } // mdp points right after the end of the // CallTypeData/VirtualCallTypeData, right after the cells for the // return value type if there's one bind(profile_continue); } } void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { assert_different_registers(mdp, ret, tmp, rbcp); if (ProfileInterpreter && MethodData::profile_return()) { Label profile_continue, done; test_method_data_pointer(mdp, profile_continue); if (MethodData::profile_return_jsr292_only()) { assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); // If we don't profile all invoke bytecodes we must make sure // it's a bytecode we indeed profile. We can't go back to the // begining of the ProfileData we intend to update to check its // type because we're right after it and we don't known its // length Label do_profile; ldrb(rscratch1, Address(rbcp, 0)); cmp(rscratch1, Bytecodes::_invokedynamic); br(Assembler::EQ, do_profile); cmp(rscratch1, Bytecodes::_invokehandle); br(Assembler::EQ, do_profile); get_method(tmp); ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset_in_bytes())); cmp(rscratch1, vmIntrinsics::_compiledLambdaForm); br(Assembler::NE, profile_continue); bind(do_profile); } Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); mov(tmp, ret); profile_obj_type(tmp, mdo_ret_addr); bind(profile_continue); } } void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { if (ProfileInterpreter && MethodData::profile_parameters()) { Label profile_continue, done; test_method_data_pointer(mdp, profile_continue); // Load the offset of the area within the MDO used for // parameters. If it's negative we're not profiling any parameters ldr(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); cmp(tmp1, 0u); br(Assembler::LT, profile_continue); // Compute a pointer to the area for parameters from the offset // and move the pointer to the slot for the last // parameters. Collect profiling from last parameter down. // mdo start + parameters offset + array length - 1 add(mdp, mdp, tmp1); ldr(tmp1, Address(mdp, ArrayData::array_len_offset())); sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); Label loop; bind(loop); int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); int type_base = in_bytes(ParametersTypeData::type_offset(0)); int per_arg_scale = exact_log2(DataLayout::cell_size); add(rscratch1, mdp, off_base); add(rscratch2, mdp, type_base); Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale)); Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale)); // load offset on the stack from the slot for this parameter ldr(tmp2, arg_off); neg(tmp2, tmp2); // read the parameter from the local area ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize))); // profile the parameter profile_obj_type(tmp2, arg_type); // go to next parameter subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); br(Assembler::GE, loop); bind(profile_continue); } }