1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interp_masm_x86.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "logging/log.hpp"
  30 #include "oops/arrayOop.hpp"
  31 #include "oops/markOop.hpp"
  32 #include "oops/methodData.hpp"
  33 #include "oops/method.hpp"
  34 #include "prims/jvmtiExport.hpp"
  35 #include "prims/jvmtiThreadState.hpp"
  36 #include "runtime/basicLock.hpp"
  37 #include "runtime/biasedLocking.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/thread.inline.hpp"
  40 
  41 // Implementation of InterpreterMacroAssembler
  42 
  43 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  44   assert(entry, "Entry must have been generated by now");
  45   jump(RuntimeAddress(entry));
  46 }
  47 
  48 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
  49   Label update, next, none;
  50 
  51   verify_oop(obj);
  52 
  53   testptr(obj, obj);
  54   jccb(Assembler::notZero, update);
  55   orptr(mdo_addr, TypeEntries::null_seen);
  56   jmpb(next);
  57 
  58   bind(update);
  59   load_klass(obj, obj);
  60 
  61   xorptr(obj, mdo_addr);
  62   testptr(obj, TypeEntries::type_klass_mask);
  63   jccb(Assembler::zero, next); // klass seen before, nothing to
  64                                // do. The unknown bit may have been
  65                                // set already but no need to check.
  66 
  67   testptr(obj, TypeEntries::type_unknown);
  68   jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
  69 
  70   cmpptr(mdo_addr, 0);
  71   jccb(Assembler::equal, none);
  72   cmpptr(mdo_addr, TypeEntries::null_seen);
  73   jccb(Assembler::equal, none);
  74   // There is a chance that the checks above (re-reading profiling
  75   // data from memory) fail if another thread has just set the
  76   // profiling to this obj's klass
  77   xorptr(obj, mdo_addr);
  78   testptr(obj, TypeEntries::type_klass_mask);
  79   jccb(Assembler::zero, next);
  80 
  81   // different than before. Cannot keep accurate profile.
  82   orptr(mdo_addr, TypeEntries::type_unknown);
  83   jmpb(next);
  84 
  85   bind(none);
  86   // first time here. Set profile type.
  87   movptr(mdo_addr, obj);
  88 
  89   bind(next);
  90 }
  91 
  92 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
  93   if (!ProfileInterpreter) {
  94     return;
  95   }
  96 
  97   if (MethodData::profile_arguments() || MethodData::profile_return()) {
  98     Label profile_continue;
  99 
 100     test_method_data_pointer(mdp, profile_continue);
 101 
 102     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
 103 
 104     cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
 105     jcc(Assembler::notEqual, profile_continue);
 106 
 107     if (MethodData::profile_arguments()) {
 108       Label done;
 109       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
 110       addptr(mdp, off_to_args);
 111 
 112       for (int i = 0; i < TypeProfileArgsLimit; i++) {
 113         if (i > 0 || MethodData::profile_return()) {
 114           // If return value type is profiled we may have no argument to profile
 115           movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
 116           subl(tmp, i*TypeStackSlotEntries::per_arg_count());
 117           cmpl(tmp, TypeStackSlotEntries::per_arg_count());
 118           jcc(Assembler::less, done);
 119         }
 120         movptr(tmp, Address(callee, Method::const_offset()));
 121         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
 122         // stack offset o (zero based) from the start of the argument
 123         // list, for n arguments translates into offset n - o - 1 from
 124         // the end of the argument list
 125         subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
 126         subl(tmp, 1);
 127         Address arg_addr = argument_address(tmp);
 128         movptr(tmp, arg_addr);
 129 
 130         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
 131         profile_obj_type(tmp, mdo_arg_addr);
 132 
 133         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
 134         addptr(mdp, to_add);
 135         off_to_args += to_add;
 136       }
 137 
 138       if (MethodData::profile_return()) {
 139         movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
 140         subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
 141       }
 142 
 143       bind(done);
 144 
 145       if (MethodData::profile_return()) {
 146         // We're right after the type profile for the last
 147         // argument. tmp is the number of cells left in the
 148         // CallTypeData/VirtualCallTypeData to reach its end. Non null
 149         // if there's a return to profile.
 150         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
 151         shll(tmp, exact_log2(DataLayout::cell_size));
 152         addptr(mdp, tmp);
 153       }
 154       movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp);
 155     } else {
 156       assert(MethodData::profile_return(), "either profile call args or call ret");
 157       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
 158     }
 159 
 160     // mdp points right after the end of the
 161     // CallTypeData/VirtualCallTypeData, right after the cells for the
 162     // return value type if there's one
 163 
 164     bind(profile_continue);
 165   }
 166 }
 167 
 168 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
 169   assert_different_registers(mdp, ret, tmp, _bcp_register);
 170   if (ProfileInterpreter && MethodData::profile_return()) {
 171     Label profile_continue, done;
 172 
 173     test_method_data_pointer(mdp, profile_continue);
 174 
 175     if (MethodData::profile_return_jsr292_only()) {
 176       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
 177 
 178       // If we don't profile all invoke bytecodes we must make sure
 179       // it's a bytecode we indeed profile. We can't go back to the
 180       // begining of the ProfileData we intend to update to check its
 181       // type because we're right after it and we don't known its
 182       // length
 183       Label do_profile;
 184       cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic);
 185       jcc(Assembler::equal, do_profile);
 186       cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle);
 187       jcc(Assembler::equal, do_profile);
 188       get_method(tmp);
 189       cmpw(Address(tmp, Method::intrinsic_id_offset_in_bytes()), vmIntrinsics::_compiledLambdaForm);
 190       jcc(Assembler::notEqual, profile_continue);
 191 
 192       bind(do_profile);
 193     }
 194 
 195     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
 196     mov(tmp, ret);
 197     profile_obj_type(tmp, mdo_ret_addr);
 198 
 199     bind(profile_continue);
 200   }
 201 }
 202 
 203 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
 204   if (ProfileInterpreter && MethodData::profile_parameters()) {
 205     Label profile_continue, done;
 206 
 207     test_method_data_pointer(mdp, profile_continue);
 208 
 209     // Load the offset of the area within the MDO used for
 210     // parameters. If it's negative we're not profiling any parameters
 211     movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
 212     testl(tmp1, tmp1);
 213     jcc(Assembler::negative, profile_continue);
 214 
 215     // Compute a pointer to the area for parameters from the offset
 216     // and move the pointer to the slot for the last
 217     // parameters. Collect profiling from last parameter down.
 218     // mdo start + parameters offset + array length - 1
 219     addptr(mdp, tmp1);
 220     movptr(tmp1, Address(mdp, ArrayData::array_len_offset()));
 221     decrement(tmp1, TypeStackSlotEntries::per_arg_count());
 222 
 223     Label loop;
 224     bind(loop);
 225 
 226     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
 227     int type_base = in_bytes(ParametersTypeData::type_offset(0));
 228     Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size);
 229     Address arg_off(mdp, tmp1, per_arg_scale, off_base);
 230     Address arg_type(mdp, tmp1, per_arg_scale, type_base);
 231 
 232     // load offset on the stack from the slot for this parameter
 233     movptr(tmp2, arg_off);
 234     negptr(tmp2);
 235     // read the parameter from the local area
 236     movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale()));
 237 
 238     // profile the parameter
 239     profile_obj_type(tmp2, arg_type);
 240 
 241     // go to next parameter
 242     decrement(tmp1, TypeStackSlotEntries::per_arg_count());
 243     jcc(Assembler::positive, loop);
 244 
 245     bind(profile_continue);
 246   }
 247 }
 248 
 249 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
 250                                                   int number_of_arguments) {
 251   // interpreter specific
 252   //
 253   // Note: No need to save/restore bcp & locals registers
 254   //       since these are callee saved registers and no blocking/
 255   //       GC can happen in leaf calls.
 256   // Further Note: DO NOT save/restore bcp/locals. If a caller has
 257   // already saved them so that it can use rsi/rdi as temporaries
 258   // then a save/restore here will DESTROY the copy the caller
 259   // saved! There used to be a save_bcp() that only happened in
 260   // the ASSERT path (no restore_bcp). Which caused bizarre failures
 261   // when jvm built with ASSERTs.
 262 #ifdef ASSERT
 263   {
 264     Label L;
 265     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 266     jcc(Assembler::equal, L);
 267     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
 268          " last_sp != NULL");
 269     bind(L);
 270   }
 271 #endif
 272   // super call
 273   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
 274   // interpreter specific
 275   // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals
 276   // but since they may not have been saved (and we don't want to
 277   // save them here (see note above) the assert is invalid.
 278 }
 279 
 280 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
 281                                              Register java_thread,
 282                                              Register last_java_sp,
 283                                              address  entry_point,
 284                                              int      number_of_arguments,
 285                                              bool     check_exceptions) {
 286   // interpreter specific
 287   //
 288   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
 289   //       really make a difference for these runtime calls, since they are
 290   //       slow anyway. Btw., bcp must be saved/restored since it may change
 291   //       due to GC.
 292   NOT_LP64(assert(java_thread == noreg , "not expecting a precomputed java thread");)
 293   save_bcp();
 294 #ifdef ASSERT
 295   {
 296     Label L;
 297     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 298     jcc(Assembler::equal, L);
 299     stop("InterpreterMacroAssembler::call_VM_base:"
 300          " last_sp != NULL");
 301     bind(L);
 302   }
 303 #endif /* ASSERT */
 304   // super call
 305   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
 306                                entry_point, number_of_arguments,
 307                                check_exceptions);
 308   // interpreter specific
 309   restore_bcp();
 310   restore_locals();
 311 }
 312 
 313 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
 314   if (JvmtiExport::can_pop_frame()) {
 315     Label L;
 316     // Initiate popframe handling only if it is not already being
 317     // processed.  If the flag has the popframe_processing bit set, it
 318     // means that this code is called *during* popframe handling - we
 319     // don't want to reenter.
 320     // This method is only called just after the call into the vm in
 321     // call_VM_base, so the arg registers are available.
 322     Register pop_cond = NOT_LP64(java_thread) // Not clear if any other register is available on 32 bit
 323                         LP64_ONLY(c_rarg0);
 324     movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
 325     testl(pop_cond, JavaThread::popframe_pending_bit);
 326     jcc(Assembler::zero, L);
 327     testl(pop_cond, JavaThread::popframe_processing_bit);
 328     jcc(Assembler::notZero, L);
 329     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 330     // address of the same-named entrypoint in the generated interpreter code.
 331     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 332     jmp(rax);
 333     bind(L);
 334     NOT_LP64(get_thread(java_thread);)
 335   }
 336 }
 337 
 338 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 339   Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
 340   NOT_LP64(get_thread(thread);)
 341   movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
 342   const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
 343   const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
 344   const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
 345 #ifdef _LP64
 346   switch (state) {
 347     case atos: movptr(rax, oop_addr);
 348                movptr(oop_addr, (int32_t)NULL_WORD);
 349                verify_oop(rax, state);              break;
 350     case ltos: movptr(rax, val_addr);                 break;
 351     case btos:                                   // fall through
 352     case ztos:                                   // fall through
 353     case ctos:                                   // fall through
 354     case stos:                                   // fall through
 355     case itos: movl(rax, val_addr);                 break;
 356     case ftos: load_float(val_addr);                break;
 357     case dtos: load_double(val_addr);               break;
 358     case vtos: /* nothing to do */                  break;
 359     default  : ShouldNotReachHere();
 360   }
 361   // Clean up tos value in the thread object
 362   movl(tos_addr,  (int) ilgl);
 363   movl(val_addr,  (int32_t) NULL_WORD);
 364 #else
 365   const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
 366                              + in_ByteSize(wordSize));
 367   switch (state) {
 368     case atos: movptr(rax, oop_addr);
 369                movptr(oop_addr, NULL_WORD);
 370                verify_oop(rax, state);                break;
 371     case ltos:
 372                movl(rdx, val_addr1);               // fall through
 373     case btos:                                     // fall through
 374     case ztos:                                     // fall through
 375     case ctos:                                     // fall through
 376     case stos:                                     // fall through
 377     case itos: movl(rax, val_addr);                   break;
 378     case ftos: load_float(val_addr);                  break;
 379     case dtos: load_double(val_addr);                 break;
 380     case vtos: /* nothing to do */                    break;
 381     default  : ShouldNotReachHere();
 382   }
 383 #endif // _LP64
 384   // Clean up tos value in the thread object
 385   movl(tos_addr,  (int32_t) ilgl);
 386   movptr(val_addr,  NULL_WORD);
 387   NOT_LP64(movptr(val_addr1, NULL_WORD);)
 388 }
 389 
 390 
 391 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 392   if (JvmtiExport::can_force_early_return()) {
 393     Label L;
 394     Register tmp = LP64_ONLY(c_rarg0) NOT_LP64(java_thread);
 395     Register rthread = LP64_ONLY(r15_thread) NOT_LP64(java_thread);
 396 
 397     movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 398     testptr(tmp, tmp);
 399     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
 400 
 401     // Initiate earlyret handling only if it is not already being processed.
 402     // If the flag has the earlyret_processing bit set, it means that this code
 403     // is called *during* earlyret handling - we don't want to reenter.
 404     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
 405     cmpl(tmp, JvmtiThreadState::earlyret_pending);
 406     jcc(Assembler::notEqual, L);
 407 
 408     // Call Interpreter::remove_activation_early_entry() to get the address of the
 409     // same-named entrypoint in the generated interpreter code.
 410     NOT_LP64(get_thread(java_thread);)
 411     movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 412 #ifdef _LP64
 413     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
 414     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp);
 415 #else
 416     pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
 417     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
 418 #endif // _LP64
 419     jmp(rax);
 420     bind(L);
 421     NOT_LP64(get_thread(java_thread);)
 422   }
 423 }
 424 
 425 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
 426   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 427   load_unsigned_short(reg, Address(_bcp_register, bcp_offset));
 428   bswapl(reg);
 429   shrl(reg, 16);
 430 }
 431 
 432 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 433                                                        int bcp_offset,
 434                                                        size_t index_size) {
 435   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 436   if (index_size == sizeof(u2)) {
 437     load_unsigned_short(index, Address(_bcp_register, bcp_offset));
 438   } else if (index_size == sizeof(u4)) {
 439     movl(index, Address(_bcp_register, bcp_offset));
 440     // Check if the secondary index definition is still ~x, otherwise
 441     // we have to change the following assembler code to calculate the
 442     // plain index.
 443     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 444     notl(index);  // convert to plain index
 445   } else if (index_size == sizeof(u1)) {
 446     load_unsigned_byte(index, Address(_bcp_register, bcp_offset));
 447   } else {
 448     ShouldNotReachHere();
 449   }
 450 }
 451 
 452 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
 453                                                            Register index,
 454                                                            int bcp_offset,
 455                                                            size_t index_size) {
 456   assert_different_registers(cache, index);
 457   get_cache_index_at_bcp(index, bcp_offset, index_size);
 458   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
 459   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 460   // convert from field index to ConstantPoolCacheEntry index
 461   assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line");
 462   shll(index, 2);
 463 }
 464 
 465 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
 466                                                                         Register index,
 467                                                                         Register bytecode,
 468                                                                         int byte_no,
 469                                                                         int bcp_offset,
 470                                                                         size_t index_size) {
 471   get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
 472   // We use a 32-bit load here since the layout of 64-bit words on
 473   // little-endian machines allow us that.
 474   movl(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
 475   const int shift_count = (1 + byte_no) * BitsPerByte;
 476   assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
 477          (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
 478          "correct shift count");
 479   shrl(bytecode, shift_count);
 480   assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
 481   andl(bytecode, ConstantPoolCacheEntry::bytecode_1_mask);
 482 }
 483 
 484 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
 485                                                                Register tmp,
 486                                                                int bcp_offset,
 487                                                                size_t index_size) {
 488   assert(cache != tmp, "must use different register");
 489   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
 490   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 491   // convert from field index to ConstantPoolCacheEntry index
 492   // and from word offset to byte offset
 493   assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
 494   shll(tmp, 2 + LogBytesPerWord);
 495   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
 496   // skip past the header
 497   addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
 498   addptr(cache, tmp);  // construct pointer to cache entry
 499 }
 500 
 501 // Load object from cpool->resolved_references(index)
 502 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 503                                            Register result, Register index) {
 504   assert_different_registers(result, index);
 505   // convert from field index to resolved_references() index and from
 506   // word index to byte offset. Since this is a java object, it can be compressed
 507   Register tmp = index;  // reuse
 508   shll(tmp, LogBytesPerHeapOop);
 509 
 510   get_constant_pool(result);
 511   // load pointer for resolved_references[] objArray
 512   movptr(result, Address(result, ConstantPool::cache_offset_in_bytes()));
 513   movptr(result, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes()));
 514   // JNIHandles::resolve(obj);
 515   movptr(result, Address(result, 0));
 516   // Add in the index
 517   addptr(result, tmp);
 518   load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 519 }
 520 
 521 // load cpool->resolved_klass_at(index)
 522 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register cpool,
 523                                            Register index, Register klass) {
 524   movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool)));
 525   Register resolved_klasses = cpool;
 526   movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset_in_bytes()));
 527   movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes()));
 528 }
 529 
 530 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 531 // subtype of super_klass.
 532 //
 533 // Args:
 534 //      rax: superklass
 535 //      Rsub_klass: subklass
 536 //
 537 // Kills:
 538 //      rcx, rdi
 539 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 540                                                   Label& ok_is_subtype) {
 541   assert(Rsub_klass != rax, "rax holds superklass");
 542   LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");)
 543   LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");)
 544   assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
 545   assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
 546 
 547   // Profile the not-null value's klass.
 548   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
 549 
 550   // Do the check.
 551   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
 552 
 553   // Profile the failure of the check.
 554   profile_typecheck_failed(rcx); // blows rcx
 555 }
 556 
 557 
 558 #ifndef _LP64
 559 void InterpreterMacroAssembler::f2ieee() {
 560   if (IEEEPrecision) {
 561     fstp_s(Address(rsp, 0));
 562     fld_s(Address(rsp, 0));
 563   }
 564 }
 565 
 566 
 567 void InterpreterMacroAssembler::d2ieee() {
 568   if (IEEEPrecision) {
 569     fstp_d(Address(rsp, 0));
 570     fld_d(Address(rsp, 0));
 571   }
 572 }
 573 #endif // _LP64
 574 
 575 // Java Expression Stack
 576 
 577 void InterpreterMacroAssembler::pop_ptr(Register r) {
 578   pop(r);
 579 }
 580 
 581 void InterpreterMacroAssembler::push_ptr(Register r) {
 582   push(r);
 583 }
 584 
 585 void InterpreterMacroAssembler::push_i(Register r) {
 586   push(r);
 587 }
 588 
 589 void InterpreterMacroAssembler::push_f(XMMRegister r) {
 590   subptr(rsp, wordSize);
 591   movflt(Address(rsp, 0), r);
 592 }
 593 
 594 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
 595   movflt(r, Address(rsp, 0));
 596   addptr(rsp, wordSize);
 597 }
 598 
 599 void InterpreterMacroAssembler::push_d(XMMRegister r) {
 600   subptr(rsp, 2 * wordSize);
 601   movdbl(Address(rsp, 0), r);
 602 }
 603 
 604 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
 605   movdbl(r, Address(rsp, 0));
 606   addptr(rsp, 2 * Interpreter::stackElementSize);
 607 }
 608 
 609 #ifdef _LP64
 610 void InterpreterMacroAssembler::pop_i(Register r) {
 611   // XXX can't use pop currently, upper half non clean
 612   movl(r, Address(rsp, 0));
 613   addptr(rsp, wordSize);
 614 }
 615 
 616 void InterpreterMacroAssembler::pop_l(Register r) {
 617   movq(r, Address(rsp, 0));
 618   addptr(rsp, 2 * Interpreter::stackElementSize);
 619 }
 620 
 621 void InterpreterMacroAssembler::push_l(Register r) {
 622   subptr(rsp, 2 * wordSize);
 623   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r         );
 624   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD );
 625 }
 626 
 627 void InterpreterMacroAssembler::pop(TosState state) {
 628   switch (state) {
 629   case atos: pop_ptr();                 break;
 630   case btos:
 631   case ztos:
 632   case ctos:
 633   case stos:
 634   case itos: pop_i();                   break;
 635   case ltos: pop_l();                   break;
 636   case ftos: pop_f(xmm0);               break;
 637   case dtos: pop_d(xmm0);               break;
 638   case vtos: /* nothing to do */        break;
 639   default:   ShouldNotReachHere();
 640   }
 641   verify_oop(rax, state);
 642 }
 643 
 644 void InterpreterMacroAssembler::push(TosState state) {
 645   verify_oop(rax, state);
 646   switch (state) {
 647   case atos: push_ptr();                break;
 648   case btos:
 649   case ztos:
 650   case ctos:
 651   case stos:
 652   case itos: push_i();                  break;
 653   case ltos: push_l();                  break;
 654   case ftos: push_f(xmm0);              break;
 655   case dtos: push_d(xmm0);              break;
 656   case vtos: /* nothing to do */        break;
 657   default  : ShouldNotReachHere();
 658   }
 659 }
 660 #else
 661 void InterpreterMacroAssembler::pop_i(Register r) {
 662   pop(r);
 663 }
 664 
 665 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
 666   pop(lo);
 667   pop(hi);
 668 }
 669 
 670 void InterpreterMacroAssembler::pop_f() {
 671   fld_s(Address(rsp, 0));
 672   addptr(rsp, 1 * wordSize);
 673 }
 674 
 675 void InterpreterMacroAssembler::pop_d() {
 676   fld_d(Address(rsp, 0));
 677   addptr(rsp, 2 * wordSize);
 678 }
 679 
 680 
 681 void InterpreterMacroAssembler::pop(TosState state) {
 682   switch (state) {
 683     case atos: pop_ptr(rax);                                 break;
 684     case btos:                                               // fall through
 685     case ztos:                                               // fall through
 686     case ctos:                                               // fall through
 687     case stos:                                               // fall through
 688     case itos: pop_i(rax);                                   break;
 689     case ltos: pop_l(rax, rdx);                              break;
 690     case ftos:
 691       if (UseSSE >= 1) {
 692         pop_f(xmm0);
 693       } else {
 694         pop_f();
 695       }
 696       break;
 697     case dtos:
 698       if (UseSSE >= 2) {
 699         pop_d(xmm0);
 700       } else {
 701         pop_d();
 702       }
 703       break;
 704     case vtos: /* nothing to do */                           break;
 705     default  : ShouldNotReachHere();
 706   }
 707   verify_oop(rax, state);
 708 }
 709 
 710 
 711 void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
 712   push(hi);
 713   push(lo);
 714 }
 715 
 716 void InterpreterMacroAssembler::push_f() {
 717   // Do not schedule for no AGI! Never write beyond rsp!
 718   subptr(rsp, 1 * wordSize);
 719   fstp_s(Address(rsp, 0));
 720 }
 721 
 722 void InterpreterMacroAssembler::push_d() {
 723   // Do not schedule for no AGI! Never write beyond rsp!
 724   subptr(rsp, 2 * wordSize);
 725   fstp_d(Address(rsp, 0));
 726 }
 727 
 728 
 729 void InterpreterMacroAssembler::push(TosState state) {
 730   verify_oop(rax, state);
 731   switch (state) {
 732     case atos: push_ptr(rax); break;
 733     case btos:                                               // fall through
 734     case ztos:                                               // fall through
 735     case ctos:                                               // fall through
 736     case stos:                                               // fall through
 737     case itos: push_i(rax);                                    break;
 738     case ltos: push_l(rax, rdx);                               break;
 739     case ftos:
 740       if (UseSSE >= 1) {
 741         push_f(xmm0);
 742       } else {
 743         push_f();
 744       }
 745       break;
 746     case dtos:
 747       if (UseSSE >= 2) {
 748         push_d(xmm0);
 749       } else {
 750         push_d();
 751       }
 752       break;
 753     case vtos: /* nothing to do */                             break;
 754     default  : ShouldNotReachHere();
 755   }
 756 }
 757 #endif // _LP64
 758 
 759 
 760 // Helpers for swap and dup
 761 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 762   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
 763 }
 764 
 765 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 766   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
 767 }
 768 
 769 
 770 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 771   // set sender sp
 772   lea(_bcp_register, Address(rsp, wordSize));
 773   // record last_sp
 774   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), _bcp_register);
 775 }
 776 
 777 
 778 // Jump to from_interpreted entry of a call unless single stepping is possible
 779 // in this thread in which case we must call the i2i entry
 780 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 781   prepare_to_jump_from_interpreted();
 782 
 783   if (JvmtiExport::can_post_interpreter_events()) {
 784     Label run_compiled_code;
 785     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 786     // compiled code in threads for which the event is enabled.  Check here for
 787     // interp_only_mode if these events CAN be enabled.
 788     // interp_only is an int, on little endian it is sufficient to test the byte only
 789     // Is a cmpl faster?
 790     LP64_ONLY(temp = r15_thread;)
 791     NOT_LP64(get_thread(temp);)
 792     cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
 793     jccb(Assembler::zero, run_compiled_code);
 794     jmp(Address(method, Method::interpreter_entry_offset()));
 795     bind(run_compiled_code);
 796   }
 797 
 798   jmp(Address(method, Method::from_interpreted_offset()));
 799 }
 800 
 801 // The following two routines provide a hook so that an implementation
 802 // can schedule the dispatch in two parts.  x86 does not do this.
 803 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 804   // Nothing x86 specific to be done here
 805 }
 806 
 807 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 808   dispatch_next(state, step);
 809 }
 810 
 811 void InterpreterMacroAssembler::dispatch_base(TosState state,
 812                                               address* table,
 813                                               bool verifyoop) {
 814   verify_FPU(1, state);
 815   if (VerifyActivationFrameSize) {
 816     Label L;
 817     mov(rcx, rbp);
 818     subptr(rcx, rsp);
 819     int32_t min_frame_size =
 820       (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
 821       wordSize;
 822     cmpptr(rcx, (int32_t)min_frame_size);
 823     jcc(Assembler::greaterEqual, L);
 824     stop("broken stack frame");
 825     bind(L);
 826   }
 827   if (verifyoop) {
 828     verify_oop(rax, state);
 829   }
 830 #ifdef _LP64
 831   lea(rscratch1, ExternalAddress((address)table));
 832   jmp(Address(rscratch1, rbx, Address::times_8));
 833 #else
 834   Address index(noreg, rbx, Address::times_ptr);
 835   ExternalAddress tbl((address)table);
 836   ArrayAddress dispatch(tbl, index);
 837   jump(dispatch);
 838 #endif // _LP64
 839 }
 840 
 841 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 842   dispatch_base(state, Interpreter::dispatch_table(state));
 843 }
 844 
 845 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 846   dispatch_base(state, Interpreter::normal_table(state));
 847 }
 848 
 849 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 850   dispatch_base(state, Interpreter::normal_table(state), false);
 851 }
 852 
 853 
 854 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
 855   // load next bytecode (load before advancing _bcp_register to prevent AGI)
 856   load_unsigned_byte(rbx, Address(_bcp_register, step));
 857   // advance _bcp_register
 858   increment(_bcp_register, step);
 859   dispatch_base(state, Interpreter::dispatch_table(state));
 860 }
 861 
 862 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 863   // load current bytecode
 864   load_unsigned_byte(rbx, Address(_bcp_register, 0));
 865   dispatch_base(state, table);
 866 }
 867 
 868 void InterpreterMacroAssembler::narrow(Register result) {
 869 
 870   // Get method->_constMethod->_result_type
 871   movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
 872   movptr(rcx, Address(rcx, Method::const_offset()));
 873   load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset()));
 874 
 875   Label done, notBool, notByte, notChar;
 876 
 877   // common case first
 878   cmpl(rcx, T_INT);
 879   jcc(Assembler::equal, done);
 880 
 881   // mask integer result to narrower return type.
 882   cmpl(rcx, T_BOOLEAN);
 883   jcc(Assembler::notEqual, notBool);
 884   andl(result, 0x1);
 885   jmp(done);
 886 
 887   bind(notBool);
 888   cmpl(rcx, T_BYTE);
 889   jcc(Assembler::notEqual, notByte);
 890   LP64_ONLY(movsbl(result, result);)
 891   NOT_LP64(shll(result, 24);)      // truncate upper 24 bits
 892   NOT_LP64(sarl(result, 24);)      // and sign-extend byte
 893   jmp(done);
 894 
 895   bind(notByte);
 896   cmpl(rcx, T_CHAR);
 897   jcc(Assembler::notEqual, notChar);
 898   LP64_ONLY(movzwl(result, result);)
 899   NOT_LP64(andl(result, 0xFFFF);)  // truncate upper 16 bits
 900   jmp(done);
 901 
 902   bind(notChar);
 903   // cmpl(rcx, T_SHORT);  // all that's left
 904   // jcc(Assembler::notEqual, done);
 905   LP64_ONLY(movswl(result, result);)
 906   NOT_LP64(shll(result, 16);)      // truncate upper 16 bits
 907   NOT_LP64(sarl(result, 16);)      // and sign-extend short
 908 
 909   // Nothing to do for T_INT
 910   bind(done);
 911 }
 912 
 913 // remove activation
 914 //
 915 // Unlock the receiver if this is a synchronized method.
 916 // Unlock any Java monitors from syncronized blocks.
 917 // Remove the activation from the stack.
 918 //
 919 // If there are locked Java monitors
 920 //    If throw_monitor_exception
 921 //       throws IllegalMonitorStateException
 922 //    Else if install_monitor_exception
 923 //       installs IllegalMonitorStateException
 924 //    Else
 925 //       no error processing
 926 void InterpreterMacroAssembler::remove_activation(
 927         TosState state,
 928         Register ret_addr,
 929         bool throw_monitor_exception,
 930         bool install_monitor_exception,
 931         bool notify_jvmdi) {
 932   // Note: Registers rdx xmm0 may be in use for the
 933   // result check if synchronized method
 934   Label unlocked, unlock, no_unlock;
 935 
 936   const Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
 937   const Register robj    = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
 938   const Register rmon    = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
 939                               // monitor pointers need different register
 940                               // because rdx may have the result in it
 941   NOT_LP64(get_thread(rcx);)
 942 
 943   // get the value of _do_not_unlock_if_synchronized into rdx
 944   const Address do_not_unlock_if_synchronized(rthread,
 945     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 946   movbool(rbx, do_not_unlock_if_synchronized);
 947   movbool(do_not_unlock_if_synchronized, false); // reset the flag
 948 
 949  // get method access flags
 950   movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
 951   movl(rcx, Address(rcx, Method::access_flags_offset()));
 952   testl(rcx, JVM_ACC_SYNCHRONIZED);
 953   jcc(Assembler::zero, unlocked);
 954 
 955   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 956   // is set.
 957   testbool(rbx);
 958   jcc(Assembler::notZero, no_unlock);
 959 
 960   // unlock monitor
 961   push(state); // save result
 962 
 963   // BasicObjectLock will be first in list, since this is a
 964   // synchronized method. However, need to check that the object has
 965   // not been unlocked by an explicit monitorexit bytecode.
 966   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
 967                         wordSize - (int) sizeof(BasicObjectLock));
 968   // We use c_rarg1/rdx so that if we go slow path it will be the correct
 969   // register for unlock_object to pass to VM directly
 970   lea(robj, monitor); // address of first monitor
 971 
 972   movptr(rax, Address(robj, BasicObjectLock::obj_offset_in_bytes()));
 973   testptr(rax, rax);
 974   jcc(Assembler::notZero, unlock);
 975 
 976   pop(state);
 977   if (throw_monitor_exception) {
 978     // Entry already unlocked, need to throw exception
 979     NOT_LP64(empty_FPU_stack();)  // remove possible return value from FPU-stack, otherwise stack could overflow
 980     call_VM(noreg, CAST_FROM_FN_PTR(address,
 981                    InterpreterRuntime::throw_illegal_monitor_state_exception));
 982     should_not_reach_here();
 983   } else {
 984     // Monitor already unlocked during a stack unroll. If requested,
 985     // install an illegal_monitor_state_exception.  Continue with
 986     // stack unrolling.
 987     if (install_monitor_exception) {
 988       NOT_LP64(empty_FPU_stack();)
 989       call_VM(noreg, CAST_FROM_FN_PTR(address,
 990                      InterpreterRuntime::new_illegal_monitor_state_exception));
 991     }
 992     jmp(unlocked);
 993   }
 994 
 995   bind(unlock);
 996   unlock_object(robj);
 997   pop(state);
 998 
 999   // Check that for block-structured locking (i.e., that all locked
1000   // objects has been unlocked)
1001   bind(unlocked);
1002 
1003   // rax, rdx: Might contain return value
1004 
1005   // Check that all monitors are unlocked
1006   {
1007     Label loop, exception, entry, restart;
1008     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
1009     const Address monitor_block_top(
1010         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
1011     const Address monitor_block_bot(
1012         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
1013 
1014     bind(restart);
1015     // We use c_rarg1 so that if we go slow path it will be the correct
1016     // register for unlock_object to pass to VM directly
1017     movptr(rmon, monitor_block_top); // points to current entry, starting
1018                                   // with top-most entry
1019     lea(rbx, monitor_block_bot);  // points to word before bottom of
1020                                   // monitor block
1021     jmp(entry);
1022 
1023     // Entry already locked, need to throw exception
1024     bind(exception);
1025 
1026     if (throw_monitor_exception) {
1027       // Throw exception
1028       NOT_LP64(empty_FPU_stack();)
1029       MacroAssembler::call_VM(noreg,
1030                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
1031                                    throw_illegal_monitor_state_exception));
1032       should_not_reach_here();
1033     } else {
1034       // Stack unrolling. Unlock object and install illegal_monitor_exception.
1035       // Unlock does not block, so don't have to worry about the frame.
1036       // We don't have to preserve c_rarg1 since we are going to throw an exception.
1037 
1038       push(state);
1039       mov(robj, rmon);   // nop if robj and rmon are the same
1040       unlock_object(robj);
1041       pop(state);
1042 
1043       if (install_monitor_exception) {
1044         NOT_LP64(empty_FPU_stack();)
1045         call_VM(noreg, CAST_FROM_FN_PTR(address,
1046                                         InterpreterRuntime::
1047                                         new_illegal_monitor_state_exception));
1048       }
1049 
1050       jmp(restart);
1051     }
1052 
1053     bind(loop);
1054     // check if current entry is used
1055     cmpptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL);
1056     jcc(Assembler::notEqual, exception);
1057 
1058     addptr(rmon, entry_size); // otherwise advance to next entry
1059     bind(entry);
1060     cmpptr(rmon, rbx); // check if bottom reached
1061     jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
1062   }
1063 
1064   bind(no_unlock);
1065 
1066   // jvmti support
1067   if (notify_jvmdi) {
1068     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
1069   } else {
1070     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
1071   }
1072 
1073   // remove activation
1074   // get sender sp
1075   movptr(rbx,
1076          Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
1077   if (StackReservedPages > 0) {
1078     // testing if reserved zone needs to be re-enabled
1079     Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
1080     Label no_reserved_zone_enabling;
1081 
1082     NOT_LP64(get_thread(rthread);)
1083 
1084     cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_enabled);
1085     jcc(Assembler::equal, no_reserved_zone_enabling);
1086 
1087     cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset()));
1088     jcc(Assembler::lessEqual, no_reserved_zone_enabling);
1089 
1090     call_VM_leaf(
1091       CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
1092     push(rthread);
1093     call_VM(noreg, CAST_FROM_FN_PTR(address,
1094                    InterpreterRuntime::throw_delayed_StackOverflowError));
1095     should_not_reach_here();
1096 
1097     bind(no_reserved_zone_enabling);
1098   }
1099   leave();                           // remove frame anchor
1100   pop(ret_addr);                     // get return address
1101   mov(rsp, rbx);                     // set sp to sender sp
1102 }
1103 
1104 void InterpreterMacroAssembler::get_method_counters(Register method,
1105                                                     Register mcs, Label& skip) {
1106   Label has_counters;
1107   movptr(mcs, Address(method, Method::method_counters_offset()));
1108   testptr(mcs, mcs);
1109   jcc(Assembler::notZero, has_counters);
1110   call_VM(noreg, CAST_FROM_FN_PTR(address,
1111           InterpreterRuntime::build_method_counters), method);
1112   movptr(mcs, Address(method,Method::method_counters_offset()));
1113   testptr(mcs, mcs);
1114   jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory
1115   bind(has_counters);
1116 }
1117 
1118 
1119 // Lock object
1120 //
1121 // Args:
1122 //      rdx, c_rarg1: BasicObjectLock to be used for locking
1123 //
1124 // Kills:
1125 //      rax, rbx
1126 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
1127   assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1128          "The argument is only for looks. It must be c_rarg1");
1129 
1130   if (UseHeavyMonitors) {
1131     call_VM(noreg,
1132             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1133             lock_reg);
1134   } else {
1135     Label done;
1136 
1137     const Register swap_reg = rax; // Must use rax for cmpxchg instruction
1138     const Register tmp_reg = rbx; // Will be passed to biased_locking_enter to avoid a
1139                                   // problematic case where tmp_reg = no_reg.
1140     const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop
1141 
1142     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
1143     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
1144     const int mark_offset = lock_offset +
1145                             BasicLock::displaced_header_offset_in_bytes();
1146 
1147     Label slow_case;
1148 
1149     // Load object pointer into obj_reg
1150     movptr(obj_reg, Address(lock_reg, obj_offset));
1151 
1152     if (UseBiasedLocking) {
1153       biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp_reg, false, done, &slow_case);
1154     }
1155 
1156     // Load immediate 1 into swap_reg %rax
1157     movl(swap_reg, (int32_t)1);
1158 
1159     // Load (object->mark() | 1) into swap_reg %rax
1160     orptr(swap_reg, Address(obj_reg, 0));
1161 
1162     // Save (object->mark() | 1) into BasicLock's displaced header
1163     movptr(Address(lock_reg, mark_offset), swap_reg);
1164 
1165     assert(lock_offset == 0,
1166            "displaced header must be first word in BasicObjectLock");
1167 
1168     if (os::is_MP()) lock();
1169     cmpxchgptr(lock_reg, Address(obj_reg, 0));
1170     if (PrintBiasedLockingStatistics) {
1171       cond_inc32(Assembler::zero,
1172                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
1173     }
1174     jcc(Assembler::zero, done);
1175 
1176     const int zero_bits = LP64_ONLY(7) NOT_LP64(3);
1177 
1178     // Test if the oopMark is an obvious stack pointer, i.e.,
1179     //  1) (mark & zero_bits) == 0, and
1180     //  2) rsp <= mark < mark + os::pagesize()
1181     //
1182     // These 3 tests can be done by evaluating the following
1183     // expression: ((mark - rsp) & (zero_bits - os::vm_page_size())),
1184     // assuming both stack pointer and pagesize have their
1185     // least significant bits clear.
1186     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
1187     subptr(swap_reg, rsp);
1188     andptr(swap_reg, zero_bits - os::vm_page_size());
1189 
1190     // Save the test result, for recursive case, the result is zero
1191     movptr(Address(lock_reg, mark_offset), swap_reg);
1192 
1193     if (PrintBiasedLockingStatistics) {
1194       cond_inc32(Assembler::zero,
1195                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
1196     }
1197     jcc(Assembler::zero, done);
1198 
1199     bind(slow_case);
1200 
1201     // Call the runtime routine for slow case
1202     call_VM(noreg,
1203             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1204             lock_reg);
1205 
1206     bind(done);
1207   }
1208 }
1209 
1210 
1211 // Unlocks an object. Used in monitorexit bytecode and
1212 // remove_activation.  Throws an IllegalMonitorException if object is
1213 // not locked by current thread.
1214 //
1215 // Args:
1216 //      rdx, c_rarg1: BasicObjectLock for lock
1217 //
1218 // Kills:
1219 //      rax
1220 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
1221 //      rscratch1 (scratch reg)
1222 // rax, rbx, rcx, rdx
1223 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1224   assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1225          "The argument is only for looks. It must be c_rarg1");
1226 
1227   if (UseHeavyMonitors) {
1228     call_VM(noreg,
1229             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
1230             lock_reg);
1231   } else {
1232     Label done;
1233 
1234     const Register swap_reg   = rax;  // Must use rax for cmpxchg instruction
1235     const Register header_reg = LP64_ONLY(c_rarg2) NOT_LP64(rbx);  // Will contain the old oopMark
1236     const Register obj_reg    = LP64_ONLY(c_rarg3) NOT_LP64(rcx);  // Will contain the oop
1237 
1238     save_bcp(); // Save in case of exception
1239 
1240     // Convert from BasicObjectLock structure to object and BasicLock
1241     // structure Store the BasicLock address into %rax
1242     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
1243 
1244     // Load oop into obj_reg(%c_rarg3)
1245     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
1246 
1247     // Free entry
1248     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);
1249 
1250     if (UseBiasedLocking) {
1251       biased_locking_exit(obj_reg, header_reg, done);
1252     }
1253 
1254     // Load the old header from BasicLock structure
1255     movptr(header_reg, Address(swap_reg,
1256                                BasicLock::displaced_header_offset_in_bytes()));
1257 
1258     // Test for recursion
1259     testptr(header_reg, header_reg);
1260 
1261     // zero for recursive case
1262     jcc(Assembler::zero, done);
1263 
1264     // Atomic swap back the old header
1265     if (os::is_MP()) lock();
1266     cmpxchgptr(header_reg, Address(obj_reg, 0));
1267 
1268     // zero for simple unlock of a stack-lock case
1269     jcc(Assembler::zero, done);
1270 
1271     // Call the runtime routine for slow case.
1272     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()),
1273          obj_reg); // restore obj
1274     call_VM(noreg,
1275             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
1276             lock_reg);
1277 
1278     bind(done);
1279 
1280     restore_bcp();
1281   }
1282 }
1283 
1284 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
1285                                                          Label& zero_continue) {
1286   assert(ProfileInterpreter, "must be profiling interpreter");
1287   movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize));
1288   testptr(mdp, mdp);
1289   jcc(Assembler::zero, zero_continue);
1290 }
1291 
1292 
1293 // Set the method data pointer for the current bcp.
1294 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1295   assert(ProfileInterpreter, "must be profiling interpreter");
1296   Label set_mdp;
1297   push(rax);
1298   push(rbx);
1299 
1300   get_method(rbx);
1301   // Test MDO to avoid the call if it is NULL.
1302   movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
1303   testptr(rax, rax);
1304   jcc(Assembler::zero, set_mdp);
1305   // rbx: method
1306   // _bcp_register: bcp
1307   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register);
1308   // rax: mdi
1309   // mdo is guaranteed to be non-zero here, we checked for it before the call.
1310   movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
1311   addptr(rbx, in_bytes(MethodData::data_offset()));
1312   addptr(rax, rbx);
1313   bind(set_mdp);
1314   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax);
1315   pop(rbx);
1316   pop(rax);
1317 }
1318 
1319 void InterpreterMacroAssembler::verify_method_data_pointer() {
1320   assert(ProfileInterpreter, "must be profiling interpreter");
1321 #ifdef ASSERT
1322   Label verify_continue;
1323   push(rax);
1324   push(rbx);
1325   Register arg3_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
1326   Register arg2_reg = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
1327   push(arg3_reg);
1328   push(arg2_reg);
1329   test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue
1330   get_method(rbx);
1331 
1332   // If the mdp is valid, it will point to a DataLayout header which is
1333   // consistent with the bcp.  The converse is highly probable also.
1334   load_unsigned_short(arg2_reg,
1335                       Address(arg3_reg, in_bytes(DataLayout::bci_offset())));
1336   addptr(arg2_reg, Address(rbx, Method::const_offset()));
1337   lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset()));
1338   cmpptr(arg2_reg, _bcp_register);
1339   jcc(Assembler::equal, verify_continue);
1340   // rbx: method
1341   // _bcp_register: bcp
1342   // c_rarg3: mdp
1343   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
1344                rbx, _bcp_register, arg3_reg);
1345   bind(verify_continue);
1346   pop(arg2_reg);
1347   pop(arg3_reg);
1348   pop(rbx);
1349   pop(rax);
1350 #endif // ASSERT
1351 }
1352 
1353 
1354 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
1355                                                 int constant,
1356                                                 Register value) {
1357   assert(ProfileInterpreter, "must be profiling interpreter");
1358   Address data(mdp_in, constant);
1359   movptr(data, value);
1360 }
1361 
1362 
1363 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1364                                                       int constant,
1365                                                       bool decrement) {
1366   // Counter address
1367   Address data(mdp_in, constant);
1368 
1369   increment_mdp_data_at(data, decrement);
1370 }
1371 
1372 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
1373                                                       bool decrement) {
1374   assert(ProfileInterpreter, "must be profiling interpreter");
1375   // %%% this does 64bit counters at best it is wasting space
1376   // at worst it is a rare bug when counters overflow
1377 
1378   if (decrement) {
1379     // Decrement the register.  Set condition codes.
1380     addptr(data, (int32_t) -DataLayout::counter_increment);
1381     // If the decrement causes the counter to overflow, stay negative
1382     Label L;
1383     jcc(Assembler::negative, L);
1384     addptr(data, (int32_t) DataLayout::counter_increment);
1385     bind(L);
1386   } else {
1387     assert(DataLayout::counter_increment == 1,
1388            "flow-free idiom only works with 1");
1389     // Increment the register.  Set carry flag.
1390     addptr(data, DataLayout::counter_increment);
1391     // If the increment causes the counter to overflow, pull back by 1.
1392     sbbptr(data, (int32_t)0);
1393   }
1394 }
1395 
1396 
1397 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1398                                                       Register reg,
1399                                                       int constant,
1400                                                       bool decrement) {
1401   Address data(mdp_in, reg, Address::times_1, constant);
1402 
1403   increment_mdp_data_at(data, decrement);
1404 }
1405 
1406 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1407                                                 int flag_byte_constant) {
1408   assert(ProfileInterpreter, "must be profiling interpreter");
1409   int header_offset = in_bytes(DataLayout::header_offset());
1410   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
1411   // Set the flag
1412   orl(Address(mdp_in, header_offset), header_bits);
1413 }
1414 
1415 
1416 
1417 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1418                                                  int offset,
1419                                                  Register value,
1420                                                  Register test_value_out,
1421                                                  Label& not_equal_continue) {
1422   assert(ProfileInterpreter, "must be profiling interpreter");
1423   if (test_value_out == noreg) {
1424     cmpptr(value, Address(mdp_in, offset));
1425   } else {
1426     // Put the test value into a register, so caller can use it:
1427     movptr(test_value_out, Address(mdp_in, offset));
1428     cmpptr(test_value_out, value);
1429   }
1430   jcc(Assembler::notEqual, not_equal_continue);
1431 }
1432 
1433 
1434 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1435                                                      int offset_of_disp) {
1436   assert(ProfileInterpreter, "must be profiling interpreter");
1437   Address disp_address(mdp_in, offset_of_disp);
1438   addptr(mdp_in, disp_address);
1439   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1440 }
1441 
1442 
1443 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1444                                                      Register reg,
1445                                                      int offset_of_disp) {
1446   assert(ProfileInterpreter, "must be profiling interpreter");
1447   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
1448   addptr(mdp_in, disp_address);
1449   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1450 }
1451 
1452 
1453 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1454                                                        int constant) {
1455   assert(ProfileInterpreter, "must be profiling interpreter");
1456   addptr(mdp_in, constant);
1457   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1458 }
1459 
1460 
1461 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1462   assert(ProfileInterpreter, "must be profiling interpreter");
1463   push(return_bci); // save/restore across call_VM
1464   call_VM(noreg,
1465           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1466           return_bci);
1467   pop(return_bci);
1468 }
1469 
1470 
1471 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1472                                                      Register bumped_count) {
1473   if (ProfileInterpreter) {
1474     Label profile_continue;
1475 
1476     // If no method data exists, go to profile_continue.
1477     // Otherwise, assign to mdp
1478     test_method_data_pointer(mdp, profile_continue);
1479 
1480     // We are taking a branch.  Increment the taken count.
1481     // We inline increment_mdp_data_at to return bumped_count in a register
1482     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1483     Address data(mdp, in_bytes(JumpData::taken_offset()));
1484     movptr(bumped_count, data);
1485     assert(DataLayout::counter_increment == 1,
1486             "flow-free idiom only works with 1");
1487     addptr(bumped_count, DataLayout::counter_increment);
1488     sbbptr(bumped_count, 0);
1489     movptr(data, bumped_count); // Store back out
1490 
1491     // The method data pointer needs to be updated to reflect the new target.
1492     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1493     bind(profile_continue);
1494   }
1495 }
1496 
1497 
1498 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1499   if (ProfileInterpreter) {
1500     Label profile_continue;
1501 
1502     // If no method data exists, go to profile_continue.
1503     test_method_data_pointer(mdp, profile_continue);
1504 
1505     // We are taking a branch.  Increment the not taken count.
1506     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1507 
1508     // The method data pointer needs to be updated to correspond to
1509     // the next bytecode
1510     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1511     bind(profile_continue);
1512   }
1513 }
1514 
1515 void InterpreterMacroAssembler::profile_call(Register mdp) {
1516   if (ProfileInterpreter) {
1517     Label profile_continue;
1518 
1519     // If no method data exists, go to profile_continue.
1520     test_method_data_pointer(mdp, profile_continue);
1521 
1522     // We are making a call.  Increment the count.
1523     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1524 
1525     // The method data pointer needs to be updated to reflect the new target.
1526     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1527     bind(profile_continue);
1528   }
1529 }
1530 
1531 
1532 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1533   if (ProfileInterpreter) {
1534     Label profile_continue;
1535 
1536     // If no method data exists, go to profile_continue.
1537     test_method_data_pointer(mdp, profile_continue);
1538 
1539     // We are making a call.  Increment the count.
1540     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1541 
1542     // The method data pointer needs to be updated to reflect the new target.
1543     update_mdp_by_constant(mdp,
1544                            in_bytes(VirtualCallData::
1545                                     virtual_call_data_size()));
1546     bind(profile_continue);
1547   }
1548 }
1549 
1550 
1551 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1552                                                      Register mdp,
1553                                                      Register reg2,
1554                                                      bool receiver_can_be_null) {
1555   if (ProfileInterpreter) {
1556     Label profile_continue;
1557 
1558     // If no method data exists, go to profile_continue.
1559     test_method_data_pointer(mdp, profile_continue);
1560 
1561     Label skip_receiver_profile;
1562     if (receiver_can_be_null) {
1563       Label not_null;
1564       testptr(receiver, receiver);
1565       jccb(Assembler::notZero, not_null);
1566       // We are making a call.  Increment the count for null receiver.
1567       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1568       jmp(skip_receiver_profile);
1569       bind(not_null);
1570     }
1571 
1572     // Record the receiver type.
1573     record_klass_in_profile(receiver, mdp, reg2, true);
1574     bind(skip_receiver_profile);
1575 
1576     // The method data pointer needs to be updated to reflect the new target.
1577 #if INCLUDE_JVMCI
1578     if (MethodProfileWidth == 0) {
1579       update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1580     }
1581 #else // INCLUDE_JVMCI
1582     update_mdp_by_constant(mdp,
1583                            in_bytes(VirtualCallData::
1584                                     virtual_call_data_size()));
1585 #endif // INCLUDE_JVMCI
1586     bind(profile_continue);
1587   }
1588 }
1589 
1590 #if INCLUDE_JVMCI
1591 void InterpreterMacroAssembler::profile_called_method(Register method, Register mdp, Register reg2) {
1592   assert_different_registers(method, mdp, reg2);
1593   if (ProfileInterpreter && MethodProfileWidth > 0) {
1594     Label profile_continue;
1595 
1596     // If no method data exists, go to profile_continue.
1597     test_method_data_pointer(mdp, profile_continue);
1598 
1599     Label done;
1600     record_item_in_profile_helper(method, mdp, reg2, 0, done, MethodProfileWidth,
1601       &VirtualCallData::method_offset, &VirtualCallData::method_count_offset, in_bytes(VirtualCallData::nonprofiled_receiver_count_offset()));
1602     bind(done);
1603 
1604     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1605     bind(profile_continue);
1606   }
1607 }
1608 #endif // INCLUDE_JVMCI
1609 
1610 // This routine creates a state machine for updating the multi-row
1611 // type profile at a virtual call site (or other type-sensitive bytecode).
1612 // The machine visits each row (of receiver/count) until the receiver type
1613 // is found, or until it runs out of rows.  At the same time, it remembers
1614 // the location of the first empty row.  (An empty row records null for its
1615 // receiver, and can be allocated for a newly-observed receiver type.)
1616 // Because there are two degrees of freedom in the state, a simple linear
1617 // search will not work; it must be a decision tree.  Hence this helper
1618 // function is recursive, to generate the required tree structured code.
1619 // It's the interpreter, so we are trading off code space for speed.
1620 // See below for example code.
1621 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1622                                         Register receiver, Register mdp,
1623                                         Register reg2, int start_row,
1624                                         Label& done, bool is_virtual_call) {
1625   if (TypeProfileWidth == 0) {
1626     if (is_virtual_call) {
1627       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1628     }
1629 #if INCLUDE_JVMCI
1630     else if (EnableJVMCI) {
1631       increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()));
1632     }
1633 #endif // INCLUDE_JVMCI
1634   } else {
1635     int non_profiled_offset = -1;
1636     if (is_virtual_call) {
1637       non_profiled_offset = in_bytes(CounterData::count_offset());
1638     }
1639 #if INCLUDE_JVMCI
1640     else if (EnableJVMCI) {
1641       non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset());
1642     }
1643 #endif // INCLUDE_JVMCI
1644 
1645     record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1646         &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset);
1647   }
1648 }
1649 
1650 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1651                                         Register reg2, int start_row, Label& done, int total_rows,
1652                                         OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn,
1653                                         int non_profiled_offset) {
1654   int last_row = total_rows - 1;
1655   assert(start_row <= last_row, "must be work left to do");
1656   // Test this row for both the item and for null.
1657   // Take any of three different outcomes:
1658   //   1. found item => increment count and goto done
1659   //   2. found null => keep looking for case 1, maybe allocate this cell
1660   //   3. found something else => keep looking for cases 1 and 2
1661   // Case 3 is handled by a recursive call.
1662   for (int row = start_row; row <= last_row; row++) {
1663     Label next_test;
1664     bool test_for_null_also = (row == start_row);
1665 
1666     // See if the item is item[n].
1667     int item_offset = in_bytes(item_offset_fn(row));
1668     test_mdp_data_at(mdp, item_offset, item,
1669                      (test_for_null_also ? reg2 : noreg),
1670                      next_test);
1671     // (Reg2 now contains the item from the CallData.)
1672 
1673     // The item is item[n].  Increment count[n].
1674     int count_offset = in_bytes(item_count_offset_fn(row));
1675     increment_mdp_data_at(mdp, count_offset);
1676     jmp(done);
1677     bind(next_test);
1678 
1679     if (test_for_null_also) {
1680       Label found_null;
1681       // Failed the equality check on item[n]...  Test for null.
1682       testptr(reg2, reg2);
1683       if (start_row == last_row) {
1684         // The only thing left to do is handle the null case.
1685         if (non_profiled_offset >= 0) {
1686           jccb(Assembler::zero, found_null);
1687           // Item did not match any saved item and there is no empty row for it.
1688           // Increment total counter to indicate polymorphic case.
1689           increment_mdp_data_at(mdp, non_profiled_offset);
1690           jmp(done);
1691           bind(found_null);
1692         } else {
1693           jcc(Assembler::notZero, done);
1694         }
1695         break;
1696       }
1697       // Since null is rare, make it be the branch-taken case.
1698       jcc(Assembler::zero, found_null);
1699 
1700       // Put all the "Case 3" tests here.
1701       record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1702         item_offset_fn, item_count_offset_fn, non_profiled_offset);
1703 
1704       // Found a null.  Keep searching for a matching item,
1705       // but remember that this is an empty (unused) slot.
1706       bind(found_null);
1707     }
1708   }
1709 
1710   // In the fall-through case, we found no matching item, but we
1711   // observed the item[start_row] is NULL.
1712 
1713   // Fill in the item field and increment the count.
1714   int item_offset = in_bytes(item_offset_fn(start_row));
1715   set_mdp_data_at(mdp, item_offset, item);
1716   int count_offset = in_bytes(item_count_offset_fn(start_row));
1717   movl(reg2, DataLayout::counter_increment);
1718   set_mdp_data_at(mdp, count_offset, reg2);
1719   if (start_row > 0) {
1720     jmp(done);
1721   }
1722 }
1723 
1724 // Example state machine code for three profile rows:
1725 //   // main copy of decision tree, rooted at row[1]
1726 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1727 //   if (row[0].rec != NULL) {
1728 //     // inner copy of decision tree, rooted at row[1]
1729 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1730 //     if (row[1].rec != NULL) {
1731 //       // degenerate decision tree, rooted at row[2]
1732 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1733 //       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
1734 //       row[2].init(rec); goto done;
1735 //     } else {
1736 //       // remember row[1] is empty
1737 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1738 //       row[1].init(rec); goto done;
1739 //     }
1740 //   } else {
1741 //     // remember row[0] is empty
1742 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1743 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1744 //     row[0].init(rec); goto done;
1745 //   }
1746 //   done:
1747 
1748 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1749                                                         Register mdp, Register reg2,
1750                                                         bool is_virtual_call) {
1751   assert(ProfileInterpreter, "must be profiling");
1752   Label done;
1753 
1754   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1755 
1756   bind (done);
1757 }
1758 
1759 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1760                                             Register mdp) {
1761   if (ProfileInterpreter) {
1762     Label profile_continue;
1763     uint row;
1764 
1765     // If no method data exists, go to profile_continue.
1766     test_method_data_pointer(mdp, profile_continue);
1767 
1768     // Update the total ret count.
1769     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1770 
1771     for (row = 0; row < RetData::row_limit(); row++) {
1772       Label next_test;
1773 
1774       // See if return_bci is equal to bci[n]:
1775       test_mdp_data_at(mdp,
1776                        in_bytes(RetData::bci_offset(row)),
1777                        return_bci, noreg,
1778                        next_test);
1779 
1780       // return_bci is equal to bci[n].  Increment the count.
1781       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1782 
1783       // The method data pointer needs to be updated to reflect the new target.
1784       update_mdp_by_offset(mdp,
1785                            in_bytes(RetData::bci_displacement_offset(row)));
1786       jmp(profile_continue);
1787       bind(next_test);
1788     }
1789 
1790     update_mdp_for_ret(return_bci);
1791 
1792     bind(profile_continue);
1793   }
1794 }
1795 
1796 
1797 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1798   if (ProfileInterpreter) {
1799     Label profile_continue;
1800 
1801     // If no method data exists, go to profile_continue.
1802     test_method_data_pointer(mdp, profile_continue);
1803 
1804     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1805 
1806     // The method data pointer needs to be updated.
1807     int mdp_delta = in_bytes(BitData::bit_data_size());
1808     if (TypeProfileCasts) {
1809       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1810     }
1811     update_mdp_by_constant(mdp, mdp_delta);
1812 
1813     bind(profile_continue);
1814   }
1815 }
1816 
1817 
1818 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1819   if (ProfileInterpreter && TypeProfileCasts) {
1820     Label profile_continue;
1821 
1822     // If no method data exists, go to profile_continue.
1823     test_method_data_pointer(mdp, profile_continue);
1824 
1825     int count_offset = in_bytes(CounterData::count_offset());
1826     // Back up the address, since we have already bumped the mdp.
1827     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1828 
1829     // *Decrement* the counter.  We expect to see zero or small negatives.
1830     increment_mdp_data_at(mdp, count_offset, true);
1831 
1832     bind (profile_continue);
1833   }
1834 }
1835 
1836 
1837 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1838   if (ProfileInterpreter) {
1839     Label profile_continue;
1840 
1841     // If no method data exists, go to profile_continue.
1842     test_method_data_pointer(mdp, profile_continue);
1843 
1844     // The method data pointer needs to be updated.
1845     int mdp_delta = in_bytes(BitData::bit_data_size());
1846     if (TypeProfileCasts) {
1847       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1848 
1849       // Record the object type.
1850       record_klass_in_profile(klass, mdp, reg2, false);
1851       NOT_LP64(assert(reg2 == rdi, "we know how to fix this blown reg");)
1852       NOT_LP64(restore_locals();)         // Restore EDI
1853     }
1854     update_mdp_by_constant(mdp, mdp_delta);
1855 
1856     bind(profile_continue);
1857   }
1858 }
1859 
1860 
1861 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1862   if (ProfileInterpreter) {
1863     Label profile_continue;
1864 
1865     // If no method data exists, go to profile_continue.
1866     test_method_data_pointer(mdp, profile_continue);
1867 
1868     // Update the default case count
1869     increment_mdp_data_at(mdp,
1870                           in_bytes(MultiBranchData::default_count_offset()));
1871 
1872     // The method data pointer needs to be updated.
1873     update_mdp_by_offset(mdp,
1874                          in_bytes(MultiBranchData::
1875                                   default_displacement_offset()));
1876 
1877     bind(profile_continue);
1878   }
1879 }
1880 
1881 
1882 void InterpreterMacroAssembler::profile_switch_case(Register index,
1883                                                     Register mdp,
1884                                                     Register reg2) {
1885   if (ProfileInterpreter) {
1886     Label profile_continue;
1887 
1888     // If no method data exists, go to profile_continue.
1889     test_method_data_pointer(mdp, profile_continue);
1890 
1891     // Build the base (index * per_case_size_in_bytes()) +
1892     // case_array_offset_in_bytes()
1893     movl(reg2, in_bytes(MultiBranchData::per_case_size()));
1894     imulptr(index, reg2); // XXX l ?
1895     addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
1896 
1897     // Update the case count
1898     increment_mdp_data_at(mdp,
1899                           index,
1900                           in_bytes(MultiBranchData::relative_count_offset()));
1901 
1902     // The method data pointer needs to be updated.
1903     update_mdp_by_offset(mdp,
1904                          index,
1905                          in_bytes(MultiBranchData::
1906                                   relative_displacement_offset()));
1907 
1908     bind(profile_continue);
1909   }
1910 }
1911 
1912 
1913 
1914 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1915   if (state == atos) {
1916     MacroAssembler::verify_oop(reg);
1917   }
1918 }
1919 
1920 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
1921 #ifndef _LP64
1922   if ((state == ftos && UseSSE < 1) ||
1923       (state == dtos && UseSSE < 2)) {
1924     MacroAssembler::verify_FPU(stack_depth);
1925   }
1926 #endif
1927 }
1928 
1929 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1930 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1931                                                         int increment, Address mask,
1932                                                         Register scratch, bool preloaded,
1933                                                         Condition cond, Label* where) {
1934   if (!preloaded) {
1935     movl(scratch, counter_addr);
1936   }
1937   incrementl(scratch, increment);
1938   movl(counter_addr, scratch);
1939   andl(scratch, mask);
1940   jcc(cond, *where);
1941 }
1942 
1943 void InterpreterMacroAssembler::notify_method_entry() {
1944   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1945   // track stack depth.  If it is possible to enter interp_only_mode we add
1946   // the code to check if the event should be sent.
1947   Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
1948   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
1949   if (JvmtiExport::can_post_interpreter_events()) {
1950     Label L;
1951     NOT_LP64(get_thread(rthread);)
1952     movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
1953     testl(rdx, rdx);
1954     jcc(Assembler::zero, L);
1955     call_VM(noreg, CAST_FROM_FN_PTR(address,
1956                                     InterpreterRuntime::post_method_entry));
1957     bind(L);
1958   }
1959 
1960   {
1961     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1962     NOT_LP64(get_thread(rthread);)
1963     get_method(rarg);
1964     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1965                  rthread, rarg);
1966   }
1967 
1968   // RedefineClasses() tracing support for obsolete method entry
1969   if (log_is_enabled(Trace, redefine, class, obsolete)) {
1970     NOT_LP64(get_thread(rthread);)
1971     get_method(rarg);
1972     call_VM_leaf(
1973       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1974       rthread, rarg);
1975   }
1976 }
1977 
1978 
1979 void InterpreterMacroAssembler::notify_method_exit(
1980     TosState state, NotifyMethodExitMode mode) {
1981   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1982   // track stack depth.  If it is possible to enter interp_only_mode we add
1983   // the code to check if the event should be sent.
1984   Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
1985   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
1986   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1987     Label L;
1988     // Note: frame::interpreter_frame_result has a dependency on how the
1989     // method result is saved across the call to post_method_exit. If this
1990     // is changed then the interpreter_frame_result implementation will
1991     // need to be updated too.
1992 
1993     // template interpreter will leave the result on the top of the stack.
1994     push(state);
1995     NOT_LP64(get_thread(rthread);)
1996     movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
1997     testl(rdx, rdx);
1998     jcc(Assembler::zero, L);
1999     call_VM(noreg,
2000             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2001     bind(L);
2002     pop(state);
2003   }
2004 
2005   {
2006     SkipIfEqual skip(this, &DTraceMethodProbes, false);
2007     push(state);
2008     NOT_LP64(get_thread(rthread);)
2009     get_method(rarg);
2010     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2011                  rthread, rarg);
2012     pop(state);
2013   }
2014 }