1 /*
   2  * Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "interp_masm_aarch64.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterRuntime.hpp"
  30 #include "logging/log.hpp"
  31 #include "oops/arrayOop.hpp"
  32 #include "oops/markOop.hpp"
  33 #include "oops/methodData.hpp"
  34 #include "oops/method.hpp"
  35 #include "prims/jvmtiExport.hpp"
  36 #include "prims/jvmtiThreadState.hpp"
  37 #include "runtime/basicLock.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 
  42 
  43 void InterpreterMacroAssembler::narrow(Register result) {
  44 
  45   // Get method->_constMethod->_result_type
  46   ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
  47   ldr(rscratch1, Address(rscratch1, Method::const_offset()));
  48   ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset()));
  49 
  50   Label done, notBool, notByte, notChar;
  51 
  52   // common case first
  53   cmpw(rscratch1, T_INT);
  54   br(Assembler::EQ, done);
  55 
  56   // mask integer result to narrower return type.
  57   cmpw(rscratch1, T_BOOLEAN);
  58   br(Assembler::NE, notBool);
  59   andw(result, result, 0x1);
  60   b(done);
  61 
  62   bind(notBool);
  63   cmpw(rscratch1, T_BYTE);
  64   br(Assembler::NE, notByte);
  65   sbfx(result, result, 0, 8);
  66   b(done);
  67 
  68   bind(notByte);
  69   cmpw(rscratch1, T_CHAR);
  70   br(Assembler::NE, notChar);
  71   ubfx(result, result, 0, 16);  // truncate upper 16 bits
  72   b(done);
  73 
  74   bind(notChar);
  75   sbfx(result, result, 0, 16);     // sign-extend short
  76 
  77   // Nothing to do for T_INT
  78   bind(done);
  79 }
  80 
  81 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  82   assert(entry, "Entry must have been generated by now");
  83   b(entry);
  84 }
  85 
  86 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
  87   if (JvmtiExport::can_pop_frame()) {
  88     Label L;
  89     // Initiate popframe handling only if it is not already being
  90     // processed.  If the flag has the popframe_processing bit set, it
  91     // means that this code is called *during* popframe handling - we
  92     // don't want to reenter.
  93     // This method is only called just after the call into the vm in
  94     // call_VM_base, so the arg registers are available.
  95     ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
  96     tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L);
  97     tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L);
  98     // Call Interpreter::remove_activation_preserving_args_entry() to get the
  99     // address of the same-named entrypoint in the generated interpreter code.
 100     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 101     br(r0);
 102     bind(L);
 103   }
 104 }
 105 
 106 
 107 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 108   ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 109   const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset());
 110   const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset());
 111   const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset());
 112   switch (state) {
 113     case atos: ldr(r0, oop_addr);
 114                str(zr, oop_addr);
 115                verify_oop(r0, state);               break;
 116     case ltos: ldr(r0, val_addr);                   break;
 117     case btos:                                   // fall through
 118     case ztos:                                   // fall through
 119     case ctos:                                   // fall through
 120     case stos:                                   // fall through
 121     case itos: ldrw(r0, val_addr);                  break;
 122     case ftos: ldrs(v0, val_addr);                  break;
 123     case dtos: ldrd(v0, val_addr);                  break;
 124     case vtos: /* nothing to do */                  break;
 125     default  : ShouldNotReachHere();
 126   }
 127   // Clean up tos value in the thread object
 128   movw(rscratch1, (int) ilgl);
 129   strw(rscratch1, tos_addr);
 130   strw(zr, val_addr);
 131 }
 132 
 133 
 134 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 135   if (JvmtiExport::can_force_early_return()) {
 136     Label L;
 137     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 138     cbz(rscratch1, L); // if (thread->jvmti_thread_state() == NULL) exit;
 139 
 140     // Initiate earlyret handling only if it is not already being processed.
 141     // If the flag has the earlyret_processing bit set, it means that this code
 142     // is called *during* earlyret handling - we don't want to reenter.
 143     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset()));
 144     cmpw(rscratch1, JvmtiThreadState::earlyret_pending);
 145     br(Assembler::NE, L);
 146 
 147     // Call Interpreter::remove_activation_early_entry() to get the address of the
 148     // same-named entrypoint in the generated interpreter code.
 149     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 150     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset()));
 151     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1);
 152     br(r0);
 153     bind(L);
 154   }
 155 }
 156 
 157 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
 158   Register reg,
 159   int bcp_offset) {
 160   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 161   ldrh(reg, Address(rbcp, bcp_offset));
 162   rev16(reg, reg);
 163 }
 164 
 165 void InterpreterMacroAssembler::get_dispatch() {
 166   unsigned long offset;
 167   adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset);
 168   lea(rdispatch, Address(rdispatch, offset));
 169 }
 170 
 171 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 172                                                        int bcp_offset,
 173                                                        size_t index_size) {
 174   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 175   if (index_size == sizeof(u2)) {
 176     load_unsigned_short(index, Address(rbcp, bcp_offset));
 177   } else if (index_size == sizeof(u4)) {
 178     // assert(EnableInvokeDynamic, "giant index used only for JSR 292");
 179     ldrw(index, Address(rbcp, bcp_offset));
 180     // Check if the secondary index definition is still ~x, otherwise
 181     // we have to change the following assembler code to calculate the
 182     // plain index.
 183     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 184     eonw(index, index, zr);  // convert to plain index
 185   } else if (index_size == sizeof(u1)) {
 186     load_unsigned_byte(index, Address(rbcp, bcp_offset));
 187   } else {
 188     ShouldNotReachHere();
 189   }
 190 }
 191 
 192 // Return
 193 // Rindex: index into constant pool
 194 // Rcache: address of cache entry - ConstantPoolCache::base_offset()
 195 //
 196 // A caller must add ConstantPoolCache::base_offset() to Rcache to get
 197 // the true address of the cache entry.
 198 //
 199 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
 200                                                            Register index,
 201                                                            int bcp_offset,
 202                                                            size_t index_size) {
 203   assert_different_registers(cache, index);
 204   assert_different_registers(cache, rcpool);
 205   get_cache_index_at_bcp(index, bcp_offset, index_size);
 206   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 207   // convert from field index to ConstantPoolCacheEntry
 208   // aarch64 already has the cache in rcpool so there is no need to
 209   // install it in cache. instead we pre-add the indexed offset to
 210   // rcpool and return it in cache. All clients of this method need to
 211   // be modified accordingly.
 212   add(cache, rcpool, index, Assembler::LSL, 5);
 213 }
 214 
 215 
 216 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
 217                                                                         Register index,
 218                                                                         Register bytecode,
 219                                                                         int byte_no,
 220                                                                         int bcp_offset,
 221                                                                         size_t index_size) {
 222   get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
 223   // We use a 32-bit load here since the layout of 64-bit words on
 224   // little-endian machines allow us that.
 225   // n.b. unlike x86 cache already includes the index offset
 226   lea(bytecode, Address(cache,
 227                          ConstantPoolCache::base_offset()
 228                          + ConstantPoolCacheEntry::indices_offset()));
 229   ldarw(bytecode, bytecode);
 230   const int shift_count = (1 + byte_no) * BitsPerByte;
 231   ubfx(bytecode, bytecode, shift_count, BitsPerByte);
 232 }
 233 
 234 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
 235                                                                Register tmp,
 236                                                                int bcp_offset,
 237                                                                size_t index_size) {
 238   assert(cache != tmp, "must use different register");
 239   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
 240   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 241   // convert from field index to ConstantPoolCacheEntry index
 242   // and from word offset to byte offset
 243   assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
 244   ldr(cache, Address(rfp, frame::interpreter_frame_cache_offset * wordSize));
 245   // skip past the header
 246   add(cache, cache, in_bytes(ConstantPoolCache::base_offset()));
 247   add(cache, cache, tmp, Assembler::LSL, 2 + LogBytesPerWord);  // construct pointer to cache entry
 248 }
 249 
 250 void InterpreterMacroAssembler::get_method_counters(Register method,
 251                                                     Register mcs, Label& skip) {
 252   Label has_counters;
 253   ldr(mcs, Address(method, Method::method_counters_offset()));
 254   cbnz(mcs, has_counters);
 255   call_VM(noreg, CAST_FROM_FN_PTR(address,
 256           InterpreterRuntime::build_method_counters), method);
 257   ldr(mcs, Address(method, Method::method_counters_offset()));
 258   cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory
 259   bind(has_counters);
 260 }
 261 
 262 // Load object from cpool->resolved_references(index)
 263 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 264                                            Register result, Register index) {
 265   assert_different_registers(result, index);
 266   // convert from field index to resolved_references() index and from
 267   // word index to byte offset. Since this is a java object, it can be compressed
 268   Register tmp = index;  // reuse
 269   lslw(tmp, tmp, LogBytesPerHeapOop);
 270 
 271   get_constant_pool(result);
 272   // load pointer for resolved_references[] objArray
 273   ldr(result, Address(result, ConstantPool::resolved_references_offset_in_bytes()));
 274   // JNIHandles::resolve(obj);
 275   ldr(result, Address(result, 0));
 276   // Add in the index
 277   add(result, result, tmp);
 278   load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 279 }
 280 
 281 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 282 // subtype of super_klass.
 283 //
 284 // Args:
 285 //      r0: superklass
 286 //      Rsub_klass: subklass
 287 //
 288 // Kills:
 289 //      r2, r5
 290 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 291                                                   Label& ok_is_subtype) {
 292   assert(Rsub_klass != r0, "r0 holds superklass");
 293   assert(Rsub_klass != r2, "r2 holds 2ndary super array length");
 294   assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr");
 295 
 296   // Profile the not-null value's klass.
 297   profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5
 298 
 299   // Do the check.
 300   check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2
 301 
 302   // Profile the failure of the check.
 303   profile_typecheck_failed(r2); // blows r2
 304 }
 305 
 306 // Java Expression Stack
 307 
 308 void InterpreterMacroAssembler::pop_ptr(Register r) {
 309   ldr(r, post(esp, wordSize));
 310 }
 311 
 312 void InterpreterMacroAssembler::pop_i(Register r) {
 313   ldrw(r, post(esp, wordSize));
 314 }
 315 
 316 void InterpreterMacroAssembler::pop_l(Register r) {
 317   ldr(r, post(esp, 2 * Interpreter::stackElementSize));
 318 }
 319 
 320 void InterpreterMacroAssembler::push_ptr(Register r) {
 321   str(r, pre(esp, -wordSize));
 322  }
 323 
 324 void InterpreterMacroAssembler::push_i(Register r) {
 325   str(r, pre(esp, -wordSize));
 326 }
 327 
 328 void InterpreterMacroAssembler::push_l(Register r) {
 329   str(zr, pre(esp, -wordSize));
 330   str(r, pre(esp, - wordSize));
 331 }
 332 
 333 void InterpreterMacroAssembler::pop_f(FloatRegister r) {
 334   ldrs(r, post(esp, wordSize));
 335 }
 336 
 337 void InterpreterMacroAssembler::pop_d(FloatRegister r) {
 338   ldrd(r, post(esp, 2 * Interpreter::stackElementSize));
 339 }
 340 
 341 void InterpreterMacroAssembler::push_f(FloatRegister r) {
 342   strs(r, pre(esp, -wordSize));
 343 }
 344 
 345 void InterpreterMacroAssembler::push_d(FloatRegister r) {
 346   strd(r, pre(esp, 2* -wordSize));
 347 }
 348 
 349 void InterpreterMacroAssembler::pop(TosState state) {
 350   switch (state) {
 351   case atos: pop_ptr();                 break;
 352   case btos:
 353   case ztos:
 354   case ctos:
 355   case stos:
 356   case itos: pop_i();                   break;
 357   case ltos: pop_l();                   break;
 358   case ftos: pop_f();                   break;
 359   case dtos: pop_d();                   break;
 360   case vtos: /* nothing to do */        break;
 361   default:   ShouldNotReachHere();
 362   }
 363   verify_oop(r0, state);
 364 }
 365 
 366 void InterpreterMacroAssembler::push(TosState state) {
 367   verify_oop(r0, state);
 368   switch (state) {
 369   case atos: push_ptr();                break;
 370   case btos:
 371   case ztos:
 372   case ctos:
 373   case stos:
 374   case itos: push_i();                  break;
 375   case ltos: push_l();                  break;
 376   case ftos: push_f();                  break;
 377   case dtos: push_d();                  break;
 378   case vtos: /* nothing to do */        break;
 379   default  : ShouldNotReachHere();
 380   }
 381 }
 382 
 383 // Helpers for swap and dup
 384 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 385   ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 386 }
 387 
 388 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 389   str(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 390 }
 391 
 392 
 393 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 394   // set sender sp
 395   mov(r13, sp);
 396   // record last_sp
 397   str(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 398 }
 399 
 400 // Jump to from_interpreted entry of a call unless single stepping is possible
 401 // in this thread in which case we must call the i2i entry
 402 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 403   prepare_to_jump_from_interpreted();
 404 
 405   if (JvmtiExport::can_post_interpreter_events()) {
 406     Label run_compiled_code;
 407     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 408     // compiled code in threads for which the event is enabled.  Check here for
 409     // interp_only_mode if these events CAN be enabled.
 410     ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset()));
 411     cbzw(rscratch1, run_compiled_code);
 412     ldr(rscratch1, Address(method, Method::interpreter_entry_offset()));
 413     br(rscratch1);
 414     bind(run_compiled_code);
 415   }
 416 
 417   ldr(rscratch1, Address(method, Method::from_interpreted_offset()));
 418   br(rscratch1);
 419 }
 420 
 421 // The following two routines provide a hook so that an implementation
 422 // can schedule the dispatch in two parts.  amd64 does not do this.
 423 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 424 }
 425 
 426 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 427     dispatch_next(state, step);
 428 }
 429 
 430 void InterpreterMacroAssembler::dispatch_base(TosState state,
 431                                               address* table,
 432                                               bool verifyoop) {
 433   if (VerifyActivationFrameSize) {
 434     Unimplemented();
 435   }
 436   if (verifyoop) {
 437     verify_oop(r0, state);
 438   }
 439   if (table == Interpreter::dispatch_table(state)) {
 440     addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state));
 441     ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3)));
 442   } else {
 443     mov(rscratch2, (address)table);
 444     ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
 445   }
 446   br(rscratch2);
 447 }
 448 
 449 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 450   dispatch_base(state, Interpreter::dispatch_table(state));
 451 }
 452 
 453 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 454   dispatch_base(state, Interpreter::normal_table(state));
 455 }
 456 
 457 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 458   dispatch_base(state, Interpreter::normal_table(state), false);
 459 }
 460 
 461 
 462 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
 463   // load next bytecode
 464   ldrb(rscratch1, Address(pre(rbcp, step)));
 465   dispatch_base(state, Interpreter::dispatch_table(state));
 466 }
 467 
 468 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 469   // load current bytecode
 470   ldrb(rscratch1, Address(rbcp, 0));
 471   dispatch_base(state, table);
 472 }
 473 
 474 // remove activation
 475 //
 476 // Unlock the receiver if this is a synchronized method.
 477 // Unlock any Java monitors from syncronized blocks.
 478 // Remove the activation from the stack.
 479 //
 480 // If there are locked Java monitors
 481 //    If throw_monitor_exception
 482 //       throws IllegalMonitorStateException
 483 //    Else if install_monitor_exception
 484 //       installs IllegalMonitorStateException
 485 //    Else
 486 //       no error processing
 487 void InterpreterMacroAssembler::remove_activation(
 488         TosState state,
 489         bool throw_monitor_exception,
 490         bool install_monitor_exception,
 491         bool notify_jvmdi) {
 492   // Note: Registers r3 xmm0 may be in use for the
 493   // result check if synchronized method
 494   Label unlocked, unlock, no_unlock;
 495 
 496   // get the value of _do_not_unlock_if_synchronized into r3
 497   const Address do_not_unlock_if_synchronized(rthread,
 498     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 499   ldrb(r3, do_not_unlock_if_synchronized);
 500   strb(zr, do_not_unlock_if_synchronized); // reset the flag
 501 
 502  // get method access flags
 503   ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
 504   ldr(r2, Address(r1, Method::access_flags_offset()));
 505   tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked);
 506 
 507   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 508   // is set.
 509   cbnz(r3, no_unlock);
 510 
 511   // unlock monitor
 512   push(state); // save result
 513 
 514   // BasicObjectLock will be first in list, since this is a
 515   // synchronized method. However, need to check that the object has
 516   // not been unlocked by an explicit monitorexit bytecode.
 517   const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset *
 518                         wordSize - (int) sizeof(BasicObjectLock));
 519   // We use c_rarg1 so that if we go slow path it will be the correct
 520   // register for unlock_object to pass to VM directly
 521   lea(c_rarg1, monitor); // address of first monitor
 522 
 523   ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
 524   cbnz(r0, unlock);
 525 
 526   pop(state);
 527   if (throw_monitor_exception) {
 528     // Entry already unlocked, need to throw exception
 529     call_VM(noreg, CAST_FROM_FN_PTR(address,
 530                    InterpreterRuntime::throw_illegal_monitor_state_exception));
 531     should_not_reach_here();
 532   } else {
 533     // Monitor already unlocked during a stack unroll. If requested,
 534     // install an illegal_monitor_state_exception.  Continue with
 535     // stack unrolling.
 536     if (install_monitor_exception) {
 537       call_VM(noreg, CAST_FROM_FN_PTR(address,
 538                      InterpreterRuntime::new_illegal_monitor_state_exception));
 539     }
 540     b(unlocked);
 541   }
 542 
 543   bind(unlock);
 544   unlock_object(c_rarg1);
 545   pop(state);
 546 
 547   // Check that for block-structured locking (i.e., that all locked
 548   // objects has been unlocked)
 549   bind(unlocked);
 550 
 551   // r0: Might contain return value
 552 
 553   // Check that all monitors are unlocked
 554   {
 555     Label loop, exception, entry, restart;
 556     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 557     const Address monitor_block_top(
 558         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 559     const Address monitor_block_bot(
 560         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
 561 
 562     bind(restart);
 563     // We use c_rarg1 so that if we go slow path it will be the correct
 564     // register for unlock_object to pass to VM directly
 565     ldr(c_rarg1, monitor_block_top); // points to current entry, starting
 566                                      // with top-most entry
 567     lea(r19, monitor_block_bot);  // points to word before bottom of
 568                                   // monitor block
 569     b(entry);
 570 
 571     // Entry already locked, need to throw exception
 572     bind(exception);
 573 
 574     if (throw_monitor_exception) {
 575       // Throw exception
 576       MacroAssembler::call_VM(noreg,
 577                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
 578                                    throw_illegal_monitor_state_exception));
 579       should_not_reach_here();
 580     } else {
 581       // Stack unrolling. Unlock object and install illegal_monitor_exception.
 582       // Unlock does not block, so don't have to worry about the frame.
 583       // We don't have to preserve c_rarg1 since we are going to throw an exception.
 584 
 585       push(state);
 586       unlock_object(c_rarg1);
 587       pop(state);
 588 
 589       if (install_monitor_exception) {
 590         call_VM(noreg, CAST_FROM_FN_PTR(address,
 591                                         InterpreterRuntime::
 592                                         new_illegal_monitor_state_exception));
 593       }
 594 
 595       b(restart);
 596     }
 597 
 598     bind(loop);
 599     // check if current entry is used
 600     ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
 601     cbnz(rscratch1, exception);
 602 
 603     add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry
 604     bind(entry);
 605     cmp(c_rarg1, r19); // check if bottom reached
 606     br(Assembler::NE, loop); // if not at bottom then check this entry
 607   }
 608 
 609   bind(no_unlock);
 610 
 611   // jvmti support
 612   if (notify_jvmdi) {
 613     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
 614   } else {
 615     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
 616   }
 617 
 618   // remove activation
 619   // get sender esp
 620   ldr(esp,
 621       Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
 622   if (StackReservedPages > 0) {
 623     // testing if reserved zone needs to be re-enabled
 624     Label no_reserved_zone_enabling;
 625 
 626     ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset()));
 627     cmp(esp, rscratch1);
 628     br(Assembler::LS, no_reserved_zone_enabling);
 629 
 630     call_VM_leaf(
 631       CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
 632     call_VM(noreg, CAST_FROM_FN_PTR(address,
 633                    InterpreterRuntime::throw_delayed_StackOverflowError));
 634     should_not_reach_here();
 635 
 636     bind(no_reserved_zone_enabling);
 637   }
 638   // remove frame anchor
 639   leave();
 640   // If we're returning to interpreted code we will shortly be
 641   // adjusting SP to allow some space for ESP.  If we're returning to
 642   // compiled code the saved sender SP was saved in sender_sp, so this
 643   // restores it.
 644   andr(sp, esp, -16);
 645 }
 646 
 647 // Lock object
 648 //
 649 // Args:
 650 //      c_rarg1: BasicObjectLock to be used for locking
 651 //
 652 // Kills:
 653 //      r0
 654 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
 655 //      rscratch1, rscratch2 (scratch regs)
 656 void InterpreterMacroAssembler::lock_object(Register lock_reg)
 657 {
 658   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
 659   if (UseHeavyMonitors) {
 660     call_VM(noreg,
 661             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 662             lock_reg);
 663   } else {
 664     Label done;
 665 
 666     const Register swap_reg = r0;
 667     const Register tmp = c_rarg2;
 668     const Register obj_reg = c_rarg3; // Will contain the oop
 669 
 670     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
 671     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
 672     const int mark_offset = lock_offset +
 673                             BasicLock::displaced_header_offset_in_bytes();
 674 
 675     Label slow_case;
 676 
 677     // Load object pointer into obj_reg %c_rarg3
 678     ldr(obj_reg, Address(lock_reg, obj_offset));
 679 
 680     if (UseBiasedLocking) {
 681       biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp, false, done, &slow_case);
 682     }
 683 
 684     // Load (object->mark() | 1) into swap_reg
 685     ldr(rscratch1, Address(obj_reg, 0));
 686     orr(swap_reg, rscratch1, 1);
 687 
 688     // Save (object->mark() | 1) into BasicLock's displaced header
 689     str(swap_reg, Address(lock_reg, mark_offset));
 690 
 691     assert(lock_offset == 0,
 692            "displached header must be first word in BasicObjectLock");
 693 
 694     Label fail;
 695     if (PrintBiasedLockingStatistics) {
 696       Label fast;
 697       cmpxchgptr(swap_reg, lock_reg, obj_reg, rscratch1, fast, &fail);
 698       bind(fast);
 699       atomic_incw(Address((address)BiasedLocking::fast_path_entry_count_addr()),
 700                   rscratch2, rscratch1, tmp);
 701       b(done);
 702       bind(fail);
 703     } else {
 704       cmpxchgptr(swap_reg, lock_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL);
 705     }
 706 
 707     // Test if the oopMark is an obvious stack pointer, i.e.,
 708     //  1) (mark & 7) == 0, and
 709     //  2) rsp <= mark < mark + os::pagesize()
 710     //
 711     // These 3 tests can be done by evaluating the following
 712     // expression: ((mark - rsp) & (7 - os::vm_page_size())),
 713     // assuming both stack pointer and pagesize have their
 714     // least significant 3 bits clear.
 715     // NOTE: the oopMark is in swap_reg %r0 as the result of cmpxchg
 716     // NOTE2: aarch64 does not like to subtract sp from rn so take a
 717     // copy
 718     mov(rscratch1, sp);
 719     sub(swap_reg, swap_reg, rscratch1);
 720     ands(swap_reg, swap_reg, (unsigned long)(7 - os::vm_page_size()));
 721 
 722     // Save the test result, for recursive case, the result is zero
 723     str(swap_reg, Address(lock_reg, mark_offset));
 724 
 725     if (PrintBiasedLockingStatistics) {
 726       br(Assembler::NE, slow_case);
 727       atomic_incw(Address((address)BiasedLocking::fast_path_entry_count_addr()),
 728                   rscratch2, rscratch1, tmp);
 729     }
 730     br(Assembler::EQ, done);
 731 
 732     bind(slow_case);
 733 
 734     // Call the runtime routine for slow case
 735     call_VM(noreg,
 736             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 737             lock_reg);
 738 
 739     bind(done);
 740   }
 741 }
 742 
 743 
 744 // Unlocks an object. Used in monitorexit bytecode and
 745 // remove_activation.  Throws an IllegalMonitorException if object is
 746 // not locked by current thread.
 747 //
 748 // Args:
 749 //      c_rarg1: BasicObjectLock for lock
 750 //
 751 // Kills:
 752 //      r0
 753 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
 754 //      rscratch1, rscratch2 (scratch regs)
 755 void InterpreterMacroAssembler::unlock_object(Register lock_reg)
 756 {
 757   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
 758 
 759   if (UseHeavyMonitors) {
 760     call_VM(noreg,
 761             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
 762             lock_reg);
 763   } else {
 764     Label done;
 765 
 766     const Register swap_reg   = r0;
 767     const Register header_reg = c_rarg2;  // Will contain the old oopMark
 768     const Register obj_reg    = c_rarg3;  // Will contain the oop
 769 
 770     save_bcp(); // Save in case of exception
 771 
 772     // Convert from BasicObjectLock structure to object and BasicLock
 773     // structure Store the BasicLock address into %r0
 774     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
 775 
 776     // Load oop into obj_reg(%c_rarg3)
 777     ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
 778 
 779     // Free entry
 780     str(zr, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
 781 
 782     if (UseBiasedLocking) {
 783       biased_locking_exit(obj_reg, header_reg, done);
 784     }
 785 
 786     // Load the old header from BasicLock structure
 787     ldr(header_reg, Address(swap_reg,
 788                             BasicLock::displaced_header_offset_in_bytes()));
 789 
 790     // Test for recursion
 791     cbz(header_reg, done);
 792 
 793     // Atomic swap back the old header
 794     cmpxchgptr(swap_reg, header_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL);
 795 
 796     // Call the runtime routine for slow case.
 797     str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); // restore obj
 798     call_VM(noreg,
 799             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
 800             lock_reg);
 801 
 802     bind(done);
 803 
 804     restore_bcp();
 805   }
 806 }
 807 
 808 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
 809                                                          Label& zero_continue) {
 810   assert(ProfileInterpreter, "must be profiling interpreter");
 811   ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 812   cbz(mdp, zero_continue);
 813 }
 814 
 815 // Set the method data pointer for the current bcp.
 816 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
 817   assert(ProfileInterpreter, "must be profiling interpreter");
 818   Label set_mdp;
 819   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 820 
 821   // Test MDO to avoid the call if it is NULL.
 822   ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset())));
 823   cbz(r0, set_mdp);
 824   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp);
 825   // r0: mdi
 826   // mdo is guaranteed to be non-zero here, we checked for it before the call.
 827   ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
 828   lea(r1, Address(r1, in_bytes(MethodData::data_offset())));
 829   add(r0, r1, r0);
 830   str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 831   bind(set_mdp);
 832   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 833 }
 834 
 835 void InterpreterMacroAssembler::verify_method_data_pointer() {
 836   assert(ProfileInterpreter, "must be profiling interpreter");
 837 #ifdef ASSERT
 838   Label verify_continue;
 839   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 840   stp(r2, r3, Address(pre(sp, -2 * wordSize)));
 841   test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue
 842   get_method(r1);
 843 
 844   // If the mdp is valid, it will point to a DataLayout header which is
 845   // consistent with the bcp.  The converse is highly probable also.
 846   ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset())));
 847   ldr(rscratch1, Address(r1, Method::const_offset()));
 848   add(r2, r2, rscratch1, Assembler::LSL);
 849   lea(r2, Address(r2, ConstMethod::codes_offset()));
 850   cmp(r2, rbcp);
 851   br(Assembler::EQ, verify_continue);
 852   // r1: method
 853   // rbcp: bcp // rbcp == 22
 854   // r3: mdp
 855   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
 856                r1, rbcp, r3);
 857   bind(verify_continue);
 858   ldp(r2, r3, Address(post(sp, 2 * wordSize)));
 859   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 860 #endif // ASSERT
 861 }
 862 
 863 
 864 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
 865                                                 int constant,
 866                                                 Register value) {
 867   assert(ProfileInterpreter, "must be profiling interpreter");
 868   Address data(mdp_in, constant);
 869   str(value, data);
 870 }
 871 
 872 
 873 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 874                                                       int constant,
 875                                                       bool decrement) {
 876   increment_mdp_data_at(mdp_in, noreg, constant, decrement);
 877 }
 878 
 879 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 880                                                       Register reg,
 881                                                       int constant,
 882                                                       bool decrement) {
 883   assert(ProfileInterpreter, "must be profiling interpreter");
 884   // %%% this does 64bit counters at best it is wasting space
 885   // at worst it is a rare bug when counters overflow
 886 
 887   assert_different_registers(rscratch2, rscratch1, mdp_in, reg);
 888 
 889   Address addr1(mdp_in, constant);
 890   Address addr2(rscratch2, reg, Address::lsl(0));
 891   Address &addr = addr1;
 892   if (reg != noreg) {
 893     lea(rscratch2, addr1);
 894     addr = addr2;
 895   }
 896 
 897   if (decrement) {
 898     // Decrement the register.  Set condition codes.
 899     // Intel does this
 900     // addptr(data, (int32_t) -DataLayout::counter_increment);
 901     // If the decrement causes the counter to overflow, stay negative
 902     // Label L;
 903     // jcc(Assembler::negative, L);
 904     // addptr(data, (int32_t) DataLayout::counter_increment);
 905     // so we do this
 906     ldr(rscratch1, addr);
 907     subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment);
 908     Label L;
 909     br(Assembler::LO, L);       // skip store if counter underflow
 910     str(rscratch1, addr);
 911     bind(L);
 912   } else {
 913     assert(DataLayout::counter_increment == 1,
 914            "flow-free idiom only works with 1");
 915     // Intel does this
 916     // Increment the register.  Set carry flag.
 917     // addptr(data, DataLayout::counter_increment);
 918     // If the increment causes the counter to overflow, pull back by 1.
 919     // sbbptr(data, (int32_t)0);
 920     // so we do this
 921     ldr(rscratch1, addr);
 922     adds(rscratch1, rscratch1, DataLayout::counter_increment);
 923     Label L;
 924     br(Assembler::CS, L);       // skip store if counter overflow
 925     str(rscratch1, addr);
 926     bind(L);
 927   }
 928 }
 929 
 930 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
 931                                                 int flag_byte_constant) {
 932   assert(ProfileInterpreter, "must be profiling interpreter");
 933   int header_offset = in_bytes(DataLayout::header_offset());
 934   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
 935   // Set the flag
 936   ldr(rscratch1, Address(mdp_in, header_offset));
 937   orr(rscratch1, rscratch1, header_bits);
 938   str(rscratch1, Address(mdp_in, header_offset));
 939 }
 940 
 941 
 942 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
 943                                                  int offset,
 944                                                  Register value,
 945                                                  Register test_value_out,
 946                                                  Label& not_equal_continue) {
 947   assert(ProfileInterpreter, "must be profiling interpreter");
 948   if (test_value_out == noreg) {
 949     ldr(rscratch1, Address(mdp_in, offset));
 950     cmp(value, rscratch1);
 951   } else {
 952     // Put the test value into a register, so caller can use it:
 953     ldr(test_value_out, Address(mdp_in, offset));
 954     cmp(value, test_value_out);
 955   }
 956   br(Assembler::NE, not_equal_continue);
 957 }
 958 
 959 
 960 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
 961                                                      int offset_of_disp) {
 962   assert(ProfileInterpreter, "must be profiling interpreter");
 963   ldr(rscratch1, Address(mdp_in, offset_of_disp));
 964   add(mdp_in, mdp_in, rscratch1, LSL);
 965   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 966 }
 967 
 968 
 969 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
 970                                                      Register reg,
 971                                                      int offset_of_disp) {
 972   assert(ProfileInterpreter, "must be profiling interpreter");
 973   lea(rscratch1, Address(mdp_in, offset_of_disp));
 974   ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0)));
 975   add(mdp_in, mdp_in, rscratch1, LSL);
 976   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 977 }
 978 
 979 
 980 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
 981                                                        int constant) {
 982   assert(ProfileInterpreter, "must be profiling interpreter");
 983   add(mdp_in, mdp_in, (unsigned)constant);
 984   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 985 }
 986 
 987 
 988 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
 989   assert(ProfileInterpreter, "must be profiling interpreter");
 990   // save/restore across call_VM
 991   stp(zr, return_bci, Address(pre(sp, -2 * wordSize)));
 992   call_VM(noreg,
 993           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
 994           return_bci);
 995   ldp(zr, return_bci, Address(post(sp, 2 * wordSize)));
 996 }
 997 
 998 
 999 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1000                                                      Register bumped_count) {
1001   if (ProfileInterpreter) {
1002     Label profile_continue;
1003 
1004     // If no method data exists, go to profile_continue.
1005     // Otherwise, assign to mdp
1006     test_method_data_pointer(mdp, profile_continue);
1007 
1008     // We are taking a branch.  Increment the taken count.
1009     // We inline increment_mdp_data_at to return bumped_count in a register
1010     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1011     Address data(mdp, in_bytes(JumpData::taken_offset()));
1012     ldr(bumped_count, data);
1013     assert(DataLayout::counter_increment == 1,
1014             "flow-free idiom only works with 1");
1015     // Intel does this to catch overflow
1016     // addptr(bumped_count, DataLayout::counter_increment);
1017     // sbbptr(bumped_count, 0);
1018     // so we do this
1019     adds(bumped_count, bumped_count, DataLayout::counter_increment);
1020     Label L;
1021     br(Assembler::CS, L);       // skip store if counter overflow
1022     str(bumped_count, data);
1023     bind(L);
1024     // The method data pointer needs to be updated to reflect the new target.
1025     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1026     bind(profile_continue);
1027   }
1028 }
1029 
1030 
1031 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1032   if (ProfileInterpreter) {
1033     Label profile_continue;
1034 
1035     // If no method data exists, go to profile_continue.
1036     test_method_data_pointer(mdp, profile_continue);
1037 
1038     // We are taking a branch.  Increment the not taken count.
1039     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1040 
1041     // The method data pointer needs to be updated to correspond to
1042     // the next bytecode
1043     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1044     bind(profile_continue);
1045   }
1046 }
1047 
1048 
1049 void InterpreterMacroAssembler::profile_call(Register mdp) {
1050   if (ProfileInterpreter) {
1051     Label profile_continue;
1052 
1053     // If no method data exists, go to profile_continue.
1054     test_method_data_pointer(mdp, profile_continue);
1055 
1056     // We are making a call.  Increment the count.
1057     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1058 
1059     // The method data pointer needs to be updated to reflect the new target.
1060     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1061     bind(profile_continue);
1062   }
1063 }
1064 
1065 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1066   if (ProfileInterpreter) {
1067     Label profile_continue;
1068 
1069     // If no method data exists, go to profile_continue.
1070     test_method_data_pointer(mdp, profile_continue);
1071 
1072     // We are making a call.  Increment the count.
1073     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1074 
1075     // The method data pointer needs to be updated to reflect the new target.
1076     update_mdp_by_constant(mdp,
1077                            in_bytes(VirtualCallData::
1078                                     virtual_call_data_size()));
1079     bind(profile_continue);
1080   }
1081 }
1082 
1083 
1084 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1085                                                      Register mdp,
1086                                                      Register reg2,
1087                                                      bool receiver_can_be_null) {
1088   if (ProfileInterpreter) {
1089     Label profile_continue;
1090 
1091     // If no method data exists, go to profile_continue.
1092     test_method_data_pointer(mdp, profile_continue);
1093 
1094     Label skip_receiver_profile;
1095     if (receiver_can_be_null) {
1096       Label not_null;
1097       // We are making a call.  Increment the count for null receiver.
1098       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1099       b(skip_receiver_profile);
1100       bind(not_null);
1101     }
1102 
1103     // Record the receiver type.
1104     record_klass_in_profile(receiver, mdp, reg2, true);
1105     bind(skip_receiver_profile);
1106 
1107     // The method data pointer needs to be updated to reflect the new target.
1108 #if INCLUDE_JVMCI
1109     if (MethodProfileWidth == 0) {
1110       update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1111     }
1112 #else // INCLUDE_JVMCI
1113     update_mdp_by_constant(mdp,
1114                            in_bytes(VirtualCallData::
1115                                     virtual_call_data_size()));
1116 #endif // INCLUDE_JVMCI
1117     bind(profile_continue);
1118   }
1119 }
1120 
1121 #if INCLUDE_JVMCI
1122 void InterpreterMacroAssembler::profile_called_method(Register method, Register mdp, Register reg2) {
1123   assert_different_registers(method, mdp, reg2);
1124   if (ProfileInterpreter && MethodProfileWidth > 0) {
1125     Label profile_continue;
1126 
1127     // If no method data exists, go to profile_continue.
1128     test_method_data_pointer(mdp, profile_continue);
1129 
1130     Label done;
1131     record_item_in_profile_helper(method, mdp, reg2, 0, done, MethodProfileWidth,
1132       &VirtualCallData::method_offset, &VirtualCallData::method_count_offset, in_bytes(VirtualCallData::nonprofiled_receiver_count_offset()));
1133     bind(done);
1134 
1135     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1136     bind(profile_continue);
1137   }
1138 }
1139 #endif // INCLUDE_JVMCI
1140 
1141 // This routine creates a state machine for updating the multi-row
1142 // type profile at a virtual call site (or other type-sensitive bytecode).
1143 // The machine visits each row (of receiver/count) until the receiver type
1144 // is found, or until it runs out of rows.  At the same time, it remembers
1145 // the location of the first empty row.  (An empty row records null for its
1146 // receiver, and can be allocated for a newly-observed receiver type.)
1147 // Because there are two degrees of freedom in the state, a simple linear
1148 // search will not work; it must be a decision tree.  Hence this helper
1149 // function is recursive, to generate the required tree structured code.
1150 // It's the interpreter, so we are trading off code space for speed.
1151 // See below for example code.
1152 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1153                                         Register receiver, Register mdp,
1154                                         Register reg2, int start_row,
1155                                         Label& done, bool is_virtual_call) {
1156   if (TypeProfileWidth == 0) {
1157     if (is_virtual_call) {
1158       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1159     }
1160 #if INCLUDE_JVMCI
1161     else if (EnableJVMCI) {
1162       increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()));
1163     }
1164 #endif // INCLUDE_JVMCI
1165   } else {
1166     int non_profiled_offset = -1;
1167     if (is_virtual_call) {
1168       non_profiled_offset = in_bytes(CounterData::count_offset());
1169     }
1170 #if INCLUDE_JVMCI
1171     else if (EnableJVMCI) {
1172       non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset());
1173     }
1174 #endif // INCLUDE_JVMCI
1175 
1176     record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1177         &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset);
1178   }
1179 }
1180 
1181 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1182                                         Register reg2, int start_row, Label& done, int total_rows,
1183                                         OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn,
1184                                         int non_profiled_offset) {
1185   int last_row = total_rows - 1;
1186   assert(start_row <= last_row, "must be work left to do");
1187   // Test this row for both the item and for null.
1188   // Take any of three different outcomes:
1189   //   1. found item => increment count and goto done
1190   //   2. found null => keep looking for case 1, maybe allocate this cell
1191   //   3. found something else => keep looking for cases 1 and 2
1192   // Case 3 is handled by a recursive call.
1193   for (int row = start_row; row <= last_row; row++) {
1194     Label next_test;
1195     bool test_for_null_also = (row == start_row);
1196 
1197     // See if the item is item[n].
1198     int item_offset = in_bytes(item_offset_fn(row));
1199     test_mdp_data_at(mdp, item_offset, item,
1200                      (test_for_null_also ? reg2 : noreg),
1201                      next_test);
1202     // (Reg2 now contains the item from the CallData.)
1203 
1204     // The item is item[n].  Increment count[n].
1205     int count_offset = in_bytes(item_count_offset_fn(row));
1206     increment_mdp_data_at(mdp, count_offset);
1207     b(done);
1208     bind(next_test);
1209 
1210     if (test_for_null_also) {
1211       Label found_null;
1212       // Failed the equality check on item[n]...  Test for null.
1213       if (start_row == last_row) {
1214         // The only thing left to do is handle the null case.
1215         if (non_profiled_offset >= 0) {
1216           cbz(reg2, found_null);
1217           // Item did not match any saved item and there is no empty row for it.
1218           // Increment total counter to indicate polymorphic case.
1219           increment_mdp_data_at(mdp, non_profiled_offset);
1220           b(done);
1221           bind(found_null);
1222         } else {
1223           cbnz(reg2, done);
1224         }
1225         break;
1226       }
1227       // Since null is rare, make it be the branch-taken case.
1228       cbz(reg2, found_null);
1229 
1230       // Put all the "Case 3" tests here.
1231       record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1232         item_offset_fn, item_count_offset_fn, non_profiled_offset);
1233 
1234       // Found a null.  Keep searching for a matching item,
1235       // but remember that this is an empty (unused) slot.
1236       bind(found_null);
1237     }
1238   }
1239 
1240   // In the fall-through case, we found no matching item, but we
1241   // observed the item[start_row] is NULL.
1242 
1243   // Fill in the item field and increment the count.
1244   int item_offset = in_bytes(item_offset_fn(start_row));
1245   set_mdp_data_at(mdp, item_offset, item);
1246   int count_offset = in_bytes(item_count_offset_fn(start_row));
1247   mov(reg2, DataLayout::counter_increment);
1248   set_mdp_data_at(mdp, count_offset, reg2);
1249   if (start_row > 0) {
1250     b(done);
1251   }
1252 }
1253 
1254 // Example state machine code for three profile rows:
1255 //   // main copy of decision tree, rooted at row[1]
1256 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1257 //   if (row[0].rec != NULL) {
1258 //     // inner copy of decision tree, rooted at row[1]
1259 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1260 //     if (row[1].rec != NULL) {
1261 //       // degenerate decision tree, rooted at row[2]
1262 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1263 //       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
1264 //       row[2].init(rec); goto done;
1265 //     } else {
1266 //       // remember row[1] is empty
1267 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1268 //       row[1].init(rec); goto done;
1269 //     }
1270 //   } else {
1271 //     // remember row[0] is empty
1272 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1273 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1274 //     row[0].init(rec); goto done;
1275 //   }
1276 //   done:
1277 
1278 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1279                                                         Register mdp, Register reg2,
1280                                                         bool is_virtual_call) {
1281   assert(ProfileInterpreter, "must be profiling");
1282   Label done;
1283 
1284   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1285 
1286   bind (done);
1287 }
1288 
1289 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1290                                             Register mdp) {
1291   if (ProfileInterpreter) {
1292     Label profile_continue;
1293     uint row;
1294 
1295     // If no method data exists, go to profile_continue.
1296     test_method_data_pointer(mdp, profile_continue);
1297 
1298     // Update the total ret count.
1299     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1300 
1301     for (row = 0; row < RetData::row_limit(); row++) {
1302       Label next_test;
1303 
1304       // See if return_bci is equal to bci[n]:
1305       test_mdp_data_at(mdp,
1306                        in_bytes(RetData::bci_offset(row)),
1307                        return_bci, noreg,
1308                        next_test);
1309 
1310       // return_bci is equal to bci[n].  Increment the count.
1311       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1312 
1313       // The method data pointer needs to be updated to reflect the new target.
1314       update_mdp_by_offset(mdp,
1315                            in_bytes(RetData::bci_displacement_offset(row)));
1316       b(profile_continue);
1317       bind(next_test);
1318     }
1319 
1320     update_mdp_for_ret(return_bci);
1321 
1322     bind(profile_continue);
1323   }
1324 }
1325 
1326 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1327   if (ProfileInterpreter) {
1328     Label profile_continue;
1329 
1330     // If no method data exists, go to profile_continue.
1331     test_method_data_pointer(mdp, profile_continue);
1332 
1333     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1334 
1335     // The method data pointer needs to be updated.
1336     int mdp_delta = in_bytes(BitData::bit_data_size());
1337     if (TypeProfileCasts) {
1338       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1339     }
1340     update_mdp_by_constant(mdp, mdp_delta);
1341 
1342     bind(profile_continue);
1343   }
1344 }
1345 
1346 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1347   if (ProfileInterpreter && TypeProfileCasts) {
1348     Label profile_continue;
1349 
1350     // If no method data exists, go to profile_continue.
1351     test_method_data_pointer(mdp, profile_continue);
1352 
1353     int count_offset = in_bytes(CounterData::count_offset());
1354     // Back up the address, since we have already bumped the mdp.
1355     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1356 
1357     // *Decrement* the counter.  We expect to see zero or small negatives.
1358     increment_mdp_data_at(mdp, count_offset, true);
1359 
1360     bind (profile_continue);
1361   }
1362 }
1363 
1364 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1365   if (ProfileInterpreter) {
1366     Label profile_continue;
1367 
1368     // If no method data exists, go to profile_continue.
1369     test_method_data_pointer(mdp, profile_continue);
1370 
1371     // The method data pointer needs to be updated.
1372     int mdp_delta = in_bytes(BitData::bit_data_size());
1373     if (TypeProfileCasts) {
1374       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1375 
1376       // Record the object type.
1377       record_klass_in_profile(klass, mdp, reg2, false);
1378     }
1379     update_mdp_by_constant(mdp, mdp_delta);
1380 
1381     bind(profile_continue);
1382   }
1383 }
1384 
1385 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1386   if (ProfileInterpreter) {
1387     Label profile_continue;
1388 
1389     // If no method data exists, go to profile_continue.
1390     test_method_data_pointer(mdp, profile_continue);
1391 
1392     // Update the default case count
1393     increment_mdp_data_at(mdp,
1394                           in_bytes(MultiBranchData::default_count_offset()));
1395 
1396     // The method data pointer needs to be updated.
1397     update_mdp_by_offset(mdp,
1398                          in_bytes(MultiBranchData::
1399                                   default_displacement_offset()));
1400 
1401     bind(profile_continue);
1402   }
1403 }
1404 
1405 void InterpreterMacroAssembler::profile_switch_case(Register index,
1406                                                     Register mdp,
1407                                                     Register reg2) {
1408   if (ProfileInterpreter) {
1409     Label profile_continue;
1410 
1411     // If no method data exists, go to profile_continue.
1412     test_method_data_pointer(mdp, profile_continue);
1413 
1414     // Build the base (index * per_case_size_in_bytes()) +
1415     // case_array_offset_in_bytes()
1416     movw(reg2, in_bytes(MultiBranchData::per_case_size()));
1417     movw(rscratch1, in_bytes(MultiBranchData::case_array_offset()));
1418     Assembler::maddw(index, index, reg2, rscratch1);
1419 
1420     // Update the case count
1421     increment_mdp_data_at(mdp,
1422                           index,
1423                           in_bytes(MultiBranchData::relative_count_offset()));
1424 
1425     // The method data pointer needs to be updated.
1426     update_mdp_by_offset(mdp,
1427                          index,
1428                          in_bytes(MultiBranchData::
1429                                   relative_displacement_offset()));
1430 
1431     bind(profile_continue);
1432   }
1433 }
1434 
1435 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1436   if (state == atos) {
1437     MacroAssembler::verify_oop(reg);
1438   }
1439 }
1440 
1441 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; }
1442 
1443 
1444 void InterpreterMacroAssembler::notify_method_entry() {
1445   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1446   // track stack depth.  If it is possible to enter interp_only_mode we add
1447   // the code to check if the event should be sent.
1448   if (JvmtiExport::can_post_interpreter_events()) {
1449     Label L;
1450     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1451     cbzw(r3, L);
1452     call_VM(noreg, CAST_FROM_FN_PTR(address,
1453                                     InterpreterRuntime::post_method_entry));
1454     bind(L);
1455   }
1456 
1457   {
1458     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1459     get_method(c_rarg1);
1460     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1461                  rthread, c_rarg1);
1462   }
1463 
1464   // RedefineClasses() tracing support for obsolete method entry
1465   if (log_is_enabled(Trace, redefine, class, obsolete)) {
1466     get_method(c_rarg1);
1467     call_VM_leaf(
1468       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1469       rthread, c_rarg1);
1470   }
1471 
1472  }
1473 
1474 
1475 void InterpreterMacroAssembler::notify_method_exit(
1476     TosState state, NotifyMethodExitMode mode) {
1477   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1478   // track stack depth.  If it is possible to enter interp_only_mode we add
1479   // the code to check if the event should be sent.
1480   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1481     Label L;
1482     // Note: frame::interpreter_frame_result has a dependency on how the
1483     // method result is saved across the call to post_method_exit. If this
1484     // is changed then the interpreter_frame_result implementation will
1485     // need to be updated too.
1486 
1487     // template interpreter will leave the result on the top of the stack.
1488     push(state);
1489     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1490     cbz(r3, L);
1491     call_VM(noreg,
1492             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1493     bind(L);
1494     pop(state);
1495   }
1496 
1497   {
1498     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1499     push(state);
1500     get_method(c_rarg1);
1501     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1502                  rthread, c_rarg1);
1503     pop(state);
1504   }
1505 }
1506 
1507 
1508 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1509 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1510                                                         int increment, Address mask,
1511                                                         Register scratch, Register scratch2,
1512                                                         bool preloaded, Condition cond,
1513                                                         Label* where) {
1514   if (!preloaded) {
1515     ldrw(scratch, counter_addr);
1516   }
1517   add(scratch, scratch, increment);
1518   strw(scratch, counter_addr);
1519   ldrw(scratch2, mask);
1520   ands(scratch, scratch, scratch2);
1521   br(cond, *where);
1522 }
1523 
1524 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
1525                                                   int number_of_arguments) {
1526   // interpreter specific
1527   //
1528   // Note: No need to save/restore rbcp & rlocals pointer since these
1529   //       are callee saved registers and no blocking/ GC can happen
1530   //       in leaf calls.
1531 #ifdef ASSERT
1532   {
1533     Label L;
1534     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1535     cbz(rscratch1, L);
1536     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1537          " last_sp != NULL");
1538     bind(L);
1539   }
1540 #endif /* ASSERT */
1541   // super call
1542   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
1543 }
1544 
1545 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
1546                                              Register java_thread,
1547                                              Register last_java_sp,
1548                                              address  entry_point,
1549                                              int      number_of_arguments,
1550                                              bool     check_exceptions) {
1551   // interpreter specific
1552   //
1553   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
1554   //       really make a difference for these runtime calls, since they are
1555   //       slow anyway. Btw., bcp must be saved/restored since it may change
1556   //       due to GC.
1557   // assert(java_thread == noreg , "not expecting a precomputed java thread");
1558   save_bcp();
1559 #ifdef ASSERT
1560   {
1561     Label L;
1562     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1563     cbz(rscratch1, L);
1564     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1565          " last_sp != NULL");
1566     bind(L);
1567   }
1568 #endif /* ASSERT */
1569   // super call
1570   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
1571                                entry_point, number_of_arguments,
1572                      check_exceptions);
1573 // interpreter specific
1574   restore_bcp();
1575   restore_locals();
1576 }
1577 
1578 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
1579   Label update, next, none;
1580 
1581   verify_oop(obj);
1582 
1583   cbnz(obj, update);
1584   orptr(mdo_addr, TypeEntries::null_seen);
1585   b(next);
1586 
1587   bind(update);
1588   load_klass(obj, obj);
1589 
1590   ldr(rscratch1, mdo_addr);
1591   eor(obj, obj, rscratch1);
1592   tst(obj, TypeEntries::type_klass_mask);
1593   br(Assembler::EQ, next); // klass seen before, nothing to
1594                            // do. The unknown bit may have been
1595                            // set already but no need to check.
1596 
1597   tbnz(obj, exact_log2(TypeEntries::type_unknown), next);
1598   // already unknown. Nothing to do anymore.
1599 
1600   ldr(rscratch1, mdo_addr);
1601   cbz(rscratch1, none);
1602   cmp(rscratch1, TypeEntries::null_seen);
1603   br(Assembler::EQ, none);
1604   // There is a chance that the checks above (re-reading profiling
1605   // data from memory) fail if another thread has just set the
1606   // profiling to this obj's klass
1607   ldr(rscratch1, mdo_addr);
1608   eor(obj, obj, rscratch1);
1609   tst(obj, TypeEntries::type_klass_mask);
1610   br(Assembler::EQ, next);
1611 
1612   // different than before. Cannot keep accurate profile.
1613   orptr(mdo_addr, TypeEntries::type_unknown);
1614   b(next);
1615 
1616   bind(none);
1617   // first time here. Set profile type.
1618   str(obj, mdo_addr);
1619 
1620   bind(next);
1621 }
1622 
1623 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1624   if (!ProfileInterpreter) {
1625     return;
1626   }
1627 
1628   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1629     Label profile_continue;
1630 
1631     test_method_data_pointer(mdp, profile_continue);
1632 
1633     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1634 
1635     ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start));
1636     cmp(rscratch1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
1637     br(Assembler::NE, profile_continue);
1638 
1639     if (MethodData::profile_arguments()) {
1640       Label done;
1641       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1642 
1643       for (int i = 0; i < TypeProfileArgsLimit; i++) {
1644         if (i > 0 || MethodData::profile_return()) {
1645           // If return value type is profiled we may have no argument to profile
1646           ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1647           sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count());
1648           cmp(tmp, TypeStackSlotEntries::per_arg_count());
1649           add(rscratch1, mdp, off_to_args);
1650           br(Assembler::LT, done);
1651         }
1652         ldr(tmp, Address(callee, Method::const_offset()));
1653         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1654         // stack offset o (zero based) from the start of the argument
1655         // list, for n arguments translates into offset n - o - 1 from
1656         // the end of the argument list
1657         ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))));
1658         sub(tmp, tmp, rscratch1);
1659         sub(tmp, tmp, 1);
1660         Address arg_addr = argument_address(tmp);
1661         ldr(tmp, arg_addr);
1662 
1663         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i)));
1664         profile_obj_type(tmp, mdo_arg_addr);
1665 
1666         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1667         off_to_args += to_add;
1668       }
1669 
1670       if (MethodData::profile_return()) {
1671         ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1672         sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1673       }
1674 
1675       add(rscratch1, mdp, off_to_args);
1676       bind(done);
1677       mov(mdp, rscratch1);
1678 
1679       if (MethodData::profile_return()) {
1680         // We're right after the type profile for the last
1681         // argument. tmp is the number of cells left in the
1682         // CallTypeData/VirtualCallTypeData to reach its end. Non null
1683         // if there's a return to profile.
1684         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1685         add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size));
1686       }
1687       str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1688     } else {
1689       assert(MethodData::profile_return(), "either profile call args or call ret");
1690       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1691     }
1692 
1693     // mdp points right after the end of the
1694     // CallTypeData/VirtualCallTypeData, right after the cells for the
1695     // return value type if there's one
1696 
1697     bind(profile_continue);
1698   }
1699 }
1700 
1701 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1702   assert_different_registers(mdp, ret, tmp, rbcp);
1703   if (ProfileInterpreter && MethodData::profile_return()) {
1704     Label profile_continue, done;
1705 
1706     test_method_data_pointer(mdp, profile_continue);
1707 
1708     if (MethodData::profile_return_jsr292_only()) {
1709       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
1710 
1711       // If we don't profile all invoke bytecodes we must make sure
1712       // it's a bytecode we indeed profile. We can't go back to the
1713       // begining of the ProfileData we intend to update to check its
1714       // type because we're right after it and we don't known its
1715       // length
1716       Label do_profile;
1717       ldrb(rscratch1, Address(rbcp, 0));
1718       cmp(rscratch1, Bytecodes::_invokedynamic);
1719       br(Assembler::EQ, do_profile);
1720       cmp(rscratch1, Bytecodes::_invokehandle);
1721       br(Assembler::EQ, do_profile);
1722       get_method(tmp);
1723       ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset_in_bytes()));
1724       cmp(rscratch1, vmIntrinsics::_compiledLambdaForm);
1725       br(Assembler::NE, profile_continue);
1726 
1727       bind(do_profile);
1728     }
1729 
1730     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
1731     mov(tmp, ret);
1732     profile_obj_type(tmp, mdo_ret_addr);
1733 
1734     bind(profile_continue);
1735   }
1736 }
1737 
1738 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1739   if (ProfileInterpreter && MethodData::profile_parameters()) {
1740     Label profile_continue, done;
1741 
1742     test_method_data_pointer(mdp, profile_continue);
1743 
1744     // Load the offset of the area within the MDO used for
1745     // parameters. If it's negative we're not profiling any parameters
1746     ldr(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
1747     cmp(tmp1, 0u);
1748     br(Assembler::LT, profile_continue);
1749 
1750     // Compute a pointer to the area for parameters from the offset
1751     // and move the pointer to the slot for the last
1752     // parameters. Collect profiling from last parameter down.
1753     // mdo start + parameters offset + array length - 1
1754     add(mdp, mdp, tmp1);
1755     ldr(tmp1, Address(mdp, ArrayData::array_len_offset()));
1756     sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1757 
1758     Label loop;
1759     bind(loop);
1760 
1761     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1762     int type_base = in_bytes(ParametersTypeData::type_offset(0));
1763     int per_arg_scale = exact_log2(DataLayout::cell_size);
1764     add(rscratch1, mdp, off_base);
1765     add(rscratch2, mdp, type_base);
1766 
1767     Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale));
1768     Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale));
1769 
1770     // load offset on the stack from the slot for this parameter
1771     ldr(tmp2, arg_off);
1772     neg(tmp2, tmp2);
1773     // read the parameter from the local area
1774     ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize)));
1775 
1776     // profile the parameter
1777     profile_obj_type(tmp2, arg_type);
1778 
1779     // go to next parameter
1780     subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1781     br(Assembler::GE, loop);
1782 
1783     bind(profile_continue);
1784   }
1785 }