1 /*
   2  * Copyright (c) 2003, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2016 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 
  27 #include "precompiled.hpp"
  28 #include "asm/macroAssembler.inline.hpp"
  29 #include "interp_masm_ppc.hpp"
  30 #include "interpreter/interpreterRuntime.hpp"
  31 #include "prims/jvmtiThreadState.hpp"
  32 #include "runtime/sharedRuntime.hpp"
  33 
  34 #ifdef PRODUCT
  35 #define BLOCK_COMMENT(str) // nothing
  36 #else
  37 #define BLOCK_COMMENT(str) block_comment(str)
  38 #endif
  39 
  40 void InterpreterMacroAssembler::null_check_throw(Register a, int offset, Register temp_reg) {
  41   address exception_entry = Interpreter::throw_NullPointerException_entry();
  42   MacroAssembler::null_check_throw(a, offset, temp_reg, exception_entry);
  43 }
  44 
  45 void InterpreterMacroAssembler::jump_to_entry(address entry, Register Rscratch) {
  46   assert(entry, "Entry must have been generated by now");
  47   if (is_within_range_of_b(entry, pc())) {
  48     b(entry);
  49   } else {
  50     load_const_optimized(Rscratch, entry, R0);
  51     mtctr(Rscratch);
  52     bctr();
  53   }
  54 }
  55 
  56 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
  57   Register bytecode = R12_scratch2;
  58   if (bcp_incr != 0) {
  59     lbzu(bytecode, bcp_incr, R14_bcp);
  60   } else {
  61     lbz(bytecode, 0, R14_bcp);
  62   }
  63 
  64   dispatch_Lbyte_code(state, bytecode, Interpreter::dispatch_table(state));
  65 }
  66 
  67 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
  68   // Load current bytecode.
  69   Register bytecode = R12_scratch2;
  70   lbz(bytecode, 0, R14_bcp);
  71   dispatch_Lbyte_code(state, bytecode, table);
  72 }
  73 
  74 // Dispatch code executed in the prolog of a bytecode which does not do it's
  75 // own dispatch. The dispatch address is computed and placed in R24_dispatch_addr.
  76 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
  77   Register bytecode = R12_scratch2;
  78   lbz(bytecode, bcp_incr, R14_bcp);
  79 
  80   load_dispatch_table(R24_dispatch_addr, Interpreter::dispatch_table(state));
  81 
  82   sldi(bytecode, bytecode, LogBytesPerWord);
  83   ldx(R24_dispatch_addr, R24_dispatch_addr, bytecode);
  84 }
  85 
  86 // Dispatch code executed in the epilog of a bytecode which does not do it's
  87 // own dispatch. The dispatch address in R24_dispatch_addr is used for the
  88 // dispatch.
  89 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
  90   if (bcp_incr) { addi(R14_bcp, R14_bcp, bcp_incr); }
  91   mtctr(R24_dispatch_addr);
  92   bcctr(bcondAlways, 0, bhintbhBCCTRisNotPredictable);
  93 }
  94 
  95 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
  96   assert(scratch_reg != R0, "can't use R0 as scratch_reg here");
  97   if (JvmtiExport::can_pop_frame()) {
  98     Label L;
  99 
 100     // Check the "pending popframe condition" flag in the current thread.
 101     lwz(scratch_reg, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
 102 
 103     // Initiate popframe handling only if it is not already being
 104     // processed. If the flag has the popframe_processing bit set, it
 105     // means that this code is called *during* popframe handling - we
 106     // don't want to reenter.
 107     andi_(R0, scratch_reg, JavaThread::popframe_pending_bit);
 108     beq(CCR0, L);
 109 
 110     andi_(R0, scratch_reg, JavaThread::popframe_processing_bit);
 111     bne(CCR0, L);
 112 
 113     // Call the Interpreter::remove_activation_preserving_args_entry()
 114     // func to get the address of the same-named entrypoint in the
 115     // generated interpreter code.
 116 #if defined(ABI_ELFv2)
 117     call_c(CAST_FROM_FN_PTR(address,
 118                             Interpreter::remove_activation_preserving_args_entry),
 119            relocInfo::none);
 120 #else
 121     call_c(CAST_FROM_FN_PTR(FunctionDescriptor*,
 122                             Interpreter::remove_activation_preserving_args_entry),
 123            relocInfo::none);
 124 #endif
 125 
 126     // Jump to Interpreter::_remove_activation_preserving_args_entry.
 127     mtctr(R3_RET);
 128     bctr();
 129 
 130     align(32, 12);
 131     bind(L);
 132   }
 133 }
 134 
 135 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
 136   const Register Rthr_state_addr = scratch_reg;
 137   if (JvmtiExport::can_force_early_return()) {
 138     Label Lno_early_ret;
 139     ld(Rthr_state_addr, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
 140     cmpdi(CCR0, Rthr_state_addr, 0);
 141     beq(CCR0, Lno_early_ret);
 142 
 143     lwz(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rthr_state_addr);
 144     cmpwi(CCR0, R0, JvmtiThreadState::earlyret_pending);
 145     bne(CCR0, Lno_early_ret);
 146 
 147     // Jump to Interpreter::_earlyret_entry.
 148     lwz(R3_ARG1, in_bytes(JvmtiThreadState::earlyret_tos_offset()), Rthr_state_addr);
 149     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry));
 150     mtlr(R3_RET);
 151     blr();
 152 
 153     align(32, 12);
 154     bind(Lno_early_ret);
 155   }
 156 }
 157 
 158 void InterpreterMacroAssembler::load_earlyret_value(TosState state, Register Rscratch1) {
 159   const Register RjvmtiState = Rscratch1;
 160   const Register Rscratch2   = R0;
 161 
 162   ld(RjvmtiState, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
 163   li(Rscratch2, 0);
 164 
 165   switch (state) {
 166     case atos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState);
 167                std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState);
 168                break;
 169     case ltos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
 170                break;
 171     case btos: // fall through
 172     case ztos: // fall through
 173     case ctos: // fall through
 174     case stos: // fall through
 175     case itos: lwz(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
 176                break;
 177     case ftos: lfs(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
 178                break;
 179     case dtos: lfd(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
 180                break;
 181     case vtos: break;
 182     default  : ShouldNotReachHere();
 183   }
 184 
 185   // Clean up tos value in the jvmti thread state.
 186   std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
 187   // Set tos state field to illegal value.
 188   li(Rscratch2, ilgl);
 189   stw(Rscratch2, in_bytes(JvmtiThreadState::earlyret_tos_offset()), RjvmtiState);
 190 }
 191 
 192 // Common code to dispatch and dispatch_only.
 193 // Dispatch value in Lbyte_code and increment Lbcp.
 194 
 195 void InterpreterMacroAssembler::load_dispatch_table(Register dst, address* table) {
 196   address table_base = (address)Interpreter::dispatch_table((TosState)0);
 197   intptr_t table_offs = (intptr_t)table - (intptr_t)table_base;
 198   if (is_simm16(table_offs)) {
 199     addi(dst, R25_templateTableBase, (int)table_offs);
 200   } else {
 201     load_const_optimized(dst, table, R0);
 202   }
 203 }
 204 
 205 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, Register bytecode,
 206                                                     address* table, bool verify) {
 207   if (verify) {
 208     unimplemented("dispatch_Lbyte_code: verify"); // See Sparc Implementation to implement this
 209   }
 210 
 211   assert_different_registers(bytecode, R11_scratch1);
 212 
 213   // Calc dispatch table address.
 214   load_dispatch_table(R11_scratch1, table);
 215 
 216   sldi(R12_scratch2, bytecode, LogBytesPerWord);
 217   ldx(R11_scratch1, R11_scratch1, R12_scratch2);
 218 
 219   // Jump off!
 220   mtctr(R11_scratch1);
 221   bcctr(bcondAlways, 0, bhintbhBCCTRisNotPredictable);
 222 }
 223 
 224 void InterpreterMacroAssembler::load_receiver(Register Rparam_count, Register Rrecv_dst) {
 225   sldi(Rrecv_dst, Rparam_count, Interpreter::logStackElementSize);
 226   ldx(Rrecv_dst, Rrecv_dst, R15_esp);
 227 }
 228 
 229 // helpers for expression stack
 230 
 231 void InterpreterMacroAssembler::pop_i(Register r) {
 232   lwzu(r, Interpreter::stackElementSize, R15_esp);
 233 }
 234 
 235 void InterpreterMacroAssembler::pop_ptr(Register r) {
 236   ldu(r, Interpreter::stackElementSize, R15_esp);
 237 }
 238 
 239 void InterpreterMacroAssembler::pop_l(Register r) {
 240   ld(r, Interpreter::stackElementSize, R15_esp);
 241   addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize);
 242 }
 243 
 244 void InterpreterMacroAssembler::pop_f(FloatRegister f) {
 245   lfsu(f, Interpreter::stackElementSize, R15_esp);
 246 }
 247 
 248 void InterpreterMacroAssembler::pop_d(FloatRegister f) {
 249   lfd(f, Interpreter::stackElementSize, R15_esp);
 250   addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize);
 251 }
 252 
 253 void InterpreterMacroAssembler::push_i(Register r) {
 254   stw(r, 0, R15_esp);
 255   addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
 256 }
 257 
 258 void InterpreterMacroAssembler::push_ptr(Register r) {
 259   std(r, 0, R15_esp);
 260   addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
 261 }
 262 
 263 void InterpreterMacroAssembler::push_l(Register r) {
 264   // Clear unused slot.
 265   load_const_optimized(R0, 0L);
 266   std(R0, 0, R15_esp);
 267   std(r, - Interpreter::stackElementSize, R15_esp);
 268   addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
 269 }
 270 
 271 void InterpreterMacroAssembler::push_f(FloatRegister f) {
 272   stfs(f, 0, R15_esp);
 273   addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
 274 }
 275 
 276 void InterpreterMacroAssembler::push_d(FloatRegister f)   {
 277   stfd(f, - Interpreter::stackElementSize, R15_esp);
 278   addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
 279 }
 280 
 281 void InterpreterMacroAssembler::push_2ptrs(Register first, Register second) {
 282   std(first, 0, R15_esp);
 283   std(second, -Interpreter::stackElementSize, R15_esp);
 284   addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
 285 }
 286 
 287 void InterpreterMacroAssembler::push_l_pop_d(Register l, FloatRegister d) {
 288   std(l, 0, R15_esp);
 289   lfd(d, 0, R15_esp);
 290 }
 291 
 292 void InterpreterMacroAssembler::push_d_pop_l(FloatRegister d, Register l) {
 293   stfd(d, 0, R15_esp);
 294   ld(l, 0, R15_esp);
 295 }
 296 
 297 void InterpreterMacroAssembler::push(TosState state) {
 298   switch (state) {
 299     case atos: push_ptr();                break;
 300     case btos:
 301     case ztos:
 302     case ctos:
 303     case stos:
 304     case itos: push_i();                  break;
 305     case ltos: push_l();                  break;
 306     case ftos: push_f();                  break;
 307     case dtos: push_d();                  break;
 308     case vtos: /* nothing to do */        break;
 309     default  : ShouldNotReachHere();
 310   }
 311 }
 312 
 313 void InterpreterMacroAssembler::pop(TosState state) {
 314   switch (state) {
 315     case atos: pop_ptr();            break;
 316     case btos:
 317     case ztos:
 318     case ctos:
 319     case stos:
 320     case itos: pop_i();              break;
 321     case ltos: pop_l();              break;
 322     case ftos: pop_f();              break;
 323     case dtos: pop_d();              break;
 324     case vtos: /* nothing to do */   break;
 325     default  : ShouldNotReachHere();
 326   }
 327   verify_oop(R17_tos, state);
 328 }
 329 
 330 void InterpreterMacroAssembler::empty_expression_stack() {
 331   addi(R15_esp, R26_monitor, - Interpreter::stackElementSize);
 332 }
 333 
 334 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(int         bcp_offset,
 335                                                           Register    Rdst,
 336                                                           signedOrNot is_signed) {
 337 #if defined(VM_LITTLE_ENDIAN)
 338   if (bcp_offset) {
 339     load_const_optimized(Rdst, bcp_offset);
 340     lhbrx(Rdst, R14_bcp, Rdst);
 341   } else {
 342     lhbrx(Rdst, R14_bcp);
 343   }
 344   if (is_signed == Signed) {
 345     extsh(Rdst, Rdst);
 346   }
 347 #else
 348   // Read Java big endian format.
 349   if (is_signed == Signed) {
 350     lha(Rdst, bcp_offset, R14_bcp);
 351   } else {
 352     lhz(Rdst, bcp_offset, R14_bcp);
 353   }
 354 #endif
 355 }
 356 
 357 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(int         bcp_offset,
 358                                                           Register    Rdst,
 359                                                           signedOrNot is_signed) {
 360 #if defined(VM_LITTLE_ENDIAN)
 361   if (bcp_offset) {
 362     load_const_optimized(Rdst, bcp_offset);
 363     lwbrx(Rdst, R14_bcp, Rdst);
 364   } else {
 365     lwbrx(Rdst, R14_bcp);
 366   }
 367   if (is_signed == Signed) {
 368     extsw(Rdst, Rdst);
 369   }
 370 #else
 371   // Read Java big endian format.
 372   if (bcp_offset & 3) { // Offset unaligned?
 373     load_const_optimized(Rdst, bcp_offset);
 374     if (is_signed == Signed) {
 375       lwax(Rdst, R14_bcp, Rdst);
 376     } else {
 377       lwzx(Rdst, R14_bcp, Rdst);
 378     }
 379   } else {
 380     if (is_signed == Signed) {
 381       lwa(Rdst, bcp_offset, R14_bcp);
 382     } else {
 383       lwz(Rdst, bcp_offset, R14_bcp);
 384     }
 385   }
 386 #endif
 387 }
 388 
 389 
 390 // Load the constant pool cache index from the bytecode stream.
 391 //
 392 // Kills / writes:
 393 //   - Rdst, Rscratch
 394 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register Rdst, int bcp_offset,
 395                                                        size_t index_size) {
 396   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 397   // Cache index is always in the native format, courtesy of Rewriter.
 398   if (index_size == sizeof(u2)) {
 399     lhz(Rdst, bcp_offset, R14_bcp);
 400   } else if (index_size == sizeof(u4)) {
 401     if (bcp_offset & 3) {
 402       load_const_optimized(Rdst, bcp_offset);
 403       lwax(Rdst, R14_bcp, Rdst);
 404     } else {
 405       lwa(Rdst, bcp_offset, R14_bcp);
 406     }
 407     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 408     nand(Rdst, Rdst, Rdst); // convert to plain index
 409   } else if (index_size == sizeof(u1)) {
 410     lbz(Rdst, bcp_offset, R14_bcp);
 411   } else {
 412     ShouldNotReachHere();
 413   }
 414   // Rdst now contains cp cache index.
 415 }
 416 
 417 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, int bcp_offset,
 418                                                            size_t index_size) {
 419   get_cache_index_at_bcp(cache, bcp_offset, index_size);
 420   sldi(cache, cache, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord));
 421   add(cache, R27_constPoolCache, cache);
 422 }
 423 
 424 // Load 4-byte signed or unsigned integer in Java format (that is, big-endian format)
 425 // from (Rsrc)+offset.
 426 void InterpreterMacroAssembler::get_u4(Register Rdst, Register Rsrc, int offset,
 427                                        signedOrNot is_signed) {
 428 #if defined(VM_LITTLE_ENDIAN)
 429   if (offset) {
 430     load_const_optimized(Rdst, offset);
 431     lwbrx(Rdst, Rdst, Rsrc);
 432   } else {
 433     lwbrx(Rdst, Rsrc);
 434   }
 435   if (is_signed == Signed) {
 436     extsw(Rdst, Rdst);
 437   }
 438 #else
 439   if (is_signed == Signed) {
 440     lwa(Rdst, offset, Rsrc);
 441   } else {
 442     lwz(Rdst, offset, Rsrc);
 443   }
 444 #endif
 445 }
 446 
 447 // Load object from cpool->resolved_references(index).
 448 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index, Label *is_null) {
 449   assert_different_registers(result, index);
 450   get_constant_pool(result);
 451 
 452   // Convert from field index to resolved_references() index and from
 453   // word index to byte offset. Since this is a java object, it can be compressed.
 454   Register tmp = index;  // reuse
 455   sldi(tmp, index, LogBytesPerHeapOop);
 456   // Load pointer for resolved_references[] objArray.
 457   ld(result, ConstantPool::resolved_references_offset_in_bytes(), result);
 458   // JNIHandles::resolve(result)
 459   ld(result, 0, result);
 460 #ifdef ASSERT
 461   Label index_ok;
 462   lwa(R0, arrayOopDesc::length_offset_in_bytes(), result);
 463   sldi(R0, R0, LogBytesPerHeapOop);
 464   cmpd(CCR0, tmp, R0);
 465   blt(CCR0, index_ok);
 466   stop("resolved reference index out of bounds", 0x09256);
 467   bind(index_ok);
 468 #endif
 469   // Add in the index.
 470   add(result, tmp, result);
 471   load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result, is_null);
 472 }
 473 
 474 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
 475 // a subtype of super_klass. Blows registers Rsub_klass, tmp1, tmp2.
 476 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, Register Rsuper_klass, Register Rtmp1,
 477                                                   Register Rtmp2, Register Rtmp3, Label &ok_is_subtype) {
 478   // Profile the not-null value's klass.
 479   profile_typecheck(Rsub_klass, Rtmp1, Rtmp2);
 480   check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype);
 481   profile_typecheck_failed(Rtmp1, Rtmp2);
 482 }
 483 
 484 // Separate these two to allow for delay slot in middle.
 485 // These are used to do a test and full jump to exception-throwing code.
 486 
 487 // Check that index is in range for array, then shift index by index_shift,
 488 // and put arrayOop + shifted_index into res.
 489 // Note: res is still shy of address by array offset into object.
 490 
 491 void InterpreterMacroAssembler::index_check_without_pop(Register Rarray, Register Rindex,
 492                                                         int index_shift, Register Rtmp, Register Rres) {
 493   // Check that index is in range for array, then shift index by index_shift,
 494   // and put arrayOop + shifted_index into res.
 495   // Note: res is still shy of address by array offset into object.
 496   // Kills:
 497   //   - Rindex
 498   // Writes:
 499   //   - Rres: Address that corresponds to the array index if check was successful.
 500   verify_oop(Rarray);
 501   const Register Rlength   = R0;
 502   const Register RsxtIndex = Rtmp;
 503   Label LisNull, LnotOOR;
 504 
 505   // Array nullcheck
 506   if (!ImplicitNullChecks) {
 507     cmpdi(CCR0, Rarray, 0);
 508     beq(CCR0, LisNull);
 509   } else {
 510     null_check_throw(Rarray, arrayOopDesc::length_offset_in_bytes(), /*temp*/RsxtIndex);
 511   }
 512 
 513   // Rindex might contain garbage in upper bits (remember that we don't sign extend
 514   // during integer arithmetic operations). So kill them and put value into same register
 515   // where ArrayIndexOutOfBounds would expect the index in.
 516   rldicl(RsxtIndex, Rindex, 0, 32); // zero extend 32 bit -> 64 bit
 517 
 518   // Index check
 519   lwz(Rlength, arrayOopDesc::length_offset_in_bytes(), Rarray);
 520   cmplw(CCR0, Rindex, Rlength);
 521   sldi(RsxtIndex, RsxtIndex, index_shift);
 522   blt(CCR0, LnotOOR);
 523   // Index should be in R17_tos, array should be in R4_ARG2.
 524   mr_if_needed(R17_tos, Rindex);
 525   mr_if_needed(R4_ARG2, Rarray);
 526   load_dispatch_table(Rtmp, (address*)Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
 527   mtctr(Rtmp);
 528   bctr();
 529 
 530   if (!ImplicitNullChecks) {
 531     bind(LisNull);
 532     load_dispatch_table(Rtmp, (address*)Interpreter::_throw_NullPointerException_entry);
 533     mtctr(Rtmp);
 534     bctr();
 535   }
 536 
 537   align(32, 16);
 538   bind(LnotOOR);
 539 
 540   // Calc address
 541   add(Rres, RsxtIndex, Rarray);
 542 }
 543 
 544 void InterpreterMacroAssembler::index_check(Register array, Register index,
 545                                             int index_shift, Register tmp, Register res) {
 546   // pop array
 547   pop_ptr(array);
 548 
 549   // check array
 550   index_check_without_pop(array, index, index_shift, tmp, res);
 551 }
 552 
 553 void InterpreterMacroAssembler::get_const(Register Rdst) {
 554   ld(Rdst, in_bytes(Method::const_offset()), R19_method);
 555 }
 556 
 557 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
 558   get_const(Rdst);
 559   ld(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst);
 560 }
 561 
 562 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
 563   get_constant_pool(Rdst);
 564   ld(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst);
 565 }
 566 
 567 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
 568   get_constant_pool(Rcpool);
 569   ld(Rtags, ConstantPool::tags_offset_in_bytes(), Rcpool);
 570 }
 571 
 572 // Unlock if synchronized method.
 573 //
 574 // Unlock the receiver if this is a synchronized method.
 575 // Unlock any Java monitors from synchronized blocks.
 576 //
 577 // If there are locked Java monitors
 578 //   If throw_monitor_exception
 579 //     throws IllegalMonitorStateException
 580 //   Else if install_monitor_exception
 581 //     installs IllegalMonitorStateException
 582 //   Else
 583 //     no error processing
 584 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
 585                                                               bool throw_monitor_exception,
 586                                                               bool install_monitor_exception) {
 587   Label Lunlocked, Lno_unlock;
 588   {
 589     Register Rdo_not_unlock_flag = R11_scratch1;
 590     Register Raccess_flags       = R12_scratch2;
 591 
 592     // Check if synchronized method or unlocking prevented by
 593     // JavaThread::do_not_unlock_if_synchronized flag.
 594     lbz(Rdo_not_unlock_flag, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
 595     lwz(Raccess_flags, in_bytes(Method::access_flags_offset()), R19_method);
 596     li(R0, 0);
 597     stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); // reset flag
 598 
 599     push(state);
 600 
 601     // Skip if we don't have to unlock.
 602     rldicl_(R0, Raccess_flags, 64-JVM_ACC_SYNCHRONIZED_BIT, 63); // Extract bit and compare to 0.
 603     beq(CCR0, Lunlocked);
 604 
 605     cmpwi(CCR0, Rdo_not_unlock_flag, 0);
 606     bne(CCR0, Lno_unlock);
 607   }
 608 
 609   // Unlock
 610   {
 611     Register Rmonitor_base = R11_scratch1;
 612 
 613     Label Lunlock;
 614     // If it's still locked, everything is ok, unlock it.
 615     ld(Rmonitor_base, 0, R1_SP);
 616     addi(Rmonitor_base, Rmonitor_base,
 617          -(frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base
 618 
 619     ld(R0, BasicObjectLock::obj_offset_in_bytes(), Rmonitor_base);
 620     cmpdi(CCR0, R0, 0);
 621     bne(CCR0, Lunlock);
 622 
 623     // If it's already unlocked, throw exception.
 624     if (throw_monitor_exception) {
 625       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
 626       should_not_reach_here();
 627     } else {
 628       if (install_monitor_exception) {
 629         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
 630         b(Lunlocked);
 631       }
 632     }
 633 
 634     bind(Lunlock);
 635     unlock_object(Rmonitor_base);
 636   }
 637 
 638   // Check that all other monitors are unlocked. Throw IllegelMonitorState exception if not.
 639   bind(Lunlocked);
 640   {
 641     Label Lexception, Lrestart;
 642     Register Rcurrent_obj_addr = R11_scratch1;
 643     const int delta = frame::interpreter_frame_monitor_size_in_bytes();
 644     assert((delta & LongAlignmentMask) == 0, "sizeof BasicObjectLock must be even number of doublewords");
 645 
 646     bind(Lrestart);
 647     // Set up search loop: Calc num of iterations.
 648     {
 649       Register Riterations = R12_scratch2;
 650       Register Rmonitor_base = Rcurrent_obj_addr;
 651       ld(Rmonitor_base, 0, R1_SP);
 652       addi(Rmonitor_base, Rmonitor_base, - frame::ijava_state_size);  // Monitor base
 653 
 654       subf_(Riterations, R26_monitor, Rmonitor_base);
 655       ble(CCR0, Lno_unlock);
 656 
 657       addi(Rcurrent_obj_addr, Rmonitor_base,
 658            BasicObjectLock::obj_offset_in_bytes() - frame::interpreter_frame_monitor_size_in_bytes());
 659       // Check if any monitor is on stack, bail out if not
 660       srdi(Riterations, Riterations, exact_log2(delta));
 661       mtctr(Riterations);
 662     }
 663 
 664     // The search loop: Look for locked monitors.
 665     {
 666       const Register Rcurrent_obj = R0;
 667       Label Lloop;
 668 
 669       ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
 670       addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta);
 671       bind(Lloop);
 672 
 673       // Check if current entry is used.
 674       cmpdi(CCR0, Rcurrent_obj, 0);
 675       bne(CCR0, Lexception);
 676       // Preload next iteration's compare value.
 677       ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
 678       addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta);
 679       bdnz(Lloop);
 680     }
 681     // Fell through: Everything's unlocked => finish.
 682     b(Lno_unlock);
 683 
 684     // An object is still locked => need to throw exception.
 685     bind(Lexception);
 686     if (throw_monitor_exception) {
 687       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
 688       should_not_reach_here();
 689     } else {
 690       // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
 691       // Unlock does not block, so don't have to worry about the frame.
 692       Register Rmonitor_addr = R11_scratch1;
 693       addi(Rmonitor_addr, Rcurrent_obj_addr, -BasicObjectLock::obj_offset_in_bytes() + delta);
 694       unlock_object(Rmonitor_addr);
 695       if (install_monitor_exception) {
 696         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
 697       }
 698       b(Lrestart);
 699     }
 700   }
 701 
 702   align(32, 12);
 703   bind(Lno_unlock);
 704   pop(state);
 705 }
 706 
 707 // Support function for remove_activation & Co.
 708 void InterpreterMacroAssembler::merge_frames(Register Rsender_sp, Register return_pc,
 709                                              Register Rscratch1, Register Rscratch2) {
 710   // Pop interpreter frame.
 711   ld(Rscratch1, 0, R1_SP); // *SP
 712   ld(Rsender_sp, _ijava_state_neg(sender_sp), Rscratch1); // top_frame_sp
 713   ld(Rscratch2, 0, Rscratch1); // **SP
 714 #ifdef ASSERT
 715   {
 716     Label Lok;
 717     ld(R0, _ijava_state_neg(ijava_reserved), Rscratch1);
 718     cmpdi(CCR0, R0, 0x5afe);
 719     beq(CCR0, Lok);
 720     stop("frame corrupted (remove activation)", 0x5afe);
 721     bind(Lok);
 722   }
 723 #endif
 724   if (return_pc!=noreg) {
 725     ld(return_pc, _abi(lr), Rscratch1); // LR
 726   }
 727 
 728   // Merge top frames.
 729   subf(Rscratch1, R1_SP, Rsender_sp); // top_frame_sp - SP
 730   stdux(Rscratch2, R1_SP, Rscratch1); // atomically set *(SP = top_frame_sp) = **SP
 731 }
 732 
 733 void InterpreterMacroAssembler::narrow(Register result) {
 734   Register ret_type = R11_scratch1;
 735   ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
 736   lbz(ret_type, in_bytes(ConstMethod::result_type_offset()), R11_scratch1);
 737 
 738   Label notBool, notByte, notChar, done;
 739 
 740   // common case first
 741   cmpwi(CCR0, ret_type, T_INT);
 742   beq(CCR0, done);
 743 
 744   cmpwi(CCR0, ret_type, T_BOOLEAN);
 745   bne(CCR0, notBool);
 746   andi(result, result, 0x1);
 747   b(done);
 748 
 749   bind(notBool);
 750   cmpwi(CCR0, ret_type, T_BYTE);
 751   bne(CCR0, notByte);
 752   extsb(result, result);
 753   b(done);
 754 
 755   bind(notByte);
 756   cmpwi(CCR0, ret_type, T_CHAR);
 757   bne(CCR0, notChar);
 758   andi(result, result, 0xffff);
 759   b(done);
 760 
 761   bind(notChar);
 762   // cmpwi(CCR0, ret_type, T_SHORT);  // all that's left
 763   // bne(CCR0, done);
 764   extsh(result, result);
 765 
 766   // Nothing to do for T_INT
 767   bind(done);
 768 }
 769 
 770 // Remove activation.
 771 //
 772 // Unlock the receiver if this is a synchronized method.
 773 // Unlock any Java monitors from synchronized blocks.
 774 // Remove the activation from the stack.
 775 //
 776 // If there are locked Java monitors
 777 //    If throw_monitor_exception
 778 //       throws IllegalMonitorStateException
 779 //    Else if install_monitor_exception
 780 //       installs IllegalMonitorStateException
 781 //    Else
 782 //       no error processing
 783 void InterpreterMacroAssembler::remove_activation(TosState state,
 784                                                   bool throw_monitor_exception,
 785                                                   bool install_monitor_exception) {
 786   BLOCK_COMMENT("remove_activation {");
 787   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
 788 
 789   // Save result (push state before jvmti call and pop it afterwards) and notify jvmti.
 790   notify_method_exit(false, state, NotifyJVMTI, true);
 791 
 792   BLOCK_COMMENT("reserved_stack_check:");
 793   if (StackReservedPages > 0) {
 794     // Test if reserved zone needs to be enabled.
 795     Label no_reserved_zone_enabling;
 796 
 797     // Compare frame pointers. There is no good stack pointer, as with stack
 798     // frame compression we can get different SPs when we do calls. A subsequent
 799     // call could have a smaller SP, so that this compare succeeds for an
 800     // inner call of the method annotated with ReservedStack.
 801     ld_ptr(R0, JavaThread::reserved_stack_activation_offset(), R16_thread);
 802     ld_ptr(R11_scratch1, _abi(callers_sp), R1_SP); // Load frame pointer.
 803     cmpld(CCR0, R11_scratch1, R0);
 804     blt_predict_taken(CCR0, no_reserved_zone_enabling);
 805 
 806     // Enable reserved zone again, throw stack overflow exception.
 807     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), R16_thread);
 808     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError));
 809 
 810     should_not_reach_here();
 811 
 812     bind(no_reserved_zone_enabling);
 813   }
 814 
 815   verify_oop(R17_tos, state);
 816   verify_thread();
 817 
 818   merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
 819   mtlr(R0);
 820   BLOCK_COMMENT("} remove_activation");
 821 }
 822 
 823 // Lock object
 824 //
 825 // Registers alive
 826 //   monitor - Address of the BasicObjectLock to be used for locking,
 827 //             which must be initialized with the object to lock.
 828 //   object  - Address of the object to be locked.
 829 //
 830 void InterpreterMacroAssembler::lock_object(Register monitor, Register object) {
 831   if (UseHeavyMonitors) {
 832     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 833             monitor, /*check_for_exceptions=*/true);
 834   } else {
 835     // template code:
 836     //
 837     // markOop displaced_header = obj->mark().set_unlocked();
 838     // monitor->lock()->set_displaced_header(displaced_header);
 839     // if (Atomic::cmpxchg_ptr(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
 840     //   // We stored the monitor address into the object's mark word.
 841     // } else if (THREAD->is_lock_owned((address)displaced_header))
 842     //   // Simple recursive case.
 843     //   monitor->lock()->set_displaced_header(NULL);
 844     // } else {
 845     //   // Slow path.
 846     //   InterpreterRuntime::monitorenter(THREAD, monitor);
 847     // }
 848 
 849     const Register displaced_header = R7_ARG5;
 850     const Register object_mark_addr = R8_ARG6;
 851     const Register current_header   = R9_ARG7;
 852     const Register tmp              = R10_ARG8;
 853 
 854     Label done;
 855     Label cas_failed, slow_case;
 856 
 857     assert_different_registers(displaced_header, object_mark_addr, current_header, tmp);
 858 
 859     // markOop displaced_header = obj->mark().set_unlocked();
 860 
 861     // Load markOop from object into displaced_header.
 862     ld(displaced_header, oopDesc::mark_offset_in_bytes(), object);
 863 
 864     if (UseBiasedLocking) {
 865       biased_locking_enter(CCR0, object, displaced_header, tmp, current_header, done, &slow_case);
 866     }
 867 
 868     // Set displaced_header to be (markOop of object | UNLOCK_VALUE).
 869     ori(displaced_header, displaced_header, markOopDesc::unlocked_value);
 870 
 871     // monitor->lock()->set_displaced_header(displaced_header);
 872 
 873     // Initialize the box (Must happen before we update the object mark!).
 874     std(displaced_header, BasicObjectLock::lock_offset_in_bytes() +
 875         BasicLock::displaced_header_offset_in_bytes(), monitor);
 876 
 877     // if (Atomic::cmpxchg_ptr(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
 878 
 879     // Store stack address of the BasicObjectLock (this is monitor) into object.
 880     addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes());
 881 
 882     // Must fence, otherwise, preceding store(s) may float below cmpxchg.
 883     // CmpxchgX sets CCR0 to cmpX(current, displaced).
 884     cmpxchgd(/*flag=*/CCR0,
 885              /*current_value=*/current_header,
 886              /*compare_value=*/displaced_header, /*exchange_value=*/monitor,
 887              /*where=*/object_mark_addr,
 888              MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
 889              MacroAssembler::cmpxchgx_hint_acquire_lock(),
 890              noreg,
 891              &cas_failed,
 892              /*check without membar and ldarx first*/true);
 893 
 894     // If the compare-and-exchange succeeded, then we found an unlocked
 895     // object and we have now locked it.
 896     b(done);
 897     bind(cas_failed);
 898 
 899     // } else if (THREAD->is_lock_owned((address)displaced_header))
 900     //   // Simple recursive case.
 901     //   monitor->lock()->set_displaced_header(NULL);
 902 
 903     // We did not see an unlocked object so try the fast recursive case.
 904 
 905     // Check if owner is self by comparing the value in the markOop of object
 906     // (current_header) with the stack pointer.
 907     sub(current_header, current_header, R1_SP);
 908 
 909     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
 910     load_const_optimized(tmp, ~(os::vm_page_size()-1) | markOopDesc::lock_mask_in_place);
 911 
 912     and_(R0/*==0?*/, current_header, tmp);
 913     // If condition is true we are done and hence we can store 0 in the displaced
 914     // header indicating it is a recursive lock.
 915     bne(CCR0, slow_case);
 916     std(R0/*==0!*/, BasicObjectLock::lock_offset_in_bytes() +
 917         BasicLock::displaced_header_offset_in_bytes(), monitor);
 918     b(done);
 919 
 920     // } else {
 921     //   // Slow path.
 922     //   InterpreterRuntime::monitorenter(THREAD, monitor);
 923 
 924     // None of the above fast optimizations worked so we have to get into the
 925     // slow case of monitor enter.
 926     bind(slow_case);
 927     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 928             monitor, /*check_for_exceptions=*/true);
 929     // }
 930     align(32, 12);
 931     bind(done);
 932   }
 933 }
 934 
 935 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
 936 //
 937 // Registers alive
 938 //   monitor - Address of the BasicObjectLock to be used for locking,
 939 //             which must be initialized with the object to lock.
 940 //
 941 // Throw IllegalMonitorException if object is not locked by current thread.
 942 void InterpreterMacroAssembler::unlock_object(Register monitor, bool check_for_exceptions) {
 943   if (UseHeavyMonitors) {
 944     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
 945             monitor, check_for_exceptions);
 946   } else {
 947 
 948     // template code:
 949     //
 950     // if ((displaced_header = monitor->displaced_header()) == NULL) {
 951     //   // Recursive unlock. Mark the monitor unlocked by setting the object field to NULL.
 952     //   monitor->set_obj(NULL);
 953     // } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) {
 954     //   // We swapped the unlocked mark in displaced_header into the object's mark word.
 955     //   monitor->set_obj(NULL);
 956     // } else {
 957     //   // Slow path.
 958     //   InterpreterRuntime::monitorexit(THREAD, monitor);
 959     // }
 960 
 961     const Register object           = R7_ARG5;
 962     const Register displaced_header = R8_ARG6;
 963     const Register object_mark_addr = R9_ARG7;
 964     const Register current_header   = R10_ARG8;
 965 
 966     Label free_slot;
 967     Label slow_case;
 968 
 969     assert_different_registers(object, displaced_header, object_mark_addr, current_header);
 970 
 971     if (UseBiasedLocking) {
 972       // The object address from the monitor is in object.
 973       ld(object, BasicObjectLock::obj_offset_in_bytes(), monitor);
 974       assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
 975       biased_locking_exit(CCR0, object, displaced_header, free_slot);
 976     }
 977 
 978     // Test first if we are in the fast recursive case.
 979     ld(displaced_header, BasicObjectLock::lock_offset_in_bytes() +
 980            BasicLock::displaced_header_offset_in_bytes(), monitor);
 981 
 982     // If the displaced header is zero, we have a recursive unlock.
 983     cmpdi(CCR0, displaced_header, 0);
 984     beq(CCR0, free_slot); // recursive unlock
 985 
 986     // } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) {
 987     //   // We swapped the unlocked mark in displaced_header into the object's mark word.
 988     //   monitor->set_obj(NULL);
 989 
 990     // If we still have a lightweight lock, unlock the object and be done.
 991 
 992     // The object address from the monitor is in object.
 993     if (!UseBiasedLocking) { ld(object, BasicObjectLock::obj_offset_in_bytes(), monitor); }
 994     addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes());
 995 
 996     // We have the displaced header in displaced_header. If the lock is still
 997     // lightweight, it will contain the monitor address and we'll store the
 998     // displaced header back into the object's mark word.
 999     // CmpxchgX sets CCR0 to cmpX(current, monitor).
1000     cmpxchgd(/*flag=*/CCR0,
1001              /*current_value=*/current_header,
1002              /*compare_value=*/monitor, /*exchange_value=*/displaced_header,
1003              /*where=*/object_mark_addr,
1004              MacroAssembler::MemBarRel,
1005              MacroAssembler::cmpxchgx_hint_release_lock(),
1006              noreg,
1007              &slow_case);
1008     b(free_slot);
1009 
1010     // } else {
1011     //   // Slow path.
1012     //   InterpreterRuntime::monitorexit(THREAD, monitor);
1013 
1014     // The lock has been converted into a heavy lock and hence
1015     // we need to get into the slow case.
1016     bind(slow_case);
1017     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
1018             monitor, check_for_exceptions);
1019     // }
1020 
1021     Label done;
1022     b(done); // Monitor register may be overwritten! Runtime has already freed the slot.
1023 
1024     // Exchange worked, do monitor->set_obj(NULL);
1025     align(32, 12);
1026     bind(free_slot);
1027     li(R0, 0);
1028     std(R0, BasicObjectLock::obj_offset_in_bytes(), monitor);
1029     bind(done);
1030   }
1031 }
1032 
1033 // Load compiled (i2c) or interpreter entry when calling from interpreted and
1034 // do the call. Centralized so that all interpreter calls will do the same actions.
1035 // If jvmti single stepping is on for a thread we must not call compiled code.
1036 //
1037 // Input:
1038 //   - Rtarget_method: method to call
1039 //   - Rret_addr:      return address
1040 //   - 2 scratch regs
1041 //
1042 void InterpreterMacroAssembler::call_from_interpreter(Register Rtarget_method, Register Rret_addr,
1043                                                       Register Rscratch1, Register Rscratch2) {
1044   assert_different_registers(Rscratch1, Rscratch2, Rtarget_method, Rret_addr);
1045   // Assume we want to go compiled if available.
1046   const Register Rtarget_addr = Rscratch1;
1047   const Register Rinterp_only = Rscratch2;
1048 
1049   ld(Rtarget_addr, in_bytes(Method::from_interpreted_offset()), Rtarget_method);
1050 
1051   if (JvmtiExport::can_post_interpreter_events()) {
1052     lwz(Rinterp_only, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
1053 
1054     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
1055     // compiled code in threads for which the event is enabled. Check here for
1056     // interp_only_mode if these events CAN be enabled.
1057     Label done;
1058     verify_thread();
1059     cmpwi(CCR0, Rinterp_only, 0);
1060     beq(CCR0, done);
1061     ld(Rtarget_addr, in_bytes(Method::interpreter_entry_offset()), Rtarget_method);
1062     align(32, 12);
1063     bind(done);
1064   }
1065 
1066 #ifdef ASSERT
1067   {
1068     Label Lok;
1069     cmpdi(CCR0, Rtarget_addr, 0);
1070     bne(CCR0, Lok);
1071     stop("null entry point");
1072     bind(Lok);
1073   }
1074 #endif // ASSERT
1075 
1076   mr(R21_sender_SP, R1_SP);
1077 
1078   // Calc a precise SP for the call. The SP value we calculated in
1079   // generate_fixed_frame() is based on the max_stack() value, so we would waste stack space
1080   // if esp is not max. Also, the i2c adapter extends the stack space without restoring
1081   // our pre-calced value, so repeating calls via i2c would result in stack overflow.
1082   // Since esp already points to an empty slot, we just have to sub 1 additional slot
1083   // to meet the abi scratch requirements.
1084   // The max_stack pointer will get restored by means of the GR_Lmax_stack local in
1085   // the return entry of the interpreter.
1086   addi(Rscratch2, R15_esp, Interpreter::stackElementSize - frame::abi_reg_args_size);
1087   clrrdi(Rscratch2, Rscratch2, exact_log2(frame::alignment_in_bytes)); // round towards smaller address
1088   resize_frame_absolute(Rscratch2, Rscratch2, R0);
1089 
1090   mr_if_needed(R19_method, Rtarget_method);
1091   mtctr(Rtarget_addr);
1092   mtlr(Rret_addr);
1093 
1094   save_interpreter_state(Rscratch2);
1095 #ifdef ASSERT
1096   ld(Rscratch1, _ijava_state_neg(top_frame_sp), Rscratch2); // Rscratch2 contains fp
1097   cmpd(CCR0, R21_sender_SP, Rscratch1);
1098   asm_assert_eq("top_frame_sp incorrect", 0x951);
1099 #endif
1100 
1101   bctr();
1102 }
1103 
1104 // Set the method data pointer for the current bcp.
1105 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1106   assert(ProfileInterpreter, "must be profiling interpreter");
1107   Label get_continue;
1108   ld(R28_mdx, in_bytes(Method::method_data_offset()), R19_method);
1109   test_method_data_pointer(get_continue);
1110   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), R19_method, R14_bcp);
1111 
1112   addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
1113   add(R28_mdx, R28_mdx, R3_RET);
1114   bind(get_continue);
1115 }
1116 
1117 // Test ImethodDataPtr. If it is null, continue at the specified label.
1118 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
1119   assert(ProfileInterpreter, "must be profiling interpreter");
1120   cmpdi(CCR0, R28_mdx, 0);
1121   beq(CCR0, zero_continue);
1122 }
1123 
1124 void InterpreterMacroAssembler::verify_method_data_pointer() {
1125   assert(ProfileInterpreter, "must be profiling interpreter");
1126 #ifdef ASSERT
1127   Label verify_continue;
1128   test_method_data_pointer(verify_continue);
1129 
1130   // If the mdp is valid, it will point to a DataLayout header which is
1131   // consistent with the bcp. The converse is highly probable also.
1132   lhz(R11_scratch1, in_bytes(DataLayout::bci_offset()), R28_mdx);
1133   ld(R12_scratch2, in_bytes(Method::const_offset()), R19_method);
1134   addi(R11_scratch1, R11_scratch1, in_bytes(ConstMethod::codes_offset()));
1135   add(R11_scratch1, R12_scratch2, R12_scratch2);
1136   cmpd(CCR0, R11_scratch1, R14_bcp);
1137   beq(CCR0, verify_continue);
1138 
1139   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp ), R19_method, R14_bcp, R28_mdx);
1140 
1141   bind(verify_continue);
1142 #endif
1143 }
1144 
1145 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
1146                                                                 Register method_counters,
1147                                                                 Register Rscratch,
1148                                                                 Label &profile_continue) {
1149   assert(ProfileInterpreter, "must be profiling interpreter");
1150   // Control will flow to "profile_continue" if the counter is less than the
1151   // limit or if we call profile_method().
1152   Label done;
1153 
1154   // If no method data exists, and the counter is high enough, make one.
1155   lwz(Rscratch, in_bytes(MethodCounters::interpreter_profile_limit_offset()), method_counters);
1156 
1157   cmpdi(CCR0, R28_mdx, 0);
1158   // Test to see if we should create a method data oop.
1159   cmpd(CCR1, Rscratch, invocation_count);
1160   bne(CCR0, done);
1161   bge(CCR1, profile_continue);
1162 
1163   // Build it now.
1164   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1165   set_method_data_pointer_for_bcp();
1166   b(profile_continue);
1167 
1168   align(32, 12);
1169   bind(done);
1170 }
1171 
1172 void InterpreterMacroAssembler::test_backedge_count_for_osr(Register backedge_count, Register method_counters,
1173                                                             Register target_bcp, Register disp, Register Rtmp) {
1174   assert_different_registers(backedge_count, target_bcp, disp, Rtmp, R4_ARG2);
1175   assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
1176 
1177   Label did_not_overflow;
1178   Label overflow_with_error;
1179 
1180   lwz(Rtmp, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()), method_counters);
1181   cmpw(CCR0, backedge_count, Rtmp);
1182 
1183   blt(CCR0, did_not_overflow);
1184 
1185   // When ProfileInterpreter is on, the backedge_count comes from the
1186   // methodDataOop, which value does not get reset on the call to
1187   // frequency_counter_overflow(). To avoid excessive calls to the overflow
1188   // routine while the method is being compiled, add a second test to make sure
1189   // the overflow function is called only once every overflow_frequency.
1190   if (ProfileInterpreter) {
1191     const int overflow_frequency = 1024;
1192     andi_(Rtmp, backedge_count, overflow_frequency-1);
1193     bne(CCR0, did_not_overflow);
1194   }
1195 
1196   // Overflow in loop, pass branch bytecode.
1197   subf(R4_ARG2, disp, target_bcp); // Compute branch bytecode (previous bcp).
1198   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true);
1199 
1200   // Was an OSR adapter generated?
1201   cmpdi(CCR0, R3_RET, 0);
1202   beq(CCR0, overflow_with_error);
1203 
1204   // Has the nmethod been invalidated already?
1205   lbz(Rtmp, nmethod::state_offset(), R3_RET);
1206   cmpwi(CCR0, Rtmp, nmethod::in_use);
1207   bne(CCR0, overflow_with_error);
1208 
1209   // Migrate the interpreter frame off of the stack.
1210   // We can use all registers because we will not return to interpreter from this point.
1211 
1212   // Save nmethod.
1213   const Register osr_nmethod = R31;
1214   mr(osr_nmethod, R3_RET);
1215   set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R11_scratch1);
1216   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), R16_thread);
1217   reset_last_Java_frame();
1218   // OSR buffer is in ARG1
1219 
1220   // Remove the interpreter frame.
1221   merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
1222 
1223   // Jump to the osr code.
1224   ld(R11_scratch1, nmethod::osr_entry_point_offset(), osr_nmethod);
1225   mtlr(R0);
1226   mtctr(R11_scratch1);
1227   bctr();
1228 
1229   align(32, 12);
1230   bind(overflow_with_error);
1231   bind(did_not_overflow);
1232 }
1233 
1234 // Store a value at some constant offset from the method data pointer.
1235 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
1236   assert(ProfileInterpreter, "must be profiling interpreter");
1237 
1238   std(value, constant, R28_mdx);
1239 }
1240 
1241 // Increment the value at some constant offset from the method data pointer.
1242 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
1243                                                       Register counter_addr,
1244                                                       Register Rbumped_count,
1245                                                       bool decrement) {
1246   // Locate the counter at a fixed offset from the mdp:
1247   addi(counter_addr, R28_mdx, constant);
1248   increment_mdp_data_at(counter_addr, Rbumped_count, decrement);
1249 }
1250 
1251 // Increment the value at some non-fixed (reg + constant) offset from
1252 // the method data pointer.
1253 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
1254                                                       int constant,
1255                                                       Register scratch,
1256                                                       Register Rbumped_count,
1257                                                       bool decrement) {
1258   // Add the constant to reg to get the offset.
1259   add(scratch, R28_mdx, reg);
1260   // Then calculate the counter address.
1261   addi(scratch, scratch, constant);
1262   increment_mdp_data_at(scratch, Rbumped_count, decrement);
1263 }
1264 
1265 void InterpreterMacroAssembler::increment_mdp_data_at(Register counter_addr,
1266                                                       Register Rbumped_count,
1267                                                       bool decrement) {
1268   assert(ProfileInterpreter, "must be profiling interpreter");
1269 
1270   // Load the counter.
1271   ld(Rbumped_count, 0, counter_addr);
1272 
1273   if (decrement) {
1274     // Decrement the register. Set condition codes.
1275     addi(Rbumped_count, Rbumped_count, - DataLayout::counter_increment);
1276     // Store the decremented counter, if it is still negative.
1277     std(Rbumped_count, 0, counter_addr);
1278     // Note: add/sub overflow check are not ported, since 64 bit
1279     // calculation should never overflow.
1280   } else {
1281     // Increment the register. Set carry flag.
1282     addi(Rbumped_count, Rbumped_count, DataLayout::counter_increment);
1283     // Store the incremented counter.
1284     std(Rbumped_count, 0, counter_addr);
1285   }
1286 }
1287 
1288 // Set a flag value at the current method data pointer position.
1289 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
1290                                                 Register scratch) {
1291   assert(ProfileInterpreter, "must be profiling interpreter");
1292   // Load the data header.
1293   lbz(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx);
1294   // Set the flag.
1295   ori(scratch, scratch, flag_constant);
1296   // Store the modified header.
1297   stb(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx);
1298 }
1299 
1300 // Test the location at some offset from the method data pointer.
1301 // If it is not equal to value, branch to the not_equal_continue Label.
1302 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
1303                                                  Register value,
1304                                                  Label& not_equal_continue,
1305                                                  Register test_out) {
1306   assert(ProfileInterpreter, "must be profiling interpreter");
1307 
1308   ld(test_out, offset, R28_mdx);
1309   cmpd(CCR0,  value, test_out);
1310   bne(CCR0, not_equal_continue);
1311 }
1312 
1313 // Update the method data pointer by the displacement located at some fixed
1314 // offset from the method data pointer.
1315 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
1316                                                      Register scratch) {
1317   assert(ProfileInterpreter, "must be profiling interpreter");
1318 
1319   ld(scratch, offset_of_disp, R28_mdx);
1320   add(R28_mdx, scratch, R28_mdx);
1321 }
1322 
1323 // Update the method data pointer by the displacement located at the
1324 // offset (reg + offset_of_disp).
1325 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
1326                                                      int offset_of_disp,
1327                                                      Register scratch) {
1328   assert(ProfileInterpreter, "must be profiling interpreter");
1329 
1330   add(scratch, reg, R28_mdx);
1331   ld(scratch, offset_of_disp, scratch);
1332   add(R28_mdx, scratch, R28_mdx);
1333 }
1334 
1335 // Update the method data pointer by a simple constant displacement.
1336 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
1337   assert(ProfileInterpreter, "must be profiling interpreter");
1338   addi(R28_mdx, R28_mdx, constant);
1339 }
1340 
1341 // Update the method data pointer for a _ret bytecode whose target
1342 // was not among our cached targets.
1343 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
1344                                                    Register return_bci) {
1345   assert(ProfileInterpreter, "must be profiling interpreter");
1346 
1347   push(state);
1348   assert(return_bci->is_nonvolatile(), "need to protect return_bci");
1349   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
1350   pop(state);
1351 }
1352 
1353 // Increments the backedge counter.
1354 // Returns backedge counter + invocation counter in Rdst.
1355 void InterpreterMacroAssembler::increment_backedge_counter(const Register Rcounters, const Register Rdst,
1356                                                            const Register Rtmp1, Register Rscratch) {
1357   assert(UseCompiler, "incrementing must be useful");
1358   assert_different_registers(Rdst, Rtmp1);
1359   const Register invocation_counter = Rtmp1;
1360   const Register counter = Rdst;
1361   // TODO: PPC port: assert(4 == InvocationCounter::sz_counter(), "unexpected field size.");
1362 
1363   // Load backedge counter.
1364   lwz(counter, in_bytes(MethodCounters::backedge_counter_offset()) +
1365                in_bytes(InvocationCounter::counter_offset()), Rcounters);
1366   // Load invocation counter.
1367   lwz(invocation_counter, in_bytes(MethodCounters::invocation_counter_offset()) +
1368                           in_bytes(InvocationCounter::counter_offset()), Rcounters);
1369 
1370   // Add the delta to the backedge counter.
1371   addi(counter, counter, InvocationCounter::count_increment);
1372 
1373   // Mask the invocation counter.
1374   andi(invocation_counter, invocation_counter, InvocationCounter::count_mask_value);
1375 
1376   // Store new counter value.
1377   stw(counter, in_bytes(MethodCounters::backedge_counter_offset()) +
1378                in_bytes(InvocationCounter::counter_offset()), Rcounters);
1379   // Return invocation counter + backedge counter.
1380   add(counter, counter, invocation_counter);
1381 }
1382 
1383 // Count a taken branch in the bytecodes.
1384 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
1385   if (ProfileInterpreter) {
1386     Label profile_continue;
1387 
1388     // If no method data exists, go to profile_continue.
1389     test_method_data_pointer(profile_continue);
1390 
1391     // We are taking a branch. Increment the taken count.
1392     increment_mdp_data_at(in_bytes(JumpData::taken_offset()), scratch, bumped_count);
1393 
1394     // The method data pointer needs to be updated to reflect the new target.
1395     update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
1396     bind (profile_continue);
1397   }
1398 }
1399 
1400 // Count a not-taken branch in the bytecodes.
1401 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch1, Register scratch2) {
1402   if (ProfileInterpreter) {
1403     Label profile_continue;
1404 
1405     // If no method data exists, go to profile_continue.
1406     test_method_data_pointer(profile_continue);
1407 
1408     // We are taking a branch. Increment the not taken count.
1409     increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch1, scratch2);
1410 
1411     // The method data pointer needs to be updated to correspond to the
1412     // next bytecode.
1413     update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
1414     bind (profile_continue);
1415   }
1416 }
1417 
1418 // Count a non-virtual call in the bytecodes.
1419 void InterpreterMacroAssembler::profile_call(Register scratch1, Register scratch2) {
1420   if (ProfileInterpreter) {
1421     Label profile_continue;
1422 
1423     // If no method data exists, go to profile_continue.
1424     test_method_data_pointer(profile_continue);
1425 
1426     // We are making a call. Increment the count.
1427     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1428 
1429     // The method data pointer needs to be updated to reflect the new target.
1430     update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
1431     bind (profile_continue);
1432   }
1433 }
1434 
1435 // Count a final call in the bytecodes.
1436 void InterpreterMacroAssembler::profile_final_call(Register scratch1, Register scratch2) {
1437   if (ProfileInterpreter) {
1438     Label profile_continue;
1439 
1440     // If no method data exists, go to profile_continue.
1441     test_method_data_pointer(profile_continue);
1442 
1443     // We are making a call. Increment the count.
1444     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1445 
1446     // The method data pointer needs to be updated to reflect the new target.
1447     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1448     bind (profile_continue);
1449   }
1450 }
1451 
1452 // Count a virtual call in the bytecodes.
1453 void InterpreterMacroAssembler::profile_virtual_call(Register Rreceiver,
1454                                                      Register Rscratch1,
1455                                                      Register Rscratch2,
1456                                                      bool receiver_can_be_null) {
1457   if (!ProfileInterpreter) { return; }
1458   Label profile_continue;
1459 
1460   // If no method data exists, go to profile_continue.
1461   test_method_data_pointer(profile_continue);
1462 
1463   Label skip_receiver_profile;
1464   if (receiver_can_be_null) {
1465     Label not_null;
1466     cmpdi(CCR0, Rreceiver, 0);
1467     bne(CCR0, not_null);
1468     // We are making a call. Increment the count for null receiver.
1469     increment_mdp_data_at(in_bytes(CounterData::count_offset()), Rscratch1, Rscratch2);
1470     b(skip_receiver_profile);
1471     bind(not_null);
1472   }
1473 
1474   // Record the receiver type.
1475   record_klass_in_profile(Rreceiver, Rscratch1, Rscratch2, true);
1476   bind(skip_receiver_profile);
1477 
1478   // The method data pointer needs to be updated to reflect the new target.
1479   update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1480   bind (profile_continue);
1481 }
1482 
1483 void InterpreterMacroAssembler::profile_typecheck(Register Rklass, Register Rscratch1, Register Rscratch2) {
1484   if (ProfileInterpreter) {
1485     Label profile_continue;
1486 
1487     // If no method data exists, go to profile_continue.
1488     test_method_data_pointer(profile_continue);
1489 
1490     int mdp_delta = in_bytes(BitData::bit_data_size());
1491     if (TypeProfileCasts) {
1492       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1493 
1494       // Record the object type.
1495       record_klass_in_profile(Rklass, Rscratch1, Rscratch2, false);
1496     }
1497 
1498     // The method data pointer needs to be updated.
1499     update_mdp_by_constant(mdp_delta);
1500 
1501     bind (profile_continue);
1502   }
1503 }
1504 
1505 void InterpreterMacroAssembler::profile_typecheck_failed(Register Rscratch1, Register Rscratch2) {
1506   if (ProfileInterpreter && TypeProfileCasts) {
1507     Label profile_continue;
1508 
1509     // If no method data exists, go to profile_continue.
1510     test_method_data_pointer(profile_continue);
1511 
1512     int count_offset = in_bytes(CounterData::count_offset());
1513     // Back up the address, since we have already bumped the mdp.
1514     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1515 
1516     // *Decrement* the counter. We expect to see zero or small negatives.
1517     increment_mdp_data_at(count_offset, Rscratch1, Rscratch2, true);
1518 
1519     bind (profile_continue);
1520   }
1521 }
1522 
1523 // Count a ret in the bytecodes.
1524 void InterpreterMacroAssembler::profile_ret(TosState state, Register return_bci,
1525                                             Register scratch1, Register scratch2) {
1526   if (ProfileInterpreter) {
1527     Label profile_continue;
1528     uint row;
1529 
1530     // If no method data exists, go to profile_continue.
1531     test_method_data_pointer(profile_continue);
1532 
1533     // Update the total ret count.
1534     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2 );
1535 
1536     for (row = 0; row < RetData::row_limit(); row++) {
1537       Label next_test;
1538 
1539       // See if return_bci is equal to bci[n]:
1540       test_mdp_data_at(in_bytes(RetData::bci_offset(row)), return_bci, next_test, scratch1);
1541 
1542       // return_bci is equal to bci[n]. Increment the count.
1543       increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch1, scratch2);
1544 
1545       // The method data pointer needs to be updated to reflect the new target.
1546       update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch1);
1547       b(profile_continue);
1548       bind(next_test);
1549     }
1550 
1551     update_mdp_for_ret(state, return_bci);
1552 
1553     bind (profile_continue);
1554   }
1555 }
1556 
1557 // Count the default case of a switch construct.
1558 void InterpreterMacroAssembler::profile_switch_default(Register scratch1,  Register scratch2) {
1559   if (ProfileInterpreter) {
1560     Label profile_continue;
1561 
1562     // If no method data exists, go to profile_continue.
1563     test_method_data_pointer(profile_continue);
1564 
1565     // Update the default case count
1566     increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
1567                           scratch1, scratch2);
1568 
1569     // The method data pointer needs to be updated.
1570     update_mdp_by_offset(in_bytes(MultiBranchData::default_displacement_offset()),
1571                          scratch1);
1572 
1573     bind (profile_continue);
1574   }
1575 }
1576 
1577 // Count the index'th case of a switch construct.
1578 void InterpreterMacroAssembler::profile_switch_case(Register index,
1579                                                     Register scratch1,
1580                                                     Register scratch2,
1581                                                     Register scratch3) {
1582   if (ProfileInterpreter) {
1583     assert_different_registers(index, scratch1, scratch2, scratch3);
1584     Label profile_continue;
1585 
1586     // If no method data exists, go to profile_continue.
1587     test_method_data_pointer(profile_continue);
1588 
1589     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes().
1590     li(scratch3, in_bytes(MultiBranchData::case_array_offset()));
1591 
1592     assert (in_bytes(MultiBranchData::per_case_size()) == 16, "so that shladd works");
1593     sldi(scratch1, index, exact_log2(in_bytes(MultiBranchData::per_case_size())));
1594     add(scratch1, scratch1, scratch3);
1595 
1596     // Update the case count.
1597     increment_mdp_data_at(scratch1, in_bytes(MultiBranchData::relative_count_offset()), scratch2, scratch3);
1598 
1599     // The method data pointer needs to be updated.
1600     update_mdp_by_offset(scratch1, in_bytes(MultiBranchData::relative_displacement_offset()), scratch2);
1601 
1602     bind (profile_continue);
1603   }
1604 }
1605 
1606 void InterpreterMacroAssembler::profile_null_seen(Register Rscratch1, Register Rscratch2) {
1607   if (ProfileInterpreter) {
1608     assert_different_registers(Rscratch1, Rscratch2);
1609     Label profile_continue;
1610 
1611     // If no method data exists, go to profile_continue.
1612     test_method_data_pointer(profile_continue);
1613 
1614     set_mdp_flag_at(BitData::null_seen_byte_constant(), Rscratch1);
1615 
1616     // The method data pointer needs to be updated.
1617     int mdp_delta = in_bytes(BitData::bit_data_size());
1618     if (TypeProfileCasts) {
1619       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1620     }
1621     update_mdp_by_constant(mdp_delta);
1622 
1623     bind (profile_continue);
1624   }
1625 }
1626 
1627 void InterpreterMacroAssembler::record_klass_in_profile(Register Rreceiver,
1628                                                         Register Rscratch1, Register Rscratch2,
1629                                                         bool is_virtual_call) {
1630   assert(ProfileInterpreter, "must be profiling");
1631   assert_different_registers(Rreceiver, Rscratch1, Rscratch2);
1632 
1633   Label done;
1634   record_klass_in_profile_helper(Rreceiver, Rscratch1, Rscratch2, 0, done, is_virtual_call);
1635   bind (done);
1636 }
1637 
1638 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1639                                         Register receiver, Register scratch1, Register scratch2,
1640                                         int start_row, Label& done, bool is_virtual_call) {
1641   if (TypeProfileWidth == 0) {
1642     if (is_virtual_call) {
1643       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1644     }
1645     return;
1646   }
1647 
1648   int last_row = VirtualCallData::row_limit() - 1;
1649   assert(start_row <= last_row, "must be work left to do");
1650   // Test this row for both the receiver and for null.
1651   // Take any of three different outcomes:
1652   //   1. found receiver => increment count and goto done
1653   //   2. found null => keep looking for case 1, maybe allocate this cell
1654   //   3. found something else => keep looking for cases 1 and 2
1655   // Case 3 is handled by a recursive call.
1656   for (int row = start_row; row <= last_row; row++) {
1657     Label next_test;
1658     bool test_for_null_also = (row == start_row);
1659 
1660     // See if the receiver is receiver[n].
1661     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1662     test_mdp_data_at(recvr_offset, receiver, next_test, scratch1);
1663     // delayed()->tst(scratch);
1664 
1665     // The receiver is receiver[n]. Increment count[n].
1666     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1667     increment_mdp_data_at(count_offset, scratch1, scratch2);
1668     b(done);
1669     bind(next_test);
1670 
1671     if (test_for_null_also) {
1672       Label found_null;
1673       // Failed the equality check on receiver[n]... Test for null.
1674       if (start_row == last_row) {
1675         // The only thing left to do is handle the null case.
1676         if (is_virtual_call) {
1677           // Scratch1 contains test_out from test_mdp_data_at.
1678           cmpdi(CCR0, scratch1, 0);
1679           beq(CCR0, found_null);
1680           // Receiver did not match any saved receiver and there is no empty row for it.
1681           // Increment total counter to indicate polymorphic case.
1682           increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1683           b(done);
1684           bind(found_null);
1685         } else {
1686           cmpdi(CCR0, scratch1, 0);
1687           bne(CCR0, done);
1688         }
1689         break;
1690       }
1691       // Since null is rare, make it be the branch-taken case.
1692       cmpdi(CCR0, scratch1, 0);
1693       beq(CCR0, found_null);
1694 
1695       // Put all the "Case 3" tests here.
1696       record_klass_in_profile_helper(receiver, scratch1, scratch2, start_row + 1, done, is_virtual_call);
1697 
1698       // Found a null. Keep searching for a matching receiver,
1699       // but remember that this is an empty (unused) slot.
1700       bind(found_null);
1701     }
1702   }
1703 
1704   // In the fall-through case, we found no matching receiver, but we
1705   // observed the receiver[start_row] is NULL.
1706 
1707   // Fill in the receiver field and increment the count.
1708   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1709   set_mdp_data_at(recvr_offset, receiver);
1710   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1711   li(scratch1, DataLayout::counter_increment);
1712   set_mdp_data_at(count_offset, scratch1);
1713   if (start_row > 0) {
1714     b(done);
1715   }
1716 }
1717 
1718 // Argument and return type profilig.
1719 // kills: tmp, tmp2, R0, CR0, CR1
1720 void InterpreterMacroAssembler::profile_obj_type(Register obj, Register mdo_addr_base,
1721                                                  RegisterOrConstant mdo_addr_offs,
1722                                                  Register tmp, Register tmp2) {
1723   Label do_nothing, do_update;
1724 
1725   // tmp2 = obj is allowed
1726   assert_different_registers(obj, mdo_addr_base, tmp, R0);
1727   assert_different_registers(tmp2, mdo_addr_base, tmp, R0);
1728   const Register klass = tmp2;
1729 
1730   verify_oop(obj);
1731 
1732   ld(tmp, mdo_addr_offs, mdo_addr_base);
1733 
1734   // Set null_seen if obj is 0.
1735   cmpdi(CCR0, obj, 0);
1736   ori(R0, tmp, TypeEntries::null_seen);
1737   beq(CCR0, do_update);
1738 
1739   load_klass(klass, obj);
1740 
1741   clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask));
1742   // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask);
1743   cmpd(CCR1, R0, klass);
1744   // Klass seen before, nothing to do (regardless of unknown bit).
1745   //beq(CCR1, do_nothing);
1746 
1747   andi_(R0, klass, TypeEntries::type_unknown);
1748   // Already unknown. Nothing to do anymore.
1749   //bne(CCR0, do_nothing);
1750   crorc(CCR0, Assembler::equal, CCR1, Assembler::equal); // cr0 eq = cr1 eq or cr0 ne
1751   beq(CCR0, do_nothing);
1752 
1753   clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask));
1754   orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
1755   beq(CCR0, do_update); // First time here. Set profile type.
1756 
1757   // Different than before. Cannot keep accurate profile.
1758   ori(R0, tmp, TypeEntries::type_unknown);
1759 
1760   bind(do_update);
1761   // update profile
1762   std(R0, mdo_addr_offs, mdo_addr_base);
1763 
1764   align(32, 12);
1765   bind(do_nothing);
1766 }
1767 
1768 void InterpreterMacroAssembler::profile_arguments_type(Register callee,
1769                                                        Register tmp1, Register tmp2,
1770                                                        bool is_virtual) {
1771   if (!ProfileInterpreter) {
1772     return;
1773   }
1774 
1775   assert_different_registers(callee, tmp1, tmp2, R28_mdx);
1776 
1777   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1778     Label profile_continue;
1779 
1780     test_method_data_pointer(profile_continue);
1781 
1782     int off_to_start = is_virtual ?
1783       in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1784 
1785     lbz(tmp1, in_bytes(DataLayout::tag_offset()) - off_to_start, R28_mdx);
1786     cmpwi(CCR0, tmp1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
1787     bne(CCR0, profile_continue);
1788 
1789     if (MethodData::profile_arguments()) {
1790       Label done;
1791       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1792       add(R28_mdx, off_to_args, R28_mdx);
1793 
1794       for (int i = 0; i < TypeProfileArgsLimit; i++) {
1795         if (i > 0 || MethodData::profile_return()) {
1796           // If return value type is profiled we may have no argument to profile.
1797           ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx);
1798           cmpdi(CCR0, tmp1, (i+1)*TypeStackSlotEntries::per_arg_count());
1799           addi(tmp1, tmp1, -i*TypeStackSlotEntries::per_arg_count());
1800           blt(CCR0, done);
1801         }
1802         ld(tmp1, in_bytes(Method::const_offset()), callee);
1803         lhz(tmp1, in_bytes(ConstMethod::size_of_parameters_offset()), tmp1);
1804         // Stack offset o (zero based) from the start of the argument
1805         // list, for n arguments translates into offset n - o - 1 from
1806         // the end of the argument list. But there's an extra slot at
1807         // the top of the stack. So the offset is n - o from Lesp.
1808         ld(tmp2, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args, R28_mdx);
1809         subf(tmp1, tmp2, tmp1);
1810 
1811         sldi(tmp1, tmp1, Interpreter::logStackElementSize);
1812         ldx(tmp1, tmp1, R15_esp);
1813 
1814         profile_obj_type(tmp1, R28_mdx, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args, tmp2, tmp1);
1815 
1816         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1817         addi(R28_mdx, R28_mdx, to_add);
1818         off_to_args += to_add;
1819       }
1820 
1821       if (MethodData::profile_return()) {
1822         ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx);
1823         addi(tmp1, tmp1, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1824       }
1825 
1826       bind(done);
1827 
1828       if (MethodData::profile_return()) {
1829         // We're right after the type profile for the last
1830         // argument. tmp1 is the number of cells left in the
1831         // CallTypeData/VirtualCallTypeData to reach its end. Non null
1832         // if there's a return to profile.
1833         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(),
1834                "can't move past ret type");
1835         sldi(tmp1, tmp1, exact_log2(DataLayout::cell_size));
1836         add(R28_mdx, tmp1, R28_mdx);
1837       }
1838     } else {
1839       assert(MethodData::profile_return(), "either profile call args or call ret");
1840       update_mdp_by_constant(in_bytes(TypeEntriesAtCall::return_only_size()));
1841     }
1842 
1843     // Mdp points right after the end of the
1844     // CallTypeData/VirtualCallTypeData, right after the cells for the
1845     // return value type if there's one.
1846     align(32, 12);
1847     bind(profile_continue);
1848   }
1849 }
1850 
1851 void InterpreterMacroAssembler::profile_return_type(Register ret, Register tmp1, Register tmp2) {
1852   assert_different_registers(ret, tmp1, tmp2);
1853   if (ProfileInterpreter && MethodData::profile_return()) {
1854     Label profile_continue;
1855 
1856     test_method_data_pointer(profile_continue);
1857 
1858     if (MethodData::profile_return_jsr292_only()) {
1859       // If we don't profile all invoke bytecodes we must make sure
1860       // it's a bytecode we indeed profile. We can't go back to the
1861       // begining of the ProfileData we intend to update to check its
1862       // type because we're right after it and we don't known its
1863       // length.
1864       lbz(tmp1, 0, R14_bcp);
1865       lbz(tmp2, Method::intrinsic_id_offset_in_bytes(), R19_method);
1866       cmpwi(CCR0, tmp1, Bytecodes::_invokedynamic);
1867       cmpwi(CCR1, tmp1, Bytecodes::_invokehandle);
1868       cror(CCR0, Assembler::equal, CCR1, Assembler::equal);
1869       cmpwi(CCR1, tmp2, vmIntrinsics::_compiledLambdaForm);
1870       cror(CCR0, Assembler::equal, CCR1, Assembler::equal);
1871       bne(CCR0, profile_continue);
1872     }
1873 
1874     profile_obj_type(ret, R28_mdx, -in_bytes(ReturnTypeEntry::size()), tmp1, tmp2);
1875 
1876     align(32, 12);
1877     bind(profile_continue);
1878   }
1879 }
1880 
1881 void InterpreterMacroAssembler::profile_parameters_type(Register tmp1, Register tmp2,
1882                                                         Register tmp3, Register tmp4) {
1883   if (ProfileInterpreter && MethodData::profile_parameters()) {
1884     Label profile_continue, done;
1885 
1886     test_method_data_pointer(profile_continue);
1887 
1888     // Load the offset of the area within the MDO used for
1889     // parameters. If it's negative we're not profiling any parameters.
1890     lwz(tmp1, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()), R28_mdx);
1891     cmpwi(CCR0, tmp1, 0);
1892     blt(CCR0, profile_continue);
1893 
1894     // Compute a pointer to the area for parameters from the offset
1895     // and move the pointer to the slot for the last
1896     // parameters. Collect profiling from last parameter down.
1897     // mdo start + parameters offset + array length - 1
1898 
1899     // Pointer to the parameter area in the MDO.
1900     const Register mdp = tmp1;
1901     add(mdp, tmp1, R28_mdx);
1902 
1903     // Offset of the current profile entry to update.
1904     const Register entry_offset = tmp2;
1905     // entry_offset = array len in number of cells
1906     ld(entry_offset, in_bytes(ArrayData::array_len_offset()), mdp);
1907 
1908     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1909     assert(off_base % DataLayout::cell_size == 0, "should be a number of cells");
1910 
1911     // entry_offset (number of cells)  = array len - size of 1 entry + offset of the stack slot field
1912     addi(entry_offset, entry_offset, -TypeStackSlotEntries::per_arg_count() + (off_base / DataLayout::cell_size));
1913     // entry_offset in bytes
1914     sldi(entry_offset, entry_offset, exact_log2(DataLayout::cell_size));
1915 
1916     Label loop;
1917     align(32, 12);
1918     bind(loop);
1919 
1920     // Load offset on the stack from the slot for this parameter.
1921     ld(tmp3, entry_offset, mdp);
1922     sldi(tmp3, tmp3, Interpreter::logStackElementSize);
1923     neg(tmp3, tmp3);
1924     // Read the parameter from the local area.
1925     ldx(tmp3, tmp3, R18_locals);
1926 
1927     // Make entry_offset now point to the type field for this parameter.
1928     int type_base = in_bytes(ParametersTypeData::type_offset(0));
1929     assert(type_base > off_base, "unexpected");
1930     addi(entry_offset, entry_offset, type_base - off_base);
1931 
1932     // Profile the parameter.
1933     profile_obj_type(tmp3, mdp, entry_offset, tmp4, tmp3);
1934 
1935     // Go to next parameter.
1936     int delta = TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size + (type_base - off_base);
1937     cmpdi(CCR0, entry_offset, off_base + delta);
1938     addi(entry_offset, entry_offset, -delta);
1939     bge(CCR0, loop);
1940 
1941     align(32, 12);
1942     bind(profile_continue);
1943   }
1944 }
1945 
1946 // Add a InterpMonitorElem to stack (see frame_sparc.hpp).
1947 void InterpreterMacroAssembler::add_monitor_to_stack(bool stack_is_empty, Register Rtemp1, Register Rtemp2) {
1948 
1949   // Very-local scratch registers.
1950   const Register esp  = Rtemp1;
1951   const Register slot = Rtemp2;
1952 
1953   // Extracted monitor_size.
1954   int monitor_size = frame::interpreter_frame_monitor_size_in_bytes();
1955   assert(Assembler::is_aligned((unsigned int)monitor_size,
1956                                (unsigned int)frame::alignment_in_bytes),
1957          "size of a monitor must respect alignment of SP");
1958 
1959   resize_frame(-monitor_size, /*temp*/esp); // Allocate space for new monitor
1960   std(R1_SP, _ijava_state_neg(top_frame_sp), esp); // esp contains fp
1961 
1962   // Shuffle expression stack down. Recall that stack_base points
1963   // just above the new expression stack bottom. Old_tos and new_tos
1964   // are used to scan thru the old and new expression stacks.
1965   if (!stack_is_empty) {
1966     Label copy_slot, copy_slot_finished;
1967     const Register n_slots = slot;
1968 
1969     addi(esp, R15_esp, Interpreter::stackElementSize); // Point to first element (pre-pushed stack).
1970     subf(n_slots, esp, R26_monitor);
1971     srdi_(n_slots, n_slots, LogBytesPerWord);          // Compute number of slots to copy.
1972     assert(LogBytesPerWord == 3, "conflicts assembler instructions");
1973     beq(CCR0, copy_slot_finished);                     // Nothing to copy.
1974 
1975     mtctr(n_slots);
1976 
1977     // loop
1978     bind(copy_slot);
1979     ld(slot, 0, esp);              // Move expression stack down.
1980     std(slot, -monitor_size, esp); // distance = monitor_size
1981     addi(esp, esp, BytesPerWord);
1982     bdnz(copy_slot);
1983 
1984     bind(copy_slot_finished);
1985   }
1986 
1987   addi(R15_esp, R15_esp, -monitor_size);
1988   addi(R26_monitor, R26_monitor, -monitor_size);
1989 
1990   // Restart interpreter
1991 }
1992 
1993 // ============================================================================
1994 // Java locals access
1995 
1996 // Load a local variable at index in Rindex into register Rdst_value.
1997 // Also puts address of local into Rdst_address as a service.
1998 // Kills:
1999 //   - Rdst_value
2000 //   - Rdst_address
2001 void InterpreterMacroAssembler::load_local_int(Register Rdst_value, Register Rdst_address, Register Rindex) {
2002   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
2003   subf(Rdst_address, Rdst_address, R18_locals);
2004   lwz(Rdst_value, 0, Rdst_address);
2005 }
2006 
2007 // Load a local variable at index in Rindex into register Rdst_value.
2008 // Also puts address of local into Rdst_address as a service.
2009 // Kills:
2010 //   - Rdst_value
2011 //   - Rdst_address
2012 void InterpreterMacroAssembler::load_local_long(Register Rdst_value, Register Rdst_address, Register Rindex) {
2013   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
2014   subf(Rdst_address, Rdst_address, R18_locals);
2015   ld(Rdst_value, -8, Rdst_address);
2016 }
2017 
2018 // Load a local variable at index in Rindex into register Rdst_value.
2019 // Also puts address of local into Rdst_address as a service.
2020 // Input:
2021 //   - Rindex:      slot nr of local variable
2022 // Kills:
2023 //   - Rdst_value
2024 //   - Rdst_address
2025 void InterpreterMacroAssembler::load_local_ptr(Register Rdst_value,
2026                                                Register Rdst_address,
2027                                                Register Rindex) {
2028   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
2029   subf(Rdst_address, Rdst_address, R18_locals);
2030   ld(Rdst_value, 0, Rdst_address);
2031 }
2032 
2033 // Load a local variable at index in Rindex into register Rdst_value.
2034 // Also puts address of local into Rdst_address as a service.
2035 // Kills:
2036 //   - Rdst_value
2037 //   - Rdst_address
2038 void InterpreterMacroAssembler::load_local_float(FloatRegister Rdst_value,
2039                                                  Register Rdst_address,
2040                                                  Register Rindex) {
2041   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
2042   subf(Rdst_address, Rdst_address, R18_locals);
2043   lfs(Rdst_value, 0, Rdst_address);
2044 }
2045 
2046 // Load a local variable at index in Rindex into register Rdst_value.
2047 // Also puts address of local into Rdst_address as a service.
2048 // Kills:
2049 //   - Rdst_value
2050 //   - Rdst_address
2051 void InterpreterMacroAssembler::load_local_double(FloatRegister Rdst_value,
2052                                                   Register Rdst_address,
2053                                                   Register Rindex) {
2054   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
2055   subf(Rdst_address, Rdst_address, R18_locals);
2056   lfd(Rdst_value, -8, Rdst_address);
2057 }
2058 
2059 // Store an int value at local variable slot Rindex.
2060 // Kills:
2061 //   - Rindex
2062 void InterpreterMacroAssembler::store_local_int(Register Rvalue, Register Rindex) {
2063   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
2064   subf(Rindex, Rindex, R18_locals);
2065   stw(Rvalue, 0, Rindex);
2066 }
2067 
2068 // Store a long value at local variable slot Rindex.
2069 // Kills:
2070 //   - Rindex
2071 void InterpreterMacroAssembler::store_local_long(Register Rvalue, Register Rindex) {
2072   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
2073   subf(Rindex, Rindex, R18_locals);
2074   std(Rvalue, -8, Rindex);
2075 }
2076 
2077 // Store an oop value at local variable slot Rindex.
2078 // Kills:
2079 //   - Rindex
2080 void InterpreterMacroAssembler::store_local_ptr(Register Rvalue, Register Rindex) {
2081   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
2082   subf(Rindex, Rindex, R18_locals);
2083   std(Rvalue, 0, Rindex);
2084 }
2085 
2086 // Store an int value at local variable slot Rindex.
2087 // Kills:
2088 //   - Rindex
2089 void InterpreterMacroAssembler::store_local_float(FloatRegister Rvalue, Register Rindex) {
2090   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
2091   subf(Rindex, Rindex, R18_locals);
2092   stfs(Rvalue, 0, Rindex);
2093 }
2094 
2095 // Store an int value at local variable slot Rindex.
2096 // Kills:
2097 //   - Rindex
2098 void InterpreterMacroAssembler::store_local_double(FloatRegister Rvalue, Register Rindex) {
2099   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
2100   subf(Rindex, Rindex, R18_locals);
2101   stfd(Rvalue, -8, Rindex);
2102 }
2103 
2104 // Read pending exception from thread and jump to interpreter.
2105 // Throw exception entry if one if pending. Fall through otherwise.
2106 void InterpreterMacroAssembler::check_and_forward_exception(Register Rscratch1, Register Rscratch2) {
2107   assert_different_registers(Rscratch1, Rscratch2, R3);
2108   Register Rexception = Rscratch1;
2109   Register Rtmp       = Rscratch2;
2110   Label Ldone;
2111   // Get pending exception oop.
2112   ld(Rexception, thread_(pending_exception));
2113   cmpdi(CCR0, Rexception, 0);
2114   beq(CCR0, Ldone);
2115   li(Rtmp, 0);
2116   mr_if_needed(R3, Rexception);
2117   std(Rtmp, thread_(pending_exception)); // Clear exception in thread
2118   if (Interpreter::rethrow_exception_entry() != NULL) {
2119     // Already got entry address.
2120     load_dispatch_table(Rtmp, (address*)Interpreter::rethrow_exception_entry());
2121   } else {
2122     // Dynamically load entry address.
2123     int simm16_rest = load_const_optimized(Rtmp, &Interpreter::_rethrow_exception_entry, R0, true);
2124     ld(Rtmp, simm16_rest, Rtmp);
2125   }
2126   mtctr(Rtmp);
2127   save_interpreter_state(Rtmp);
2128   bctr();
2129 
2130   align(32, 12);
2131   bind(Ldone);
2132 }
2133 
2134 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
2135   save_interpreter_state(R11_scratch1);
2136 
2137   MacroAssembler::call_VM(oop_result, entry_point, false);
2138 
2139   restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true);
2140 
2141   check_and_handle_popframe(R11_scratch1);
2142   check_and_handle_earlyret(R11_scratch1);
2143   // Now check exceptions manually.
2144   if (check_exceptions) {
2145     check_and_forward_exception(R11_scratch1, R12_scratch2);
2146   }
2147 }
2148 
2149 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point,
2150                                         Register arg_1, bool check_exceptions) {
2151   // ARG1 is reserved for the thread.
2152   mr_if_needed(R4_ARG2, arg_1);
2153   call_VM(oop_result, entry_point, check_exceptions);
2154 }
2155 
2156 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point,
2157                                         Register arg_1, Register arg_2,
2158                                         bool check_exceptions) {
2159   // ARG1 is reserved for the thread.
2160   mr_if_needed(R4_ARG2, arg_1);
2161   assert(arg_2 != R4_ARG2, "smashed argument");
2162   mr_if_needed(R5_ARG3, arg_2);
2163   call_VM(oop_result, entry_point, check_exceptions);
2164 }
2165 
2166 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point,
2167                                         Register arg_1, Register arg_2, Register arg_3,
2168                                         bool check_exceptions) {
2169   // ARG1 is reserved for the thread.
2170   mr_if_needed(R4_ARG2, arg_1);
2171   assert(arg_2 != R4_ARG2, "smashed argument");
2172   mr_if_needed(R5_ARG3, arg_2);
2173   assert(arg_3 != R4_ARG2 && arg_3 != R5_ARG3, "smashed argument");
2174   mr_if_needed(R6_ARG4, arg_3);
2175   call_VM(oop_result, entry_point, check_exceptions);
2176 }
2177 
2178 void InterpreterMacroAssembler::save_interpreter_state(Register scratch) {
2179   ld(scratch, 0, R1_SP);
2180   std(R15_esp, _ijava_state_neg(esp), scratch);
2181   std(R14_bcp, _ijava_state_neg(bcp), scratch);
2182   std(R26_monitor, _ijava_state_neg(monitors), scratch);
2183   if (ProfileInterpreter) { std(R28_mdx, _ijava_state_neg(mdx), scratch); }
2184   // Other entries should be unchanged.
2185 }
2186 
2187 void InterpreterMacroAssembler::restore_interpreter_state(Register scratch, bool bcp_and_mdx_only) {
2188   ld(scratch, 0, R1_SP);
2189   ld(R14_bcp, _ijava_state_neg(bcp), scratch); // Changed by VM code (exception).
2190   if (ProfileInterpreter) { ld(R28_mdx, _ijava_state_neg(mdx), scratch); } // Changed by VM code.
2191   if (!bcp_and_mdx_only) {
2192     // Following ones are Metadata.
2193     ld(R19_method, _ijava_state_neg(method), scratch);
2194     ld(R27_constPoolCache, _ijava_state_neg(cpoolCache), scratch);
2195     // Following ones are stack addresses and don't require reload.
2196     ld(R15_esp, _ijava_state_neg(esp), scratch);
2197     ld(R18_locals, _ijava_state_neg(locals), scratch);
2198     ld(R26_monitor, _ijava_state_neg(monitors), scratch);
2199   }
2200 #ifdef ASSERT
2201   {
2202     Label Lok;
2203     subf(R0, R1_SP, scratch);
2204     cmpdi(CCR0, R0, frame::abi_reg_args_size + frame::ijava_state_size);
2205     bge(CCR0, Lok);
2206     stop("frame too small (restore istate)", 0x5432);
2207     bind(Lok);
2208   }
2209   {
2210     Label Lok;
2211     ld(R0, _ijava_state_neg(ijava_reserved), scratch);
2212     cmpdi(CCR0, R0, 0x5afe);
2213     beq(CCR0, Lok);
2214     stop("frame corrupted (restore istate)", 0x5afe);
2215     bind(Lok);
2216   }
2217 #endif
2218 }
2219 
2220 void InterpreterMacroAssembler::get_method_counters(Register method,
2221                                                     Register Rcounters,
2222                                                     Label& skip) {
2223   BLOCK_COMMENT("Load and ev. allocate counter object {");
2224   Label has_counters;
2225   ld(Rcounters, in_bytes(Method::method_counters_offset()), method);
2226   cmpdi(CCR0, Rcounters, 0);
2227   bne(CCR0, has_counters);
2228   call_VM(noreg, CAST_FROM_FN_PTR(address,
2229                                   InterpreterRuntime::build_method_counters), method, false);
2230   ld(Rcounters, in_bytes(Method::method_counters_offset()), method);
2231   cmpdi(CCR0, Rcounters, 0);
2232   beq(CCR0, skip); // No MethodCounters, OutOfMemory.
2233   BLOCK_COMMENT("} Load and ev. allocate counter object");
2234 
2235   bind(has_counters);
2236 }
2237 
2238 void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters,
2239                                                              Register iv_be_count,
2240                                                              Register Rtmp_r0) {
2241   assert(UseCompiler || LogTouchedMethods, "incrementing must be useful");
2242   Register invocation_count = iv_be_count;
2243   Register backedge_count   = Rtmp_r0;
2244   int delta = InvocationCounter::count_increment;
2245 
2246   // Load each counter in a register.
2247   //  ld(inv_counter, Rtmp);
2248   //  ld(be_counter, Rtmp2);
2249   int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() +
2250                                     InvocationCounter::counter_offset());
2251   int be_counter_offset  = in_bytes(MethodCounters::backedge_counter_offset() +
2252                                     InvocationCounter::counter_offset());
2253 
2254   BLOCK_COMMENT("Increment profiling counters {");
2255 
2256   // Load the backedge counter.
2257   lwz(backedge_count, be_counter_offset, Rcounters); // is unsigned int
2258   // Mask the backedge counter.
2259   andi(backedge_count, backedge_count, InvocationCounter::count_mask_value);
2260 
2261   // Load the invocation counter.
2262   lwz(invocation_count, inv_counter_offset, Rcounters); // is unsigned int
2263   // Add the delta to the invocation counter and store the result.
2264   addi(invocation_count, invocation_count, delta);
2265   // Store value.
2266   stw(invocation_count, inv_counter_offset, Rcounters);
2267 
2268   // Add invocation counter + backedge counter.
2269   add(iv_be_count, backedge_count, invocation_count);
2270 
2271   // Note that this macro must leave the backedge_count + invocation_count in
2272   // register iv_be_count!
2273   BLOCK_COMMENT("} Increment profiling counters");
2274 }
2275 
2276 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
2277   if (state == atos) { MacroAssembler::verify_oop(reg); }
2278 }
2279 
2280 // Local helper function for the verify_oop_or_return_address macro.
2281 static bool verify_return_address(Method* m, int bci) {
2282 #ifndef PRODUCT
2283   address pc = (address)(m->constMethod()) + in_bytes(ConstMethod::codes_offset()) + bci;
2284   // Assume it is a valid return address if it is inside m and is preceded by a jsr.
2285   if (!m->contains(pc))                                            return false;
2286   address jsr_pc;
2287   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
2288   if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
2289   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
2290   if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
2291 #endif // PRODUCT
2292   return false;
2293 }
2294 
2295 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2296   if (VerifyFPU) {
2297     unimplemented("verfiyFPU");
2298   }
2299 }
2300 
2301 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
2302   if (!VerifyOops) return;
2303 
2304   // The VM documentation for the astore[_wide] bytecode allows
2305   // the TOS to be not only an oop but also a return address.
2306   Label test;
2307   Label skip;
2308   // See if it is an address (in the current method):
2309 
2310   const int log2_bytecode_size_limit = 16;
2311   srdi_(Rtmp, reg, log2_bytecode_size_limit);
2312   bne(CCR0, test);
2313 
2314   address fd = CAST_FROM_FN_PTR(address, verify_return_address);
2315   const int nbytes_save = MacroAssembler::num_volatile_regs * 8;
2316   save_volatile_gprs(R1_SP, -nbytes_save); // except R0
2317   save_LR_CR(Rtmp); // Save in old frame.
2318   push_frame_reg_args(nbytes_save, Rtmp);
2319 
2320   load_const_optimized(Rtmp, fd, R0);
2321   mr_if_needed(R4_ARG2, reg);
2322   mr(R3_ARG1, R19_method);
2323   call_c(Rtmp); // call C
2324 
2325   pop_frame();
2326   restore_LR_CR(Rtmp);
2327   restore_volatile_gprs(R1_SP, -nbytes_save); // except R0
2328   b(skip);
2329 
2330   // Perform a more elaborate out-of-line call.
2331   // Not an address; verify it:
2332   bind(test);
2333   verify_oop(reg);
2334   bind(skip);
2335 }
2336 
2337 // Inline assembly for:
2338 //
2339 // if (thread is in interp_only_mode) {
2340 //   InterpreterRuntime::post_method_entry();
2341 // }
2342 // if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY ) ||
2343 //     *jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY2)   ) {
2344 //   SharedRuntime::jvmpi_method_entry(method, receiver);
2345 // }
2346 void InterpreterMacroAssembler::notify_method_entry() {
2347   // JVMTI
2348   // Whenever JVMTI puts a thread in interp_only_mode, method
2349   // entry/exit events are sent for that thread to track stack
2350   // depth. If it is possible to enter interp_only_mode we add
2351   // the code to check if the event should be sent.
2352   if (JvmtiExport::can_post_interpreter_events()) {
2353     Label jvmti_post_done;
2354 
2355     lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
2356     cmpwi(CCR0, R0, 0);
2357     beq(CCR0, jvmti_post_done);
2358     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry),
2359             /*check_exceptions=*/true);
2360 
2361     bind(jvmti_post_done);
2362   }
2363 }
2364 
2365 // Inline assembly for:
2366 //
2367 // if (thread is in interp_only_mode) {
2368 //   // save result
2369 //   InterpreterRuntime::post_method_exit();
2370 //   // restore result
2371 // }
2372 // if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_EXIT)) {
2373 //   // save result
2374 //   SharedRuntime::jvmpi_method_exit();
2375 //   // restore result
2376 // }
2377 //
2378 // Native methods have their result stored in d_tmp and l_tmp.
2379 // Java methods have their result stored in the expression stack.
2380 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method, TosState state,
2381                                                    NotifyMethodExitMode mode, bool check_exceptions) {
2382   // JVMTI
2383   // Whenever JVMTI puts a thread in interp_only_mode, method
2384   // entry/exit events are sent for that thread to track stack
2385   // depth. If it is possible to enter interp_only_mode we add
2386   // the code to check if the event should be sent.
2387   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2388     Label jvmti_post_done;
2389 
2390     lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
2391     cmpwi(CCR0, R0, 0);
2392     beq(CCR0, jvmti_post_done);
2393     if (!is_native_method) { push(state); } // Expose tos to GC.
2394     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit),
2395             /*check_exceptions=*/check_exceptions);
2396     if (!is_native_method) { pop(state); }
2397 
2398     align(32, 12);
2399     bind(jvmti_post_done);
2400   }
2401 
2402   // Dtrace support not implemented.
2403 }
2404