1 /*
   2  * Copyright (c) 2016, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2016, 2017 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 // Major contributions by AHa, AS, JL, ML.
  27 
  28 #include "precompiled.hpp"
  29 #include "asm/macroAssembler.inline.hpp"
  30 #include "interp_masm_s390.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "interpreter/interpreterRuntime.hpp"
  33 #include "oops/arrayOop.hpp"
  34 #include "oops/markOop.hpp"
  35 #include "prims/jvmtiExport.hpp"
  36 #include "prims/jvmtiThreadState.hpp"
  37 #include "runtime/basicLock.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 
  42 // Implementation of InterpreterMacroAssembler.
  43 // This file specializes the assember with interpreter-specific macros.
  44 
  45 #ifdef PRODUCT
  46 #define BLOCK_COMMENT(str)
  47 #define BIND(label)        bind(label);
  48 #else
  49 #define BLOCK_COMMENT(str) block_comment(str)
  50 #define BIND(label)        bind(label); BLOCK_COMMENT(#label ":")
  51 #endif
  52 
  53 void InterpreterMacroAssembler::jump_to_entry(address entry, Register Rscratch) {
  54   assert(entry != NULL, "Entry must have been generated by now");
  55   assert(Rscratch != Z_R0, "Can't use R0 for addressing");
  56   branch_optimized(Assembler::bcondAlways, entry);
  57 }
  58 
  59 void InterpreterMacroAssembler::empty_expression_stack(void) {
  60   get_monitors(Z_R1_scratch);
  61   add2reg(Z_esp, -Interpreter::stackElementSize, Z_R1_scratch);
  62 }
  63 
  64 // Dispatch code executed in the prolog of a bytecode which does not do it's
  65 // own dispatch.
  66 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
  67   // On z/Architecture we are short on registers, therefore we do not preload the
  68   // dispatch address of the next bytecode.
  69 }
  70 
  71 // Dispatch code executed in the epilog of a bytecode which does not do it's
  72 // own dispatch.
  73 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
  74   dispatch_next(state, step);
  75 }
  76 
  77 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
  78   z_llgc(Z_bytecode, bcp_incr, Z_R0, Z_bcp);  // Load next bytecode.
  79   add2reg(Z_bcp, bcp_incr);                   // Advance bcp. Add2reg produces optimal code.
  80   dispatch_base(state, Interpreter::dispatch_table(state));
  81 }
  82 
  83 // Common code to dispatch and dispatch_only.
  84 // Dispatch value in Lbyte_code and increment Lbcp.
  85 
  86 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
  87   verify_FPU(1, state);
  88 
  89 #ifdef ASSERT
  90   address reentry = NULL;
  91   { Label OK;
  92     // Check if the frame pointer in Z_fp is correct.
  93     z_cg(Z_fp, 0, Z_SP);
  94     z_bre(OK);
  95     reentry = stop_chain_static(reentry, "invalid frame pointer Z_fp: " FILE_AND_LINE);
  96     bind(OK);
  97   }
  98   { Label OK;
  99     // check if the locals pointer in Z_locals is correct
 100     z_cg(Z_locals, _z_ijava_state_neg(locals), Z_fp);
 101     z_bre(OK);
 102     reentry = stop_chain_static(reentry, "invalid locals pointer Z_locals: " FILE_AND_LINE);
 103     bind(OK);
 104   }
 105 #endif
 106 
 107   // TODO: Maybe implement +VerifyActivationFrameSize here.
 108   // verify_thread(); // Too slow. We will just verify on method entry & exit.
 109   verify_oop(Z_tos, state);
 110 #ifdef FAST_DISPATCH
 111   if (table == Interpreter::dispatch_table(state)) {
 112     // Use IdispatchTables.
 113     add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
 114                                                         // Add offset to correct dispatch table.
 115     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // Multiply by wordSize.
 116     ld_ptr(IdispatchTables, Lbyte_code, G3_scratch);    // Get entry addr.
 117   } else
 118 #endif
 119   {
 120     // Dispatch table to use.
 121     load_absolute_address(Z_tmp_1, (address) table);  // Z_tmp_1 = table;
 122 
 123     // 0 <= Z_bytecode < 256 => Use a 32 bit shift, because it is shorter than sllg.
 124     // Z_bytecode must have been loaded zero-extended for this approach to be correct.
 125     z_sll(Z_bytecode, LogBytesPerWord, Z_R0);   // Multiply by wordSize.
 126     z_lg(Z_tmp_1, 0, Z_bytecode, Z_tmp_1);      // Get entry addr.
 127   }
 128   z_br(Z_tmp_1);
 129 }
 130 
 131 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 132   dispatch_base(state, Interpreter::dispatch_table(state));
 133 }
 134 
 135 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 136   dispatch_base(state, Interpreter::normal_table(state));
 137 }
 138 
 139 void InterpreterMacroAssembler::dispatch_via(TosState state, address *table) {
 140   // Load current bytecode.
 141   z_llgc(Z_bytecode, Address(Z_bcp, (intptr_t)0));
 142   dispatch_base(state, table);
 143 }
 144 
 145 // The following call_VM*_base() methods overload and mask the respective
 146 // declarations/definitions in class MacroAssembler. They are meant as a "detour"
 147 // to perform additional, template interpreter specific tasks before actually
 148 // calling their MacroAssembler counterparts.
 149 
 150 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point) {
 151   bool allow_relocation = true; // Fenerally valid variant. Assume code is relocated.
 152   // interpreter specific
 153   // Note: No need to save/restore bcp (Z_R13) pointer since these are callee
 154   // saved registers and no blocking/ GC can happen in leaf calls.
 155 
 156   // super call
 157   MacroAssembler::call_VM_leaf_base(entry_point, allow_relocation);
 158 }
 159 
 160 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, bool allow_relocation) {
 161   // interpreter specific
 162   // Note: No need to save/restore bcp (Z_R13) pointer since these are callee
 163   // saved registers and no blocking/ GC can happen in leaf calls.
 164 
 165   // super call
 166   MacroAssembler::call_VM_leaf_base(entry_point, allow_relocation);
 167 }
 168 
 169 void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register last_java_sp,
 170                                              address entry_point, bool check_exceptions) {
 171   bool allow_relocation = true; // Fenerally valid variant. Assume code is relocated.
 172   // interpreter specific
 173 
 174   save_bcp();
 175   save_esp();
 176   // super call
 177   MacroAssembler::call_VM_base(oop_result, last_java_sp,
 178                                entry_point, allow_relocation, check_exceptions);
 179   restore_bcp();
 180 }
 181 
 182 void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register last_java_sp,
 183                                              address entry_point, bool allow_relocation,
 184                                              bool check_exceptions) {
 185   // interpreter specific
 186 
 187   save_bcp();
 188   save_esp();
 189   // super call
 190   MacroAssembler::call_VM_base(oop_result, last_java_sp,
 191                                entry_point, allow_relocation, check_exceptions);
 192   restore_bcp();
 193 }
 194 
 195 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
 196   if (JvmtiExport::can_pop_frame()) {
 197     BLOCK_COMMENT("check_and_handle_popframe {");
 198     Label L;
 199     // Initiate popframe handling only if it is not already being
 200     // processed. If the flag has the popframe_processing bit set, it
 201     // means that this code is called *during* popframe handling - we
 202     // don't want to reenter.
 203     // TODO: Check if all four state combinations could be visible.
 204     // If (processing and !pending) is an invisible/impossible state,
 205     // there is optimization potential by testing both bits at once.
 206     // Then, All_Zeroes and All_Ones means skip, Mixed means doit.
 207     testbit(Address(Z_thread, JavaThread::popframe_condition_offset()),
 208             exact_log2(JavaThread::popframe_pending_bit));
 209     z_bfalse(L);
 210     testbit(Address(Z_thread, JavaThread::popframe_condition_offset()),
 211             exact_log2(JavaThread::popframe_processing_bit));
 212     z_btrue(L);
 213 
 214     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 215     // address of the same-named entrypoint in the generated interpreter code.
 216     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 217     // The above call should (as its only effect) return the contents of the field
 218     // _remove_activation_preserving_args_entry in Z_RET.
 219     // We just jump there to have the work done.
 220     z_br(Z_RET);
 221     // There is no way for control to fall thru here.
 222 
 223     bind(L);
 224     BLOCK_COMMENT("} check_and_handle_popframe");
 225   }
 226 }
 227 
 228 
 229 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 230   Register RjvmtiState = Z_R1_scratch;
 231   int      tos_off     = in_bytes(JvmtiThreadState::earlyret_tos_offset());
 232   int      oop_off     = in_bytes(JvmtiThreadState::earlyret_oop_offset());
 233   int      val_off     = in_bytes(JvmtiThreadState::earlyret_value_offset());
 234   int      state_off   = in_bytes(JavaThread::jvmti_thread_state_offset());
 235 
 236   z_lg(RjvmtiState, state_off, Z_thread);
 237 
 238   switch (state) {
 239     case atos: z_lg(Z_tos, oop_off, RjvmtiState);
 240       store_const(Address(RjvmtiState, oop_off), 0L, 8, 8, Z_R0_scratch);
 241                                                     break;
 242     case ltos: z_lg(Z_tos, val_off, RjvmtiState);   break;
 243     case btos: // fall through
 244     case ztos: // fall through
 245     case ctos: // fall through
 246     case stos: // fall through
 247     case itos: z_llgf(Z_tos, val_off, RjvmtiState); break;
 248     case ftos: z_le(Z_ftos, val_off, RjvmtiState);  break;
 249     case dtos: z_ld(Z_ftos, val_off, RjvmtiState);  break;
 250     case vtos:   /* nothing to do */                break;
 251     default  : ShouldNotReachHere();
 252   }
 253 
 254   // Clean up tos value in the jvmti thread state.
 255   store_const(Address(RjvmtiState, val_off),   0L, 8, 8, Z_R0_scratch);
 256   // Set tos state field to illegal value.
 257   store_const(Address(RjvmtiState, tos_off), ilgl, 4, 1, Z_R0_scratch);
 258 }
 259 
 260 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
 261   if (JvmtiExport::can_force_early_return()) {
 262     BLOCK_COMMENT("check_and_handle_earlyret {");
 263     Label L;
 264     // arg regs are save, because we are just behind the call in call_VM_base
 265     Register jvmti_thread_state = Z_ARG2;
 266     Register tmp                = Z_ARG3;
 267     load_and_test_long(jvmti_thread_state, Address(Z_thread, JavaThread::jvmti_thread_state_offset()));
 268     z_bre(L); // if (thread->jvmti_thread_state() == NULL) exit;
 269 
 270     // Initiate earlyret handling only if it is not already being processed.
 271     // If the flag has the earlyret_processing bit set, it means that this code
 272     // is called *during* earlyret handling - we don't want to reenter.
 273 
 274     assert((JvmtiThreadState::earlyret_pending != 0) && (JvmtiThreadState::earlyret_inactive == 0),
 275           "must fix this check, when changing the values of the earlyret enum");
 276     assert(JvmtiThreadState::earlyret_pending == 1, "must fix this check, when changing the values of the earlyret enum");
 277 
 278     load_and_test_int(tmp, Address(jvmti_thread_state, JvmtiThreadState::earlyret_state_offset()));
 279     z_brz(L); // if (thread->jvmti_thread_state()->_earlyret_state != JvmtiThreadState::earlyret_pending) exit;
 280 
 281     // Call Interpreter::remove_activation_early_entry() to get the address of the
 282     // same-named entrypoint in the generated interpreter code.
 283     assert(sizeof(TosState) == 4, "unexpected size");
 284     z_l(Z_ARG1, Address(jvmti_thread_state, JvmtiThreadState::earlyret_tos_offset()));
 285     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Z_ARG1);
 286     // The above call should (as its only effect) return the contents of the field
 287     // _remove_activation_preserving_args_entry in Z_RET.
 288     // We just jump there to have the work done.
 289     z_br(Z_RET);
 290     // There is no way for control to fall thru here.
 291 
 292     bind(L);
 293     BLOCK_COMMENT("} check_and_handle_earlyret");
 294   }
 295 }
 296 
 297 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
 298   lgr_if_needed(Z_ARG1, arg_1);
 299   assert(arg_2 != Z_ARG1, "smashed argument");
 300   lgr_if_needed(Z_ARG2, arg_2);
 301   MacroAssembler::call_VM_leaf_base(entry_point, true);
 302 }
 303 
 304 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, int bcp_offset, size_t index_size) {
 305   Address param(Z_bcp, bcp_offset);
 306 
 307   BLOCK_COMMENT("get_cache_index_at_bcp {");
 308   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 309   if (index_size == sizeof(u2)) {
 310     load_sized_value(index, param, 2, false /*signed*/);
 311   } else if (index_size == sizeof(u4)) {
 312 
 313     load_sized_value(index, param, 4, false);
 314 
 315     // Check if the secondary index definition is still ~x, otherwise
 316     // we have to change the following assembler code to calculate the
 317     // plain index.
 318     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 319     not_(index);  // Convert to plain index.
 320   } else if (index_size == sizeof(u1)) {
 321     z_llgc(index, param);
 322   } else {
 323     ShouldNotReachHere();
 324   }
 325   BLOCK_COMMENT("}");
 326 }
 327 
 328 
 329 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register cpe_offset,
 330                                                            int bcp_offset, size_t index_size) {
 331   BLOCK_COMMENT("get_cache_and_index_at_bcp {");
 332   assert_different_registers(cache, cpe_offset);
 333   get_cache_index_at_bcp(cpe_offset, bcp_offset, index_size);
 334   z_lg(cache, Address(Z_fp, _z_ijava_state_neg(cpoolCache)));
 335   // Convert from field index to ConstantPoolCache offset in bytes.
 336   z_sllg(cpe_offset, cpe_offset, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord));
 337   BLOCK_COMMENT("}");
 338 }
 339 
 340 // Kills Z_R0_scratch.
 341 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
 342                                                                         Register cpe_offset,
 343                                                                         Register bytecode,
 344                                                                         int byte_no,
 345                                                                         int bcp_offset,
 346                                                                         size_t index_size) {
 347   BLOCK_COMMENT("get_cache_and_index_and_bytecode_at_bcp {");
 348   get_cache_and_index_at_bcp(cache, cpe_offset, bcp_offset, index_size);
 349 
 350   // We want to load (from CP cache) the bytecode that corresponds to the passed-in byte_no.
 351   // It is located at (cache + cpe_offset + base_offset + indices_offset + (8-1) (last byte in DW) - (byte_no+1).
 352   // Instead of loading, shifting and masking a DW, we just load that one byte of interest with z_llgc (unsigned).
 353   const int base_ix_off = in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset());
 354   const int off_in_DW   = (8-1) - (1+byte_no);
 355   assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
 356   assert(ConstantPoolCacheEntry::bytecode_1_mask == 0xff, "");
 357   load_sized_value(bytecode, Address(cache, cpe_offset, base_ix_off+off_in_DW), 1, false /*signed*/);
 358 
 359   BLOCK_COMMENT("}");
 360 }
 361 
 362 // Load object from cpool->resolved_references(index).
 363 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index) {
 364   assert_different_registers(result, index);
 365   get_constant_pool(result);
 366 
 367   // Convert
 368   //  - from field index to resolved_references() index and
 369   //  - from word index to byte offset.
 370   // Since this is a java object, it is potentially compressed.
 371   Register tmp = index;  // reuse
 372   z_sllg(index, index, LogBytesPerHeapOop); // Offset into resolved references array.
 373   // Load pointer for resolved_references[] objArray.
 374   z_lg(result, ConstantPool::cache_offset_in_bytes(), result);
 375   z_lg(result, ConstantPoolCache::resolved_references_offset_in_bytes(), result);
 376   // JNIHandles::resolve(result)
 377   z_lg(result, 0, result); // Load resolved references array itself.
 378 #ifdef ASSERT
 379   NearLabel index_ok;
 380   z_lgf(Z_R0, Address(result, arrayOopDesc::length_offset_in_bytes()));
 381   z_sllg(Z_R0, Z_R0, LogBytesPerHeapOop);
 382   compare64_and_branch(tmp, Z_R0, Assembler::bcondLow, index_ok);
 383   stop("resolved reference index out of bounds", 0x09256);
 384   bind(index_ok);
 385 #endif
 386   z_agr(result, index);    // Address of indexed array element.
 387   load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result);
 388 }
 389 
 390 // load cpool->resolved_klass_at(index)
 391 void InterpreterMacroAssembler::load_resolved_klass_at_offset(Register cpool, Register offset, Register iklass) {
 392   // int value = *(Rcpool->int_at_addr(which));
 393   // int resolved_klass_index = extract_low_short_from_int(value);
 394   z_llgh(offset, Address(cpool, offset, sizeof(ConstantPool) + 2)); // offset = resolved_klass_index (s390 is big-endian)
 395   z_sllg(offset, offset, LogBytesPerWord);                          // Convert 'index' to 'offset'
 396   z_lg(iklass, Address(cpool, ConstantPool::resolved_klasses_offset_in_bytes())); // iklass = cpool->_resolved_klasses
 397   z_lg(iklass, Address(iklass, offset, Array<Klass*>::base_offset_in_bytes()));
 398 }
 399 
 400 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
 401                                                                Register tmp,
 402                                                                int bcp_offset,
 403                                                                size_t index_size) {
 404   BLOCK_COMMENT("get_cache_entry_pointer_at_bcp {");
 405     get_cache_and_index_at_bcp(cache, tmp, bcp_offset, index_size);
 406     add2reg_with_index(cache, in_bytes(ConstantPoolCache::base_offset()), tmp, cache);
 407   BLOCK_COMMENT("}");
 408 }
 409 
 410 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
 411 // a subtype of super_klass. Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
 412 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 413                                                   Register Rsuper_klass,
 414                                                   Register Rtmp1,
 415                                                   Register Rtmp2,
 416                                                   Label &ok_is_subtype) {
 417   // Profile the not-null value's klass.
 418   profile_typecheck(Rtmp1, Rsub_klass, Rtmp2);
 419 
 420   // Do the check.
 421   check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype);
 422 
 423   // Profile the failure of the check.
 424   profile_typecheck_failed(Rtmp1, Rtmp2);
 425 }
 426 
 427 // Pop topmost element from stack. It just disappears.
 428 // Useful if consumed previously by access via stackTop().
 429 void InterpreterMacroAssembler::popx(int len) {
 430   add2reg(Z_esp, len*Interpreter::stackElementSize);
 431   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 432 }
 433 
 434 // Get Address object of stack top. No checks. No pop.
 435 // Purpose: - Provide address of stack operand to exploit reg-mem operations.
 436 //          - Avoid RISC-like mem2reg - reg-reg-op sequence.
 437 Address InterpreterMacroAssembler::stackTop() {
 438   return Address(Z_esp, Interpreter::expr_offset_in_bytes(0));
 439 }
 440 
 441 void InterpreterMacroAssembler::pop_i(Register r) {
 442   z_l(r, Interpreter::expr_offset_in_bytes(0), Z_esp);
 443   add2reg(Z_esp, Interpreter::stackElementSize);
 444   assert_different_registers(r, Z_R1_scratch);
 445   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 446 }
 447 
 448 void InterpreterMacroAssembler::pop_ptr(Register r) {
 449   z_lg(r, Interpreter::expr_offset_in_bytes(0), Z_esp);
 450   add2reg(Z_esp, Interpreter::stackElementSize);
 451   assert_different_registers(r, Z_R1_scratch);
 452   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 453 }
 454 
 455 void InterpreterMacroAssembler::pop_l(Register r) {
 456   z_lg(r, Interpreter::expr_offset_in_bytes(0), Z_esp);
 457   add2reg(Z_esp, 2*Interpreter::stackElementSize);
 458   assert_different_registers(r, Z_R1_scratch);
 459   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 460 }
 461 
 462 void InterpreterMacroAssembler::pop_f(FloatRegister f) {
 463   mem2freg_opt(f, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)), false);
 464   add2reg(Z_esp, Interpreter::stackElementSize);
 465   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 466 }
 467 
 468 void InterpreterMacroAssembler::pop_d(FloatRegister f) {
 469   mem2freg_opt(f, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)), true);
 470   add2reg(Z_esp, 2*Interpreter::stackElementSize);
 471   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 472 }
 473 
 474 void InterpreterMacroAssembler::push_i(Register r) {
 475   assert_different_registers(r, Z_R1_scratch);
 476   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 477   z_st(r, Address(Z_esp));
 478   add2reg(Z_esp, -Interpreter::stackElementSize);
 479 }
 480 
 481 void InterpreterMacroAssembler::push_ptr(Register r) {
 482   z_stg(r, Address(Z_esp));
 483   add2reg(Z_esp, -Interpreter::stackElementSize);
 484 }
 485 
 486 void InterpreterMacroAssembler::push_l(Register r) {
 487   assert_different_registers(r, Z_R1_scratch);
 488   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 489   int offset = -Interpreter::stackElementSize;
 490   z_stg(r, Address(Z_esp, offset));
 491   clear_mem(Address(Z_esp), Interpreter::stackElementSize);
 492   add2reg(Z_esp, 2 * offset);
 493 }
 494 
 495 void InterpreterMacroAssembler::push_f(FloatRegister f) {
 496   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 497   freg2mem_opt(f, Address(Z_esp), false);
 498   add2reg(Z_esp, -Interpreter::stackElementSize);
 499 }
 500 
 501 void InterpreterMacroAssembler::push_d(FloatRegister d) {
 502   debug_only(verify_esp(Z_esp, Z_R1_scratch));
 503   int offset = -Interpreter::stackElementSize;
 504   freg2mem_opt(d, Address(Z_esp, offset));
 505   add2reg(Z_esp, 2 * offset);
 506 }
 507 
 508 void InterpreterMacroAssembler::push(TosState state) {
 509   verify_oop(Z_tos, state);
 510   switch (state) {
 511     case atos: push_ptr();           break;
 512     case btos: push_i();             break;
 513     case ztos:
 514     case ctos:
 515     case stos: push_i();             break;
 516     case itos: push_i();             break;
 517     case ltos: push_l();             break;
 518     case ftos: push_f();             break;
 519     case dtos: push_d();             break;
 520     case vtos: /* nothing to do */   break;
 521     default  : ShouldNotReachHere();
 522   }
 523 }
 524 
 525 void InterpreterMacroAssembler::pop(TosState state) {
 526   switch (state) {
 527     case atos: pop_ptr(Z_tos);       break;
 528     case btos: pop_i(Z_tos);         break;
 529     case ztos:
 530     case ctos:
 531     case stos: pop_i(Z_tos);         break;
 532     case itos: pop_i(Z_tos);         break;
 533     case ltos: pop_l(Z_tos);         break;
 534     case ftos: pop_f(Z_ftos);        break;
 535     case dtos: pop_d(Z_ftos);        break;
 536     case vtos: /* nothing to do */   break;
 537     default  : ShouldNotReachHere();
 538   }
 539   verify_oop(Z_tos, state);
 540 }
 541 
 542 // Helpers for swap and dup.
 543 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 544   z_lg(val, Address(Z_esp, Interpreter::expr_offset_in_bytes(n)));
 545 }
 546 
 547 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 548   z_stg(val, Address(Z_esp, Interpreter::expr_offset_in_bytes(n)));
 549 }
 550 
 551 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted(Register method) {
 552   // Satisfy interpreter calling convention (see generate_normal_entry()).
 553   z_lgr(Z_R10, Z_SP); // Set sender sp (aka initial caller sp, aka unextended sp).
 554   // Record top_frame_sp, because the callee might modify it, if it's compiled.
 555   z_stg(Z_SP, _z_ijava_state_neg(top_frame_sp), Z_fp);
 556   save_bcp();
 557   save_esp();
 558   z_lgr(Z_method, method); // Set Z_method (kills Z_fp!).
 559 }
 560 
 561 // Jump to from_interpreted entry of a call unless single stepping is possible
 562 // in this thread in which case we must call the i2i entry.
 563 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 564   assert_different_registers(method, Z_R10 /*used for initial_caller_sp*/, temp);
 565   prepare_to_jump_from_interpreted(method);
 566 
 567   if (JvmtiExport::can_post_interpreter_events()) {
 568     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 569     // compiled code in threads for which the event is enabled. Check here for
 570     // interp_only_mode if these events CAN be enabled.
 571     z_lg(Z_R1_scratch, Address(method, Method::from_interpreted_offset()));
 572     MacroAssembler::load_and_test_int(Z_R0_scratch, Address(Z_thread, JavaThread::interp_only_mode_offset()));
 573     z_bcr(bcondEqual, Z_R1_scratch); // Run compiled code if zero.
 574     // Run interpreted.
 575     z_lg(Z_R1_scratch, Address(method, Method::interpreter_entry_offset()));
 576     z_br(Z_R1_scratch);
 577   } else {
 578     // Run compiled code.
 579     z_lg(Z_R1_scratch, Address(method, Method::from_interpreted_offset()));
 580     z_br(Z_R1_scratch);
 581   }
 582 }
 583 
 584 #ifdef ASSERT
 585 void InterpreterMacroAssembler::verify_esp(Register Resp, Register Rtemp) {
 586   // About to read or write Resp[0].
 587   // Make sure it is not in the monitors or the TOP_IJAVA_FRAME_ABI.
 588   address reentry = NULL;
 589 
 590   {
 591     // Check if the frame pointer in Z_fp is correct.
 592     NearLabel OK;
 593     z_cg(Z_fp, 0, Z_SP);
 594     z_bre(OK);
 595     reentry = stop_chain_static(reentry, "invalid frame pointer Z_fp");
 596     bind(OK);
 597   }
 598   {
 599     // Resp must not point into or below the operand stack,
 600     // i.e. IJAVA_STATE.monitors > Resp.
 601     NearLabel OK;
 602     Register Rmonitors = Rtemp;
 603     z_lg(Rmonitors, _z_ijava_state_neg(monitors), Z_fp);
 604     compareU64_and_branch(Rmonitors, Resp, bcondHigh, OK);
 605     reentry = stop_chain_static(reentry, "too many pops: Z_esp points into monitor area");
 606     bind(OK);
 607   }
 608   {
 609     // Resp may point to the last word of TOP_IJAVA_FRAME_ABI, but not below
 610     // i.e. !(Z_SP + frame::z_top_ijava_frame_abi_size - Interpreter::stackElementSize > Resp).
 611     NearLabel OK;
 612     Register Rabi_bottom = Rtemp;
 613     add2reg(Rabi_bottom, frame::z_top_ijava_frame_abi_size - Interpreter::stackElementSize, Z_SP);
 614     compareU64_and_branch(Rabi_bottom, Resp, bcondNotHigh, OK);
 615     reentry = stop_chain_static(reentry, "too many pushes: Z_esp points into TOP_IJAVA_FRAME_ABI");
 616     bind(OK);
 617   }
 618 }
 619 
 620 void InterpreterMacroAssembler::asm_assert_ijava_state_magic(Register tmp) {
 621   Label magic_ok;
 622   load_const_optimized(tmp, frame::z_istate_magic_number);
 623   z_cg(tmp, Address(Z_fp, _z_ijava_state_neg(magic)));
 624   z_bre(magic_ok);
 625   stop_static("error: wrong magic number in ijava_state access");
 626   bind(magic_ok);
 627 }
 628 #endif // ASSERT
 629 
 630 void InterpreterMacroAssembler::save_bcp() {
 631   z_stg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp)));
 632   asm_assert_ijava_state_magic(Z_bcp);
 633   NOT_PRODUCT(z_lg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp))));
 634 }
 635 
 636 void InterpreterMacroAssembler::restore_bcp() {
 637   asm_assert_ijava_state_magic(Z_bcp);
 638   z_lg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp)));
 639 }
 640 
 641 void InterpreterMacroAssembler::save_esp() {
 642   z_stg(Z_esp, Address(Z_fp, _z_ijava_state_neg(esp)));
 643 }
 644 
 645 void InterpreterMacroAssembler::restore_esp() {
 646   asm_assert_ijava_state_magic(Z_esp);
 647   z_lg(Z_esp, Address(Z_fp, _z_ijava_state_neg(esp)));
 648 }
 649 
 650 void InterpreterMacroAssembler::get_monitors(Register reg) {
 651   asm_assert_ijava_state_magic(reg);
 652   mem2reg_opt(reg, Address(Z_fp, _z_ijava_state_neg(monitors)));
 653 }
 654 
 655 void InterpreterMacroAssembler::save_monitors(Register reg) {
 656   reg2mem_opt(reg, Address(Z_fp, _z_ijava_state_neg(monitors)));
 657 }
 658 
 659 void InterpreterMacroAssembler::get_mdp(Register mdp) {
 660   z_lg(mdp, _z_ijava_state_neg(mdx), Z_fp);
 661 }
 662 
 663 void InterpreterMacroAssembler::save_mdp(Register mdp) {
 664   z_stg(mdp, _z_ijava_state_neg(mdx), Z_fp);
 665 }
 666 
 667 // Values that are only read (besides initialization).
 668 void InterpreterMacroAssembler::restore_locals() {
 669   asm_assert_ijava_state_magic(Z_locals);
 670   z_lg(Z_locals, Address(Z_fp, _z_ijava_state_neg(locals)));
 671 }
 672 
 673 void InterpreterMacroAssembler::get_method(Register reg) {
 674   asm_assert_ijava_state_magic(reg);
 675   z_lg(reg, Address(Z_fp, _z_ijava_state_neg(method)));
 676 }
 677 
 678 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(Register Rdst, int bcp_offset,
 679                                                           signedOrNot is_signed) {
 680   // Rdst is an 8-byte return value!!!
 681 
 682   // Unaligned loads incur only a small penalty on z/Architecture. The penalty
 683   // is a few (2..3) ticks, even when the load crosses a cache line
 684   // boundary. In case of a cache miss, the stall could, of course, be
 685   // much longer.
 686 
 687   switch (is_signed) {
 688     case Signed:
 689       z_lgh(Rdst, bcp_offset, Z_R0, Z_bcp);
 690      break;
 691    case Unsigned:
 692      z_llgh(Rdst, bcp_offset, Z_R0, Z_bcp);
 693      break;
 694    default:
 695      ShouldNotReachHere();
 696   }
 697 }
 698 
 699 
 700 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(Register Rdst, int bcp_offset,
 701                                                           setCCOrNot set_cc) {
 702   // Rdst is an 8-byte return value!!!
 703 
 704   // Unaligned loads incur only a small penalty on z/Architecture. The penalty
 705   // is a few (2..3) ticks, even when the load crosses a cache line
 706   // boundary. In case of a cache miss, the stall could, of course, be
 707   // much longer.
 708 
 709   // Both variants implement a sign-extending int2long load.
 710   if (set_cc == set_CC) {
 711     load_and_test_int2long(Rdst, Address(Z_bcp, (intptr_t)bcp_offset));
 712   } else {
 713     mem2reg_signed_opt(    Rdst, Address(Z_bcp, (intptr_t)bcp_offset));
 714   }
 715 }
 716 
 717 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
 718   get_method(Rdst);
 719   mem2reg_opt(Rdst, Address(Rdst, Method::const_offset()));
 720   mem2reg_opt(Rdst, Address(Rdst, ConstMethod::constants_offset()));
 721 }
 722 
 723 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
 724   get_constant_pool(Rcpool);
 725   mem2reg_opt(Rtags, Address(Rcpool, ConstantPool::tags_offset_in_bytes()));
 726 }
 727 
 728 // Unlock if synchronized method.
 729 //
 730 // Unlock the receiver if this is a synchronized method.
 731 // Unlock any Java monitors from syncronized blocks.
 732 //
 733 // If there are locked Java monitors
 734 //   If throw_monitor_exception
 735 //     throws IllegalMonitorStateException
 736 //   Else if install_monitor_exception
 737 //     installs IllegalMonitorStateException
 738 //   Else
 739 //     no error processing
 740 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
 741                                                               bool throw_monitor_exception,
 742                                                               bool install_monitor_exception) {
 743   NearLabel unlocked, unlock, no_unlock;
 744 
 745   {
 746     Register R_method = Z_ARG2;
 747     Register R_do_not_unlock_if_synchronized = Z_ARG3;
 748 
 749     // Get the value of _do_not_unlock_if_synchronized into G1_scratch.
 750     const Address do_not_unlock_if_synchronized(Z_thread,
 751                                                 JavaThread::do_not_unlock_if_synchronized_offset());
 752     load_sized_value(R_do_not_unlock_if_synchronized, do_not_unlock_if_synchronized, 1, false /*unsigned*/);
 753     z_mvi(do_not_unlock_if_synchronized, false); // Reset the flag.
 754 
 755     // Check if synchronized method.
 756     get_method(R_method);
 757     verify_oop(Z_tos, state);
 758     push(state); // Save tos/result.
 759     testbit(method2_(R_method, access_flags), JVM_ACC_SYNCHRONIZED_BIT);
 760     z_bfalse(unlocked);
 761 
 762     // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 763     // is set.
 764     compareU64_and_branch(R_do_not_unlock_if_synchronized, (intptr_t)0L, bcondNotEqual, no_unlock);
 765   }
 766 
 767   // unlock monitor
 768 
 769   // BasicObjectLock will be first in list, since this is a
 770   // synchronized method. However, need to check that the object has
 771   // not been unlocked by an explicit monitorexit bytecode.
 772   const Address monitor(Z_fp, -(frame::z_ijava_state_size + (int) sizeof(BasicObjectLock)));
 773   // We use Z_ARG2 so that if we go slow path it will be the correct
 774   // register for unlock_object to pass to VM directly.
 775   load_address(Z_ARG2, monitor); // Address of first monitor.
 776   z_lg(Z_ARG3, Address(Z_ARG2, BasicObjectLock::obj_offset_in_bytes()));
 777   compareU64_and_branch(Z_ARG3, (intptr_t)0L, bcondNotEqual, unlock);
 778 
 779   if (throw_monitor_exception) {
 780     // Entry already unlocked need to throw an exception.
 781     MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
 782     should_not_reach_here();
 783   } else {
 784     // Monitor already unlocked during a stack unroll.
 785     // If requested, install an illegal_monitor_state_exception.
 786     // Continue with stack unrolling.
 787     if (install_monitor_exception) {
 788       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
 789     }
 790    z_bru(unlocked);
 791   }
 792 
 793   bind(unlock);
 794 
 795   unlock_object(Z_ARG2);
 796 
 797   bind(unlocked);
 798 
 799   // I0, I1: Might contain return value
 800 
 801   // Check that all monitors are unlocked.
 802   {
 803     NearLabel loop, exception, entry, restart;
 804     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 805     // We use Z_ARG2 so that if we go slow path it will be the correct
 806     // register for unlock_object to pass to VM directly.
 807     Register R_current_monitor = Z_ARG2;
 808     Register R_monitor_block_bot = Z_ARG1;
 809     const Address monitor_block_top(Z_fp, _z_ijava_state_neg(monitors));
 810     const Address monitor_block_bot(Z_fp, -frame::z_ijava_state_size);
 811 
 812     bind(restart);
 813     // Starting with top-most entry.
 814     z_lg(R_current_monitor, monitor_block_top);
 815     // Points to word before bottom of monitor block.
 816     load_address(R_monitor_block_bot, monitor_block_bot);
 817     z_bru(entry);
 818 
 819     // Entry already locked, need to throw exception.
 820     bind(exception);
 821 
 822     if (throw_monitor_exception) {
 823       // Throw exception.
 824       MacroAssembler::call_VM(noreg,
 825                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
 826                                                throw_illegal_monitor_state_exception));
 827       should_not_reach_here();
 828     } else {
 829       // Stack unrolling. Unlock object and install illegal_monitor_exception.
 830       // Unlock does not block, so don't have to worry about the frame.
 831       // We don't have to preserve c_rarg1 since we are going to throw an exception.
 832       unlock_object(R_current_monitor);
 833       if (install_monitor_exception) {
 834         call_VM(noreg, CAST_FROM_FN_PTR(address,
 835                                         InterpreterRuntime::
 836                                         new_illegal_monitor_state_exception));
 837       }
 838       z_bru(restart);
 839     }
 840 
 841     bind(loop);
 842     // Check if current entry is used.
 843     load_and_test_long(Z_R0_scratch, Address(R_current_monitor, BasicObjectLock::obj_offset_in_bytes()));
 844     z_brne(exception);
 845 
 846     add2reg(R_current_monitor, entry_size); // Otherwise advance to next entry.
 847     bind(entry);
 848     compareU64_and_branch(R_current_monitor, R_monitor_block_bot, bcondNotEqual, loop);
 849   }
 850 
 851   bind(no_unlock);
 852   pop(state);
 853   verify_oop(Z_tos, state);
 854 }
 855 
 856 // remove activation
 857 //
 858 // Unlock the receiver if this is a synchronized method.
 859 // Unlock any Java monitors from syncronized blocks.
 860 // Remove the activation from the stack.
 861 //
 862 // If there are locked Java monitors
 863 //   If throw_monitor_exception
 864 //     throws IllegalMonitorStateException
 865 //   Else if install_monitor_exception
 866 //     installs IllegalMonitorStateException
 867 //   Else
 868 //     no error processing
 869 void InterpreterMacroAssembler::remove_activation(TosState state,
 870                                                   Register return_pc,
 871                                                   bool throw_monitor_exception,
 872                                                   bool install_monitor_exception,
 873                                                   bool notify_jvmti) {
 874   BLOCK_COMMENT("remove_activation {");
 875   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
 876 
 877   // Save result (push state before jvmti call and pop it afterwards) and notify jvmti.
 878   notify_method_exit(false, state, notify_jvmti ? NotifyJVMTI : SkipNotifyJVMTI);
 879 
 880   if (StackReservedPages > 0) {
 881     BLOCK_COMMENT("reserved_stack_check:");
 882     // Test if reserved zone needs to be enabled.
 883     Label no_reserved_zone_enabling;
 884 
 885     // Compare frame pointers. There is no good stack pointer, as with stack
 886     // frame compression we can get different SPs when we do calls. A subsequent
 887     // call could have a smaller SP, so that this compare succeeds for an
 888     // inner call of the method annotated with ReservedStack.
 889     z_lg(Z_R0, Address(Z_SP, (intptr_t)_z_abi(callers_sp)));
 890     z_clg(Z_R0, Address(Z_thread, JavaThread::reserved_stack_activation_offset())); // Compare with frame pointer in memory.
 891     z_brl(no_reserved_zone_enabling);
 892 
 893     // Enable reserved zone again, throw stack overflow exception.
 894     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), Z_thread);
 895     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError));
 896 
 897     should_not_reach_here();
 898 
 899     bind(no_reserved_zone_enabling);
 900   }
 901 
 902   verify_oop(Z_tos, state);
 903   verify_thread();
 904 
 905   pop_interpreter_frame(return_pc, Z_ARG2, Z_ARG3);
 906   BLOCK_COMMENT("} remove_activation");
 907 }
 908 
 909 // lock object
 910 //
 911 // Registers alive
 912 //   monitor - Address of the BasicObjectLock to be used for locking,
 913 //             which must be initialized with the object to lock.
 914 //   object  - Address of the object to be locked.
 915 void InterpreterMacroAssembler::lock_object(Register monitor, Register object) {
 916 
 917   if (UseHeavyMonitors) {
 918     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 919             monitor, /*check_for_exceptions=*/false);
 920     return;
 921   }
 922 
 923   // template code:
 924   //
 925   // markOop displaced_header = obj->mark().set_unlocked();
 926   // monitor->lock()->set_displaced_header(displaced_header);
 927   // if (Atomic::cmpxchg_ptr(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
 928   //   // We stored the monitor address into the object's mark word.
 929   // } else if (THREAD->is_lock_owned((address)displaced_header))
 930   //   // Simple recursive case.
 931   //   monitor->lock()->set_displaced_header(NULL);
 932   // } else {
 933   //   // Slow path.
 934   //   InterpreterRuntime::monitorenter(THREAD, monitor);
 935   // }
 936 
 937   const Register displaced_header = Z_ARG5;
 938   const Register object_mark_addr = Z_ARG4;
 939   const Register current_header   = Z_ARG5;
 940 
 941   NearLabel done;
 942   NearLabel slow_case;
 943 
 944   // markOop displaced_header = obj->mark().set_unlocked();
 945 
 946   // Load markOop from object into displaced_header.
 947   z_lg(displaced_header, oopDesc::mark_offset_in_bytes(), object);
 948 
 949   if (UseBiasedLocking) {
 950     biased_locking_enter(object, displaced_header, Z_R1, Z_R0, done, &slow_case);
 951   }
 952 
 953   // Set displaced_header to be (markOop of object | UNLOCK_VALUE).
 954   z_oill(displaced_header, markOopDesc::unlocked_value);
 955 
 956   // monitor->lock()->set_displaced_header(displaced_header);
 957 
 958   // Initialize the box (Must happen before we update the object mark!).
 959   z_stg(displaced_header, BasicObjectLock::lock_offset_in_bytes() +
 960                           BasicLock::displaced_header_offset_in_bytes(), monitor);
 961 
 962   // if (Atomic::cmpxchg_ptr(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
 963 
 964   // Store stack address of the BasicObjectLock (this is monitor) into object.
 965   add2reg(object_mark_addr, oopDesc::mark_offset_in_bytes(), object);
 966 
 967   z_csg(displaced_header, monitor, 0, object_mark_addr);
 968   assert(current_header==displaced_header, "must be same register"); // Identified two registers from z/Architecture.
 969 
 970   z_bre(done);
 971 
 972   // } else if (THREAD->is_lock_owned((address)displaced_header))
 973   //   // Simple recursive case.
 974   //   monitor->lock()->set_displaced_header(NULL);
 975 
 976   // We did not see an unlocked object so try the fast recursive case.
 977 
 978   // Check if owner is self by comparing the value in the markOop of object
 979   // (current_header) with the stack pointer.
 980   z_sgr(current_header, Z_SP);
 981 
 982   assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
 983 
 984   // The prior sequence "LGR, NGR, LTGR" can be done better
 985   // (Z_R1 is temp and not used after here).
 986   load_const_optimized(Z_R0, (~(os::vm_page_size()-1) | markOopDesc::lock_mask_in_place));
 987   z_ngr(Z_R0, current_header); // AND sets CC (result eq/ne 0)
 988 
 989   // If condition is true we are done and hence we can store 0 in the displaced
 990   // header indicating it is a recursive lock and be done.
 991   z_brne(slow_case);
 992   z_release();  // Membar unnecessary on zarch AND because the above csg does a sync before and after.
 993   z_stg(Z_R0/*==0!*/, BasicObjectLock::lock_offset_in_bytes() +
 994                       BasicLock::displaced_header_offset_in_bytes(), monitor);
 995   z_bru(done);
 996 
 997   // } else {
 998   //   // Slow path.
 999   //   InterpreterRuntime::monitorenter(THREAD, monitor);
1000 
1001   // None of the above fast optimizations worked so we have to get into the
1002   // slow case of monitor enter.
1003   bind(slow_case);
1004 
1005   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1006           monitor, /*check_for_exceptions=*/false);
1007 
1008   // }
1009 
1010   bind(done);
1011 }
1012 
1013 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
1014 //
1015 // Registers alive
1016 //   monitor - address of the BasicObjectLock to be used for locking,
1017 //             which must be initialized with the object to lock.
1018 //
1019 // Throw IllegalMonitorException if object is not locked by current thread.
1020 void InterpreterMacroAssembler::unlock_object(Register monitor, Register object) {
1021 
1022   if (UseHeavyMonitors) {
1023     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
1024             monitor, /*check_for_exceptions=*/ true);
1025     return;
1026   }
1027 
1028 // else {
1029   // template code:
1030   //
1031   // if ((displaced_header = monitor->displaced_header()) == NULL) {
1032   //   // Recursive unlock. Mark the monitor unlocked by setting the object field to NULL.
1033   //   monitor->set_obj(NULL);
1034   // } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) {
1035   //   // We swapped the unlocked mark in displaced_header into the object's mark word.
1036   //   monitor->set_obj(NULL);
1037   // } else {
1038   //   // Slow path.
1039   //   InterpreterRuntime::monitorexit(THREAD, monitor);
1040   // }
1041 
1042   const Register displaced_header = Z_ARG4;
1043   const Register current_header   = Z_R1;
1044   Address obj_entry(monitor, BasicObjectLock::obj_offset_in_bytes());
1045   Label done;
1046 
1047   if (object == noreg) {
1048     // In the template interpreter, we must assure that the object
1049     // entry in the monitor is cleared on all paths. Thus we move
1050     // loading up to here, and clear the entry afterwards.
1051     object = Z_ARG3; // Use Z_ARG3 if caller didn't pass object.
1052     z_lg(object, obj_entry);
1053   }
1054 
1055   assert_different_registers(monitor, object, displaced_header, current_header);
1056 
1057   // if ((displaced_header = monitor->displaced_header()) == NULL) {
1058   //   // Recursive unlock. Mark the monitor unlocked by setting the object field to NULL.
1059   //   monitor->set_obj(NULL);
1060 
1061   clear_mem(obj_entry, sizeof(oop));
1062 
1063   if (UseBiasedLocking) {
1064     // The object address from the monitor is in object.
1065     assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
1066     biased_locking_exit(object, displaced_header, done);
1067   }
1068 
1069   // Test first if we are in the fast recursive case.
1070   MacroAssembler::load_and_test_long(displaced_header,
1071                                      Address(monitor, BasicObjectLock::lock_offset_in_bytes() +
1072                                                       BasicLock::displaced_header_offset_in_bytes()));
1073   z_bre(done); // displaced_header == 0 -> goto done
1074 
1075   // } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) {
1076   //   // We swapped the unlocked mark in displaced_header into the object's mark word.
1077   //   monitor->set_obj(NULL);
1078 
1079   // If we still have a lightweight lock, unlock the object and be done.
1080 
1081   // The markword is expected to be at offset 0.
1082   assert(oopDesc::mark_offset_in_bytes() == 0, "unlock_object: review code below");
1083 
1084   // We have the displaced header in displaced_header. If the lock is still
1085   // lightweight, it will contain the monitor address and we'll store the
1086   // displaced header back into the object's mark word.
1087   z_lgr(current_header, monitor);
1088   z_csg(current_header, displaced_header, 0, object);
1089   z_bre(done);
1090 
1091   // } else {
1092   //   // Slow path.
1093   //   InterpreterRuntime::monitorexit(THREAD, monitor);
1094 
1095   // The lock has been converted into a heavy lock and hence
1096   // we need to get into the slow case.
1097   z_stg(object, obj_entry);   // Restore object entry, has been cleared above.
1098   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
1099           monitor,  /*check_for_exceptions=*/false);
1100 
1101   // }
1102 
1103   bind(done);
1104 }
1105 
1106 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
1107   assert(ProfileInterpreter, "must be profiling interpreter");
1108   load_and_test_long(mdp, Address(Z_fp, _z_ijava_state_neg(mdx)));
1109   z_brz(zero_continue);
1110 }
1111 
1112 // Set the method data pointer for the current bcp.
1113 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1114   assert(ProfileInterpreter, "must be profiling interpreter");
1115   Label    set_mdp;
1116   Register mdp    = Z_ARG4;
1117   Register method = Z_ARG5;
1118 
1119   get_method(method);
1120   // Test MDO to avoid the call if it is NULL.
1121   load_and_test_long(mdp, method2_(method, method_data));
1122   z_brz(set_mdp);
1123 
1124   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), method, Z_bcp);
1125   // Z_RET: mdi
1126   // Mdo is guaranteed to be non-zero here, we checked for it before the call.
1127   assert(method->is_nonvolatile(), "choose nonvolatile reg or reload from frame");
1128   z_lg(mdp, method2_(method, method_data)); // Must reload, mdp is volatile reg.
1129   add2reg_with_index(mdp, in_bytes(MethodData::data_offset()), Z_RET, mdp);
1130 
1131   bind(set_mdp);
1132   save_mdp(mdp);
1133 }
1134 
1135 void InterpreterMacroAssembler::verify_method_data_pointer() {
1136   assert(ProfileInterpreter, "must be profiling interpreter");
1137 #ifdef ASSERT
1138   NearLabel verify_continue;
1139   Register bcp_expected = Z_ARG3;
1140   Register mdp    = Z_ARG4;
1141   Register method = Z_ARG5;
1142 
1143   test_method_data_pointer(mdp, verify_continue); // If mdp is zero, continue
1144   get_method(method);
1145 
1146   // If the mdp is valid, it will point to a DataLayout header which is
1147   // consistent with the bcp. The converse is highly probable also.
1148   load_sized_value(bcp_expected, Address(mdp, DataLayout::bci_offset()), 2, false /*signed*/);
1149   z_ag(bcp_expected, Address(method, Method::const_offset()));
1150   load_address(bcp_expected, Address(bcp_expected, ConstMethod::codes_offset()));
1151   compareU64_and_branch(bcp_expected, Z_bcp, bcondEqual, verify_continue);
1152   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), method, Z_bcp, mdp);
1153   bind(verify_continue);
1154 #endif // ASSERT
1155 }
1156 
1157 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) {
1158   assert(ProfileInterpreter, "must be profiling interpreter");
1159   z_stg(value, constant, mdp_in);
1160 }
1161 
1162 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1163                                                       int constant,
1164                                                       Register tmp,
1165                                                       bool decrement) {
1166   assert_different_registers(mdp_in, tmp);
1167   // counter address
1168   Address data(mdp_in, constant);
1169   const int delta = decrement ? -DataLayout::counter_increment : DataLayout::counter_increment;
1170   add2mem_64(Address(mdp_in, constant), delta, tmp);
1171 }
1172 
1173 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1174                                                 int flag_byte_constant) {
1175   assert(ProfileInterpreter, "must be profiling interpreter");
1176   // Set the flag.
1177   z_oi(Address(mdp_in, DataLayout::flags_offset()), flag_byte_constant);
1178 }
1179 
1180 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1181                                                  int offset,
1182                                                  Register value,
1183                                                  Register test_value_out,
1184                                                  Label& not_equal_continue) {
1185   assert(ProfileInterpreter, "must be profiling interpreter");
1186   if (test_value_out == noreg) {
1187     z_cg(value, Address(mdp_in, offset));
1188     z_brne(not_equal_continue);
1189   } else {
1190     // Put the test value into a register, so caller can use it:
1191     z_lg(test_value_out, Address(mdp_in, offset));
1192     compareU64_and_branch(test_value_out, value, bcondNotEqual, not_equal_continue);
1193   }
1194 }
1195 
1196 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) {
1197   update_mdp_by_offset(mdp_in, noreg, offset_of_disp);
1198 }
1199 
1200 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1201                                                      Register dataidx,
1202                                                      int offset_of_disp) {
1203   assert(ProfileInterpreter, "must be profiling interpreter");
1204   Address disp_address(mdp_in, dataidx, offset_of_disp);
1205   Assembler::z_ag(mdp_in, disp_address);
1206   save_mdp(mdp_in);
1207 }
1208 
1209 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
1210   assert(ProfileInterpreter, "must be profiling interpreter");
1211   add2reg(mdp_in, constant);
1212   save_mdp(mdp_in);
1213 }
1214 
1215 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1216   assert(ProfileInterpreter, "must be profiling interpreter");
1217   assert(return_bci->is_nonvolatile(), "choose nonvolatile reg or save/restore");
1218   call_VM(noreg,
1219           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1220           return_bci);
1221 }
1222 
1223 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
1224   if (ProfileInterpreter) {
1225     Label profile_continue;
1226 
1227     // If no method data exists, go to profile_continue.
1228     // Otherwise, assign to mdp.
1229     test_method_data_pointer(mdp, profile_continue);
1230 
1231     // We are taking a branch. Increment the taken count.
1232     // We inline increment_mdp_data_at to return bumped_count in a register
1233     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1234     Address data(mdp, JumpData::taken_offset());
1235     z_lg(bumped_count, data);
1236     // 64-bit overflow is very unlikely. Saturation to 32-bit values is
1237     // performed when reading the counts.
1238     add2reg(bumped_count, DataLayout::counter_increment);
1239     z_stg(bumped_count, data); // Store back out
1240 
1241     // The method data pointer needs to be updated to reflect the new target.
1242     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1243     bind(profile_continue);
1244   }
1245 }
1246 
1247 // Kills Z_R1_scratch.
1248 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1249   if (ProfileInterpreter) {
1250     Label profile_continue;
1251 
1252     // If no method data exists, go to profile_continue.
1253     test_method_data_pointer(mdp, profile_continue);
1254 
1255     // We are taking a branch. Increment the not taken count.
1256     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()), Z_R1_scratch);
1257 
1258     // The method data pointer needs to be updated to correspond to
1259     // the next bytecode.
1260     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1261     bind(profile_continue);
1262   }
1263 }
1264 
1265 // Kills: Z_R1_scratch.
1266 void InterpreterMacroAssembler::profile_call(Register mdp) {
1267   if (ProfileInterpreter) {
1268     Label profile_continue;
1269 
1270     // If no method data exists, go to profile_continue.
1271     test_method_data_pointer(mdp, profile_continue);
1272 
1273     // We are making a call. Increment the count.
1274     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1275 
1276     // The method data pointer needs to be updated to reflect the new target.
1277     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1278     bind(profile_continue);
1279   }
1280 }
1281 
1282 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1283   if (ProfileInterpreter) {
1284     Label profile_continue;
1285 
1286     // If no method data exists, go to profile_continue.
1287     test_method_data_pointer(mdp, profile_continue);
1288 
1289     // We are making a call. Increment the count.
1290     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1291 
1292     // The method data pointer needs to be updated to reflect the new target.
1293     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1294     bind(profile_continue);
1295   }
1296 }
1297 
1298 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1299                                                      Register mdp,
1300                                                      Register reg2,
1301                                                      bool receiver_can_be_null) {
1302   if (ProfileInterpreter) {
1303     NearLabel profile_continue;
1304 
1305     // If no method data exists, go to profile_continue.
1306     test_method_data_pointer(mdp, profile_continue);
1307 
1308     NearLabel skip_receiver_profile;
1309     if (receiver_can_be_null) {
1310       NearLabel not_null;
1311       compareU64_and_branch(receiver, (intptr_t)0L, bcondNotEqual, not_null);
1312       // We are making a call. Increment the count for null receiver.
1313       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1314       z_bru(skip_receiver_profile);
1315       bind(not_null);
1316     }
1317 
1318     // Record the receiver type.
1319     record_klass_in_profile(receiver, mdp, reg2, true);
1320     bind(skip_receiver_profile);
1321 
1322     // The method data pointer needs to be updated to reflect the new target.
1323     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1324     bind(profile_continue);
1325   }
1326 }
1327 
1328 // This routine creates a state machine for updating the multi-row
1329 // type profile at a virtual call site (or other type-sensitive bytecode).
1330 // The machine visits each row (of receiver/count) until the receiver type
1331 // is found, or until it runs out of rows. At the same time, it remembers
1332 // the location of the first empty row. (An empty row records null for its
1333 // receiver, and can be allocated for a newly-observed receiver type.)
1334 // Because there are two degrees of freedom in the state, a simple linear
1335 // search will not work; it must be a decision tree. Hence this helper
1336 // function is recursive, to generate the required tree structured code.
1337 // It's the interpreter, so we are trading off code space for speed.
1338 // See below for example code.
1339 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1340                                         Register receiver, Register mdp,
1341                                         Register reg2, int start_row,
1342                                         Label& done, bool is_virtual_call) {
1343   if (TypeProfileWidth == 0) {
1344     if (is_virtual_call) {
1345       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1346     }
1347     return;
1348   }
1349 
1350   int last_row = VirtualCallData::row_limit() - 1;
1351   assert(start_row <= last_row, "must be work left to do");
1352   // Test this row for both the receiver and for null.
1353   // Take any of three different outcomes:
1354   //   1. found receiver => increment count and goto done
1355   //   2. found null => keep looking for case 1, maybe allocate this cell
1356   //   3. found something else => keep looking for cases 1 and 2
1357   // Case 3 is handled by a recursive call.
1358   for (int row = start_row; row <= last_row; row++) {
1359     NearLabel next_test;
1360     bool test_for_null_also = (row == start_row);
1361 
1362     // See if the receiver is receiver[n].
1363     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1364     test_mdp_data_at(mdp, recvr_offset, receiver,
1365                      (test_for_null_also ? reg2 : noreg),
1366                      next_test);
1367     // (Reg2 now contains the receiver from the CallData.)
1368 
1369     // The receiver is receiver[n]. Increment count[n].
1370     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1371     increment_mdp_data_at(mdp, count_offset);
1372     z_bru(done);
1373     bind(next_test);
1374 
1375     if (test_for_null_also) {
1376       Label found_null;
1377       // Failed the equality check on receiver[n]... Test for null.
1378       z_ltgr(reg2, reg2);
1379       if (start_row == last_row) {
1380         // The only thing left to do is handle the null case.
1381         if (is_virtual_call) {
1382           z_brz(found_null);
1383           // Receiver did not match any saved receiver and there is no empty row for it.
1384           // Increment total counter to indicate polymorphic case.
1385           increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1386           z_bru(done);
1387           bind(found_null);
1388         } else {
1389           z_brnz(done);
1390         }
1391         break;
1392       }
1393       // Since null is rare, make it be the branch-taken case.
1394       z_brz(found_null);
1395 
1396       // Put all the "Case 3" tests here.
1397       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call);
1398 
1399       // Found a null. Keep searching for a matching receiver,
1400       // but remember that this is an empty (unused) slot.
1401       bind(found_null);
1402     }
1403   }
1404 
1405   // In the fall-through case, we found no matching receiver, but we
1406   // observed the receiver[start_row] is NULL.
1407 
1408   // Fill in the receiver field and increment the count.
1409   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1410   set_mdp_data_at(mdp, recvr_offset, receiver);
1411   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1412   load_const_optimized(reg2, DataLayout::counter_increment);
1413   set_mdp_data_at(mdp, count_offset, reg2);
1414   if (start_row > 0) {
1415     z_bru(done);
1416   }
1417 }
1418 
1419 // Example state machine code for three profile rows:
1420 //   // main copy of decision tree, rooted at row[1]
1421 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1422 //   if (row[0].rec != NULL) {
1423 //     // inner copy of decision tree, rooted at row[1]
1424 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1425 //     if (row[1].rec != NULL) {
1426 //       // degenerate decision tree, rooted at row[2]
1427 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1428 //       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
1429 //       row[2].init(rec); goto done;
1430 //     } else {
1431 //       // remember row[1] is empty
1432 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1433 //       row[1].init(rec); goto done;
1434 //     }
1435 //   } else {
1436 //     // remember row[0] is empty
1437 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1438 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1439 //     row[0].init(rec); goto done;
1440 //   }
1441 //   done:
1442 
1443 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1444                                                         Register mdp, Register reg2,
1445                                                         bool is_virtual_call) {
1446   assert(ProfileInterpreter, "must be profiling");
1447   Label done;
1448 
1449   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1450 
1451   bind (done);
1452 }
1453 
1454 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) {
1455   if (ProfileInterpreter) {
1456     NearLabel profile_continue;
1457     uint row;
1458 
1459     // If no method data exists, go to profile_continue.
1460     test_method_data_pointer(mdp, profile_continue);
1461 
1462     // Update the total ret count.
1463     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1464 
1465     for (row = 0; row < RetData::row_limit(); row++) {
1466       NearLabel next_test;
1467 
1468       // See if return_bci is equal to bci[n]:
1469       test_mdp_data_at(mdp,
1470                        in_bytes(RetData::bci_offset(row)),
1471                        return_bci, noreg,
1472                        next_test);
1473 
1474       // Return_bci is equal to bci[n]. Increment the count.
1475       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1476 
1477       // The method data pointer needs to be updated to reflect the new target.
1478       update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)));
1479       z_bru(profile_continue);
1480       bind(next_test);
1481     }
1482 
1483     update_mdp_for_ret(return_bci);
1484 
1485     bind(profile_continue);
1486   }
1487 }
1488 
1489 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1490   if (ProfileInterpreter) {
1491     Label profile_continue;
1492 
1493     // If no method data exists, go to profile_continue.
1494     test_method_data_pointer(mdp, profile_continue);
1495 
1496     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1497 
1498     // The method data pointer needs to be updated.
1499     int mdp_delta = in_bytes(BitData::bit_data_size());
1500     if (TypeProfileCasts) {
1501       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1502     }
1503     update_mdp_by_constant(mdp, mdp_delta);
1504 
1505     bind(profile_continue);
1506   }
1507 }
1508 
1509 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp, Register tmp) {
1510   if (ProfileInterpreter && TypeProfileCasts) {
1511     Label profile_continue;
1512 
1513     // If no method data exists, go to profile_continue.
1514     test_method_data_pointer(mdp, profile_continue);
1515 
1516     int count_offset = in_bytes(CounterData::count_offset());
1517     // Back up the address, since we have already bumped the mdp.
1518     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1519 
1520     // *Decrement* the counter. We expect to see zero or small negatives.
1521     increment_mdp_data_at(mdp, count_offset, tmp, true);
1522 
1523     bind (profile_continue);
1524   }
1525 }
1526 
1527 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1528   if (ProfileInterpreter) {
1529     Label profile_continue;
1530 
1531     // If no method data exists, go to profile_continue.
1532     test_method_data_pointer(mdp, profile_continue);
1533 
1534     // The method data pointer needs to be updated.
1535     int mdp_delta = in_bytes(BitData::bit_data_size());
1536     if (TypeProfileCasts) {
1537       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1538 
1539       // Record the object type.
1540       record_klass_in_profile(klass, mdp, reg2, false);
1541     }
1542     update_mdp_by_constant(mdp, mdp_delta);
1543 
1544     bind(profile_continue);
1545   }
1546 }
1547 
1548 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1549   if (ProfileInterpreter) {
1550     Label profile_continue;
1551 
1552     // If no method data exists, go to profile_continue.
1553     test_method_data_pointer(mdp, profile_continue);
1554 
1555     // Update the default case count.
1556     increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()));
1557 
1558     // The method data pointer needs to be updated.
1559     update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()));
1560 
1561     bind(profile_continue);
1562   }
1563 }
1564 
1565 // Kills: index, scratch1, scratch2.
1566 void InterpreterMacroAssembler::profile_switch_case(Register index,
1567                                                     Register mdp,
1568                                                     Register scratch1,
1569                                                     Register scratch2) {
1570   if (ProfileInterpreter) {
1571     Label profile_continue;
1572     assert_different_registers(index, mdp, scratch1, scratch2);
1573 
1574     // If no method data exists, go to profile_continue.
1575     test_method_data_pointer(mdp, profile_continue);
1576 
1577     // Build the base (index * per_case_size_in_bytes()) +
1578     // case_array_offset_in_bytes().
1579     z_sllg(index, index, exact_log2(in_bytes(MultiBranchData::per_case_size())));
1580     add2reg(index, in_bytes(MultiBranchData::case_array_offset()));
1581 
1582     // Add the calculated base to the mdp -> address of the case' data.
1583     Address case_data_addr(mdp, index);
1584     Register case_data = scratch1;
1585     load_address(case_data, case_data_addr);
1586 
1587     // Update the case count.
1588     increment_mdp_data_at(case_data,
1589                           in_bytes(MultiBranchData::relative_count_offset()),
1590                           scratch2);
1591 
1592     // The method data pointer needs to be updated.
1593     update_mdp_by_offset(mdp,
1594                          index,
1595                          in_bytes(MultiBranchData::relative_displacement_offset()));
1596 
1597     bind(profile_continue);
1598   }
1599 }
1600 
1601 // kills: R0, R1, flags, loads klass from obj (if not null)
1602 void InterpreterMacroAssembler::profile_obj_type(Register obj, Address mdo_addr, Register klass, bool cmp_done) {
1603   NearLabel null_seen, init_klass, do_nothing, do_update;
1604 
1605   // Klass = obj is allowed.
1606   const Register tmp = Z_R1;
1607   assert_different_registers(obj, mdo_addr.base(), tmp, Z_R0);
1608   assert_different_registers(klass, mdo_addr.base(), tmp, Z_R0);
1609 
1610   z_lg(tmp, mdo_addr);
1611   if (cmp_done) {
1612     z_brz(null_seen);
1613   } else {
1614     compareU64_and_branch(obj, (intptr_t)0, Assembler::bcondEqual, null_seen);
1615   }
1616 
1617   verify_oop(obj);
1618   load_klass(klass, obj);
1619 
1620   // Klass seen before, nothing to do (regardless of unknown bit).
1621   z_lgr(Z_R0, tmp);
1622   assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction");
1623   z_nill(Z_R0, TypeEntries::type_klass_mask & 0xFFFF);
1624   compareU64_and_branch(Z_R0, klass, Assembler::bcondEqual, do_nothing);
1625 
1626   // Already unknown. Nothing to do anymore.
1627   z_tmll(tmp, TypeEntries::type_unknown);
1628   z_brc(Assembler::bcondAllOne, do_nothing);
1629 
1630   z_lgr(Z_R0, tmp);
1631   assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction");
1632   z_nill(Z_R0, TypeEntries::type_mask & 0xFFFF);
1633   compareU64_and_branch(Z_R0, (intptr_t)0, Assembler::bcondEqual, init_klass);
1634 
1635   // Different than before. Cannot keep accurate profile.
1636   z_oill(tmp, TypeEntries::type_unknown);
1637   z_bru(do_update);
1638 
1639   bind(init_klass);
1640   // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
1641   z_ogr(tmp, klass);
1642   z_bru(do_update);
1643 
1644   bind(null_seen);
1645   // Set null_seen if obj is 0.
1646   z_oill(tmp, TypeEntries::null_seen);
1647   // fallthru: z_bru(do_update);
1648 
1649   bind(do_update);
1650   z_stg(tmp, mdo_addr);
1651 
1652   bind(do_nothing);
1653 }
1654 
1655 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1656   if (!ProfileInterpreter) {
1657     return;
1658   }
1659 
1660   assert_different_registers(mdp, callee, tmp);
1661 
1662   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1663     Label profile_continue;
1664 
1665     test_method_data_pointer(mdp, profile_continue);
1666 
1667     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1668 
1669     z_cliy(in_bytes(DataLayout::tag_offset()) - off_to_start, mdp,
1670            is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
1671     z_brne(profile_continue);
1672 
1673     if (MethodData::profile_arguments()) {
1674       NearLabel done;
1675       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1676       add2reg(mdp, off_to_args);
1677 
1678       for (int i = 0; i < TypeProfileArgsLimit; i++) {
1679         if (i > 0 || MethodData::profile_return()) {
1680           // If return value type is profiled we may have no argument to profile.
1681           z_lg(tmp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, mdp);
1682           add2reg(tmp, -i*TypeStackSlotEntries::per_arg_count());
1683           compare64_and_branch(tmp, TypeStackSlotEntries::per_arg_count(), Assembler::bcondLow, done);
1684         }
1685         z_lg(tmp, Address(callee, Method::const_offset()));
1686         z_lgh(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1687         // Stack offset o (zero based) from the start of the argument
1688         // list. For n arguments translates into offset n - o - 1 from
1689         // the end of the argument list. But there is an extra slot at
1690         // the top of the stack. So the offset is n - o from Lesp.
1691         z_sg(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
1692         z_sllg(tmp, tmp, Interpreter::logStackElementSize);
1693         Address stack_slot_addr(tmp, Z_esp);
1694         z_ltg(tmp, stack_slot_addr);
1695 
1696         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
1697         profile_obj_type(tmp, mdo_arg_addr, tmp, /*ltg did compare to 0*/ true);
1698 
1699         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1700         add2reg(mdp, to_add);
1701         off_to_args += to_add;
1702       }
1703 
1704       if (MethodData::profile_return()) {
1705         z_lg(tmp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, mdp);
1706         add2reg(tmp, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1707       }
1708 
1709       bind(done);
1710 
1711       if (MethodData::profile_return()) {
1712         // We're right after the type profile for the last
1713         // argument. Tmp is the number of cells left in the
1714         // CallTypeData/VirtualCallTypeData to reach its end. Non null
1715         // if there's a return to profile.
1716         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1717         z_sllg(tmp, tmp, exact_log2(DataLayout::cell_size));
1718         z_agr(mdp, tmp);
1719       }
1720       z_stg(mdp, _z_ijava_state_neg(mdx), Z_fp);
1721     } else {
1722       assert(MethodData::profile_return(), "either profile call args or call ret");
1723       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1724     }
1725 
1726     // Mdp points right after the end of the
1727     // CallTypeData/VirtualCallTypeData, right after the cells for the
1728     // return value type if there's one.
1729     bind(profile_continue);
1730   }
1731 }
1732 
1733 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1734   assert_different_registers(mdp, ret, tmp);
1735   if (ProfileInterpreter && MethodData::profile_return()) {
1736     Label profile_continue;
1737 
1738     test_method_data_pointer(mdp, profile_continue);
1739 
1740     if (MethodData::profile_return_jsr292_only()) {
1741       // If we don't profile all invoke bytecodes we must make sure
1742       // it's a bytecode we indeed profile. We can't go back to the
1743       // beginning of the ProfileData we intend to update to check its
1744       // type because we're right after it and we don't known its
1745       // length.
1746       NearLabel do_profile;
1747       Address bc(Z_bcp);
1748       z_lb(tmp, bc);
1749       compare32_and_branch(tmp, Bytecodes::_invokedynamic, Assembler::bcondEqual, do_profile);
1750       compare32_and_branch(tmp, Bytecodes::_invokehandle, Assembler::bcondEqual, do_profile);
1751       get_method(tmp);
1752       // Supplement to 8139891: _intrinsic_id exceeded 1-byte size limit.
1753       if (Method::intrinsic_id_size_in_bytes() == 1) {
1754         z_cli(Method::intrinsic_id_offset_in_bytes(), tmp, vmIntrinsics::_compiledLambdaForm);
1755       } else {
1756         assert(Method::intrinsic_id_size_in_bytes() == 2, "size error: check Method::_intrinsic_id");
1757         z_lh(tmp, Method::intrinsic_id_offset_in_bytes(), Z_R0, tmp);
1758         z_chi(tmp, vmIntrinsics::_compiledLambdaForm);
1759       }
1760       z_brne(profile_continue);
1761 
1762       bind(do_profile);
1763     }
1764 
1765     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
1766     profile_obj_type(ret, mdo_ret_addr, tmp);
1767 
1768     bind(profile_continue);
1769   }
1770 }
1771 
1772 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1773   if (ProfileInterpreter && MethodData::profile_parameters()) {
1774     Label profile_continue, done;
1775 
1776     test_method_data_pointer(mdp, profile_continue);
1777 
1778     // Load the offset of the area within the MDO used for
1779     // parameters. If it's negative we're not profiling any parameters.
1780     Address parm_di_addr(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()));
1781     load_and_test_int2long(tmp1, parm_di_addr);
1782     z_brl(profile_continue);
1783 
1784     // Compute a pointer to the area for parameters from the offset
1785     // and move the pointer to the slot for the last
1786     // parameters. Collect profiling from last parameter down.
1787     // mdo start + parameters offset + array length - 1
1788 
1789     // Pointer to the parameter area in the MDO.
1790     z_agr(mdp, tmp1);
1791 
1792     // Offset of the current profile entry to update.
1793     const Register entry_offset = tmp1;
1794     // entry_offset = array len in number of cells.
1795     z_lg(entry_offset, Address(mdp, ArrayData::array_len_offset()));
1796     // entry_offset (number of cells) = array len - size of 1 entry
1797     add2reg(entry_offset, -TypeStackSlotEntries::per_arg_count());
1798     // entry_offset in bytes
1799     z_sllg(entry_offset, entry_offset, exact_log2(DataLayout::cell_size));
1800 
1801     Label loop;
1802     bind(loop);
1803 
1804     Address arg_off(mdp, entry_offset, ParametersTypeData::stack_slot_offset(0));
1805     Address arg_type(mdp, entry_offset, ParametersTypeData::type_offset(0));
1806 
1807     // Load offset on the stack from the slot for this parameter.
1808     z_lg(tmp2, arg_off);
1809     z_sllg(tmp2, tmp2, Interpreter::logStackElementSize);
1810     z_lcgr(tmp2); // Negate.
1811 
1812     // Profile the parameter.
1813     z_ltg(tmp2, Address(Z_locals, tmp2));
1814     profile_obj_type(tmp2, arg_type, tmp2, /*ltg did compare to 0*/ true);
1815 
1816     // Go to next parameter.
1817     z_aghi(entry_offset, -TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size);
1818     z_brnl(loop);
1819 
1820     bind(profile_continue);
1821   }
1822 }
1823 
1824 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1825 void InterpreterMacroAssembler::increment_mask_and_jump(Address          counter_addr,
1826                                                         int              increment,
1827                                                         Address          mask,
1828                                                         Register         scratch,
1829                                                         bool             preloaded,
1830                                                         branch_condition cond,
1831                                                         Label           *where) {
1832   assert_different_registers(counter_addr.base(), scratch);
1833   if (preloaded) {
1834     add2reg(scratch, increment);
1835     reg2mem_opt(scratch, counter_addr, false);
1836   } else {
1837     if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment) && counter_addr.is_RSYform()) {
1838       z_alsi(counter_addr.disp20(), counter_addr.base(), increment);
1839       mem2reg_signed_opt(scratch, counter_addr);
1840     } else {
1841       mem2reg_signed_opt(scratch, counter_addr);
1842       add2reg(scratch, increment);
1843       reg2mem_opt(scratch, counter_addr, false);
1844     }
1845   }
1846   z_n(scratch, mask);
1847   if (where) { z_brc(cond, *where); }
1848 }
1849 
1850 // Get MethodCounters object for given method. Lazily allocated if necessary.
1851 //   method    - Ptr to Method object.
1852 //   Rcounters - Ptr to MethodCounters object associated with Method object.
1853 //   skip      - Exit point if MethodCounters object can't be created (OOM condition).
1854 void InterpreterMacroAssembler::get_method_counters(Register Rmethod,
1855                                                     Register Rcounters,
1856                                                     Label& skip) {
1857   assert_different_registers(Rmethod, Rcounters);
1858 
1859   BLOCK_COMMENT("get MethodCounters object {");
1860 
1861   Label has_counters;
1862   load_and_test_long(Rcounters, Address(Rmethod, Method::method_counters_offset()));
1863   z_brnz(has_counters);
1864 
1865   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), Rmethod, false);
1866   z_ltgr(Rcounters, Z_RET); // Runtime call returns MethodCounters object.
1867   z_brz(skip); // No MethodCounters, out of memory.
1868 
1869   bind(has_counters);
1870 
1871   BLOCK_COMMENT("} get MethodCounters object");
1872 }
1873 
1874 // Increment invocation counter in MethodCounters object.
1875 // Return (invocation_counter+backedge_counter) as "result" in RctrSum.
1876 // Counter values are all unsigned.
1877 void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters, Register RctrSum) {
1878   assert(UseCompiler || LogTouchedMethods, "incrementing must be useful");
1879   assert_different_registers(Rcounters, RctrSum);
1880 
1881   int increment          = InvocationCounter::count_increment;
1882   int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset());
1883   int be_counter_offset  = in_bytes(MethodCounters::backedge_counter_offset()   + InvocationCounter::counter_offset());
1884 
1885   BLOCK_COMMENT("Increment invocation counter {");
1886 
1887   if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment)) {
1888     // Increment the invocation counter in place,
1889     // then add the incremented value to the backedge counter.
1890     z_l(RctrSum, be_counter_offset, Rcounters);
1891     z_alsi(inv_counter_offset, Rcounters, increment);     // Atomic increment @no extra cost!
1892     z_nilf(RctrSum, InvocationCounter::count_mask_value); // Mask off state bits.
1893     z_al(RctrSum, inv_counter_offset, Z_R0, Rcounters);
1894   } else {
1895     // This path is optimized for low register consumption
1896     // at the cost of somewhat higher operand delays.
1897     // It does not need an extra temp register.
1898 
1899     // Update the invocation counter.
1900     z_l(RctrSum, inv_counter_offset, Rcounters);
1901     if (RctrSum == Z_R0) {
1902       z_ahi(RctrSum, increment);
1903     } else {
1904       add2reg(RctrSum, increment);
1905     }
1906     z_st(RctrSum, inv_counter_offset, Rcounters);
1907 
1908     // Mask off the state bits.
1909     z_nilf(RctrSum, InvocationCounter::count_mask_value);
1910 
1911     // Add the backedge counter to the updated invocation counter to
1912     // form the result.
1913     z_al(RctrSum, be_counter_offset, Z_R0, Rcounters);
1914   }
1915 
1916   BLOCK_COMMENT("} Increment invocation counter");
1917 
1918   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
1919 }
1920 
1921 
1922 // increment backedge counter in MethodCounters object.
1923 // return (invocation_counter+backedge_counter) as "result" in RctrSum
1924 // counter values are all unsigned!
1925 void InterpreterMacroAssembler::increment_backedge_counter(Register Rcounters, Register RctrSum) {
1926   assert(UseCompiler, "incrementing must be useful");
1927   assert_different_registers(Rcounters, RctrSum);
1928 
1929   int increment          = InvocationCounter::count_increment;
1930   int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset());
1931   int be_counter_offset  = in_bytes(MethodCounters::backedge_counter_offset()   + InvocationCounter::counter_offset());
1932 
1933   BLOCK_COMMENT("Increment backedge counter {");
1934 
1935   if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment)) {
1936     // Increment the invocation counter in place,
1937     // then add the incremented value to the backedge counter.
1938     z_l(RctrSum, inv_counter_offset, Rcounters);
1939     z_alsi(be_counter_offset, Rcounters, increment);      // Atomic increment @no extra cost!
1940     z_nilf(RctrSum, InvocationCounter::count_mask_value); // Mask off state bits.
1941     z_al(RctrSum, be_counter_offset, Z_R0, Rcounters);
1942   } else {
1943     // This path is optimized for low register consumption
1944     // at the cost of somewhat higher operand delays.
1945     // It does not need an extra temp register.
1946 
1947     // Update the invocation counter.
1948     z_l(RctrSum, be_counter_offset, Rcounters);
1949     if (RctrSum == Z_R0) {
1950       z_ahi(RctrSum, increment);
1951     } else {
1952       add2reg(RctrSum, increment);
1953     }
1954     z_st(RctrSum, be_counter_offset, Rcounters);
1955 
1956     // Mask off the state bits.
1957     z_nilf(RctrSum, InvocationCounter::count_mask_value);
1958 
1959     // Add the backedge counter to the updated invocation counter to
1960     // form the result.
1961     z_al(RctrSum, inv_counter_offset, Z_R0, Rcounters);
1962   }
1963 
1964   BLOCK_COMMENT("} Increment backedge counter");
1965 
1966   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
1967 }
1968 
1969 // Add an InterpMonitorElem to stack (see frame_s390.hpp).
1970 void InterpreterMacroAssembler::add_monitor_to_stack(bool     stack_is_empty,
1971                                                      Register Rtemp1,
1972                                                      Register Rtemp2,
1973                                                      Register Rtemp3) {
1974 
1975   const Register Rcurr_slot = Rtemp1;
1976   const Register Rlimit     = Rtemp2;
1977   const jint delta = -frame::interpreter_frame_monitor_size() * wordSize;
1978 
1979   assert((delta & LongAlignmentMask) == 0,
1980          "sizeof BasicObjectLock must be even number of doublewords");
1981   assert(2 * wordSize == -delta, "this works only as long as delta == -2*wordSize");
1982   assert(Rcurr_slot != Z_R0, "Register must be usable as base register");
1983   assert_different_registers(Rlimit, Rcurr_slot, Rtemp3);
1984 
1985   get_monitors(Rlimit);
1986 
1987   // Adjust stack pointer for additional monitor entry.
1988   resize_frame(RegisterOrConstant((intptr_t) delta), Z_fp, false);
1989 
1990   if (!stack_is_empty) {
1991     // Must copy stack contents down.
1992     NearLabel next, done;
1993 
1994     // Rtemp := addr(Tos), Z_esp is pointing below it!
1995     add2reg(Rcurr_slot, wordSize, Z_esp);
1996 
1997     // Nothing to do, if already at monitor area.
1998     compareU64_and_branch(Rcurr_slot, Rlimit, bcondNotLow, done);
1999 
2000     bind(next);
2001 
2002     // Move one stack slot.
2003     mem2reg_opt(Rtemp3, Address(Rcurr_slot));
2004     reg2mem_opt(Rtemp3, Address(Rcurr_slot, delta));
2005     add2reg(Rcurr_slot, wordSize);
2006     compareU64_and_branch(Rcurr_slot, Rlimit, bcondLow, next); // Are we done?
2007 
2008     bind(done);
2009     // Done copying stack.
2010   }
2011 
2012   // Adjust expression stack and monitor pointers.
2013   add2reg(Z_esp, delta);
2014   add2reg(Rlimit, delta);
2015   save_monitors(Rlimit);
2016 }
2017 
2018 // Note: Index holds the offset in bytes afterwards.
2019 // You can use this to store a new value (with Llocals as the base).
2020 void InterpreterMacroAssembler::access_local_int(Register index, Register dst) {
2021   z_sllg(index, index, LogBytesPerWord);
2022   mem2reg_opt(dst, Address(Z_locals, index), false);
2023 }
2024 
2025 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
2026   if (state == atos) { MacroAssembler::verify_oop(reg); }
2027 }
2028 
2029 // Inline assembly for:
2030 //
2031 // if (thread is in interp_only_mode) {
2032 //   InterpreterRuntime::post_method_entry();
2033 // }
2034 
2035 void InterpreterMacroAssembler::notify_method_entry() {
2036 
2037   // JVMTI
2038   // Whenever JVMTI puts a thread in interp_only_mode, method
2039   // entry/exit events are sent for that thread to track stack
2040   // depth. If it is possible to enter interp_only_mode we add
2041   // the code to check if the event should be sent.
2042   if (JvmtiExport::can_post_interpreter_events()) {
2043     Label jvmti_post_done;
2044     MacroAssembler::load_and_test_int(Z_R0, Address(Z_thread, JavaThread::interp_only_mode_offset()));
2045     z_bre(jvmti_post_done);
2046     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry), /*check_exceptions=*/false);
2047     bind(jvmti_post_done);
2048   }
2049 }
2050 
2051 // Inline assembly for:
2052 //
2053 // if (thread is in interp_only_mode) {
2054 //   if (!native_method) save result
2055 //   InterpreterRuntime::post_method_exit();
2056 //   if (!native_method) restore result
2057 // }
2058 // if (DTraceMethodProbes) {
2059 //   SharedRuntime::dtrace_method_exit(thread, method);
2060 // }
2061 //
2062 // For native methods their result is stored in z_ijava_state.lresult
2063 // and z_ijava_state.fresult before coming here.
2064 // Java methods have their result stored in the expression stack.
2065 //
2066 // Notice the dependency to frame::interpreter_frame_result().
2067 void InterpreterMacroAssembler::notify_method_exit(bool native_method,
2068                                                    TosState state,
2069                                                    NotifyMethodExitMode mode) {
2070   // JVMTI
2071   // Whenever JVMTI puts a thread in interp_only_mode, method
2072   // entry/exit events are sent for that thread to track stack
2073   // depth. If it is possible to enter interp_only_mode we add
2074   // the code to check if the event should be sent.
2075   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2076     Label jvmti_post_done;
2077     MacroAssembler::load_and_test_int(Z_R0, Address(Z_thread, JavaThread::interp_only_mode_offset()));
2078     z_bre(jvmti_post_done);
2079     if (!native_method) push(state); // see frame::interpreter_frame_result()
2080     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit), /*check_exceptions=*/false);
2081     if (!native_method) pop(state);
2082     bind(jvmti_post_done);
2083   }
2084 
2085 #if 0
2086   // Dtrace currently not supported on z/Architecture.
2087   {
2088     SkipIfEqual skip(this, &DTraceMethodProbes, false);
2089     push(state);
2090     get_method(c_rarg1);
2091     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2092                  r15_thread, c_rarg1);
2093     pop(state);
2094   }
2095 #endif
2096 }
2097 
2098 void InterpreterMacroAssembler::skip_if_jvmti_mode(Label &Lskip, Register Rscratch) {
2099   if (!JvmtiExport::can_post_interpreter_events()) {
2100     return;
2101   }
2102 
2103   load_and_test_int(Rscratch, Address(Z_thread, JavaThread::interp_only_mode_offset()));
2104   z_brnz(Lskip);
2105 
2106 }
2107 
2108 // Pop the topmost TOP_IJAVA_FRAME and set it's sender_sp as new Z_SP.
2109 // The return pc is loaded into the register return_pc.
2110 //
2111 // Registers updated:
2112 //     return_pc  - The return pc of the calling frame.
2113 //     tmp1, tmp2 - scratch
2114 void InterpreterMacroAssembler::pop_interpreter_frame(Register return_pc, Register tmp1, Register tmp2) {
2115   // F0  Z_SP -> caller_sp (F1's)
2116   //             ...
2117   //             sender_sp (F1's)
2118   //             ...
2119   // F1  Z_fp -> caller_sp (F2's)
2120   //             return_pc (Continuation after return from F0.)
2121   //             ...
2122   // F2          caller_sp
2123 
2124   // Remove F0's activation. Restoring Z_SP to sender_sp reverts modifications
2125   // (a) by a c2i adapter and (b) by generate_fixed_frame().
2126   // In case (a) the new top frame F1 is an unextended compiled frame.
2127   // In case (b) F1 is converted from PARENT_IJAVA_FRAME to TOP_IJAVA_FRAME.
2128 
2129   // Case (b) seems to be redundant when returning to a interpreted caller,
2130   // because then the caller's top_frame_sp is installed as sp (see
2131   // TemplateInterpreterGenerator::generate_return_entry_for ()). But
2132   // pop_interpreter_frame() is also used in exception handling and there the
2133   // frame type of the caller is unknown, therefore top_frame_sp cannot be used,
2134   // so it is important that sender_sp is the caller's sp as TOP_IJAVA_FRAME.
2135 
2136   Register R_f1_sender_sp = tmp1;
2137   Register R_f2_sp = tmp2;
2138 
2139   // Tirst check the for the interpreter frame's magic.
2140   asm_assert_ijava_state_magic(R_f2_sp/*tmp*/);
2141   z_lg(R_f2_sp, _z_parent_ijava_frame_abi(callers_sp), Z_fp);
2142   z_lg(R_f1_sender_sp, _z_ijava_state_neg(sender_sp), Z_fp);
2143   if (return_pc->is_valid())
2144     z_lg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_fp);
2145   // Pop F0 by resizing to R_f1_sender_sp and using R_f2_sp as fp.
2146   resize_frame_absolute(R_f1_sender_sp, R_f2_sp, false/*load fp*/);
2147 
2148 #ifdef ASSERT
2149   // The return_pc in the new top frame is dead... at least that's my
2150   // current understanding; to assert this I overwrite it.
2151   load_const_optimized(Z_ARG3, 0xb00b1);
2152   z_stg(Z_ARG3, _z_parent_ijava_frame_abi(return_pc), Z_SP);
2153 #endif
2154 }
2155 
2156 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2157   if (VerifyFPU) {
2158     unimplemented("verfiyFPU");
2159   }
2160 }
2161