/* * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_OOPS_OOP_INLINE_HPP #define SHARE_VM_OOPS_OOP_INLINE_HPP #include "gc/shared/collectedHeap.hpp" #include "oops/access.inline.hpp" #include "oops/arrayKlass.hpp" #include "oops/arrayOop.hpp" #include "oops/compressedOops.inline.hpp" #include "oops/klass.inline.hpp" #include "oops/markOop.inline.hpp" #include "oops/oop.hpp" #include "runtime/atomic.hpp" #include "runtime/orderAccess.hpp" #include "runtime/os.hpp" #include "utilities/align.hpp" #include "utilities/macros.hpp" // Implementation of all inlined member functions defined in oop.hpp // We need a separate file to avoid circular references markOop oopDesc::mark() const { return HeapAccess::load_at(as_oop(), mark_offset_in_bytes()); } markOop oopDesc::mark_raw() const { return _mark; } markOop* oopDesc::mark_addr_raw() const { return (markOop*) &_mark; } void oopDesc::set_mark(volatile markOop m) { HeapAccess::store_at(as_oop(), mark_offset_in_bytes(), m); } void oopDesc::set_mark_raw(volatile markOop m) { _mark = m; } void oopDesc::set_mark_raw(HeapWord* mem, markOop m) { *(markOop*)(((char*)mem) + mark_offset_in_bytes()) = m; } void oopDesc::release_set_mark(markOop m) { HeapAccess::store_at(as_oop(), mark_offset_in_bytes(), m); } markOop oopDesc::cas_set_mark(markOop new_mark, markOop old_mark) { return HeapAccess<>::atomic_cmpxchg_at(new_mark, as_oop(), mark_offset_in_bytes(), old_mark); } markOop oopDesc::cas_set_mark_raw(markOop new_mark, markOop old_mark, atomic_memory_order order) { return Atomic::cmpxchg(new_mark, &_mark, old_mark, order); } void oopDesc::init_mark() { set_mark(markOopDesc::prototype_for_object(this)); } void oopDesc::init_mark_raw() { set_mark_raw(markOopDesc::prototype_for_object(this)); } Klass* oopDesc::klass() const { if (UseCompressedClassPointers) { return Klass::decode_klass_not_null(_metadata._compressed_klass); } else { return _metadata._klass; } } Klass* oopDesc::klass_or_null() const volatile { if (UseCompressedClassPointers) { return Klass::decode_klass(_metadata._compressed_klass); } else { return _metadata._klass; } } Klass* oopDesc::klass_or_null_acquire() const volatile { if (UseCompressedClassPointers) { // Workaround for non-const load_acquire parameter. const volatile narrowKlass* addr = &_metadata._compressed_klass; volatile narrowKlass* xaddr = const_cast(addr); return Klass::decode_klass(OrderAccess::load_acquire(xaddr)); } else { return OrderAccess::load_acquire(&_metadata._klass); } } Klass** oopDesc::klass_addr(HeapWord* mem) { // Only used internally and with CMS and will not work with // UseCompressedOops assert(!UseCompressedClassPointers, "only supported with uncompressed klass pointers"); ByteSize offset = byte_offset_of(oopDesc, _metadata._klass); return (Klass**) (((char*)mem) + in_bytes(offset)); } narrowKlass* oopDesc::compressed_klass_addr(HeapWord* mem) { assert(UseCompressedClassPointers, "only called by compressed klass pointers"); ByteSize offset = byte_offset_of(oopDesc, _metadata._compressed_klass); return (narrowKlass*) (((char*)mem) + in_bytes(offset)); } Klass** oopDesc::klass_addr() { return klass_addr((HeapWord*)this); } narrowKlass* oopDesc::compressed_klass_addr() { return compressed_klass_addr((HeapWord*)this); } #define CHECK_SET_KLASS(k) \ do { \ assert(Universe::is_bootstrapping() || k != NULL, "NULL Klass"); \ assert(Universe::is_bootstrapping() || k->is_klass(), "not a Klass"); \ } while (0) void oopDesc::set_klass(Klass* k) { CHECK_SET_KLASS(k); if (UseCompressedClassPointers) { *compressed_klass_addr() = Klass::encode_klass_not_null(k); } else { *klass_addr() = k; } } void oopDesc::release_set_klass(HeapWord* mem, Klass* klass) { CHECK_SET_KLASS(klass); if (UseCompressedClassPointers) { OrderAccess::release_store(compressed_klass_addr(mem), Klass::encode_klass_not_null(klass)); } else { OrderAccess::release_store(klass_addr(mem), klass); } } #undef CHECK_SET_KLASS int oopDesc::klass_gap() const { return *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes()); } void oopDesc::set_klass_gap(HeapWord* mem, int v) { if (UseCompressedClassPointers) { *(int*)(((char*)mem) + klass_gap_offset_in_bytes()) = v; } } void oopDesc::set_klass_gap(int v) { set_klass_gap((HeapWord*)this, v); } void oopDesc::set_klass_to_list_ptr(oop k) { // This is only to be used during GC, for from-space objects, so no // barrier is needed. if (UseCompressedClassPointers) { _metadata._compressed_klass = (narrowKlass)CompressedOops::encode(k); // may be null (parnew overflow handling) } else { _metadata._klass = (Klass*)(address)k; } } oop oopDesc::list_ptr_from_klass() { // This is only to be used during GC, for from-space objects. if (UseCompressedClassPointers) { return CompressedOops::decode((narrowOop)_metadata._compressed_klass); } else { // Special case for GC return (oop)(address)_metadata._klass; } } bool oopDesc::is_a(Klass* k) const { return klass()->is_subtype_of(k); } int oopDesc::size() { return size_given_klass(klass()); } int oopDesc::size_given_klass(Klass* klass) { int lh = klass->layout_helper(); int s; // lh is now a value computed at class initialization that may hint // at the size. For instances, this is positive and equal to the // size. For arrays, this is negative and provides log2 of the // array element size. For other oops, it is zero and thus requires // a virtual call. // // We go to all this trouble because the size computation is at the // heart of phase 2 of mark-compaction, and called for every object, // alive or dead. So the speed here is equal in importance to the // speed of allocation. if (lh > Klass::_lh_neutral_value) { if (!Klass::layout_helper_needs_slow_path(lh)) { s = lh >> LogHeapWordSize; // deliver size scaled by wordSize } else { s = klass->oop_size(this); } } else if (lh <= Klass::_lh_neutral_value) { // The most common case is instances; fall through if so. if (lh < Klass::_lh_neutral_value) { // Second most common case is arrays. We have to fetch the // length of the array, shift (multiply) it appropriately, // up to wordSize, add the header, and align to object size. size_t size_in_bytes; size_t array_length = (size_t) ((arrayOop)this)->length(); size_in_bytes = array_length << Klass::layout_helper_log2_element_size(lh); size_in_bytes += Klass::layout_helper_header_size(lh); // This code could be simplified, but by keeping array_header_in_bytes // in units of bytes and doing it this way we can round up just once, // skipping the intermediate round to HeapWordSize. s = (int)(align_up(size_in_bytes, MinObjAlignmentInBytes) / HeapWordSize); // ParNew (used by CMS), UseParallelGC and UseG1GC can change the length field // of an "old copy" of an object array in the young gen so it indicates // the grey portion of an already copied array. This will cause the first // disjunct below to fail if the two comparands are computed across such // a concurrent change. // ParNew also runs with promotion labs (which look like int // filler arrays) which are subject to changing their declared size // when finally retiring a PLAB; this also can cause the first disjunct // to fail for another worker thread that is concurrently walking the block // offset table. Both these invariant failures are benign for their // current uses; we relax the assertion checking to cover these two cases below: // is_objArray() && is_forwarded() // covers first scenario above // || is_typeArray() // covers second scenario above // If and when UseParallelGC uses the same obj array oop stealing/chunking // technique, we will need to suitably modify the assertion. assert((s == klass->oop_size(this)) || (Universe::heap()->is_gc_active() && ((is_typeArray() && UseConcMarkSweepGC) || (is_objArray() && is_forwarded() && (UseConcMarkSweepGC || UseParallelGC || UseG1GC)))), "wrong array object size"); } else { // Must be zero, so bite the bullet and take the virtual call. s = klass->oop_size(this); } } assert(s > 0, "Oop size must be greater than zero, not %d", s); assert(is_object_aligned(s), "Oop size is not properly aligned: %d", s); return s; } bool oopDesc::is_instance() const { return klass()->is_instance_klass(); } bool oopDesc::is_array() const { return klass()->is_array_klass(); } bool oopDesc::is_objArray() const { return klass()->is_objArray_klass(); } bool oopDesc::is_typeArray() const { return klass()->is_typeArray_klass(); } void* oopDesc::field_addr_raw(int offset) const { return reinterpret_cast(cast_from_oop(as_oop()) + offset); } void* oopDesc::field_addr(int offset) const { return Access<>::resolve(as_oop())->field_addr_raw(offset); } template T* oopDesc::obj_field_addr_raw(int offset) const { return (T*) field_addr_raw(offset); } template size_t oopDesc::field_offset(T* p) const { return pointer_delta((void*)p, (void*)this, 1); } template inline oop oopDesc::obj_field_access(int offset) const { return HeapAccess::oop_load_at(as_oop(), offset); } inline oop oopDesc::obj_field(int offset) const { return HeapAccess<>::oop_load_at(as_oop(), offset); } inline void oopDesc::obj_field_put(int offset, oop value) { HeapAccess<>::oop_store_at(as_oop(), offset, value); } inline jbyte oopDesc::byte_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); } inline void oopDesc::byte_field_put(int offset, jbyte value) { HeapAccess<>::store_at(as_oop(), offset, value); } inline jchar oopDesc::char_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); } inline void oopDesc::char_field_put(int offset, jchar value) { HeapAccess<>::store_at(as_oop(), offset, value); } inline jboolean oopDesc::bool_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); } inline void oopDesc::bool_field_put(int offset, jboolean value) { HeapAccess<>::store_at(as_oop(), offset, jboolean(value & 1)); } inline jshort oopDesc::short_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); } inline void oopDesc::short_field_put(int offset, jshort value) { HeapAccess<>::store_at(as_oop(), offset, value); } inline jint oopDesc::int_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); } inline jint oopDesc::int_field_raw(int offset) const { return RawAccess<>::load_at(as_oop(), offset); } inline void oopDesc::int_field_put(int offset, jint value) { HeapAccess<>::store_at(as_oop(), offset, value); } inline jlong oopDesc::long_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); } inline void oopDesc::long_field_put(int offset, jlong value) { HeapAccess<>::store_at(as_oop(), offset, value); } inline jfloat oopDesc::float_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); } inline void oopDesc::float_field_put(int offset, jfloat value) { HeapAccess<>::store_at(as_oop(), offset, value); } inline jdouble oopDesc::double_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); } inline void oopDesc::double_field_put(int offset, jdouble value) { HeapAccess<>::store_at(as_oop(), offset, value); } bool oopDesc::is_locked() const { return mark()->is_locked(); } bool oopDesc::is_unlocked() const { return mark()->is_unlocked(); } bool oopDesc::has_bias_pattern() const { return mark()->has_bias_pattern(); } bool oopDesc::has_bias_pattern_raw() const { return mark_raw()->has_bias_pattern(); } // Used only for markSweep, scavenging bool oopDesc::is_gc_marked() const { return mark_raw()->is_marked(); } // Used by scavengers bool oopDesc::is_forwarded() const { // The extra heap check is needed since the obj might be locked, in which case the // mark would point to a stack location and have the sentinel bit cleared return mark_raw()->is_marked(); } // Used by scavengers void oopDesc::forward_to(oop p) { assert(check_obj_alignment(p), "forwarding to something not aligned"); assert(Universe::heap()->is_in_reserved(p), "forwarding to something not in heap"); assert(!is_archive_object(oop(this)) && !is_archive_object(p), "forwarding archive object"); markOop m = markOopDesc::encode_pointer_as_mark(p); assert(m->decode_pointer() == p, "encoding must be reversable"); set_mark_raw(m); } // Used by parallel scavengers bool oopDesc::cas_forward_to(oop p, markOop compare, atomic_memory_order order) { assert(check_obj_alignment(p), "forwarding to something not aligned"); assert(Universe::heap()->is_in_reserved(p), "forwarding to something not in heap"); markOop m = markOopDesc::encode_pointer_as_mark(p); assert(m->decode_pointer() == p, "encoding must be reversable"); return cas_set_mark_raw(m, compare, order) == compare; } oop oopDesc::forward_to_atomic(oop p, atomic_memory_order order) { markOop oldMark = mark_raw(); markOop forwardPtrMark = markOopDesc::encode_pointer_as_mark(p); markOop curMark; assert(forwardPtrMark->decode_pointer() == p, "encoding must be reversable"); assert(sizeof(markOop) == sizeof(intptr_t), "CAS below requires this."); while (!oldMark->is_marked()) { curMark = cas_set_mark_raw(forwardPtrMark, oldMark, order); assert(is_forwarded(), "object should have been forwarded"); if (curMark == oldMark) { return NULL; } // If the CAS was unsuccessful then curMark->is_marked() // should return true as another thread has CAS'd in another // forwarding pointer. oldMark = curMark; } return forwardee(); } // Note that the forwardee is not the same thing as the displaced_mark. // The forwardee is used when copying during scavenge and mark-sweep. // It does need to clear the low two locking- and GC-related bits. oop oopDesc::forwardee() const { return (oop) mark_raw()->decode_pointer(); } // Note that the forwardee is not the same thing as the displaced_mark. // The forwardee is used when copying during scavenge and mark-sweep. // It does need to clear the low two locking- and GC-related bits. oop oopDesc::forwardee_acquire() const { markOop m = OrderAccess::load_acquire(&_mark); return (oop) m->decode_pointer(); } // The following method needs to be MT safe. uint oopDesc::age() const { assert(!is_forwarded(), "Attempt to read age from forwarded mark"); if (has_displaced_mark_raw()) { return displaced_mark_raw()->age(); } else { return mark_raw()->age(); } } void oopDesc::incr_age() { assert(!is_forwarded(), "Attempt to increment age of forwarded mark"); if (has_displaced_mark_raw()) { set_displaced_mark_raw(displaced_mark_raw()->incr_age()); } else { set_mark_raw(mark_raw()->incr_age()); } } #if INCLUDE_PARALLELGC void oopDesc::pc_follow_contents(ParCompactionManager* cm) { klass()->oop_pc_follow_contents(this, cm); } void oopDesc::pc_update_contents(ParCompactionManager* cm) { Klass* k = klass(); if (!k->is_typeArray_klass()) { // It might contain oops beyond the header, so take the virtual call. k->oop_pc_update_pointers(this, cm); } // Else skip it. The TypeArrayKlass in the header never needs scavenging. } void oopDesc::ps_push_contents(PSPromotionManager* pm) { Klass* k = klass(); if (!k->is_typeArray_klass()) { // It might contain oops beyond the header, so take the virtual call. k->oop_ps_push_contents(this, pm); } // Else skip it. The TypeArrayKlass in the header never needs scavenging. } #endif // INCLUDE_PARALLELGC template void oopDesc::oop_iterate(OopClosureType* cl) { OopIteratorClosureDispatch::oop_oop_iterate(cl, this, klass()); } template void oopDesc::oop_iterate(OopClosureType* cl, MemRegion mr) { OopIteratorClosureDispatch::oop_oop_iterate(cl, this, klass(), mr); } template int oopDesc::oop_iterate_size(OopClosureType* cl) { Klass* k = klass(); int size = size_given_klass(k); OopIteratorClosureDispatch::oop_oop_iterate(cl, this, k); return size; } template int oopDesc::oop_iterate_size(OopClosureType* cl, MemRegion mr) { Klass* k = klass(); int size = size_given_klass(k); OopIteratorClosureDispatch::oop_oop_iterate(cl, this, k, mr); return size; } template void oopDesc::oop_iterate_backwards(OopClosureType* cl) { OopIteratorClosureDispatch::oop_oop_iterate_backwards(cl, this, klass()); } bool oopDesc::is_instanceof_or_null(oop obj, Klass* klass) { return obj == NULL || obj->klass()->is_subtype_of(klass); } intptr_t oopDesc::identity_hash() { // Fast case; if the object is unlocked and the hash value is set, no locking is needed // Note: The mark must be read into local variable to avoid concurrent updates. markOop mrk = mark(); if (mrk->is_unlocked() && !mrk->has_no_hash()) { return mrk->hash(); } else if (mrk->is_marked()) { return mrk->hash(); } else { return slow_identity_hash(); } } bool oopDesc::has_displaced_mark_raw() const { return mark_raw()->has_displaced_mark_helper(); } markOop oopDesc::displaced_mark_raw() const { return mark_raw()->displaced_mark_helper(); } void oopDesc::set_displaced_mark_raw(markOop m) { mark_raw()->set_displaced_mark_helper(m); } #endif // SHARE_VM_OOPS_OOP_INLINE_HPP