/* * Copyright (c) 2018, 2020, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2017, Red Hat, Inc. and/or its affiliates. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/parallel/parallelArguments.hpp" #include "gc/parallel/parallelScavengeHeap.hpp" #include "gc/shared/adaptiveSizePolicy.hpp" #include "gc/shared/gcArguments.hpp" #include "gc/shared/genArguments.hpp" #include "gc/shared/workerPolicy.hpp" #include "logging/log.hpp" #include "runtime/globals.hpp" #include "runtime/java.hpp" #include "utilities/defaultStream.hpp" #include "utilities/powerOfTwo.hpp" static const double MaxRamFractionForYoung = 0.8; size_t ParallelArguments::conservative_max_heap_alignment() { return compute_heap_alignment(); } void ParallelArguments::initialize() { GCArguments::initialize(); assert(UseParallelGC, "Error"); // If no heap maximum was requested explicitly, use some reasonable fraction // of the physical memory, up to a maximum of 1GB. FLAG_SET_DEFAULT(ParallelGCThreads, WorkerPolicy::parallel_worker_threads()); if (ParallelGCThreads == 0) { jio_fprintf(defaultStream::error_stream(), "The Parallel GC can not be combined with -XX:ParallelGCThreads=0\n"); vm_exit(1); } if (UseAdaptiveSizePolicy) { // We don't want to limit adaptive heap sizing's freedom to adjust the heap // unless the user actually sets these flags. if (FLAG_IS_DEFAULT(MinHeapFreeRatio)) { FLAG_SET_DEFAULT(MinHeapFreeRatio, 0); } if (FLAG_IS_DEFAULT(MaxHeapFreeRatio)) { FLAG_SET_DEFAULT(MaxHeapFreeRatio, 100); } } // If InitialSurvivorRatio or MinSurvivorRatio were not specified, but the // SurvivorRatio has been set, reset their default values to SurvivorRatio + // 2. By doing this we make SurvivorRatio also work for Parallel Scavenger. // See CR 6362902 for details. if (!FLAG_IS_DEFAULT(SurvivorRatio)) { if (FLAG_IS_DEFAULT(InitialSurvivorRatio)) { FLAG_SET_DEFAULT(InitialSurvivorRatio, SurvivorRatio + 2); } if (FLAG_IS_DEFAULT(MinSurvivorRatio)) { FLAG_SET_DEFAULT(MinSurvivorRatio, SurvivorRatio + 2); } } // Par compact uses lower default values since they are treated as // minimums. These are different defaults because of the different // interpretation and are not ergonomically set. if (FLAG_IS_DEFAULT(MarkSweepDeadRatio)) { FLAG_SET_DEFAULT(MarkSweepDeadRatio, 1); } } // The alignment used for boundary between young gen and old gen static size_t default_gen_alignment() { return 64 * K * HeapWordSize; } void ParallelArguments::initialize_alignments() { SpaceAlignment = GenAlignment = default_gen_alignment(); HeapAlignment = compute_heap_alignment(); } void ParallelArguments::initialize_heap_flags_and_sizes_one_pass() { // Do basic sizing work GenArguments::initialize_heap_flags_and_sizes(); // The survivor ratio's are calculated "raw", unlike the // default gc, which adds 2 to the ratio value. We need to // make sure the values are valid before using them. if (MinSurvivorRatio < 3) { FLAG_SET_ERGO(MinSurvivorRatio, 3); } if (InitialSurvivorRatio < 3) { FLAG_SET_ERGO(InitialSurvivorRatio, 3); } } void ParallelArguments::initialize_heap_flags_and_sizes() { if (is_heterogeneous_heap()) { initialize_heterogeneous(); } initialize_heap_flags_and_sizes_one_pass(); const size_t max_page_sz = os::page_size_for_region_aligned(MaxHeapSize, 8); const size_t min_pages = 4; // 1 for eden + 1 for each survivor + 1 for old const size_t min_page_sz = os::page_size_for_region_aligned(MinHeapSize, min_pages); const size_t page_sz = MIN2(max_page_sz, min_page_sz); // Can a page size be something else than a power of two? assert(is_power_of_2((intptr_t)page_sz), "must be a power of 2"); size_t new_alignment = align_up(page_sz, GenAlignment); if (new_alignment != GenAlignment) { GenAlignment = new_alignment; SpaceAlignment = new_alignment; // Redo everything from the start initialize_heap_flags_and_sizes_one_pass(); } } // Check the available dram memory to limit NewSize and MaxNewSize before // calling base class initialize_flags(). void ParallelArguments::initialize_heterogeneous() { FormatBuffer<100> calc_str(""); julong phys_mem; // If MaxRam is specified, we use that as maximum physical memory available. if (FLAG_IS_DEFAULT(MaxRAM)) { phys_mem = os::physical_memory(); calc_str.append("Physical_Memory"); } else { phys_mem = (julong)MaxRAM; calc_str.append("MaxRAM"); } julong reasonable_max = phys_mem; // If either MaxRAMFraction or MaxRAMPercentage is specified, we use them to calculate // reasonable max size of young generation. if (!FLAG_IS_DEFAULT(MaxRAMFraction)) { reasonable_max = (julong)(phys_mem / MaxRAMFraction); calc_str.append(" / MaxRAMFraction"); } else if (!FLAG_IS_DEFAULT(MaxRAMPercentage)) { reasonable_max = (julong)((phys_mem * MaxRAMPercentage) / 100); calc_str.append(" * MaxRAMPercentage / 100"); } else { // We use our own fraction to calculate max size of young generation. reasonable_max = phys_mem * MaxRamFractionForYoung; calc_str.append(" * %0.2f", MaxRamFractionForYoung); } reasonable_max = align_up(reasonable_max, GenAlignment); if (MaxNewSize > reasonable_max) { if (FLAG_IS_CMDLINE(MaxNewSize)) { log_warning(gc, ergo)("Setting MaxNewSize to " SIZE_FORMAT " based on dram available (calculation = align(%s))", (size_t)reasonable_max, calc_str.buffer()); } else { log_info(gc, ergo)("Setting MaxNewSize to " SIZE_FORMAT " based on dram available (calculation = align(%s)). " "Dram usage can be lowered by setting MaxNewSize to a lower value", (size_t)reasonable_max, calc_str.buffer()); } MaxNewSize = reasonable_max; } if (NewSize > reasonable_max) { if (FLAG_IS_CMDLINE(NewSize)) { log_warning(gc, ergo)("Setting NewSize to " SIZE_FORMAT " based on dram available (calculation = align(%s))", (size_t)reasonable_max, calc_str.buffer()); } NewSize = reasonable_max; } } bool ParallelArguments::is_heterogeneous_heap() { return AllocateOldGenAt != NULL; } size_t ParallelArguments::heap_reserved_size_bytes() { if (!is_heterogeneous_heap() || !UseAdaptiveGCBoundary) { return MaxHeapSize; } // Heterogeneous heap and adaptive size gc boundary // This is the size that young gen can grow to, when UseAdaptiveGCBoundary is true. size_t max_yg_size = MaxHeapSize - MinOldSize; // This is the size that old gen can grow to, when UseAdaptiveGCBoundary is true. size_t max_old_size = MaxHeapSize - MinNewSize; return max_yg_size + max_old_size; } size_t ParallelArguments::heap_max_size_bytes() { return MaxHeapSize; } CollectedHeap* ParallelArguments::create_heap() { return new ParallelScavengeHeap(); }