1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciField.hpp"
  27 #include "ci/ciMethodData.hpp"
  28 #include "ci/ciTypeFlow.hpp"
  29 #include "ci/ciValueKlass.hpp"
  30 #include "classfile/symbolTable.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "libadt/dict.hpp"
  34 #include "memory/oopFactory.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/instanceKlass.hpp"
  37 #include "oops/instanceMirrorKlass.hpp"
  38 #include "oops/objArrayKlass.hpp"
  39 #include "oops/typeArrayKlass.hpp"
  40 #include "opto/matcher.hpp"
  41 #include "opto/node.hpp"
  42 #include "opto/opcodes.hpp"
  43 #include "opto/type.hpp"
  44 
  45 // Portions of code courtesy of Clifford Click
  46 
  47 // Optimization - Graph Style
  48 
  49 // Dictionary of types shared among compilations.
  50 Dict* Type::_shared_type_dict = NULL;
  51 const Type::Offset Type::Offset::top(Type::OffsetTop);
  52 const Type::Offset Type::Offset::bottom(Type::OffsetBot);
  53 
  54 const Type::Offset Type::Offset::meet(const Type::Offset other) const {
  55   // Either is 'TOP' offset?  Return the other offset!
  56   int offset = other._offset;
  57   if (_offset == OffsetTop) return Offset(offset);
  58   if (offset == OffsetTop) return Offset(_offset);
  59   // If either is different, return 'BOTTOM' offset
  60   if (_offset != offset) return bottom;
  61   return Offset(_offset);
  62 }
  63 
  64 const Type::Offset Type::Offset::dual() const {
  65   if (_offset == OffsetTop) return bottom;// Map 'TOP' into 'BOTTOM'
  66   if (_offset == OffsetBot) return top;// Map 'BOTTOM' into 'TOP'
  67   return Offset(_offset);               // Map everything else into self
  68 }
  69 
  70 const Type::Offset Type::Offset::add(intptr_t offset) const {
  71   // Adding to 'TOP' offset?  Return 'TOP'!
  72   if (_offset == OffsetTop || offset == OffsetTop) return top;
  73   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  74   if (_offset == OffsetBot || offset == OffsetBot) return bottom;
  75   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  76   offset += (intptr_t)_offset;
  77   if (offset != (int)offset || offset == OffsetTop) return bottom;
  78 
  79   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  80   // It is possible to construct a negative offset during PhaseCCP
  81 
  82   return Offset((int)offset);        // Sum valid offsets
  83 }
  84 
  85 void Type::Offset::dump2(outputStream *st) const {
  86   if (_offset == 0) {
  87     return;
  88   } else if (_offset == OffsetTop) {
  89     st->print("+top");
  90   }
  91   else if (_offset == OffsetBot) {
  92     st->print("+bot");
  93   } else if (_offset) {
  94     st->print("+%d", _offset);
  95   }
  96 }
  97 
  98 // Array which maps compiler types to Basic Types
  99 const Type::TypeInfo Type::_type_info[Type::lastype] = {
 100   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
 101   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
 102   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
 103   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
 104   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
 105   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
 106   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
 107   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
 108   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
 109   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
 110 
 111 #ifdef SPARC
 112   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 113   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
 114   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 115   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 116   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 117 #elif defined(PPC64)
 118   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 119   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 120   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 121   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 122   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 123 #elif defined(S390)
 124   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 125   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 126   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 127   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 128   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 129 #else // all other
 130   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
 131   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
 132   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 133   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
 134   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
 135 #endif
 136   { Bad,             T_VALUETYPE,  "value:",        false, Node::NotAMachineReg, relocInfo::none          },  // ValueType
 137   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
 138   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
 139   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
 140   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
 141   { Bad,             T_VALUETYPEPTR,"valueptr:",     true,  Op_RegP,              relocInfo::oop_type      },  // ValueTypePtr
 142   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
 143   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
 144   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
 145   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
 146   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
 147   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
 148   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
 149   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
 150   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
 151   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
 152   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
 153   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
 154   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 155   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 156 };
 157 
 158 // Map ideal registers (machine types) to ideal types
 159 const Type *Type::mreg2type[_last_machine_leaf];
 160 
 161 // Map basic types to canonical Type* pointers.
 162 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 163 
 164 // Map basic types to constant-zero Types.
 165 const Type* Type::            _zero_type[T_CONFLICT+1];
 166 
 167 // Map basic types to array-body alias types.
 168 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 169 
 170 //=============================================================================
 171 // Convenience common pre-built types.
 172 const Type *Type::ABIO;         // State-of-machine only
 173 const Type *Type::BOTTOM;       // All values
 174 const Type *Type::CONTROL;      // Control only
 175 const Type *Type::DOUBLE;       // All doubles
 176 const Type *Type::FLOAT;        // All floats
 177 const Type *Type::HALF;         // Placeholder half of doublewide type
 178 const Type *Type::MEMORY;       // Abstract store only
 179 const Type *Type::RETURN_ADDRESS;
 180 const Type *Type::TOP;          // No values in set
 181 
 182 //------------------------------get_const_type---------------------------
 183 const Type* Type::get_const_type(ciType* type) {
 184   if (type == NULL) {
 185     return NULL;
 186   } else if (type->is_primitive_type()) {
 187     return get_const_basic_type(type->basic_type());
 188   } else {
 189     return TypeOopPtr::make_from_klass(type->as_klass());
 190   }
 191 }
 192 
 193 //---------------------------array_element_basic_type---------------------------------
 194 // Mapping to the array element's basic type.
 195 BasicType Type::array_element_basic_type() const {
 196   BasicType bt = basic_type();
 197   if (bt == T_INT) {
 198     if (this == TypeInt::INT)   return T_INT;
 199     if (this == TypeInt::CHAR)  return T_CHAR;
 200     if (this == TypeInt::BYTE)  return T_BYTE;
 201     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 202     if (this == TypeInt::SHORT) return T_SHORT;
 203     return T_VOID;
 204   }
 205   return bt;
 206 }
 207 
 208 // For two instance arrays of same dimension, return the base element types.
 209 // Otherwise or if the arrays have different dimensions, return NULL.
 210 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 211                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 212 
 213   if (e1) *e1 = NULL;
 214   if (e2) *e2 = NULL;
 215   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
 216   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
 217 
 218   if (a1tap != NULL && a2tap != NULL) {
 219     // Handle multidimensional arrays
 220     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 221     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 222     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 223       a1tap = a1tp->is_aryptr();
 224       a2tap = a2tp->is_aryptr();
 225       a1tp = a1tap->elem()->make_ptr();
 226       a2tp = a2tap->elem()->make_ptr();
 227     }
 228     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 229       if (e1) *e1 = a1tp->is_instptr();
 230       if (e2) *e2 = a2tp->is_instptr();
 231     }
 232   }
 233 }
 234 
 235 //---------------------------get_typeflow_type---------------------------------
 236 // Import a type produced by ciTypeFlow.
 237 const Type* Type::get_typeflow_type(ciType* type) {
 238   switch (type->basic_type()) {
 239 
 240   case ciTypeFlow::StateVector::T_BOTTOM:
 241     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 242     return Type::BOTTOM;
 243 
 244   case ciTypeFlow::StateVector::T_TOP:
 245     assert(type == ciTypeFlow::StateVector::top_type(), "");
 246     return Type::TOP;
 247 
 248   case ciTypeFlow::StateVector::T_NULL:
 249     assert(type == ciTypeFlow::StateVector::null_type(), "");
 250     return TypePtr::NULL_PTR;
 251 
 252   case ciTypeFlow::StateVector::T_LONG2:
 253     // The ciTypeFlow pass pushes a long, then the half.
 254     // We do the same.
 255     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 256     return TypeInt::TOP;
 257 
 258   case ciTypeFlow::StateVector::T_DOUBLE2:
 259     // The ciTypeFlow pass pushes double, then the half.
 260     // Our convention is the same.
 261     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 262     return Type::TOP;
 263 
 264   case T_ADDRESS:
 265     assert(type->is_return_address(), "");
 266     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 267 
 268   case T_VALUETYPE:
 269     return TypeValueType::make(type->as_value_klass());
 270 
 271   default:
 272     // make sure we did not mix up the cases:
 273     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 274     assert(type != ciTypeFlow::StateVector::top_type(), "");
 275     assert(type != ciTypeFlow::StateVector::null_type(), "");
 276     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 277     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 278     assert(!type->is_return_address(), "");
 279 
 280     return Type::get_const_type(type);
 281   }
 282 }
 283 
 284 
 285 //-----------------------make_from_constant------------------------------------
 286 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 287                                      int stable_dimension, bool is_narrow_oop,
 288                                      bool is_autobox_cache) {
 289   switch (constant.basic_type()) {
 290     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 291     case T_CHAR:     return TypeInt::make(constant.as_char());
 292     case T_BYTE:     return TypeInt::make(constant.as_byte());
 293     case T_SHORT:    return TypeInt::make(constant.as_short());
 294     case T_INT:      return TypeInt::make(constant.as_int());
 295     case T_LONG:     return TypeLong::make(constant.as_long());
 296     case T_FLOAT:    return TypeF::make(constant.as_float());
 297     case T_DOUBLE:   return TypeD::make(constant.as_double());
 298     case T_ARRAY:
 299     case T_VALUETYPE:
 300     case T_OBJECT: {
 301         // cases:
 302         //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 303         //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 304         // An oop is not scavengable if it is in the perm gen.
 305         const Type* con_type = NULL;
 306         ciObject* oop_constant = constant.as_object();
 307         if (oop_constant->is_null_object()) {
 308           con_type = Type::get_zero_type(T_OBJECT);
 309         } else if (require_constant || oop_constant->should_be_constant()) {
 310           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
 311           if (con_type != NULL) {
 312             if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
 313               con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
 314             }
 315             if (stable_dimension > 0) {
 316               assert(FoldStableValues, "sanity");
 317               assert(!con_type->is_zero_type(), "default value for stable field");
 318               con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 319             }
 320           }
 321         }
 322         if (is_narrow_oop) {
 323           con_type = con_type->make_narrowoop();
 324         }
 325         return con_type;
 326       }
 327     case T_ILLEGAL:
 328       // Invalid ciConstant returned due to OutOfMemoryError in the CI
 329       assert(Compile::current()->env()->failing(), "otherwise should not see this");
 330       return NULL;
 331     default:
 332       // Fall through to failure
 333       return NULL;
 334   }
 335 }
 336 
 337 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
 338   BasicType conbt = con.basic_type();
 339   switch (conbt) {
 340     case T_BOOLEAN: conbt = T_BYTE;   break;
 341     case T_ARRAY:   conbt = T_OBJECT; break;
 342     case T_VALUETYPE: conbt = T_OBJECT; break;
 343     default:                          break;
 344   }
 345   switch (loadbt) {
 346     case T_BOOLEAN:   loadbt = T_BYTE;   break;
 347     case T_NARROWOOP: loadbt = T_OBJECT; break;
 348     case T_ARRAY:     loadbt = T_OBJECT; break;
 349     case T_VALUETYPE: loadbt = T_OBJECT; break;
 350     case T_ADDRESS:   loadbt = T_OBJECT; break;
 351     default:                             break;
 352   }
 353   if (conbt == loadbt) {
 354     if (is_unsigned && conbt == T_BYTE) {
 355       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 356       return ciConstant(T_INT, con.as_int() & 0xFF);
 357     } else {
 358       return con;
 359     }
 360   }
 361   if (conbt == T_SHORT && loadbt == T_CHAR) {
 362     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 363     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 364   }
 365   return ciConstant(); // T_ILLEGAL
 366 }
 367 
 368 // Try to constant-fold a stable array element.
 369 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
 370                                                    BasicType loadbt, bool is_unsigned_load) {
 371   // Decode the results of GraphKit::array_element_address.
 372   ciConstant element_value = array->element_value_by_offset(off);
 373   if (element_value.basic_type() == T_ILLEGAL) {
 374     return NULL; // wrong offset
 375   }
 376   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 377 
 378   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 379          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 380 
 381   if (con.is_valid() &&          // not a mismatched access
 382       !con.is_null_or_zero()) {  // not a default value
 383     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 384     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 385   }
 386   return NULL;
 387 }
 388 
 389 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 390   ciField* field;
 391   ciType* type = holder->java_mirror_type();
 392   if (type != NULL && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 393     // Static field
 394     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 395   } else {
 396     // Instance field
 397     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 398   }
 399   if (field == NULL) {
 400     return NULL; // Wrong offset
 401   }
 402   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 403 }
 404 
 405 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 406                                            BasicType loadbt, bool is_unsigned_load) {
 407   if (!field->is_constant()) {
 408     return NULL; // Non-constant field
 409   }
 410   ciConstant field_value;
 411   if (field->is_static()) {
 412     // final static field
 413     field_value = field->constant_value();
 414   } else if (holder != NULL) {
 415     // final or stable non-static field
 416     // Treat final non-static fields of trusted classes (classes in
 417     // java.lang.invoke and sun.invoke packages and subpackages) as
 418     // compile time constants.
 419     field_value = field->constant_value_of(holder);
 420   }
 421   if (!field_value.is_valid()) {
 422     return NULL; // Not a constant
 423   }
 424 
 425   ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
 426 
 427   assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
 428          type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
 429 
 430   bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
 431   int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
 432   bool is_narrow_oop = (loadbt == T_NARROWOOP);
 433 
 434   const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
 435                                             stable_dimension, is_narrow_oop,
 436                                             field->is_autobox_cache());
 437   if (con_type != NULL && field->is_call_site_target()) {
 438     ciCallSite* call_site = holder->as_call_site();
 439     if (!call_site->is_constant_call_site()) {
 440       ciMethodHandle* target = con.as_object()->as_method_handle();
 441       Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
 442     }
 443   }
 444   return con_type;
 445 }
 446 
 447 //------------------------------make-------------------------------------------
 448 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 449 // and look for an existing copy in the type dictionary.
 450 const Type *Type::make( enum TYPES t ) {
 451   return (new Type(t))->hashcons();
 452 }
 453 
 454 //------------------------------cmp--------------------------------------------
 455 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 456   if( t1->_base != t2->_base )
 457     return 1;                   // Missed badly
 458   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 459   return !t1->eq(t2);           // Return ZERO if equal
 460 }
 461 
 462 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 463   if (!include_speculative) {
 464     return remove_speculative();
 465   }
 466   return this;
 467 }
 468 
 469 //------------------------------hash-------------------------------------------
 470 int Type::uhash( const Type *const t ) {
 471   return t->hash();
 472 }
 473 
 474 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 475 
 476 //--------------------------Initialize_shared----------------------------------
 477 void Type::Initialize_shared(Compile* current) {
 478   // This method does not need to be locked because the first system
 479   // compilations (stub compilations) occur serially.  If they are
 480   // changed to proceed in parallel, then this section will need
 481   // locking.
 482 
 483   Arena* save = current->type_arena();
 484   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 485 
 486   current->set_type_arena(shared_type_arena);
 487   _shared_type_dict =
 488     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 489                                   shared_type_arena, 128 );
 490   current->set_type_dict(_shared_type_dict);
 491 
 492   // Make shared pre-built types.
 493   CONTROL = make(Control);      // Control only
 494   TOP     = make(Top);          // No values in set
 495   MEMORY  = make(Memory);       // Abstract store only
 496   ABIO    = make(Abio);         // State-of-machine only
 497   RETURN_ADDRESS=make(Return_Address);
 498   FLOAT   = make(FloatBot);     // All floats
 499   DOUBLE  = make(DoubleBot);    // All doubles
 500   BOTTOM  = make(Bottom);       // Everything
 501   HALF    = make(Half);         // Placeholder half of doublewide type
 502 
 503   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 504   TypeF::ONE  = TypeF::make(1.0); // Float 1
 505 
 506   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 507   TypeD::ONE  = TypeD::make(1.0); // Double 1
 508 
 509   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 510   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 511   TypeInt::ONE     = TypeInt::make( 1);  //  1
 512   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 513   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 514   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 515   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 516   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 517   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 518   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 519   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 520   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 521   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 522   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 523   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 524   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 525   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 526   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 527   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 528   // CmpL is overloaded both as the bytecode computation returning
 529   // a trinary (-1,0,+1) integer result AND as an efficient long
 530   // compare returning optimizer ideal-type flags.
 531   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 532   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 533   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 534   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 535   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 536 
 537   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 538   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 539   TypeLong::ONE     = TypeLong::make( 1);        //  1
 540   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 541   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 542   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 543   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 544   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 545 
 546   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 547   fboth[0] = Type::CONTROL;
 548   fboth[1] = Type::CONTROL;
 549   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 550 
 551   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 552   ffalse[0] = Type::CONTROL;
 553   ffalse[1] = Type::TOP;
 554   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 555 
 556   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 557   fneither[0] = Type::TOP;
 558   fneither[1] = Type::TOP;
 559   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 560 
 561   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 562   ftrue[0] = Type::TOP;
 563   ftrue[1] = Type::CONTROL;
 564   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 565 
 566   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 567   floop[0] = Type::CONTROL;
 568   floop[1] = TypeInt::INT;
 569   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 570 
 571   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, Offset(0));
 572   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, Offset::bottom);
 573   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, Offset::bottom);
 574 
 575   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 576   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 577 
 578   const Type **fmembar = TypeTuple::fields(0);
 579   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 580 
 581   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 582   fsc[0] = TypeInt::CC;
 583   fsc[1] = Type::MEMORY;
 584   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 585 
 586   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 587   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 588   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 589   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 590                                            false, 0, Offset(oopDesc::mark_offset_in_bytes()));
 591   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 592                                            false, 0, Offset(oopDesc::klass_offset_in_bytes()));
 593   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, Offset::bottom, TypeOopPtr::InstanceBot);
 594 
 595   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, Offset::bottom);
 596 
 597   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 598   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 599 
 600   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 601 
 602   mreg2type[Op_Node] = Type::BOTTOM;
 603   mreg2type[Op_Set ] = 0;
 604   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 605   mreg2type[Op_RegI] = TypeInt::INT;
 606   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 607   mreg2type[Op_RegF] = Type::FLOAT;
 608   mreg2type[Op_RegD] = Type::DOUBLE;
 609   mreg2type[Op_RegL] = TypeLong::LONG;
 610   mreg2type[Op_RegFlags] = TypeInt::CC;
 611 
 612   TypeAryPtr::RANGE   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, Offset(arrayOopDesc::length_offset_in_bytes()));
 613 
 614   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 615 
 616 #ifdef _LP64
 617   if (UseCompressedOops) {
 618     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 619     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 620   } else
 621 #endif
 622   {
 623     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 624     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 625   }
 626   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Offset::bottom);
 627   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Offset::bottom);
 628   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Offset::bottom);
 629   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Offset::bottom);
 630   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Offset::bottom);
 631   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Offset::bottom);
 632   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Offset::bottom);
 633 
 634   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 635   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 636   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 637   TypeAryPtr::_array_body_type[T_VALUETYPE] = TypeAryPtr::OOPS;
 638   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 639   TypeAryPtr::_array_body_type[T_VALUETYPEPTR] = NULL;
 640   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 641   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 642   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 643   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 644   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 645   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 646   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 647   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 648 
 649   TypeKlassPtr::OBJECT = TypeKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), Offset(0) );
 650   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), Offset(0) );
 651   TypeKlassPtr::BOTTOM = EnableValhalla ? TypeKlassPtr::make(TypePtr::BotPTR, NULL, Offset(0)) : TypeKlassPtr::OBJECT_OR_NULL;
 652 
 653   const Type **fi2c = TypeTuple::fields(2);
 654   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 655   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 656   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 657 
 658   const Type **intpair = TypeTuple::fields(2);
 659   intpair[0] = TypeInt::INT;
 660   intpair[1] = TypeInt::INT;
 661   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 662 
 663   const Type **longpair = TypeTuple::fields(2);
 664   longpair[0] = TypeLong::LONG;
 665   longpair[1] = TypeLong::LONG;
 666   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 667 
 668   const Type **intccpair = TypeTuple::fields(2);
 669   intccpair[0] = TypeInt::INT;
 670   intccpair[1] = TypeInt::CC;
 671   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 672 
 673   const Type **longccpair = TypeTuple::fields(2);
 674   longccpair[0] = TypeLong::LONG;
 675   longccpair[1] = TypeInt::CC;
 676   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 677 
 678   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 679   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 680   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 681   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 682   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 683   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 684   _const_basic_type[T_INT]         = TypeInt::INT;
 685   _const_basic_type[T_LONG]        = TypeLong::LONG;
 686   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 687   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 688   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 689   _const_basic_type[T_VALUETYPEPTR]= TypeInstPtr::BOTTOM;
 690   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 691   _const_basic_type[T_VALUETYPE]   = TypeInstPtr::BOTTOM;
 692   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 693   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 694   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 695 
 696   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 697   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 698   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 699   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 700   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 701   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 702   _zero_type[T_INT]         = TypeInt::ZERO;
 703   _zero_type[T_LONG]        = TypeLong::ZERO;
 704   _zero_type[T_FLOAT]       = TypeF::ZERO;
 705   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 706   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 707   _zero_type[T_VALUETYPEPTR]= TypePtr::NULL_PTR;
 708   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 709   _zero_type[T_VALUETYPE]   = TypePtr::NULL_PTR;
 710   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 711   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 712 
 713   // get_zero_type() should not happen for T_CONFLICT
 714   _zero_type[T_CONFLICT]= NULL;
 715 
 716   // Vector predefined types, it needs initialized _const_basic_type[].
 717   if (Matcher::vector_size_supported(T_BYTE,4)) {
 718     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 719   }
 720   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 721     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 722   }
 723   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 724     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 725   }
 726   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 727     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 728   }
 729   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 730     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 731   }
 732   mreg2type[Op_VecS] = TypeVect::VECTS;
 733   mreg2type[Op_VecD] = TypeVect::VECTD;
 734   mreg2type[Op_VecX] = TypeVect::VECTX;
 735   mreg2type[Op_VecY] = TypeVect::VECTY;
 736   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 737 
 738   // Restore working type arena.
 739   current->set_type_arena(save);
 740   current->set_type_dict(NULL);
 741 }
 742 
 743 //------------------------------Initialize-------------------------------------
 744 void Type::Initialize(Compile* current) {
 745   assert(current->type_arena() != NULL, "must have created type arena");
 746 
 747   if (_shared_type_dict == NULL) {
 748     Initialize_shared(current);
 749   }
 750 
 751   Arena* type_arena = current->type_arena();
 752 
 753   // Create the hash-cons'ing dictionary with top-level storage allocation
 754   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 755   current->set_type_dict(tdic);
 756 
 757   // Transfer the shared types.
 758   DictI i(_shared_type_dict);
 759   for( ; i.test(); ++i ) {
 760     Type* t = (Type*)i._value;
 761     tdic->Insert(t,t);  // New Type, insert into Type table
 762   }
 763 }
 764 
 765 //------------------------------hashcons---------------------------------------
 766 // Do the hash-cons trick.  If the Type already exists in the type table,
 767 // delete the current Type and return the existing Type.  Otherwise stick the
 768 // current Type in the Type table.
 769 const Type *Type::hashcons(void) {
 770   debug_only(base());           // Check the assertion in Type::base().
 771   // Look up the Type in the Type dictionary
 772   Dict *tdic = type_dict();
 773   Type* old = (Type*)(tdic->Insert(this, this, false));
 774   if( old ) {                   // Pre-existing Type?
 775     if( old != this )           // Yes, this guy is not the pre-existing?
 776       delete this;              // Yes, Nuke this guy
 777     assert( old->_dual, "" );
 778     return old;                 // Return pre-existing
 779   }
 780 
 781   // Every type has a dual (to make my lattice symmetric).
 782   // Since we just discovered a new Type, compute its dual right now.
 783   assert( !_dual, "" );         // No dual yet
 784   _dual = xdual();              // Compute the dual
 785   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 786     _dual = this;
 787     return this;
 788   }
 789   assert( !_dual->_dual, "" );  // No reverse dual yet
 790   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 791   // New Type, insert into Type table
 792   tdic->Insert((void*)_dual,(void*)_dual);
 793   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 794 #ifdef ASSERT
 795   Type *dual_dual = (Type*)_dual->xdual();
 796   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 797   delete dual_dual;
 798 #endif
 799   return this;                  // Return new Type
 800 }
 801 
 802 //------------------------------eq---------------------------------------------
 803 // Structural equality check for Type representations
 804 bool Type::eq( const Type * ) const {
 805   return true;                  // Nothing else can go wrong
 806 }
 807 
 808 //------------------------------hash-------------------------------------------
 809 // Type-specific hashing function.
 810 int Type::hash(void) const {
 811   return _base;
 812 }
 813 
 814 //------------------------------is_finite--------------------------------------
 815 // Has a finite value
 816 bool Type::is_finite() const {
 817   return false;
 818 }
 819 
 820 //------------------------------is_nan-----------------------------------------
 821 // Is not a number (NaN)
 822 bool Type::is_nan()    const {
 823   return false;
 824 }
 825 
 826 //----------------------interface_vs_oop---------------------------------------
 827 #ifdef ASSERT
 828 bool Type::interface_vs_oop_helper(const Type *t) const {
 829   bool result = false;
 830 
 831   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 832   const TypePtr*    t_ptr =    t->make_ptr();
 833   if( this_ptr == NULL || t_ptr == NULL )
 834     return result;
 835 
 836   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 837   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 838   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 839     bool this_interface = this_inst->klass()->is_interface();
 840     bool    t_interface =    t_inst->klass()->is_interface();
 841     result = this_interface ^ t_interface;
 842   }
 843 
 844   return result;
 845 }
 846 
 847 bool Type::interface_vs_oop(const Type *t) const {
 848   if (interface_vs_oop_helper(t)) {
 849     return true;
 850   }
 851   // Now check the speculative parts as well
 852   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 853   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 854   if (this_spec != NULL && t_spec != NULL) {
 855     if (this_spec->interface_vs_oop_helper(t_spec)) {
 856       return true;
 857     }
 858     return false;
 859   }
 860   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 861     return true;
 862   }
 863   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 864     return true;
 865   }
 866   return false;
 867 }
 868 
 869 #endif
 870 
 871 //------------------------------meet-------------------------------------------
 872 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 873 // commutative and the lattice is symmetric.
 874 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 875   if (isa_narrowoop() && t->isa_narrowoop()) {
 876     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 877     return result->make_narrowoop();
 878   }
 879   if (isa_narrowklass() && t->isa_narrowklass()) {
 880     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 881     return result->make_narrowklass();
 882   }
 883 
 884   const Type *this_t = maybe_remove_speculative(include_speculative);
 885   t = t->maybe_remove_speculative(include_speculative);
 886 
 887   const Type *mt = this_t->xmeet(t);
 888   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 889   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 890 #ifdef ASSERT
 891   assert(mt == t->xmeet(this_t), "meet not commutative");
 892   const Type* dual_join = mt->_dual;
 893   const Type *t2t    = dual_join->xmeet(t->_dual);
 894   const Type *t2this = dual_join->xmeet(this_t->_dual);
 895 
 896   // Interface meet Oop is Not Symmetric:
 897   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 898   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 899 
 900   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 901     tty->print_cr("=== Meet Not Symmetric ===");
 902     tty->print("t   =                   ");              t->dump(); tty->cr();
 903     tty->print("this=                   ");         this_t->dump(); tty->cr();
 904     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 905 
 906     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 907     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 908     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 909 
 910     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 911     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 912 
 913     fatal("meet not symmetric" );
 914   }
 915 #endif
 916   return mt;
 917 }
 918 
 919 //------------------------------xmeet------------------------------------------
 920 // Compute the MEET of two types.  It returns a new Type object.
 921 const Type *Type::xmeet( const Type *t ) const {
 922   // Perform a fast test for common case; meeting the same types together.
 923   if( this == t ) return this;  // Meeting same type-rep?
 924 
 925   // Meeting TOP with anything?
 926   if( _base == Top ) return t;
 927 
 928   // Meeting BOTTOM with anything?
 929   if( _base == Bottom ) return BOTTOM;
 930 
 931   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 932   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 933   switch (t->base()) {  // Switch on original type
 934 
 935   // Cut in half the number of cases I must handle.  Only need cases for when
 936   // the given enum "t->type" is less than or equal to the local enum "type".
 937   case FloatCon:
 938   case DoubleCon:
 939   case Int:
 940   case Long:
 941     return t->xmeet(this);
 942 
 943   case OopPtr:
 944     return t->xmeet(this);
 945 
 946   case InstPtr:
 947     return t->xmeet(this);
 948 
 949   case MetadataPtr:
 950   case KlassPtr:
 951     return t->xmeet(this);
 952 
 953   case AryPtr:
 954     return t->xmeet(this);
 955 
 956   case NarrowOop:
 957     return t->xmeet(this);
 958 
 959   case NarrowKlass:
 960     return t->xmeet(this);
 961 
 962   case ValueType:
 963     return t->xmeet(this);
 964 
 965   case Bad:                     // Type check
 966   default:                      // Bogus type not in lattice
 967     typerr(t);
 968     return Type::BOTTOM;
 969 
 970   case Bottom:                  // Ye Olde Default
 971     return t;
 972 
 973   case FloatTop:
 974     if( _base == FloatTop ) return this;
 975   case FloatBot:                // Float
 976     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 977     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 978     typerr(t);
 979     return Type::BOTTOM;
 980 
 981   case DoubleTop:
 982     if( _base == DoubleTop ) return this;
 983   case DoubleBot:               // Double
 984     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 985     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 986     typerr(t);
 987     return Type::BOTTOM;
 988 
 989   // These next few cases must match exactly or it is a compile-time error.
 990   case Control:                 // Control of code
 991   case Abio:                    // State of world outside of program
 992   case Memory:
 993     if( _base == t->_base )  return this;
 994     typerr(t);
 995     return Type::BOTTOM;
 996 
 997   case Top:                     // Top of the lattice
 998     return this;
 999   }
1000 
1001   // The type is unchanged
1002   return this;
1003 }
1004 
1005 //-----------------------------filter------------------------------------------
1006 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
1007   const Type* ft = join_helper(kills, include_speculative);
1008   if (ft->empty())
1009     return Type::TOP;           // Canonical empty value
1010   return ft;
1011 }
1012 
1013 //------------------------------xdual------------------------------------------
1014 // Compute dual right now.
1015 const Type::TYPES Type::dual_type[Type::lastype] = {
1016   Bad,          // Bad
1017   Control,      // Control
1018   Bottom,       // Top
1019   Bad,          // Int - handled in v-call
1020   Bad,          // Long - handled in v-call
1021   Half,         // Half
1022   Bad,          // NarrowOop - handled in v-call
1023   Bad,          // NarrowKlass - handled in v-call
1024 
1025   Bad,          // Tuple - handled in v-call
1026   Bad,          // Array - handled in v-call
1027   Bad,          // VectorS - handled in v-call
1028   Bad,          // VectorD - handled in v-call
1029   Bad,          // VectorX - handled in v-call
1030   Bad,          // VectorY - handled in v-call
1031   Bad,          // VectorZ - handled in v-call
1032   Bad,          // ValueType - handled in v-call
1033 
1034   Bad,          // AnyPtr - handled in v-call
1035   Bad,          // RawPtr - handled in v-call
1036   Bad,          // OopPtr - handled in v-call
1037   Bad,          // InstPtr - handled in v-call
1038   Bad,          // ValueTypePtr - handled in v-call
1039   Bad,          // AryPtr - handled in v-call
1040 
1041   Bad,          //  MetadataPtr - handled in v-call
1042   Bad,          // KlassPtr - handled in v-call
1043 
1044   Bad,          // Function - handled in v-call
1045   Abio,         // Abio
1046   Return_Address,// Return_Address
1047   Memory,       // Memory
1048   FloatBot,     // FloatTop
1049   FloatCon,     // FloatCon
1050   FloatTop,     // FloatBot
1051   DoubleBot,    // DoubleTop
1052   DoubleCon,    // DoubleCon
1053   DoubleTop,    // DoubleBot
1054   Top           // Bottom
1055 };
1056 
1057 const Type *Type::xdual() const {
1058   // Note: the base() accessor asserts the sanity of _base.
1059   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
1060   return new Type(_type_info[_base].dual_type);
1061 }
1062 
1063 //------------------------------has_memory-------------------------------------
1064 bool Type::has_memory() const {
1065   Type::TYPES tx = base();
1066   if (tx == Memory) return true;
1067   if (tx == Tuple) {
1068     const TypeTuple *t = is_tuple();
1069     for (uint i=0; i < t->cnt(); i++) {
1070       tx = t->field_at(i)->base();
1071       if (tx == Memory)  return true;
1072     }
1073   }
1074   return false;
1075 }
1076 
1077 #ifndef PRODUCT
1078 //------------------------------dump2------------------------------------------
1079 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1080   st->print("%s", _type_info[_base].msg);
1081 }
1082 
1083 //------------------------------dump-------------------------------------------
1084 void Type::dump_on(outputStream *st) const {
1085   ResourceMark rm;
1086   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
1087   dump2(d,1, st);
1088   if (is_ptr_to_narrowoop()) {
1089     st->print(" [narrow]");
1090   } else if (is_ptr_to_narrowklass()) {
1091     st->print(" [narrowklass]");
1092   }
1093 }
1094 
1095 //-----------------------------------------------------------------------------
1096 const char* Type::str(const Type* t) {
1097   stringStream ss;
1098   t->dump_on(&ss);
1099   return ss.as_string();
1100 }
1101 #endif
1102 
1103 //------------------------------singleton--------------------------------------
1104 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1105 // constants (Ldi nodes).  Singletons are integer, float or double constants.
1106 bool Type::singleton(void) const {
1107   return _base == Top || _base == Half;
1108 }
1109 
1110 //------------------------------empty------------------------------------------
1111 // TRUE if Type is a type with no values, FALSE otherwise.
1112 bool Type::empty(void) const {
1113   switch (_base) {
1114   case DoubleTop:
1115   case FloatTop:
1116   case Top:
1117     return true;
1118 
1119   case Half:
1120   case Abio:
1121   case Return_Address:
1122   case Memory:
1123   case Bottom:
1124   case FloatBot:
1125   case DoubleBot:
1126     return false;  // never a singleton, therefore never empty
1127 
1128   default:
1129     ShouldNotReachHere();
1130     return false;
1131   }
1132 }
1133 
1134 //------------------------------dump_stats-------------------------------------
1135 // Dump collected statistics to stderr
1136 #ifndef PRODUCT
1137 void Type::dump_stats() {
1138   tty->print("Types made: %d\n", type_dict()->Size());
1139 }
1140 #endif
1141 
1142 //------------------------------typerr-----------------------------------------
1143 void Type::typerr( const Type *t ) const {
1144 #ifndef PRODUCT
1145   tty->print("\nError mixing types: ");
1146   dump();
1147   tty->print(" and ");
1148   t->dump();
1149   tty->print("\n");
1150 #endif
1151   ShouldNotReachHere();
1152 }
1153 
1154 
1155 //=============================================================================
1156 // Convenience common pre-built types.
1157 const TypeF *TypeF::ZERO;       // Floating point zero
1158 const TypeF *TypeF::ONE;        // Floating point one
1159 
1160 //------------------------------make-------------------------------------------
1161 // Create a float constant
1162 const TypeF *TypeF::make(float f) {
1163   return (TypeF*)(new TypeF(f))->hashcons();
1164 }
1165 
1166 //------------------------------meet-------------------------------------------
1167 // Compute the MEET of two types.  It returns a new Type object.
1168 const Type *TypeF::xmeet( const Type *t ) const {
1169   // Perform a fast test for common case; meeting the same types together.
1170   if( this == t ) return this;  // Meeting same type-rep?
1171 
1172   // Current "this->_base" is FloatCon
1173   switch (t->base()) {          // Switch on original type
1174   case AnyPtr:                  // Mixing with oops happens when javac
1175   case RawPtr:                  // reuses local variables
1176   case OopPtr:
1177   case InstPtr:
1178   case AryPtr:
1179   case MetadataPtr:
1180   case KlassPtr:
1181   case NarrowOop:
1182   case NarrowKlass:
1183   case Int:
1184   case Long:
1185   case DoubleTop:
1186   case DoubleCon:
1187   case DoubleBot:
1188   case Bottom:                  // Ye Olde Default
1189     return Type::BOTTOM;
1190 
1191   case FloatBot:
1192     return t;
1193 
1194   default:                      // All else is a mistake
1195     typerr(t);
1196 
1197   case FloatCon:                // Float-constant vs Float-constant?
1198     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1199                                 // must compare bitwise as positive zero, negative zero and NaN have
1200                                 // all the same representation in C++
1201       return FLOAT;             // Return generic float
1202                                 // Equal constants
1203   case Top:
1204   case FloatTop:
1205     break;                      // Return the float constant
1206   }
1207   return this;                  // Return the float constant
1208 }
1209 
1210 //------------------------------xdual------------------------------------------
1211 // Dual: symmetric
1212 const Type *TypeF::xdual() const {
1213   return this;
1214 }
1215 
1216 //------------------------------eq---------------------------------------------
1217 // Structural equality check for Type representations
1218 bool TypeF::eq(const Type *t) const {
1219   // Bitwise comparison to distinguish between +/-0. These values must be treated
1220   // as different to be consistent with C1 and the interpreter.
1221   return (jint_cast(_f) == jint_cast(t->getf()));
1222 }
1223 
1224 //------------------------------hash-------------------------------------------
1225 // Type-specific hashing function.
1226 int TypeF::hash(void) const {
1227   return *(int*)(&_f);
1228 }
1229 
1230 //------------------------------is_finite--------------------------------------
1231 // Has a finite value
1232 bool TypeF::is_finite() const {
1233   return g_isfinite(getf()) != 0;
1234 }
1235 
1236 //------------------------------is_nan-----------------------------------------
1237 // Is not a number (NaN)
1238 bool TypeF::is_nan()    const {
1239   return g_isnan(getf()) != 0;
1240 }
1241 
1242 //------------------------------dump2------------------------------------------
1243 // Dump float constant Type
1244 #ifndef PRODUCT
1245 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1246   Type::dump2(d,depth, st);
1247   st->print("%f", _f);
1248 }
1249 #endif
1250 
1251 //------------------------------singleton--------------------------------------
1252 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1253 // constants (Ldi nodes).  Singletons are integer, float or double constants
1254 // or a single symbol.
1255 bool TypeF::singleton(void) const {
1256   return true;                  // Always a singleton
1257 }
1258 
1259 bool TypeF::empty(void) const {
1260   return false;                 // always exactly a singleton
1261 }
1262 
1263 //=============================================================================
1264 // Convenience common pre-built types.
1265 const TypeD *TypeD::ZERO;       // Floating point zero
1266 const TypeD *TypeD::ONE;        // Floating point one
1267 
1268 //------------------------------make-------------------------------------------
1269 const TypeD *TypeD::make(double d) {
1270   return (TypeD*)(new TypeD(d))->hashcons();
1271 }
1272 
1273 //------------------------------meet-------------------------------------------
1274 // Compute the MEET of two types.  It returns a new Type object.
1275 const Type *TypeD::xmeet( const Type *t ) const {
1276   // Perform a fast test for common case; meeting the same types together.
1277   if( this == t ) return this;  // Meeting same type-rep?
1278 
1279   // Current "this->_base" is DoubleCon
1280   switch (t->base()) {          // Switch on original type
1281   case AnyPtr:                  // Mixing with oops happens when javac
1282   case RawPtr:                  // reuses local variables
1283   case OopPtr:
1284   case InstPtr:
1285   case AryPtr:
1286   case MetadataPtr:
1287   case KlassPtr:
1288   case NarrowOop:
1289   case NarrowKlass:
1290   case Int:
1291   case Long:
1292   case FloatTop:
1293   case FloatCon:
1294   case FloatBot:
1295   case Bottom:                  // Ye Olde Default
1296     return Type::BOTTOM;
1297 
1298   case DoubleBot:
1299     return t;
1300 
1301   default:                      // All else is a mistake
1302     typerr(t);
1303 
1304   case DoubleCon:               // Double-constant vs Double-constant?
1305     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1306       return DOUBLE;            // Return generic double
1307   case Top:
1308   case DoubleTop:
1309     break;
1310   }
1311   return this;                  // Return the double constant
1312 }
1313 
1314 //------------------------------xdual------------------------------------------
1315 // Dual: symmetric
1316 const Type *TypeD::xdual() const {
1317   return this;
1318 }
1319 
1320 //------------------------------eq---------------------------------------------
1321 // Structural equality check for Type representations
1322 bool TypeD::eq(const Type *t) const {
1323   // Bitwise comparison to distinguish between +/-0. These values must be treated
1324   // as different to be consistent with C1 and the interpreter.
1325   return (jlong_cast(_d) == jlong_cast(t->getd()));
1326 }
1327 
1328 //------------------------------hash-------------------------------------------
1329 // Type-specific hashing function.
1330 int TypeD::hash(void) const {
1331   return *(int*)(&_d);
1332 }
1333 
1334 //------------------------------is_finite--------------------------------------
1335 // Has a finite value
1336 bool TypeD::is_finite() const {
1337   return g_isfinite(getd()) != 0;
1338 }
1339 
1340 //------------------------------is_nan-----------------------------------------
1341 // Is not a number (NaN)
1342 bool TypeD::is_nan()    const {
1343   return g_isnan(getd()) != 0;
1344 }
1345 
1346 //------------------------------dump2------------------------------------------
1347 // Dump double constant Type
1348 #ifndef PRODUCT
1349 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1350   Type::dump2(d,depth,st);
1351   st->print("%f", _d);
1352 }
1353 #endif
1354 
1355 //------------------------------singleton--------------------------------------
1356 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1357 // constants (Ldi nodes).  Singletons are integer, float or double constants
1358 // or a single symbol.
1359 bool TypeD::singleton(void) const {
1360   return true;                  // Always a singleton
1361 }
1362 
1363 bool TypeD::empty(void) const {
1364   return false;                 // always exactly a singleton
1365 }
1366 
1367 //=============================================================================
1368 // Convience common pre-built types.
1369 const TypeInt *TypeInt::MINUS_1;// -1
1370 const TypeInt *TypeInt::ZERO;   // 0
1371 const TypeInt *TypeInt::ONE;    // 1
1372 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1373 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1374 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1375 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1376 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1377 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1378 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1379 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1380 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1381 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1382 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1383 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1384 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1385 const TypeInt *TypeInt::INT;    // 32-bit integers
1386 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1387 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1388 
1389 //------------------------------TypeInt----------------------------------------
1390 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1391 }
1392 
1393 //------------------------------make-------------------------------------------
1394 const TypeInt *TypeInt::make( jint lo ) {
1395   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1396 }
1397 
1398 static int normalize_int_widen( jint lo, jint hi, int w ) {
1399   // Certain normalizations keep us sane when comparing types.
1400   // The 'SMALLINT' covers constants and also CC and its relatives.
1401   if (lo <= hi) {
1402     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1403     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1404   } else {
1405     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1406     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1407   }
1408   return w;
1409 }
1410 
1411 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1412   w = normalize_int_widen(lo, hi, w);
1413   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1414 }
1415 
1416 //------------------------------meet-------------------------------------------
1417 // Compute the MEET of two types.  It returns a new Type representation object
1418 // with reference count equal to the number of Types pointing at it.
1419 // Caller should wrap a Types around it.
1420 const Type *TypeInt::xmeet( const Type *t ) const {
1421   // Perform a fast test for common case; meeting the same types together.
1422   if( this == t ) return this;  // Meeting same type?
1423 
1424   // Currently "this->_base" is a TypeInt
1425   switch (t->base()) {          // Switch on original type
1426   case AnyPtr:                  // Mixing with oops happens when javac
1427   case RawPtr:                  // reuses local variables
1428   case OopPtr:
1429   case InstPtr:
1430   case AryPtr:
1431   case MetadataPtr:
1432   case KlassPtr:
1433   case NarrowOop:
1434   case NarrowKlass:
1435   case Long:
1436   case FloatTop:
1437   case FloatCon:
1438   case FloatBot:
1439   case DoubleTop:
1440   case DoubleCon:
1441   case DoubleBot:
1442   case Bottom:                  // Ye Olde Default
1443     return Type::BOTTOM;
1444   default:                      // All else is a mistake
1445     typerr(t);
1446   case Top:                     // No change
1447     return this;
1448   case Int:                     // Int vs Int?
1449     break;
1450   }
1451 
1452   // Expand covered set
1453   const TypeInt *r = t->is_int();
1454   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1455 }
1456 
1457 //------------------------------xdual------------------------------------------
1458 // Dual: reverse hi & lo; flip widen
1459 const Type *TypeInt::xdual() const {
1460   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1461   return new TypeInt(_hi,_lo,w);
1462 }
1463 
1464 //------------------------------widen------------------------------------------
1465 // Only happens for optimistic top-down optimizations.
1466 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1467   // Coming from TOP or such; no widening
1468   if( old->base() != Int ) return this;
1469   const TypeInt *ot = old->is_int();
1470 
1471   // If new guy is equal to old guy, no widening
1472   if( _lo == ot->_lo && _hi == ot->_hi )
1473     return old;
1474 
1475   // If new guy contains old, then we widened
1476   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1477     // New contains old
1478     // If new guy is already wider than old, no widening
1479     if( _widen > ot->_widen ) return this;
1480     // If old guy was a constant, do not bother
1481     if (ot->_lo == ot->_hi)  return this;
1482     // Now widen new guy.
1483     // Check for widening too far
1484     if (_widen == WidenMax) {
1485       int max = max_jint;
1486       int min = min_jint;
1487       if (limit->isa_int()) {
1488         max = limit->is_int()->_hi;
1489         min = limit->is_int()->_lo;
1490       }
1491       if (min < _lo && _hi < max) {
1492         // If neither endpoint is extremal yet, push out the endpoint
1493         // which is closer to its respective limit.
1494         if (_lo >= 0 ||                 // easy common case
1495             (juint)(_lo - min) >= (juint)(max - _hi)) {
1496           // Try to widen to an unsigned range type of 31 bits:
1497           return make(_lo, max, WidenMax);
1498         } else {
1499           return make(min, _hi, WidenMax);
1500         }
1501       }
1502       return TypeInt::INT;
1503     }
1504     // Returned widened new guy
1505     return make(_lo,_hi,_widen+1);
1506   }
1507 
1508   // If old guy contains new, then we probably widened too far & dropped to
1509   // bottom.  Return the wider fellow.
1510   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1511     return old;
1512 
1513   //fatal("Integer value range is not subset");
1514   //return this;
1515   return TypeInt::INT;
1516 }
1517 
1518 //------------------------------narrow---------------------------------------
1519 // Only happens for pessimistic optimizations.
1520 const Type *TypeInt::narrow( const Type *old ) const {
1521   if (_lo >= _hi)  return this;   // already narrow enough
1522   if (old == NULL)  return this;
1523   const TypeInt* ot = old->isa_int();
1524   if (ot == NULL)  return this;
1525   jint olo = ot->_lo;
1526   jint ohi = ot->_hi;
1527 
1528   // If new guy is equal to old guy, no narrowing
1529   if (_lo == olo && _hi == ohi)  return old;
1530 
1531   // If old guy was maximum range, allow the narrowing
1532   if (olo == min_jint && ohi == max_jint)  return this;
1533 
1534   if (_lo < olo || _hi > ohi)
1535     return this;                // doesn't narrow; pretty wierd
1536 
1537   // The new type narrows the old type, so look for a "death march".
1538   // See comments on PhaseTransform::saturate.
1539   juint nrange = (juint)_hi - _lo;
1540   juint orange = (juint)ohi - olo;
1541   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1542     // Use the new type only if the range shrinks a lot.
1543     // We do not want the optimizer computing 2^31 point by point.
1544     return old;
1545   }
1546 
1547   return this;
1548 }
1549 
1550 //-----------------------------filter------------------------------------------
1551 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1552   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1553   if (ft == NULL || ft->empty())
1554     return Type::TOP;           // Canonical empty value
1555   if (ft->_widen < this->_widen) {
1556     // Do not allow the value of kill->_widen to affect the outcome.
1557     // The widen bits must be allowed to run freely through the graph.
1558     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1559   }
1560   return ft;
1561 }
1562 
1563 //------------------------------eq---------------------------------------------
1564 // Structural equality check for Type representations
1565 bool TypeInt::eq( const Type *t ) const {
1566   const TypeInt *r = t->is_int(); // Handy access
1567   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1568 }
1569 
1570 //------------------------------hash-------------------------------------------
1571 // Type-specific hashing function.
1572 int TypeInt::hash(void) const {
1573   return java_add(java_add(_lo, _hi), java_add((jint)_widen, (jint)Type::Int));
1574 }
1575 
1576 //------------------------------is_finite--------------------------------------
1577 // Has a finite value
1578 bool TypeInt::is_finite() const {
1579   return true;
1580 }
1581 
1582 //------------------------------dump2------------------------------------------
1583 // Dump TypeInt
1584 #ifndef PRODUCT
1585 static const char* intname(char* buf, jint n) {
1586   if (n == min_jint)
1587     return "min";
1588   else if (n < min_jint + 10000)
1589     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1590   else if (n == max_jint)
1591     return "max";
1592   else if (n > max_jint - 10000)
1593     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1594   else
1595     sprintf(buf, INT32_FORMAT, n);
1596   return buf;
1597 }
1598 
1599 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1600   char buf[40], buf2[40];
1601   if (_lo == min_jint && _hi == max_jint)
1602     st->print("int");
1603   else if (is_con())
1604     st->print("int:%s", intname(buf, get_con()));
1605   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1606     st->print("bool");
1607   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1608     st->print("byte");
1609   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1610     st->print("char");
1611   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1612     st->print("short");
1613   else if (_hi == max_jint)
1614     st->print("int:>=%s", intname(buf, _lo));
1615   else if (_lo == min_jint)
1616     st->print("int:<=%s", intname(buf, _hi));
1617   else
1618     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1619 
1620   if (_widen != 0 && this != TypeInt::INT)
1621     st->print(":%.*s", _widen, "wwww");
1622 }
1623 #endif
1624 
1625 //------------------------------singleton--------------------------------------
1626 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1627 // constants.
1628 bool TypeInt::singleton(void) const {
1629   return _lo >= _hi;
1630 }
1631 
1632 bool TypeInt::empty(void) const {
1633   return _lo > _hi;
1634 }
1635 
1636 //=============================================================================
1637 // Convenience common pre-built types.
1638 const TypeLong *TypeLong::MINUS_1;// -1
1639 const TypeLong *TypeLong::ZERO; // 0
1640 const TypeLong *TypeLong::ONE;  // 1
1641 const TypeLong *TypeLong::POS;  // >=0
1642 const TypeLong *TypeLong::LONG; // 64-bit integers
1643 const TypeLong *TypeLong::INT;  // 32-bit subrange
1644 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1645 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1646 
1647 //------------------------------TypeLong---------------------------------------
1648 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1649 }
1650 
1651 //------------------------------make-------------------------------------------
1652 const TypeLong *TypeLong::make( jlong lo ) {
1653   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1654 }
1655 
1656 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1657   // Certain normalizations keep us sane when comparing types.
1658   // The 'SMALLINT' covers constants.
1659   if (lo <= hi) {
1660     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1661     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1662   } else {
1663     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1664     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1665   }
1666   return w;
1667 }
1668 
1669 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1670   w = normalize_long_widen(lo, hi, w);
1671   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1672 }
1673 
1674 
1675 //------------------------------meet-------------------------------------------
1676 // Compute the MEET of two types.  It returns a new Type representation object
1677 // with reference count equal to the number of Types pointing at it.
1678 // Caller should wrap a Types around it.
1679 const Type *TypeLong::xmeet( const Type *t ) const {
1680   // Perform a fast test for common case; meeting the same types together.
1681   if( this == t ) return this;  // Meeting same type?
1682 
1683   // Currently "this->_base" is a TypeLong
1684   switch (t->base()) {          // Switch on original type
1685   case AnyPtr:                  // Mixing with oops happens when javac
1686   case RawPtr:                  // reuses local variables
1687   case OopPtr:
1688   case InstPtr:
1689   case AryPtr:
1690   case MetadataPtr:
1691   case KlassPtr:
1692   case NarrowOop:
1693   case NarrowKlass:
1694   case Int:
1695   case FloatTop:
1696   case FloatCon:
1697   case FloatBot:
1698   case DoubleTop:
1699   case DoubleCon:
1700   case DoubleBot:
1701   case Bottom:                  // Ye Olde Default
1702     return Type::BOTTOM;
1703   default:                      // All else is a mistake
1704     typerr(t);
1705   case Top:                     // No change
1706     return this;
1707   case Long:                    // Long vs Long?
1708     break;
1709   }
1710 
1711   // Expand covered set
1712   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1713   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1714 }
1715 
1716 //------------------------------xdual------------------------------------------
1717 // Dual: reverse hi & lo; flip widen
1718 const Type *TypeLong::xdual() const {
1719   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1720   return new TypeLong(_hi,_lo,w);
1721 }
1722 
1723 //------------------------------widen------------------------------------------
1724 // Only happens for optimistic top-down optimizations.
1725 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1726   // Coming from TOP or such; no widening
1727   if( old->base() != Long ) return this;
1728   const TypeLong *ot = old->is_long();
1729 
1730   // If new guy is equal to old guy, no widening
1731   if( _lo == ot->_lo && _hi == ot->_hi )
1732     return old;
1733 
1734   // If new guy contains old, then we widened
1735   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1736     // New contains old
1737     // If new guy is already wider than old, no widening
1738     if( _widen > ot->_widen ) return this;
1739     // If old guy was a constant, do not bother
1740     if (ot->_lo == ot->_hi)  return this;
1741     // Now widen new guy.
1742     // Check for widening too far
1743     if (_widen == WidenMax) {
1744       jlong max = max_jlong;
1745       jlong min = min_jlong;
1746       if (limit->isa_long()) {
1747         max = limit->is_long()->_hi;
1748         min = limit->is_long()->_lo;
1749       }
1750       if (min < _lo && _hi < max) {
1751         // If neither endpoint is extremal yet, push out the endpoint
1752         // which is closer to its respective limit.
1753         if (_lo >= 0 ||                 // easy common case
1754             ((julong)_lo - min) >= ((julong)max - _hi)) {
1755           // Try to widen to an unsigned range type of 32/63 bits:
1756           if (max >= max_juint && _hi < max_juint)
1757             return make(_lo, max_juint, WidenMax);
1758           else
1759             return make(_lo, max, WidenMax);
1760         } else {
1761           return make(min, _hi, WidenMax);
1762         }
1763       }
1764       return TypeLong::LONG;
1765     }
1766     // Returned widened new guy
1767     return make(_lo,_hi,_widen+1);
1768   }
1769 
1770   // If old guy contains new, then we probably widened too far & dropped to
1771   // bottom.  Return the wider fellow.
1772   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1773     return old;
1774 
1775   //  fatal("Long value range is not subset");
1776   // return this;
1777   return TypeLong::LONG;
1778 }
1779 
1780 //------------------------------narrow----------------------------------------
1781 // Only happens for pessimistic optimizations.
1782 const Type *TypeLong::narrow( const Type *old ) const {
1783   if (_lo >= _hi)  return this;   // already narrow enough
1784   if (old == NULL)  return this;
1785   const TypeLong* ot = old->isa_long();
1786   if (ot == NULL)  return this;
1787   jlong olo = ot->_lo;
1788   jlong ohi = ot->_hi;
1789 
1790   // If new guy is equal to old guy, no narrowing
1791   if (_lo == olo && _hi == ohi)  return old;
1792 
1793   // If old guy was maximum range, allow the narrowing
1794   if (olo == min_jlong && ohi == max_jlong)  return this;
1795 
1796   if (_lo < olo || _hi > ohi)
1797     return this;                // doesn't narrow; pretty wierd
1798 
1799   // The new type narrows the old type, so look for a "death march".
1800   // See comments on PhaseTransform::saturate.
1801   julong nrange = _hi - _lo;
1802   julong orange = ohi - olo;
1803   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1804     // Use the new type only if the range shrinks a lot.
1805     // We do not want the optimizer computing 2^31 point by point.
1806     return old;
1807   }
1808 
1809   return this;
1810 }
1811 
1812 //-----------------------------filter------------------------------------------
1813 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1814   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1815   if (ft == NULL || ft->empty())
1816     return Type::TOP;           // Canonical empty value
1817   if (ft->_widen < this->_widen) {
1818     // Do not allow the value of kill->_widen to affect the outcome.
1819     // The widen bits must be allowed to run freely through the graph.
1820     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1821   }
1822   return ft;
1823 }
1824 
1825 //------------------------------eq---------------------------------------------
1826 // Structural equality check for Type representations
1827 bool TypeLong::eq( const Type *t ) const {
1828   const TypeLong *r = t->is_long(); // Handy access
1829   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1830 }
1831 
1832 //------------------------------hash-------------------------------------------
1833 // Type-specific hashing function.
1834 int TypeLong::hash(void) const {
1835   return (int)(_lo+_hi+_widen+(int)Type::Long);
1836 }
1837 
1838 //------------------------------is_finite--------------------------------------
1839 // Has a finite value
1840 bool TypeLong::is_finite() const {
1841   return true;
1842 }
1843 
1844 //------------------------------dump2------------------------------------------
1845 // Dump TypeLong
1846 #ifndef PRODUCT
1847 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1848   if (n > x) {
1849     if (n >= x + 10000)  return NULL;
1850     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1851   } else if (n < x) {
1852     if (n <= x - 10000)  return NULL;
1853     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1854   } else {
1855     return xname;
1856   }
1857   return buf;
1858 }
1859 
1860 static const char* longname(char* buf, jlong n) {
1861   const char* str;
1862   if (n == min_jlong)
1863     return "min";
1864   else if (n < min_jlong + 10000)
1865     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1866   else if (n == max_jlong)
1867     return "max";
1868   else if (n > max_jlong - 10000)
1869     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1870   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1871     return str;
1872   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1873     return str;
1874   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1875     return str;
1876   else
1877     sprintf(buf, JLONG_FORMAT, n);
1878   return buf;
1879 }
1880 
1881 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1882   char buf[80], buf2[80];
1883   if (_lo == min_jlong && _hi == max_jlong)
1884     st->print("long");
1885   else if (is_con())
1886     st->print("long:%s", longname(buf, get_con()));
1887   else if (_hi == max_jlong)
1888     st->print("long:>=%s", longname(buf, _lo));
1889   else if (_lo == min_jlong)
1890     st->print("long:<=%s", longname(buf, _hi));
1891   else
1892     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1893 
1894   if (_widen != 0 && this != TypeLong::LONG)
1895     st->print(":%.*s", _widen, "wwww");
1896 }
1897 #endif
1898 
1899 //------------------------------singleton--------------------------------------
1900 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1901 // constants
1902 bool TypeLong::singleton(void) const {
1903   return _lo >= _hi;
1904 }
1905 
1906 bool TypeLong::empty(void) const {
1907   return _lo > _hi;
1908 }
1909 
1910 //=============================================================================
1911 // Convenience common pre-built types.
1912 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1913 const TypeTuple *TypeTuple::IFFALSE;
1914 const TypeTuple *TypeTuple::IFTRUE;
1915 const TypeTuple *TypeTuple::IFNEITHER;
1916 const TypeTuple *TypeTuple::LOOPBODY;
1917 const TypeTuple *TypeTuple::MEMBAR;
1918 const TypeTuple *TypeTuple::STORECONDITIONAL;
1919 const TypeTuple *TypeTuple::START_I2C;
1920 const TypeTuple *TypeTuple::INT_PAIR;
1921 const TypeTuple *TypeTuple::LONG_PAIR;
1922 const TypeTuple *TypeTuple::INT_CC_PAIR;
1923 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1924 
1925 static void collect_value_fields(ciValueKlass* vk, const Type** field_array, uint& pos) {
1926   for (int j = 0; j < vk->nof_nonstatic_fields(); j++) {
1927     ciField* field = vk->nonstatic_field_at(j);
1928     BasicType bt = field->type()->basic_type();
1929     const Type* ft = Type::get_const_type(field->type());
1930     field_array[pos++] = ft;
1931     if (bt == T_LONG || bt == T_DOUBLE) {
1932       field_array[pos++] = Type::HALF;
1933     }
1934   }
1935 }
1936 
1937 //------------------------------make-------------------------------------------
1938 // Make a TypeTuple from the range of a method signature
1939 const TypeTuple *TypeTuple::make_range(ciSignature* sig, bool ret_vt_fields) {
1940   ciType* return_type = sig->return_type();
1941   return make_range(return_type, ret_vt_fields);
1942 }
1943 
1944 const TypeTuple *TypeTuple::make_range(ciType* return_type, bool ret_vt_fields) {
1945   uint arg_cnt = 0;
1946   if (ret_vt_fields) {
1947     ret_vt_fields = return_type->is_valuetype() && ((ciValueKlass*)return_type)->can_be_returned_as_fields();
1948   }
1949   if (ret_vt_fields) {
1950     ciValueKlass* vk = (ciValueKlass*)return_type;
1951     arg_cnt = vk->value_arg_slots()+1;
1952   } else {
1953     arg_cnt = return_type->size();
1954   }
1955 
1956   const Type **field_array = fields(arg_cnt);
1957   switch (return_type->basic_type()) {
1958   case T_LONG:
1959     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1960     field_array[TypeFunc::Parms+1] = Type::HALF;
1961     break;
1962   case T_DOUBLE:
1963     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1964     field_array[TypeFunc::Parms+1] = Type::HALF;
1965     break;
1966   case T_OBJECT:
1967   case T_ARRAY:
1968   case T_BOOLEAN:
1969   case T_CHAR:
1970   case T_FLOAT:
1971   case T_BYTE:
1972   case T_SHORT:
1973   case T_INT:
1974     field_array[TypeFunc::Parms] = get_const_type(return_type);
1975     break;
1976   case T_VALUETYPE:
1977     if (ret_vt_fields) {
1978       ciValueKlass* vk = (ciValueKlass*)return_type;
1979       uint pos = TypeFunc::Parms;
1980       field_array[pos] = TypePtr::BOTTOM;
1981       pos++;
1982       collect_value_fields(vk, field_array, pos);
1983     } else {
1984       // A NULL ValueType cannot be returned to compiled code. The 'areturn' bytecode
1985       // handler will deoptimize its caller if it is about to return a NULL ValueType.
1986       field_array[TypeFunc::Parms] = get_const_type(return_type)->join_speculative(TypePtr::NOTNULL);
1987     }
1988     break;
1989   case T_VOID:
1990     break;
1991   default:
1992     ShouldNotReachHere();
1993   }
1994   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1995 }
1996 
1997 // Make a TypeTuple from the domain of a method signature
1998 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, bool vt_fields_as_args) {
1999   uint arg_cnt = sig->size();
2000 
2001   int vt_extra = 0;
2002   if (vt_fields_as_args) {
2003     for (int i = 0; i < sig->count(); i++) {
2004       ciType* type = sig->type_at(i);
2005       if (type->basic_type() == T_VALUETYPE) {
2006         assert(type->is_valuetype(), "inconsistent type");
2007         ciValueKlass* vk = (ciValueKlass*)type;
2008         vt_extra += vk->value_arg_slots()-1;
2009       }
2010     }
2011     assert(((int)arg_cnt) + vt_extra >= 0, "negative number of actual arguments?");
2012   }
2013 
2014   uint pos = TypeFunc::Parms;
2015   const Type **field_array;
2016   if (recv != NULL) {
2017     arg_cnt++;
2018     bool vt_fields_for_recv = vt_fields_as_args && recv->is_valuetype();
2019     if (vt_fields_for_recv) {
2020       ciValueKlass* vk = (ciValueKlass*)recv;
2021       vt_extra += vk->value_arg_slots()-1;
2022     }
2023     field_array = fields(arg_cnt + vt_extra);
2024     // Use get_const_type here because it respects UseUniqueSubclasses:
2025     if (vt_fields_for_recv) {
2026       ciValueKlass* vk = (ciValueKlass*)recv;
2027       collect_value_fields(vk, field_array, pos);
2028     } else {
2029       field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
2030     }
2031   } else {
2032     field_array = fields(arg_cnt + vt_extra);
2033   }
2034 
2035   int i = 0;
2036   while (pos < TypeFunc::Parms + arg_cnt + vt_extra) {
2037     ciType* type = sig->type_at(i);
2038 
2039     switch (type->basic_type()) {
2040     case T_LONG:
2041       field_array[pos++] = TypeLong::LONG;
2042       field_array[pos++] = Type::HALF;
2043       break;
2044     case T_DOUBLE:
2045       field_array[pos++] = Type::DOUBLE;
2046       field_array[pos++] = Type::HALF;
2047       break;
2048     case T_OBJECT:
2049     case T_ARRAY:
2050     case T_FLOAT:
2051     case T_INT:
2052       field_array[pos++] = get_const_type(type);
2053       break;
2054     case T_BOOLEAN:
2055     case T_CHAR:
2056     case T_BYTE:
2057     case T_SHORT:
2058       field_array[pos++] = TypeInt::INT;
2059       break;
2060     case T_VALUETYPE: {
2061       assert(type->is_valuetype(), "inconsistent type");
2062       if (vt_fields_as_args) {
2063         ciValueKlass* vk = (ciValueKlass*)type;
2064         collect_value_fields(vk, field_array, pos);
2065       } else {
2066         // Value types arguments cannot be NULL
2067         //field_array[pos++] = get_const_type(type)->join_speculative(TypePtr::NOTNULL);
2068         field_array[pos++] = get_const_type(type);
2069       }
2070       break;
2071     }
2072     default:
2073       ShouldNotReachHere();
2074     }
2075     i++;
2076   }
2077   assert(pos == TypeFunc::Parms + arg_cnt + vt_extra, "wrong number of arguments");
2078 
2079   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt + vt_extra, field_array))->hashcons();
2080 }
2081 
2082 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2083   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2084 }
2085 
2086 //------------------------------fields-----------------------------------------
2087 // Subroutine call type with space allocated for argument types
2088 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2089 const Type **TypeTuple::fields( uint arg_cnt ) {
2090   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2091   flds[TypeFunc::Control  ] = Type::CONTROL;
2092   flds[TypeFunc::I_O      ] = Type::ABIO;
2093   flds[TypeFunc::Memory   ] = Type::MEMORY;
2094   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2095   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2096 
2097   return flds;
2098 }
2099 
2100 //------------------------------meet-------------------------------------------
2101 // Compute the MEET of two types.  It returns a new Type object.
2102 const Type *TypeTuple::xmeet( const Type *t ) const {
2103   // Perform a fast test for common case; meeting the same types together.
2104   if( this == t ) return this;  // Meeting same type-rep?
2105 
2106   // Current "this->_base" is Tuple
2107   switch (t->base()) {          // switch on original type
2108 
2109   case Bottom:                  // Ye Olde Default
2110     return t;
2111 
2112   default:                      // All else is a mistake
2113     typerr(t);
2114 
2115   case Tuple: {                 // Meeting 2 signatures?
2116     const TypeTuple *x = t->is_tuple();
2117     assert( _cnt == x->_cnt, "" );
2118     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2119     for( uint i=0; i<_cnt; i++ )
2120       fields[i] = field_at(i)->xmeet( x->field_at(i) );
2121     return TypeTuple::make(_cnt,fields);
2122   }
2123   case Top:
2124     break;
2125   }
2126   return this;                  // Return the double constant
2127 }
2128 
2129 //------------------------------xdual------------------------------------------
2130 // Dual: compute field-by-field dual
2131 const Type *TypeTuple::xdual() const {
2132   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2133   for( uint i=0; i<_cnt; i++ )
2134     fields[i] = _fields[i]->dual();
2135   return new TypeTuple(_cnt,fields);
2136 }
2137 
2138 //------------------------------eq---------------------------------------------
2139 // Structural equality check for Type representations
2140 bool TypeTuple::eq( const Type *t ) const {
2141   const TypeTuple *s = (const TypeTuple *)t;
2142   if (_cnt != s->_cnt)  return false;  // Unequal field counts
2143   for (uint i = 0; i < _cnt; i++)
2144     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
2145       return false;             // Missed
2146   return true;
2147 }
2148 
2149 //------------------------------hash-------------------------------------------
2150 // Type-specific hashing function.
2151 int TypeTuple::hash(void) const {
2152   intptr_t sum = _cnt;
2153   for( uint i=0; i<_cnt; i++ )
2154     sum += (intptr_t)_fields[i];     // Hash on pointers directly
2155   return sum;
2156 }
2157 
2158 //------------------------------dump2------------------------------------------
2159 // Dump signature Type
2160 #ifndef PRODUCT
2161 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2162   st->print("{");
2163   if( !depth || d[this] ) {     // Check for recursive print
2164     st->print("...}");
2165     return;
2166   }
2167   d.Insert((void*)this, (void*)this);   // Stop recursion
2168   if( _cnt ) {
2169     uint i;
2170     for( i=0; i<_cnt-1; i++ ) {
2171       st->print("%d:", i);
2172       _fields[i]->dump2(d, depth-1, st);
2173       st->print(", ");
2174     }
2175     st->print("%d:", i);
2176     _fields[i]->dump2(d, depth-1, st);
2177   }
2178   st->print("}");
2179 }
2180 #endif
2181 
2182 //------------------------------singleton--------------------------------------
2183 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2184 // constants (Ldi nodes).  Singletons are integer, float or double constants
2185 // or a single symbol.
2186 bool TypeTuple::singleton(void) const {
2187   return false;                 // Never a singleton
2188 }
2189 
2190 bool TypeTuple::empty(void) const {
2191   for( uint i=0; i<_cnt; i++ ) {
2192     if (_fields[i]->empty())  return true;
2193   }
2194   return false;
2195 }
2196 
2197 //=============================================================================
2198 // Convenience common pre-built types.
2199 
2200 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2201   // Certain normalizations keep us sane when comparing types.
2202   // We do not want arrayOop variables to differ only by the wideness
2203   // of their index types.  Pick minimum wideness, since that is the
2204   // forced wideness of small ranges anyway.
2205   if (size->_widen != Type::WidenMin)
2206     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2207   else
2208     return size;
2209 }
2210 
2211 //------------------------------make-------------------------------------------
2212 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2213   if (elem->is_valuetypeptr()) {
2214     // Value type array elements cannot be NULL
2215     elem = elem->join_speculative(TypePtr::NOTNULL)->is_oopptr();
2216   }
2217   if (UseCompressedOops && elem->isa_oopptr()) {
2218     elem = elem->make_narrowoop();
2219   }
2220   size = normalize_array_size(size);
2221   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2222 }
2223 
2224 //------------------------------meet-------------------------------------------
2225 // Compute the MEET of two types.  It returns a new Type object.
2226 const Type *TypeAry::xmeet( const Type *t ) const {
2227   // Perform a fast test for common case; meeting the same types together.
2228   if( this == t ) return this;  // Meeting same type-rep?
2229 
2230   // Current "this->_base" is Ary
2231   switch (t->base()) {          // switch on original type
2232 
2233   case Bottom:                  // Ye Olde Default
2234     return t;
2235 
2236   default:                      // All else is a mistake
2237     typerr(t);
2238 
2239   case Array: {                 // Meeting 2 arrays?
2240     const TypeAry *a = t->is_ary();
2241     return TypeAry::make(_elem->meet_speculative(a->_elem),
2242                          _size->xmeet(a->_size)->is_int(),
2243                          _stable & a->_stable);
2244   }
2245   case Top:
2246     break;
2247   }
2248   return this;                  // Return the double constant
2249 }
2250 
2251 //------------------------------xdual------------------------------------------
2252 // Dual: compute field-by-field dual
2253 const Type *TypeAry::xdual() const {
2254   const TypeInt* size_dual = _size->dual()->is_int();
2255   size_dual = normalize_array_size(size_dual);
2256   return new TypeAry(_elem->dual(), size_dual, !_stable);
2257 }
2258 
2259 //------------------------------eq---------------------------------------------
2260 // Structural equality check for Type representations
2261 bool TypeAry::eq( const Type *t ) const {
2262   const TypeAry *a = (const TypeAry*)t;
2263   return _elem == a->_elem &&
2264     _stable == a->_stable &&
2265     _size == a->_size;
2266 }
2267 
2268 //------------------------------hash-------------------------------------------
2269 // Type-specific hashing function.
2270 int TypeAry::hash(void) const {
2271   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2272 }
2273 
2274 /**
2275  * Return same type without a speculative part in the element
2276  */
2277 const Type* TypeAry::remove_speculative() const {
2278   return make(_elem->remove_speculative(), _size, _stable);
2279 }
2280 
2281 /**
2282  * Return same type with cleaned up speculative part of element
2283  */
2284 const Type* TypeAry::cleanup_speculative() const {
2285   return make(_elem->cleanup_speculative(), _size, _stable);
2286 }
2287 
2288 /**
2289  * Return same type but with a different inline depth (used for speculation)
2290  *
2291  * @param depth  depth to meet with
2292  */
2293 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2294   if (!UseInlineDepthForSpeculativeTypes) {
2295     return this;
2296   }
2297   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2298 }
2299 
2300 //----------------------interface_vs_oop---------------------------------------
2301 #ifdef ASSERT
2302 bool TypeAry::interface_vs_oop(const Type *t) const {
2303   const TypeAry* t_ary = t->is_ary();
2304   if (t_ary) {
2305     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2306     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2307     if(this_ptr != NULL && t_ptr != NULL) {
2308       return this_ptr->interface_vs_oop(t_ptr);
2309     }
2310   }
2311   return false;
2312 }
2313 #endif
2314 
2315 //------------------------------dump2------------------------------------------
2316 #ifndef PRODUCT
2317 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2318   if (_stable)  st->print("stable:");
2319   _elem->dump2(d, depth, st);
2320   st->print("[");
2321   _size->dump2(d, depth, st);
2322   st->print("]");
2323 }
2324 #endif
2325 
2326 //------------------------------singleton--------------------------------------
2327 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2328 // constants (Ldi nodes).  Singletons are integer, float or double constants
2329 // or a single symbol.
2330 bool TypeAry::singleton(void) const {
2331   return false;                 // Never a singleton
2332 }
2333 
2334 bool TypeAry::empty(void) const {
2335   return _elem->empty() || _size->empty();
2336 }
2337 
2338 //--------------------------ary_must_be_exact----------------------------------
2339 bool TypeAry::ary_must_be_exact() const {
2340   if (!UseExactTypes)       return false;
2341   // This logic looks at the element type of an array, and returns true
2342   // if the element type is either a primitive or a final instance class.
2343   // In such cases, an array built on this ary must have no subclasses.
2344   if (_elem == BOTTOM)      return false;  // general array not exact
2345   if (_elem == TOP   )      return false;  // inverted general array not exact
2346   const TypeOopPtr*  toop = NULL;
2347   if (UseCompressedOops && _elem->isa_narrowoop()) {
2348     toop = _elem->make_ptr()->isa_oopptr();
2349   } else {
2350     toop = _elem->isa_oopptr();
2351   }
2352   if (!toop)                return true;   // a primitive type, like int
2353   ciKlass* tklass = toop->klass();
2354   if (tklass == NULL)       return false;  // unloaded class
2355   if (!tklass->is_loaded()) return false;  // unloaded class
2356   const TypeInstPtr* tinst;
2357   if (_elem->isa_narrowoop())
2358     tinst = _elem->make_ptr()->isa_instptr();
2359   else
2360     tinst = _elem->isa_instptr();
2361   if (tinst)
2362     return tklass->as_instance_klass()->is_final();
2363   const TypeAryPtr*  tap;
2364   if (_elem->isa_narrowoop())
2365     tap = _elem->make_ptr()->isa_aryptr();
2366   else
2367     tap = _elem->isa_aryptr();
2368   if (tap)
2369     return tap->ary()->ary_must_be_exact();
2370   return false;
2371 }
2372 
2373 //==============================TypeValueType=======================================
2374 
2375 //------------------------------make-------------------------------------------
2376 const TypeValueType* TypeValueType::make(ciValueKlass* vk) {
2377   return (TypeValueType*)(new TypeValueType(vk))->hashcons();
2378 }
2379 
2380 //------------------------------meet-------------------------------------------
2381 // Compute the MEET of two types.  It returns a new Type object.
2382 const Type* TypeValueType::xmeet(const Type* t) const {
2383   // Perform a fast test for common case; meeting the same types together.
2384   if(this == t) return this;  // Meeting same type-rep?
2385 
2386   // Current "this->_base" is ValueType
2387   switch (t->base()) {          // switch on original type
2388 
2389   case Int:
2390   case Long:
2391   case FloatTop:
2392   case FloatCon:
2393   case FloatBot:
2394   case DoubleTop:
2395   case DoubleCon:
2396   case DoubleBot:
2397   case NarrowKlass:
2398   case Bottom:
2399     return Type::BOTTOM;
2400 
2401   case OopPtr:
2402   case MetadataPtr:
2403   case KlassPtr:
2404   case RawPtr:
2405     return TypePtr::BOTTOM;
2406 
2407   case Top:
2408     return this;
2409 
2410   case NarrowOop: {
2411     const Type* res = t->make_ptr()->xmeet(this);
2412     if (res->isa_ptr()) {
2413       return res->make_narrowoop();
2414     }
2415     return res;
2416   }
2417 
2418   case AryPtr:
2419   case InstPtr: {
2420     return t->xmeet(this);
2421   }
2422 
2423   case ValueType: {
2424     // All value types inherit from Object
2425     return TypeInstPtr::NOTNULL;
2426   }
2427 
2428   default:                      // All else is a mistake
2429     typerr(t);
2430 
2431   }
2432   return this;
2433 }
2434 
2435 //------------------------------xdual------------------------------------------
2436 const Type* TypeValueType::xdual() const {
2437   return this;
2438 }
2439 
2440 //------------------------------eq---------------------------------------------
2441 // Structural equality check for Type representations
2442 bool TypeValueType::eq(const Type* t) const {
2443   const TypeValueType* vt = t->is_valuetype();
2444   return (_vk == vt->value_klass());
2445 }
2446 
2447 //------------------------------hash-------------------------------------------
2448 // Type-specific hashing function.
2449 int TypeValueType::hash(void) const {
2450   return (intptr_t)_vk;
2451 }
2452 
2453 //------------------------------singleton--------------------------------------
2454 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple constants.
2455 bool TypeValueType::singleton(void) const {
2456   return false;
2457 }
2458 
2459 //------------------------------empty------------------------------------------
2460 // TRUE if Type is a type with no values, FALSE otherwise.
2461 bool TypeValueType::empty(void) const {
2462   return false;
2463 }
2464 
2465 //------------------------------dump2------------------------------------------
2466 #ifndef PRODUCT
2467 void TypeValueType::dump2(Dict &d, uint depth, outputStream* st) const {
2468   int count = _vk->nof_declared_nonstatic_fields();
2469   st->print("valuetype[%d]:{", count);
2470   st->print("%s", count != 0 ? _vk->declared_nonstatic_field_at(0)->type()->name() : "empty");
2471   for (int i = 1; i < count; ++i) {
2472     st->print(", %s", _vk->declared_nonstatic_field_at(i)->type()->name());
2473   }
2474   st->print("}");
2475 }
2476 #endif
2477 
2478 //==============================TypeVect=======================================
2479 // Convenience common pre-built types.
2480 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2481 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2482 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2483 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2484 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2485 
2486 //------------------------------make-------------------------------------------
2487 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2488   BasicType elem_bt = elem->array_element_basic_type();
2489   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2490   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2491   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2492   int size = length * type2aelembytes(elem_bt);
2493   switch (Matcher::vector_ideal_reg(size)) {
2494   case Op_VecS:
2495     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2496   case Op_RegL:
2497   case Op_VecD:
2498   case Op_RegD:
2499     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2500   case Op_VecX:
2501     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2502   case Op_VecY:
2503     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2504   case Op_VecZ:
2505     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2506   }
2507  ShouldNotReachHere();
2508   return NULL;
2509 }
2510 
2511 //------------------------------meet-------------------------------------------
2512 // Compute the MEET of two types.  It returns a new Type object.
2513 const Type *TypeVect::xmeet( const Type *t ) const {
2514   // Perform a fast test for common case; meeting the same types together.
2515   if( this == t ) return this;  // Meeting same type-rep?
2516 
2517   // Current "this->_base" is Vector
2518   switch (t->base()) {          // switch on original type
2519 
2520   case Bottom:                  // Ye Olde Default
2521     return t;
2522 
2523   default:                      // All else is a mistake
2524     typerr(t);
2525 
2526   case VectorS:
2527   case VectorD:
2528   case VectorX:
2529   case VectorY:
2530   case VectorZ: {                // Meeting 2 vectors?
2531     const TypeVect* v = t->is_vect();
2532     assert(  base() == v->base(), "");
2533     assert(length() == v->length(), "");
2534     assert(element_basic_type() == v->element_basic_type(), "");
2535     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2536   }
2537   case Top:
2538     break;
2539   }
2540   return this;
2541 }
2542 
2543 //------------------------------xdual------------------------------------------
2544 // Dual: compute field-by-field dual
2545 const Type *TypeVect::xdual() const {
2546   return new TypeVect(base(), _elem->dual(), _length);
2547 }
2548 
2549 //------------------------------eq---------------------------------------------
2550 // Structural equality check for Type representations
2551 bool TypeVect::eq(const Type *t) const {
2552   const TypeVect *v = t->is_vect();
2553   return (_elem == v->_elem) && (_length == v->_length);
2554 }
2555 
2556 //------------------------------hash-------------------------------------------
2557 // Type-specific hashing function.
2558 int TypeVect::hash(void) const {
2559   return (intptr_t)_elem + (intptr_t)_length;
2560 }
2561 
2562 //------------------------------singleton--------------------------------------
2563 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2564 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2565 // constant value (when vector is created with Replicate code).
2566 bool TypeVect::singleton(void) const {
2567 // There is no Con node for vectors yet.
2568 //  return _elem->singleton();
2569   return false;
2570 }
2571 
2572 bool TypeVect::empty(void) const {
2573   return _elem->empty();
2574 }
2575 
2576 //------------------------------dump2------------------------------------------
2577 #ifndef PRODUCT
2578 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2579   switch (base()) {
2580   case VectorS:
2581     st->print("vectors["); break;
2582   case VectorD:
2583     st->print("vectord["); break;
2584   case VectorX:
2585     st->print("vectorx["); break;
2586   case VectorY:
2587     st->print("vectory["); break;
2588   case VectorZ:
2589     st->print("vectorz["); break;
2590   default:
2591     ShouldNotReachHere();
2592   }
2593   st->print("%d]:{", _length);
2594   _elem->dump2(d, depth, st);
2595   st->print("}");
2596 }
2597 #endif
2598 
2599 
2600 //=============================================================================
2601 // Convenience common pre-built types.
2602 const TypePtr *TypePtr::NULL_PTR;
2603 const TypePtr *TypePtr::NOTNULL;
2604 const TypePtr *TypePtr::BOTTOM;
2605 
2606 //------------------------------meet-------------------------------------------
2607 // Meet over the PTR enum
2608 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2609   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2610   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2611   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2612   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2613   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2614   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2615   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2616 };
2617 
2618 //------------------------------make-------------------------------------------
2619 const TypePtr* TypePtr::make(TYPES t, enum PTR ptr, Offset offset, const TypePtr* speculative, int inline_depth) {
2620   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2621 }
2622 
2623 //------------------------------cast_to_ptr_type-------------------------------
2624 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2625   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2626   if( ptr == _ptr ) return this;
2627   return make(_base, ptr, _offset, _speculative, _inline_depth);
2628 }
2629 
2630 //------------------------------get_con----------------------------------------
2631 intptr_t TypePtr::get_con() const {
2632   assert( _ptr == Null, "" );
2633   return offset();
2634 }
2635 
2636 //------------------------------meet-------------------------------------------
2637 // Compute the MEET of two types.  It returns a new Type object.
2638 const Type *TypePtr::xmeet(const Type *t) const {
2639   const Type* res = xmeet_helper(t);
2640   if (res->isa_ptr() == NULL) {
2641     return res;
2642   }
2643 
2644   const TypePtr* res_ptr = res->is_ptr();
2645   if (res_ptr->speculative() != NULL) {
2646     // type->speculative() == NULL means that speculation is no better
2647     // than type, i.e. type->speculative() == type. So there are 2
2648     // ways to represent the fact that we have no useful speculative
2649     // data and we should use a single one to be able to test for
2650     // equality between types. Check whether type->speculative() ==
2651     // type and set speculative to NULL if it is the case.
2652     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2653       return res_ptr->remove_speculative();
2654     }
2655   }
2656 
2657   return res;
2658 }
2659 
2660 const Type *TypePtr::xmeet_helper(const Type *t) const {
2661   // Perform a fast test for common case; meeting the same types together.
2662   if( this == t ) return this;  // Meeting same type-rep?
2663 
2664   // Current "this->_base" is AnyPtr
2665   switch (t->base()) {          // switch on original type
2666   case Int:                     // Mixing ints & oops happens when javac
2667   case Long:                    // reuses local variables
2668   case FloatTop:
2669   case FloatCon:
2670   case FloatBot:
2671   case DoubleTop:
2672   case DoubleCon:
2673   case DoubleBot:
2674   case NarrowOop:
2675   case NarrowKlass:
2676   case Bottom:                  // Ye Olde Default
2677     return Type::BOTTOM;
2678   case Top:
2679     return this;
2680 
2681   case AnyPtr: {                // Meeting to AnyPtrs
2682     const TypePtr *tp = t->is_ptr();
2683     const TypePtr* speculative = xmeet_speculative(tp);
2684     int depth = meet_inline_depth(tp->inline_depth());
2685     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2686   }
2687   case RawPtr:                  // For these, flip the call around to cut down
2688   case OopPtr:
2689   case InstPtr:                 // on the cases I have to handle.
2690   case AryPtr:
2691   case MetadataPtr:
2692   case KlassPtr:
2693     return t->xmeet(this);      // Call in reverse direction
2694   default:                      // All else is a mistake
2695     typerr(t);
2696 
2697   }
2698   return this;
2699 }
2700 
2701 //------------------------------meet_offset------------------------------------
2702 Type::Offset TypePtr::meet_offset(int offset) const {
2703   return _offset.meet(Offset(offset));
2704 }
2705 
2706 //------------------------------dual_offset------------------------------------
2707 Type::Offset TypePtr::dual_offset() const {
2708   return _offset.dual();
2709 }
2710 
2711 //------------------------------xdual------------------------------------------
2712 // Dual: compute field-by-field dual
2713 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2714   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2715 };
2716 const Type *TypePtr::xdual() const {
2717   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2718 }
2719 
2720 //------------------------------xadd_offset------------------------------------
2721 Type::Offset TypePtr::xadd_offset(intptr_t offset) const {
2722   return _offset.add(offset);
2723 }
2724 
2725 //------------------------------add_offset-------------------------------------
2726 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2727   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2728 }
2729 
2730 //------------------------------eq---------------------------------------------
2731 // Structural equality check for Type representations
2732 bool TypePtr::eq( const Type *t ) const {
2733   const TypePtr *a = (const TypePtr*)t;
2734   return _ptr == a->ptr() && _offset == a->_offset && eq_speculative(a) && _inline_depth == a->_inline_depth;
2735 }
2736 
2737 //------------------------------hash-------------------------------------------
2738 // Type-specific hashing function.
2739 int TypePtr::hash(void) const {
2740   return java_add(java_add((jint)_ptr, (jint)offset()), java_add((jint)hash_speculative(), (jint)_inline_depth));
2741 ;
2742 }
2743 
2744 /**
2745  * Return same type without a speculative part
2746  */
2747 const Type* TypePtr::remove_speculative() const {
2748   if (_speculative == NULL) {
2749     return this;
2750   }
2751   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2752   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2753 }
2754 
2755 /**
2756  * Return same type but drop speculative part if we know we won't use
2757  * it
2758  */
2759 const Type* TypePtr::cleanup_speculative() const {
2760   if (speculative() == NULL) {
2761     return this;
2762   }
2763   const Type* no_spec = remove_speculative();
2764   // If this is NULL_PTR then we don't need the speculative type
2765   // (with_inline_depth in case the current type inline depth is
2766   // InlineDepthTop)
2767   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2768     return no_spec;
2769   }
2770   if (above_centerline(speculative()->ptr())) {
2771     return no_spec;
2772   }
2773   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2774   // If the speculative may be null and is an inexact klass then it
2775   // doesn't help
2776   if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
2777       (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2778     return no_spec;
2779   }
2780   return this;
2781 }
2782 
2783 /**
2784  * dual of the speculative part of the type
2785  */
2786 const TypePtr* TypePtr::dual_speculative() const {
2787   if (_speculative == NULL) {
2788     return NULL;
2789   }
2790   return _speculative->dual()->is_ptr();
2791 }
2792 
2793 /**
2794  * meet of the speculative parts of 2 types
2795  *
2796  * @param other  type to meet with
2797  */
2798 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2799   bool this_has_spec = (_speculative != NULL);
2800   bool other_has_spec = (other->speculative() != NULL);
2801 
2802   if (!this_has_spec && !other_has_spec) {
2803     return NULL;
2804   }
2805 
2806   // If we are at a point where control flow meets and one branch has
2807   // a speculative type and the other has not, we meet the speculative
2808   // type of one branch with the actual type of the other. If the
2809   // actual type is exact and the speculative is as well, then the
2810   // result is a speculative type which is exact and we can continue
2811   // speculation further.
2812   const TypePtr* this_spec = _speculative;
2813   const TypePtr* other_spec = other->speculative();
2814 
2815   if (!this_has_spec) {
2816     this_spec = this;
2817   }
2818 
2819   if (!other_has_spec) {
2820     other_spec = other;
2821   }
2822 
2823   return this_spec->meet(other_spec)->is_ptr();
2824 }
2825 
2826 /**
2827  * dual of the inline depth for this type (used for speculation)
2828  */
2829 int TypePtr::dual_inline_depth() const {
2830   return -inline_depth();
2831 }
2832 
2833 /**
2834  * meet of 2 inline depths (used for speculation)
2835  *
2836  * @param depth  depth to meet with
2837  */
2838 int TypePtr::meet_inline_depth(int depth) const {
2839   return MAX2(inline_depth(), depth);
2840 }
2841 
2842 /**
2843  * Are the speculative parts of 2 types equal?
2844  *
2845  * @param other  type to compare this one to
2846  */
2847 bool TypePtr::eq_speculative(const TypePtr* other) const {
2848   if (_speculative == NULL || other->speculative() == NULL) {
2849     return _speculative == other->speculative();
2850   }
2851 
2852   if (_speculative->base() != other->speculative()->base()) {
2853     return false;
2854   }
2855 
2856   return _speculative->eq(other->speculative());
2857 }
2858 
2859 /**
2860  * Hash of the speculative part of the type
2861  */
2862 int TypePtr::hash_speculative() const {
2863   if (_speculative == NULL) {
2864     return 0;
2865   }
2866 
2867   return _speculative->hash();
2868 }
2869 
2870 /**
2871  * add offset to the speculative part of the type
2872  *
2873  * @param offset  offset to add
2874  */
2875 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2876   if (_speculative == NULL) {
2877     return NULL;
2878   }
2879   return _speculative->add_offset(offset)->is_ptr();
2880 }
2881 
2882 /**
2883  * return exact klass from the speculative type if there's one
2884  */
2885 ciKlass* TypePtr::speculative_type() const {
2886   if (_speculative != NULL && _speculative->isa_oopptr()) {
2887     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2888     if (speculative->klass_is_exact()) {
2889       return speculative->klass();
2890     }
2891   }
2892   return NULL;
2893 }
2894 
2895 /**
2896  * return true if speculative type may be null
2897  */
2898 bool TypePtr::speculative_maybe_null() const {
2899   if (_speculative != NULL) {
2900     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2901     return speculative->maybe_null();
2902   }
2903   return true;
2904 }
2905 
2906 bool TypePtr::speculative_always_null() const {
2907   if (_speculative != NULL) {
2908     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2909     return speculative == TypePtr::NULL_PTR;
2910   }
2911   return false;
2912 }
2913 
2914 /**
2915  * Same as TypePtr::speculative_type() but return the klass only if
2916  * the speculative tells us is not null
2917  */
2918 ciKlass* TypePtr::speculative_type_not_null() const {
2919   if (speculative_maybe_null()) {
2920     return NULL;
2921   }
2922   return speculative_type();
2923 }
2924 
2925 /**
2926  * Check whether new profiling would improve speculative type
2927  *
2928  * @param   exact_kls    class from profiling
2929  * @param   inline_depth inlining depth of profile point
2930  *
2931  * @return  true if type profile is valuable
2932  */
2933 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2934   // no profiling?
2935   if (exact_kls == NULL) {
2936     return false;
2937   }
2938   if (speculative() == TypePtr::NULL_PTR) {
2939     return false;
2940   }
2941   // no speculative type or non exact speculative type?
2942   if (speculative_type() == NULL) {
2943     return true;
2944   }
2945   // If the node already has an exact speculative type keep it,
2946   // unless it was provided by profiling that is at a deeper
2947   // inlining level. Profiling at a higher inlining depth is
2948   // expected to be less accurate.
2949   if (_speculative->inline_depth() == InlineDepthBottom) {
2950     return false;
2951   }
2952   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2953   return inline_depth < _speculative->inline_depth();
2954 }
2955 
2956 /**
2957  * Check whether new profiling would improve ptr (= tells us it is non
2958  * null)
2959  *
2960  * @param   ptr_kind always null or not null?
2961  *
2962  * @return  true if ptr profile is valuable
2963  */
2964 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
2965   // profiling doesn't tell us anything useful
2966   if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
2967     return false;
2968   }
2969   // We already know this is not null
2970   if (!this->maybe_null()) {
2971     return false;
2972   }
2973   // We already know the speculative type cannot be null
2974   if (!speculative_maybe_null()) {
2975     return false;
2976   }
2977   // We already know this is always null
2978   if (this == TypePtr::NULL_PTR) {
2979     return false;
2980   }
2981   // We already know the speculative type is always null
2982   if (speculative_always_null()) {
2983     return false;
2984   }
2985   if (ptr_kind == ProfileAlwaysNull && speculative() != NULL && speculative()->isa_oopptr()) {
2986     return false;
2987   }
2988   return true;
2989 }
2990 
2991 //------------------------------dump2------------------------------------------
2992 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2993   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2994 };
2995 
2996 #ifndef PRODUCT
2997 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2998   if( _ptr == Null ) st->print("NULL");
2999   else st->print("%s *", ptr_msg[_ptr]);
3000   _offset.dump2(st);
3001   dump_inline_depth(st);
3002   dump_speculative(st);
3003 }
3004 
3005 /**
3006  *dump the speculative part of the type
3007  */
3008 void TypePtr::dump_speculative(outputStream *st) const {
3009   if (_speculative != NULL) {
3010     st->print(" (speculative=");
3011     _speculative->dump_on(st);
3012     st->print(")");
3013   }
3014 }
3015 
3016 /**
3017  *dump the inline depth of the type
3018  */
3019 void TypePtr::dump_inline_depth(outputStream *st) const {
3020   if (_inline_depth != InlineDepthBottom) {
3021     if (_inline_depth == InlineDepthTop) {
3022       st->print(" (inline_depth=InlineDepthTop)");
3023     } else {
3024       st->print(" (inline_depth=%d)", _inline_depth);
3025     }
3026   }
3027 }
3028 #endif
3029 
3030 //------------------------------singleton--------------------------------------
3031 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3032 // constants
3033 bool TypePtr::singleton(void) const {
3034   // TopPTR, Null, AnyNull, Constant are all singletons
3035   return (_offset != Offset::bottom) && !below_centerline(_ptr);
3036 }
3037 
3038 bool TypePtr::empty(void) const {
3039   return (_offset == Offset::top) || above_centerline(_ptr);
3040 }
3041 
3042 //=============================================================================
3043 // Convenience common pre-built types.
3044 const TypeRawPtr *TypeRawPtr::BOTTOM;
3045 const TypeRawPtr *TypeRawPtr::NOTNULL;
3046 
3047 //------------------------------make-------------------------------------------
3048 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3049   assert( ptr != Constant, "what is the constant?" );
3050   assert( ptr != Null, "Use TypePtr for NULL" );
3051   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
3052 }
3053 
3054 const TypeRawPtr *TypeRawPtr::make( address bits ) {
3055   assert( bits, "Use TypePtr for NULL" );
3056   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3057 }
3058 
3059 //------------------------------cast_to_ptr_type-------------------------------
3060 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
3061   assert( ptr != Constant, "what is the constant?" );
3062   assert( ptr != Null, "Use TypePtr for NULL" );
3063   assert( _bits==0, "Why cast a constant address?");
3064   if( ptr == _ptr ) return this;
3065   return make(ptr);
3066 }
3067 
3068 //------------------------------get_con----------------------------------------
3069 intptr_t TypeRawPtr::get_con() const {
3070   assert( _ptr == Null || _ptr == Constant, "" );
3071   return (intptr_t)_bits;
3072 }
3073 
3074 //------------------------------meet-------------------------------------------
3075 // Compute the MEET of two types.  It returns a new Type object.
3076 const Type *TypeRawPtr::xmeet( const Type *t ) const {
3077   // Perform a fast test for common case; meeting the same types together.
3078   if( this == t ) return this;  // Meeting same type-rep?
3079 
3080   // Current "this->_base" is RawPtr
3081   switch( t->base() ) {         // switch on original type
3082   case Bottom:                  // Ye Olde Default
3083     return t;
3084   case Top:
3085     return this;
3086   case AnyPtr:                  // Meeting to AnyPtrs
3087     break;
3088   case RawPtr: {                // might be top, bot, any/not or constant
3089     enum PTR tptr = t->is_ptr()->ptr();
3090     enum PTR ptr = meet_ptr( tptr );
3091     if( ptr == Constant ) {     // Cannot be equal constants, so...
3092       if( tptr == Constant && _ptr != Constant)  return t;
3093       if( _ptr == Constant && tptr != Constant)  return this;
3094       ptr = NotNull;            // Fall down in lattice
3095     }
3096     return make( ptr );
3097   }
3098 
3099   case OopPtr:
3100   case InstPtr:
3101   case AryPtr:
3102   case MetadataPtr:
3103   case KlassPtr:
3104     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3105   default:                      // All else is a mistake
3106     typerr(t);
3107   }
3108 
3109   // Found an AnyPtr type vs self-RawPtr type
3110   const TypePtr *tp = t->is_ptr();
3111   switch (tp->ptr()) {
3112   case TypePtr::TopPTR:  return this;
3113   case TypePtr::BotPTR:  return t;
3114   case TypePtr::Null:
3115     if( _ptr == TypePtr::TopPTR ) return t;
3116     return TypeRawPtr::BOTTOM;
3117   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
3118   case TypePtr::AnyNull:
3119     if( _ptr == TypePtr::Constant) return this;
3120     return make( meet_ptr(TypePtr::AnyNull) );
3121   default: ShouldNotReachHere();
3122   }
3123   return this;
3124 }
3125 
3126 //------------------------------xdual------------------------------------------
3127 // Dual: compute field-by-field dual
3128 const Type *TypeRawPtr::xdual() const {
3129   return new TypeRawPtr( dual_ptr(), _bits );
3130 }
3131 
3132 //------------------------------add_offset-------------------------------------
3133 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
3134   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
3135   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
3136   if( offset == 0 ) return this; // No change
3137   switch (_ptr) {
3138   case TypePtr::TopPTR:
3139   case TypePtr::BotPTR:
3140   case TypePtr::NotNull:
3141     return this;
3142   case TypePtr::Null:
3143   case TypePtr::Constant: {
3144     address bits = _bits+offset;
3145     if ( bits == 0 ) return TypePtr::NULL_PTR;
3146     return make( bits );
3147   }
3148   default:  ShouldNotReachHere();
3149   }
3150   return NULL;                  // Lint noise
3151 }
3152 
3153 //------------------------------eq---------------------------------------------
3154 // Structural equality check for Type representations
3155 bool TypeRawPtr::eq( const Type *t ) const {
3156   const TypeRawPtr *a = (const TypeRawPtr*)t;
3157   return _bits == a->_bits && TypePtr::eq(t);
3158 }
3159 
3160 //------------------------------hash-------------------------------------------
3161 // Type-specific hashing function.
3162 int TypeRawPtr::hash(void) const {
3163   return (intptr_t)_bits + TypePtr::hash();
3164 }
3165 
3166 //------------------------------dump2------------------------------------------
3167 #ifndef PRODUCT
3168 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3169   if( _ptr == Constant )
3170     st->print(INTPTR_FORMAT, p2i(_bits));
3171   else
3172     st->print("rawptr:%s", ptr_msg[_ptr]);
3173 }
3174 #endif
3175 
3176 //=============================================================================
3177 // Convenience common pre-built type.
3178 const TypeOopPtr *TypeOopPtr::BOTTOM;
3179 
3180 //------------------------------TypeOopPtr-------------------------------------
3181 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, Offset field_offset,
3182                        int instance_id, const TypePtr* speculative, int inline_depth)
3183   : TypePtr(t, ptr, offset, speculative, inline_depth),
3184     _const_oop(o), _klass(k),
3185     _klass_is_exact(xk),
3186     _is_ptr_to_narrowoop(false),
3187     _is_ptr_to_narrowklass(false),
3188     _is_ptr_to_boxed_value(false),
3189     _instance_id(instance_id) {
3190   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3191       (offset.get() > 0) && xk && (k != 0) && k->is_instance_klass()) {
3192     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset.get());
3193   }
3194 #ifdef _LP64
3195   if (this->offset() != 0) {
3196     if (this->offset() == oopDesc::klass_offset_in_bytes()) {
3197       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3198     } else if (klass() == NULL) {
3199       // Array with unknown body type
3200       assert(this->isa_aryptr(), "only arrays without klass");
3201       _is_ptr_to_narrowoop = UseCompressedOops;
3202     } else if (UseCompressedOops && this->isa_aryptr() && this->offset() != arrayOopDesc::length_offset_in_bytes()) {
3203       if (klass()->is_obj_array_klass()) {
3204         _is_ptr_to_narrowoop = true;
3205       } else if (klass()->is_value_array_klass() && field_offset != Offset::top && field_offset != Offset::bottom) {
3206         // Check if the field of the value type array element contains oops
3207         ciValueKlass* vk = klass()->as_value_array_klass()->element_klass()->as_value_klass();
3208         int foffset = field_offset.get() + vk->first_field_offset();
3209         ciField* field = vk->get_field_by_offset(foffset, false);
3210         assert(field != NULL, "missing field");
3211         BasicType bt = field->layout_type();
3212         assert(bt != T_VALUETYPEPTR, "unexpected type");
3213         _is_ptr_to_narrowoop = (bt == T_OBJECT || bt == T_ARRAY || T_VALUETYPE);
3214       }
3215     } else if (klass()->is_instance_klass()) {
3216       if (this->isa_klassptr()) {
3217         // Perm objects don't use compressed references
3218       } else if (_offset == Offset::bottom || _offset == Offset::top) {
3219         // unsafe access
3220         _is_ptr_to_narrowoop = UseCompressedOops;
3221       } else { // exclude unsafe ops
3222         assert(this->isa_instptr(), "must be an instance ptr.");
3223         if (klass() == ciEnv::current()->Class_klass() &&
3224             (this->offset() == java_lang_Class::klass_offset_in_bytes() ||
3225              this->offset() == java_lang_Class::array_klass_offset_in_bytes())) {
3226           // Special hidden fields from the Class.
3227           assert(this->isa_instptr(), "must be an instance ptr.");
3228           _is_ptr_to_narrowoop = false;
3229         } else if (klass() == ciEnv::current()->Class_klass() &&
3230                    this->offset() >= InstanceMirrorKlass::offset_of_static_fields()) {
3231           // Static fields
3232           assert(o != NULL, "must be constant");
3233           ciInstanceKlass* ik = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
3234           BasicType basic_elem_type;
3235           if (ik->is_valuetype() && this->offset() == ik->as_value_klass()->default_value_offset()) {
3236             // Special hidden field that contains the oop of the default value type
3237             basic_elem_type = T_VALUETYPE;
3238           } else {
3239             ciField* field = ik->get_field_by_offset(this->offset(), true);
3240             assert(field != NULL, "missing field");
3241             basic_elem_type = field->layout_type();
3242           }
3243           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3244                                                        basic_elem_type == T_VALUETYPE ||
3245                                                        basic_elem_type == T_ARRAY);
3246         } else {
3247           // Instance fields which contains a compressed oop references.
3248           ciInstanceKlass* ik = klass()->as_instance_klass();
3249           ciField* field = ik->get_field_by_offset(this->offset(), false);
3250           if (field != NULL) {
3251             BasicType basic_elem_type = field->layout_type();
3252             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3253                                                          basic_elem_type == T_VALUETYPE ||
3254                                                          basic_elem_type == T_ARRAY);
3255             assert(basic_elem_type != T_VALUETYPEPTR, "unexpected type");
3256           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3257             // Compile::find_alias_type() cast exactness on all types to verify
3258             // that it does not affect alias type.
3259             _is_ptr_to_narrowoop = UseCompressedOops;
3260           } else {
3261             // Type for the copy start in LibraryCallKit::inline_native_clone().
3262             _is_ptr_to_narrowoop = UseCompressedOops;
3263           }
3264         }
3265       }
3266     }
3267   }
3268 #endif
3269 }
3270 
3271 //------------------------------make-------------------------------------------
3272 const TypeOopPtr *TypeOopPtr::make(PTR ptr, Offset offset, int instance_id,
3273                                    const TypePtr* speculative, int inline_depth) {
3274   assert(ptr != Constant, "no constant generic pointers");
3275   ciKlass*  k = Compile::current()->env()->Object_klass();
3276   bool      xk = false;
3277   ciObject* o = NULL;
3278   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, Offset::bottom, instance_id, speculative, inline_depth))->hashcons();
3279 }
3280 
3281 
3282 //------------------------------cast_to_ptr_type-------------------------------
3283 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3284   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3285   if( ptr == _ptr ) return this;
3286   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3287 }
3288 
3289 //-----------------------------cast_to_instance_id----------------------------
3290 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3291   // There are no instances of a general oop.
3292   // Return self unchanged.
3293   return this;
3294 }
3295 
3296 //-----------------------------cast_to_exactness-------------------------------
3297 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3298   // There is no such thing as an exact general oop.
3299   // Return self unchanged.
3300   return this;
3301 }
3302 
3303 
3304 //------------------------------as_klass_type----------------------------------
3305 // Return the klass type corresponding to this instance or array type.
3306 // It is the type that is loaded from an object of this type.
3307 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
3308   ciKlass* k = klass();
3309   bool    xk = klass_is_exact();
3310   if (k == NULL)
3311     return TypeKlassPtr::OBJECT;
3312   else
3313     return TypeKlassPtr::make(xk? Constant: NotNull, k, Offset(0));
3314 }
3315 
3316 //------------------------------meet-------------------------------------------
3317 // Compute the MEET of two types.  It returns a new Type object.
3318 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3319   // Perform a fast test for common case; meeting the same types together.
3320   if( this == t ) return this;  // Meeting same type-rep?
3321 
3322   // Current "this->_base" is OopPtr
3323   switch (t->base()) {          // switch on original type
3324 
3325   case Int:                     // Mixing ints & oops happens when javac
3326   case Long:                    // reuses local variables
3327   case FloatTop:
3328   case FloatCon:
3329   case FloatBot:
3330   case DoubleTop:
3331   case DoubleCon:
3332   case DoubleBot:
3333   case NarrowOop:
3334   case NarrowKlass:
3335   case Bottom:                  // Ye Olde Default
3336     return Type::BOTTOM;
3337   case Top:
3338     return this;
3339 
3340   default:                      // All else is a mistake
3341     typerr(t);
3342 
3343   case RawPtr:
3344   case MetadataPtr:
3345   case KlassPtr:
3346     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3347 
3348   case AnyPtr: {
3349     // Found an AnyPtr type vs self-OopPtr type
3350     const TypePtr *tp = t->is_ptr();
3351     Offset offset = meet_offset(tp->offset());
3352     PTR ptr = meet_ptr(tp->ptr());
3353     const TypePtr* speculative = xmeet_speculative(tp);
3354     int depth = meet_inline_depth(tp->inline_depth());
3355     switch (tp->ptr()) {
3356     case Null:
3357       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3358       // else fall through:
3359     case TopPTR:
3360     case AnyNull: {
3361       int instance_id = meet_instance_id(InstanceTop);
3362       return make(ptr, offset, instance_id, speculative, depth);
3363     }
3364     case BotPTR:
3365     case NotNull:
3366       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3367     default: typerr(t);
3368     }
3369   }
3370 
3371   case OopPtr: {                 // Meeting to other OopPtrs
3372     const TypeOopPtr *tp = t->is_oopptr();
3373     int instance_id = meet_instance_id(tp->instance_id());
3374     const TypePtr* speculative = xmeet_speculative(tp);
3375     int depth = meet_inline_depth(tp->inline_depth());
3376     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3377   }
3378 
3379   case InstPtr:                  // For these, flip the call around to cut down
3380   case AryPtr:
3381     return t->xmeet(this);      // Call in reverse direction
3382 
3383   } // End of switch
3384   return this;                  // Return the double constant
3385 }
3386 
3387 
3388 //------------------------------xdual------------------------------------------
3389 // Dual of a pure heap pointer.  No relevant klass or oop information.
3390 const Type *TypeOopPtr::xdual() const {
3391   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3392   assert(const_oop() == NULL,             "no constants here");
3393   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), Offset::bottom, dual_instance_id(), dual_speculative(), dual_inline_depth());
3394 }
3395 
3396 //--------------------------make_from_klass_common-----------------------------
3397 // Computes the element-type given a klass.
3398 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3399   if (klass->is_instance_klass() || klass->is_valuetype()) {
3400     Compile* C = Compile::current();
3401     Dependencies* deps = C->dependencies();
3402     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3403     // Element is an instance
3404     bool klass_is_exact = false;
3405     if (klass->is_loaded()) {
3406       // Try to set klass_is_exact.
3407       ciInstanceKlass* ik = klass->as_instance_klass();
3408       klass_is_exact = ik->is_final();
3409       if (!klass_is_exact && klass_change
3410           && deps != NULL && UseUniqueSubclasses) {
3411         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3412         if (sub != NULL) {
3413           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3414           klass = ik = sub;
3415           klass_is_exact = sub->is_final();
3416         }
3417       }
3418       if (!klass_is_exact && try_for_exact
3419           && deps != NULL && UseExactTypes) {
3420         if (!ik->is_interface() && !ik->has_subklass()) {
3421           // Add a dependence; if concrete subclass added we need to recompile
3422           deps->assert_leaf_type(ik);
3423           klass_is_exact = true;
3424         }
3425       }
3426     }
3427     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, Offset(0));
3428   } else if (klass->is_obj_array_klass()) {
3429     // Element is an object or value array. Recursively call ourself.
3430     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), false, try_for_exact);
3431     bool xk = etype->klass_is_exact();
3432     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3433     // We used to pass NotNull in here, asserting that the sub-arrays
3434     // are all not-null.  This is not true in generally, as code can
3435     // slam NULLs down in the subarrays.
3436     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, Offset(0));
3437     return arr;
3438   } else if (klass->is_type_array_klass()) {
3439     // Element is an typeArray
3440     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3441     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3442     // We used to pass NotNull in here, asserting that the array pointer
3443     // is not-null. That was not true in general.
3444     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3445     return arr;
3446   } else if (klass->is_value_array_klass()) {
3447     ciValueKlass* vk = klass->as_array_klass()->element_klass()->as_value_klass();
3448     const TypeAry* arr0 = TypeAry::make(TypeValueType::make(vk), TypeInt::POS);
3449     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3450     return arr;
3451   } else {
3452     ShouldNotReachHere();
3453     return NULL;
3454   }
3455 }
3456 
3457 //------------------------------make_from_constant-----------------------------
3458 // Make a java pointer from an oop constant
3459 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3460   assert(!o->is_null_object(), "null object not yet handled here.");
3461   ciKlass* klass = o->klass();
3462   if (klass->is_instance_klass() || klass->is_valuetype()) {
3463     // Element is an instance or value type
3464     if (require_constant) {
3465       if (!o->can_be_constant())  return NULL;
3466     } else if (!o->should_be_constant()) {
3467       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, Offset(0));
3468     }
3469     return TypeInstPtr::make(o);
3470   } else if (klass->is_obj_array_klass()) {
3471     // Element is an object array. Recursively call ourself.
3472     const TypeOopPtr *etype =
3473       TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass());
3474     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3475     // We used to pass NotNull in here, asserting that the sub-arrays
3476     // are all not-null.  This is not true in generally, as code can
3477     // slam NULLs down in the subarrays.
3478     if (require_constant) {
3479       if (!o->can_be_constant())  return NULL;
3480     } else if (!o->should_be_constant()) {
3481       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3482     }
3483     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3484     return arr;
3485   } else if (klass->is_type_array_klass()) {
3486     // Element is an typeArray
3487     const Type* etype =
3488       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3489     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3490     // We used to pass NotNull in here, asserting that the array pointer
3491     // is not-null. That was not true in general.
3492     if (require_constant) {
3493       if (!o->can_be_constant())  return NULL;
3494     } else if (!o->should_be_constant()) {
3495       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3496     }
3497     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3498     return arr;
3499   } else if (klass->is_value_array_klass()) {
3500     ciValueKlass* vk = klass->as_array_klass()->element_klass()->as_value_klass();
3501     const TypeAry* arr0 = TypeAry::make(TypeValueType::make(vk), TypeInt::make(o->as_array()->length()));
3502     // We used to pass NotNull in here, asserting that the sub-arrays
3503     // are all not-null.  This is not true in generally, as code can
3504     // slam NULLs down in the subarrays.
3505     if (require_constant) {
3506       if (!o->can_be_constant())  return NULL;
3507     } else if (!o->should_be_constant()) {
3508       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3509     }
3510     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3511     return arr;
3512   }
3513 
3514   fatal("unhandled object type");
3515   return NULL;
3516 }
3517 
3518 //------------------------------get_con----------------------------------------
3519 intptr_t TypeOopPtr::get_con() const {
3520   assert( _ptr == Null || _ptr == Constant, "" );
3521   assert(offset() >= 0, "");
3522 
3523   if (offset() != 0) {
3524     // After being ported to the compiler interface, the compiler no longer
3525     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3526     // to a handle at compile time.  This handle is embedded in the generated
3527     // code and dereferenced at the time the nmethod is made.  Until that time,
3528     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3529     // have access to the addresses!).  This does not seem to currently happen,
3530     // but this assertion here is to help prevent its occurence.
3531     tty->print_cr("Found oop constant with non-zero offset");
3532     ShouldNotReachHere();
3533   }
3534 
3535   return (intptr_t)const_oop()->constant_encoding();
3536 }
3537 
3538 
3539 //-----------------------------filter------------------------------------------
3540 // Do not allow interface-vs.-noninterface joins to collapse to top.
3541 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3542 
3543   const Type* ft = join_helper(kills, include_speculative);
3544   const TypeInstPtr* ftip = ft->isa_instptr();
3545   const TypeInstPtr* ktip = kills->isa_instptr();
3546 
3547   if (ft->empty()) {
3548     // Check for evil case of 'this' being a class and 'kills' expecting an
3549     // interface.  This can happen because the bytecodes do not contain
3550     // enough type info to distinguish a Java-level interface variable
3551     // from a Java-level object variable.  If we meet 2 classes which
3552     // both implement interface I, but their meet is at 'j/l/O' which
3553     // doesn't implement I, we have no way to tell if the result should
3554     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3555     // into a Phi which "knows" it's an Interface type we'll have to
3556     // uplift the type.
3557     if (!empty()) {
3558       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3559         return kills;           // Uplift to interface
3560       }
3561       // Also check for evil cases of 'this' being a class array
3562       // and 'kills' expecting an array of interfaces.
3563       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
3564       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3565         return kills;           // Uplift to array of interface
3566       }
3567     }
3568 
3569     return Type::TOP;           // Canonical empty value
3570   }
3571 
3572   // If we have an interface-typed Phi or cast and we narrow to a class type,
3573   // the join should report back the class.  However, if we have a J/L/Object
3574   // class-typed Phi and an interface flows in, it's possible that the meet &
3575   // join report an interface back out.  This isn't possible but happens
3576   // because the type system doesn't interact well with interfaces.
3577   if (ftip != NULL && ktip != NULL &&
3578       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3579       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3580     assert(!ftip->klass_is_exact(), "interface could not be exact");
3581     return ktip->cast_to_ptr_type(ftip->ptr());
3582   }
3583 
3584   return ft;
3585 }
3586 
3587 //------------------------------eq---------------------------------------------
3588 // Structural equality check for Type representations
3589 bool TypeOopPtr::eq( const Type *t ) const {
3590   const TypeOopPtr *a = (const TypeOopPtr*)t;
3591   if (_klass_is_exact != a->_klass_is_exact ||
3592       _instance_id != a->_instance_id)  return false;
3593   ciObject* one = const_oop();
3594   ciObject* two = a->const_oop();
3595   if (one == NULL || two == NULL) {
3596     return (one == two) && TypePtr::eq(t);
3597   } else {
3598     return one->equals(two) && TypePtr::eq(t);
3599   }
3600 }
3601 
3602 //------------------------------hash-------------------------------------------
3603 // Type-specific hashing function.
3604 int TypeOopPtr::hash(void) const {
3605   return
3606     java_add(java_add((jint)(const_oop() ? const_oop()->hash() : 0), (jint)_klass_is_exact),
3607              java_add((jint)_instance_id, (jint)TypePtr::hash()));
3608 }
3609 
3610 //------------------------------dump2------------------------------------------
3611 #ifndef PRODUCT
3612 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3613   st->print("oopptr:%s", ptr_msg[_ptr]);
3614   if( _klass_is_exact ) st->print(":exact");
3615   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3616   _offset.dump2(st);
3617   if (_instance_id == InstanceTop)
3618     st->print(",iid=top");
3619   else if (_instance_id != InstanceBot)
3620     st->print(",iid=%d",_instance_id);
3621 
3622   dump_inline_depth(st);
3623   dump_speculative(st);
3624 }
3625 #endif
3626 
3627 //------------------------------singleton--------------------------------------
3628 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3629 // constants
3630 bool TypeOopPtr::singleton(void) const {
3631   // detune optimizer to not generate constant oop + constant offset as a constant!
3632   // TopPTR, Null, AnyNull, Constant are all singletons
3633   return (offset() == 0) && !below_centerline(_ptr);
3634 }
3635 
3636 //------------------------------add_offset-------------------------------------
3637 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3638   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3639 }
3640 
3641 /**
3642  * Return same type without a speculative part
3643  */
3644 const Type* TypeOopPtr::remove_speculative() const {
3645   if (_speculative == NULL) {
3646     return this;
3647   }
3648   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3649   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3650 }
3651 
3652 /**
3653  * Return same type but drop speculative part if we know we won't use
3654  * it
3655  */
3656 const Type* TypeOopPtr::cleanup_speculative() const {
3657   // If the klass is exact and the ptr is not null then there's
3658   // nothing that the speculative type can help us with
3659   if (klass_is_exact() && !maybe_null()) {
3660     return remove_speculative();
3661   }
3662   return TypePtr::cleanup_speculative();
3663 }
3664 
3665 /**
3666  * Return same type but with a different inline depth (used for speculation)
3667  *
3668  * @param depth  depth to meet with
3669  */
3670 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3671   if (!UseInlineDepthForSpeculativeTypes) {
3672     return this;
3673   }
3674   return make(_ptr, _offset, _instance_id, _speculative, depth);
3675 }
3676 
3677 //------------------------------meet_instance_id--------------------------------
3678 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3679   // Either is 'TOP' instance?  Return the other instance!
3680   if( _instance_id == InstanceTop ) return  instance_id;
3681   if(  instance_id == InstanceTop ) return _instance_id;
3682   // If either is different, return 'BOTTOM' instance
3683   if( _instance_id != instance_id ) return InstanceBot;
3684   return _instance_id;
3685 }
3686 
3687 //------------------------------dual_instance_id--------------------------------
3688 int TypeOopPtr::dual_instance_id( ) const {
3689   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3690   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3691   return _instance_id;              // Map everything else into self
3692 }
3693 
3694 /**
3695  * Check whether new profiling would improve speculative type
3696  *
3697  * @param   exact_kls    class from profiling
3698  * @param   inline_depth inlining depth of profile point
3699  *
3700  * @return  true if type profile is valuable
3701  */
3702 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3703   // no way to improve an already exact type
3704   if (klass_is_exact()) {
3705     return false;
3706   }
3707   return TypePtr::would_improve_type(exact_kls, inline_depth);
3708 }
3709 
3710 //=============================================================================
3711 // Convenience common pre-built types.
3712 const TypeInstPtr *TypeInstPtr::NOTNULL;
3713 const TypeInstPtr *TypeInstPtr::BOTTOM;
3714 const TypeInstPtr *TypeInstPtr::MIRROR;
3715 const TypeInstPtr *TypeInstPtr::MARK;
3716 const TypeInstPtr *TypeInstPtr::KLASS;
3717 
3718 //------------------------------TypeInstPtr-------------------------------------
3719 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset off,
3720                          int instance_id, const TypePtr* speculative, int inline_depth)
3721   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, Offset::bottom, instance_id, speculative, inline_depth),
3722     _name(k->name()) {
3723    assert(k != NULL &&
3724           (k->is_loaded() || o == NULL),
3725           "cannot have constants with non-loaded klass");
3726 };
3727 
3728 //------------------------------make-------------------------------------------
3729 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3730                                      ciKlass* k,
3731                                      bool xk,
3732                                      ciObject* o,
3733                                      Offset offset,
3734                                      int instance_id,
3735                                      const TypePtr* speculative,
3736                                      int inline_depth) {
3737   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3738   // Either const_oop() is NULL or else ptr is Constant
3739   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3740           "constant pointers must have a value supplied" );
3741   // Ptr is never Null
3742   assert( ptr != Null, "NULL pointers are not typed" );
3743 
3744   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3745   if (!UseExactTypes)  xk = false;
3746   if (ptr == Constant) {
3747     // Note:  This case includes meta-object constants, such as methods.
3748     xk = true;
3749   } else if (k->is_loaded()) {
3750     ciInstanceKlass* ik = k->as_instance_klass();
3751     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3752     if (xk && ik->is_interface())  xk = false;  // no exact interface
3753   }
3754 
3755   // Now hash this baby
3756   TypeInstPtr *result =
3757     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3758 
3759   return result;
3760 }
3761 
3762 /**
3763  *  Create constant type for a constant boxed value
3764  */
3765 const Type* TypeInstPtr::get_const_boxed_value() const {
3766   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3767   assert((const_oop() != NULL), "should be called only for constant object");
3768   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3769   BasicType bt = constant.basic_type();
3770   switch (bt) {
3771     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3772     case T_INT:      return TypeInt::make(constant.as_int());
3773     case T_CHAR:     return TypeInt::make(constant.as_char());
3774     case T_BYTE:     return TypeInt::make(constant.as_byte());
3775     case T_SHORT:    return TypeInt::make(constant.as_short());
3776     case T_FLOAT:    return TypeF::make(constant.as_float());
3777     case T_DOUBLE:   return TypeD::make(constant.as_double());
3778     case T_LONG:     return TypeLong::make(constant.as_long());
3779     default:         break;
3780   }
3781   fatal("Invalid boxed value type '%s'", type2name(bt));
3782   return NULL;
3783 }
3784 
3785 //------------------------------cast_to_ptr_type-------------------------------
3786 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3787   if( ptr == _ptr ) return this;
3788   // Reconstruct _sig info here since not a problem with later lazy
3789   // construction, _sig will show up on demand.
3790   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3791 }
3792 
3793 
3794 //-----------------------------cast_to_exactness-------------------------------
3795 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3796   if( klass_is_exact == _klass_is_exact ) return this;
3797   if (!UseExactTypes)  return this;
3798   if (!_klass->is_loaded())  return this;
3799   ciInstanceKlass* ik = _klass->as_instance_klass();
3800   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3801   if( ik->is_interface() )              return this;  // cannot set xk
3802   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3803 }
3804 
3805 //-----------------------------cast_to_instance_id----------------------------
3806 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3807   if( instance_id == _instance_id ) return this;
3808   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3809 }
3810 
3811 //------------------------------xmeet_unloaded---------------------------------
3812 // Compute the MEET of two InstPtrs when at least one is unloaded.
3813 // Assume classes are different since called after check for same name/class-loader
3814 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3815     Offset off = meet_offset(tinst->offset());
3816     PTR ptr = meet_ptr(tinst->ptr());
3817     int instance_id = meet_instance_id(tinst->instance_id());
3818     const TypePtr* speculative = xmeet_speculative(tinst);
3819     int depth = meet_inline_depth(tinst->inline_depth());
3820 
3821     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3822     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3823     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3824       //
3825       // Meet unloaded class with java/lang/Object
3826       //
3827       // Meet
3828       //          |                     Unloaded Class
3829       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3830       //  ===================================================================
3831       //   TOP    | ..........................Unloaded......................|
3832       //  AnyNull |  U-AN    |................Unloaded......................|
3833       // Constant | ... O-NN .................................. |   O-BOT   |
3834       //  NotNull | ... O-NN .................................. |   O-BOT   |
3835       //  BOTTOM  | ........................Object-BOTTOM ..................|
3836       //
3837       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3838       //
3839       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3840       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3841       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3842       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3843         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3844         else                                      { return TypeInstPtr::NOTNULL; }
3845       }
3846       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3847 
3848       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3849     }
3850 
3851     // Both are unloaded, not the same class, not Object
3852     // Or meet unloaded with a different loaded class, not java/lang/Object
3853     if( ptr != TypePtr::BotPTR ) {
3854       return TypeInstPtr::NOTNULL;
3855     }
3856     return TypeInstPtr::BOTTOM;
3857 }
3858 
3859 
3860 //------------------------------meet-------------------------------------------
3861 // Compute the MEET of two types.  It returns a new Type object.
3862 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3863   // Perform a fast test for common case; meeting the same types together.
3864   if( this == t ) return this;  // Meeting same type-rep?
3865 
3866   // Current "this->_base" is Pointer
3867   switch (t->base()) {          // switch on original type
3868 
3869   case Int:                     // Mixing ints & oops happens when javac
3870   case Long:                    // reuses local variables
3871   case FloatTop:
3872   case FloatCon:
3873   case FloatBot:
3874   case DoubleTop:
3875   case DoubleCon:
3876   case DoubleBot:
3877   case NarrowOop:
3878   case NarrowKlass:
3879   case Bottom:                  // Ye Olde Default
3880     return Type::BOTTOM;
3881   case Top:
3882     return this;
3883 
3884   default:                      // All else is a mistake
3885     typerr(t);
3886 
3887   case MetadataPtr:
3888   case KlassPtr:
3889   case RawPtr: return TypePtr::BOTTOM;
3890 
3891   case AryPtr: {                // All arrays inherit from Object class
3892     const TypeAryPtr *tp = t->is_aryptr();
3893     Offset offset = meet_offset(tp->offset());
3894     PTR ptr = meet_ptr(tp->ptr());
3895     int instance_id = meet_instance_id(tp->instance_id());
3896     const TypePtr* speculative = xmeet_speculative(tp);
3897     int depth = meet_inline_depth(tp->inline_depth());
3898     switch (ptr) {
3899     case TopPTR:
3900     case AnyNull:                // Fall 'down' to dual of object klass
3901       // For instances when a subclass meets a superclass we fall
3902       // below the centerline when the superclass is exact. We need to
3903       // do the same here.
3904       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3905         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, tp->field_offset(), instance_id, speculative, depth);
3906       } else {
3907         // cannot subclass, so the meet has to fall badly below the centerline
3908         ptr = NotNull;
3909         instance_id = InstanceBot;
3910         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3911       }
3912     case Constant:
3913     case NotNull:
3914     case BotPTR:                // Fall down to object klass
3915       // LCA is object_klass, but if we subclass from the top we can do better
3916       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3917         // If 'this' (InstPtr) is above the centerline and it is Object class
3918         // then we can subclass in the Java class hierarchy.
3919         // For instances when a subclass meets a superclass we fall
3920         // below the centerline when the superclass is exact. We need
3921         // to do the same here.
3922         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3923           // that is, tp's array type is a subtype of my klass
3924           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3925                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, tp->field_offset(), instance_id, speculative, depth);
3926         }
3927       }
3928       // The other case cannot happen, since I cannot be a subtype of an array.
3929       // The meet falls down to Object class below centerline.
3930       if( ptr == Constant )
3931          ptr = NotNull;
3932       instance_id = InstanceBot;
3933       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3934     default: typerr(t);
3935     }
3936   }
3937 
3938   case OopPtr: {                // Meeting to OopPtrs
3939     // Found a OopPtr type vs self-InstPtr type
3940     const TypeOopPtr *tp = t->is_oopptr();
3941     Offset offset = meet_offset(tp->offset());
3942     PTR ptr = meet_ptr(tp->ptr());
3943     switch (tp->ptr()) {
3944     case TopPTR:
3945     case AnyNull: {
3946       int instance_id = meet_instance_id(InstanceTop);
3947       const TypePtr* speculative = xmeet_speculative(tp);
3948       int depth = meet_inline_depth(tp->inline_depth());
3949       return make(ptr, klass(), klass_is_exact(),
3950                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3951     }
3952     case NotNull:
3953     case BotPTR: {
3954       int instance_id = meet_instance_id(tp->instance_id());
3955       const TypePtr* speculative = xmeet_speculative(tp);
3956       int depth = meet_inline_depth(tp->inline_depth());
3957       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3958     }
3959     default: typerr(t);
3960     }
3961   }
3962 
3963   case AnyPtr: {                // Meeting to AnyPtrs
3964     // Found an AnyPtr type vs self-InstPtr type
3965     const TypePtr *tp = t->is_ptr();
3966     Offset offset = meet_offset(tp->offset());
3967     PTR ptr = meet_ptr(tp->ptr());
3968     int instance_id = meet_instance_id(InstanceTop);
3969     const TypePtr* speculative = xmeet_speculative(tp);
3970     int depth = meet_inline_depth(tp->inline_depth());
3971     switch (tp->ptr()) {
3972     case Null:
3973       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3974       // else fall through to AnyNull
3975     case TopPTR:
3976     case AnyNull: {
3977       return make(ptr, klass(), klass_is_exact(),
3978                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3979     }
3980     case NotNull:
3981     case BotPTR:
3982       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3983     default: typerr(t);
3984     }
3985   }
3986 
3987   /*
3988                  A-top         }
3989                /   |   \       }  Tops
3990            B-top A-any C-top   }
3991               | /  |  \ |      }  Any-nulls
3992            B-any   |   C-any   }
3993               |    |    |
3994            B-con A-con C-con   } constants; not comparable across classes
3995               |    |    |
3996            B-not   |   C-not   }
3997               | \  |  / |      }  not-nulls
3998            B-bot A-not C-bot   }
3999                \   |   /       }  Bottoms
4000                  A-bot         }
4001   */
4002 
4003   case InstPtr: {                // Meeting 2 Oops?
4004     // Found an InstPtr sub-type vs self-InstPtr type
4005     const TypeInstPtr *tinst = t->is_instptr();
4006     Offset off = meet_offset( tinst->offset() );
4007     PTR ptr = meet_ptr( tinst->ptr() );
4008     int instance_id = meet_instance_id(tinst->instance_id());
4009     const TypePtr* speculative = xmeet_speculative(tinst);
4010     int depth = meet_inline_depth(tinst->inline_depth());
4011 
4012     // Check for easy case; klasses are equal (and perhaps not loaded!)
4013     // If we have constants, then we created oops so classes are loaded
4014     // and we can handle the constants further down.  This case handles
4015     // both-not-loaded or both-loaded classes
4016     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
4017       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
4018     }
4019 
4020     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4021     ciKlass* tinst_klass = tinst->klass();
4022     ciKlass* this_klass  = this->klass();
4023     bool tinst_xk = tinst->klass_is_exact();
4024     bool this_xk  = this->klass_is_exact();
4025     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
4026       // One of these classes has not been loaded
4027       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
4028 #ifndef PRODUCT
4029       if( PrintOpto && Verbose ) {
4030         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
4031         tty->print("  this == "); this->dump(); tty->cr();
4032         tty->print(" tinst == "); tinst->dump(); tty->cr();
4033       }
4034 #endif
4035       return unloaded_meet;
4036     }
4037 
4038     // Handle mixing oops and interfaces first.
4039     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
4040                                         tinst_klass == ciEnv::current()->Object_klass())) {
4041       ciKlass *tmp = tinst_klass; // Swap interface around
4042       tinst_klass = this_klass;
4043       this_klass = tmp;
4044       bool tmp2 = tinst_xk;
4045       tinst_xk = this_xk;
4046       this_xk = tmp2;
4047     }
4048     if (tinst_klass->is_interface() &&
4049         !(this_klass->is_interface() ||
4050           // Treat java/lang/Object as an honorary interface,
4051           // because we need a bottom for the interface hierarchy.
4052           this_klass == ciEnv::current()->Object_klass())) {
4053       // Oop meets interface!
4054 
4055       // See if the oop subtypes (implements) interface.
4056       ciKlass *k;
4057       bool xk;
4058       if( this_klass->is_subtype_of( tinst_klass ) ) {
4059         // Oop indeed subtypes.  Now keep oop or interface depending
4060         // on whether we are both above the centerline or either is
4061         // below the centerline.  If we are on the centerline
4062         // (e.g., Constant vs. AnyNull interface), use the constant.
4063         k  = below_centerline(ptr) ? tinst_klass : this_klass;
4064         // If we are keeping this_klass, keep its exactness too.
4065         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
4066       } else {                  // Does not implement, fall to Object
4067         // Oop does not implement interface, so mixing falls to Object
4068         // just like the verifier does (if both are above the
4069         // centerline fall to interface)
4070         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
4071         xk = above_centerline(ptr) ? tinst_xk : false;
4072         // Watch out for Constant vs. AnyNull interface.
4073         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
4074         instance_id = InstanceBot;
4075       }
4076       ciObject* o = NULL;  // the Constant value, if any
4077       if (ptr == Constant) {
4078         // Find out which constant.
4079         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
4080       }
4081       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
4082     }
4083 
4084     // Either oop vs oop or interface vs interface or interface vs Object
4085 
4086     // !!! Here's how the symmetry requirement breaks down into invariants:
4087     // If we split one up & one down AND they subtype, take the down man.
4088     // If we split one up & one down AND they do NOT subtype, "fall hard".
4089     // If both are up and they subtype, take the subtype class.
4090     // If both are up and they do NOT subtype, "fall hard".
4091     // If both are down and they subtype, take the supertype class.
4092     // If both are down and they do NOT subtype, "fall hard".
4093     // Constants treated as down.
4094 
4095     // Now, reorder the above list; observe that both-down+subtype is also
4096     // "fall hard"; "fall hard" becomes the default case:
4097     // If we split one up & one down AND they subtype, take the down man.
4098     // If both are up and they subtype, take the subtype class.
4099 
4100     // If both are down and they subtype, "fall hard".
4101     // If both are down and they do NOT subtype, "fall hard".
4102     // If both are up and they do NOT subtype, "fall hard".
4103     // If we split one up & one down AND they do NOT subtype, "fall hard".
4104 
4105     // If a proper subtype is exact, and we return it, we return it exactly.
4106     // If a proper supertype is exact, there can be no subtyping relationship!
4107     // If both types are equal to the subtype, exactness is and-ed below the
4108     // centerline and or-ed above it.  (N.B. Constants are always exact.)
4109 
4110     // Check for subtyping:
4111     ciKlass *subtype = NULL;
4112     bool subtype_exact = false;
4113     if( tinst_klass->equals(this_klass) ) {
4114       subtype = this_klass;
4115       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
4116     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
4117       subtype = this_klass;     // Pick subtyping class
4118       subtype_exact = this_xk;
4119     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
4120       subtype = tinst_klass;    // Pick subtyping class
4121       subtype_exact = tinst_xk;
4122     }
4123 
4124     if( subtype ) {
4125       if( above_centerline(ptr) ) { // both are up?
4126         this_klass = tinst_klass = subtype;
4127         this_xk = tinst_xk = subtype_exact;
4128       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
4129         this_klass = tinst_klass; // tinst is down; keep down man
4130         this_xk = tinst_xk;
4131       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
4132         tinst_klass = this_klass; // this is down; keep down man
4133         tinst_xk = this_xk;
4134       } else {
4135         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4136       }
4137     }
4138 
4139     // Check for classes now being equal
4140     if (tinst_klass->equals(this_klass)) {
4141       // If the klasses are equal, the constants may still differ.  Fall to
4142       // NotNull if they do (neither constant is NULL; that is a special case
4143       // handled elsewhere).
4144       ciObject* o = NULL;             // Assume not constant when done
4145       ciObject* this_oop  = const_oop();
4146       ciObject* tinst_oop = tinst->const_oop();
4147       if( ptr == Constant ) {
4148         if (this_oop != NULL && tinst_oop != NULL &&
4149             this_oop->equals(tinst_oop) )
4150           o = this_oop;
4151         else if (above_centerline(this ->_ptr))
4152           o = tinst_oop;
4153         else if (above_centerline(tinst ->_ptr))
4154           o = this_oop;
4155         else
4156           ptr = NotNull;
4157       }
4158       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
4159     } // Else classes are not equal
4160 
4161     // Since klasses are different, we require a LCA in the Java
4162     // class hierarchy - which means we have to fall to at least NotNull.
4163     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4164       ptr = NotNull;
4165 
4166     instance_id = InstanceBot;
4167 
4168     // Now we find the LCA of Java classes
4169     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
4170     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
4171   } // End of case InstPtr
4172 
4173   case ValueType: {
4174     const TypeValueType *tv = t->is_valuetype();
4175 
4176     // All value types inherit from Object
4177     if (above_centerline(ptr())) {
4178       if (tv->value_klass()->is_subtype_of(_klass)) {
4179         return t;
4180       } else {
4181         return TypeInstPtr::make(NotNull, ciEnv::current()->Object_klass());
4182       }
4183     } else {
4184       return TypeInstPtr::make(ptr(), ciEnv::current()->Object_klass());
4185     }
4186   }
4187 
4188   } // End of switch
4189   return this;                  // Return the double constant
4190 }
4191 
4192 
4193 //------------------------java_mirror_type--------------------------------------
4194 ciType* TypeInstPtr::java_mirror_type() const {
4195   // must be a singleton type
4196   if( const_oop() == NULL )  return NULL;
4197 
4198   // must be of type java.lang.Class
4199   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
4200 
4201   return const_oop()->as_instance()->java_mirror_type();
4202 }
4203 
4204 
4205 //------------------------------xdual------------------------------------------
4206 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4207 // inheritance mechanism.
4208 const Type *TypeInstPtr::xdual() const {
4209   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4210 }
4211 
4212 //------------------------------eq---------------------------------------------
4213 // Structural equality check for Type representations
4214 bool TypeInstPtr::eq( const Type *t ) const {
4215   const TypeInstPtr *p = t->is_instptr();
4216   return
4217     klass()->equals(p->klass()) &&
4218     TypeOopPtr::eq(p);          // Check sub-type stuff
4219 }
4220 
4221 //------------------------------hash-------------------------------------------
4222 // Type-specific hashing function.
4223 int TypeInstPtr::hash(void) const {
4224   int hash = java_add((jint)klass()->hash(), (jint)TypeOopPtr::hash());
4225   return hash;
4226 }
4227 
4228 //------------------------------dump2------------------------------------------
4229 // Dump oop Type
4230 #ifndef PRODUCT
4231 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4232   // Print the name of the klass.
4233   klass()->print_name_on(st);
4234 
4235   switch( _ptr ) {
4236   case Constant:
4237     // TO DO: Make CI print the hex address of the underlying oop.
4238     if (WizardMode || Verbose) {
4239       const_oop()->print_oop(st);
4240     }
4241   case BotPTR:
4242     if (!WizardMode && !Verbose) {
4243       if( _klass_is_exact ) st->print(":exact");
4244       break;
4245     }
4246   case TopPTR:
4247   case AnyNull:
4248   case NotNull:
4249     st->print(":%s", ptr_msg[_ptr]);
4250     if( _klass_is_exact ) st->print(":exact");
4251     break;
4252   default:
4253     break;
4254   }
4255 
4256   _offset.dump2(st);
4257 
4258   st->print(" *");
4259   if (_instance_id == InstanceTop)
4260     st->print(",iid=top");
4261   else if (_instance_id != InstanceBot)
4262     st->print(",iid=%d",_instance_id);
4263 
4264   dump_inline_depth(st);
4265   dump_speculative(st);
4266 }
4267 #endif
4268 
4269 //------------------------------add_offset-------------------------------------
4270 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
4271   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
4272               _instance_id, add_offset_speculative(offset), _inline_depth);
4273 }
4274 
4275 const Type *TypeInstPtr::remove_speculative() const {
4276   if (_speculative == NULL) {
4277     return this;
4278   }
4279   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4280   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
4281               _instance_id, NULL, _inline_depth);
4282 }
4283 
4284 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
4285   if (!UseInlineDepthForSpeculativeTypes) {
4286     return this;
4287   }
4288   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4289 }
4290 
4291 //=============================================================================
4292 // Convenience common pre-built types.
4293 const TypeAryPtr *TypeAryPtr::RANGE;
4294 const TypeAryPtr *TypeAryPtr::OOPS;
4295 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4296 const TypeAryPtr *TypeAryPtr::BYTES;
4297 const TypeAryPtr *TypeAryPtr::SHORTS;
4298 const TypeAryPtr *TypeAryPtr::CHARS;
4299 const TypeAryPtr *TypeAryPtr::INTS;
4300 const TypeAryPtr *TypeAryPtr::LONGS;
4301 const TypeAryPtr *TypeAryPtr::FLOATS;
4302 const TypeAryPtr *TypeAryPtr::DOUBLES;
4303 
4304 //------------------------------make-------------------------------------------
4305 const TypeAryPtr* TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4306                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4307   assert(!(k == NULL && ary->_elem->isa_int()),
4308          "integral arrays must be pre-equipped with a class");
4309   if (!xk)  xk = ary->ary_must_be_exact();
4310   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4311   if (!UseExactTypes)  xk = (ptr == Constant);
4312   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, field_offset, instance_id, false, speculative, inline_depth))->hashcons();
4313 }
4314 
4315 //------------------------------make-------------------------------------------
4316 const TypeAryPtr* TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4317                                    int instance_id, const TypePtr* speculative, int inline_depth,
4318                                    bool is_autobox_cache) {
4319   assert(!(k == NULL && ary->_elem->isa_int()),
4320          "integral arrays must be pre-equipped with a class");
4321   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4322   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
4323   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4324   if (!UseExactTypes)  xk = (ptr == Constant);
4325   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, field_offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4326 }
4327 
4328 //------------------------------cast_to_ptr_type-------------------------------
4329 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4330   if( ptr == _ptr ) return this;
4331   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4332 }
4333 
4334 
4335 //-----------------------------cast_to_exactness-------------------------------
4336 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4337   if( klass_is_exact == _klass_is_exact ) return this;
4338   if (!UseExactTypes)  return this;
4339   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4340   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4341 }
4342 
4343 //-----------------------------cast_to_instance_id----------------------------
4344 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
4345   if( instance_id == _instance_id ) return this;
4346   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth, _is_autobox_cache);
4347 }
4348 
4349 //-----------------------------narrow_size_type-------------------------------
4350 // Local cache for arrayOopDesc::max_array_length(etype),
4351 // which is kind of slow (and cached elsewhere by other users).
4352 static jint max_array_length_cache[T_CONFLICT+1];
4353 static jint max_array_length(BasicType etype) {
4354   jint& cache = max_array_length_cache[etype];
4355   jint res = cache;
4356   if (res == 0) {
4357     switch (etype) {
4358     case T_NARROWOOP:
4359       etype = T_OBJECT;
4360       break;
4361     case T_NARROWKLASS:
4362     case T_CONFLICT:
4363     case T_ILLEGAL:
4364     case T_VOID:
4365       etype = T_BYTE;           // will produce conservatively high value
4366       break;
4367     default:
4368       break;
4369     }
4370     cache = res = arrayOopDesc::max_array_length(etype);
4371   }
4372   return res;
4373 }
4374 
4375 // Narrow the given size type to the index range for the given array base type.
4376 // Return NULL if the resulting int type becomes empty.
4377 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4378   jint hi = size->_hi;
4379   jint lo = size->_lo;
4380   jint min_lo = 0;
4381   jint max_hi = max_array_length(elem()->basic_type());
4382   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4383   bool chg = false;
4384   if (lo < min_lo) {
4385     lo = min_lo;
4386     if (size->is_con()) {
4387       hi = lo;
4388     }
4389     chg = true;
4390   }
4391   if (hi > max_hi) {
4392     hi = max_hi;
4393     if (size->is_con()) {
4394       lo = hi;
4395     }
4396     chg = true;
4397   }
4398   // Negative length arrays will produce weird intermediate dead fast-path code
4399   if (lo > hi)
4400     return TypeInt::ZERO;
4401   if (!chg)
4402     return size;
4403   return TypeInt::make(lo, hi, Type::WidenMin);
4404 }
4405 
4406 //-------------------------------cast_to_size----------------------------------
4407 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4408   assert(new_size != NULL, "");
4409   new_size = narrow_size_type(new_size);
4410   if (new_size == size())  return this;
4411   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4412   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4413 }
4414 
4415 //------------------------------cast_to_stable---------------------------------
4416 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4417   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4418     return this;
4419 
4420   const Type* elem = this->elem();
4421   const TypePtr* elem_ptr = elem->make_ptr();
4422 
4423   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
4424     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4425     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4426   }
4427 
4428   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4429 
4430   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4431 }
4432 
4433 //-----------------------------stable_dimension--------------------------------
4434 int TypeAryPtr::stable_dimension() const {
4435   if (!is_stable())  return 0;
4436   int dim = 1;
4437   const TypePtr* elem_ptr = elem()->make_ptr();
4438   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4439     dim += elem_ptr->is_aryptr()->stable_dimension();
4440   return dim;
4441 }
4442 
4443 //----------------------cast_to_autobox_cache-----------------------------------
4444 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
4445   if (is_autobox_cache() == cache)  return this;
4446   const TypeOopPtr* etype = elem()->make_oopptr();
4447   if (etype == NULL)  return this;
4448   // The pointers in the autobox arrays are always non-null.
4449   TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
4450   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4451   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4452   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, cache);
4453 }
4454 
4455 //------------------------------eq---------------------------------------------
4456 // Structural equality check for Type representations
4457 bool TypeAryPtr::eq( const Type *t ) const {
4458   const TypeAryPtr *p = t->is_aryptr();
4459   return
4460     _ary == p->_ary &&  // Check array
4461     TypeOopPtr::eq(p) &&// Check sub-parts
4462     _field_offset == p->_field_offset;
4463 }
4464 
4465 //------------------------------hash-------------------------------------------
4466 // Type-specific hashing function.
4467 int TypeAryPtr::hash(void) const {
4468   return (intptr_t)_ary + TypeOopPtr::hash() + _field_offset.get();
4469 }
4470 
4471 //------------------------------meet-------------------------------------------
4472 // Compute the MEET of two types.  It returns a new Type object.
4473 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4474   // Perform a fast test for common case; meeting the same types together.
4475   if( this == t ) return this;  // Meeting same type-rep?
4476   // Current "this->_base" is Pointer
4477   switch (t->base()) {          // switch on original type
4478 
4479   // Mixing ints & oops happens when javac reuses local variables
4480   case Int:
4481   case Long:
4482   case FloatTop:
4483   case FloatCon:
4484   case FloatBot:
4485   case DoubleTop:
4486   case DoubleCon:
4487   case DoubleBot:
4488   case NarrowOop:
4489   case NarrowKlass:
4490   case Bottom:                  // Ye Olde Default
4491     return Type::BOTTOM;
4492   case Top:
4493     return this;
4494 
4495   default:                      // All else is a mistake
4496     typerr(t);
4497 
4498   case OopPtr: {                // Meeting to OopPtrs
4499     // Found a OopPtr type vs self-AryPtr type
4500     const TypeOopPtr *tp = t->is_oopptr();
4501     Offset offset = meet_offset(tp->offset());
4502     PTR ptr = meet_ptr(tp->ptr());
4503     int depth = meet_inline_depth(tp->inline_depth());
4504     const TypePtr* speculative = xmeet_speculative(tp);
4505     switch (tp->ptr()) {
4506     case TopPTR:
4507     case AnyNull: {
4508       int instance_id = meet_instance_id(InstanceTop);
4509       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4510                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4511     }
4512     case BotPTR:
4513     case NotNull: {
4514       int instance_id = meet_instance_id(tp->instance_id());
4515       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4516     }
4517     default: ShouldNotReachHere();
4518     }
4519   }
4520 
4521   case AnyPtr: {                // Meeting two AnyPtrs
4522     // Found an AnyPtr type vs self-AryPtr type
4523     const TypePtr *tp = t->is_ptr();
4524     Offset offset = meet_offset(tp->offset());
4525     PTR ptr = meet_ptr(tp->ptr());
4526     const TypePtr* speculative = xmeet_speculative(tp);
4527     int depth = meet_inline_depth(tp->inline_depth());
4528     switch (tp->ptr()) {
4529     case TopPTR:
4530       return this;
4531     case BotPTR:
4532     case NotNull:
4533       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4534     case Null:
4535       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4536       // else fall through to AnyNull
4537     case AnyNull: {
4538       int instance_id = meet_instance_id(InstanceTop);
4539       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4540                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4541     }
4542     default: ShouldNotReachHere();
4543     }
4544   }
4545 
4546   case MetadataPtr:
4547   case KlassPtr:
4548   case RawPtr: return TypePtr::BOTTOM;
4549 
4550   case AryPtr: {                // Meeting 2 references?
4551     const TypeAryPtr *tap = t->is_aryptr();
4552     Offset off = meet_offset(tap->offset());
4553     Offset field_off = meet_field_offset(tap->field_offset());
4554     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4555     PTR ptr = meet_ptr(tap->ptr());
4556     int instance_id = meet_instance_id(tap->instance_id());
4557     const TypePtr* speculative = xmeet_speculative(tap);
4558     int depth = meet_inline_depth(tap->inline_depth());
4559     ciKlass* lazy_klass = NULL;
4560     if (tary->_elem->isa_int()) {
4561       // Integral array element types have irrelevant lattice relations.
4562       // It is the klass that determines array layout, not the element type.
4563       if (_klass == NULL)
4564         lazy_klass = tap->_klass;
4565       else if (tap->_klass == NULL || tap->_klass == _klass) {
4566         lazy_klass = _klass;
4567       } else {
4568         // Something like byte[int+] meets char[int+].
4569         // This must fall to bottom, not (int[-128..65535])[int+].
4570         instance_id = InstanceBot;
4571         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4572       }
4573     } else // Non integral arrays.
4574       // Must fall to bottom if exact klasses in upper lattice
4575       // are not equal or super klass is exact.
4576       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4577           // meet with top[] and bottom[] are processed further down:
4578           tap->_klass != NULL  && this->_klass != NULL   &&
4579           // both are exact and not equal:
4580           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4581            // 'tap'  is exact and super or unrelated:
4582            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4583            // 'this' is exact and super or unrelated:
4584            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4585       if (above_centerline(ptr)) {
4586         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4587       }
4588       return make(NotNull, NULL, tary, lazy_klass, false, off, field_off, InstanceBot, speculative, depth);
4589     }
4590 
4591     bool xk = false;
4592     switch (tap->ptr()) {
4593     case AnyNull:
4594     case TopPTR:
4595       // Compute new klass on demand, do not use tap->_klass
4596       if (below_centerline(this->_ptr)) {
4597         xk = this->_klass_is_exact;
4598       } else {
4599         xk = (tap->_klass_is_exact | this->_klass_is_exact);
4600       }
4601       return make(ptr, const_oop(), tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4602     case Constant: {
4603       ciObject* o = const_oop();
4604       if( _ptr == Constant ) {
4605         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4606           xk = (klass() == tap->klass());
4607           ptr = NotNull;
4608           o = NULL;
4609           instance_id = InstanceBot;
4610         } else {
4611           xk = true;
4612         }
4613       } else if(above_centerline(_ptr)) {
4614         o = tap->const_oop();
4615         xk = true;
4616       } else {
4617         // Only precise for identical arrays
4618         xk = this->_klass_is_exact && (klass() == tap->klass());
4619       }
4620       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4621     }
4622     case NotNull:
4623     case BotPTR:
4624       // Compute new klass on demand, do not use tap->_klass
4625       if (above_centerline(this->_ptr))
4626             xk = tap->_klass_is_exact;
4627       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4628               (klass() == tap->klass()); // Only precise for identical arrays
4629       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4630     default: ShouldNotReachHere();
4631     }
4632   }
4633 
4634   // All arrays inherit from Object class
4635   case InstPtr: {
4636     const TypeInstPtr *tp = t->is_instptr();
4637     Offset offset = meet_offset(tp->offset());
4638     PTR ptr = meet_ptr(tp->ptr());
4639     int instance_id = meet_instance_id(tp->instance_id());
4640     const TypePtr* speculative = xmeet_speculative(tp);
4641     int depth = meet_inline_depth(tp->inline_depth());
4642     switch (ptr) {
4643     case TopPTR:
4644     case AnyNull:                // Fall 'down' to dual of object klass
4645       // For instances when a subclass meets a superclass we fall
4646       // below the centerline when the superclass is exact. We need to
4647       // do the same here.
4648       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4649         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4650       } else {
4651         // cannot subclass, so the meet has to fall badly below the centerline
4652         ptr = NotNull;
4653         instance_id = InstanceBot;
4654         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
4655       }
4656     case Constant:
4657     case NotNull:
4658     case BotPTR:                // Fall down to object klass
4659       // LCA is object_klass, but if we subclass from the top we can do better
4660       if (above_centerline(tp->ptr())) {
4661         // If 'tp'  is above the centerline and it is Object class
4662         // then we can subclass in the Java class hierarchy.
4663         // For instances when a subclass meets a superclass we fall
4664         // below the centerline when the superclass is exact. We need
4665         // to do the same here.
4666         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4667           // that is, my array type is a subtype of 'tp' klass
4668           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4669                       _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4670         }
4671       }
4672       // The other case cannot happen, since t cannot be a subtype of an array.
4673       // The meet falls down to Object class below centerline.
4674       if( ptr == Constant )
4675          ptr = NotNull;
4676       instance_id = InstanceBot;
4677       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4678     default: typerr(t);
4679     }
4680   }
4681 
4682   case ValueType: {
4683     // All value types inherit from Object
4684     return TypeInstPtr::make(ptr(), ciEnv::current()->Object_klass());
4685   }
4686 
4687   }
4688   return this;                  // Lint noise
4689 }
4690 
4691 //------------------------------xdual------------------------------------------
4692 // Dual: compute field-by-field dual
4693 const Type *TypeAryPtr::xdual() const {
4694   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(), _klass, _klass_is_exact, dual_offset(), dual_field_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4695 }
4696 
4697 Type::Offset TypeAryPtr::meet_field_offset(const Type::Offset offset) const {
4698   return _field_offset.meet(offset);
4699 }
4700 
4701 //------------------------------dual_offset------------------------------------
4702 Type::Offset TypeAryPtr::dual_field_offset() const {
4703   return _field_offset.dual();
4704 }
4705 
4706 //----------------------interface_vs_oop---------------------------------------
4707 #ifdef ASSERT
4708 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4709   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4710   if (t_aryptr) {
4711     return _ary->interface_vs_oop(t_aryptr->_ary);
4712   }
4713   return false;
4714 }
4715 #endif
4716 
4717 //------------------------------dump2------------------------------------------
4718 #ifndef PRODUCT
4719 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4720   _ary->dump2(d,depth,st);
4721   switch( _ptr ) {
4722   case Constant:
4723     const_oop()->print(st);
4724     break;
4725   case BotPTR:
4726     if (!WizardMode && !Verbose) {
4727       if( _klass_is_exact ) st->print(":exact");
4728       break;
4729     }
4730   case TopPTR:
4731   case AnyNull:
4732   case NotNull:
4733     st->print(":%s", ptr_msg[_ptr]);
4734     if( _klass_is_exact ) st->print(":exact");
4735     break;
4736   default:
4737     break;
4738   }
4739 
4740   if (elem()->isa_valuetype()) {
4741     st->print("(");
4742     _field_offset.dump2(st);
4743     st->print(")");
4744   }
4745   if (offset() != 0) {
4746     int header_size = objArrayOopDesc::header_size() * wordSize;
4747     if( _offset == Offset::top )       st->print("+undefined");
4748     else if( _offset == Offset::bottom )  st->print("+any");
4749     else if( offset() < header_size ) st->print("+%d", offset());
4750     else {
4751       BasicType basic_elem_type = elem()->basic_type();
4752       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4753       int elem_size = type2aelembytes(basic_elem_type);
4754       st->print("[%d]", (offset() - array_base)/elem_size);
4755     }
4756   }
4757   st->print(" *");
4758   if (_instance_id == InstanceTop)
4759     st->print(",iid=top");
4760   else if (_instance_id != InstanceBot)
4761     st->print(",iid=%d",_instance_id);
4762 
4763   dump_inline_depth(st);
4764   dump_speculative(st);
4765 }
4766 #endif
4767 
4768 bool TypeAryPtr::empty(void) const {
4769   if (_ary->empty())       return true;
4770   return TypeOopPtr::empty();
4771 }
4772 
4773 //------------------------------add_offset-------------------------------------
4774 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4775   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _field_offset, _instance_id, add_offset_speculative(offset), _inline_depth, _is_autobox_cache);
4776 }
4777 
4778 const Type *TypeAryPtr::remove_speculative() const {
4779   if (_speculative == NULL) {
4780     return this;
4781   }
4782   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4783   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, NULL, _inline_depth, _is_autobox_cache);
4784 }
4785 
4786 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4787   if (!UseInlineDepthForSpeculativeTypes) {
4788     return this;
4789   }
4790   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, depth, _is_autobox_cache);
4791 }
4792 
4793 const TypeAryPtr* TypeAryPtr::with_field_offset(int offset) const {
4794   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, Offset(offset), _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4795 }
4796 
4797 const TypePtr* TypeAryPtr::add_field_offset_and_offset(intptr_t offset) const {
4798   int adj = 0;
4799   if (offset != Type::OffsetBot && offset != Type::OffsetTop) {
4800     const Type* elemtype = elem();
4801     if (elemtype->isa_valuetype()) {
4802       if (_offset.get() != OffsetBot && _offset.get() != OffsetTop) {
4803         adj = _offset.get();
4804         offset += _offset.get();
4805       }
4806       uint header = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
4807       if (_field_offset.get() != OffsetBot && _field_offset.get() != OffsetTop) {
4808         offset += _field_offset.get();
4809         if (_offset.get() == OffsetBot || _offset.get() == OffsetTop) {
4810           offset += header;
4811         }
4812       }
4813       if (offset >= (intptr_t)header || offset < 0) {
4814         // Try to get the field of the value type array element we are pointing to
4815         ciKlass* arytype_klass = klass();
4816         ciValueArrayKlass* vak = arytype_klass->as_value_array_klass();
4817         ciValueKlass* vk = vak->element_klass()->as_value_klass();
4818         int shift = vak->log2_element_size();
4819         int mask = (1 << shift) - 1;
4820         intptr_t field_offset = ((offset - header) & mask);
4821         ciField* field = vk->get_field_by_offset(field_offset + vk->first_field_offset(), false);
4822         if (field == NULL) {
4823           // This may happen with nested AddP(base, AddP(base, base, offset), longcon(16))
4824           return add_offset(offset);
4825         } else {
4826           return with_field_offset(field_offset)->add_offset(offset - field_offset - adj);
4827         }
4828       }
4829     }
4830   }
4831   return add_offset(offset - adj);
4832 }
4833 
4834 // Return offset incremented by field_offset for flattened value type arrays
4835 const int TypeAryPtr::flattened_offset() const {
4836   int offset = _offset.get();
4837   if (offset != Type::OffsetBot && offset != Type::OffsetTop &&
4838       _field_offset != Offset::bottom && _field_offset != Offset::top) {
4839     offset += _field_offset.get();
4840   }
4841   return offset;
4842 }
4843 
4844 //=============================================================================
4845 
4846 
4847 //------------------------------hash-------------------------------------------
4848 // Type-specific hashing function.
4849 int TypeNarrowPtr::hash(void) const {
4850   return _ptrtype->hash() + 7;
4851 }
4852 
4853 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4854   return _ptrtype->singleton();
4855 }
4856 
4857 bool TypeNarrowPtr::empty(void) const {
4858   return _ptrtype->empty();
4859 }
4860 
4861 intptr_t TypeNarrowPtr::get_con() const {
4862   return _ptrtype->get_con();
4863 }
4864 
4865 bool TypeNarrowPtr::eq( const Type *t ) const {
4866   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4867   if (tc != NULL) {
4868     if (_ptrtype->base() != tc->_ptrtype->base()) {
4869       return false;
4870     }
4871     return tc->_ptrtype->eq(_ptrtype);
4872   }
4873   return false;
4874 }
4875 
4876 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4877   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4878   return make_same_narrowptr(odual);
4879 }
4880 
4881 
4882 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4883   if (isa_same_narrowptr(kills)) {
4884     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4885     if (ft->empty())
4886       return Type::TOP;           // Canonical empty value
4887     if (ft->isa_ptr()) {
4888       return make_hash_same_narrowptr(ft->isa_ptr());
4889     }
4890     return ft;
4891   } else if (kills->isa_ptr()) {
4892     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4893     if (ft->empty())
4894       return Type::TOP;           // Canonical empty value
4895     return ft;
4896   } else {
4897     return Type::TOP;
4898   }
4899 }
4900 
4901 //------------------------------xmeet------------------------------------------
4902 // Compute the MEET of two types.  It returns a new Type object.
4903 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4904   // Perform a fast test for common case; meeting the same types together.
4905   if( this == t ) return this;  // Meeting same type-rep?
4906 
4907   if (t->base() == base()) {
4908     const Type* result = _ptrtype->xmeet(t->make_ptr());
4909     if (result->isa_ptr()) {
4910       return make_hash_same_narrowptr(result->is_ptr());
4911     }
4912     return result;
4913   }
4914 
4915   // Current "this->_base" is NarrowKlass or NarrowOop
4916   switch (t->base()) {          // switch on original type
4917 
4918   case Int:                     // Mixing ints & oops happens when javac
4919   case Long:                    // reuses local variables
4920   case FloatTop:
4921   case FloatCon:
4922   case FloatBot:
4923   case DoubleTop:
4924   case DoubleCon:
4925   case DoubleBot:
4926   case AnyPtr:
4927   case RawPtr:
4928   case OopPtr:
4929   case InstPtr:
4930   case AryPtr:
4931   case MetadataPtr:
4932   case KlassPtr:
4933   case NarrowOop:
4934   case NarrowKlass:
4935   case Bottom:                  // Ye Olde Default
4936     return Type::BOTTOM;
4937   case Top:
4938     return this;
4939 
4940   case ValueType:
4941     return t->xmeet(this);
4942 
4943   default:                      // All else is a mistake
4944     typerr(t);
4945 
4946   } // End of switch
4947 
4948   return this;
4949 }
4950 
4951 #ifndef PRODUCT
4952 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4953   _ptrtype->dump2(d, depth, st);
4954 }
4955 #endif
4956 
4957 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4958 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4959 
4960 
4961 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4962   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4963 }
4964 
4965 const Type* TypeNarrowOop::remove_speculative() const {
4966   return make(_ptrtype->remove_speculative()->is_ptr());
4967 }
4968 
4969 const Type* TypeNarrowOop::cleanup_speculative() const {
4970   return make(_ptrtype->cleanup_speculative()->is_ptr());
4971 }
4972 
4973 #ifndef PRODUCT
4974 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4975   st->print("narrowoop: ");
4976   TypeNarrowPtr::dump2(d, depth, st);
4977 }
4978 #endif
4979 
4980 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4981 
4982 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4983   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4984 }
4985 
4986 #ifndef PRODUCT
4987 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4988   st->print("narrowklass: ");
4989   TypeNarrowPtr::dump2(d, depth, st);
4990 }
4991 #endif
4992 
4993 
4994 //------------------------------eq---------------------------------------------
4995 // Structural equality check for Type representations
4996 bool TypeMetadataPtr::eq( const Type *t ) const {
4997   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4998   ciMetadata* one = metadata();
4999   ciMetadata* two = a->metadata();
5000   if (one == NULL || two == NULL) {
5001     return (one == two) && TypePtr::eq(t);
5002   } else {
5003     return one->equals(two) && TypePtr::eq(t);
5004   }
5005 }
5006 
5007 //------------------------------hash-------------------------------------------
5008 // Type-specific hashing function.
5009 int TypeMetadataPtr::hash(void) const {
5010   return
5011     (metadata() ? metadata()->hash() : 0) +
5012     TypePtr::hash();
5013 }
5014 
5015 //------------------------------singleton--------------------------------------
5016 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5017 // constants
5018 bool TypeMetadataPtr::singleton(void) const {
5019   // detune optimizer to not generate constant metadata + constant offset as a constant!
5020   // TopPTR, Null, AnyNull, Constant are all singletons
5021   return (offset() == 0) && !below_centerline(_ptr);
5022 }
5023 
5024 //------------------------------add_offset-------------------------------------
5025 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
5026   return make( _ptr, _metadata, xadd_offset(offset));
5027 }
5028 
5029 //-----------------------------filter------------------------------------------
5030 // Do not allow interface-vs.-noninterface joins to collapse to top.
5031 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5032   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5033   if (ft == NULL || ft->empty())
5034     return Type::TOP;           // Canonical empty value
5035   return ft;
5036 }
5037 
5038  //------------------------------get_con----------------------------------------
5039 intptr_t TypeMetadataPtr::get_con() const {
5040   assert( _ptr == Null || _ptr == Constant, "" );
5041   assert(offset() >= 0, "");
5042 
5043   if (offset() != 0) {
5044     // After being ported to the compiler interface, the compiler no longer
5045     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5046     // to a handle at compile time.  This handle is embedded in the generated
5047     // code and dereferenced at the time the nmethod is made.  Until that time,
5048     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5049     // have access to the addresses!).  This does not seem to currently happen,
5050     // but this assertion here is to help prevent its occurence.
5051     tty->print_cr("Found oop constant with non-zero offset");
5052     ShouldNotReachHere();
5053   }
5054 
5055   return (intptr_t)metadata()->constant_encoding();
5056 }
5057 
5058 //------------------------------cast_to_ptr_type-------------------------------
5059 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5060   if( ptr == _ptr ) return this;
5061   return make(ptr, metadata(), _offset);
5062 }
5063 
5064 //------------------------------meet-------------------------------------------
5065 // Compute the MEET of two types.  It returns a new Type object.
5066 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
5067   // Perform a fast test for common case; meeting the same types together.
5068   if( this == t ) return this;  // Meeting same type-rep?
5069 
5070   // Current "this->_base" is OopPtr
5071   switch (t->base()) {          // switch on original type
5072 
5073   case Int:                     // Mixing ints & oops happens when javac
5074   case Long:                    // reuses local variables
5075   case FloatTop:
5076   case FloatCon:
5077   case FloatBot:
5078   case DoubleTop:
5079   case DoubleCon:
5080   case DoubleBot:
5081   case NarrowOop:
5082   case NarrowKlass:
5083   case Bottom:                  // Ye Olde Default
5084     return Type::BOTTOM;
5085   case Top:
5086     return this;
5087 
5088   default:                      // All else is a mistake
5089     typerr(t);
5090 
5091   case AnyPtr: {
5092     // Found an AnyPtr type vs self-OopPtr type
5093     const TypePtr *tp = t->is_ptr();
5094     Offset offset = meet_offset(tp->offset());
5095     PTR ptr = meet_ptr(tp->ptr());
5096     switch (tp->ptr()) {
5097     case Null:
5098       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5099       // else fall through:
5100     case TopPTR:
5101     case AnyNull: {
5102       return make(ptr, _metadata, offset);
5103     }
5104     case BotPTR:
5105     case NotNull:
5106       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5107     default: typerr(t);
5108     }
5109   }
5110 
5111   case RawPtr:
5112   case KlassPtr:
5113   case OopPtr:
5114   case InstPtr:
5115   case AryPtr:
5116     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5117 
5118   case MetadataPtr: {
5119     const TypeMetadataPtr *tp = t->is_metadataptr();
5120     Offset offset = meet_offset(tp->offset());
5121     PTR tptr = tp->ptr();
5122     PTR ptr = meet_ptr(tptr);
5123     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5124     if (tptr == TopPTR || _ptr == TopPTR ||
5125         metadata()->equals(tp->metadata())) {
5126       return make(ptr, md, offset);
5127     }
5128     // metadata is different
5129     if( ptr == Constant ) {  // Cannot be equal constants, so...
5130       if( tptr == Constant && _ptr != Constant)  return t;
5131       if( _ptr == Constant && tptr != Constant)  return this;
5132       ptr = NotNull;            // Fall down in lattice
5133     }
5134     return make(ptr, NULL, offset);
5135     break;
5136   }
5137   } // End of switch
5138   return this;                  // Return the double constant
5139 }
5140 
5141 
5142 //------------------------------xdual------------------------------------------
5143 // Dual of a pure metadata pointer.
5144 const Type *TypeMetadataPtr::xdual() const {
5145   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5146 }
5147 
5148 //------------------------------dump2------------------------------------------
5149 #ifndef PRODUCT
5150 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5151   st->print("metadataptr:%s", ptr_msg[_ptr]);
5152   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5153   switch (offset()) {
5154   case OffsetTop: st->print("+top"); break;
5155   case OffsetBot: st->print("+any"); break;
5156   case         0: break;
5157   default:        st->print("+%d",offset()); break;
5158   }
5159 }
5160 #endif
5161 
5162 
5163 //=============================================================================
5164 // Convenience common pre-built type.
5165 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5166 
5167 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset):
5168   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5169 }
5170 
5171 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5172   return make(Constant, m, Offset(0));
5173 }
5174 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5175   return make(Constant, m, Offset(0));
5176 }
5177 
5178 //------------------------------make-------------------------------------------
5179 // Create a meta data constant
5180 const TypeMetadataPtr* TypeMetadataPtr::make(PTR ptr, ciMetadata* m, Offset offset) {
5181   assert(m == NULL || !m->is_klass(), "wrong type");
5182   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5183 }
5184 
5185 
5186 //=============================================================================
5187 // Convenience common pre-built types.
5188 
5189 // Not-null object klass or below
5190 const TypeKlassPtr *TypeKlassPtr::OBJECT;
5191 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
5192 const TypeKlassPtr* TypeKlassPtr::BOTTOM;
5193 
5194 //------------------------------TypeKlassPtr-----------------------------------
5195 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, Offset offset )
5196   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
5197 }
5198 
5199 //------------------------------make-------------------------------------------
5200 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
5201 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* k, Offset offset) {
5202   assert(k == NULL || k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
5203   return (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
5204 }
5205 
5206 //------------------------------eq---------------------------------------------
5207 // Structural equality check for Type representations
5208 bool TypeKlassPtr::eq( const Type *t ) const {
5209   const TypeKlassPtr *p = t->is_klassptr();
5210   return klass() == p->klass() && TypePtr::eq(p);
5211 }
5212 
5213 //------------------------------hash-------------------------------------------
5214 // Type-specific hashing function.
5215 int TypeKlassPtr::hash(void) const {
5216   return java_add(klass() != NULL ? klass()->hash() : (jint)0, (jint)TypePtr::hash());
5217 }
5218 
5219 //------------------------------singleton--------------------------------------
5220 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5221 // constants
5222 bool TypeKlassPtr::singleton(void) const {
5223   // detune optimizer to not generate constant klass + constant offset as a constant!
5224   // TopPTR, Null, AnyNull, Constant are all singletons
5225   return (offset() == 0) && !below_centerline(_ptr);
5226 }
5227 
5228 // Do not allow interface-vs.-noninterface joins to collapse to top.
5229 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5230   // logic here mirrors the one from TypeOopPtr::filter. See comments
5231   // there.
5232   const Type* ft = join_helper(kills, include_speculative);
5233   const TypeKlassPtr* ftkp = ft->isa_klassptr();
5234   const TypeKlassPtr* ktkp = kills->isa_klassptr();
5235 
5236   if (ft->empty()) {
5237     if (!empty() && ktkp != NULL && ktkp->is_loaded() && ktkp->klass()->is_interface())
5238       return kills;             // Uplift to interface
5239 
5240     return Type::TOP;           // Canonical empty value
5241   }
5242 
5243   // Interface klass type could be exact in opposite to interface type,
5244   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
5245   if (ftkp != NULL && ktkp != NULL &&
5246       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
5247       !ftkp->klass_is_exact() && // Keep exact interface klass
5248       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
5249     return ktkp->cast_to_ptr_type(ftkp->ptr());
5250   }
5251 
5252   return ft;
5253 }
5254 
5255 //----------------------compute_klass------------------------------------------
5256 // Compute the defining klass for this class
5257 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
5258   // Compute _klass based on element type.
5259   ciKlass* k_ary = NULL;
5260   const TypeAryPtr *tary;
5261   const Type* el = elem();
5262   if (el->isa_narrowoop()) {
5263     el = el->make_ptr();
5264   }
5265 
5266   // Get element klass
5267   if (el->isa_instptr()) {
5268     // Compute object array klass from element klass
5269     k_ary = ciArrayKlass::make(el->is_oopptr()->klass());
5270   } else if (el->isa_valuetype()) {
5271     k_ary = ciArrayKlass::make(el->is_valuetype()->value_klass());
5272   } else if ((tary = el->isa_aryptr()) != NULL) {
5273     // Compute array klass from element klass
5274     ciKlass* k_elem = tary->klass();
5275     // If element type is something like bottom[], k_elem will be null.
5276     if (k_elem != NULL)
5277       k_ary = ciObjArrayKlass::make(k_elem);
5278   } else if ((el->base() == Type::Top) ||
5279              (el->base() == Type::Bottom)) {
5280     // element type of Bottom occurs from meet of basic type
5281     // and object; Top occurs when doing join on Bottom.
5282     // Leave k_ary at NULL.
5283   } else {
5284     // Cannot compute array klass directly from basic type,
5285     // since subtypes of TypeInt all have basic type T_INT.
5286 #ifdef ASSERT
5287     if (verify && el->isa_int()) {
5288       // Check simple cases when verifying klass.
5289       BasicType bt = T_ILLEGAL;
5290       if (el == TypeInt::BYTE) {
5291         bt = T_BYTE;
5292       } else if (el == TypeInt::SHORT) {
5293         bt = T_SHORT;
5294       } else if (el == TypeInt::CHAR) {
5295         bt = T_CHAR;
5296       } else if (el == TypeInt::INT) {
5297         bt = T_INT;
5298       } else {
5299         return _klass; // just return specified klass
5300       }
5301       return ciTypeArrayKlass::make(bt);
5302     }
5303 #endif
5304     assert(!el->isa_int(),
5305            "integral arrays must be pre-equipped with a class");
5306     // Compute array klass directly from basic type
5307     k_ary = ciTypeArrayKlass::make(el->basic_type());
5308   }
5309   return k_ary;
5310 }
5311 
5312 //------------------------------klass------------------------------------------
5313 // Return the defining klass for this class
5314 ciKlass* TypeAryPtr::klass() const {
5315   if( _klass ) return _klass;   // Return cached value, if possible
5316 
5317   // Oops, need to compute _klass and cache it
5318   ciKlass* k_ary = compute_klass();
5319 
5320   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
5321     // The _klass field acts as a cache of the underlying
5322     // ciKlass for this array type.  In order to set the field,
5323     // we need to cast away const-ness.
5324     //
5325     // IMPORTANT NOTE: we *never* set the _klass field for the
5326     // type TypeAryPtr::OOPS.  This Type is shared between all
5327     // active compilations.  However, the ciKlass which represents
5328     // this Type is *not* shared between compilations, so caching
5329     // this value would result in fetching a dangling pointer.
5330     //
5331     // Recomputing the underlying ciKlass for each request is
5332     // a bit less efficient than caching, but calls to
5333     // TypeAryPtr::OOPS->klass() are not common enough to matter.
5334     ((TypeAryPtr*)this)->_klass = k_ary;
5335     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
5336         offset() != 0 && offset() != arrayOopDesc::length_offset_in_bytes()) {
5337       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
5338     }
5339   }
5340   return k_ary;
5341 }
5342 
5343 
5344 //------------------------------add_offset-------------------------------------
5345 // Access internals of klass object
5346 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
5347   return make( _ptr, klass(), xadd_offset(offset) );
5348 }
5349 
5350 //------------------------------cast_to_ptr_type-------------------------------
5351 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
5352   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
5353   if( ptr == _ptr ) return this;
5354   return make(ptr, _klass, _offset);
5355 }
5356 
5357 
5358 //-----------------------------cast_to_exactness-------------------------------
5359 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5360   if( klass_is_exact == _klass_is_exact ) return this;
5361   if (!UseExactTypes)  return this;
5362   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
5363 }
5364 
5365 
5366 //-----------------------------as_instance_type--------------------------------
5367 // Corresponding type for an instance of the given class.
5368 // It will be NotNull, and exact if and only if the klass type is exact.
5369 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
5370   ciKlass* k = klass();
5371   assert(k != NULL, "klass should not be NULL");
5372   bool    xk = klass_is_exact();
5373   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
5374   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
5375   guarantee(toop != NULL, "need type for given klass");
5376   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5377   return toop->cast_to_exactness(xk)->is_oopptr();
5378 }
5379 
5380 
5381 //------------------------------xmeet------------------------------------------
5382 // Compute the MEET of two types, return a new Type object.
5383 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
5384   // Perform a fast test for common case; meeting the same types together.
5385   if( this == t ) return this;  // Meeting same type-rep?
5386 
5387   // Current "this->_base" is Pointer
5388   switch (t->base()) {          // switch on original type
5389 
5390   case Int:                     // Mixing ints & oops happens when javac
5391   case Long:                    // reuses local variables
5392   case FloatTop:
5393   case FloatCon:
5394   case FloatBot:
5395   case DoubleTop:
5396   case DoubleCon:
5397   case DoubleBot:
5398   case NarrowOop:
5399   case NarrowKlass:
5400   case Bottom:                  // Ye Olde Default
5401     return Type::BOTTOM;
5402   case Top:
5403     return this;
5404 
5405   default:                      // All else is a mistake
5406     typerr(t);
5407 
5408   case AnyPtr: {                // Meeting to AnyPtrs
5409     // Found an AnyPtr type vs self-KlassPtr type
5410     const TypePtr *tp = t->is_ptr();
5411     Offset offset = meet_offset(tp->offset());
5412     PTR ptr = meet_ptr(tp->ptr());
5413     switch (tp->ptr()) {
5414     case TopPTR:
5415       return this;
5416     case Null:
5417       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5418     case AnyNull:
5419       return make( ptr, klass(), offset );
5420     case BotPTR:
5421     case NotNull:
5422       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5423     default: typerr(t);
5424     }
5425   }
5426 
5427   case RawPtr:
5428   case MetadataPtr:
5429   case OopPtr:
5430   case AryPtr:                  // Meet with AryPtr
5431   case InstPtr:                 // Meet with InstPtr
5432     return TypePtr::BOTTOM;
5433 
5434   //
5435   //             A-top         }
5436   //           /   |   \       }  Tops
5437   //       B-top A-any C-top   }
5438   //          | /  |  \ |      }  Any-nulls
5439   //       B-any   |   C-any   }
5440   //          |    |    |
5441   //       B-con A-con C-con   } constants; not comparable across classes
5442   //          |    |    |
5443   //       B-not   |   C-not   }
5444   //          | \  |  / |      }  not-nulls
5445   //       B-bot A-not C-bot   }
5446   //           \   |   /       }  Bottoms
5447   //             A-bot         }
5448   //
5449 
5450   case KlassPtr: {  // Meet two KlassPtr types
5451     const TypeKlassPtr *tkls = t->is_klassptr();
5452     Offset  off  = meet_offset(tkls->offset());
5453     PTR  ptr     = meet_ptr(tkls->ptr());
5454 
5455     if (klass() == NULL || tkls->klass() == NULL) {
5456       ciKlass* k = NULL;
5457       if (ptr == Constant) {
5458         k = (klass() == NULL) ? tkls->klass() : klass();
5459       }
5460       return make(ptr, k, off);
5461     }
5462 
5463     // Check for easy case; klasses are equal (and perhaps not loaded!)
5464     // If we have constants, then we created oops so classes are loaded
5465     // and we can handle the constants further down.  This case handles
5466     // not-loaded classes
5467     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
5468       return make( ptr, klass(), off );
5469     }
5470 
5471     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
5472     ciKlass* tkls_klass = tkls->klass();
5473     ciKlass* this_klass = this->klass();
5474     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
5475     assert( this_klass->is_loaded(), "This class should have been loaded.");
5476 
5477     // If 'this' type is above the centerline and is a superclass of the
5478     // other, we can treat 'this' as having the same type as the other.
5479     if ((above_centerline(this->ptr())) &&
5480         tkls_klass->is_subtype_of(this_klass)) {
5481       this_klass = tkls_klass;
5482     }
5483     // If 'tinst' type is above the centerline and is a superclass of the
5484     // other, we can treat 'tinst' as having the same type as the other.
5485     if ((above_centerline(tkls->ptr())) &&
5486         this_klass->is_subtype_of(tkls_klass)) {
5487       tkls_klass = this_klass;
5488     }
5489 
5490     // Check for classes now being equal
5491     if (tkls_klass->equals(this_klass)) {
5492       // If the klasses are equal, the constants may still differ.  Fall to
5493       // NotNull if they do (neither constant is NULL; that is a special case
5494       // handled elsewhere).
5495       if( ptr == Constant ) {
5496         if (this->_ptr == Constant && tkls->_ptr == Constant &&
5497             this->klass()->equals(tkls->klass()));
5498         else if (above_centerline(this->ptr()));
5499         else if (above_centerline(tkls->ptr()));
5500         else
5501           ptr = NotNull;
5502       }
5503       return make( ptr, this_klass, off );
5504     } // Else classes are not equal
5505 
5506     // Since klasses are different, we require the LCA in the Java
5507     // class hierarchy - which means we have to fall to at least NotNull.
5508     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
5509       ptr = NotNull;
5510     // Now we find the LCA of Java classes
5511     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
5512     return   make( ptr, k, off );
5513   } // End of case KlassPtr
5514 
5515   } // End of switch
5516   return this;                  // Return the double constant
5517 }
5518 
5519 //------------------------------xdual------------------------------------------
5520 // Dual: compute field-by-field dual
5521 const Type    *TypeKlassPtr::xdual() const {
5522   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5523 }
5524 
5525 //------------------------------get_con----------------------------------------
5526 intptr_t TypeKlassPtr::get_con() const {
5527   assert( _ptr == Null || _ptr == Constant, "" );
5528   assert(offset() >= 0, "");
5529 
5530   if (offset() != 0) {
5531     // After being ported to the compiler interface, the compiler no longer
5532     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5533     // to a handle at compile time.  This handle is embedded in the generated
5534     // code and dereferenced at the time the nmethod is made.  Until that time,
5535     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5536     // have access to the addresses!).  This does not seem to currently happen,
5537     // but this assertion here is to help prevent its occurence.
5538     tty->print_cr("Found oop constant with non-zero offset");
5539     ShouldNotReachHere();
5540   }
5541 
5542   return (intptr_t)klass()->constant_encoding();
5543 }
5544 //------------------------------dump2------------------------------------------
5545 // Dump Klass Type
5546 #ifndef PRODUCT
5547 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5548   switch( _ptr ) {
5549   case Constant:
5550     st->print("precise ");
5551   case NotNull:
5552     {
5553       if (klass() != NULL) {
5554         const char* name = klass()->name()->as_utf8();
5555         st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5556       } else {
5557         st->print("klass BOTTOM");
5558       }
5559     }
5560   case BotPTR:
5561     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5562   case TopPTR:
5563   case AnyNull:
5564     st->print(":%s", ptr_msg[_ptr]);
5565     if( _klass_is_exact ) st->print(":exact");
5566     break;
5567   default:
5568     break;
5569   }
5570 
5571   _offset.dump2(st);
5572 
5573   st->print(" *");
5574 }
5575 #endif
5576 
5577 
5578 
5579 //=============================================================================
5580 // Convenience common pre-built types.
5581 
5582 //------------------------------make-------------------------------------------
5583 const TypeFunc *TypeFunc::make(const TypeTuple *domain_sig, const TypeTuple* domain_cc,
5584                                const TypeTuple *range_sig, const TypeTuple *range_cc) {
5585   return (TypeFunc*)(new TypeFunc(domain_sig, domain_cc, range_sig, range_cc))->hashcons();
5586 }
5587 
5588 const TypeFunc *TypeFunc::make(const TypeTuple *domain, const TypeTuple *range) {
5589   return make(domain, domain, range, range);
5590 }
5591 
5592 //------------------------------make-------------------------------------------
5593 const TypeFunc *TypeFunc::make(ciMethod* method) {
5594   Compile* C = Compile::current();
5595   const TypeFunc* tf = C->last_tf(method); // check cache
5596   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5597   const TypeTuple *domain_sig, *domain_cc;
5598   // Value type arguments are not passed by reference, instead each
5599   // field of the value type is passed as an argument. We maintain 2
5600   // views of the argument list here: one based on the signature (with
5601   // a value type argument as a single slot), one based on the actual
5602   // calling convention (with a value type argument as a list of its
5603   // fields).
5604   if (method->is_static()) {
5605     domain_sig = TypeTuple::make_domain(NULL, method->signature(), false);
5606     domain_cc = TypeTuple::make_domain(NULL, method->signature(), ValueTypePassFieldsAsArgs);
5607   } else {
5608     domain_sig = TypeTuple::make_domain(method->holder(), method->signature(), false);
5609     domain_cc = TypeTuple::make_domain(method->holder(), method->signature(), ValueTypePassFieldsAsArgs);
5610   }
5611   const TypeTuple *range_sig = TypeTuple::make_range(method->signature(), false);
5612   const TypeTuple *range_cc = TypeTuple::make_range(method->signature(), ValueTypeReturnedAsFields);
5613   tf = TypeFunc::make(domain_sig, domain_cc, range_sig, range_cc);
5614   C->set_last_tf(method, tf);  // fill cache
5615   return tf;
5616 }
5617 
5618 //------------------------------meet-------------------------------------------
5619 // Compute the MEET of two types.  It returns a new Type object.
5620 const Type *TypeFunc::xmeet( const Type *t ) const {
5621   // Perform a fast test for common case; meeting the same types together.
5622   if( this == t ) return this;  // Meeting same type-rep?
5623 
5624   // Current "this->_base" is Func
5625   switch (t->base()) {          // switch on original type
5626 
5627   case Bottom:                  // Ye Olde Default
5628     return t;
5629 
5630   default:                      // All else is a mistake
5631     typerr(t);
5632 
5633   case Top:
5634     break;
5635   }
5636   return this;                  // Return the double constant
5637 }
5638 
5639 //------------------------------xdual------------------------------------------
5640 // Dual: compute field-by-field dual
5641 const Type *TypeFunc::xdual() const {
5642   return this;
5643 }
5644 
5645 //------------------------------eq---------------------------------------------
5646 // Structural equality check for Type representations
5647 bool TypeFunc::eq( const Type *t ) const {
5648   const TypeFunc *a = (const TypeFunc*)t;
5649   return _domain_sig == a->_domain_sig &&
5650     _domain_cc == a->_domain_cc &&
5651     _range_sig == a->_range_sig &&
5652     _range_cc == a->_range_cc;
5653 }
5654 
5655 //------------------------------hash-------------------------------------------
5656 // Type-specific hashing function.
5657 int TypeFunc::hash(void) const {
5658   return (intptr_t)_domain_sig + (intptr_t)_domain_cc + (intptr_t)_range_sig + (intptr_t)_range_cc;
5659 }
5660 
5661 //------------------------------dump2------------------------------------------
5662 // Dump Function Type
5663 #ifndef PRODUCT
5664 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5665   if( _range_sig->cnt() <= Parms )
5666     st->print("void");
5667   else {
5668     uint i;
5669     for (i = Parms; i < _range_sig->cnt()-1; i++) {
5670       _range_sig->field_at(i)->dump2(d,depth,st);
5671       st->print("/");
5672     }
5673     _range_sig->field_at(i)->dump2(d,depth,st);
5674   }
5675   st->print(" ");
5676   st->print("( ");
5677   if( !depth || d[this] ) {     // Check for recursive dump
5678     st->print("...)");
5679     return;
5680   }
5681   d.Insert((void*)this,(void*)this);    // Stop recursion
5682   if (Parms < _domain_sig->cnt())
5683     _domain_sig->field_at(Parms)->dump2(d,depth-1,st);
5684   for (uint i = Parms+1; i < _domain_sig->cnt(); i++) {
5685     st->print(", ");
5686     _domain_sig->field_at(i)->dump2(d,depth-1,st);
5687   }
5688   st->print(" )");
5689 }
5690 #endif
5691 
5692 //------------------------------singleton--------------------------------------
5693 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5694 // constants (Ldi nodes).  Singletons are integer, float or double constants
5695 // or a single symbol.
5696 bool TypeFunc::singleton(void) const {
5697   return false;                 // Never a singleton
5698 }
5699 
5700 bool TypeFunc::empty(void) const {
5701   return false;                 // Never empty
5702 }
5703 
5704 
5705 BasicType TypeFunc::return_type() const{
5706   if (range_sig()->cnt() == TypeFunc::Parms) {
5707     return T_VOID;
5708   }
5709   return range_sig()->field_at(TypeFunc::Parms)->basic_type();
5710 }