1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/c2/barrierSetC2.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "opto/addnode.hpp"
  40 #include "opto/block.hpp"
  41 #include "opto/c2compiler.hpp"
  42 #include "opto/callGenerator.hpp"
  43 #include "opto/callnode.hpp"
  44 #include "opto/castnode.hpp"
  45 #include "opto/cfgnode.hpp"
  46 #include "opto/chaitin.hpp"
  47 #include "opto/compile.hpp"
  48 #include "opto/connode.hpp"
  49 #include "opto/convertnode.hpp"
  50 #include "opto/divnode.hpp"
  51 #include "opto/escape.hpp"
  52 #include "opto/idealGraphPrinter.hpp"
  53 #include "opto/loopnode.hpp"
  54 #include "opto/machnode.hpp"
  55 #include "opto/macro.hpp"
  56 #include "opto/matcher.hpp"
  57 #include "opto/mathexactnode.hpp"
  58 #include "opto/memnode.hpp"
  59 #include "opto/mulnode.hpp"
  60 #include "opto/narrowptrnode.hpp"
  61 #include "opto/node.hpp"
  62 #include "opto/opcodes.hpp"
  63 #include "opto/output.hpp"
  64 #include "opto/parse.hpp"
  65 #include "opto/phaseX.hpp"
  66 #include "opto/rootnode.hpp"
  67 #include "opto/runtime.hpp"
  68 #include "opto/stringopts.hpp"
  69 #include "opto/type.hpp"
  70 #include "opto/valuetypenode.hpp"
  71 #include "opto/vectornode.hpp"
  72 #include "runtime/arguments.hpp"
  73 #include "runtime/sharedRuntime.hpp"
  74 #include "runtime/signature.hpp"
  75 #include "runtime/stubRoutines.hpp"
  76 #include "runtime/timer.hpp"
  77 #include "utilities/align.hpp"
  78 #include "utilities/copy.hpp"
  79 #if INCLUDE_G1GC
  80 #include "gc/g1/g1ThreadLocalData.hpp"
  81 #endif // INCLUDE_G1GC
  82 
  83 
  84 // -------------------- Compile::mach_constant_base_node -----------------------
  85 // Constant table base node singleton.
  86 MachConstantBaseNode* Compile::mach_constant_base_node() {
  87   if (_mach_constant_base_node == NULL) {
  88     _mach_constant_base_node = new MachConstantBaseNode();
  89     _mach_constant_base_node->add_req(C->root());
  90   }
  91   return _mach_constant_base_node;
  92 }
  93 
  94 
  95 /// Support for intrinsics.
  96 
  97 // Return the index at which m must be inserted (or already exists).
  98 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  99 class IntrinsicDescPair {
 100  private:
 101   ciMethod* _m;
 102   bool _is_virtual;
 103  public:
 104   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
 105   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
 106     ciMethod* m= elt->method();
 107     ciMethod* key_m = key->_m;
 108     if (key_m < m)      return -1;
 109     else if (key_m > m) return 1;
 110     else {
 111       bool is_virtual = elt->is_virtual();
 112       bool key_virtual = key->_is_virtual;
 113       if (key_virtual < is_virtual)      return -1;
 114       else if (key_virtual > is_virtual) return 1;
 115       else                               return 0;
 116     }
 117   }
 118 };
 119 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 120 #ifdef ASSERT
 121   for (int i = 1; i < _intrinsics->length(); i++) {
 122     CallGenerator* cg1 = _intrinsics->at(i-1);
 123     CallGenerator* cg2 = _intrinsics->at(i);
 124     assert(cg1->method() != cg2->method()
 125            ? cg1->method()     < cg2->method()
 126            : cg1->is_virtual() < cg2->is_virtual(),
 127            "compiler intrinsics list must stay sorted");
 128   }
 129 #endif
 130   IntrinsicDescPair pair(m, is_virtual);
 131   return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 132 }
 133 
 134 void Compile::register_intrinsic(CallGenerator* cg) {
 135   if (_intrinsics == NULL) {
 136     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 137   }
 138   int len = _intrinsics->length();
 139   bool found = false;
 140   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 141   assert(!found, "registering twice");
 142   _intrinsics->insert_before(index, cg);
 143   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 144 }
 145 
 146 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 147   assert(m->is_loaded(), "don't try this on unloaded methods");
 148   if (_intrinsics != NULL) {
 149     bool found = false;
 150     int index = intrinsic_insertion_index(m, is_virtual, found);
 151      if (found) {
 152       return _intrinsics->at(index);
 153     }
 154   }
 155   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 156   if (m->intrinsic_id() != vmIntrinsics::_none &&
 157       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 158     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 159     if (cg != NULL) {
 160       // Save it for next time:
 161       register_intrinsic(cg);
 162       return cg;
 163     } else {
 164       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 165     }
 166   }
 167   return NULL;
 168 }
 169 
 170 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 171 // in library_call.cpp.
 172 
 173 
 174 #ifndef PRODUCT
 175 // statistics gathering...
 176 
 177 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 178 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 179 
 180 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 181   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 182   int oflags = _intrinsic_hist_flags[id];
 183   assert(flags != 0, "what happened?");
 184   if (is_virtual) {
 185     flags |= _intrinsic_virtual;
 186   }
 187   bool changed = (flags != oflags);
 188   if ((flags & _intrinsic_worked) != 0) {
 189     juint count = (_intrinsic_hist_count[id] += 1);
 190     if (count == 1) {
 191       changed = true;           // first time
 192     }
 193     // increment the overall count also:
 194     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 195   }
 196   if (changed) {
 197     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 198       // Something changed about the intrinsic's virtuality.
 199       if ((flags & _intrinsic_virtual) != 0) {
 200         // This is the first use of this intrinsic as a virtual call.
 201         if (oflags != 0) {
 202           // We already saw it as a non-virtual, so note both cases.
 203           flags |= _intrinsic_both;
 204         }
 205       } else if ((oflags & _intrinsic_both) == 0) {
 206         // This is the first use of this intrinsic as a non-virtual
 207         flags |= _intrinsic_both;
 208       }
 209     }
 210     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 211   }
 212   // update the overall flags also:
 213   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 214   return changed;
 215 }
 216 
 217 static char* format_flags(int flags, char* buf) {
 218   buf[0] = 0;
 219   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 220   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 221   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 222   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 223   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 224   if (buf[0] == 0)  strcat(buf, ",");
 225   assert(buf[0] == ',', "must be");
 226   return &buf[1];
 227 }
 228 
 229 void Compile::print_intrinsic_statistics() {
 230   char flagsbuf[100];
 231   ttyLocker ttyl;
 232   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 233   tty->print_cr("Compiler intrinsic usage:");
 234   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 235   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 236   #define PRINT_STAT_LINE(name, c, f) \
 237     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 238   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 239     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 240     int   flags = _intrinsic_hist_flags[id];
 241     juint count = _intrinsic_hist_count[id];
 242     if ((flags | count) != 0) {
 243       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 244     }
 245   }
 246   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 247   if (xtty != NULL)  xtty->tail("statistics");
 248 }
 249 
 250 void Compile::print_statistics() {
 251   { ttyLocker ttyl;
 252     if (xtty != NULL)  xtty->head("statistics type='opto'");
 253     Parse::print_statistics();
 254     PhaseCCP::print_statistics();
 255     PhaseRegAlloc::print_statistics();
 256     Scheduling::print_statistics();
 257     PhasePeephole::print_statistics();
 258     PhaseIdealLoop::print_statistics();
 259     if (xtty != NULL)  xtty->tail("statistics");
 260   }
 261   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 262     // put this under its own <statistics> element.
 263     print_intrinsic_statistics();
 264   }
 265 }
 266 #endif //PRODUCT
 267 
 268 // Support for bundling info
 269 Bundle* Compile::node_bundling(const Node *n) {
 270   assert(valid_bundle_info(n), "oob");
 271   return &_node_bundling_base[n->_idx];
 272 }
 273 
 274 bool Compile::valid_bundle_info(const Node *n) {
 275   return (_node_bundling_limit > n->_idx);
 276 }
 277 
 278 
 279 void Compile::gvn_replace_by(Node* n, Node* nn) {
 280   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 281     Node* use = n->last_out(i);
 282     bool is_in_table = initial_gvn()->hash_delete(use);
 283     uint uses_found = 0;
 284     for (uint j = 0; j < use->len(); j++) {
 285       if (use->in(j) == n) {
 286         if (j < use->req())
 287           use->set_req(j, nn);
 288         else
 289           use->set_prec(j, nn);
 290         uses_found++;
 291       }
 292     }
 293     if (is_in_table) {
 294       // reinsert into table
 295       initial_gvn()->hash_find_insert(use);
 296     }
 297     record_for_igvn(use);
 298     i -= uses_found;    // we deleted 1 or more copies of this edge
 299   }
 300 }
 301 
 302 
 303 static inline bool not_a_node(const Node* n) {
 304   if (n == NULL)                   return true;
 305   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 306   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 307   return false;
 308 }
 309 
 310 // Identify all nodes that are reachable from below, useful.
 311 // Use breadth-first pass that records state in a Unique_Node_List,
 312 // recursive traversal is slower.
 313 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 314   int estimated_worklist_size = live_nodes();
 315   useful.map( estimated_worklist_size, NULL );  // preallocate space
 316 
 317   // Initialize worklist
 318   if (root() != NULL)     { useful.push(root()); }
 319   // If 'top' is cached, declare it useful to preserve cached node
 320   if( cached_top_node() ) { useful.push(cached_top_node()); }
 321 
 322   // Push all useful nodes onto the list, breadthfirst
 323   for( uint next = 0; next < useful.size(); ++next ) {
 324     assert( next < unique(), "Unique useful nodes < total nodes");
 325     Node *n  = useful.at(next);
 326     uint max = n->len();
 327     for( uint i = 0; i < max; ++i ) {
 328       Node *m = n->in(i);
 329       if (not_a_node(m))  continue;
 330       useful.push(m);
 331     }
 332   }
 333 }
 334 
 335 // Update dead_node_list with any missing dead nodes using useful
 336 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 337 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 338   uint max_idx = unique();
 339   VectorSet& useful_node_set = useful.member_set();
 340 
 341   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 342     // If node with index node_idx is not in useful set,
 343     // mark it as dead in dead node list.
 344     if (! useful_node_set.test(node_idx) ) {
 345       record_dead_node(node_idx);
 346     }
 347   }
 348 }
 349 
 350 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 351   int shift = 0;
 352   for (int i = 0; i < inlines->length(); i++) {
 353     CallGenerator* cg = inlines->at(i);
 354     CallNode* call = cg->call_node();
 355     if (shift > 0) {
 356       inlines->at_put(i-shift, cg);
 357     }
 358     if (!useful.member(call)) {
 359       shift++;
 360     }
 361   }
 362   inlines->trunc_to(inlines->length()-shift);
 363 }
 364 
 365 // Disconnect all useless nodes by disconnecting those at the boundary.
 366 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 367   uint next = 0;
 368   while (next < useful.size()) {
 369     Node *n = useful.at(next++);
 370     if (n->is_SafePoint()) {
 371       // We're done with a parsing phase. Replaced nodes are not valid
 372       // beyond that point.
 373       n->as_SafePoint()->delete_replaced_nodes();
 374     }
 375     // Use raw traversal of out edges since this code removes out edges
 376     int max = n->outcnt();
 377     for (int j = 0; j < max; ++j) {
 378       Node* child = n->raw_out(j);
 379       if (! useful.member(child)) {
 380         assert(!child->is_top() || child != top(),
 381                "If top is cached in Compile object it is in useful list");
 382         // Only need to remove this out-edge to the useless node
 383         n->raw_del_out(j);
 384         --j;
 385         --max;
 386       }
 387     }
 388     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 389       record_for_igvn(n->unique_out());
 390     }
 391   }
 392   // Remove useless macro and predicate opaq nodes
 393   for (int i = C->macro_count()-1; i >= 0; i--) {
 394     Node* n = C->macro_node(i);
 395     if (!useful.member(n)) {
 396       remove_macro_node(n);
 397     }
 398   }
 399   // Remove useless CastII nodes with range check dependency
 400   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
 401     Node* cast = range_check_cast_node(i);
 402     if (!useful.member(cast)) {
 403       remove_range_check_cast(cast);
 404     }
 405   }
 406   // Remove useless expensive nodes
 407   for (int i = C->expensive_count()-1; i >= 0; i--) {
 408     Node* n = C->expensive_node(i);
 409     if (!useful.member(n)) {
 410       remove_expensive_node(n);
 411     }
 412   }
 413   // Remove useless Opaque4 nodes
 414   for (int i = opaque4_count() - 1; i >= 0; i--) {
 415     Node* opaq = opaque4_node(i);
 416     if (!useful.member(opaq)) {
 417       remove_opaque4_node(opaq);
 418     }
 419   }
 420   // Remove useless value type nodes
 421   if (_value_type_nodes != NULL) {
 422     _value_type_nodes->remove_useless_nodes(useful.member_set());
 423   }
 424   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 425   bs->eliminate_useless_gc_barriers(useful);
 426   // clean up the late inline lists
 427   remove_useless_late_inlines(&_string_late_inlines, useful);
 428   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 429   remove_useless_late_inlines(&_late_inlines, useful);
 430   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 431 }
 432 
 433 //------------------------------frame_size_in_words-----------------------------
 434 // frame_slots in units of words
 435 int Compile::frame_size_in_words() const {
 436   // shift is 0 in LP32 and 1 in LP64
 437   const int shift = (LogBytesPerWord - LogBytesPerInt);
 438   int words = _frame_slots >> shift;
 439   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 440   return words;
 441 }
 442 
 443 // To bang the stack of this compiled method we use the stack size
 444 // that the interpreter would need in case of a deoptimization. This
 445 // removes the need to bang the stack in the deoptimization blob which
 446 // in turn simplifies stack overflow handling.
 447 int Compile::bang_size_in_bytes() const {
 448   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
 449 }
 450 
 451 // ============================================================================
 452 //------------------------------CompileWrapper---------------------------------
 453 class CompileWrapper : public StackObj {
 454   Compile *const _compile;
 455  public:
 456   CompileWrapper(Compile* compile);
 457 
 458   ~CompileWrapper();
 459 };
 460 
 461 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 462   // the Compile* pointer is stored in the current ciEnv:
 463   ciEnv* env = compile->env();
 464   assert(env == ciEnv::current(), "must already be a ciEnv active");
 465   assert(env->compiler_data() == NULL, "compile already active?");
 466   env->set_compiler_data(compile);
 467   assert(compile == Compile::current(), "sanity");
 468 
 469   compile->set_type_dict(NULL);
 470   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 471   compile->clone_map().set_clone_idx(0);
 472   compile->set_type_hwm(NULL);
 473   compile->set_type_last_size(0);
 474   compile->set_last_tf(NULL, NULL);
 475   compile->set_indexSet_arena(NULL);
 476   compile->set_indexSet_free_block_list(NULL);
 477   compile->init_type_arena();
 478   Type::Initialize(compile);
 479   _compile->set_scratch_buffer_blob(NULL);
 480   _compile->begin_method();
 481   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 482 }
 483 CompileWrapper::~CompileWrapper() {
 484   _compile->end_method();
 485   if (_compile->scratch_buffer_blob() != NULL)
 486     BufferBlob::free(_compile->scratch_buffer_blob());
 487   _compile->env()->set_compiler_data(NULL);
 488 }
 489 
 490 
 491 //----------------------------print_compile_messages---------------------------
 492 void Compile::print_compile_messages() {
 493 #ifndef PRODUCT
 494   // Check if recompiling
 495   if (_subsume_loads == false && PrintOpto) {
 496     // Recompiling without allowing machine instructions to subsume loads
 497     tty->print_cr("*********************************************************");
 498     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 499     tty->print_cr("*********************************************************");
 500   }
 501   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 502     // Recompiling without escape analysis
 503     tty->print_cr("*********************************************************");
 504     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 505     tty->print_cr("*********************************************************");
 506   }
 507   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 508     // Recompiling without boxing elimination
 509     tty->print_cr("*********************************************************");
 510     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 511     tty->print_cr("*********************************************************");
 512   }
 513   if (C->directive()->BreakAtCompileOption) {
 514     // Open the debugger when compiling this method.
 515     tty->print("### Breaking when compiling: ");
 516     method()->print_short_name();
 517     tty->cr();
 518     BREAKPOINT;
 519   }
 520 
 521   if( PrintOpto ) {
 522     if (is_osr_compilation()) {
 523       tty->print("[OSR]%3d", _compile_id);
 524     } else {
 525       tty->print("%3d", _compile_id);
 526     }
 527   }
 528 #endif
 529 }
 530 
 531 
 532 //-----------------------init_scratch_buffer_blob------------------------------
 533 // Construct a temporary BufferBlob and cache it for this compile.
 534 void Compile::init_scratch_buffer_blob(int const_size) {
 535   // If there is already a scratch buffer blob allocated and the
 536   // constant section is big enough, use it.  Otherwise free the
 537   // current and allocate a new one.
 538   BufferBlob* blob = scratch_buffer_blob();
 539   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 540     // Use the current blob.
 541   } else {
 542     if (blob != NULL) {
 543       BufferBlob::free(blob);
 544     }
 545 
 546     ResourceMark rm;
 547     _scratch_const_size = const_size;
 548     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 549     blob = BufferBlob::create("Compile::scratch_buffer", size);
 550     // Record the buffer blob for next time.
 551     set_scratch_buffer_blob(blob);
 552     // Have we run out of code space?
 553     if (scratch_buffer_blob() == NULL) {
 554       // Let CompilerBroker disable further compilations.
 555       record_failure("Not enough space for scratch buffer in CodeCache");
 556       return;
 557     }
 558   }
 559 
 560   // Initialize the relocation buffers
 561   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 562   set_scratch_locs_memory(locs_buf);
 563 }
 564 
 565 
 566 //-----------------------scratch_emit_size-------------------------------------
 567 // Helper function that computes size by emitting code
 568 uint Compile::scratch_emit_size(const Node* n) {
 569   // Start scratch_emit_size section.
 570   set_in_scratch_emit_size(true);
 571 
 572   // Emit into a trash buffer and count bytes emitted.
 573   // This is a pretty expensive way to compute a size,
 574   // but it works well enough if seldom used.
 575   // All common fixed-size instructions are given a size
 576   // method by the AD file.
 577   // Note that the scratch buffer blob and locs memory are
 578   // allocated at the beginning of the compile task, and
 579   // may be shared by several calls to scratch_emit_size.
 580   // The allocation of the scratch buffer blob is particularly
 581   // expensive, since it has to grab the code cache lock.
 582   BufferBlob* blob = this->scratch_buffer_blob();
 583   assert(blob != NULL, "Initialize BufferBlob at start");
 584   assert(blob->size() > MAX_inst_size, "sanity");
 585   relocInfo* locs_buf = scratch_locs_memory();
 586   address blob_begin = blob->content_begin();
 587   address blob_end   = (address)locs_buf;
 588   assert(blob->contains(blob_end), "sanity");
 589   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 590   buf.initialize_consts_size(_scratch_const_size);
 591   buf.initialize_stubs_size(MAX_stubs_size);
 592   assert(locs_buf != NULL, "sanity");
 593   int lsize = MAX_locs_size / 3;
 594   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 595   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 596   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 597   // Mark as scratch buffer.
 598   buf.consts()->set_scratch_emit();
 599   buf.insts()->set_scratch_emit();
 600   buf.stubs()->set_scratch_emit();
 601 
 602   // Do the emission.
 603 
 604   Label fakeL; // Fake label for branch instructions.
 605   Label*   saveL = NULL;
 606   uint save_bnum = 0;
 607   bool is_branch = n->is_MachBranch();
 608   if (is_branch) {
 609     MacroAssembler masm(&buf);
 610     masm.bind(fakeL);
 611     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 612     n->as_MachBranch()->label_set(&fakeL, 0);
 613   }
 614   n->emit(buf, this->regalloc());
 615 
 616   // Emitting into the scratch buffer should not fail
 617   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
 618 
 619   if (is_branch) // Restore label.
 620     n->as_MachBranch()->label_set(saveL, save_bnum);
 621 
 622   // End scratch_emit_size section.
 623   set_in_scratch_emit_size(false);
 624 
 625   return buf.insts_size();
 626 }
 627 
 628 
 629 // ============================================================================
 630 //------------------------------Compile standard-------------------------------
 631 debug_only( int Compile::_debug_idx = 100000; )
 632 
 633 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 634 // the continuation bci for on stack replacement.
 635 
 636 
 637 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 638                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive)
 639                 : Phase(Compiler),
 640                   _env(ci_env),
 641                   _directive(directive),
 642                   _log(ci_env->log()),
 643                   _compile_id(ci_env->compile_id()),
 644                   _save_argument_registers(false),
 645                   _stub_name(NULL),
 646                   _stub_function(NULL),
 647                   _stub_entry_point(NULL),
 648                   _method(target),
 649                   _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 650                   _entry_bci(osr_bci),
 651                   _initial_gvn(NULL),
 652                   _for_igvn(NULL),
 653                   _warm_calls(NULL),
 654                   _subsume_loads(subsume_loads),
 655                   _do_escape_analysis(do_escape_analysis),
 656                   _eliminate_boxing(eliminate_boxing),
 657                   _failure_reason(NULL),
 658                   _code_buffer("Compile::Fill_buffer"),
 659                   _orig_pc_slot(0),
 660                   _orig_pc_slot_offset_in_bytes(0),
 661                   _has_method_handle_invokes(false),
 662                   _mach_constant_base_node(NULL),
 663                   _node_bundling_limit(0),
 664                   _node_bundling_base(NULL),
 665                   _java_calls(0),
 666                   _inner_loops(0),
 667                   _scratch_const_size(-1),
 668                   _in_scratch_emit_size(false),
 669                   _dead_node_list(comp_arena()),
 670                   _dead_node_count(0),
 671 #ifndef PRODUCT
 672                   _trace_opto_output(directive->TraceOptoOutputOption),
 673                   _in_dump_cnt(0),
 674                   _printer(IdealGraphPrinter::printer()),
 675 #endif
 676                   _congraph(NULL),
 677                   _comp_arena(mtCompiler),
 678                   _node_arena(mtCompiler),
 679                   _old_arena(mtCompiler),
 680                   _Compile_types(mtCompiler),
 681                   _replay_inline_data(NULL),
 682                   _late_inlines(comp_arena(), 2, 0, NULL),
 683                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 684                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 685                   _late_inlines_pos(0),
 686                   _number_of_mh_late_inlines(0),
 687                   _inlining_progress(false),
 688                   _inlining_incrementally(false),
 689                   _print_inlining_list(NULL),
 690                   _print_inlining_stream(NULL),
 691                   _print_inlining_idx(0),
 692                   _print_inlining_output(NULL),
 693                   _interpreter_frame_size(0),
 694                   _max_node_limit(MaxNodeLimit),
 695                   _has_reserved_stack_access(target->has_reserved_stack_access()) {
 696   C = this;
 697 #ifndef PRODUCT
 698   if (_printer != NULL) {
 699     _printer->set_compile(this);
 700   }
 701 #endif
 702   CompileWrapper cw(this);
 703 
 704   if (CITimeVerbose) {
 705     tty->print(" ");
 706     target->holder()->name()->print();
 707     tty->print(".");
 708     target->print_short_name();
 709     tty->print("  ");
 710   }
 711   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 712   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 713 
 714 #ifndef PRODUCT
 715   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 716   if (!print_opto_assembly) {
 717     bool print_assembly = directive->PrintAssemblyOption;
 718     if (print_assembly && !Disassembler::can_decode()) {
 719       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 720       print_opto_assembly = true;
 721     }
 722   }
 723   set_print_assembly(print_opto_assembly);
 724   set_parsed_irreducible_loop(false);
 725 
 726   if (directive->ReplayInlineOption) {
 727     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 728   }
 729 #endif
 730   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 731   set_print_intrinsics(directive->PrintIntrinsicsOption);
 732   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 733 
 734   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 735     // Make sure the method being compiled gets its own MDO,
 736     // so we can at least track the decompile_count().
 737     // Need MDO to record RTM code generation state.
 738     method()->ensure_method_data();
 739   }
 740 
 741   Init(::AliasLevel);
 742 
 743 
 744   print_compile_messages();
 745 
 746   _ilt = InlineTree::build_inline_tree_root();
 747 
 748   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 749   assert(num_alias_types() >= AliasIdxRaw, "");
 750 
 751 #define MINIMUM_NODE_HASH  1023
 752   // Node list that Iterative GVN will start with
 753   Unique_Node_List for_igvn(comp_arena());
 754   set_for_igvn(&for_igvn);
 755 
 756   // GVN that will be run immediately on new nodes
 757   uint estimated_size = method()->code_size()*4+64;
 758   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 759   PhaseGVN gvn(node_arena(), estimated_size);
 760   set_initial_gvn(&gvn);
 761 
 762   print_inlining_init();
 763   { // Scope for timing the parser
 764     TracePhase tp("parse", &timers[_t_parser]);
 765 
 766     // Put top into the hash table ASAP.
 767     initial_gvn()->transform_no_reclaim(top());
 768 
 769     // Set up tf(), start(), and find a CallGenerator.
 770     CallGenerator* cg = NULL;
 771     if (is_osr_compilation()) {
 772       const TypeTuple *domain = StartOSRNode::osr_domain();
 773       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 774       init_tf(TypeFunc::make(domain, range));
 775       StartNode* s = new StartOSRNode(root(), domain);
 776       initial_gvn()->set_type_bottom(s);
 777       init_start(s);
 778       cg = CallGenerator::for_osr(method(), entry_bci());
 779     } else {
 780       // Normal case.
 781       init_tf(TypeFunc::make(method()));
 782       StartNode* s = new StartNode(root(), tf()->domain_cc());
 783       initial_gvn()->set_type_bottom(s);
 784       init_start(s);
 785       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) {
 786         // With java.lang.ref.reference.get() we must go through the
 787         // intrinsic - even when get() is the root
 788         // method of the compile - so that, if necessary, the value in
 789         // the referent field of the reference object gets recorded by
 790         // the pre-barrier code.
 791         cg = find_intrinsic(method(), false);
 792       }
 793       if (cg == NULL) {
 794         float past_uses = method()->interpreter_invocation_count();
 795         float expected_uses = past_uses;
 796         cg = CallGenerator::for_inline(method(), expected_uses);
 797       }
 798     }
 799     if (failing())  return;
 800     if (cg == NULL) {
 801       record_method_not_compilable("cannot parse method");
 802       return;
 803     }
 804     JVMState* jvms = build_start_state(start(), tf());
 805     if ((jvms = cg->generate(jvms)) == NULL) {
 806       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 807         record_method_not_compilable("method parse failed");
 808       }
 809       return;
 810     }
 811     GraphKit kit(jvms);
 812 
 813     if (!kit.stopped()) {
 814       // Accept return values, and transfer control we know not where.
 815       // This is done by a special, unique ReturnNode bound to root.
 816       return_values(kit.jvms());
 817     }
 818 
 819     if (kit.has_exceptions()) {
 820       // Any exceptions that escape from this call must be rethrown
 821       // to whatever caller is dynamically above us on the stack.
 822       // This is done by a special, unique RethrowNode bound to root.
 823       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 824     }
 825 
 826     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 827 
 828     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 829       inline_string_calls(true);
 830     }
 831 
 832     if (failing())  return;
 833 
 834     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 835 
 836     // Remove clutter produced by parsing.
 837     if (!failing()) {
 838       ResourceMark rm;
 839       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 840     }
 841   }
 842 
 843   // Note:  Large methods are capped off in do_one_bytecode().
 844   if (failing())  return;
 845 
 846   // After parsing, node notes are no longer automagic.
 847   // They must be propagated by register_new_node_with_optimizer(),
 848   // clone(), or the like.
 849   set_default_node_notes(NULL);
 850 
 851   for (;;) {
 852     int successes = Inline_Warm();
 853     if (failing())  return;
 854     if (successes == 0)  break;
 855   }
 856 
 857   // Drain the list.
 858   Finish_Warm();
 859 #ifndef PRODUCT
 860   if (_printer && _printer->should_print(1)) {
 861     _printer->print_inlining();
 862   }
 863 #endif
 864 
 865   if (failing())  return;
 866   NOT_PRODUCT( verify_graph_edges(); )
 867 
 868   // Now optimize
 869   Optimize();
 870   if (failing())  return;
 871   NOT_PRODUCT( verify_graph_edges(); )
 872 
 873 #ifndef PRODUCT
 874   if (PrintIdeal) {
 875     ttyLocker ttyl;  // keep the following output all in one block
 876     // This output goes directly to the tty, not the compiler log.
 877     // To enable tools to match it up with the compilation activity,
 878     // be sure to tag this tty output with the compile ID.
 879     if (xtty != NULL) {
 880       xtty->head("ideal compile_id='%d'%s", compile_id(),
 881                  is_osr_compilation()    ? " compile_kind='osr'" :
 882                  "");
 883     }
 884     root()->dump(9999);
 885     if (xtty != NULL) {
 886       xtty->tail("ideal");
 887     }
 888   }
 889 #endif
 890 
 891   NOT_PRODUCT( verify_barriers(); )
 892 
 893   // Dump compilation data to replay it.
 894   if (directive->DumpReplayOption) {
 895     env()->dump_replay_data(_compile_id);
 896   }
 897   if (directive->DumpInlineOption && (ilt() != NULL)) {
 898     env()->dump_inline_data(_compile_id);
 899   }
 900 
 901   // Now that we know the size of all the monitors we can add a fixed slot
 902   // for the original deopt pc.
 903 
 904   _orig_pc_slot =  fixed_slots();
 905   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 906   set_fixed_slots(next_slot);
 907 
 908   // Compute when to use implicit null checks. Used by matching trap based
 909   // nodes and NullCheck optimization.
 910   set_allowed_deopt_reasons();
 911 
 912   // Now generate code
 913   Code_Gen();
 914   if (failing())  return;
 915 
 916   // Check if we want to skip execution of all compiled code.
 917   {
 918 #ifndef PRODUCT
 919     if (OptoNoExecute) {
 920       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 921       return;
 922     }
 923 #endif
 924     TracePhase tp("install_code", &timers[_t_registerMethod]);
 925 
 926     if (is_osr_compilation()) {
 927       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 928       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 929     } else {
 930       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 931       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 932     }
 933 
 934     env()->register_method(_method, _entry_bci,
 935                            &_code_offsets,
 936                            _orig_pc_slot_offset_in_bytes,
 937                            code_buffer(),
 938                            frame_size_in_words(), _oop_map_set,
 939                            &_handler_table, &_inc_table,
 940                            compiler,
 941                            has_unsafe_access(),
 942                            SharedRuntime::is_wide_vector(max_vector_size()),
 943                            rtm_state()
 944                            );
 945 
 946     if (log() != NULL) // Print code cache state into compiler log
 947       log()->code_cache_state();
 948   }
 949 }
 950 
 951 //------------------------------Compile----------------------------------------
 952 // Compile a runtime stub
 953 Compile::Compile( ciEnv* ci_env,
 954                   TypeFunc_generator generator,
 955                   address stub_function,
 956                   const char *stub_name,
 957                   int is_fancy_jump,
 958                   bool pass_tls,
 959                   bool save_arg_registers,
 960                   bool return_pc,
 961                   DirectiveSet* directive)
 962   : Phase(Compiler),
 963     _env(ci_env),
 964     _directive(directive),
 965     _log(ci_env->log()),
 966     _compile_id(0),
 967     _save_argument_registers(save_arg_registers),
 968     _method(NULL),
 969     _stub_name(stub_name),
 970     _stub_function(stub_function),
 971     _stub_entry_point(NULL),
 972     _entry_bci(InvocationEntryBci),
 973     _initial_gvn(NULL),
 974     _for_igvn(NULL),
 975     _warm_calls(NULL),
 976     _orig_pc_slot(0),
 977     _orig_pc_slot_offset_in_bytes(0),
 978     _subsume_loads(true),
 979     _do_escape_analysis(false),
 980     _eliminate_boxing(false),
 981     _failure_reason(NULL),
 982     _code_buffer("Compile::Fill_buffer"),
 983     _has_method_handle_invokes(false),
 984     _mach_constant_base_node(NULL),
 985     _node_bundling_limit(0),
 986     _node_bundling_base(NULL),
 987     _java_calls(0),
 988     _inner_loops(0),
 989 #ifndef PRODUCT
 990     _trace_opto_output(directive->TraceOptoOutputOption),
 991     _in_dump_cnt(0),
 992     _printer(NULL),
 993 #endif
 994     _comp_arena(mtCompiler),
 995     _node_arena(mtCompiler),
 996     _old_arena(mtCompiler),
 997     _Compile_types(mtCompiler),
 998     _dead_node_list(comp_arena()),
 999     _dead_node_count(0),
1000     _congraph(NULL),
1001     _replay_inline_data(NULL),
1002     _number_of_mh_late_inlines(0),
1003     _inlining_progress(false),
1004     _inlining_incrementally(false),
1005     _print_inlining_list(NULL),
1006     _print_inlining_stream(NULL),
1007     _print_inlining_idx(0),
1008     _print_inlining_output(NULL),
1009     _allowed_reasons(0),
1010     _interpreter_frame_size(0),
1011     _max_node_limit(MaxNodeLimit),
1012     _has_reserved_stack_access(false) {
1013   C = this;
1014 
1015   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
1016   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
1017 
1018 #ifndef PRODUCT
1019   set_print_assembly(PrintFrameConverterAssembly);
1020   set_parsed_irreducible_loop(false);
1021 #endif
1022   set_has_irreducible_loop(false); // no loops
1023 
1024   CompileWrapper cw(this);
1025   Init(/*AliasLevel=*/ 0);
1026   init_tf((*generator)());
1027 
1028   {
1029     // The following is a dummy for the sake of GraphKit::gen_stub
1030     Unique_Node_List for_igvn(comp_arena());
1031     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1032     PhaseGVN gvn(Thread::current()->resource_area(),255);
1033     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1034     gvn.transform_no_reclaim(top());
1035 
1036     GraphKit kit;
1037     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1038   }
1039 
1040   NOT_PRODUCT( verify_graph_edges(); )
1041   Code_Gen();
1042   if (failing())  return;
1043 
1044 
1045   // Entry point will be accessed using compile->stub_entry_point();
1046   if (code_buffer() == NULL) {
1047     Matcher::soft_match_failure();
1048   } else {
1049     if (PrintAssembly && (WizardMode || Verbose))
1050       tty->print_cr("### Stub::%s", stub_name);
1051 
1052     if (!failing()) {
1053       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1054 
1055       // Make the NMethod
1056       // For now we mark the frame as never safe for profile stackwalking
1057       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1058                                                       code_buffer(),
1059                                                       CodeOffsets::frame_never_safe,
1060                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1061                                                       frame_size_in_words(),
1062                                                       _oop_map_set,
1063                                                       save_arg_registers);
1064       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1065 
1066       _stub_entry_point = rs->entry_point();
1067     }
1068   }
1069 }
1070 
1071 //------------------------------Init-------------------------------------------
1072 // Prepare for a single compilation
1073 void Compile::Init(int aliaslevel) {
1074   _unique  = 0;
1075   _regalloc = NULL;
1076 
1077   _tf      = NULL;  // filled in later
1078   _top     = NULL;  // cached later
1079   _matcher = NULL;  // filled in later
1080   _cfg     = NULL;  // filled in later
1081 
1082   set_24_bit_selection_and_mode(Use24BitFP, false);
1083 
1084   _node_note_array = NULL;
1085   _default_node_notes = NULL;
1086   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1087 
1088   _immutable_memory = NULL; // filled in at first inquiry
1089 
1090   // Globally visible Nodes
1091   // First set TOP to NULL to give safe behavior during creation of RootNode
1092   set_cached_top_node(NULL);
1093   set_root(new RootNode());
1094   // Now that you have a Root to point to, create the real TOP
1095   set_cached_top_node( new ConNode(Type::TOP) );
1096   set_recent_alloc(NULL, NULL);
1097 
1098   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1099   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1100   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1101   env()->set_dependencies(new Dependencies(env()));
1102 
1103   _fixed_slots = 0;
1104   set_has_split_ifs(false);
1105   set_has_loops(has_method() && method()->has_loops()); // first approximation
1106   set_has_stringbuilder(false);
1107   set_has_boxed_value(false);
1108   _trap_can_recompile = false;  // no traps emitted yet
1109   _major_progress = true; // start out assuming good things will happen
1110   set_has_unsafe_access(false);
1111   set_max_vector_size(0);
1112   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1113   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1114   set_decompile_count(0);
1115 
1116   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1117   set_num_loop_opts(LoopOptsCount);
1118   set_do_inlining(Inline);
1119   set_max_inline_size(MaxInlineSize);
1120   set_freq_inline_size(FreqInlineSize);
1121   set_do_scheduling(OptoScheduling);
1122   set_do_count_invocations(false);
1123   set_do_method_data_update(false);
1124 
1125   set_do_vector_loop(false);
1126 
1127   if (AllowVectorizeOnDemand) {
1128     if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
1129       set_do_vector_loop(true);
1130       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1131     } else if (has_method() && method()->name() != 0 &&
1132                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1133       set_do_vector_loop(true);
1134     }
1135   }
1136   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1137   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1138 
1139   set_age_code(has_method() && method()->profile_aging());
1140   set_rtm_state(NoRTM); // No RTM lock eliding by default
1141   _max_node_limit = _directive->MaxNodeLimitOption;
1142 
1143 #if INCLUDE_RTM_OPT
1144   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1145     int rtm_state = method()->method_data()->rtm_state();
1146     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1147       // Don't generate RTM lock eliding code.
1148       set_rtm_state(NoRTM);
1149     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1150       // Generate RTM lock eliding code without abort ratio calculation code.
1151       set_rtm_state(UseRTM);
1152     } else if (UseRTMDeopt) {
1153       // Generate RTM lock eliding code and include abort ratio calculation
1154       // code if UseRTMDeopt is on.
1155       set_rtm_state(ProfileRTM);
1156     }
1157   }
1158 #endif
1159   if (debug_info()->recording_non_safepoints()) {
1160     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1161                         (comp_arena(), 8, 0, NULL));
1162     set_default_node_notes(Node_Notes::make(this));
1163   }
1164 
1165   // // -- Initialize types before each compile --
1166   // // Update cached type information
1167   // if( _method && _method->constants() )
1168   //   Type::update_loaded_types(_method, _method->constants());
1169 
1170   // Init alias_type map.
1171   if (!_do_escape_analysis && aliaslevel == 3)
1172     aliaslevel = 2;  // No unique types without escape analysis
1173   _AliasLevel = aliaslevel;
1174   const int grow_ats = 16;
1175   _max_alias_types = grow_ats;
1176   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1177   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1178   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1179   {
1180     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1181   }
1182   // Initialize the first few types.
1183   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1184   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1185   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1186   _num_alias_types = AliasIdxRaw+1;
1187   // Zero out the alias type cache.
1188   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1189   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1190   probe_alias_cache(NULL)->_index = AliasIdxTop;
1191 
1192   _intrinsics = NULL;
1193   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1194   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1195   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1196   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1197   _opaque4_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1198   _value_type_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
1199   register_library_intrinsics();
1200 }
1201 
1202 //---------------------------init_start----------------------------------------
1203 // Install the StartNode on this compile object.
1204 void Compile::init_start(StartNode* s) {
1205   if (failing())
1206     return; // already failing
1207   assert(s == start(), "");
1208 }
1209 
1210 /**
1211  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1212  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1213  * the ideal graph.
1214  */
1215 StartNode* Compile::start() const {
1216   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1217   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1218     Node* start = root()->fast_out(i);
1219     if (start->is_Start()) {
1220       return start->as_Start();
1221     }
1222   }
1223   fatal("Did not find Start node!");
1224   return NULL;
1225 }
1226 
1227 //-------------------------------immutable_memory-------------------------------------
1228 // Access immutable memory
1229 Node* Compile::immutable_memory() {
1230   if (_immutable_memory != NULL) {
1231     return _immutable_memory;
1232   }
1233   StartNode* s = start();
1234   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1235     Node *p = s->fast_out(i);
1236     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1237       _immutable_memory = p;
1238       return _immutable_memory;
1239     }
1240   }
1241   ShouldNotReachHere();
1242   return NULL;
1243 }
1244 
1245 //----------------------set_cached_top_node------------------------------------
1246 // Install the cached top node, and make sure Node::is_top works correctly.
1247 void Compile::set_cached_top_node(Node* tn) {
1248   if (tn != NULL)  verify_top(tn);
1249   Node* old_top = _top;
1250   _top = tn;
1251   // Calling Node::setup_is_top allows the nodes the chance to adjust
1252   // their _out arrays.
1253   if (_top != NULL)     _top->setup_is_top();
1254   if (old_top != NULL)  old_top->setup_is_top();
1255   assert(_top == NULL || top()->is_top(), "");
1256 }
1257 
1258 #ifdef ASSERT
1259 uint Compile::count_live_nodes_by_graph_walk() {
1260   Unique_Node_List useful(comp_arena());
1261   // Get useful node list by walking the graph.
1262   identify_useful_nodes(useful);
1263   return useful.size();
1264 }
1265 
1266 void Compile::print_missing_nodes() {
1267 
1268   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1269   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1270     return;
1271   }
1272 
1273   // This is an expensive function. It is executed only when the user
1274   // specifies VerifyIdealNodeCount option or otherwise knows the
1275   // additional work that needs to be done to identify reachable nodes
1276   // by walking the flow graph and find the missing ones using
1277   // _dead_node_list.
1278 
1279   Unique_Node_List useful(comp_arena());
1280   // Get useful node list by walking the graph.
1281   identify_useful_nodes(useful);
1282 
1283   uint l_nodes = C->live_nodes();
1284   uint l_nodes_by_walk = useful.size();
1285 
1286   if (l_nodes != l_nodes_by_walk) {
1287     if (_log != NULL) {
1288       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1289       _log->stamp();
1290       _log->end_head();
1291     }
1292     VectorSet& useful_member_set = useful.member_set();
1293     int last_idx = l_nodes_by_walk;
1294     for (int i = 0; i < last_idx; i++) {
1295       if (useful_member_set.test(i)) {
1296         if (_dead_node_list.test(i)) {
1297           if (_log != NULL) {
1298             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1299           }
1300           if (PrintIdealNodeCount) {
1301             // Print the log message to tty
1302               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1303               useful.at(i)->dump();
1304           }
1305         }
1306       }
1307       else if (! _dead_node_list.test(i)) {
1308         if (_log != NULL) {
1309           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1310         }
1311         if (PrintIdealNodeCount) {
1312           // Print the log message to tty
1313           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1314         }
1315       }
1316     }
1317     if (_log != NULL) {
1318       _log->tail("mismatched_nodes");
1319     }
1320   }
1321 }
1322 void Compile::record_modified_node(Node* n) {
1323   if (_modified_nodes != NULL && !_inlining_incrementally &&
1324       n->outcnt() != 0 && !n->is_Con()) {
1325     _modified_nodes->push(n);
1326   }
1327 }
1328 
1329 void Compile::remove_modified_node(Node* n) {
1330   if (_modified_nodes != NULL) {
1331     _modified_nodes->remove(n);
1332   }
1333 }
1334 #endif
1335 
1336 #ifndef PRODUCT
1337 void Compile::verify_top(Node* tn) const {
1338   if (tn != NULL) {
1339     assert(tn->is_Con(), "top node must be a constant");
1340     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1341     assert(tn->in(0) != NULL, "must have live top node");
1342   }
1343 }
1344 #endif
1345 
1346 
1347 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1348 
1349 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1350   guarantee(arr != NULL, "");
1351   int num_blocks = arr->length();
1352   if (grow_by < num_blocks)  grow_by = num_blocks;
1353   int num_notes = grow_by * _node_notes_block_size;
1354   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1355   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1356   while (num_notes > 0) {
1357     arr->append(notes);
1358     notes     += _node_notes_block_size;
1359     num_notes -= _node_notes_block_size;
1360   }
1361   assert(num_notes == 0, "exact multiple, please");
1362 }
1363 
1364 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1365   if (source == NULL || dest == NULL)  return false;
1366 
1367   if (dest->is_Con())
1368     return false;               // Do not push debug info onto constants.
1369 
1370 #ifdef ASSERT
1371   // Leave a bread crumb trail pointing to the original node:
1372   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1373     dest->set_debug_orig(source);
1374   }
1375 #endif
1376 
1377   if (node_note_array() == NULL)
1378     return false;               // Not collecting any notes now.
1379 
1380   // This is a copy onto a pre-existing node, which may already have notes.
1381   // If both nodes have notes, do not overwrite any pre-existing notes.
1382   Node_Notes* source_notes = node_notes_at(source->_idx);
1383   if (source_notes == NULL || source_notes->is_clear())  return false;
1384   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1385   if (dest_notes == NULL || dest_notes->is_clear()) {
1386     return set_node_notes_at(dest->_idx, source_notes);
1387   }
1388 
1389   Node_Notes merged_notes = (*source_notes);
1390   // The order of operations here ensures that dest notes will win...
1391   merged_notes.update_from(dest_notes);
1392   return set_node_notes_at(dest->_idx, &merged_notes);
1393 }
1394 
1395 
1396 //--------------------------allow_range_check_smearing-------------------------
1397 // Gating condition for coalescing similar range checks.
1398 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1399 // single covering check that is at least as strong as any of them.
1400 // If the optimization succeeds, the simplified (strengthened) range check
1401 // will always succeed.  If it fails, we will deopt, and then give up
1402 // on the optimization.
1403 bool Compile::allow_range_check_smearing() const {
1404   // If this method has already thrown a range-check,
1405   // assume it was because we already tried range smearing
1406   // and it failed.
1407   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1408   return !already_trapped;
1409 }
1410 
1411 
1412 //------------------------------flatten_alias_type-----------------------------
1413 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1414   int offset = tj->offset();
1415   TypePtr::PTR ptr = tj->ptr();
1416 
1417   // Known instance (scalarizable allocation) alias only with itself.
1418   bool is_known_inst = tj->isa_oopptr() != NULL &&
1419                        tj->is_oopptr()->is_known_instance();
1420 
1421   // Process weird unsafe references.
1422   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1423     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1424     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1425     tj = TypeOopPtr::BOTTOM;
1426     ptr = tj->ptr();
1427     offset = tj->offset();
1428   }
1429 
1430   // Array pointers need some flattening
1431   const TypeAryPtr *ta = tj->isa_aryptr();
1432   if (ta && ta->is_stable()) {
1433     // Erase stability property for alias analysis.
1434     tj = ta = ta->cast_to_stable(false);
1435   }
1436   if( ta && is_known_inst ) {
1437     if ( offset != Type::OffsetBot &&
1438          offset > arrayOopDesc::length_offset_in_bytes() ) {
1439       offset = Type::OffsetBot; // Flatten constant access into array body only
1440       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, Type::Offset(offset), ta->field_offset(), ta->instance_id());
1441     }
1442   } else if( ta && _AliasLevel >= 2 ) {
1443     // For arrays indexed by constant indices, we flatten the alias
1444     // space to include all of the array body.  Only the header, klass
1445     // and array length can be accessed un-aliased.
1446     // For flattened value type array, each field has its own slice so
1447     // we must include the field offset.
1448     if( offset != Type::OffsetBot ) {
1449       if( ta->const_oop() ) { // MethodData* or Method*
1450         offset = Type::OffsetBot;   // Flatten constant access into array body
1451         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,Type::Offset(offset), ta->field_offset());
1452       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1453         // range is OK as-is.
1454         tj = ta = TypeAryPtr::RANGE;
1455       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1456         tj = TypeInstPtr::KLASS; // all klass loads look alike
1457         ta = TypeAryPtr::RANGE; // generic ignored junk
1458         ptr = TypePtr::BotPTR;
1459       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1460         tj = TypeInstPtr::MARK;
1461         ta = TypeAryPtr::RANGE; // generic ignored junk
1462         ptr = TypePtr::BotPTR;
1463       } else {                  // Random constant offset into array body
1464         offset = Type::OffsetBot;   // Flatten constant access into array body
1465         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,Type::Offset(offset), ta->field_offset());
1466       }
1467     }
1468     // Arrays of fixed size alias with arrays of unknown size.
1469     if (ta->size() != TypeInt::POS) {
1470       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1471       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,Type::Offset(offset), ta->field_offset());
1472     }
1473     // Arrays of known objects become arrays of unknown objects.
1474     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1475       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1476       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,Type::Offset(offset), ta->field_offset());
1477     }
1478     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1479       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1480       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,Type::Offset(offset), ta->field_offset());
1481     }
1482     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1483     // cannot be distinguished by bytecode alone.
1484     if (ta->elem() == TypeInt::BOOL) {
1485       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1486       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1487       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,Type::Offset(offset), ta->field_offset());
1488     }
1489     // During the 2nd round of IterGVN, NotNull castings are removed.
1490     // Make sure the Bottom and NotNull variants alias the same.
1491     // Also, make sure exact and non-exact variants alias the same.
1492     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1493       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,Type::Offset(offset), ta->field_offset());
1494     }
1495   }
1496 
1497   // Oop pointers need some flattening
1498   const TypeInstPtr *to = tj->isa_instptr();
1499   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1500     ciInstanceKlass *k = to->klass()->as_instance_klass();
1501     if( ptr == TypePtr::Constant ) {
1502       if (to->klass() != ciEnv::current()->Class_klass() ||
1503           offset < k->size_helper() * wordSize) {
1504         // No constant oop pointers (such as Strings); they alias with
1505         // unknown strings.
1506         assert(!is_known_inst, "not scalarizable allocation");
1507         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,Type::Offset(offset));
1508       }
1509     } else if( is_known_inst ) {
1510       tj = to; // Keep NotNull and klass_is_exact for instance type
1511     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1512       // During the 2nd round of IterGVN, NotNull castings are removed.
1513       // Make sure the Bottom and NotNull variants alias the same.
1514       // Also, make sure exact and non-exact variants alias the same.
1515       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,Type::Offset(offset));
1516     }
1517     if (to->speculative() != NULL) {
1518       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),Type::Offset(to->offset()), to->instance_id());
1519     }
1520     // Canonicalize the holder of this field
1521     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1522       // First handle header references such as a LoadKlassNode, even if the
1523       // object's klass is unloaded at compile time (4965979).
1524       if (!is_known_inst) { // Do it only for non-instance types
1525         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, Type::Offset(offset));
1526       }
1527     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1528       // Static fields are in the space above the normal instance
1529       // fields in the java.lang.Class instance.
1530       if (to->klass() != ciEnv::current()->Class_klass()) {
1531         to = NULL;
1532         tj = TypeOopPtr::BOTTOM;
1533         offset = tj->offset();
1534       }
1535     } else {
1536       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1537       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1538         if( is_known_inst ) {
1539           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, Type::Offset(offset), to->instance_id());
1540         } else {
1541           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, Type::Offset(offset));
1542         }
1543       }
1544     }
1545   }
1546 
1547   // Klass pointers to object array klasses need some flattening
1548   const TypeKlassPtr *tk = tj->isa_klassptr();
1549   if( tk ) {
1550     // If we are referencing a field within a Klass, we need
1551     // to assume the worst case of an Object.  Both exact and
1552     // inexact types must flatten to the same alias class so
1553     // use NotNull as the PTR.
1554     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1555 
1556       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1557                                    TypeKlassPtr::OBJECT->klass(),
1558                                    Type::Offset(offset));
1559     }
1560 
1561     ciKlass* klass = tk->klass();
1562     if (klass != NULL && klass->is_obj_array_klass()) {
1563       ciKlass* k = TypeAryPtr::OOPS->klass();
1564       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1565         k = TypeInstPtr::BOTTOM->klass();
1566       tj = tk = TypeKlassPtr::make(TypePtr::NotNull, k, Type::Offset(offset));
1567     }
1568 
1569     // Check for precise loads from the primary supertype array and force them
1570     // to the supertype cache alias index.  Check for generic array loads from
1571     // the primary supertype array and also force them to the supertype cache
1572     // alias index.  Since the same load can reach both, we need to merge
1573     // these 2 disparate memories into the same alias class.  Since the
1574     // primary supertype array is read-only, there's no chance of confusion
1575     // where we bypass an array load and an array store.
1576     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1577     if (offset == Type::OffsetBot ||
1578         (offset >= primary_supers_offset &&
1579          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1580         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1581       offset = in_bytes(Klass::secondary_super_cache_offset());
1582       tj = tk = TypeKlassPtr::make(TypePtr::NotNull, tk->klass(), Type::Offset(offset));
1583     }
1584   }
1585 
1586   // Flatten all Raw pointers together.
1587   if (tj->base() == Type::RawPtr)
1588     tj = TypeRawPtr::BOTTOM;
1589 
1590   if (tj->base() == Type::AnyPtr)
1591     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1592 
1593   // Flatten all to bottom for now
1594   switch( _AliasLevel ) {
1595   case 0:
1596     tj = TypePtr::BOTTOM;
1597     break;
1598   case 1:                       // Flatten to: oop, static, field or array
1599     switch (tj->base()) {
1600     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1601     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1602     case Type::AryPtr:   // do not distinguish arrays at all
1603     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1604     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1605     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1606     default: ShouldNotReachHere();
1607     }
1608     break;
1609   case 2:                       // No collapsing at level 2; keep all splits
1610   case 3:                       // No collapsing at level 3; keep all splits
1611     break;
1612   default:
1613     Unimplemented();
1614   }
1615 
1616   offset = tj->offset();
1617   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1618 
1619   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1620           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1621           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1622           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1623           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1624           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1625           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1626           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1627   assert( tj->ptr() != TypePtr::TopPTR &&
1628           tj->ptr() != TypePtr::AnyNull &&
1629           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1630 //    assert( tj->ptr() != TypePtr::Constant ||
1631 //            tj->base() == Type::RawPtr ||
1632 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1633 
1634   return tj;
1635 }
1636 
1637 void Compile::AliasType::Init(int i, const TypePtr* at) {
1638   _index = i;
1639   _adr_type = at;
1640   _field = NULL;
1641   _element = NULL;
1642   _is_rewritable = true; // default
1643   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1644   if (atoop != NULL && atoop->is_known_instance()) {
1645     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1646     _general_index = Compile::current()->get_alias_index(gt);
1647   } else {
1648     _general_index = 0;
1649   }
1650 }
1651 
1652 BasicType Compile::AliasType::basic_type() const {
1653   if (element() != NULL) {
1654     const Type* element = adr_type()->is_aryptr()->elem();
1655     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1656   } if (field() != NULL) {
1657     return field()->layout_type();
1658   } else {
1659     return T_ILLEGAL; // unknown
1660   }
1661 }
1662 
1663 //---------------------------------print_on------------------------------------
1664 #ifndef PRODUCT
1665 void Compile::AliasType::print_on(outputStream* st) {
1666   if (index() < 10)
1667         st->print("@ <%d> ", index());
1668   else  st->print("@ <%d>",  index());
1669   st->print(is_rewritable() ? "   " : " RO");
1670   int offset = adr_type()->offset();
1671   if (offset == Type::OffsetBot)
1672         st->print(" +any");
1673   else  st->print(" +%-3d", offset);
1674   st->print(" in ");
1675   adr_type()->dump_on(st);
1676   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1677   if (field() != NULL && tjp) {
1678     if (tjp->klass()  != field()->holder() ||
1679         tjp->offset() != field()->offset_in_bytes()) {
1680       st->print(" != ");
1681       field()->print();
1682       st->print(" ***");
1683     }
1684   }
1685 }
1686 
1687 void print_alias_types() {
1688   Compile* C = Compile::current();
1689   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1690   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1691     C->alias_type(idx)->print_on(tty);
1692     tty->cr();
1693   }
1694 }
1695 #endif
1696 
1697 
1698 //----------------------------probe_alias_cache--------------------------------
1699 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1700   intptr_t key = (intptr_t) adr_type;
1701   key ^= key >> logAliasCacheSize;
1702   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1703 }
1704 
1705 
1706 //-----------------------------grow_alias_types--------------------------------
1707 void Compile::grow_alias_types() {
1708   const int old_ats  = _max_alias_types; // how many before?
1709   const int new_ats  = old_ats;          // how many more?
1710   const int grow_ats = old_ats+new_ats;  // how many now?
1711   _max_alias_types = grow_ats;
1712   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1713   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1714   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1715   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1716 }
1717 
1718 
1719 //--------------------------------find_alias_type------------------------------
1720 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1721   if (_AliasLevel == 0)
1722     return alias_type(AliasIdxBot);
1723 
1724   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1725   if (ace->_adr_type == adr_type) {
1726     return alias_type(ace->_index);
1727   }
1728 
1729   // Handle special cases.
1730   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1731   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1732 
1733   // Do it the slow way.
1734   const TypePtr* flat = flatten_alias_type(adr_type);
1735 
1736 #ifdef ASSERT
1737   {
1738     ResourceMark rm;
1739     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1740            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1741     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1742            Type::str(adr_type));
1743     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1744       const TypeOopPtr* foop = flat->is_oopptr();
1745       // Scalarizable allocations have exact klass always.
1746       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1747       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1748       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1749              Type::str(foop), Type::str(xoop));
1750     }
1751   }
1752 #endif
1753 
1754   int idx = AliasIdxTop;
1755   for (int i = 0; i < num_alias_types(); i++) {
1756     if (alias_type(i)->adr_type() == flat) {
1757       idx = i;
1758       break;
1759     }
1760   }
1761 
1762   if (idx == AliasIdxTop) {
1763     if (no_create)  return NULL;
1764     // Grow the array if necessary.
1765     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1766     // Add a new alias type.
1767     idx = _num_alias_types++;
1768     _alias_types[idx]->Init(idx, flat);
1769     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1770     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1771     if (flat->isa_instptr()) {
1772       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1773           && flat->is_instptr()->klass() == env()->Class_klass())
1774         alias_type(idx)->set_rewritable(false);
1775     }
1776     ciField* field = NULL;
1777     if (flat->isa_aryptr()) {
1778 #ifdef ASSERT
1779       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1780       // (T_BYTE has the weakest alignment and size restrictions...)
1781       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1782 #endif
1783       const Type* elemtype = flat->is_aryptr()->elem();
1784       if (flat->offset() == TypePtr::OffsetBot) {
1785         alias_type(idx)->set_element(elemtype);
1786       }
1787       int field_offset = flat->is_aryptr()->field_offset().get();
1788       if (elemtype->isa_valuetype() && field_offset != Type::OffsetBot) {
1789         ciValueKlass* vk = elemtype->is_valuetype()->value_klass();
1790         field_offset += vk->first_field_offset();
1791         field = vk->get_field_by_offset(field_offset, false);
1792       }
1793     }
1794     if (flat->isa_klassptr()) {
1795       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1796         alias_type(idx)->set_rewritable(false);
1797       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1798         alias_type(idx)->set_rewritable(false);
1799       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1800         alias_type(idx)->set_rewritable(false);
1801       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1802         alias_type(idx)->set_rewritable(false);
1803     }
1804     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1805     // but the base pointer type is not distinctive enough to identify
1806     // references into JavaThread.)
1807 
1808     // Check for final fields.
1809     const TypeInstPtr* tinst = flat->isa_instptr();
1810     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1811       if (tinst->const_oop() != NULL &&
1812           tinst->klass() == ciEnv::current()->Class_klass() &&
1813           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1814         // static field
1815         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1816         field = k->get_field_by_offset(tinst->offset(), true);
1817       } else if (tinst->klass()->is_valuetype()) {
1818         // Value type field
1819         ciValueKlass* vk = tinst->value_klass();
1820         field = vk->get_field_by_offset(tinst->offset(), false);
1821       } else {
1822         ciInstanceKlass* k = tinst->klass()->as_instance_klass();
1823         field = k->get_field_by_offset(tinst->offset(), false);
1824       }
1825     }
1826     assert(field == NULL ||
1827            original_field == NULL ||
1828            (field->holder() == original_field->holder() &&
1829             field->offset() == original_field->offset() &&
1830             field->is_static() == original_field->is_static()), "wrong field?");
1831     // Set field() and is_rewritable() attributes.
1832     if (field != NULL)  alias_type(idx)->set_field(field);
1833   }
1834 
1835   // Fill the cache for next time.
1836   ace->_adr_type = adr_type;
1837   ace->_index    = idx;
1838   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1839 
1840   // Might as well try to fill the cache for the flattened version, too.
1841   AliasCacheEntry* face = probe_alias_cache(flat);
1842   if (face->_adr_type == NULL) {
1843     face->_adr_type = flat;
1844     face->_index    = idx;
1845     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1846   }
1847 
1848   return alias_type(idx);
1849 }
1850 
1851 
1852 Compile::AliasType* Compile::alias_type(ciField* field) {
1853   const TypeOopPtr* t;
1854   if (field->is_static())
1855     t = TypeInstPtr::make(field->holder()->java_mirror());
1856   else
1857     t = TypeOopPtr::make_from_klass_raw(field->holder());
1858   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1859   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1860   return atp;
1861 }
1862 
1863 
1864 //------------------------------have_alias_type--------------------------------
1865 bool Compile::have_alias_type(const TypePtr* adr_type) {
1866   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1867   if (ace->_adr_type == adr_type) {
1868     return true;
1869   }
1870 
1871   // Handle special cases.
1872   if (adr_type == NULL)             return true;
1873   if (adr_type == TypePtr::BOTTOM)  return true;
1874 
1875   return find_alias_type(adr_type, true, NULL) != NULL;
1876 }
1877 
1878 //-----------------------------must_alias--------------------------------------
1879 // True if all values of the given address type are in the given alias category.
1880 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1881   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1882   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1883   if (alias_idx == AliasIdxTop)         return false; // the empty category
1884   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1885 
1886   // the only remaining possible overlap is identity
1887   int adr_idx = get_alias_index(adr_type);
1888   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1889   assert(adr_idx == alias_idx ||
1890          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1891           && adr_type                       != TypeOopPtr::BOTTOM),
1892          "should not be testing for overlap with an unsafe pointer");
1893   return adr_idx == alias_idx;
1894 }
1895 
1896 //------------------------------can_alias--------------------------------------
1897 // True if any values of the given address type are in the given alias category.
1898 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1899   if (alias_idx == AliasIdxTop)         return false; // the empty category
1900   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1901   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1902   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1903 
1904   // the only remaining possible overlap is identity
1905   int adr_idx = get_alias_index(adr_type);
1906   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1907   return adr_idx == alias_idx;
1908 }
1909 
1910 
1911 
1912 //---------------------------pop_warm_call-------------------------------------
1913 WarmCallInfo* Compile::pop_warm_call() {
1914   WarmCallInfo* wci = _warm_calls;
1915   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1916   return wci;
1917 }
1918 
1919 //----------------------------Inline_Warm--------------------------------------
1920 int Compile::Inline_Warm() {
1921   // If there is room, try to inline some more warm call sites.
1922   // %%% Do a graph index compaction pass when we think we're out of space?
1923   if (!InlineWarmCalls)  return 0;
1924 
1925   int calls_made_hot = 0;
1926   int room_to_grow   = NodeCountInliningCutoff - unique();
1927   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1928   int amount_grown   = 0;
1929   WarmCallInfo* call;
1930   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1931     int est_size = (int)call->size();
1932     if (est_size > (room_to_grow - amount_grown)) {
1933       // This one won't fit anyway.  Get rid of it.
1934       call->make_cold();
1935       continue;
1936     }
1937     call->make_hot();
1938     calls_made_hot++;
1939     amount_grown   += est_size;
1940     amount_to_grow -= est_size;
1941   }
1942 
1943   if (calls_made_hot > 0)  set_major_progress();
1944   return calls_made_hot;
1945 }
1946 
1947 
1948 //----------------------------Finish_Warm--------------------------------------
1949 void Compile::Finish_Warm() {
1950   if (!InlineWarmCalls)  return;
1951   if (failing())  return;
1952   if (warm_calls() == NULL)  return;
1953 
1954   // Clean up loose ends, if we are out of space for inlining.
1955   WarmCallInfo* call;
1956   while ((call = pop_warm_call()) != NULL) {
1957     call->make_cold();
1958   }
1959 }
1960 
1961 //---------------------cleanup_loop_predicates-----------------------
1962 // Remove the opaque nodes that protect the predicates so that all unused
1963 // checks and uncommon_traps will be eliminated from the ideal graph
1964 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1965   if (predicate_count()==0) return;
1966   for (int i = predicate_count(); i > 0; i--) {
1967     Node * n = predicate_opaque1_node(i-1);
1968     assert(n->Opcode() == Op_Opaque1, "must be");
1969     igvn.replace_node(n, n->in(1));
1970   }
1971   assert(predicate_count()==0, "should be clean!");
1972 }
1973 
1974 void Compile::add_range_check_cast(Node* n) {
1975   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1976   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1977   _range_check_casts->append(n);
1978 }
1979 
1980 // Remove all range check dependent CastIINodes.
1981 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1982   for (int i = range_check_cast_count(); i > 0; i--) {
1983     Node* cast = range_check_cast_node(i-1);
1984     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1985     igvn.replace_node(cast, cast->in(1));
1986   }
1987   assert(range_check_cast_count() == 0, "should be empty");
1988 }
1989 
1990 void Compile::add_opaque4_node(Node* n) {
1991   assert(n->Opcode() == Op_Opaque4, "Opaque4 only");
1992   assert(!_opaque4_nodes->contains(n), "duplicate entry in Opaque4 list");
1993   _opaque4_nodes->append(n);
1994 }
1995 
1996 // Remove all Opaque4 nodes.
1997 void Compile::remove_opaque4_nodes(PhaseIterGVN &igvn) {
1998   for (int i = opaque4_count(); i > 0; i--) {
1999     Node* opaq = opaque4_node(i-1);
2000     assert(opaq->Opcode() == Op_Opaque4, "Opaque4 only");
2001     igvn.replace_node(opaq, opaq->in(2));
2002   }
2003   assert(opaque4_count() == 0, "should be empty");
2004 }
2005 
2006 void Compile::add_value_type(Node* n) {
2007   assert(n->is_ValueTypeBase(), "unexpected node");
2008   if (_value_type_nodes != NULL) {
2009     _value_type_nodes->push(n);
2010   }
2011 }
2012 
2013 void Compile::remove_value_type(Node* n) {
2014   assert(n->is_ValueTypeBase(), "unexpected node");
2015   if (_value_type_nodes != NULL) {
2016     _value_type_nodes->remove(n);
2017   }
2018 }
2019 
2020 void Compile::process_value_types(PhaseIterGVN &igvn) {
2021   // Make value types scalar in safepoints
2022   while (_value_type_nodes->size() != 0) {
2023     ValueTypeBaseNode* vt = _value_type_nodes->pop()->as_ValueTypeBase();
2024     vt->make_scalar_in_safepoints(igvn.C->root(), &igvn);
2025     if (vt->is_ValueTypePtr()) {
2026       igvn.replace_node(vt, vt->get_oop());
2027     }
2028   }
2029   _value_type_nodes = NULL;
2030   igvn.optimize();
2031 }
2032 
2033 // StringOpts and late inlining of string methods
2034 void Compile::inline_string_calls(bool parse_time) {
2035   {
2036     // remove useless nodes to make the usage analysis simpler
2037     ResourceMark rm;
2038     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2039   }
2040 
2041   {
2042     ResourceMark rm;
2043     print_method(PHASE_BEFORE_STRINGOPTS, 3);
2044     PhaseStringOpts pso(initial_gvn(), for_igvn());
2045     print_method(PHASE_AFTER_STRINGOPTS, 3);
2046   }
2047 
2048   // now inline anything that we skipped the first time around
2049   if (!parse_time) {
2050     _late_inlines_pos = _late_inlines.length();
2051   }
2052 
2053   while (_string_late_inlines.length() > 0) {
2054     CallGenerator* cg = _string_late_inlines.pop();
2055     cg->do_late_inline();
2056     if (failing())  return;
2057   }
2058   _string_late_inlines.trunc_to(0);
2059 }
2060 
2061 // Late inlining of boxing methods
2062 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
2063   if (_boxing_late_inlines.length() > 0) {
2064     assert(has_boxed_value(), "inconsistent");
2065 
2066     PhaseGVN* gvn = initial_gvn();
2067     set_inlining_incrementally(true);
2068 
2069     assert( igvn._worklist.size() == 0, "should be done with igvn" );
2070     for_igvn()->clear();
2071     gvn->replace_with(&igvn);
2072 
2073     _late_inlines_pos = _late_inlines.length();
2074 
2075     while (_boxing_late_inlines.length() > 0) {
2076       CallGenerator* cg = _boxing_late_inlines.pop();
2077       cg->do_late_inline();
2078       if (failing())  return;
2079     }
2080     _boxing_late_inlines.trunc_to(0);
2081 
2082     {
2083       ResourceMark rm;
2084       PhaseRemoveUseless pru(gvn, for_igvn());
2085     }
2086 
2087     igvn = PhaseIterGVN(gvn);
2088     igvn.optimize();
2089 
2090     set_inlining_progress(false);
2091     set_inlining_incrementally(false);
2092   }
2093 }
2094 
2095 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
2096   assert(IncrementalInline, "incremental inlining should be on");
2097   PhaseGVN* gvn = initial_gvn();
2098 
2099   set_inlining_progress(false);
2100   for_igvn()->clear();
2101   gvn->replace_with(&igvn);
2102 
2103   {
2104     TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
2105     int i = 0;
2106     for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2107       CallGenerator* cg = _late_inlines.at(i);
2108       _late_inlines_pos = i+1;
2109       cg->do_late_inline();
2110       if (failing())  return;
2111     }
2112     int j = 0;
2113     for (; i < _late_inlines.length(); i++, j++) {
2114       _late_inlines.at_put(j, _late_inlines.at(i));
2115     }
2116     _late_inlines.trunc_to(j);
2117   }
2118 
2119   {
2120     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2121     ResourceMark rm;
2122     PhaseRemoveUseless pru(gvn, for_igvn());
2123   }
2124 
2125   {
2126     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2127     igvn = PhaseIterGVN(gvn);
2128   }
2129 }
2130 
2131 // Perform incremental inlining until bound on number of live nodes is reached
2132 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2133   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2134 
2135   PhaseGVN* gvn = initial_gvn();
2136 
2137   set_inlining_incrementally(true);
2138   set_inlining_progress(true);
2139   uint low_live_nodes = 0;
2140 
2141   while(inlining_progress() && _late_inlines.length() > 0) {
2142 
2143     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2144       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2145         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2146         // PhaseIdealLoop is expensive so we only try it once we are
2147         // out of live nodes and we only try it again if the previous
2148         // helped got the number of nodes down significantly
2149         PhaseIdealLoop ideal_loop( igvn, false, true );
2150         if (failing())  return;
2151         low_live_nodes = live_nodes();
2152         _major_progress = true;
2153       }
2154 
2155       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2156         break;
2157       }
2158     }
2159 
2160     inline_incrementally_one(igvn);
2161 
2162     if (failing())  return;
2163 
2164     {
2165       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2166       igvn.optimize();
2167     }
2168 
2169     if (failing())  return;
2170   }
2171 
2172   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2173 
2174   if (_string_late_inlines.length() > 0) {
2175     assert(has_stringbuilder(), "inconsistent");
2176     for_igvn()->clear();
2177     initial_gvn()->replace_with(&igvn);
2178 
2179     inline_string_calls(false);
2180 
2181     if (failing())  return;
2182 
2183     {
2184       TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2185       ResourceMark rm;
2186       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2187     }
2188 
2189     {
2190       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2191       igvn = PhaseIterGVN(gvn);
2192       igvn.optimize();
2193     }
2194   }
2195 
2196   set_inlining_incrementally(false);
2197 }
2198 
2199 
2200 //------------------------------Optimize---------------------------------------
2201 // Given a graph, optimize it.
2202 void Compile::Optimize() {
2203   TracePhase tp("optimizer", &timers[_t_optimizer]);
2204 
2205 #ifndef PRODUCT
2206   if (_directive->BreakAtCompileOption) {
2207     BREAKPOINT;
2208   }
2209 
2210 #endif
2211 
2212   ResourceMark rm;
2213   int          loop_opts_cnt;
2214 
2215   print_inlining_reinit();
2216 
2217   NOT_PRODUCT( verify_graph_edges(); )
2218 
2219   print_method(PHASE_AFTER_PARSING);
2220 
2221  {
2222   // Iterative Global Value Numbering, including ideal transforms
2223   // Initialize IterGVN with types and values from parse-time GVN
2224   PhaseIterGVN igvn(initial_gvn());
2225 #ifdef ASSERT
2226   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2227 #endif
2228   {
2229     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2230     igvn.optimize();
2231   }
2232 
2233   print_method(PHASE_ITER_GVN1, 2);
2234 
2235   if (failing())  return;
2236 
2237   inline_incrementally(igvn);
2238 
2239   print_method(PHASE_INCREMENTAL_INLINE, 2);
2240 
2241   if (failing())  return;
2242 
2243   if (eliminate_boxing()) {
2244     // Inline valueOf() methods now.
2245     inline_boxing_calls(igvn);
2246 
2247     if (AlwaysIncrementalInline) {
2248       inline_incrementally(igvn);
2249     }
2250 
2251     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2252 
2253     if (failing())  return;
2254   }
2255 
2256   // Remove the speculative part of types and clean up the graph from
2257   // the extra CastPP nodes whose only purpose is to carry them. Do
2258   // that early so that optimizations are not disrupted by the extra
2259   // CastPP nodes.
2260   remove_speculative_types(igvn);
2261 
2262   // No more new expensive nodes will be added to the list from here
2263   // so keep only the actual candidates for optimizations.
2264   cleanup_expensive_nodes(igvn);
2265 
2266   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2267     Compile::TracePhase tp("", &timers[_t_renumberLive]);
2268     initial_gvn()->replace_with(&igvn);
2269     for_igvn()->clear();
2270     Unique_Node_List new_worklist(C->comp_arena());
2271     {
2272       ResourceMark rm;
2273       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2274     }
2275     set_for_igvn(&new_worklist);
2276     igvn = PhaseIterGVN(initial_gvn());
2277     igvn.optimize();
2278   }
2279 
2280   if (_value_type_nodes->size() > 0) {
2281     // Do this once all inlining is over to avoid getting inconsistent debug info
2282     process_value_types(igvn);
2283   }
2284 
2285   // Perform escape analysis
2286   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2287     if (has_loops()) {
2288       // Cleanup graph (remove dead nodes).
2289       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2290       PhaseIdealLoop ideal_loop( igvn, false, true );
2291       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2292       if (failing())  return;
2293     }
2294     ConnectionGraph::do_analysis(this, &igvn);
2295 
2296     if (failing())  return;
2297 
2298     // Optimize out fields loads from scalar replaceable allocations.
2299     igvn.optimize();
2300     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2301 
2302     if (failing())  return;
2303 
2304     if (congraph() != NULL && macro_count() > 0) {
2305       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2306       PhaseMacroExpand mexp(igvn);
2307       mexp.eliminate_macro_nodes();
2308       igvn.set_delay_transform(false);
2309 
2310       igvn.optimize();
2311       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2312 
2313       if (failing())  return;
2314     }
2315   }
2316 
2317   // Loop transforms on the ideal graph.  Range Check Elimination,
2318   // peeling, unrolling, etc.
2319 
2320   // Set loop opts counter
2321   loop_opts_cnt = num_loop_opts();
2322   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2323     {
2324       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2325       PhaseIdealLoop ideal_loop( igvn, true );
2326       loop_opts_cnt--;
2327       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2328       if (failing())  return;
2329     }
2330     // Loop opts pass if partial peeling occurred in previous pass
2331     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2332       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2333       PhaseIdealLoop ideal_loop( igvn, false );
2334       loop_opts_cnt--;
2335       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2336       if (failing())  return;
2337     }
2338     // Loop opts pass for loop-unrolling before CCP
2339     if(major_progress() && (loop_opts_cnt > 0)) {
2340       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2341       PhaseIdealLoop ideal_loop( igvn, false );
2342       loop_opts_cnt--;
2343       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2344     }
2345     if (!failing()) {
2346       // Verify that last round of loop opts produced a valid graph
2347       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2348       PhaseIdealLoop::verify(igvn);
2349     }
2350   }
2351   if (failing())  return;
2352 
2353   // Conditional Constant Propagation;
2354   PhaseCCP ccp( &igvn );
2355   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2356   {
2357     TracePhase tp("ccp", &timers[_t_ccp]);
2358     ccp.do_transform();
2359   }
2360   print_method(PHASE_CPP1, 2);
2361 
2362   assert( true, "Break here to ccp.dump_old2new_map()");
2363 
2364   // Iterative Global Value Numbering, including ideal transforms
2365   {
2366     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2367     igvn = ccp;
2368     igvn.optimize();
2369   }
2370 
2371   print_method(PHASE_ITER_GVN2, 2);
2372 
2373   if (failing())  return;
2374 
2375   // Loop transforms on the ideal graph.  Range Check Elimination,
2376   // peeling, unrolling, etc.
2377   if(loop_opts_cnt > 0) {
2378     debug_only( int cnt = 0; );
2379     while(major_progress() && (loop_opts_cnt > 0)) {
2380       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2381       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2382       PhaseIdealLoop ideal_loop( igvn, true);
2383       loop_opts_cnt--;
2384       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2385       if (failing())  return;
2386     }
2387   }
2388 
2389   if (failing())  return;
2390 
2391   // Ensure that major progress is now clear
2392   C->clear_major_progress();
2393 
2394   {
2395     // Verify that all previous optimizations produced a valid graph
2396     // at least to this point, even if no loop optimizations were done.
2397     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2398     PhaseIdealLoop::verify(igvn);
2399   }
2400 
2401   if (range_check_cast_count() > 0) {
2402     // No more loop optimizations. Remove all range check dependent CastIINodes.
2403     C->remove_range_check_casts(igvn);
2404     igvn.optimize();
2405   }
2406 
2407 #ifdef ASSERT
2408   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2409   bs->verify_gc_barriers(false);
2410 #endif
2411 
2412   {
2413     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2414     PhaseMacroExpand  mex(igvn);
2415     if (mex.expand_macro_nodes()) {
2416       assert(failing(), "must bail out w/ explicit message");
2417       return;
2418     }
2419   }
2420 
2421   if (opaque4_count() > 0) {
2422     C->remove_opaque4_nodes(igvn);
2423     igvn.optimize();
2424   }
2425 
2426   DEBUG_ONLY( _modified_nodes = NULL; )
2427  } // (End scope of igvn; run destructor if necessary for asserts.)
2428 
2429  process_print_inlining();
2430  // A method with only infinite loops has no edges entering loops from root
2431  {
2432    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2433    if (final_graph_reshaping()) {
2434      assert(failing(), "must bail out w/ explicit message");
2435      return;
2436    }
2437  }
2438 
2439  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2440 }
2441 
2442 //------------------------------Code_Gen---------------------------------------
2443 // Given a graph, generate code for it
2444 void Compile::Code_Gen() {
2445   if (failing()) {
2446     return;
2447   }
2448 
2449   // Perform instruction selection.  You might think we could reclaim Matcher
2450   // memory PDQ, but actually the Matcher is used in generating spill code.
2451   // Internals of the Matcher (including some VectorSets) must remain live
2452   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2453   // set a bit in reclaimed memory.
2454 
2455   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2456   // nodes.  Mapping is only valid at the root of each matched subtree.
2457   NOT_PRODUCT( verify_graph_edges(); )
2458 
2459   Matcher matcher;
2460   _matcher = &matcher;
2461   {
2462     TracePhase tp("matcher", &timers[_t_matcher]);
2463     matcher.match();
2464   }
2465   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2466   // nodes.  Mapping is only valid at the root of each matched subtree.
2467   NOT_PRODUCT( verify_graph_edges(); )
2468 
2469   // If you have too many nodes, or if matching has failed, bail out
2470   check_node_count(0, "out of nodes matching instructions");
2471   if (failing()) {
2472     return;
2473   }
2474 
2475   print_method(PHASE_MATCHING, 2);
2476 
2477   // Build a proper-looking CFG
2478   PhaseCFG cfg(node_arena(), root(), matcher);
2479   _cfg = &cfg;
2480   {
2481     TracePhase tp("scheduler", &timers[_t_scheduler]);
2482     bool success = cfg.do_global_code_motion();
2483     if (!success) {
2484       return;
2485     }
2486 
2487     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2488     NOT_PRODUCT( verify_graph_edges(); )
2489     debug_only( cfg.verify(); )
2490   }
2491 
2492   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2493   _regalloc = &regalloc;
2494   {
2495     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2496     // Perform register allocation.  After Chaitin, use-def chains are
2497     // no longer accurate (at spill code) and so must be ignored.
2498     // Node->LRG->reg mappings are still accurate.
2499     _regalloc->Register_Allocate();
2500 
2501     // Bail out if the allocator builds too many nodes
2502     if (failing()) {
2503       return;
2504     }
2505   }
2506 
2507   // Prior to register allocation we kept empty basic blocks in case the
2508   // the allocator needed a place to spill.  After register allocation we
2509   // are not adding any new instructions.  If any basic block is empty, we
2510   // can now safely remove it.
2511   {
2512     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2513     cfg.remove_empty_blocks();
2514     if (do_freq_based_layout()) {
2515       PhaseBlockLayout layout(cfg);
2516     } else {
2517       cfg.set_loop_alignment();
2518     }
2519     cfg.fixup_flow();
2520   }
2521 
2522   // Apply peephole optimizations
2523   if( OptoPeephole ) {
2524     TracePhase tp("peephole", &timers[_t_peephole]);
2525     PhasePeephole peep( _regalloc, cfg);
2526     peep.do_transform();
2527   }
2528 
2529   // Do late expand if CPU requires this.
2530   if (Matcher::require_postalloc_expand) {
2531     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2532     cfg.postalloc_expand(_regalloc);
2533   }
2534 
2535   // Convert Nodes to instruction bits in a buffer
2536   {
2537     TraceTime tp("output", &timers[_t_output], CITime);
2538     Output();
2539   }
2540 
2541   print_method(PHASE_FINAL_CODE);
2542 
2543   // He's dead, Jim.
2544   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
2545   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
2546 }
2547 
2548 
2549 //------------------------------dump_asm---------------------------------------
2550 // Dump formatted assembly
2551 #ifndef PRODUCT
2552 void Compile::dump_asm(int *pcs, uint pc_limit) {
2553   bool cut_short = false;
2554   tty->print_cr("#");
2555   tty->print("#  ");  _tf->dump();  tty->cr();
2556   tty->print_cr("#");
2557 
2558   // For all blocks
2559   int pc = 0x0;                 // Program counter
2560   char starts_bundle = ' ';
2561   _regalloc->dump_frame();
2562 
2563   Node *n = NULL;
2564   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2565     if (VMThread::should_terminate()) {
2566       cut_short = true;
2567       break;
2568     }
2569     Block* block = _cfg->get_block(i);
2570     if (block->is_connector() && !Verbose) {
2571       continue;
2572     }
2573     n = block->head();
2574     if (pcs && n->_idx < pc_limit) {
2575       tty->print("%3.3x   ", pcs[n->_idx]);
2576     } else {
2577       tty->print("      ");
2578     }
2579     block->dump_head(_cfg);
2580     if (block->is_connector()) {
2581       tty->print_cr("        # Empty connector block");
2582     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2583       tty->print_cr("        # Block is sole successor of call");
2584     }
2585 
2586     // For all instructions
2587     Node *delay = NULL;
2588     for (uint j = 0; j < block->number_of_nodes(); j++) {
2589       if (VMThread::should_terminate()) {
2590         cut_short = true;
2591         break;
2592       }
2593       n = block->get_node(j);
2594       if (valid_bundle_info(n)) {
2595         Bundle* bundle = node_bundling(n);
2596         if (bundle->used_in_unconditional_delay()) {
2597           delay = n;
2598           continue;
2599         }
2600         if (bundle->starts_bundle()) {
2601           starts_bundle = '+';
2602         }
2603       }
2604 
2605       if (WizardMode) {
2606         n->dump();
2607       }
2608 
2609       if( !n->is_Region() &&    // Dont print in the Assembly
2610           !n->is_Phi() &&       // a few noisely useless nodes
2611           !n->is_Proj() &&
2612           !n->is_MachTemp() &&
2613           !n->is_SafePointScalarObject() &&
2614           !n->is_Catch() &&     // Would be nice to print exception table targets
2615           !n->is_MergeMem() &&  // Not very interesting
2616           !n->is_top() &&       // Debug info table constants
2617           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2618           ) {
2619         if (pcs && n->_idx < pc_limit)
2620           tty->print("%3.3x", pcs[n->_idx]);
2621         else
2622           tty->print("   ");
2623         tty->print(" %c ", starts_bundle);
2624         starts_bundle = ' ';
2625         tty->print("\t");
2626         n->format(_regalloc, tty);
2627         tty->cr();
2628       }
2629 
2630       // If we have an instruction with a delay slot, and have seen a delay,
2631       // then back up and print it
2632       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2633         assert(delay != NULL, "no unconditional delay instruction");
2634         if (WizardMode) delay->dump();
2635 
2636         if (node_bundling(delay)->starts_bundle())
2637           starts_bundle = '+';
2638         if (pcs && n->_idx < pc_limit)
2639           tty->print("%3.3x", pcs[n->_idx]);
2640         else
2641           tty->print("   ");
2642         tty->print(" %c ", starts_bundle);
2643         starts_bundle = ' ';
2644         tty->print("\t");
2645         delay->format(_regalloc, tty);
2646         tty->cr();
2647         delay = NULL;
2648       }
2649 
2650       // Dump the exception table as well
2651       if( n->is_Catch() && (Verbose || WizardMode) ) {
2652         // Print the exception table for this offset
2653         _handler_table.print_subtable_for(pc);
2654       }
2655     }
2656 
2657     if (pcs && n->_idx < pc_limit)
2658       tty->print_cr("%3.3x", pcs[n->_idx]);
2659     else
2660       tty->cr();
2661 
2662     assert(cut_short || delay == NULL, "no unconditional delay branch");
2663 
2664   } // End of per-block dump
2665   tty->cr();
2666 
2667   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2668 }
2669 #endif
2670 
2671 //------------------------------Final_Reshape_Counts---------------------------
2672 // This class defines counters to help identify when a method
2673 // may/must be executed using hardware with only 24-bit precision.
2674 struct Final_Reshape_Counts : public StackObj {
2675   int  _call_count;             // count non-inlined 'common' calls
2676   int  _float_count;            // count float ops requiring 24-bit precision
2677   int  _double_count;           // count double ops requiring more precision
2678   int  _java_call_count;        // count non-inlined 'java' calls
2679   int  _inner_loop_count;       // count loops which need alignment
2680   VectorSet _visited;           // Visitation flags
2681   Node_List _tests;             // Set of IfNodes & PCTableNodes
2682 
2683   Final_Reshape_Counts() :
2684     _call_count(0), _float_count(0), _double_count(0),
2685     _java_call_count(0), _inner_loop_count(0),
2686     _visited( Thread::current()->resource_area() ) { }
2687 
2688   void inc_call_count  () { _call_count  ++; }
2689   void inc_float_count () { _float_count ++; }
2690   void inc_double_count() { _double_count++; }
2691   void inc_java_call_count() { _java_call_count++; }
2692   void inc_inner_loop_count() { _inner_loop_count++; }
2693 
2694   int  get_call_count  () const { return _call_count  ; }
2695   int  get_float_count () const { return _float_count ; }
2696   int  get_double_count() const { return _double_count; }
2697   int  get_java_call_count() const { return _java_call_count; }
2698   int  get_inner_loop_count() const { return _inner_loop_count; }
2699 };
2700 
2701 #ifdef ASSERT
2702 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2703   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2704   // Make sure the offset goes inside the instance layout.
2705   return k->contains_field_offset(tp->offset());
2706   // Note that OffsetBot and OffsetTop are very negative.
2707 }
2708 #endif
2709 
2710 // Eliminate trivially redundant StoreCMs and accumulate their
2711 // precedence edges.
2712 void Compile::eliminate_redundant_card_marks(Node* n) {
2713   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2714   if (n->in(MemNode::Address)->outcnt() > 1) {
2715     // There are multiple users of the same address so it might be
2716     // possible to eliminate some of the StoreCMs
2717     Node* mem = n->in(MemNode::Memory);
2718     Node* adr = n->in(MemNode::Address);
2719     Node* val = n->in(MemNode::ValueIn);
2720     Node* prev = n;
2721     bool done = false;
2722     // Walk the chain of StoreCMs eliminating ones that match.  As
2723     // long as it's a chain of single users then the optimization is
2724     // safe.  Eliminating partially redundant StoreCMs would require
2725     // cloning copies down the other paths.
2726     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2727       if (adr == mem->in(MemNode::Address) &&
2728           val == mem->in(MemNode::ValueIn)) {
2729         // redundant StoreCM
2730         if (mem->req() > MemNode::OopStore) {
2731           // Hasn't been processed by this code yet.
2732           n->add_prec(mem->in(MemNode::OopStore));
2733         } else {
2734           // Already converted to precedence edge
2735           for (uint i = mem->req(); i < mem->len(); i++) {
2736             // Accumulate any precedence edges
2737             if (mem->in(i) != NULL) {
2738               n->add_prec(mem->in(i));
2739             }
2740           }
2741           // Everything above this point has been processed.
2742           done = true;
2743         }
2744         // Eliminate the previous StoreCM
2745         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2746         assert(mem->outcnt() == 0, "should be dead");
2747         mem->disconnect_inputs(NULL, this);
2748       } else {
2749         prev = mem;
2750       }
2751       mem = prev->in(MemNode::Memory);
2752     }
2753   }
2754 }
2755 
2756 
2757 //------------------------------final_graph_reshaping_impl----------------------
2758 // Implement items 1-5 from final_graph_reshaping below.
2759 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2760 
2761   if ( n->outcnt() == 0 ) return; // dead node
2762   uint nop = n->Opcode();
2763 
2764   // Check for 2-input instruction with "last use" on right input.
2765   // Swap to left input.  Implements item (2).
2766   if( n->req() == 3 &&          // two-input instruction
2767       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2768       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2769       n->in(2)->outcnt() == 1 &&// right use IS a last use
2770       !n->in(2)->is_Con() ) {   // right use is not a constant
2771     // Check for commutative opcode
2772     switch( nop ) {
2773     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2774     case Op_MaxI:  case Op_MinI:
2775     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2776     case Op_AndL:  case Op_XorL:  case Op_OrL:
2777     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2778       // Move "last use" input to left by swapping inputs
2779       n->swap_edges(1, 2);
2780       break;
2781     }
2782     default:
2783       break;
2784     }
2785   }
2786 
2787 #ifdef ASSERT
2788   if( n->is_Mem() ) {
2789     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2790     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2791             // oop will be recorded in oop map if load crosses safepoint
2792             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2793                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2794             "raw memory operations should have control edge");
2795   }
2796 #endif
2797   // Count FPU ops and common calls, implements item (3)
2798   switch( nop ) {
2799   // Count all float operations that may use FPU
2800   case Op_AddF:
2801   case Op_SubF:
2802   case Op_MulF:
2803   case Op_DivF:
2804   case Op_NegF:
2805   case Op_ModF:
2806   case Op_ConvI2F:
2807   case Op_ConF:
2808   case Op_CmpF:
2809   case Op_CmpF3:
2810   // case Op_ConvL2F: // longs are split into 32-bit halves
2811     frc.inc_float_count();
2812     break;
2813 
2814   case Op_ConvF2D:
2815   case Op_ConvD2F:
2816     frc.inc_float_count();
2817     frc.inc_double_count();
2818     break;
2819 
2820   // Count all double operations that may use FPU
2821   case Op_AddD:
2822   case Op_SubD:
2823   case Op_MulD:
2824   case Op_DivD:
2825   case Op_NegD:
2826   case Op_ModD:
2827   case Op_ConvI2D:
2828   case Op_ConvD2I:
2829   // case Op_ConvL2D: // handled by leaf call
2830   // case Op_ConvD2L: // handled by leaf call
2831   case Op_ConD:
2832   case Op_CmpD:
2833   case Op_CmpD3:
2834     frc.inc_double_count();
2835     break;
2836   case Op_Opaque1:              // Remove Opaque Nodes before matching
2837   case Op_Opaque2:              // Remove Opaque Nodes before matching
2838   case Op_Opaque3:
2839     n->subsume_by(n->in(1), this);
2840     break;
2841   case Op_CallStaticJava:
2842   case Op_CallJava:
2843   case Op_CallDynamicJava:
2844     frc.inc_java_call_count(); // Count java call site;
2845   case Op_CallRuntime:
2846   case Op_CallLeaf:
2847   case Op_CallLeafNoFP: {
2848     assert (n->is_Call(), "");
2849     CallNode *call = n->as_Call();
2850     // Count call sites where the FP mode bit would have to be flipped.
2851     // Do not count uncommon runtime calls:
2852     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2853     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2854     if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
2855       frc.inc_call_count();   // Count the call site
2856     } else {                  // See if uncommon argument is shared
2857       Node *n = call->in(TypeFunc::Parms);
2858       int nop = n->Opcode();
2859       // Clone shared simple arguments to uncommon calls, item (1).
2860       if (n->outcnt() > 1 &&
2861           !n->is_Proj() &&
2862           nop != Op_CreateEx &&
2863           nop != Op_CheckCastPP &&
2864           nop != Op_DecodeN &&
2865           nop != Op_DecodeNKlass &&
2866           !n->is_Mem() &&
2867           !n->is_Phi()) {
2868         Node *x = n->clone();
2869         call->set_req(TypeFunc::Parms, x);
2870       }
2871     }
2872     break;
2873   }
2874 
2875   case Op_StoreD:
2876   case Op_LoadD:
2877   case Op_LoadD_unaligned:
2878     frc.inc_double_count();
2879     goto handle_mem;
2880   case Op_StoreF:
2881   case Op_LoadF:
2882     frc.inc_float_count();
2883     goto handle_mem;
2884 
2885   case Op_StoreCM:
2886     {
2887       // Convert OopStore dependence into precedence edge
2888       Node* prec = n->in(MemNode::OopStore);
2889       n->del_req(MemNode::OopStore);
2890       n->add_prec(prec);
2891       eliminate_redundant_card_marks(n);
2892     }
2893 
2894     // fall through
2895 
2896   case Op_StoreB:
2897   case Op_StoreC:
2898   case Op_StorePConditional:
2899   case Op_StoreI:
2900   case Op_StoreL:
2901   case Op_StoreIConditional:
2902   case Op_StoreLConditional:
2903   case Op_CompareAndSwapB:
2904   case Op_CompareAndSwapS:
2905   case Op_CompareAndSwapI:
2906   case Op_CompareAndSwapL:
2907   case Op_CompareAndSwapP:
2908   case Op_CompareAndSwapN:
2909   case Op_WeakCompareAndSwapB:
2910   case Op_WeakCompareAndSwapS:
2911   case Op_WeakCompareAndSwapI:
2912   case Op_WeakCompareAndSwapL:
2913   case Op_WeakCompareAndSwapP:
2914   case Op_WeakCompareAndSwapN:
2915   case Op_CompareAndExchangeB:
2916   case Op_CompareAndExchangeS:
2917   case Op_CompareAndExchangeI:
2918   case Op_CompareAndExchangeL:
2919   case Op_CompareAndExchangeP:
2920   case Op_CompareAndExchangeN:
2921   case Op_GetAndAddS:
2922   case Op_GetAndAddB:
2923   case Op_GetAndAddI:
2924   case Op_GetAndAddL:
2925   case Op_GetAndSetS:
2926   case Op_GetAndSetB:
2927   case Op_GetAndSetI:
2928   case Op_GetAndSetL:
2929   case Op_GetAndSetP:
2930   case Op_GetAndSetN:
2931   case Op_StoreP:
2932   case Op_StoreN:
2933   case Op_StoreNKlass:
2934   case Op_LoadB:
2935   case Op_LoadUB:
2936   case Op_LoadUS:
2937   case Op_LoadI:
2938   case Op_LoadKlass:
2939   case Op_LoadNKlass:
2940   case Op_LoadL:
2941   case Op_LoadL_unaligned:
2942   case Op_LoadPLocked:
2943   case Op_LoadP:
2944   case Op_LoadN:
2945   case Op_LoadRange:
2946   case Op_LoadS: {
2947   handle_mem:
2948 #ifdef ASSERT
2949     if( VerifyOptoOopOffsets ) {
2950       assert( n->is_Mem(), "" );
2951       MemNode *mem  = (MemNode*)n;
2952       // Check to see if address types have grounded out somehow.
2953       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2954       assert( !tp || oop_offset_is_sane(tp), "" );
2955     }
2956 #endif
2957     break;
2958   }
2959 
2960   case Op_AddP: {               // Assert sane base pointers
2961     Node *addp = n->in(AddPNode::Address);
2962     assert( !addp->is_AddP() ||
2963             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2964             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2965             "Base pointers must match (addp %u)", addp->_idx );
2966 #ifdef _LP64
2967     if ((UseCompressedOops || UseCompressedClassPointers) &&
2968         addp->Opcode() == Op_ConP &&
2969         addp == n->in(AddPNode::Base) &&
2970         n->in(AddPNode::Offset)->is_Con()) {
2971       // If the transformation of ConP to ConN+DecodeN is beneficial depends
2972       // on the platform and on the compressed oops mode.
2973       // Use addressing with narrow klass to load with offset on x86.
2974       // Some platforms can use the constant pool to load ConP.
2975       // Do this transformation here since IGVN will convert ConN back to ConP.
2976       const Type* t = addp->bottom_type();
2977       bool is_oop   = t->isa_oopptr() != NULL;
2978       bool is_klass = t->isa_klassptr() != NULL;
2979 
2980       if ((is_oop   && Matcher::const_oop_prefer_decode()  ) ||
2981           (is_klass && Matcher::const_klass_prefer_decode())) {
2982         Node* nn = NULL;
2983 
2984         int op = is_oop ? Op_ConN : Op_ConNKlass;
2985 
2986         // Look for existing ConN node of the same exact type.
2987         Node* r  = root();
2988         uint cnt = r->outcnt();
2989         for (uint i = 0; i < cnt; i++) {
2990           Node* m = r->raw_out(i);
2991           if (m!= NULL && m->Opcode() == op &&
2992               m->bottom_type()->make_ptr() == t) {
2993             nn = m;
2994             break;
2995           }
2996         }
2997         if (nn != NULL) {
2998           // Decode a narrow oop to match address
2999           // [R12 + narrow_oop_reg<<3 + offset]
3000           if (is_oop) {
3001             nn = new DecodeNNode(nn, t);
3002           } else {
3003             nn = new DecodeNKlassNode(nn, t);
3004           }
3005           // Check for succeeding AddP which uses the same Base.
3006           // Otherwise we will run into the assertion above when visiting that guy.
3007           for (uint i = 0; i < n->outcnt(); ++i) {
3008             Node *out_i = n->raw_out(i);
3009             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
3010               out_i->set_req(AddPNode::Base, nn);
3011 #ifdef ASSERT
3012               for (uint j = 0; j < out_i->outcnt(); ++j) {
3013                 Node *out_j = out_i->raw_out(j);
3014                 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3015                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3016               }
3017 #endif
3018             }
3019           }
3020           n->set_req(AddPNode::Base, nn);
3021           n->set_req(AddPNode::Address, nn);
3022           if (addp->outcnt() == 0) {
3023             addp->disconnect_inputs(NULL, this);
3024           }
3025         }
3026       }
3027     }
3028 #endif
3029     // platform dependent reshaping of the address expression
3030     reshape_address(n->as_AddP());
3031     break;
3032   }
3033 
3034   case Op_CastPP: {
3035     // Remove CastPP nodes to gain more freedom during scheduling but
3036     // keep the dependency they encode as control or precedence edges
3037     // (if control is set already) on memory operations. Some CastPP
3038     // nodes don't have a control (don't carry a dependency): skip
3039     // those.
3040     if (n->in(0) != NULL) {
3041       ResourceMark rm;
3042       Unique_Node_List wq;
3043       wq.push(n);
3044       for (uint next = 0; next < wq.size(); ++next) {
3045         Node *m = wq.at(next);
3046         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3047           Node* use = m->fast_out(i);
3048           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
3049             use->ensure_control_or_add_prec(n->in(0));
3050           } else {
3051             switch(use->Opcode()) {
3052             case Op_AddP:
3053             case Op_DecodeN:
3054             case Op_DecodeNKlass:
3055             case Op_CheckCastPP:
3056             case Op_CastPP:
3057               wq.push(use);
3058               break;
3059             }
3060           }
3061         }
3062       }
3063     }
3064     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3065     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3066       Node* in1 = n->in(1);
3067       const Type* t = n->bottom_type();
3068       Node* new_in1 = in1->clone();
3069       new_in1->as_DecodeN()->set_type(t);
3070 
3071       if (!Matcher::narrow_oop_use_complex_address()) {
3072         //
3073         // x86, ARM and friends can handle 2 adds in addressing mode
3074         // and Matcher can fold a DecodeN node into address by using
3075         // a narrow oop directly and do implicit NULL check in address:
3076         //
3077         // [R12 + narrow_oop_reg<<3 + offset]
3078         // NullCheck narrow_oop_reg
3079         //
3080         // On other platforms (Sparc) we have to keep new DecodeN node and
3081         // use it to do implicit NULL check in address:
3082         //
3083         // decode_not_null narrow_oop_reg, base_reg
3084         // [base_reg + offset]
3085         // NullCheck base_reg
3086         //
3087         // Pin the new DecodeN node to non-null path on these platform (Sparc)
3088         // to keep the information to which NULL check the new DecodeN node
3089         // corresponds to use it as value in implicit_null_check().
3090         //
3091         new_in1->set_req(0, n->in(0));
3092       }
3093 
3094       n->subsume_by(new_in1, this);
3095       if (in1->outcnt() == 0) {
3096         in1->disconnect_inputs(NULL, this);
3097       }
3098     } else {
3099       n->subsume_by(n->in(1), this);
3100       if (n->outcnt() == 0) {
3101         n->disconnect_inputs(NULL, this);
3102       }
3103     }
3104     break;
3105   }
3106 #ifdef _LP64
3107   case Op_CmpP:
3108     // Do this transformation here to preserve CmpPNode::sub() and
3109     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3110     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3111       Node* in1 = n->in(1);
3112       Node* in2 = n->in(2);
3113       if (!in1->is_DecodeNarrowPtr()) {
3114         in2 = in1;
3115         in1 = n->in(2);
3116       }
3117       assert(in1->is_DecodeNarrowPtr(), "sanity");
3118 
3119       Node* new_in2 = NULL;
3120       if (in2->is_DecodeNarrowPtr()) {
3121         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3122         new_in2 = in2->in(1);
3123       } else if (in2->Opcode() == Op_ConP) {
3124         const Type* t = in2->bottom_type();
3125         if (t == TypePtr::NULL_PTR) {
3126           assert(in1->is_DecodeN(), "compare klass to null?");
3127           // Don't convert CmpP null check into CmpN if compressed
3128           // oops implicit null check is not generated.
3129           // This will allow to generate normal oop implicit null check.
3130           if (Matcher::gen_narrow_oop_implicit_null_checks())
3131             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3132           //
3133           // This transformation together with CastPP transformation above
3134           // will generated code for implicit NULL checks for compressed oops.
3135           //
3136           // The original code after Optimize()
3137           //
3138           //    LoadN memory, narrow_oop_reg
3139           //    decode narrow_oop_reg, base_reg
3140           //    CmpP base_reg, NULL
3141           //    CastPP base_reg // NotNull
3142           //    Load [base_reg + offset], val_reg
3143           //
3144           // after these transformations will be
3145           //
3146           //    LoadN memory, narrow_oop_reg
3147           //    CmpN narrow_oop_reg, NULL
3148           //    decode_not_null narrow_oop_reg, base_reg
3149           //    Load [base_reg + offset], val_reg
3150           //
3151           // and the uncommon path (== NULL) will use narrow_oop_reg directly
3152           // since narrow oops can be used in debug info now (see the code in
3153           // final_graph_reshaping_walk()).
3154           //
3155           // At the end the code will be matched to
3156           // on x86:
3157           //
3158           //    Load_narrow_oop memory, narrow_oop_reg
3159           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3160           //    NullCheck narrow_oop_reg
3161           //
3162           // and on sparc:
3163           //
3164           //    Load_narrow_oop memory, narrow_oop_reg
3165           //    decode_not_null narrow_oop_reg, base_reg
3166           //    Load [base_reg + offset], val_reg
3167           //    NullCheck base_reg
3168           //
3169         } else if (t->isa_oopptr()) {
3170           new_in2 = ConNode::make(t->make_narrowoop());
3171         } else if (t->isa_klassptr()) {
3172           new_in2 = ConNode::make(t->make_narrowklass());
3173         }
3174       }
3175       if (new_in2 != NULL) {
3176         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3177         n->subsume_by(cmpN, this);
3178         if (in1->outcnt() == 0) {
3179           in1->disconnect_inputs(NULL, this);
3180         }
3181         if (in2->outcnt() == 0) {
3182           in2->disconnect_inputs(NULL, this);
3183         }
3184       }
3185     }
3186     break;
3187 
3188   case Op_DecodeN:
3189   case Op_DecodeNKlass:
3190     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3191     // DecodeN could be pinned when it can't be fold into
3192     // an address expression, see the code for Op_CastPP above.
3193     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3194     break;
3195 
3196   case Op_EncodeP:
3197   case Op_EncodePKlass: {
3198     Node* in1 = n->in(1);
3199     if (in1->is_DecodeNarrowPtr()) {
3200       n->subsume_by(in1->in(1), this);
3201     } else if (in1->Opcode() == Op_ConP) {
3202       const Type* t = in1->bottom_type();
3203       if (t == TypePtr::NULL_PTR) {
3204         assert(t->isa_oopptr(), "null klass?");
3205         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3206       } else if (t->isa_oopptr()) {
3207         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3208       } else if (t->isa_klassptr()) {
3209         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3210       }
3211     }
3212     if (in1->outcnt() == 0) {
3213       in1->disconnect_inputs(NULL, this);
3214     }
3215     break;
3216   }
3217 
3218   case Op_Proj: {
3219     if (OptimizeStringConcat) {
3220       ProjNode* p = n->as_Proj();
3221       if (p->_is_io_use) {
3222         // Separate projections were used for the exception path which
3223         // are normally removed by a late inline.  If it wasn't inlined
3224         // then they will hang around and should just be replaced with
3225         // the original one.
3226         Node* proj = NULL;
3227         // Replace with just one
3228         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3229           Node *use = i.get();
3230           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3231             proj = use;
3232             break;
3233           }
3234         }
3235         assert(proj != NULL, "must be found");
3236         p->subsume_by(proj, this);
3237       }
3238     }
3239     break;
3240   }
3241 
3242   case Op_Phi:
3243     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3244       // The EncodeP optimization may create Phi with the same edges
3245       // for all paths. It is not handled well by Register Allocator.
3246       Node* unique_in = n->in(1);
3247       assert(unique_in != NULL, "");
3248       uint cnt = n->req();
3249       for (uint i = 2; i < cnt; i++) {
3250         Node* m = n->in(i);
3251         assert(m != NULL, "");
3252         if (unique_in != m)
3253           unique_in = NULL;
3254       }
3255       if (unique_in != NULL) {
3256         n->subsume_by(unique_in, this);
3257       }
3258     }
3259     break;
3260 
3261 #endif
3262 
3263 #ifdef ASSERT
3264   case Op_CastII:
3265     // Verify that all range check dependent CastII nodes were removed.
3266     if (n->isa_CastII()->has_range_check()) {
3267       n->dump(3);
3268       assert(false, "Range check dependent CastII node was not removed");
3269     }
3270     break;
3271 #endif
3272 
3273   case Op_ModI:
3274     if (UseDivMod) {
3275       // Check if a%b and a/b both exist
3276       Node* d = n->find_similar(Op_DivI);
3277       if (d) {
3278         // Replace them with a fused divmod if supported
3279         if (Matcher::has_match_rule(Op_DivModI)) {
3280           DivModINode* divmod = DivModINode::make(n);
3281           d->subsume_by(divmod->div_proj(), this);
3282           n->subsume_by(divmod->mod_proj(), this);
3283         } else {
3284           // replace a%b with a-((a/b)*b)
3285           Node* mult = new MulINode(d, d->in(2));
3286           Node* sub  = new SubINode(d->in(1), mult);
3287           n->subsume_by(sub, this);
3288         }
3289       }
3290     }
3291     break;
3292 
3293   case Op_ModL:
3294     if (UseDivMod) {
3295       // Check if a%b and a/b both exist
3296       Node* d = n->find_similar(Op_DivL);
3297       if (d) {
3298         // Replace them with a fused divmod if supported
3299         if (Matcher::has_match_rule(Op_DivModL)) {
3300           DivModLNode* divmod = DivModLNode::make(n);
3301           d->subsume_by(divmod->div_proj(), this);
3302           n->subsume_by(divmod->mod_proj(), this);
3303         } else {
3304           // replace a%b with a-((a/b)*b)
3305           Node* mult = new MulLNode(d, d->in(2));
3306           Node* sub  = new SubLNode(d->in(1), mult);
3307           n->subsume_by(sub, this);
3308         }
3309       }
3310     }
3311     break;
3312 
3313   case Op_LoadVector:
3314   case Op_StoreVector:
3315     break;
3316 
3317   case Op_AddReductionVI:
3318   case Op_AddReductionVL:
3319   case Op_AddReductionVF:
3320   case Op_AddReductionVD:
3321   case Op_MulReductionVI:
3322   case Op_MulReductionVL:
3323   case Op_MulReductionVF:
3324   case Op_MulReductionVD:
3325     break;
3326 
3327   case Op_PackB:
3328   case Op_PackS:
3329   case Op_PackI:
3330   case Op_PackF:
3331   case Op_PackL:
3332   case Op_PackD:
3333     if (n->req()-1 > 2) {
3334       // Replace many operand PackNodes with a binary tree for matching
3335       PackNode* p = (PackNode*) n;
3336       Node* btp = p->binary_tree_pack(1, n->req());
3337       n->subsume_by(btp, this);
3338     }
3339     break;
3340   case Op_Loop:
3341   case Op_CountedLoop:
3342   case Op_OuterStripMinedLoop:
3343     if (n->as_Loop()->is_inner_loop()) {
3344       frc.inc_inner_loop_count();
3345     }
3346     n->as_Loop()->verify_strip_mined(0);
3347     break;
3348   case Op_LShiftI:
3349   case Op_RShiftI:
3350   case Op_URShiftI:
3351   case Op_LShiftL:
3352   case Op_RShiftL:
3353   case Op_URShiftL:
3354     if (Matcher::need_masked_shift_count) {
3355       // The cpu's shift instructions don't restrict the count to the
3356       // lower 5/6 bits. We need to do the masking ourselves.
3357       Node* in2 = n->in(2);
3358       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3359       const TypeInt* t = in2->find_int_type();
3360       if (t != NULL && t->is_con()) {
3361         juint shift = t->get_con();
3362         if (shift > mask) { // Unsigned cmp
3363           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3364         }
3365       } else {
3366         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3367           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3368           n->set_req(2, shift);
3369         }
3370       }
3371       if (in2->outcnt() == 0) { // Remove dead node
3372         in2->disconnect_inputs(NULL, this);
3373       }
3374     }
3375     break;
3376   case Op_MemBarStoreStore:
3377   case Op_MemBarRelease:
3378     // Break the link with AllocateNode: it is no longer useful and
3379     // confuses register allocation.
3380     if (n->req() > MemBarNode::Precedent) {
3381       n->set_req(MemBarNode::Precedent, top());
3382     }
3383     break;
3384   case Op_RangeCheck: {
3385     RangeCheckNode* rc = n->as_RangeCheck();
3386     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3387     n->subsume_by(iff, this);
3388     frc._tests.push(iff);
3389     break;
3390   }
3391   case Op_ConvI2L: {
3392     if (!Matcher::convi2l_type_required) {
3393       // Code generation on some platforms doesn't need accurate
3394       // ConvI2L types. Widening the type can help remove redundant
3395       // address computations.
3396       n->as_Type()->set_type(TypeLong::INT);
3397       ResourceMark rm;
3398       Node_List wq;
3399       wq.push(n);
3400       for (uint next = 0; next < wq.size(); next++) {
3401         Node *m = wq.at(next);
3402 
3403         for(;;) {
3404           // Loop over all nodes with identical inputs edges as m
3405           Node* k = m->find_similar(m->Opcode());
3406           if (k == NULL) {
3407             break;
3408           }
3409           // Push their uses so we get a chance to remove node made
3410           // redundant
3411           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3412             Node* u = k->fast_out(i);
3413             assert(!wq.contains(u), "shouldn't process one node several times");
3414             if (u->Opcode() == Op_LShiftL ||
3415                 u->Opcode() == Op_AddL ||
3416                 u->Opcode() == Op_SubL ||
3417                 u->Opcode() == Op_AddP) {
3418               wq.push(u);
3419             }
3420           }
3421           // Replace all nodes with identical edges as m with m
3422           k->subsume_by(m, this);
3423         }
3424       }
3425     }
3426     break;
3427   }
3428   case Op_CmpUL: {
3429     if (!Matcher::has_match_rule(Op_CmpUL)) {
3430       // We don't support unsigned long comparisons. Set 'max_idx_expr'
3431       // to max_julong if < 0 to make the signed comparison fail.
3432       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3433       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3434       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3435       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3436       Node* andl = new AndLNode(orl, remove_sign_mask);
3437       Node* cmp = new CmpLNode(andl, n->in(2));
3438       n->subsume_by(cmp, this);
3439     }
3440     break;
3441   }
3442 #ifdef ASSERT
3443   case Op_ValueTypePtr:
3444   case Op_ValueType: {
3445     n->dump(-1);
3446     assert(false, "value type node was not removed");
3447     break;
3448   }
3449 #endif
3450   default:
3451     assert( !n->is_Call(), "" );
3452     assert( !n->is_Mem(), "" );
3453     assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3454     break;
3455   }
3456 
3457   // Collect CFG split points
3458   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3459     frc._tests.push(n);
3460   }
3461 }
3462 
3463 //------------------------------final_graph_reshaping_walk---------------------
3464 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3465 // requires that the walk visits a node's inputs before visiting the node.
3466 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3467   ResourceArea *area = Thread::current()->resource_area();
3468   Unique_Node_List sfpt(area);
3469 
3470   frc._visited.set(root->_idx); // first, mark node as visited
3471   uint cnt = root->req();
3472   Node *n = root;
3473   uint  i = 0;
3474   while (true) {
3475     if (i < cnt) {
3476       // Place all non-visited non-null inputs onto stack
3477       Node* m = n->in(i);
3478       ++i;
3479       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3480         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3481           // compute worst case interpreter size in case of a deoptimization
3482           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3483 
3484           sfpt.push(m);
3485         }
3486         cnt = m->req();
3487         nstack.push(n, i); // put on stack parent and next input's index
3488         n = m;
3489         i = 0;
3490       }
3491     } else {
3492       // Now do post-visit work
3493       final_graph_reshaping_impl( n, frc );
3494       if (nstack.is_empty())
3495         break;             // finished
3496       n = nstack.node();   // Get node from stack
3497       cnt = n->req();
3498       i = nstack.index();
3499       nstack.pop();        // Shift to the next node on stack
3500     }
3501   }
3502 
3503   // Skip next transformation if compressed oops are not used.
3504   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3505       (!UseCompressedOops && !UseCompressedClassPointers))
3506     return;
3507 
3508   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3509   // It could be done for an uncommon traps or any safepoints/calls
3510   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3511   while (sfpt.size() > 0) {
3512     n = sfpt.pop();
3513     JVMState *jvms = n->as_SafePoint()->jvms();
3514     assert(jvms != NULL, "sanity");
3515     int start = jvms->debug_start();
3516     int end   = n->req();
3517     bool is_uncommon = (n->is_CallStaticJava() &&
3518                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3519     for (int j = start; j < end; j++) {
3520       Node* in = n->in(j);
3521       if (in->is_DecodeNarrowPtr()) {
3522         bool safe_to_skip = true;
3523         if (!is_uncommon ) {
3524           // Is it safe to skip?
3525           for (uint i = 0; i < in->outcnt(); i++) {
3526             Node* u = in->raw_out(i);
3527             if (!u->is_SafePoint() ||
3528                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3529               safe_to_skip = false;
3530             }
3531           }
3532         }
3533         if (safe_to_skip) {
3534           n->set_req(j, in->in(1));
3535         }
3536         if (in->outcnt() == 0) {
3537           in->disconnect_inputs(NULL, this);
3538         }
3539       }
3540     }
3541   }
3542 }
3543 
3544 //------------------------------final_graph_reshaping--------------------------
3545 // Final Graph Reshaping.
3546 //
3547 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3548 //     and not commoned up and forced early.  Must come after regular
3549 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3550 //     inputs to Loop Phis; these will be split by the allocator anyways.
3551 //     Remove Opaque nodes.
3552 // (2) Move last-uses by commutative operations to the left input to encourage
3553 //     Intel update-in-place two-address operations and better register usage
3554 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3555 //     calls canonicalizing them back.
3556 // (3) Count the number of double-precision FP ops, single-precision FP ops
3557 //     and call sites.  On Intel, we can get correct rounding either by
3558 //     forcing singles to memory (requires extra stores and loads after each
3559 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3560 //     clearing the mode bit around call sites).  The mode bit is only used
3561 //     if the relative frequency of single FP ops to calls is low enough.
3562 //     This is a key transform for SPEC mpeg_audio.
3563 // (4) Detect infinite loops; blobs of code reachable from above but not
3564 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3565 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3566 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3567 //     Detection is by looking for IfNodes where only 1 projection is
3568 //     reachable from below or CatchNodes missing some targets.
3569 // (5) Assert for insane oop offsets in debug mode.
3570 
3571 bool Compile::final_graph_reshaping() {
3572   // an infinite loop may have been eliminated by the optimizer,
3573   // in which case the graph will be empty.
3574   if (root()->req() == 1) {
3575     record_method_not_compilable("trivial infinite loop");
3576     return true;
3577   }
3578 
3579   // Expensive nodes have their control input set to prevent the GVN
3580   // from freely commoning them. There's no GVN beyond this point so
3581   // no need to keep the control input. We want the expensive nodes to
3582   // be freely moved to the least frequent code path by gcm.
3583   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3584   for (int i = 0; i < expensive_count(); i++) {
3585     _expensive_nodes->at(i)->set_req(0, NULL);
3586   }
3587 
3588   Final_Reshape_Counts frc;
3589 
3590   // Visit everybody reachable!
3591   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3592   Node_Stack nstack(live_nodes() >> 1);
3593   final_graph_reshaping_walk(nstack, root(), frc);
3594 
3595   // Check for unreachable (from below) code (i.e., infinite loops).
3596   for( uint i = 0; i < frc._tests.size(); i++ ) {
3597     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3598     // Get number of CFG targets.
3599     // Note that PCTables include exception targets after calls.
3600     uint required_outcnt = n->required_outcnt();
3601     if (n->outcnt() != required_outcnt) {
3602       // Check for a few special cases.  Rethrow Nodes never take the
3603       // 'fall-thru' path, so expected kids is 1 less.
3604       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3605         if (n->in(0)->in(0)->is_Call()) {
3606           CallNode *call = n->in(0)->in(0)->as_Call();
3607           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3608             required_outcnt--;      // Rethrow always has 1 less kid
3609           } else if (call->req() > TypeFunc::Parms &&
3610                      call->is_CallDynamicJava()) {
3611             // Check for null receiver. In such case, the optimizer has
3612             // detected that the virtual call will always result in a null
3613             // pointer exception. The fall-through projection of this CatchNode
3614             // will not be populated.
3615             Node *arg0 = call->in(TypeFunc::Parms);
3616             if (arg0->is_Type() &&
3617                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3618               required_outcnt--;
3619             }
3620           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3621                      call->req() > TypeFunc::Parms+1 &&
3622                      call->is_CallStaticJava()) {
3623             // Check for negative array length. In such case, the optimizer has
3624             // detected that the allocation attempt will always result in an
3625             // exception. There is no fall-through projection of this CatchNode .
3626             Node *arg1 = call->in(TypeFunc::Parms+1);
3627             if (arg1->is_Type() &&
3628                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3629               required_outcnt--;
3630             }
3631           }
3632         }
3633       }
3634       // Recheck with a better notion of 'required_outcnt'
3635       if (n->outcnt() != required_outcnt) {
3636         record_method_not_compilable("malformed control flow");
3637         return true;            // Not all targets reachable!
3638       }
3639     }
3640     // Check that I actually visited all kids.  Unreached kids
3641     // must be infinite loops.
3642     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3643       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3644         record_method_not_compilable("infinite loop");
3645         return true;            // Found unvisited kid; must be unreach
3646       }
3647 
3648     // Here so verification code in final_graph_reshaping_walk()
3649     // always see an OuterStripMinedLoopEnd
3650     if (n->is_OuterStripMinedLoopEnd()) {
3651       IfNode* init_iff = n->as_If();
3652       Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
3653       n->subsume_by(iff, this);
3654     }
3655   }
3656 
3657   // If original bytecodes contained a mixture of floats and doubles
3658   // check if the optimizer has made it homogenous, item (3).
3659   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3660       frc.get_float_count() > 32 &&
3661       frc.get_double_count() == 0 &&
3662       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3663     set_24_bit_selection_and_mode( false,  true );
3664   }
3665 
3666   set_java_calls(frc.get_java_call_count());
3667   set_inner_loops(frc.get_inner_loop_count());
3668 
3669   // No infinite loops, no reason to bail out.
3670   return false;
3671 }
3672 
3673 //-----------------------------too_many_traps----------------------------------
3674 // Report if there are too many traps at the current method and bci.
3675 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3676 bool Compile::too_many_traps(ciMethod* method,
3677                              int bci,
3678                              Deoptimization::DeoptReason reason) {
3679   ciMethodData* md = method->method_data();
3680   if (md->is_empty()) {
3681     // Assume the trap has not occurred, or that it occurred only
3682     // because of a transient condition during start-up in the interpreter.
3683     return false;
3684   }
3685   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3686   if (md->has_trap_at(bci, m, reason) != 0) {
3687     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3688     // Also, if there are multiple reasons, or if there is no per-BCI record,
3689     // assume the worst.
3690     if (log())
3691       log()->elem("observe trap='%s' count='%d'",
3692                   Deoptimization::trap_reason_name(reason),
3693                   md->trap_count(reason));
3694     return true;
3695   } else {
3696     // Ignore method/bci and see if there have been too many globally.
3697     return too_many_traps(reason, md);
3698   }
3699 }
3700 
3701 // Less-accurate variant which does not require a method and bci.
3702 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3703                              ciMethodData* logmd) {
3704   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3705     // Too many traps globally.
3706     // Note that we use cumulative trap_count, not just md->trap_count.
3707     if (log()) {
3708       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3709       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3710                   Deoptimization::trap_reason_name(reason),
3711                   mcount, trap_count(reason));
3712     }
3713     return true;
3714   } else {
3715     // The coast is clear.
3716     return false;
3717   }
3718 }
3719 
3720 //--------------------------too_many_recompiles--------------------------------
3721 // Report if there are too many recompiles at the current method and bci.
3722 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3723 // Is not eager to return true, since this will cause the compiler to use
3724 // Action_none for a trap point, to avoid too many recompilations.
3725 bool Compile::too_many_recompiles(ciMethod* method,
3726                                   int bci,
3727                                   Deoptimization::DeoptReason reason) {
3728   ciMethodData* md = method->method_data();
3729   if (md->is_empty()) {
3730     // Assume the trap has not occurred, or that it occurred only
3731     // because of a transient condition during start-up in the interpreter.
3732     return false;
3733   }
3734   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3735   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3736   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3737   Deoptimization::DeoptReason per_bc_reason
3738     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3739   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3740   if ((per_bc_reason == Deoptimization::Reason_none
3741        || md->has_trap_at(bci, m, reason) != 0)
3742       // The trap frequency measure we care about is the recompile count:
3743       && md->trap_recompiled_at(bci, m)
3744       && md->overflow_recompile_count() >= bc_cutoff) {
3745     // Do not emit a trap here if it has already caused recompilations.
3746     // Also, if there are multiple reasons, or if there is no per-BCI record,
3747     // assume the worst.
3748     if (log())
3749       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3750                   Deoptimization::trap_reason_name(reason),
3751                   md->trap_count(reason),
3752                   md->overflow_recompile_count());
3753     return true;
3754   } else if (trap_count(reason) != 0
3755              && decompile_count() >= m_cutoff) {
3756     // Too many recompiles globally, and we have seen this sort of trap.
3757     // Use cumulative decompile_count, not just md->decompile_count.
3758     if (log())
3759       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3760                   Deoptimization::trap_reason_name(reason),
3761                   md->trap_count(reason), trap_count(reason),
3762                   md->decompile_count(), decompile_count());
3763     return true;
3764   } else {
3765     // The coast is clear.
3766     return false;
3767   }
3768 }
3769 
3770 // Compute when not to trap. Used by matching trap based nodes and
3771 // NullCheck optimization.
3772 void Compile::set_allowed_deopt_reasons() {
3773   _allowed_reasons = 0;
3774   if (is_method_compilation()) {
3775     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3776       assert(rs < BitsPerInt, "recode bit map");
3777       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3778         _allowed_reasons |= nth_bit(rs);
3779       }
3780     }
3781   }
3782 }
3783 
3784 #ifndef PRODUCT
3785 //------------------------------verify_graph_edges---------------------------
3786 // Walk the Graph and verify that there is a one-to-one correspondence
3787 // between Use-Def edges and Def-Use edges in the graph.
3788 void Compile::verify_graph_edges(bool no_dead_code) {
3789   if (VerifyGraphEdges) {
3790     ResourceArea *area = Thread::current()->resource_area();
3791     Unique_Node_List visited(area);
3792     // Call recursive graph walk to check edges
3793     _root->verify_edges(visited);
3794     if (no_dead_code) {
3795       // Now make sure that no visited node is used by an unvisited node.
3796       bool dead_nodes = false;
3797       Unique_Node_List checked(area);
3798       while (visited.size() > 0) {
3799         Node* n = visited.pop();
3800         checked.push(n);
3801         for (uint i = 0; i < n->outcnt(); i++) {
3802           Node* use = n->raw_out(i);
3803           if (checked.member(use))  continue;  // already checked
3804           if (visited.member(use))  continue;  // already in the graph
3805           if (use->is_Con())        continue;  // a dead ConNode is OK
3806           // At this point, we have found a dead node which is DU-reachable.
3807           if (!dead_nodes) {
3808             tty->print_cr("*** Dead nodes reachable via DU edges:");
3809             dead_nodes = true;
3810           }
3811           use->dump(2);
3812           tty->print_cr("---");
3813           checked.push(use);  // No repeats; pretend it is now checked.
3814         }
3815       }
3816       assert(!dead_nodes, "using nodes must be reachable from root");
3817     }
3818   }
3819 }
3820 
3821 // Verify GC barriers consistency
3822 // Currently supported:
3823 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3824 void Compile::verify_barriers() {
3825 #if INCLUDE_G1GC
3826   if (UseG1GC) {
3827     // Verify G1 pre-barriers
3828     const int marking_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
3829 
3830     ResourceArea *area = Thread::current()->resource_area();
3831     Unique_Node_List visited(area);
3832     Node_List worklist(area);
3833     // We're going to walk control flow backwards starting from the Root
3834     worklist.push(_root);
3835     while (worklist.size() > 0) {
3836       Node* x = worklist.pop();
3837       if (x == NULL || x == top()) continue;
3838       if (visited.member(x)) {
3839         continue;
3840       } else {
3841         visited.push(x);
3842       }
3843 
3844       if (x->is_Region()) {
3845         for (uint i = 1; i < x->req(); i++) {
3846           worklist.push(x->in(i));
3847         }
3848       } else {
3849         worklist.push(x->in(0));
3850         // We are looking for the pattern:
3851         //                            /->ThreadLocal
3852         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3853         //              \->ConI(0)
3854         // We want to verify that the If and the LoadB have the same control
3855         // See GraphKit::g1_write_barrier_pre()
3856         if (x->is_If()) {
3857           IfNode *iff = x->as_If();
3858           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3859             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3860             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3861                 && cmp->in(1)->is_Load()) {
3862               LoadNode* load = cmp->in(1)->as_Load();
3863               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3864                   && load->in(2)->in(3)->is_Con()
3865                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3866 
3867                 Node* if_ctrl = iff->in(0);
3868                 Node* load_ctrl = load->in(0);
3869 
3870                 if (if_ctrl != load_ctrl) {
3871                   // Skip possible CProj->NeverBranch in infinite loops
3872                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3873                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3874                     if_ctrl = if_ctrl->in(0)->in(0);
3875                   }
3876                 }
3877                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3878               }
3879             }
3880           }
3881         }
3882       }
3883     }
3884   }
3885 #endif
3886 }
3887 
3888 #endif
3889 
3890 // The Compile object keeps track of failure reasons separately from the ciEnv.
3891 // This is required because there is not quite a 1-1 relation between the
3892 // ciEnv and its compilation task and the Compile object.  Note that one
3893 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3894 // to backtrack and retry without subsuming loads.  Other than this backtracking
3895 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3896 // by the logic in C2Compiler.
3897 void Compile::record_failure(const char* reason) {
3898   if (log() != NULL) {
3899     log()->elem("failure reason='%s' phase='compile'", reason);
3900   }
3901   if (_failure_reason == NULL) {
3902     // Record the first failure reason.
3903     _failure_reason = reason;
3904   }
3905 
3906   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3907     C->print_method(PHASE_FAILURE);
3908   }
3909   _root = NULL;  // flush the graph, too
3910 }
3911 
3912 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3913   : TraceTime(name, accumulator, CITime, CITimeVerbose),
3914     _phase_name(name), _dolog(CITimeVerbose)
3915 {
3916   if (_dolog) {
3917     C = Compile::current();
3918     _log = C->log();
3919   } else {
3920     C = NULL;
3921     _log = NULL;
3922   }
3923   if (_log != NULL) {
3924     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3925     _log->stamp();
3926     _log->end_head();
3927   }
3928 }
3929 
3930 Compile::TracePhase::~TracePhase() {
3931 
3932   C = Compile::current();
3933   if (_dolog) {
3934     _log = C->log();
3935   } else {
3936     _log = NULL;
3937   }
3938 
3939 #ifdef ASSERT
3940   if (PrintIdealNodeCount) {
3941     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3942                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3943   }
3944 
3945   if (VerifyIdealNodeCount) {
3946     Compile::current()->print_missing_nodes();
3947   }
3948 #endif
3949 
3950   if (_log != NULL) {
3951     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3952   }
3953 }
3954 
3955 //=============================================================================
3956 // Two Constant's are equal when the type and the value are equal.
3957 bool Compile::Constant::operator==(const Constant& other) {
3958   if (type()          != other.type()         )  return false;
3959   if (can_be_reused() != other.can_be_reused())  return false;
3960   // For floating point values we compare the bit pattern.
3961   switch (type()) {
3962   case T_INT:
3963   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3964   case T_LONG:
3965   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3966   case T_OBJECT:
3967   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3968   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3969   case T_METADATA: return (_v._metadata == other._v._metadata);
3970   default: ShouldNotReachHere(); return false;
3971   }
3972 }
3973 
3974 static int type_to_size_in_bytes(BasicType t) {
3975   switch (t) {
3976   case T_INT:     return sizeof(jint   );
3977   case T_LONG:    return sizeof(jlong  );
3978   case T_FLOAT:   return sizeof(jfloat );
3979   case T_DOUBLE:  return sizeof(jdouble);
3980   case T_METADATA: return sizeof(Metadata*);
3981     // We use T_VOID as marker for jump-table entries (labels) which
3982     // need an internal word relocation.
3983   case T_VOID:
3984   case T_ADDRESS:
3985   case T_OBJECT:  return sizeof(jobject);
3986   default:
3987     ShouldNotReachHere();
3988     return -1;
3989   }
3990 }
3991 
3992 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3993   // sort descending
3994   if (a->freq() > b->freq())  return -1;
3995   if (a->freq() < b->freq())  return  1;
3996   return 0;
3997 }
3998 
3999 void Compile::ConstantTable::calculate_offsets_and_size() {
4000   // First, sort the array by frequencies.
4001   _constants.sort(qsort_comparator);
4002 
4003 #ifdef ASSERT
4004   // Make sure all jump-table entries were sorted to the end of the
4005   // array (they have a negative frequency).
4006   bool found_void = false;
4007   for (int i = 0; i < _constants.length(); i++) {
4008     Constant con = _constants.at(i);
4009     if (con.type() == T_VOID)
4010       found_void = true;  // jump-tables
4011     else
4012       assert(!found_void, "wrong sorting");
4013   }
4014 #endif
4015 
4016   int offset = 0;
4017   for (int i = 0; i < _constants.length(); i++) {
4018     Constant* con = _constants.adr_at(i);
4019 
4020     // Align offset for type.
4021     int typesize = type_to_size_in_bytes(con->type());
4022     offset = align_up(offset, typesize);
4023     con->set_offset(offset);   // set constant's offset
4024 
4025     if (con->type() == T_VOID) {
4026       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
4027       offset = offset + typesize * n->outcnt();  // expand jump-table
4028     } else {
4029       offset = offset + typesize;
4030     }
4031   }
4032 
4033   // Align size up to the next section start (which is insts; see
4034   // CodeBuffer::align_at_start).
4035   assert(_size == -1, "already set?");
4036   _size = align_up(offset, (int)CodeEntryAlignment);
4037 }
4038 
4039 void Compile::ConstantTable::emit(CodeBuffer& cb) {
4040   MacroAssembler _masm(&cb);
4041   for (int i = 0; i < _constants.length(); i++) {
4042     Constant con = _constants.at(i);
4043     address constant_addr = NULL;
4044     switch (con.type()) {
4045     case T_INT:    constant_addr = _masm.int_constant(   con.get_jint()   ); break;
4046     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
4047     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
4048     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
4049     case T_OBJECT: {
4050       jobject obj = con.get_jobject();
4051       int oop_index = _masm.oop_recorder()->find_index(obj);
4052       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
4053       break;
4054     }
4055     case T_ADDRESS: {
4056       address addr = (address) con.get_jobject();
4057       constant_addr = _masm.address_constant(addr);
4058       break;
4059     }
4060     // We use T_VOID as marker for jump-table entries (labels) which
4061     // need an internal word relocation.
4062     case T_VOID: {
4063       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
4064       // Fill the jump-table with a dummy word.  The real value is
4065       // filled in later in fill_jump_table.
4066       address dummy = (address) n;
4067       constant_addr = _masm.address_constant(dummy);
4068       // Expand jump-table
4069       for (uint i = 1; i < n->outcnt(); i++) {
4070         address temp_addr = _masm.address_constant(dummy + i);
4071         assert(temp_addr, "consts section too small");
4072       }
4073       break;
4074     }
4075     case T_METADATA: {
4076       Metadata* obj = con.get_metadata();
4077       int metadata_index = _masm.oop_recorder()->find_index(obj);
4078       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
4079       break;
4080     }
4081     default: ShouldNotReachHere();
4082     }
4083     assert(constant_addr, "consts section too small");
4084     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
4085             "must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
4086   }
4087 }
4088 
4089 int Compile::ConstantTable::find_offset(Constant& con) const {
4090   int idx = _constants.find(con);
4091   assert(idx != -1, "constant must be in constant table");
4092   int offset = _constants.at(idx).offset();
4093   assert(offset != -1, "constant table not emitted yet?");
4094   return offset;
4095 }
4096 
4097 void Compile::ConstantTable::add(Constant& con) {
4098   if (con.can_be_reused()) {
4099     int idx = _constants.find(con);
4100     if (idx != -1 && _constants.at(idx).can_be_reused()) {
4101       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
4102       return;
4103     }
4104   }
4105   (void) _constants.append(con);
4106 }
4107 
4108 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
4109   Block* b = Compile::current()->cfg()->get_block_for_node(n);
4110   Constant con(type, value, b->_freq);
4111   add(con);
4112   return con;
4113 }
4114 
4115 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
4116   Constant con(metadata);
4117   add(con);
4118   return con;
4119 }
4120 
4121 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
4122   jvalue value;
4123   BasicType type = oper->type()->basic_type();
4124   switch (type) {
4125   case T_LONG:    value.j = oper->constantL(); break;
4126   case T_FLOAT:   value.f = oper->constantF(); break;
4127   case T_DOUBLE:  value.d = oper->constantD(); break;
4128   case T_OBJECT:
4129   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
4130   case T_METADATA: return add((Metadata*)oper->constant()); break;
4131   default: guarantee(false, "unhandled type: %s", type2name(type));
4132   }
4133   return add(n, type, value);
4134 }
4135 
4136 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
4137   jvalue value;
4138   // We can use the node pointer here to identify the right jump-table
4139   // as this method is called from Compile::Fill_buffer right before
4140   // the MachNodes are emitted and the jump-table is filled (means the
4141   // MachNode pointers do not change anymore).
4142   value.l = (jobject) n;
4143   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
4144   add(con);
4145   return con;
4146 }
4147 
4148 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
4149   // If called from Compile::scratch_emit_size do nothing.
4150   if (Compile::current()->in_scratch_emit_size())  return;
4151 
4152   assert(labels.is_nonempty(), "must be");
4153   assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt());
4154 
4155   // Since MachConstantNode::constant_offset() also contains
4156   // table_base_offset() we need to subtract the table_base_offset()
4157   // to get the plain offset into the constant table.
4158   int offset = n->constant_offset() - table_base_offset();
4159 
4160   MacroAssembler _masm(&cb);
4161   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
4162 
4163   for (uint i = 0; i < n->outcnt(); i++) {
4164     address* constant_addr = &jump_table_base[i];
4165     assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i));
4166     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
4167     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
4168   }
4169 }
4170 
4171 //----------------------------static_subtype_check-----------------------------
4172 // Shortcut important common cases when superklass is exact:
4173 // (0) superklass is java.lang.Object (can occur in reflective code)
4174 // (1) subklass is already limited to a subtype of superklass => always ok
4175 // (2) subklass does not overlap with superklass => always fail
4176 // (3) superklass has NO subtypes and we can check with a simple compare.
4177 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
4178   if (StressReflectiveCode || superk == NULL || subk == NULL) {
4179     return SSC_full_test;       // Let caller generate the general case.
4180   }
4181 
4182   if (!EnableValhalla && superk == env()->Object_klass()) {
4183     return SSC_always_true;     // (0) this test cannot fail
4184   }
4185 
4186   ciType* superelem = superk;
4187   if (superelem->is_array_klass())
4188     superelem = superelem->as_array_klass()->base_element_type();
4189 
4190   if (!subk->is_interface()) {  // cannot trust static interface types yet
4191     if (subk->is_subtype_of(superk)) {
4192       return SSC_always_true;   // (1) false path dead; no dynamic test needed
4193     }
4194     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
4195         !superk->is_subtype_of(subk)) {
4196       return SSC_always_false;
4197     }
4198   }
4199 
4200   // If casting to an instance klass, it must have no subtypes
4201   if (superk->is_interface()) {
4202     // Cannot trust interfaces yet.
4203     // %%% S.B. superk->nof_implementors() == 1
4204   } else if (superelem->is_instance_klass()) {
4205     ciInstanceKlass* ik = superelem->as_instance_klass();
4206     if (!ik->has_subklass() && !ik->is_interface()) {
4207       if (!ik->is_final()) {
4208         // Add a dependency if there is a chance of a later subclass.
4209         dependencies()->assert_leaf_type(ik);
4210       }
4211       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4212     }
4213   } else {
4214     // A primitive array type has no subtypes.
4215     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4216   }
4217 
4218   return SSC_full_test;
4219 }
4220 
4221 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4222 #ifdef _LP64
4223   // The scaled index operand to AddP must be a clean 64-bit value.
4224   // Java allows a 32-bit int to be incremented to a negative
4225   // value, which appears in a 64-bit register as a large
4226   // positive number.  Using that large positive number as an
4227   // operand in pointer arithmetic has bad consequences.
4228   // On the other hand, 32-bit overflow is rare, and the possibility
4229   // can often be excluded, if we annotate the ConvI2L node with
4230   // a type assertion that its value is known to be a small positive
4231   // number.  (The prior range check has ensured this.)
4232   // This assertion is used by ConvI2LNode::Ideal.
4233   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4234   if (sizetype != NULL) index_max = sizetype->_hi - 1;
4235   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4236   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4237 #endif
4238   return idx;
4239 }
4240 
4241 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4242 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4243   if (ctrl != NULL) {
4244     // Express control dependency by a CastII node with a narrow type.
4245     value = new CastIINode(value, itype, false, true /* range check dependency */);
4246     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4247     // node from floating above the range check during loop optimizations. Otherwise, the
4248     // ConvI2L node may be eliminated independently of the range check, causing the data path
4249     // to become TOP while the control path is still there (although it's unreachable).
4250     value->set_req(0, ctrl);
4251     // Save CastII node to remove it after loop optimizations.
4252     phase->C->add_range_check_cast(value);
4253     value = phase->transform(value);
4254   }
4255   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4256   return phase->transform(new ConvI2LNode(value, ltype));
4257 }
4258 
4259 // The message about the current inlining is accumulated in
4260 // _print_inlining_stream and transfered into the _print_inlining_list
4261 // once we know whether inlining succeeds or not. For regular
4262 // inlining, messages are appended to the buffer pointed by
4263 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4264 // a new buffer is added after _print_inlining_idx in the list. This
4265 // way we can update the inlining message for late inlining call site
4266 // when the inlining is attempted again.
4267 void Compile::print_inlining_init() {
4268   if (print_inlining() || print_intrinsics()) {
4269     _print_inlining_stream = new stringStream();
4270     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
4271   }
4272 }
4273 
4274 void Compile::print_inlining_reinit() {
4275   if (print_inlining() || print_intrinsics()) {
4276     // Re allocate buffer when we change ResourceMark
4277     _print_inlining_stream = new stringStream();
4278   }
4279 }
4280 
4281 void Compile::print_inlining_reset() {
4282   _print_inlining_stream->reset();
4283 }
4284 
4285 void Compile::print_inlining_commit() {
4286   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4287   // Transfer the message from _print_inlining_stream to the current
4288   // _print_inlining_list buffer and clear _print_inlining_stream.
4289   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
4290   print_inlining_reset();
4291 }
4292 
4293 void Compile::print_inlining_push() {
4294   // Add new buffer to the _print_inlining_list at current position
4295   _print_inlining_idx++;
4296   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
4297 }
4298 
4299 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
4300   return _print_inlining_list->at(_print_inlining_idx);
4301 }
4302 
4303 void Compile::print_inlining_update(CallGenerator* cg) {
4304   if (print_inlining() || print_intrinsics()) {
4305     if (!cg->is_late_inline()) {
4306       if (print_inlining_current().cg() != NULL) {
4307         print_inlining_push();
4308       }
4309       print_inlining_commit();
4310     } else {
4311       if (print_inlining_current().cg() != cg &&
4312           (print_inlining_current().cg() != NULL ||
4313            print_inlining_current().ss()->size() != 0)) {
4314         print_inlining_push();
4315       }
4316       print_inlining_commit();
4317       print_inlining_current().set_cg(cg);
4318     }
4319   }
4320 }
4321 
4322 void Compile::print_inlining_move_to(CallGenerator* cg) {
4323   // We resume inlining at a late inlining call site. Locate the
4324   // corresponding inlining buffer so that we can update it.
4325   if (print_inlining()) {
4326     for (int i = 0; i < _print_inlining_list->length(); i++) {
4327       if (_print_inlining_list->adr_at(i)->cg() == cg) {
4328         _print_inlining_idx = i;
4329         return;
4330       }
4331     }
4332     ShouldNotReachHere();
4333   }
4334 }
4335 
4336 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4337   if (print_inlining()) {
4338     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4339     assert(print_inlining_current().cg() == cg, "wrong entry");
4340     // replace message with new message
4341     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4342     print_inlining_commit();
4343     print_inlining_current().set_cg(cg);
4344   }
4345 }
4346 
4347 void Compile::print_inlining_assert_ready() {
4348   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4349 }
4350 
4351 void Compile::process_print_inlining() {
4352   bool do_print_inlining = print_inlining() || print_intrinsics();
4353   if (do_print_inlining || log() != NULL) {
4354     // Print inlining message for candidates that we couldn't inline
4355     // for lack of space
4356     for (int i = 0; i < _late_inlines.length(); i++) {
4357       CallGenerator* cg = _late_inlines.at(i);
4358       if (!cg->is_mh_late_inline()) {
4359         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4360         if (do_print_inlining) {
4361           cg->print_inlining_late(msg);
4362         }
4363         log_late_inline_failure(cg, msg);
4364       }
4365     }
4366   }
4367   if (do_print_inlining) {
4368     ResourceMark rm;
4369     stringStream ss;
4370     for (int i = 0; i < _print_inlining_list->length(); i++) {
4371       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4372     }
4373     size_t end = ss.size();
4374     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4375     strncpy(_print_inlining_output, ss.base(), end+1);
4376     _print_inlining_output[end] = 0;
4377   }
4378 }
4379 
4380 void Compile::dump_print_inlining() {
4381   if (_print_inlining_output != NULL) {
4382     tty->print_raw(_print_inlining_output);
4383   }
4384 }
4385 
4386 void Compile::log_late_inline(CallGenerator* cg) {
4387   if (log() != NULL) {
4388     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4389                 cg->unique_id());
4390     JVMState* p = cg->call_node()->jvms();
4391     while (p != NULL) {
4392       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4393       p = p->caller();
4394     }
4395     log()->tail("late_inline");
4396   }
4397 }
4398 
4399 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4400   log_late_inline(cg);
4401   if (log() != NULL) {
4402     log()->inline_fail(msg);
4403   }
4404 }
4405 
4406 void Compile::log_inline_id(CallGenerator* cg) {
4407   if (log() != NULL) {
4408     // The LogCompilation tool needs a unique way to identify late
4409     // inline call sites. This id must be unique for this call site in
4410     // this compilation. Try to have it unique across compilations as
4411     // well because it can be convenient when grepping through the log
4412     // file.
4413     // Distinguish OSR compilations from others in case CICountOSR is
4414     // on.
4415     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4416     cg->set_unique_id(id);
4417     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4418   }
4419 }
4420 
4421 void Compile::log_inline_failure(const char* msg) {
4422   if (C->log() != NULL) {
4423     C->log()->inline_fail(msg);
4424   }
4425 }
4426 
4427 
4428 // Dump inlining replay data to the stream.
4429 // Don't change thread state and acquire any locks.
4430 void Compile::dump_inline_data(outputStream* out) {
4431   InlineTree* inl_tree = ilt();
4432   if (inl_tree != NULL) {
4433     out->print(" inline %d", inl_tree->count());
4434     inl_tree->dump_replay_data(out);
4435   }
4436 }
4437 
4438 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4439   if (n1->Opcode() < n2->Opcode())      return -1;
4440   else if (n1->Opcode() > n2->Opcode()) return 1;
4441 
4442   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4443   for (uint i = 1; i < n1->req(); i++) {
4444     if (n1->in(i) < n2->in(i))      return -1;
4445     else if (n1->in(i) > n2->in(i)) return 1;
4446   }
4447 
4448   return 0;
4449 }
4450 
4451 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4452   Node* n1 = *n1p;
4453   Node* n2 = *n2p;
4454 
4455   return cmp_expensive_nodes(n1, n2);
4456 }
4457 
4458 void Compile::sort_expensive_nodes() {
4459   if (!expensive_nodes_sorted()) {
4460     _expensive_nodes->sort(cmp_expensive_nodes);
4461   }
4462 }
4463 
4464 bool Compile::expensive_nodes_sorted() const {
4465   for (int i = 1; i < _expensive_nodes->length(); i++) {
4466     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4467       return false;
4468     }
4469   }
4470   return true;
4471 }
4472 
4473 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4474   if (_expensive_nodes->length() == 0) {
4475     return false;
4476   }
4477 
4478   assert(OptimizeExpensiveOps, "optimization off?");
4479 
4480   // Take this opportunity to remove dead nodes from the list
4481   int j = 0;
4482   for (int i = 0; i < _expensive_nodes->length(); i++) {
4483     Node* n = _expensive_nodes->at(i);
4484     if (!n->is_unreachable(igvn)) {
4485       assert(n->is_expensive(), "should be expensive");
4486       _expensive_nodes->at_put(j, n);
4487       j++;
4488     }
4489   }
4490   _expensive_nodes->trunc_to(j);
4491 
4492   // Then sort the list so that similar nodes are next to each other
4493   // and check for at least two nodes of identical kind with same data
4494   // inputs.
4495   sort_expensive_nodes();
4496 
4497   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4498     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4499       return true;
4500     }
4501   }
4502 
4503   return false;
4504 }
4505 
4506 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4507   if (_expensive_nodes->length() == 0) {
4508     return;
4509   }
4510 
4511   assert(OptimizeExpensiveOps, "optimization off?");
4512 
4513   // Sort to bring similar nodes next to each other and clear the
4514   // control input of nodes for which there's only a single copy.
4515   sort_expensive_nodes();
4516 
4517   int j = 0;
4518   int identical = 0;
4519   int i = 0;
4520   bool modified = false;
4521   for (; i < _expensive_nodes->length()-1; i++) {
4522     assert(j <= i, "can't write beyond current index");
4523     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4524       identical++;
4525       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4526       continue;
4527     }
4528     if (identical > 0) {
4529       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4530       identical = 0;
4531     } else {
4532       Node* n = _expensive_nodes->at(i);
4533       igvn.replace_input_of(n, 0, NULL);
4534       igvn.hash_insert(n);
4535       modified = true;
4536     }
4537   }
4538   if (identical > 0) {
4539     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4540   } else if (_expensive_nodes->length() >= 1) {
4541     Node* n = _expensive_nodes->at(i);
4542     igvn.replace_input_of(n, 0, NULL);
4543     igvn.hash_insert(n);
4544     modified = true;
4545   }
4546   _expensive_nodes->trunc_to(j);
4547   if (modified) {
4548     igvn.optimize();
4549   }
4550 }
4551 
4552 void Compile::add_expensive_node(Node * n) {
4553   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4554   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4555   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4556   if (OptimizeExpensiveOps) {
4557     _expensive_nodes->append(n);
4558   } else {
4559     // Clear control input and let IGVN optimize expensive nodes if
4560     // OptimizeExpensiveOps is off.
4561     n->set_req(0, NULL);
4562   }
4563 }
4564 
4565 /**
4566  * Remove the speculative part of types and clean up the graph
4567  */
4568 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4569   if (UseTypeSpeculation) {
4570     Unique_Node_List worklist;
4571     worklist.push(root());
4572     int modified = 0;
4573     // Go over all type nodes that carry a speculative type, drop the
4574     // speculative part of the type and enqueue the node for an igvn
4575     // which may optimize it out.
4576     for (uint next = 0; next < worklist.size(); ++next) {
4577       Node *n  = worklist.at(next);
4578       if (n->is_Type()) {
4579         TypeNode* tn = n->as_Type();
4580         const Type* t = tn->type();
4581         const Type* t_no_spec = t->remove_speculative();
4582         if (t_no_spec != t) {
4583           bool in_hash = igvn.hash_delete(n);
4584           assert(in_hash, "node should be in igvn hash table");
4585           tn->set_type(t_no_spec);
4586           igvn.hash_insert(n);
4587           igvn._worklist.push(n); // give it a chance to go away
4588           modified++;
4589         }
4590       }
4591       uint max = n->len();
4592       for( uint i = 0; i < max; ++i ) {
4593         Node *m = n->in(i);
4594         if (not_a_node(m))  continue;
4595         worklist.push(m);
4596       }
4597     }
4598     // Drop the speculative part of all types in the igvn's type table
4599     igvn.remove_speculative_types();
4600     if (modified > 0) {
4601       igvn.optimize();
4602     }
4603 #ifdef ASSERT
4604     // Verify that after the IGVN is over no speculative type has resurfaced
4605     worklist.clear();
4606     worklist.push(root());
4607     for (uint next = 0; next < worklist.size(); ++next) {
4608       Node *n  = worklist.at(next);
4609       const Type* t = igvn.type_or_null(n);
4610       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4611       if (n->is_Type()) {
4612         t = n->as_Type()->type();
4613         assert(t == t->remove_speculative(), "no more speculative types");
4614       }
4615       uint max = n->len();
4616       for( uint i = 0; i < max; ++i ) {
4617         Node *m = n->in(i);
4618         if (not_a_node(m))  continue;
4619         worklist.push(m);
4620       }
4621     }
4622     igvn.check_no_speculative_types();
4623 #endif
4624   }
4625 }
4626 
4627 Node* Compile::load_is_value_bit(PhaseGVN* phase, Node* oop) {
4628   // Load the klass pointer and check if it's odd, i.e., if it defines a value type
4629   // is_value = (klass & oop_metadata_valuetype_mask) >> LogKlassAlignmentInBytes
4630   Node* k_adr = phase->transform(new AddPNode(oop, oop, phase->MakeConX(oopDesc::klass_offset_in_bytes())));
4631   Node* klass = NULL;
4632   if (UseCompressedClassPointers) {
4633     klass = phase->transform(new LoadNKlassNode(NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeKlassPtr::OBJECT->make_narrowklass(), MemNode::unordered));
4634   } else {
4635     klass = phase->transform(new LoadKlassNode(NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeKlassPtr::OBJECT, MemNode::unordered));
4636   }
4637   const int mask = Universe::oop_metadata_valuetype_mask();
4638   Node* is_value = phase->transform(new CastP2XNode(NULL, klass));
4639   is_value = phase->transform(new AndXNode(is_value, phase->MakeConX(mask)));
4640   // Check if a shift is required for perturbation to affect aligned bits of oop
4641   if (mask == KlassPtrValueTypeMask && ObjectAlignmentInBytes <= KlassAlignmentInBytes) {
4642     assert((mask >> LogKlassAlignmentInBytes) == 1, "invalid shift");
4643     is_value = phase->transform(new URShiftXNode(is_value, phase->intcon(LogKlassAlignmentInBytes)));
4644   } else {
4645     assert(mask < ObjectAlignmentInBytes, "invalid mask");
4646   }
4647   return is_value;
4648 }
4649 
4650 Node* Compile::optimize_acmp(PhaseGVN* phase, Node* a, Node* b) {
4651   const TypeInstPtr* ta = phase->type(a)->isa_instptr();
4652   const TypeInstPtr* tb = phase->type(b)->isa_instptr();
4653   if (!EnableValhalla || ta == NULL || tb == NULL ||
4654       ta->is_zero_type() || tb->is_zero_type() ||
4655       !ta->can_be_value_type() || !tb->can_be_value_type()) {
4656     // Use old acmp if one operand is null or not a value type
4657     return new CmpPNode(a, b);
4658   } else if (ta->is_valuetypeptr() || tb->is_valuetypeptr()) {
4659     // We know that one operand is a value type. Therefore,
4660     // new acmp will only return true if both operands are NULL.
4661     // Check if both operands are null by or'ing the oops.
4662     a = phase->transform(new CastP2XNode(NULL, a));
4663     b = phase->transform(new CastP2XNode(NULL, b));
4664     a = phase->transform(new OrXNode(a, b));
4665     return new CmpXNode(a, phase->MakeConX(0));
4666   }
4667   // Use new acmp
4668   return NULL;
4669 }
4670 
4671 // Auxiliary method to support randomized stressing/fuzzing.
4672 //
4673 // This method can be called the arbitrary number of times, with current count
4674 // as the argument. The logic allows selecting a single candidate from the
4675 // running list of candidates as follows:
4676 //    int count = 0;
4677 //    Cand* selected = null;
4678 //    while(cand = cand->next()) {
4679 //      if (randomized_select(++count)) {
4680 //        selected = cand;
4681 //      }
4682 //    }
4683 //
4684 // Including count equalizes the chances any candidate is "selected".
4685 // This is useful when we don't have the complete list of candidates to choose
4686 // from uniformly. In this case, we need to adjust the randomicity of the
4687 // selection, or else we will end up biasing the selection towards the latter
4688 // candidates.
4689 //
4690 // Quick back-envelope calculation shows that for the list of n candidates
4691 // the equal probability for the candidate to persist as "best" can be
4692 // achieved by replacing it with "next" k-th candidate with the probability
4693 // of 1/k. It can be easily shown that by the end of the run, the
4694 // probability for any candidate is converged to 1/n, thus giving the
4695 // uniform distribution among all the candidates.
4696 //
4697 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4698 #define RANDOMIZED_DOMAIN_POW 29
4699 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4700 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4701 bool Compile::randomized_select(int count) {
4702   assert(count > 0, "only positive");
4703   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4704 }
4705 
4706 CloneMap&     Compile::clone_map()                 { return _clone_map; }
4707 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
4708 
4709 void NodeCloneInfo::dump() const {
4710   tty->print(" {%d:%d} ", idx(), gen());
4711 }
4712 
4713 void CloneMap::clone(Node* old, Node* nnn, int gen) {
4714   uint64_t val = value(old->_idx);
4715   NodeCloneInfo cio(val);
4716   assert(val != 0, "old node should be in the map");
4717   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4718   insert(nnn->_idx, cin.get());
4719 #ifndef PRODUCT
4720   if (is_debug()) {
4721     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4722   }
4723 #endif
4724 }
4725 
4726 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4727   NodeCloneInfo cio(value(old->_idx));
4728   if (cio.get() == 0) {
4729     cio.set(old->_idx, 0);
4730     insert(old->_idx, cio.get());
4731 #ifndef PRODUCT
4732     if (is_debug()) {
4733       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4734     }
4735 #endif
4736   }
4737   clone(old, nnn, gen);
4738 }
4739 
4740 int CloneMap::max_gen() const {
4741   int g = 0;
4742   DictI di(_dict);
4743   for(; di.test(); ++di) {
4744     int t = gen(di._key);
4745     if (g < t) {
4746       g = t;
4747 #ifndef PRODUCT
4748       if (is_debug()) {
4749         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4750       }
4751 #endif
4752     }
4753   }
4754   return g;
4755 }
4756 
4757 void CloneMap::dump(node_idx_t key) const {
4758   uint64_t val = value(key);
4759   if (val != 0) {
4760     NodeCloneInfo ni(val);
4761     ni.dump();
4762   }
4763 }